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ABSTRACT  

Extensive usage of automatic processing in industries has created Flexible 

Manufacturing Systems (FMSs). In a robotic FMS there are some Computer 

Numerical Control (CNC) machines for processing the parts, there is an input buffer 

for keeping unprocessed parts and an output buffer for finished parts, and at least one 

robot for transporting the parts in the system and loading/unloading the machines, 

and a central computer controlling the system. Such systems provide advantage in 

flexibility and standardization in production systems and they have been employed in 

recent years in order to keep up with the market competition. In order to use the 

system efficiently the system should be scheduled carefully. In this content, the order 

of the robot actions such as robot movements and loading/unloading activities should 

be determined for maximizing the system’s efficiency. When the system repeats a 

cycle in its run maximizing the efficiency is equivalent to minimizing the cycle time.  

This thesis considers a robotic FMS in which there is a single self-buffered robot 

which has the ability to carry more than one part at a time in an inline robotic cell 

where parts produced are identical. The system repeats a cycle in its long run. The 

problem is to determine the schedule of the system for minimizing the cycle time. A 

Mixed Integer Programming (MIP) model of the problem is developed to find the 

optimal solutions. Since the developed MIP model could not solve the large size 

problems a Simulated Annealing meta-heuristic algorithm is developed to solve 

those problems. Performances of the proposed methods and considered robotic FMS 

cells are evaluated on several numerical instances. Numerically, it has been shown 

that the performances of the proposed methods are satisfactory and the performance 
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of the robotic FMS increases significantly by using a self-buffered robot up to some 

robot buffer capacity. After a point more robot buffer capacity becomes useless.      

Keywords: Flexible Manufacturing Systems, Cyclic Robotic FMS Scheduling, Self-

Buffered Robot. 
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ÖZ 

Sanayide otomasyona dayalı üretimin geniş şekilde kullanımı Esnek Üretim 

Sistemleri’ni (EÜSleri’ni) ortaya çıkarmıştır. Robotlu bir EÜS’de parçaları işlemek 

için CNC makineler, işlenmemiş parçaları tutmak için bir stok alanı, bitmiş parçalar 

için bir stok alanı, parçaları sistemde taşımak ve makineleri yüklemek/boşaltmak için 

en az bir robot ve sistemi kontrol eden bir merkezi bilgisayar vardır. Böyle sistemler 

esneklik ve standartlaşma konularında avantaj sağlamaktadır ve son yıllarda rekabet 

edebilmek için tercih edilmektedirler. Sistemin verimli bir şekilde kullanılabilmesi 

için dikkatlice çizelgelenmesi gerekmektedir. Bu kapsamda, robot hareketi ve 

yükleme/boşaltma gibi robot faaliyetleri sistem verimliliğini en büyükleyecek şekilde 

belirlenmelidir. Sistem çalışırken bir döngüyü tekrarlıyor ise döngü süresinin en 

küçüklenmesi sistem verimliliğinin en büyüklenmesiyle aynıdır.    

Bu tezde, birden fazla parçayı aynı anda taşıyabilecek kendi stok alanına sahip bir 

robotun bulunduğu ve parçaların özdeş olduğu bir robotlu EÜS ele alınmıştır. Sistem 

uzun süreli çalışmasında bir döngüyü tekrarlar. Problem, döngü süresini en 

küçükleyecek sistem çizelgesinin bulunmasıdır. En iyi çözümleri bulmak üzere 

problemin Karışık Tamsayılı Programlama (KTP) modeli geliştirilmiştir. Geliştirilen 

KTP modeli büyük boyutlu problemleri çözemediği için bu problemleri çözmek 

amacı ile Tavlama Benzetimi modern-sezgisel algoritması geliştirilmiştir. Geliştirilen 

yöntemlerin ve ele alınan EÜS hücresinin performansları çeşitli sayısal problemler 

üzerinden değerlendirilmiştir. Önerilen yöntemlerin memnun edici bir performansa 

sahip oldukları ve ele alınan robotlu EÜS’nin performansının kendi stok alanı olan 

robot kullanılarak belli bir stok kapasitesine kadar önemli derecede arttığı sayısal 
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olarak gösterilmiştir. Belli bir noktadan sonra daha fazla robot stok alanının olması 

faydasızdır.    

Anahtar Kelimeler: Esnek Üretim Sistemleri, Döngülü Robotlu EÜS Çizelgeleme, 

Kendinden Stok Alanlı Robot.  

 

 

 

 

 

 

 

 

 

 

 



vii 

 

DEDICATION 

I dedicate this thesis to my late father who had a dream one day that I was on top of 

the mountains and he told me to him that meant that someday I will reach great 

heights to achieve my countless dreams. He was the reason I never gave up to 

become at the top of everything I ever work on.  

 

 

 

 

 

 

 

 

 

 



viii 

 

ACKNOWLEDGMENT 

I would like to extend my gratefulness and indebtedness to my Supervisor Assist. 

Prof. Dr. Hüseyin Güden who has continuously shared his wisdom and knowledge 

which has indefinite description and for guiding, advising and directing me through 

what has been only what I can describe as an interesting journey through my thesis. 

He saw the ability in my performance from the beginning of my Master journey and 

he gave me the motivation to put in as much effort as required to make an outcome 

that I can be proud of. Most of all, I would like to thank him for always encouraging 

me by making me believe that someday I would become a successful academic.  

I would also like to thank all my Professors who have taught me during my Master 

Degree. Assoc. Prof. Dr. Gökhan İzbirak for teaching us to think outside the box so 

that we can be productive engineers. Assoc. Prof. Dr. Adham Mackieh for showing 

us the importance of how hypothesizing any factors can lead to a definite conclusion. 

Prof. Dr. Bela Vizvari for pointing out that even though we are mathematicians we 

should remember simplification is always better. And Assist. Prof. Dr. Sahand 

Daneshvar for making our exams hard enough so that we learn to work as hard as we 

can. 

My special gratitude also goes to two of my great friends, Tareq Babaqi and Katriye 

Dalcı for being always supportive and helpful during the period of my Masters by 

providing me with encouraging environment. Lastly, I would like to thank my family 

because without them I would have never had the pleasure of writing this 

acknowledgment to being with. 



ix 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................ iii 

ÖZ ................................................................................................................................ v 

DEDICATION ........................................................................................................... vii 

ACKNOWLEDGMENT ........................................................................................... viii 

LIST OF TABLES ..................................................................................................... xii 

LIST OF FIGURES .................................................................................................. xiv 

1 INTRODUCTION .................................................................................................... 1 

1.1 Motivation .......................................................................................................... 6 

2 LITERATURE REVIEW ......................................................................................... 7 

2.1 Robots with Single Gripper ............................................................................... 9 

2.2 Robots with Dual Gripper ................................................................................ 16 

2.3 Robots with either Single or Dual Gripper ...................................................... 18 

2.4 Robots with Dual Arm ..................................................................................... 19 

2.5 Robots with Swap Ability ................................................................................ 19 

2.6 Robots with Output Buffer at Each Machine ................................................... 20 

2.8 Robots with Input and Output Buffer at Each Machine .................................. 21 

2.9 Robot with Buffer Capacity ............................................................................. 22 

3 PROBLEM DEFINITON ....................................................................................... 23 

3.1 Notations and Definitions ................................................................................ 23 

3.2 Distance Matrix Derivation.............................................................................. 25 

3.3 Process Time .................................................................................................... 33 

4 METHODOLOGY ................................................................................................. 35 

4.1 Mixed Integer Programming Model ................................................................ 35 



x 

 

4.2 Software Used to Solve the Model .................................................................. 45 

4.3 Cycle and Variables Representation ................................................................ 46 

4.4 Simulated Annealing Algorithm ...................................................................... 48 

4.4.1 Creating the Initial Current Order ............................................................. 49 

4.4.2 Defining x Variables and Setting Best Order............................................ 51 

4.4.3 Starting the Iteration Loop ........................................................................ 52 

4.4.4 Strategy Used for New Solution ............................................................... 52 

4.4.5 Condition for Finding a Better Solution ................................................... 56 

5 RESULTS AND DISCUSSION ............................................................................. 58 

5.1 Cycle Time Calculation ................................................................................... 58 

2.2 Cycle Time for Robot Buffer Capacity > m and ≤ 2m .................................... 64 

5.3 Comparison between MIP Model and SA Algorithm Results ......................... 67 

5.3.1 Case 1: δ = 2, ε = 1, P = 0 ......................................................................... 68 

5.3.2 Case 2: δ = 2, ε = 1, P = 22 ....................................................................... 76 

5.3.3 Case 3: δ = 2, ε = 1, P = 40 ....................................................................... 85 

5.3.4 Case 4: δ = 2, ε = 1, P = 50 ....................................................................... 90 

5.3.5 Case 5: δ = 2, ε = 1, P = 100 ..................................................................... 92 

5.3.6 Case 6: δ = 2, ε = 1, P = 5000 ................................................................... 97 

5.4 Effect of Robot Buffer Capacity on Cycle Time ........................................... 101 

5.5 Cycle Time is same for Various Process Times ............................................ 108 

5.6 Cycle Time Increase with Increase in Process Time ..................................... 108 

5.7 Cycle Time after Robot Buffer Capacity > 1 is Constant for Large Process 

Times.................................................................................................................... 112 

5.8 Waiting Time is considered for One Machine ............................................... 113 

6 CONCLUSION AND FUTURE RECOMMENDATIONS ................................. 118 



xi 

 

6.1 Conclusions .................................................................................................... 118 

6.2 Future Recommendations .............................................................................. 120 

REFERENCES ........................................................................................................ 121 

APPENDICES ......................................................................................................... 128 

Appendix A: Simulated Annealing Solution Time Convergence Graphs for Case 

when δ = 2, ε = 1, P = 0, P = 22, P = 40, P = 50 and P = 100 .............................. 129 

Appendix B: Simulated Annealing Solution Time Convergence Graphs for Case 

when δ = 2, ε = 1, P = 5000 ................................................................................. 143 

 

 

 

 

 

 

 

 

 

 



xii 

 

LIST OF TABLES 

Table 2.1: Literature Survey Table .............................................................................. 8 

Table 4.1: Representation of Constraint (4.2) and (4.3) ............................................ 38 

Table 5.1: Case when m = 2, δ = 2, ε = 1, K = 1, P = 22 ........................................... 58 

Table 5.2: Describing Completion Time Calculation for Case when m = 2, δ = 2, ε = 

1, K = 1, P = 22 .......................................................................................................... 60 

Table 5.3: Case when m = 2, δ = 2, ε = 1, K = 2, P = 22 ........................................... 63 

Table 5.4: Case when m = 2, δ = 2, ε = 1, K = 3, P = 22 ........................................... 65 

Table 5.5: Case when m = 2, δ = 2, ε = 1, K = 4, P = 22 ........................................... 66 

Table 5.6: Case when δ = 2, ε = 1, P = 0 ................................................................... 68 

Table 5.7: Case when m = 4, δ = 2, ε = 1, K = 2, P = 0 ............................................. 71 

Table 5.8: Case when m = 4, δ = 2, ε = 1, K = 3, P = 0 ............................................. 71 

Table 5.9: Case when m = 4, δ = 2, ε = 1, K = 4, P = 0 ............................................. 73 

Table 5.10: Case when m = 5, δ = 2, ε = 1, K = 1, P = 0 ........................................... 73 

Table 5.11: Case when m = 5, δ = 2, ε = 1, K = 2, P = 0 ........................................... 74 

Table 5.12: Case when m = 5, δ = 2, ε = 1, K = 3, P = 0 ........................................... 74 

Table 5.13: Case when m = 5, δ = 2, ε = 1, K = 4, P = 0 ........................................... 75 

Table 5.14: Case when m = 5, δ = 2, ε = 1, K = 5, P = 0 ........................................... 75 

Table 5.15: Case when δ = 2, ε = 1, P = 22 ............................................................... 76 

Table 5.16: Case when m = 4, δ = 2, ε = 1, K = 2, P = 22 ......................................... 79 

Table 5.17: Case when m = 4, δ = 2, ε = 1, K = 4, P = 22 ......................................... 82 

Table 5.18: Case when m = 5, δ = 2, ε = 1, K = 3, P = 22 ......................................... 83 

Table 5.19: Case when m = 5, δ = 2, ε = 1, K = 5, P = 22 ......................................... 84 

Table 5.20: Case when δ = 2, ε = 1, P = 40 ............................................................... 86 



xiii 

 

Table 5.21: Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 ......................................... 88 

Table 5.22: Case when δ = 2, ε = 1, P = 50 ............................................................... 91 

Table 5.23: Case when δ = 2, ε = 1, K = 2, P = 100 .................................................. 94 

Table 5.24: Case when m = 5, δ = 2, ε = 1, K = 1, P = 100 ....................................... 95 

Table 5.25: Case when m = 5, δ = 2, ε = 1, K = 2, P = 100 ....................................... 96 

Table 5.26: Case when δ = 2, ε = 1, P = 5000 ........................................................... 99 

Table 5.27: Case when m = 5, δ = 2, ε = 1, K = 1, P = 5000 ................................... 100 

Table 5.28: Case when m = 3, δ = 2, ε = 1, K = 1, P = 0 ......................................... 109 

Table 5.29: Case when m = 3, δ = 2, ε = 1, K = 1, P = 22 ....................................... 109 

Table 5.30: Case when m = 3, δ = 2, ε = 1, K = 1, P = 40 ....................................... 110 

Table 5.31: Case when m = 3, δ = 2, ε = 1, K = 1, P = 50 ....................................... 110 

Table 5.32: Case when m = 3, δ = 2, ε = 1, K = 1, P = 100 ..................................... 111 

Table 5.33: Case when m = 3, δ = 2, ε = 1, K = 1, P = 5000 ................................... 111 

Table 5.34: Relation of Process Times, Number of Machines and Robot Buffer 

Capacity ................................................................................................................... 113 

Table 5.35: Case when m = 2, δ = 2, ε = 1, K = 2, P = 50 ....................................... 114 

Table 5.36: Case when m = 2, δ = 2, ε = 1, K = 2, P = 100 ..................................... 114 

Table 5.37: Case when m = 3, δ = 2, ε = 1, K = 2, P = 50 ....................................... 115 

Table 5.38: Case when m = 3, δ = 2, ε = 1, K = 2, P = 100 ..................................... 115 

 

 

 

 



xiv 

 

LIST OF FIGURES 

Figure 1.1: Inline Robotic Cell with a Self-Buffered Robot ........................................ 5 

Figure 3.1: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {Lj, Uj} ...................... 25 

Figure 3.2: Example when Activity a ϵ {L1} and Activity b ϵ {L2} .......................... 26 

Figure 3.3 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {I} ........................... 27 

Figure 3.3 b: Case when Activity a ϵ {I} and Activity b ϵ {Li, Ui} ........................... 27 

Figure 3.4: Example when Activity a ϵ {L2} and Activity b ϵ {I} ............................ 28 

Figure 3.5 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {O} ......................... 29 

Figure 3.5 b: Case when Activity a ϵ {O} and Activity b ϵ {Li, Ui} ......................... 29 

Figure 3.6: Example when Activity a ϵ {Li, Ui} and Activity b ϵ {O} ...................... 30 

Figure 3.7 a: Case when Activity a ϵ {I} and Activity b ϵ {O} ................................. 31 

Figure 3.7 b: Case when Activity a ϵ {O} and Activity b ϵ {I} ................................. 31 

Figure 3.8: Example when Activity a ϵ {I} and Activity b ϵ {O} ............................. 32 

Figure 3.9: Case when Activity a, b ϵ {I} .................................................................. 32 

Figure 3.10: Case when Activity a, b ϵ {O} .............................................................. 33 

Figure 4.1: Representation of Constraint (4.4) by an Example of Case 1 ................. 39 

Figure 4.2: Representation of Constraint (4.6) by an Example of Case 1 ................. 41 

Figure 4.3: Representation of Constraint (4.7) .......................................................... 41 

Figure 4.4: Representation of Constraint (4.8) .......................................................... 42 

Figure 4.5: Solution Page for 2 Machine Case with K = 1, P = 22............................ 47 

Figure 4.6: Representation of a Cycle for a 2 Machine Case .................................... 48 

Figure 4.7: Creating Initial Current Order ................................................................. 49 

Figure 4.8: Initial Current Order Created for 2 Machine Case .................................. 50 



xv 

 

Figure 4.9: Initial Current Order for 2 Machine Case Represented by Activities and 

Machines .................................................................................................................... 50 

Figure 4.10: General Initial Current Order ................................................................ 51 

Figure 4.11: General Initial Current Order Represented by Activities L, U, I and O.51 

Figure 4.12: Setting x Variables to Lower Bound 1 .................................................. 51 

Figure 4.13: Swapping Strategy for New Solution to be generated........................... 53 

Figure 4.14: Swapping Strategy to Generate New Solution ...................................... 54 

Figure 4.15: Swapping Strategy for Robot Buffer Capacity 1 ................................... 54 

Figure 4.16: New Orders generated for 2 Machines with K = 1 ................................ 55 

Figure 5.1: Gantt Chart for Case when m = 2, δ = 2, ε = 1, K = 1, P = 22 ................ 62 

Figure 5.2: Comparison between MIP and SA Cycle Time for 2 Machines with P = 0

 .................................................................................................................................... 69 

Figure 5.3: Comparison between MIP and SA Cycle Time for 3 Machines with P = 0

 .................................................................................................................................... 69 

Figure 5.4: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

22 ................................................................................................................................ 77 

Figure 5.5: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

22 ................................................................................................................................ 77 

Figure 5.6: Gantt Chart for Case when m = 4, δ = 2, ε = 1, K = 2, P = 22 ................ 81 

Figure 5.7: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

40 ................................................................................................................................ 85 

Figure 5.8: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

40 ................................................................................................................................ 85 

Figure 5.9: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 ................ 89 



xvi 

 

Figure 5.10: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

50 ................................................................................................................................ 90 

Figure 5.11: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

50 ................................................................................................................................ 90 

Figure 5.12: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

100 .............................................................................................................................. 92 

Figure 5.13: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

100 .............................................................................................................................. 93 

Figure 5.14: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

5000 ............................................................................................................................ 97 

Figure 5.15: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

5000 ............................................................................................................................ 98 

Figure 5.16: Robot Buffer Capacity Effect on Cycle Time for 2 Machines ............ 101 

Figure 5.17: Robot Buffer Capacity Effect on Cycle Time for 2 Machines and P = 

5000 .......................................................................................................................... 101 

Figure 5.18: Robot Buffer Capacity Effect on Cycle Time for 3 Machines ............ 102 

Figure 5.19: Robot Buffer Capacity Effect on Cycle Time for 3 Machines and P = 

5000 .......................................................................................................................... 102 

Figure 5.20: Robot Buffer Capacity Effect on Cycle Time for 4 Machines ............ 104 

Figure 5.21: Robot Buffer Capacity Effect on Cycle Time for 4 Machines and P = 

5000 .......................................................................................................................... 105 

Figure 5.22: Robot Buffer Capacity Effect on Cycle Time for 5 Machines ............ 106 

Figure 5.23: Robot Buffer Capacity Effect on Cycle Time for 5 Machines and P = 

5000 .......................................................................................................................... 107 

Figure 5.24: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 ............ 117 



1 

 

Chapter 1 

INTRODUCTION 

A flexible manufacturing system has been widely used over the years because it has 

the ability to adapt to changes in the process of production without causing any 

delays and thus increasing the efficiency while processing products at a faster pace. 

Machine and routing flexibility are the two types offered by a flexible manufacturing 

system for the production process to be improved. When a new product type is 

created the system changes to adjust itself and this refers to machine flexibility. 

While the performance of the same set of operations by all the machines are referred 

to as routing flexibility. 

Extensive scheduling and designing of the system is required which makes it 

complicated and thus only skilled workers can run such systems in industries which 

lead to high cost and this poses as a disadvantage of a flexible manufacturing system. 

However, defective products are prevented because of the ability of the system to 

adapt to changes in the product and thus the cost is reduced in the long run. 

The increase in flexibility which in turn increases the profit of an industrialized 

company that operates a production line automatically by implementing modern 

technology such as flexible manufacturing systems that are made up of robots are 

known as flexible manufacturing robotic cells. 
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Since most industries strive in the market competition, they have chosen to use 

flexible robotic cells for higher production and greater efficiency and some of these 

industries include: aerospace, automotive, metal conductors and machinery. Some 

real examples of where FMS are applied include the Ingersoll-Rand Corporation for 

the hoist division in Virginia, USA. They built a parallel track cell with drill 

machines and machining centers on either sides of the track and a roller conveyor to 

transport processed parts. Aluminum and cast iron castings are the unfinished parts 

that enter the production line and finally motor cases are the finished products. Other 

industries include the Vought Aerospace in Dallas, USA where the FMS is made up 

of CNC machines that produce different components of aircrafts and Allen-Bradley 

Company that has 26 workstation cells to produce motor starters and many more. 

Generally, a robotic cell consists of input and output buffers at the beginning and end 

of a production line so that unfinished parts can be stored at the input buffer and 

finished products are stored at the output buffer. Then between those buffers there 

are m machines that process the parts and these are CNC machines which are 

computer controlled. A single robot or in some cases multiple robots are responsible 

for handling the parts and transporting them between the machines and from or to the 

input and output buffer and also for loading and unloading operations. 

There are two types of commonly used robotic cell environments which is either 

flowshop or jobshop. A flowshop robotic cell means that a part has to go through all 

the machines for processing in the same sequence. However, a jobshop robotic cell 

has machines that perform the same set of operations so a job can be processed by 

any of the machines. Other characteristics of a robotic cell include the number of 

robots used which is either single or multiple. Usually, when multiple robots are used 
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there should more than one track for them to move because a single track means that 

there will be collision between robots. Therefore studies proposing collision free 

robotic cells with multiple robots have been considered. 

During the start of robotic cell studies the most common robot type was a single 

gripper robot which means the robot only had the ability to handle one part at a time. 

Later on, studies proposed a dual gripper which can handle two parts at once. So for 

example, a robot will pick up an unfinished part from the input buffer and then move 

to a machine that finished processing a part rotates the wrist to pick up the finished 

part and then rotates again to load the machine with the unfinished part. Another type 

that has not been studied extensively is the dual arm robot which differs from a dual 

gripper robot since it can place the arms at two successive machines consequently 

rather than working on the same machine at a time. Other types of robots include 

swap able robots and multifunction robots with hybrid grippers. 

Layout of a production line is either inline or circular which from its name indicates 

that the machines are placed in series in an inline layout. Circular layout is usually 

seen to be more efficient because the robot has the ability to move clockwise or 

anticlockwise thus decreasing the travel time. When the travel time is |𝑖 − 𝑗|𝛿 

between two consecutive machines then it is known as additive travel time for 

0 ≤ 𝑖, 𝑗 ≤ 𝑚 + 1. However, most studies consider a constant travel time δ between 

any pair of machines. And finally there is Euclidean travel time 𝛿𝑖𝑗 which must 

satisfy three properties and one of them is the triangle inequality𝛿𝑖𝑗 + 𝛿𝑗𝑘  ≥  𝛿𝑖𝑘. 

When the robot travels between machines it can either pick up a part as soon as it 

finishes processing which defines the no wait constraint or it can leave the part on the 
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machine for an undefined amount of time which is referred to as the free pickup 

criteria. Sometimes the part can stay on the machine for an interval and that is known 

as the interval pickup criteria. 

The processing of parts is repeated in a similar sequence and the movement of the 

robot is fixed to repeat the sequence which represents a cycle. Parts processed may 

either be identical or non-identical. In one cycle when one part is processed the 

strategy of production is called 1-unit. If two parts are processed in a cycle then it is 

a 2 unit cycle and so on. In a cycle a set of operations are performed which is 

repeated in the same sequence in the next cycle. Cycle time is the duration of one 

cycle and the aim of most studies is to schedule the order of robot moves in a manner 

that reduces cycle time which in turn meets the common objective of maximizing 

throughput. Such a problem is an optimization problem. 

In this study the main contribution is to study self-buffered robots which means the 

robot has a buffer that can store any amount of parts. For example, if the robot buffer 

capacity is 2 it means the robot can store one part and handle one part. Figure (1.1) 

shows an example of a self-buffered robot with the ability to handle 2 parts. The 

main problem is minimizing cycle time by scheduling robot moves for a robotic cell 

with a self-buffered robot. 
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Figure 1.1: Inline Robotic Cell with a Self-Buffered Robot 

The study is considered for 2, 3, 4 and 5 machines case where the CNC machines are 

identical in a parallel machine flowshop environment with one machine in each stage 

and an inline layout with a single robot that has a single gripper and the parts 

produced are identical and the robot travel time is additive which means the travel 

time between any two machines is|𝑖 − 𝑗|𝛿 . In one cycle only one part is processed 

by each machine indicating it is a 1 unit cycle and the criterion of pick up is free. 

Any scheduling problem is classified in terms of α|β|γ where α refers to machine 

environment 𝛼 =  𝑅𝑚,𝑟
𝑔,𝑙 (𝑚1, … ,𝑚𝑚) where R defines the environment, g defines 

robot type, l defines layout, m defines number of stages, r defines number of robots 

and (𝑚1, … ,𝑚𝑚) indicates how many machines are there in one stage. The 

processing characteristics β = (pickup criteria, travel time metric, part type, 

production strategy) and the objective function is γ. Our scheduling problem will be 

classified as follows: 

𝑅𝐹𝑚,1
1,|_|(𝑚1)|(𝑓𝑟𝑒𝑒, 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒, 𝐶𝑦𝑐𝑙𝑖𝑐 − 1)|𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 
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Initially, an MIP model for the problem is created and used to find exact solutions for 

2 and 3 machines case. However, since solution time is extremely long for robotic 

cells with 4 machines or more, a heuristic approach is used by applying the simulated 

annealing algorithm and then comparison between exact and heuristic approach is 

analyzed. 

 This study will be classified into the following: Chapter 2 will include a literature 

review of all common studies, Chapter 3 will include problem definition, Chapter 4 

compromises methodology, Chapter 5 includes the results and discusses the relative 

meaning of the results found and finally Chapter 6 concludes the study. 

1.1 Motivation 

Flexible Manufacturing Cells as seen are employed by several industries and the 

efficiency of the FMC system depends entirely on the schedule of the system. 

Finding the most efficient schedule for such an FMC system is an important factor to 

most industries. Because of its importance there is a huge literature studying this 

optimization. However, studies mainly focus on robots of different types and a major 

gap was realized concerning a self-buffered robot. Currently only one study has 

considered a self-buffered robot in such systems which may increase the 

performance of the FMC significantly. 
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Chapter 2 

LITERATURE REVIEW 

In this study, we consider a flexible robotic cell with m machines that are served by a 

single robot with a single gripper that has a buffer capacity and thus the ability to 

store finished or unfinished parts along with handling one part when the capacity of 

the buffer is more than one. The layout of the cell is inline and has one input buffer 

that stores unfinished products and one output buffer that stores finished products. 

The travel time of the robot between the machines or between the input buffer and a 

machine or between the machine and an output buffer is additive and a product can 

stay on the machine for any amount of time corresponding to the free pickup criteria. 

Parts produced are identical and only one unit is processed in a cycle. The objective 

is to minimize cycle time by scheduling robot moves and the main focus of the study 

is to show how the robot buffer capacity can reduce cycle time compared to single 

gripper robots with no buffer capacity. An MIP model of the problem was created 

and was used to solve the problem for an exact solution. However, large problems 

were solved by applying the simulated annealing heuristic algorithm. 

Since this study considered a production environment that is flowshop and when 

there is only a single robot, all the literature that will be reviewed in this following 

chapter will contain articles that considered the same environment and number of 

robots. Differences will be seen among the robot type and whether it is single 

gripper, dual gripper, dual arm, and robot with swap ability and whether there are 
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machine or robot buffers considered since the main focus of this study has to do with 

the type of robot and whether applying a buffer capacity will have an impact on the 

cycle time. Table (2.1) shows all the articles that were surveyed. 

Table 2.1: Literature Survey Table 

Article 

No. 

No. of 

Machines 

Type 

of 

Robot 

Layout 
Pickup 

Criteria 

Travel 

Time 

Metric 

Part 

Types 

Prod. 

Strategy 

Buffer 

space 

Solution 

Method 

1 
M 

machines 
Single 

Circular, 

Inline 
Blocking Constant Identical 1 unit  

TSP, 

Polynomial 

2 
M 

machines 
Single Circular Blocking Constant Identical 1 unit  

NP complete 
proof 

3 
2, 3 

machines 
Single Mobile  Constant 

Multiple, 

Identical 
MPS   

Algorithm 

solved by 
GAMS 

4 
M 

machines 
Single  No wait Additive Identical 1 unit  Polynomial 

5 
3 

machines 
Single Mobile  Constant Multiple MPS   

Unary NP 
complete 

proof 

6 
M 

machines 
Single Mobile Free Additive Multiple MPS   Polynomial 

7 
3 

machines 
Single Inline Blocking Constant Identical 1 unit  

Proof of 

Sethi et al. 

conjecture 

8 
3 

machines 
Single Inline  Additive Multiple MPS  

Heuristic 
approach 

9 
3 

machines 
Single Circular No wait Additive Multiple 1 unit  Polynomial 

10 
2, 3 

machines 
Single Circular No wait Additive 

Multiple, 

Identical 

1 unit,  

2 unit 
 Polynomial 

11 
2, 3 

machines 
Single Circular No wait Additive Identical 

1 unit,  

2 unit 
 

Pyramidal 

permutation 

12 
M 

machines 
Dual Circular  Additive Identical 1 unit  Permutation 

13 
M 

machines 
Single Circular No wait 

Symmetric, 

Additive, 

General 

Identical 1 unit  
TSP, NP 
hardness 

14 
5 and M 

machines 
Single Inline No wait Additive Identical K unit  

Lower bound 

method 

15 
2 

machines 
Dual Circular  Constant Multiple MPS  

Heuristic 

approach 

16 
2 and M 

machines 
Dual Circular No wait Additive Multiple MPS  

Gilmore 

Gomory, 

Polynomial 

17 
M 

machines 
Single Circular Blocking 

Additive, 
Constant, 

Euclidean 

Identical K unit  Polynomial 

18 
2 

machines 
Single Inline No wait Constant Identical 

1 unit,  
2 unit 

 
Sensitivity 

analysis 

19 
M 

machines 
Dual Circular Free Additive Identical 1 unit 

Each 

machine 

has an O 

Comparative 
Study 

20 
2 

machines 
Single Inline No wait Additive Identical 

1 unit,  

2 unit 
 

Sensitivity 

analysis 

21 
M 

machines 
Single Circular Free 

Additive, 

Constant, 
Euclidean 

Identical   
Optimal 

schedules 

22 
3 

machines 
Single Inline No wait Additive Identical 

1 unit,  

2 unit 
 

Dominant 

cycles 

23 
M 

machines 
Single Circular Free Additive Identical 1 unit  Polynomial 

24 
M 

machines 
Single Inline No wait Euclidean Identical 1 unit  

Branch and 

bound 
algorithm 
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Article 

No. 

No. of 

Machines 

Type 

of 

Robot 

Layout 
Pickup 

Criteria 

Travel 

Time 

Metric 

Part 

Types 

Prod. 

Strategy 

Buffer 

space 

Solution 

Method 

 

25 

 

M 
machines 

Single
. Dual 

Circular Free Constant Identical K unit  Polynomial 

26 
M 

machines 
Dual 

Parallel 

machine, 

Circular 

Free Constant Identical K unit  
Lower bound 

method 

27 
M 

machines 
Single Inline Free Additive Multiple MPS  

Each 
machine 

has an O 

Dominant 

cycles 

28 
M 

machines 
Dual  

Interval, 
No wait, 

Free 

Constant Identical 1 unit  Polynomial 

29 
M 

machines 
Single Circular No wait Euclidean Identical 1 unit  

Branch & 
Bound 

30 
M 

machines 
Single Circular Free Additive Identical 1 unit 

Each 

machine 

has I/O 

Structural 

Analysis 

31 
M 

machines 
Single 

Inline, 

Circular 
Free Additive Identical 1 unit  Polynomial 

32 
M 

machines 
Dual Circular Free Additive Identical K unit 

Each 

machine 
has I/O 

Lower bound 

method 

33 
3 and M 

machines 
Single Circular Interval Additive Identical K unit  

Lower bound 

method 

34 
2 

machine 

Single 
with 

swap 

able 

Circular 

vs inline 

Free, No 

wait 
Additive Identical K unit  

Pure cycle 

performance 

35 
2 

machines 

Single 

with 

swap 
able 

Inline  Additive Identical 1 unit  
Sensitivity 

analysis 

36 
M 

machines 
Single Inline No wait Euclidean Identical K unit  

MIP model, 

solved by 

CPLEX 

37 

2, 3 and 

M 

machines 

Dual 
arm 

Circular Free Additive 

Identical

, 

Multiple 

1 unit,  
K unit 

 
Dominant 

cycles 

38 
2 

machines 
Single Circular Free Additive Multiple 1 unit  

MILP, 

Branch & 

bound, 
Simulated 

Annealing 

39 
M 

machines 
Dual Inline Free Additive Identical 2 unit  

Lower bound 

method 

40 
M 

machines 
Single Inline  Euclidean Multiple K unit  

Branch and 

bound 

41 
M 

machines 
Single 

Parallel 

machine, 
Inline 

Free Additive Multiple   

MILP, 

Simulated 
Annealing 

42 
M 

machines 

Single

, Dual 
Circular Free Additive Identical K unit  Polynomial 

43 
2 

machines 

Single

, Dual 
Inline Interval Additive Identical 1 unit 

Robot 
with 

buffer 

Dominant 

cycles 

This 

study 

M 

machines 
Single 

Parallel 
machine,

Inline 

Free Additive Identical 1 unit 
Robot 
with 

buffer 

MIP, 
Simulated 

Annealing 

2.1 Robots with Single Gripper 

In the current literature some of the studies that considered single gripper robots 

include [1 – 11], [13 – 14], [17 – 18], [20 – 24], [29], [31], [33], [36], [38], [40 – 41] 

and out of these studies the articles that considered m machines case are [1 – 2], [4], 
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[6], [13 – 14], [17], [21], [23 – 24], [29], [31], [33], [36] and [40 – 41]. Robotic cell 

with 2 machines were studied in [3], [10 – 11], [18], [20], [38] and those with 3 

machines were considered in [3], [5], [7 – 11], [22] and [33]. A 5 machine robotic 

cell was also studied in [14]. In terms of the layout of the cell, [1 – 2], [9 – 11], [13], 

[17], [21], [23], [29], [31], [33] and [38] implemented a circular layout. Whereas [1], 

[7 – 8], [14], [18], [20], [22], [24], [31], [36], [40] and [41] considered an inline 

layout. A mobile layout which is a generalization of the other two layouts was 

studied earlier in [3] and [5 – 6]. The pickup criteria studied by [4], [9 – 11], [13 – 

14], [18], [20], [22], [24], [29] and [36] was the no wait pick up criteria. On the other 

hand, [6], [21], [23], [31], [38] and [41] implemented the free pickup criteria and 

[33] studied interval pickup criteria. The blocking constraint states that when a part 

finishes processing on a machine, the machine does not have the ability to process 

another part until the finished part has been unloaded by the robot and this was seen 

in [1 – 2], [7] and [17]. Additive travel time metric was considered in [4], [6], [8 – 

11], [13 – 14], [17], [20 - 23], [31], [33] and [41]. Constant travel time metric was 

implemented in [1 – 3], [5], [7], [17 – 18] and [21] and the Euclidean travel time was 

studied by [17], [21], [24], [29], [36] and [38]. Identical parts were produced in [1 – 

4], [7], [10 – 11], [13 – 14], [17 – 18], [20 – 24], [29], [31], [33] and [36]. Whereas 

multiple parts were produced in [3], [5 – 6], [8 – 10], [38] and [40 – 41]. In a cycle 

when one unit is produced it is called a 1-unit cycle and this was studied in [1 – 2], 

[4], [7], [9 – 11], [13], [18], [20], [22 – 24], [29], [31] and [38]. A 2-unit cycle was 

considered in [10 – 11], [18], [20] and [22] and a k-unit cycle was studied by [14], 

[17], [33], [36] and [40]. And finally MPS cycles is a cycle strategy that can be 

implemented only by multiple part types and its partitions sets with identical parts 
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and produces each set in one cycle and thus the name Minimal Part Set and this was 

studied in [3], [5 – 6] and [8]. 

Even though some similarities and differences can be seen among these papers in 

terms of the characteristics of the robotic cell. The main difference between them lies 

in the contribution of each article. 

The problem in [1] is finding the robot cyclic schedule that is the shortest for the 

cyclic scheduling of identical parts. In contrast to previous papers, the problem in 

this paper is a case where they consider m arbitrary number of machines, but all parts 

are the same. 𝑂(𝑚3) polynomial time is solved by an approach of dynamic 

programming. Pyramidal permutations are a concept relied on heavily in the paper’s 

analysis which is connected to the travelling salesman problem. In [2] proof that the 

problem is strongly NP complete was undertaken. In [3] for a robotic cell with two 

machines and part types are multiple, an efficient algorithm is provided that was used 

to optimize the problem of part sequencing and move cycles of robots. A 

computational program known as General Algebraic Modelling System (GAMS) was 

used to test the algorithm. For a robotic cell with 3 machines and part types are 

identical, the repetition of 1 unit cycles optimality has a conjecture that was 

addressed and it was shown that the cycles that are more complicated is dominated 

by such a procedure when two units are produced.  

The Cyclic Robotic Flowshop Problem (CRFP) in the version that is solved in 

polynomial time is studied in [4]. Processing times are numerical in the problem and 

the no wait constraint is considered. When triangle inequality is satisfied by the 

operation times, it is shown that 𝑂(𝑚5) can be improved. The problem is solved by 
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an algorithm that is derived in 𝑂(𝑚3 log𝑚) time. [5] proved that the problem of part 

sequencing is unary NP complete when the version is recognition and that when one 

unit is produced; the robot move cycles that are potentially optimal are 2 out of 6. 

Part sequencing problems that are solved efficiently are defined by the remaining 

four cycles.  

Considering the classification of the cycles of robots moves associated with the 

problem of part sequencing was proved in [6] that out of the 𝑚! available cycles of 

robot moves exactly 2𝑚–2 are solved in polynomial time. While the cycles that are 

remaining associated with the problem of part sequencing are unary NP-hard. For a 

robotic flowshop with 3 machines, it was conjectured in [7] that optimal production 

is yielded when the unit cycle is 1. The conjecture validity was established. In [8] 

move cycles of robots and the sequence of parts that together lead to cycle time 

minimization which is required to produce a set of minimal parts are determined. 

Previous algorithms that were provided and intractability proofs for different cell 

configurations are used for a heuristic procedure to be developed for the problem of 

part sequencing for different move cycles of robots in a robotic cell with 3 machines. 

They described how the heuristic methodology can be extended for a robotic cell 

with 4 machines and they tested it.  

The complexity of sequencing of parts problem is analysed for a 3-machine robotic 

cell when moves of robots are of different periodical patterns. Complexity is 

investigated for six possible 1 unit cycles in the problem of part sequencing in [9]. 

The optimization and feasibility problem for each of them is considered and it was 

seen that out of the six cases, the problem of feasibility is polynomial for 4 of them 

and NP complete for the other two. In [10] two cases were studied: Case of 2 
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machines and parts processed are multiple: after being reduced to classical flowshop 

no wait problem of 2 machines, it was seen that the problem is solved by 𝑂(𝑛 log 𝑛) 

polynomial algorithm and case of 3 machines and parts processed are identical: move 

cycles of robots are considered when parts visit the machine either once or twice. In 

[11] there is a threefold contribution: 

1. Active schedules which are the so-called notion on cycle times are discussed 

in more detail. In this case, the no wait criterion is applied in which 

operations are executed by robots as early as possible. 

2. Conjecture of one cycle is presented in a new approach. 

3. Conjecture of one cycle is settled completely. Counterexamples are 

constructed by the new approach which proves that for 𝑚 ≥ 4 machines the 

conjecture is not valid any longer. Two cases were distinguished: 1. 

equidistant machines when cells are regular. 2. The non-regular cells. And 

then the dominance of the cycle was demonstrated to be different for two 

configurations. 

[13] studies the computational complexity of finding robot moves shortest route 

between one machine and the next. Even though this complex problem was discussed 

in previous literature, previous studies took into consideration some assumptions 

which were dropped in this paper and NP hardness is proved in the strong sense 

when there are symmetric travel times between the robotic cell machines and triangle 

inequality is satisfied. The robotic cell scheduling problem considered in [14] has 

processing windows which are unbounded. A conjecture was presented which 

provides production cycle optimality with structure. Lower bound method was used 

to prove optimality of the conjecture. Results confirm Agnetis conjecture that claims 
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dominant cycles degree in a robotic cell that is in a no wait condition can be bounded 

by 𝑚–1 machines. Agnetis proves conjecture for 𝑚 = 2 and 3. [14] studies for m 

and 𝑚 = 5.  

In [17] a polynomial algorithm was presented that produce solutions for multiunit 

cycles for classes of robotic cells which are most commonly known: constant, 

additive and Euclidean travel time. The optimal solutions are within constant factor 

per unit cycle time. In [18] the objective was to find on 2 machines the process times 

by operations being allocated to the machines as well as finding the move cycles of 

robot that will jointly lead to cycle time minimization. Rather than the previous proof 

that 1-unit robot move cycles are optimal, it was proved that either 1 or 2-unit robot 

move cycles are optimal depending on given parameters. 

Generally, it is assumed that since a tool magazine is stored with all tools that are 

required, the operations can be performed by the CNC machines. But, the capacity of 

the tool magazine is limited and the numbers of tools which are usually required 

exceed the capacity. Thus, [20] considers the following assumption: due to 

constraints in tooling, operations can be performed on the first machine while others 

are performed on the second machine. While the operations that are remaining can be 

performed on either one of the two machines.  In [21] the knowledge concerning 

cyclic schedules with respect to the robotic cells of different classes that are the three 

travel times: additive, constant and Euclidean was discussed. [22] considers part 

processing time as a decision variable for robot move cycles of 1 unit and 2 unit and 

a new lower bound was proposed. And also, a new robot move cycle was proposed 

which possesses the flexibility of operation. A cyclic solution is produced by an 

algorithm presented in [23]. The cycle time is a factor 10/7 of the optimal solution 
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per unit. 𝑂(𝑚) time runs the algorithm where m corresponds to number of machines 

in the cell. Compared to the 3/2 best known guarantee, this result proved to be an 

improvement. [24] proposed an exact algorithm which is the branch and bound 

algorithm for a cyclic schedule to be optimal when processing times are flexible. 

Based on machine and robot capacity constraints, the cycle time prohibited intervals 

are used to formulate the problem. After the developed model is analysed, 

transformation of the problem is conducted for the nonprohibited intervals of cycle 

time to be enumerated. 

[29] initially used method of prohibited intervals to formulate the problem and then 

interval bounds were linearly expressed, and subsets were used to divide the intervals 

and nonprohibited intervals were enumerated in each subset. In [31] NP hardness 

proof was conducted when 1-unit cycle optimality was obtained for a circular layout 

robotic cell with pickup criteria that is free and when the travel time metric is 

additive, and the throughput increase was assessed. [33] considered a special case of 

𝑚 = 3 and they analysed the case when processing times are controllable and 

manufacturing cost associated with processing time was considered. Results proved 

that at least one of two pure cycles reach optimality and proved that pure cycles are 

dominant compared to classical cycles. 

[36] used binary variables to define machine availability constraints in the scheduling 

problem of multicyclic robotic flowshop cell when formulating the MIP model, the 

input sequence is fixed which is not the case for multicyclic production. MIP model 

was solved by CPLEX software and generated instances that are random proved that 

the MIP approach proposed can solve scheduling problems in real life efficiently. 

[38] proved NP hardness for the two-machine robotic cell scheduling problem with 
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sequence dependent setup times. They also developed a time complex lower bound 

of the problem using the algorithm of Gilmore and Gomory. And finally, an MILP 

model was developed to address determination of best robot moves and parts 

sequencing. 

[40] developed analytical properties and branch and bound scheme that are specific 

and efficient based on the problem characteristics, which allow the solution search 

process to eliminate infeasible or dominated solutions. [41] introduced additional 

constraints such as machine eligibility and parallel machines with different 

processing speeds at each stage. They developed an MILP model and minimized 

makespan for hybrid flowshop scheduling problem and a simulated annealing 

algorithm which used a neighbourhood structure with block properties was 

employed. 

2.2 Robots with Dual Gripper 

The articles that studied dual gripper robots include [12], [15 – 16], [26], [28] and 

[39] and out of these studies the articles that considered m machines case are [12], 

[16], [26], [28] and [39]. Robotic cell with 2 machines were studied in [15 - 16]. In 

terms of the layout of the cell, [12], [15 – 16] and [26] implemented a circular layout. 

Whereas [39] considered an inline layout. The pickup criteria studied by [16] and 

[28] was the no wait pick up criteria. On the other hand, [26], [28] and [39] 

implemented the free pickup criteria and [28] studied interval pickup criteria. 

Additive travel time metric was considered in [12], [16] and [39]. Constant travel 

time metric was implemented in [15], [26] and [28]. Identical parts were produced in 

[12], [26], [28] and [39]. Whereas multiple parts were produced in [15] and [16]. 1-

unit cycle was studied in [12] and [28]. A 2-unit cycle was considered in [39] and a 
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k-unit cycle was studied by [26]. And finally MPS cycles was studied in [15] and 

[16]. 

In [12] the analytical framework that exists in the literature was extended for all 1-

unit cycles to be systematically developed for 2 machine robotic cells with a dual 

gripper robot and then the difference between dual gripper and single gripper is 

investigated in terms of cycle time advantage. 

Finding part sequence optimality is known to be strongly NP hard even when they 

provide the sequence of robot moves. A framework which is modelled and notated is 

provided in [15] for the NP hard family of problems to be studied which are 

associated with robot move sequences which are optimal. An algorithm which is 

approximate is developed with the guarantee ratio of worst case performance of 3/2 

which is estimated using a linear program without lower bound being calculated. The 

system operation at steady state under numerous options of cyclic scheduling was the 

focus of [16]. The problem of 2 machines was solved by the Gilmore Gomory 

heuristic approach on problem instances that are randomly generated. Testing 

procedures indicate that less than 10% of relative errors are realized when cycle time 

lower bound at optimality is compared. A comparison between single and dual 

gripper robots was carried out by conducting productivity gain estimation. There was 

between 18% and 36% realization in relative improvement. [26] provides insights to 

managers on how a dual gripper robot is beneficial and how a parallel machine cell 

along with a dual gripper robot is more beneficial. Throughput improvement are 

realised when such improvements are considered. [28] considers scheduling a robotic 

cell with a dual gripper robot. The cases considered initially are the no wait and free 

pick up cells. For the case when the pickup criteria is no wait, polynomial time 



18 

 

algorithm was used to find the optimal solution and when it was free, the algorithm 

was used to find the asymptotically optimal solution. For an interval robotic cell the 

problem was proved to be NP hard. Also results showed that throughput improved 

significantly when dual gripper was used rather than single gripper. In [39] a 

methodology for optimizing a robotic cell with a hub re-entrant machine was newly 

introduced. For all robot move cycles the cycle time is determined to find the lower 

bound of the cycle time for the dual gripper robot. The optimal sequence of robot 

tasks is determined which was a 2-unit cycle. The cycle time lower bound was also 

obtained for the dominant cycle and the optimal solution found for this cycle was 

demonstrated and they proved that for the robotic cell with hub machine that is re-

entrant this is the most appropriate option. 

2.3 Robots with either Single or Dual Gripper 

Studies that compared single and dual gripper robots include [25] and [42]. And in 

both those studies the robotic cell was assumed to have m machines and the layout of 

the cell was circular. The parts produced were identical with K-unit being produced 

per cycle with free pickup criteria. The only difference was that [25] implemented a 

constant travel time while [42] considered an additive travel time metric. [25] 

provides valuable insights to production managers regarding how productivity is 

maximized for both single and dual gripper cells for any combination of 

requirements for processing and physical parameters. [42] provides an insight into 

schedules for productivity maximization of either dual or single gripper robotic cells. 

And the performance of dual gripper robotic cells under relevant conditions was 

studied. 
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2.4 Robots with Dual Arm 

A dual arm robot was studied by [37] in a cell with either 2, 3 or m machines and a 

circular layout. The travel time metric was additive and parts produced were either 

identical or multiple and thus either 1 unit or k unit per cycle were produced. The 

pickup criteria were free. [37] identified optimal sequence when identical parts are 

processed for 2 and 3 machine cases. Also cells with m machines were studied and 

they derived structural results for the case. For cells with two machines, they also 

analysed the case when parts processed are of multiple types. They proved that 

productivity was higher in dual arm robots compared to robot with single arm or 

single gripper and the gains realized were quantified. 

2.5 Robots with Swap Ability 

A special type of robot was proposed by [34] and [35] and that is a robot with swap 

ability. A robot with swap ability can handle only one part at once but the constraint 

of blocking is eliminated since an occupied machine can be simultaneously loaded or 

unloaded. In these studies the cell was made up of 2 machines and an additive travel 

time metric when the parts produced were identical and 1-unit cycle was considered 

in [35] while a k-unit cycle was studied in [34]. The layout considered was inline in 

[35] and both circular and inline in [34] and the pickup criteria studied were free and 

no wait.  

[34] concentrate on a class of pure cycles which are newly introduced in which less 

than m parts are processed in a cycle compared to previous studies were pure cycles 

were m unit cycles meaning m parts are produced in a cycle. [35] studies robotic 

cells which are reentrant in which the centered robot can swap and part types 

processed are identical. In the beginning, the optimality regions are determined when 
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a part enters the first machine for the second time. The same is done when the part 

enters the second machine for the second time. And optimality regions are 

determined when a part enters the two machines for the second time. They then 

perform a sensitivity analysis for the parameters related to cycle time objective 

function and results indicate that gain in productivity is realized in a swap able robot. 

2.6 Robots with Output Buffer at Each Machine 

In all the previous studies that were discussed the cell had only input and output 

buffers at the beginning and end of the robotic production line. However, [19] and 

[27] proposed having an output buffer for each machine in the line and discussed 

how this would affect reduction in cycle time. Both studies considered an m machine 

case with an additive travel time metric and a pickup criterion that is free. However, 

[19] considered a dual gripper robot in a circular layout robotic cell when parts 

produced are multiple and the strategy of production is MPS cycles. On the other 

hand, [27] considered a single gripper robot in an inline layout robotic cell when 

parts produced are identical and 1 unit is produced in a cycle. 

Practically it has been studied that the advantage of a dual gripper is that there is 

increase in cell productivity compared to a single gripper. [19] provided an extended 

insight and conceptual framework to the scheduling problem with a dual gripper 

robot. For the robotic cell with a dual gripper in which the production is cyclic, a 

modelling framework is provided. Active cycles were the so-called cycles they 

focused on and the feasibility and combinatorial issues of the problem were studied. 

Complete family of active cycles are described by an algorithm approach that was 

provided. Moreover, in an m machine case with gripper switching time that is small, 

a polynomial time algorithm was devised for a 1-unit cycle optimal solution to be 
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found. With presence of an output buffer at each machine with capacity of 1 unit, a 

comparative study was employed between single and dual gripper. Results showed 

that more productivity was realized from dual grippers when compared to single 

grippers. Two models that are different are considered in [27]. The first model is a 

robotic cell with a single gripper robot and at each machine there is an output buffer 

with unit capacity. The second model is a robotic cell with a dual gripper robot and is 

bufferless. Concentrated Robot Move sequence (CRM) cycles are the focus of this 

study. Under common conditions in practice, the equivalence in the throughput of 

these two models is this paper’s main outcome. Discussions indicated that the model 

with an output buffer had total cost that was 20% less than the model with a dual 

gripper. And this result argues the fact that there is equivalence between the two 

models. 

2.8 Robots with Input and Output Buffer at Each Machine 

In the previous two studies only an output buffer at each machine is considered. 

However, [30] and [32] proposed having an input and output buffer for each 

machine in the production line and discussed how this would affect reduction in 

cycle time. Both studies considered an m machine case in a circular layout robotic 

cell with an additive travel time metric, a pickup criterion that is free and parts 

produced are identical. However, [30] considered a single gripper robot and 1 unit is 

produced in a cycle. On the other hand, [32] considered a dual gripper robot and k 

unit is produced in a cycle. 

Literature has extensively studied robotic cells that are bufferless. Few studies have 

considered each machine with an output buffer and their results showed that such a 

configuration can improve the throughput. [30] considered a robotic cell where each 
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machine has an output and input buffer with one unit capacity and their results 

showed that there was no throughput improved when compared to the output buffer 

model. [32] is the first that considers scheduling of a robotic cell with input and 

buffer at each machine and unit capacity and a dual gripper robot. An optimal 

throughput upper bound that is tight is first obtained and an asymptotically optimal 

sequence is then obtained using this bound under common condition in practice. 

Then, the realized productivity improvement was quantified when using input and 

output buffers with unit capacity at each machine. Production managers can use these 

results to measure gain in productivity when installation of unit capacity buffers at 

each stage of processing of a cluster tool with a dual gripper is conducted. 

2.9 Robot with Buffer Capacity 

The only study that considered a robot with a buffer capacity that is infinite is [43] 

and the robotic cell studied in the article was a 2 machine cell with an inline layout, 

single and dual gripper robot and parts produced are identical and 1 unit produced in 

each cycle. The travel time metric was additive and the pickup criterion was interval. 

They considered the single gripper robot with buffer capacity and compared it to a 

dual gripper robot with no buffer capacity to see whether it further improves the 

cycle time over that for classical robotic cells where robots have no buffer space. 

They derived the dominant cycles for both the cases and the results indicate that self-

buffered robot leads to reduction in cycle time and performs more efficiently when 

compared to dual gripper robots and robots with swap ability. 

The main contribution in this study is that m machines were considered rather than 2 

and an MIP model was created and the results were compared to that of the simulated 

annealing algorithm rather than deriving the dominant cycles. 
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Chapter 3 

PROBLEM DEFINITON 

The cyclic scheduling problem considered is defined by many notations. Other than 

the commonly known notations such as process time, number of machines, etc., four 

activities that are repeated 𝑚 times in every cycle by the robot such as loading, 

unloading and moving the parts within the robotic cell are considered. The problem 

is to determine the order of these activities that are performed by the robot 4𝑚 times 

in total with the objective of minimizing cycle time for the FMC system described. 

These set of activities are separately defined below. 

3.1 Notations and Definitions 

𝒎: number of machines that makeup the robotic cell considered. 

𝒑: part process time by a machine. 

𝑲: robot buffer capacity which is the number of parts that can be held by the robot. 

𝑰𝒊: activity which involves taking the 𝑖𝑡ℎ unfinished part from the input buffer after 

moving to it where 𝐼 =  {𝐼1, 𝐼2, …… , 𝐼𝑚} 

𝑳𝒊: activity which involves loading an unfinished part to the 𝑖𝑡ℎ machine after 

moving to it where 𝐿 =  {𝐿1, 𝐿2, …… , 𝐿𝑚} 

𝑼𝒊: activity which involves unloading a finished part from 𝑖𝑡ℎ machine after moving 

to it where 𝑈 =  {𝑈1, 𝑈2, …… , 𝑈𝑚} 

𝑶𝒊: activity which involves putting 𝑖𝑡ℎ finished part to the output buffer after moving 

to it where 𝑂 =  {𝑂1, 𝑂2, …… , 𝑂𝑚} 

𝑨: union of the activities 𝐼, 𝐿, 𝑈, 𝑂 
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When activity 𝐼𝑖 is completed the robot stays at the input buffer and similarly it stays 

at the output buffer when activity 𝑂𝑖 is completed. When activity 𝑈𝑖 or 𝐿𝑖 is 

completed the robot stays at the 𝑖𝑡ℎ machine. It must be noted that 𝑖 refers to the 

machine number when it is considered for activities 𝐿 and 𝑈. However, 𝑖 refers to the 

𝑖𝑡ℎ finished or unfinished part when it is considered from activities 𝑂 and 𝐼. 

During each cycle these set of activities are carried out by the robot and the same set 

of operations are repeated in each cycle. The time taken for a cycle to be completed 

also known as cycle time is the duration spanning from starting the first activity and 

completing all the other activities and then at the end coming back to the same 

activity we started with. A setup is needed in the beginning of each cycle which can 

either mean all machines are emptied or loaded. The machine is only loaded and 

unloaded once per cycle. The cycle time depends on the activities of the robot that 

include traveling from one machine to another and loading and unloading. Thus, for 

the cycle time to be calculated we need to consider travel time, loading and 

unloading time between any two activities and a distance matrix is formulated for 

this reason. 

𝜺: time spent picking up/putting a part from/to a machine or input/output buffer. 

𝜹: time taken by the robot to travel between two successive machines or between 

input/output buffer and a machine. 

𝒅𝒂𝒃: time that is required for the operation executed by the robot between for 

completing activity b after 𝑎. 
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It must be noted that activity 𝑎 must be followed by activity 𝑏 and machine process 

times are not included in the 𝑑𝑎𝑏 formula because it is not an activity carried out by 

the robot. 

3.2 Distance Matrix Derivation 

Below the different cases will be discussed to show how the distance matrix was 

found along with an example for each case. 

Case 1: 𝑎 𝜖 {𝐿𝑖 , 𝑈𝑖} and 𝑏 𝜖 {𝐿𝑗 , 𝑈𝑗} 

This case is divided into 4 subdivisions where 𝑖 ≠ 𝑗: 

1. activity 𝑎 is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is loading machine 𝑗 (𝐿𝑗) 

2. activity 𝑎 is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is unloading machine 𝑗 (𝐿𝑗) 

3. activity 𝑎 is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is loading machine 𝑗 (𝑈𝑗) 

4. activity 𝑎 is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is unloading machine 𝑗 

(𝑈𝑗) 

 
Figure 3.1: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {Lj, Uj} 

So, at the completion of 𝐿𝑖 activity the robot will move to machine 𝑗 at travel time 𝛿 

and the distance between those two machines is 𝑖 –  𝑗. Since machine 𝑖 might not 
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always be before machine 𝑗, the absolute of the distance must be taken as |𝑖 –  𝑗| and 

then once the robot reaches machine 𝑗 it will execute the operation of putting the 

unfinished part at the end of the loading activity with time 𝜀. So, 𝑑𝑎𝑏 = 𝜀 + |𝑖 –  𝑗|𝛿. 

It must be noted that 𝜀 is only considered for the second activity because 𝑑𝑎𝑏 is the 

time between completion time of 𝑎 and completion time of 𝑏. The completion time 

of 𝑎 indicates that the activity has already been executed at the beginning of 

considering this formulation. 

By considering an example of this case it might be clearer. For activity 𝑎 being 𝐿1 

that means it will load machine 1 with an unfinished part and activity 𝑏 will be 𝐿2 

which means it will load machine 2 with an unfinished part. 

Example of Case 1: 𝑎 𝜖 {𝐿1} and 𝑏 𝜖 {𝐿2} 

 
Figure 3.2: Example when Activity a ϵ {L1} and Activity b ϵ {L2} 

𝑑𝐿1𝐿2 = |1 –  2|𝛿 + 𝜀 = 𝜀 + 𝛿 
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Case 2: (𝑎 𝜖 {𝐿𝑖, 𝑈𝑖} 𝑎𝑛𝑑 𝑏 𝜖 {𝐼}) 𝑜𝑟 (𝑎 𝜖 {𝐼} 𝑎𝑛𝑑 𝑏 𝜖 {𝐿𝑖, 𝑈𝑖}) 

This case is divided into 4 subdivisions where 𝑖 ≠ 𝑗: 

1. activity a is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is unloading input buffer (𝐼) 

2. activity a is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is unloading input buffer 

(𝐼) 

3. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is loading machine 𝑖 (𝐿𝑖) 

4. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is unloading machine 𝑖 

(𝑈𝑖) 

 
Figure 3.3 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {I} 

 
Figure 3.3 b: Case when Activity a ϵ {I} and Activity b ϵ {Li, Ui} 
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So at the completion of 𝐼 activity the robot will move to machine 1 at travel time 𝛿 

and then from machine 1 to machine 𝑖 at travel time 𝛿 with the distance between 

those two machines being 𝑖 − 1 and then once the robot reaches machine 𝑖 it will 

execute the operation of putting the unfinished part which takes time 𝜀 at the end of 

the loading activity. So, 𝑑𝑎𝑏 = 𝜀 + 𝛿 + (𝑖 −  1)𝛿 = 𝜀 + 𝑖𝛿. 

For example, if activity 𝑎 is 𝐿2 that means it will load machine 2 with an unfinished 

part and activity 𝑏 will be 𝐼 which means it will pick up an unfinished part from the 

input buffer.  

Example of Case 2: 𝑎 𝜖 {𝐿2 } and 𝑏 𝜖 {𝐼} 

 
Figure 3.4: Example when Activity a ϵ {L2} and Activity b ϵ {I} 

𝑑𝐿2𝐼 = (2–1)𝛿 + 𝛿 + 𝜀 = 𝜀 + 2𝛿  

Case 3: (𝑎 𝜖 {𝐿𝑖, 𝑈𝑖} and 𝑏 𝜖 {𝑂}) or (𝑎 𝜖 {𝑂} and 𝑏 𝜖 {𝐿𝑖, 𝑈𝑖}) 

This case is divided into 4 subdivisions where 𝑖 ≠ 𝑗:  

1. activity 𝑎 is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is loading output buffer (𝑂) 
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2. activity 𝑎 is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is loading output buffer 

(O) 

3. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is loading machine 𝑖 (𝐿𝑖) 

4. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is unloading machine 𝑖 

(𝑈𝑖) 

 

 
Figure 3.5 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {O} 

 

Figure 3.5 b: Case when Activity a ϵ {O} and Activity b ϵ {Li, Ui} 

So at the completion of 𝐿𝑖 activity the robot will move from machine 𝑖 to machine 𝑚 

at travel time 𝛿 with the distance between those two machines being 𝑚 –  𝑖 and then 

from machine 𝑚 to the output buffer with travel time 𝛿 and then once the robot 

reaches output buffer it will execute the operation of putting the finished part which 
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will take time ε at the end of the loading activity. So, 𝑑𝑎𝑏 = 𝜀 + 𝛿 + (𝑚 − 𝑖)𝛿 = 𝜀 +

(𝑚– 𝑖 + 1)𝛿. 

For example, if activity 𝑎 is 𝐿2 that means it will load machine 2 with an unfinished 

part and activity 𝑏 will be 𝑂 which means it will put a finished part to the output 

buffer.   

Example of Case 3: 𝑎 𝜖 {𝐿2} and 𝑏 𝜖 {𝑂} 

 
Figure 3.6: Example when Activity a ϵ {Li, Ui} and Activity b ϵ {O} 

𝑑𝐿2𝑂 = (3–2)𝛿 + 𝛿 + 𝜀 = 𝜀 + 2𝛿  

Case 4: (𝑎 𝜖 {𝐼} and 𝑏 𝜖 {𝑂}) or (𝑎 𝜖 {𝑂} and 𝑏 𝜖 {𝐼}) 

This case is divided into 2 subdivisions where:  

1. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is loading output buffer 

(𝑂) 

2. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is unloading input buffer 

(𝐼) 
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Figure 3.7 a: Case when Activity a ϵ {I} and Activity b ϵ {O} 

 
Figure 3.7 b: Case when Activity a ϵ {O} and Activity b ϵ {I} 

So at the completion of 𝐼 activity the robot will move to machine 1 at travel time 𝛿 

and from machine 1 to machine m with the distance between those two machines 

being 𝑚 –  1 and then from machine m to the output buffer with travel time 𝛿 and 

then once the robot reaches output buffer it will execute the operation of putting the 

finished part with time 𝜀 at the end of the activity. So, 𝑑𝑎𝑏 = 𝜀 + 𝛿 + (𝑚 − 1)𝛿 +

𝛿 = 𝜀 + (𝑚 + 1)𝛿. 

For example, if activity a is 𝐼 that means it will pick up an unfinished part from input 

buffer and activity 𝑏 will be 𝑂 which means it will put a finished part to the output 

buffer.   
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Example of Case 4: 𝑎 𝜖 {𝐼} and 𝑏 𝜖 {𝑂} 

 
Figure 3.8: Example when Activity a ϵ {I} and Activity b ϵ {O} 

𝑑𝐼𝑂 = 𝛿 + (3 –  1)𝛿 + 𝛿 + 𝜀 = 𝜀 + 4𝛿  

Case 5: (𝑎, 𝑏 𝜖 {𝐼}) or (𝑎, 𝑏 𝜖 {𝑂}) 

This case is divided into 2 subdivisions where:  

1. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is unloading input buffer 

(𝐼) 

2. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is loading output buffer 

(𝑂) 

 
Figure 3.9: Case when Activity a, b ϵ {I} 
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Figure 3.10: Case when Activity a, b ϵ {O} 

So at the completion of 𝐼 activity the robot will not move since the second activity is 

also picking up an unfinished part from the input buffer so it will execute the 

operation of picking up the part and the time taken for this operation at the end of 

this activity is 𝜀. And the same is true if the completion of 𝑂 activity is followed by 

another activity of putting a finished part on the output buffer. So, 𝑑𝑎𝑏  =  𝜀. 

Thus, the distance matrix for all cases is summarized as follows: 

𝑑𝑎𝑏 = 

{
 
 

 
 
𝜀 + |𝑖 − 𝑗|𝛿                                                               𝑖𝑓 𝑎 ∈  {𝐿𝑖 , 𝑈𝑖}   𝑎𝑛𝑑 𝑏 ∈  {𝐿𝑗 , 𝑈𝑗}        

𝜀 + 𝑖𝛿                              𝑖𝑓 (𝑎 ∈  {𝐿𝑖 , 𝑈𝑖} 𝑎𝑛𝑑 𝑏 ∈ 𝐼) 𝑜𝑟  (𝑎 ∈ 𝐼 𝑎𝑛𝑑 𝑏 ∈ {𝐿𝑖 , 𝑈𝑖})          

𝜀 + (𝑚 − 𝑖 + 1)𝛿       𝑖𝑓 (𝑎 ∈  {𝐿𝑖 , 𝑈𝑖} 𝑎𝑛𝑑 𝑏 ∈ 𝑂) 𝑜𝑟  (𝑎 ∈ 𝑂 𝑎𝑛𝑑 𝑏 ∈ {𝐿𝑖 , 𝑈𝑖})          

𝜀 + (𝑚 + 1)𝛿                                 𝑖𝑓  (𝑎 ∈  𝐼 𝑎𝑛𝑑 𝑏 ∈ 𝑂) 𝑜𝑟  (𝑎 ∈ 𝑂 𝑎𝑛𝑑 𝑏 ∈ 𝐼)             

𝜀                                                                                         𝑖𝑓   (𝑎, 𝑏 ∈ 𝐼) 𝑜𝑟  (𝑎, 𝑏 ∈ 𝑂)             

(3.1) 

3.3 Process Time 

The distance matrix does not contain process time since processing of a part is a 

function of the machine and is not involved with any kind of operation executed by 

the robot. However, in cases when process time is large, at some point in the cycle 

this may lead to the robot waiting for some amount of time. 

So when the first activity is loading machine 𝑖 (𝐿𝑖) with an unfinished part it will be 

processed for 𝑝 time units, the robot will then travel between machines to carry out 
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other sets of activities while processing on machine 𝑖 continues until it is time to 

unload machine 𝑖 (𝑈𝑖) with the finished part and the operation of unloading will 

require unloading time of 𝜀 time units. Thus, regardless of the travelling time, the 

time between activities 𝐿𝑖 and 𝑈𝑖 is at least 𝜀 +  𝑝 since 𝑈𝑖 cannot be completed 

unless the processing of the part is completed. So if the activities between 𝐿𝑖 and 𝑈𝑖 

take less than p time units, the robot will have to wait when it comes back to machine 

𝑖 for unloading. The order in which the activities are executed have an impact on 

whether there will be waiting time or not. It must be noted that this uncertain waiting 

time amount is not considered in the dab formula. 

Since in every cycle the same set of activities will be repeated in order for a cycle to 

be fixed and for permutations to be avoided the first activity will always be fixed to 

loading machine 1 (𝐿1) and thus the cycle ends when it comes back to the activity 

again and this duration will be the cycle time and the objective will be for the cycle 

time to be minimized by scheduling the order of robot activities. 
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Chapter 4 

METHODOLOGY 

Methods used to solve optimization problems are usually classified into two types, 

either exact solution methods that provide optimal solutions that are guaranteed or 

heuristic solution methods that do not guarantee optimality. They are also further 

classified as either constructive methods which means that we start from no solution 

and build up to a feasible or ultimately the optimal solution or improvement methods 

which means we initially start from a feasible solution and build up to a better 

solution. Examples of exact solution methods include: Branch and Bound algorithm, 

MIP (Mixed Integer Programming), IP (Integer Programming), LP (Linear 

Programming) or NMIP (Non-Linear Mixed Integer Programming) models, 

Polynomial algorithm, etc. On the other hand examples of heuristic or meta-heuristic 

approaches include: simulated annealing, genetic algorithm, tabu search, etc. 

4.1 Mixed Integer Programming Model 

In this study the optimization problem for scheduling the robot moves in order to 

minimize cycle time is modeled as a MIP Model which indicates that some of the 

decision variables are integer while others are non-integer. An MIP model is an exact 

approach that is discussed in detail below. The decision variables of the problem are 

as follows: 
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Decision Variables: 

𝒙𝒂𝒃 = {
1,  if the robot performs activity a before activity b  

0,                                                               otherwise 
 

𝒕𝒂: activity a completion time 

𝑪: cycle time 

𝒛𝒊 = {
1,  if activity Ui is performed after activity Li 
0,                                                      otherwise 

 

𝒀𝒂
−: the number of parts on the robot that are unfinished at the end of activity a 

𝒀𝒂
+: the number of parts on the robot that are finished at the end of activity a 

M: is a big number that is defined 

Definition of the notations 𝒎, 𝒑, 𝑲, 𝑰, 𝑳, 𝑼, 𝑶, 𝑨, 𝜺 and 𝒅𝒂𝒃 can be referred from 

Chapter 3 on pages 23 and 24.  

𝑀𝑖𝑛 𝐶                                                                                                                                     (4.1)                                                                                          

𝑠. 𝑡 

∑ 𝑥𝑎𝑏 = 1

𝑎 ∈ 𝐴− 𝑏

                                                         ∀ 𝑏 𝜖 𝐴                                               (4.2) 

∑ 𝑥𝑎𝑏 = 1

𝑏 ∈ 𝐴− 𝑎

                                                         ∀ 𝑎 𝜖 𝐴                                              (4.3) 

𝑡𝑏  ≥  𝑡𝑎 + 𝑑𝑎𝑏 −𝑀(1 − 𝑥𝑎𝑏)                            ∀ 𝑎 ≠ 𝑏 𝜖 𝐴, 𝑏 ≠  𝐿1                       (4.4) 

𝑡𝑈𝑖 − 𝑡𝐿𝑖  ≤ 𝑀𝑧𝑖                                                       𝑖 = 1,… . ,𝑚                                     (4.5) 

𝑡𝑈𝑖  ≥  𝑡𝐿𝑖 + (𝜀 + 𝑝) − 𝑀(1 − 𝑧𝑖 )                      𝑖 = 1,… . ,𝑚                                     (4.6) 

𝑡𝐿𝑖  ≤  𝑡𝑈𝑖 +  𝐶 + (𝜀 + 𝑝)(1 − 𝑧𝑖 )                      𝑖 = 1, … . ,𝑚                                     (4.7) 

𝐶 ≥  𝑡𝑎 + 𝑑𝑎𝐿1𝑥𝑎𝐿1                                                 ∀ 𝑎 𝜖 𝐴 − 𝐿1                                    (4.8) 
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𝑥𝑎𝑏  ∈  {0 , 1}                                                            ∀ 𝑎 ≠ 𝑏 𝜖 𝐴                                       (4.9) 

𝑡𝑎  ≥  0                                                                      ∀ 𝑎 𝜖 𝐴                                              (4.10) 

𝐶 ≥  0                                                                                                                                   (4.11) 

𝑧𝑖  ∈  {0 , 1}                                                              𝑖 = 1, … . ,𝑚                                     (4.12) 

𝑌𝑏
+  ≥  𝑌𝑎

+ +  1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈                                 (4.13) 

𝑌𝑏
+  ≤  𝑌𝑎

+ +  1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈                                 (4.14) 

𝑌𝑏
+  ≥  𝑌𝑎

+ −  1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂                                 (4.15) 

𝑌𝑏
+  ≤  𝑌𝑎

+ −  1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂                                 (4.16) 

𝑌𝑏
+  ≥  𝑌𝑎

+ − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼                                  (4.17) 

𝑌𝑏
+  ≤  𝑌𝑎

+ + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼                                  (4.18) 

𝑌𝑏
+  ≥  𝑌𝑎

+ − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿                                  (4.19) 

𝑌𝑏
+  ≤  𝑌𝑎

+ + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿                                  (4.20) 

𝑌𝑏
−  ≥  𝑌𝑎

− +  1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼                                   (4.21) 

𝑌𝑏
−  ≤  𝑌𝑎

− +  1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼                                   (4.22) 

𝑌𝑏
−  ≥  𝑌𝑎

− −  1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿                                  (4.23) 

𝑌𝑏
−  ≤  𝑌𝑎

− −  1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿                                  (4.24) 

𝑌𝑏
−  ≥  𝑌𝑎

− − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈                                 (4.25) 

𝑌𝑏
−  ≤  𝑌𝑎

− + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈                                 (4.26) 

𝑌𝑏
−  ≥  𝑌𝑎

− − (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂                                 (4.27) 

𝑌𝑏
−  ≤  𝑌𝑎

− + (𝐾 + 1)(1 − 𝑥𝑎𝑏)                         ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂                                 (4.28) 

𝑌𝑎
+ + 𝑌𝑎

−  ≤  𝐾                                                       ∀ 𝑎 𝜖 𝐴                                               (4.29) 

𝑌𝑎
+  ≥  0                                                                    ∀ 𝑎 𝜖 𝐴                                               (4.30) 

𝑌𝑎
−  ≥  0                                                                    ∀ 𝑎 𝜖 𝐴                                               (4.31) 



38 

 

(4.1) is the objective function which is cycle time minimization where cycle time is 

the amount of time that spans when a system starts at a specific state and comes back 

to the same state again.  

(4.2) and (4.3) are like the constraints of the assignment problem which indicates that 

in (4.2) if 𝑎 is 𝐼, 𝑂, 𝑈 or 𝐿 and we assume that only 𝐼 is the activity that is active then 

only it should pass to another activity. There cannot be two activities passing to 

another activity at the same time and this constraint holds for all 𝑎 except when 

𝑎 = 𝑏. Similarly in (4.3) for all 𝑏 equal to either 𝐼, 𝑂, 𝑈, 𝐿 if we assume that I is the 

activity that is performed after the activity that is active then it should be performed 

after only one of the activities and this constraint holds for all b except when 𝑎 = 𝑏. 

For example if it is a 1 machine case, then there will be only 4 activities. If it is 

shown as an assignment problem then it will look like this: 

                       Table 4.1: Representation of Constraint (4.2) and (4.3) 

a L1 U1 I1 O1 

L1  XU1L1 XI1L1 XO1L1 

U1 XL1U1  XI1U1 XO1U1 

I1 XL1I1 XU1I1  XI1O1 

O1 XL1O1 XU1O1 XI1O1  

 

b 
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So, if 𝑥𝑂𝐿, 𝑥𝐿𝑈, 𝑥𝑈𝐼 and 𝑥𝐼𝑂 were equal to 1 then the order of the cycle would be 𝑂, 

𝐿, 𝑈, 𝐼 and then again back to 𝑂. These two constraints guarantee that all activities 

have to be performed only once for each machine. 

In (4.4) if 𝑥𝑎𝑏 = 1 it means activity 𝑎 is performed before 𝑏 and if that is the case 

then the completion time of activity 𝑏 will be equal or greater than completion time 

of activity a plus the distance matrix between activity 𝑎 and 𝑏 identified by 𝑑𝑎𝑏 thus: 

𝑡𝑏  ≥  𝑡𝑎 + 𝑑𝑎𝑏. However, if 𝑥𝑎𝑏 = 0 indicating that activity 𝑎 is not performed 

before 𝑏 then 𝑡𝑏  ≥  𝑡𝑎 + 𝑑𝑎𝑏 −𝑀 and since 𝑀 is a very big number that means 

𝑡𝑏 − 𝑡𝑎 − 𝑑𝑎𝑏 ≥ − 𝑀 which is infeasible and thus this constraint ensures or 

guarantees feasibility of successive activities because when 𝑥𝑎𝑏 = 0 there must be no 

relation between activity 𝑎 and 𝑏. For Example, if 𝑎 = 𝐿1, 𝑏 = 𝐿2, 𝛿 = 2, 𝜀 = 1. 

From Case 1 of our distance matrix it was seen that for 𝑎 𝜖 {𝐿𝑖} and 𝑏 𝜖 {𝐿𝑗}, 

𝑑𝐿𝑖𝐿𝑗 = |𝑖 − 𝑗|𝛿 + 𝜀 and thus 𝑑𝐿1𝐿2 = |1 − 2|𝛿 + 𝜀 = 𝛿 + 𝜀 = 2 + 1 = 3 and let us 

assume 𝑡𝑎 was 3. Since 𝑥𝐿1𝐿2 is 1 in this case because activity 𝑏 is performed after a, 

𝑡𝑏 = 3 + 3 = 6.  

 
Figure 4.1: Representation of Constraint (4.4) by an Example of Case 1 
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Also, it should be noted that activity 𝑏 cannot be 𝐿1 because in the problem 

definition chapter we discussed that 𝐿1 will always be fixed as first activity to avoid 

permutation. 

In (4.5) activity of unloading a finished part from machine 𝑖 must be performed after 

the loading of machine 𝑖 with an unfinished part. Otherwise the constraint must be 

deemed infeasible. Thus, if 𝑧𝑖 is 1 meaning activity 𝐿𝑖 is before 𝑈𝑖 then 𝑡𝑈𝑖 − 𝑡𝐿𝑖  ≤

𝑀 which means 𝑡𝑈𝑖  ≤  𝑡𝐿𝑖 +𝑀, since 𝑀 is a very big number it basically means the 

completion time of 𝑈𝑖  must be greater than completion time of 𝐿𝑖. However if 

𝑧𝑖 = 0 indicating that activity 𝑈𝑖  is not performed after Li then 𝑡𝑈𝑖 − 𝑡𝐿𝑖  ≤ 0 which 

means𝑡𝑈𝑖  ≤  𝑡𝐿𝑖 which is infeasible since the completion time of the 𝑈𝑖  cannot be 

less than that of 𝐿𝑖. This constraint guarantees whether constraint (4.6) or (4.7) is 

active because only one of them will be active at the same time. 

If 𝑧𝑖 = 1 meaning activity 𝐿𝑖 is before 𝑈𝑖 then (4.6) is active and that means 𝑡𝑈𝑖  ≥

 𝑡𝐿𝑖 + (𝜀 + 𝑝) which means completion time of 𝑈𝑖 is atleast completion time of 𝐿𝑖 

plus the processing time of the part and the time taken to pick up the part from the 

machine. This means that after activity 𝐿𝑖 is completed if the activity following it is 

𝑈𝑖 then assuming process time is 0 the least amount of completion time of activity 𝑈𝑖 

is the time taken to pick up the part because other times can include travel time and 

picking up/putting time for all activities between 𝐿𝑖 and 𝑈𝑖. However if process time 

is too large and by the time the robot comes back to machine 𝑖 and processing of the 

part was not completed, the robot will have to wait for a maximum amount of the 

process time itself. For Example, if 𝑎 = 𝐿1, 𝑏 = 𝑈1, 𝛿 = 2, 𝜀 = 1, 𝑝 = 100 and let 
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us assume 𝑡𝑎 was 20. Since 𝑈𝑖 is 1 in this case because activity 𝑈𝑖 is performed after 

𝐿𝑖, 𝑡𝑈𝑖 ≥  20 + 1 + 100 = 121. 

 
Figure 4.2: Representation of Constraint (4.6) by an Example of Case 1 

However in (4.7) if 𝑧𝑖 = 0 then activity 𝑈𝑖 is performed before 𝐿𝑖 and hence, we 

need to guarantee feasibility. 𝑡𝐿𝑖  ≤  𝑡𝑈𝑖 +  𝐶 + (𝜀 + 𝑝) which becomes 𝑡𝑈𝑖  ≥  𝑡𝐿𝑖 −

(𝜀 + 𝑝) − 𝐶 which means that the time span between the cycle time and completion 

time of activity 𝐿𝑖 plus the processing time of a part and the time taken to pick up the 

part from the machine must be less than or equal to completion time of activity 𝑈𝑖. 

 
Figure 4.3: Representation of  Constraint (4.7) 

In (4.8) if activity 𝑎 is the last activity before the cycle is repeated from 𝐿1 again and 

𝑎 is before 𝑏 where 𝑏 is the activity of loading machine 1 again meaning 𝑥𝑎𝐿1 = 1 

then 𝐶 ≥  𝑡𝑎 + 𝑑𝑎𝐿1 which means the cycle time is equal to completion of last 
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activity a plus the distance matrix from a back to first activity 𝐿1. However, if 

𝑥𝑎𝐿1 = 0  meaning activity a is not before 𝐿1 then 𝐶 ≥  𝑡𝑎 thus the constraint 

becomes redundant. 

 
Figure 4.4: Representation of Constraint (4.8) 

Since 𝑥𝑎𝑏 is either 1 or 0 it is a binary decision variable which is defined by (4.9) and 

the same goes for the decision variable 𝑧𝑖 which is also a binary decision variable 

defined by (4.12). 

The completion time of activity 𝑎 (𝑡𝑎) and the cycle time are both time standards and 

thus they can defined as linear decision variables that are non-negative and this is 

shown by (4.10) and (4.11). 

Constraints (4.13) through (4.20) all deal with the number of finished parts on the 

robot at the end of an activity. When 𝑥𝑎𝑏 = 1 it means that activity 𝑎 is performed 

before 𝑏 and thus (4.13) and (4.14) reduces to 𝑌𝑏
+  ≥  𝑌𝑎

+ +  1 and 𝑌𝑏
+  ≤  𝑌𝑎

+ +  1. In 

optimization it is stated that a hyperplane is a set of points which satisfy one linear 

equation and it divides the space into half spaces determined by inequalities such as 

(4.13) and (4.14). Thus, the hyperplane in our case is reduced to the following one 
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linear equation 𝑌𝑏
+  =  𝑌𝑎

+ +  1. It can be seen that in (4.13) and (4.14) activity 𝑏 is 

unloading 𝑎 finished part which means that after completion of activity 𝑏 one more 

finished part will be carried by the robot. On the contrary, when 𝑥𝑎𝑏 = 0 which 

means activity 𝑎 is not performed before 𝑏 then (4.13) and (4.14) are reduced to 

𝑌𝑏
+  ≥  𝑌𝑎

+ +  1 − (𝐾 + 1) and 𝑌𝑏
+  ≤  𝑌𝑎

+ +  1 + (𝐾 + 1) which is deemed 

infeasible since there is no intersection point between the two equations.  

When 𝑥𝑎𝑏 = 1 (4.15) and (4.16) reduces to 𝑌𝑏
+  ≥  𝑌𝑎

+ −  1 and 𝑌𝑏
+  ≤  𝑌𝑎

+ −  1. 

Since it is two half spaces or two inequalities it is reduced to the following one linear 

equation 𝑌𝑏
+  =  𝑌𝑎

+ −  1. It can be seen that in (4.15) and (4.16) activity 𝑏 is putting 

a finished part on the output buffer which means that after completion of activity 𝑏 

one more finished part will be removed from the robot. On the contrary, when 

𝑥𝑎𝑏 = 0 then (4.15) and (4.16) are reduced to 𝑌𝑏
+  ≥  𝑌𝑎

+ −  1 − (𝐾 + 1) and 

𝑌𝑏
+  ≤  𝑌𝑎

+ −  1 + (𝐾 + 1) which is deemed infeasible since there is no intersection 

point between the two equations. 

When 𝑥𝑎𝑏 = 1 (4.17) and (4.18) reduces to 𝑌𝑏
+  ≥  𝑌𝑎

+ and 𝑌𝑏
+  ≤  𝑌𝑎

+. Since it is two 

half spaces or two inequalities it is reduced to the following one linear equation 

𝑌𝑏
+  =  𝑌𝑎

+. It can be seen that in (4.17) and (4.18) activity 𝑏 is picking up an 

unfinished part to the input buffer which means that after completion of activity 𝑏 

there will be no finished parts added or removed to the robot buffer. On the contrary, 

when 𝑥𝑎𝑏 = 0 then (4.17) and (4.18) are reduced to 𝑌𝑏
+  ≥  𝑌𝑎

+ − (𝐾 + 1)and 

𝑌𝑏
+  ≤  𝑌𝑎

+ + (𝐾 + 1)which is deemed infeasible since there is no intersection point 

between the two equations. The same set of equations are seen in (4.19) and (4.20) 



44 

 

for the case when activity 𝑏 is loading an unfinished part to the machine. Then again 

there are no finished parts added or removed to the robot buffer. 

Constraints (4.21) through (4.28) all deal with the number of unfinished parts on the 

robot at the end of an activity. When 𝑥𝑎𝑏 = 1 (4.21) and (4.22) reduces to 𝑌𝑏
−  ≥

 𝑌𝑎
− +  1 and 𝑌𝑏

−  ≤  𝑌𝑎
− +  1. Since it is two half spaces or two inequalities it is 

reduced to the following one linear equation 𝑌𝑏
−  =  𝑌𝑎

− +  1. It can be seen that in 

(4.21) and (4.22) activity 𝑏 is picking up an unfinished part from the input buffer 

which means that after completion of activity 𝑏 one more unfinished part will be 

carried by the robot buffer. On the contrary, when 𝑥𝑎𝑏 = 0 which means activity 𝑎 is 

not performed before 𝑏 then (4.21) and (4.22) are reduced to 𝑌𝑏
−  ≥  𝑌𝑎

− +  1 − (𝐾 +

1)and 𝑌𝑏
−  ≤  𝑌𝑎

− +  1 + (𝐾 + 1) which is deemed infeasible since there is no 

intersection point between the two equations.  

When 𝑥𝑎𝑏 = 1 (4.23) and (4.24) reduces to 𝑌𝑏
−  ≥  𝑌𝑎

− −  1 and 𝑌𝑏
−  ≤  𝑌𝑎

− −  1. 

Since it is two half spaces or two inequalities it is reduced to the following one linear 

equation 𝑌𝑏
−  =  𝑌𝑎

− −  1. It can be seen that in (4.23) and (4.24) activity 𝑏 is loading 

an unfinished part on the machine which means that after completion of activity 𝑏 

one more unfinished part will be removed from the robot buffer. On the contrary, 

when 𝑥𝑎𝑏 = 0 then (4.23) and (4.24) are reduced to 𝑌𝑏
−  ≥  𝑌𝑎

− −  1 − (𝐾 + 1) and 

𝑌𝑏
−  ≤  𝑌𝑎

− −  1 + (𝐾 + 1) which is deemed infeasible since there is no intersection 

point between the two equations. 

When 𝑥𝑎𝑏 = 1 (4.25) and (4.26) reduces to 𝑌𝑏
−  ≥  𝑌𝑎

− and 𝑌𝑏
−  ≤  𝑌𝑎

−. Since it is two 

half spaces or two inequalities it is reduced to the following one linear equation 
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𝑌𝑏
− = 𝑌𝑎

−. It can be seen that in (4.25) and (4.26) activity 𝑏 is unloading a finished 

part from the machine which means that after completion of activity 𝑏 there will be 

no unfinished parts added or removed to the robot buffer. On the contrary, when 

𝑥𝑎𝑏 = 0 then (4.25) and (4.26) are reduced to 𝑌𝑏
−  ≥  𝑌𝑎

− − (𝐾 + 1) and 𝑌𝑏
−  ≤  𝑌𝑎

− +

(𝐾 + 1) which is deemed infeasible since there is no intersection point between the 

two equations. The same set of equations are seen in (4.27) and (4.28) for the case 

when activity 𝑏 is putting a finished part to the output buffer. Then again there are no 

unfinished parts added or removed to the robot buffer. 

(4.29) indicates that the number of finished and unfinished parts on the robot at the 

end of the activity must not exceed the robot capacity. (4.30) and (4.31) are non- 

negativity constraints for the decision variables 𝑌𝑎
−and 𝑌𝑎

+. Since these variables are 

number of parts then they must be integer. 

4.2 Software Used to Solve the Model 

This model can be solved by many software programs. However, the software used 

to solve this MIP model was a combination of Visual Studio 2017 and IBM ILOG 

CPLEX Optimization Studio 12.8.0. Visual Studio is used for computer program 

development which was founded by Microsoft as an IDE (Integrated Development 

Environment) and languages such as C++ are built into it. CPLEX on the other hand 

is a program used to solve models such as MIP, LP and so forth in order to provide 

an optimal solution. CPLEX concert technology is a library that has C++ language 

and thus the configuration between CPLEX and Visual Studio allows us to code in 

C++ language in Visual Studio with the possibility of getting an optimal solution due 

to the CPLEX configuration. 
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4.3 Cycle and Variables Representation 

Since the distance matrix 𝑑𝑎𝑏 as well as variables 𝑥𝑎𝑏 are composed of two 

consecutive activities where a represents an activity and b represents another activity 

such as for example 𝑑𝑈1𝐿1  or 𝑥𝑈1𝐿1 it can be seen that 𝑎 and 𝑏 themselves are divided 

in two parts the activity itself for example unloading and on which machine the 

activity was carried out for example machine 1.  

Thus, if we write the representation of 𝑥𝑎𝑏 as x[a][i][b][j] then 𝑎 and 𝑏 are an array 

of 4 elements, while 𝑖 and 𝑗 are an array having m elements.  Also, since it is easier 

to deal with numbers rather than alphabets the activities 𝐿, 𝑈, 𝐼 and 𝑂 are represented 

as 0, 1, 2, and 3. However, when the output is printed in the solutions page any 

variables or activities represented as numbers are printed as their representations. 

The same is true for the variables 𝑡𝑎, 𝑌𝑎
+, 𝑌𝑎

−, 𝑧𝑖 which are represented as t[a][i], 

YP[a][i], YN[[a][i] and z[i]. An example of the solution page for a 2 machine case 

with process time 22 and 𝐾 = 1 is shown in Figure (4.5). 
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Figure 4.5: Solution Page for 2 Machine Case with K = 1, P = 22 

The cycle on the other hand is represented by 2 arrays Corder[i][j] where 𝑖 =  0 

represents array of activities and 𝑖 =  1 represents array of machine on which 

activity is conducted and 𝑗 has 4𝑚 elements since each activity is conducted once for 

each machine or in terms of output or input buffer for each part that is carried or 

dropped and there are 4 activities so if it is a 2 machine problem, there will be 8 

activities in total, and if it is 3 machines there will be 12 activities in total and so 

forth. So generally for an m machine case there will be 4m activities. For example, if 
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the following representation is printed as depicted in Figure (4.6) then the actual 

cycle that is being represented is 𝐿1𝑈2𝑂2𝐼2𝐿2𝑈1𝑂1𝐼1 for a 2 machine case. 

 
Figure 4.6: Representation of a Cycle for a 2 Machine Case 

4.4 Simulated Annealing Algorithm 

The solver was used to run the MIP model for 2 machine and 3 machine cases, it 

could not be used to solve larger machine problems such as 4 machine and 5 machine 

case and that is due to the extensive solution time which is known to be one of the 

cons of using exact solution methods. Thus, a heuristic approach was proposed to be 

used for solving the 4 machine and 5 machine cases and that is the Simulated 

Annealing Algorithm. A heuristic approach will not guarantee the optimal solution at 

all times but the solution time will be reduced and this will be seen in the next 

chapter. 

Compared to using other heuristic approaches such as genetic algorithm, gradient 

descent, etc. [44] stated the main advantages of using simulated annealing are: 

1. Memory shortage problems are avoided because only one solution is used at a 

time for a run. 

2. Neighboring solutions produced are feasible and a repair algorithm is not 

required leading to solutions that are highly diversified. 
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Generally the steps of the simulated annealing algorithm start with an initial solution 

being constructed. Then the iteration loop begins and a neighboring solution is 

found. If the neighboring solution is better than the current solution then it becomes 

the new current solution. Else, if it was worse than the bad solution might be 

accepted with some acceptance probability or otherwise rejected. 

The Simulated Annealing algorithm coded in Visual-CPLEX solver for the model in 

this study followed the steps below which was an extension to the MIP model. 

4.4.1 Creating the Initial Current Order  

 
Figure 4.7: Creating Initial Current Order 

Figure (4.7) shows the algorithm that was coded to create a fixed initial current order 

of activities that make a cycle. Since we previously defined that 𝑖 has 𝑚 elements we 

fix the 𝑖 in Corder[i][j] to 0 and 1 since there will always be 2 arrays: 0 for activities 

and 1 for machines. 
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The initial current order for a 2 machine case will look something like Figure (4.8) 

which is a cycle in the form of 𝐿1𝐼2𝐿2𝑈1𝑂1𝑈2𝑂2𝐼1 when the numbers that 

represented the activities are replaced by their actual representations and machines 

are replaced by 𝑖 +  1 is a cycle of the form as depicted in Figure (4.9). 

        

        

Figure 4.8: Initial Current Order Created for 2 Machine Case 

        

        

Figure 4.9: Initial Current Order for 2 Machine Case Represented by Activities and 

Machines 

Generally, the idea of creating this initial order was because before loading a part on 

the machine, the robot needs to pick up a part from the input buffer and after the part 

is loaded it is processed and then unloaded after finishing processing and then finally 

the unloaded part is moved to the output buffer. This order was considered for a 

robot with buffer capacity 1 since an order created to consider robot buffer capacity 2 

or higher will create an infeasible order for a robot with smaller buffer capacity. A 

generalized initial current order for 𝑚 machine case is shown as Figure (4.10) and 

Figure (4.11) represents the order in terms of activities 𝐿, 𝑈, 𝐼 and 𝑂. 

0 1 3 2 3 1 

 

0 2 

0 1 1 0 0 0 1 1 

L U O I O U 

 

L I 

1 2 2 1 1 1 2 2 
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Figure 4.10: General Initial Current Order 

 
Figure 4.11: General Initial Current Order Represented by Activities L, U, I and O 

The initial order was generated after testing a set of orders that in some cases seemed 

to be infeasible depending on the robot buffer capacity as stated before. It will be 

seen later in the results and discussion chapter that since this order represents a cycle 

for a robot with buffer capacity of size 1 then in some cases optimal solution will be 

reached from the first iteration. 

4.4.2 Defining x Variables and Setting Best Order 

After defining all the constraints of the model, before calculating the current 

objective the variable x[a][i][b][j] is set to lower bound of 1 so that only the x 

variables that appear in the current order are set to 1 while others are 0. And this is 

coded by the algorithm shown in Figure (4.12). 

 
Figure 4.12: Setting x Variables to Lower Bound 1 
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So for example, x[Corder[0][0]][Corder[1][0]][Corder[0][1]] [Corder[1][1]] is set to 

1 for 𝑖 =  0. This basically means that we just take two consecutive elements or 

activites from the array of Corder[i][j]. 

 

After that current objective is found by CPLEX solver and then variables x[a][i][b][j] 

for current order is set back to lower bound 0. The best order is set to be equal to the 

current order and the best objective is set to be equal to current objective. 

4.4.3 Starting the Iteration Loop 

In this algorithm the number of iterations is the stopping criteria. Since for cases 

when number of machines was 2 or 3 the optimal solution was found by the exact 

method it was easier to assume number of iterations required to reach optimal 

solution and that was around 1000 iterations. However, for 4 and 5 machine cases the 

number of iterations required trials until what can only seem as the minimum cycle 

time found and that was fixed as the number of iterations required. For a 4 machine 

case 2500 iterations were made and for 5 machine case the number of iterations 

ranged between 3000 to 5000. 

When the runs were made by the SA algorithm it must be noted that each run was 

made 10 times which means if a case was run for 1000 iterations then those 1000 

iterations were made 10 times. Out of those 10 times the result that gave the 

minimum cycle time was selected. 

Then the first step was to set new order equal to the current order. 

4.4.4 Strategy Used for New Solution 

At this point a new solution is generated and a swapping method is used to generate 

the solution. The swap is conducted for 2 sets: one for activities and one for the 
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machine. So for example, if we have the initial current order for 2 machine case as 

the one in Figure (4.10) then a random number a and b is generated between 1 and 

4𝑚 –  1. Even though elements of 𝑗 range between 0 and 4𝑚 –  1 we never swap with 

𝑗 =  0 which is the loading activity of machine 1 and this to avoid permutations. 

So if 𝑎 =  4 and 𝑏 =  6 there will be a swap between 𝑎 and 𝑏 and the new order 

will be as shown in Figure (4.13). It can be seen that the new order did not create any 

difference since a swap between two output buffer activities does not reduce distance 

matrix because the distance of travel will be the same. To avoid such a new order as 

well as to avoid swapping when 𝑎 and 𝑏 are equal conditions are used in the 

algorithm for the swap to be restricted as shown in Figure (4.14). 

 
Figure 4.13: Swapping Strategy for New Solution to be generated 
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Figure 4.14: Swapping Strategy to Generate New Solution 

It can be seen that this swap is conducted for 𝑖 =  0 and 𝑖 =  1 which is activities 

and machines at the same time. It was also previously mentioned that since the order 

for a robot with buffer capacity of size 1 is very restricted since for each machine the 

order should always be the same that is Input buffer, Load, Unload, Output buffer a 

separate swap method with a condition was coded just for this case and it is shown in 

Figure (4.15). 

 
Figure 4.15: Swapping Strategy for Robot Buffer Capacity 1 
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The code has a condition that if 𝑎 and 𝑏 are equal no swap will be conducted. In this 

case, 𝑎 and 𝑏 are random numbers between 1 and 2𝑚 –  1. So if we deal with a 2 

machine case with initial order as shown in Figure (4.10). Then 𝑎 can either be 1, 2 

or 3 and 𝑏 can either be 1, 2 or 3 that means there are 6 possible swaps (𝑎 = 1, 𝑏 =

2), (𝑎 = 1, 𝑏 = 3), (𝑎 = 2, 𝑏 = 1), (𝑎 = 2, 𝑏 = 3), (𝑎 = 3, 𝑏 = 1) and (𝑎 = 3, 𝑏 =

2) and since 3 of them are the same to the other 3 that means there are 3 unique new 

orders. So in general there are (2𝑚 − 1)(2𝑚 − 2) 2⁄  unique new orders for 𝑚 

machine case. 

It can also be seen from the code that there will be two sets of swaps since as stated 

before 𝐼 should be followed by 𝐿 and 𝑈 should be followed by 𝑂. These 3 new orders 

for the 2 machine case are as shown in Figure (4.16). 

 
Figure 4.16: New Orders generated for 2 Machines with K = 1 
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After that a new order is printed after the swap. And variables x[a][i][b][j] is set to 

lower bound of 1 so that only the new order x[a][i][b][j] variables are set to 1 while 

others are 0. And then the new objective is found by CPLEX solver. 

4.4.5 Condition for Finding a Better Solution  

The first condition states that if the new objective is less than best objective found up 

to this point than the new objective is the best objective and the new order is the best 

order given that the order is feasible. 

The second condition states that if the new objective is less than current objective 

found than the new objective is the current objective and the new order is the current 

order given that the order is feasible. 

The third condition states that if Random Number < 𝑒
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒−𝑁𝑒𝑤 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

𝑇  

then we set the new objective to be equal to the current objective and the new order 

to be the current order with the control parameter being 𝑇 =  𝜆 ∗ 𝑇1 where the ratio 𝜆 

is 0 <  𝜆 <  1 and 𝑇 is known as temperature. This technique is known as the 

cooling schedule and it is used rather than some fixed number because the difference 

between the new and current objective is taken into account and thus the acceptance 

of the bad solution decrease if the difference is big or if the temperature decreases. 

Otherwise, if the order is infeasible and if Random Number < 𝑒
𝑊𝑜𝑟𝑠𝑒

𝑇  then we set the 

new objective to be equal to the current objective and the new order to be the current 

order which allows us to except infeasible orders. Where 𝑊𝑜𝑟𝑠𝑒 is any negative big 

number such as -1000. 
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Also in the SA algorithm since the parameters ratio and worse affect the possibility 

of getting the optimal solution they had to be varied according to the number of 

machines. The parameter ratio was kept constant at 0.99 for all cases. However the 

parameter worse was -5000 for the 2 machine case and -10000 for the 3, 4 and 5 

machine case. 

Finally the variables x[a][i][b][j] for the new order is set back to lower bound 0.And 

then x[a][i][b][j] is set to lower bound of 1 so that only the best order x[a][i][b][j] 

variables are set to 1 while others are 0. Lastly, the best objective is computed by 

CPLEX solver if the order is feasible. 
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Chapter 5 

RESULTS AND DISCUSSION 

5.1 Cycle Time Calculation 

In this section, a two machine case with robot buffer capacity 1 and 2 are given as 

examples to show how the cycle time is calculated along with the other decision 

variables that include the completion time of the activities (𝑡𝑎), the number of parts 

on the robot that are unfinished at the end of activity a (𝑌𝑎
−), the number of parts on 

the robot that are finished at the end of activity a (𝑌𝑎
+) and the binary decision 

variables (𝑥𝑎𝑏) and (𝑧𝑖). The schedule in this example is the optimal solution of these 

two cases that was found by the MIP model. 

Case 1: m = 2, δ = 2, ε = 1, K = 1, P = 22 

Table 5.1: Case when m = 2, δ = 2, ε = 1, K = 1, P = 22 

Activity 

(a) 

L1 U2 O2 I2 L2 U1 O1 I1 C 

Xab = 1 XL1U2  XU2O2 XO2I2 XI2L2 XL2U1 XU1O1 XO1I1 XI1L1 

38 

ta 0 3 6 13 18 23 28 35 

Ya
+
 0 1 0 0 0 1 0 0 

Ya
-
 0 0 0 1 0 0 0 1 

Since the schedule of robot moves is as shown above that indicates that robot 

performs activity 𝐿1 before 𝑈2 (𝑥𝐿1𝑈2 = 1), 𝑈2 before 𝑂2 (𝑥𝑈2𝑂2 = 1), 𝑂2 before 𝐼2 

(𝑥𝑂2𝐼2 = 1), 𝐼2 before 𝐿2 (𝑥𝐼2𝐿2= 1), 𝐿2 before 𝑈1 (𝑥𝐿2𝑈1 = 1), 𝑈1 before 𝑂1 (𝑥𝑈1𝑂1 = 
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1), 𝑂1 before 𝐼1 (𝑥𝑂1𝐼1= 1) and finally 𝐼1  before 𝐿2 (𝑥𝐼1𝐿1 = 1). Thus, other 

combination of activities will be zero and this is represented by equations (4.2) and 

(4.3) in the mathematical model. 

𝑌𝐿1
−  and 𝑌𝐿2

−  are 0 because at the end of loading a machine with an unfinished part the 

robot has no parts left on it. In the model, this is represented by equations (4.23) and 

(4.24). Also it must be noted that 𝑌𝐿1
+  and 𝑌𝐿2

+  will not exist because the robot will not 

load the machine with a finished part. This is represented by equations (4.19) and 

(4.20) in the model. On the other hand, 𝑌𝑈1
+  and 𝑌𝑈2

+  are 1 because at the end of 

unloading a machine with a finished part the robot has one part. In the model, this is 

represented by equations (4.13) and (4.14). Also it must be noted that 𝑌𝑈1
−  and 𝑌𝑈2

−will 

not exist because the robot will not unload the machine with an unfinished part. This 

is represented by equations (4.25) and (4.26) in the model. When a part is taken to 

the output buffer it means a finished part is put to the output buffer thus the robot has 

no parts left so 𝑌𝑂1
+  and 𝑌𝑂2

+ are 0. This is represented by equations (4.15) and (4.16) in 

the model. While equations (4.27) and (4.28) indicate that 𝑌𝑂1
−  and 𝑌𝑂2

−  will not exist 

since the robot will not put an unfinished part to the output buffer. And when a part 

is taken from the input buffer it means an unfinished part is picked up from the input 

buffer thus the robot has one part so 𝑌𝐼1
− and 𝑌𝐼2

− are 1. This is represented by 

equations (4.21) and (4.22) in the model. While equations (4.17) and (4.18) indicate 

that 𝑌𝐼1
+ and 𝑌𝐼2

+ will not exist since the robot will not pick up a finished part from the 

input buffer. 
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Table 5.2: Describing Completion Time Calculation for Case when m = 2, δ = 2, ε = 

1, K = 1, P = 22 

Buffer/ 

Machine 

i 

 
  

 

L1U2 

 

δ = 2 since the time to travel from machine 1 to machine 2 is 2 time unit 

and ε = 1 because at machine 2 the part is picked up so unloading time 

is 1 time unit, dL1U2 = ε + |i – j|δ = 1 + |1 – 2| (2) = 1 + 2 = 3 and tU2 = 3 

U2O2 

 

δ = 2 since the time to travel from machine 2 to the output buffer is 2 

time unit and ε = 1 because at the output buffer the part is put so 

loading time is 1 time unit, dU2O2 = ε + (m – i + 1) δ = 1 + (2 – 2 + 1) (2) 

= 1 + 2 = 3 and tO2 = 3 + 3 = 6 

O2I2 

3*δ = 6 since the time to travel from output buffer to input buffer is 6 

time unit and ε = 1 because at the input buffer the part is picked up so 

unloading time is 1 time unit, dO2I2 = ε + (m + 1) δ = 1 + (2 + 1) (2) = 1 

+ 6 = 7 and tI2 = 6 + 7 = 13.  

I2L2 

 

2*δ = 4 since the time to travel from the input buffer to the machine 2 is 

4 time unit and ε = 1 because at machine 2 the part is put so loading 

time is 1 time unit, dI2L2 = ε + i δ = 1 + (2) (2) = 1 + 4 = 5 and tL2 = 13 + 

5 = 18. 

L2U1 

 

δ = 2 since the time to travel from machine 2 to machine 1 is 2 time unit 

and ε = 1 because at machine 1 the part is picked up so unloading time 

is 1 time unit, dL2U1 = ε + |i – j|δ = 1 + |2 – 1| (2) = 1 + 2 = 3 and tU1 = 18 

+ 3 + 2 = 23 where 2 is waiting time since machine 1 had to be 

unloaded and process time of 22 time units was not fulfilled by the time 

the robot was ready. 

U1O1 

 

2*δ = 4 since the time to travel from machine 1 to the output buffer is 4 

time unit and ε = 1 because at the output buffer the part is put so 

loading time is 1 time unit, dU1O1 = ε + (m – i + 1) δ = 1 + (2 – 1 + 1) (2) 

= 1 + 4 = 5 and tO1 = 23 + 5 = 28. 

O1I1 

 

3*δ = 6 since the time to travel from output buffer to input buffer is 6 

time unit and ε = 1 because at the input buffer the part is picked up so 

unloading time is 1 time unit, dO1I1 = ε + (m + 1) δ = 1 + (2 + 1) (2) = 1 

+ 6 = 7 and tI1 = 28 + 7 = 35. 

I1L1 

 

δ = 2 since the time to travel from the input buffer to the machine 1 is 2 

time unit and ε = 1 because at machine 1 the part is put so loading time 

is 1 time unit, dI1L1 = ε + i δ = 1 + (1) (2) = 1 + 2 = 3 and C = 35 + 3 = 

38. 

 

I O 1 2 
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Table (5.2) indicates how the completion times for each activity is calculated and 

equation (4.4) was used when finding the completion time of activity 𝑏 while (4.6) 

was applied in finding 𝑡𝑈1 since the completion time of activity 𝑈1 must be greater or 

equal to the completion time of 𝐿1 which is 0 + the unloading time which is 1 and the 

process time which is 22, thus 𝑡𝑈1 must be greater or equal 23. Equation (4.8) states 

that the cycle time is greater or equal to the completion time of 𝐼1 which is 35 + (the 

distance matrix 𝑑𝐼1𝐿1 which is 3)*(𝑋𝐼1𝐿1  which is 1) thus 𝐶 is greater or equal to 38. 

It must also be noted that in this case 𝑧1 = 1 since for machine 1 activity 𝑈1 is 

performed after 𝐿1. However, 𝑧2 = 0 since for machine 2 activity 𝑈2 is performed 

before L2. 

The Gantt Chart for this case is shown in Figure (5.1). A Gantt chart is used to 

represent the processing time by each machine from start to end and for a certain 

period. And also for the robot it represents the start and end for completion of each of 

the activities in the chart and thus the horizontal axis is titled as time. For this 2 

machine case it can be seen that for machine 1 after processing time of 22 time units 

the machine will stay idle for another 16 time units with no part on it. As for machine 

2 processing of the part starts at time 18 and it processed for 22 time units. The 

machine is also idle with no part on it for 16 time units. The completion time of the 

activities are represented by two bars one bar for total travel time and one bar for the 

time taken for the robot to pick up or leave a part. It can also be seen that before the 

unloading operation of machine 1 there was some waiting time for the robot and this 

is because the machine did not finish processing. In some cases when two different 

activities are carried out on the same machine then there will be no travel time. 



 
Figure 5.1: Gantt Chart for Case when m = 2, δ = 2, ε = 1, K = 1, P = 22 
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Case 2: m = 2, δ = 2, ε = 1, K = 2, P = 22 

Table 5.3: Case when m = 2, δ = 2, ε = 1, K = 2, P = 22 

Activity 

(a) 

L1 I2 O1 U2 L2 O2 I1 U1 C 

Xab = 1 XL1I2  XI2O1 XO1U2 XU2L2 XL2O2 XO2I1 XI1U1 XU1L1 

28 

ta 0 3 10 13 14 17 24 27 

Ya
+
 1 1 0 1 1 0 0 1 

Ya
-
 0 1 1 1 0 0 1 1 

One of the most important realizations of how increase in robot buffer capacity can 

lead to minimization in cycle time is that when robot buffer capacity is just 1 that 

indicates that the schedule of robot moves will always be constant in such a way that 

after loading a machine with an unfinished part then the robot can perform either of 

the following: 

1. If the second machine is empty then the robot can go back to the input buffer 

and take an unfinished part and load the second machine. 

2. If the second machine had a part and processing of that part is finished then 

the robot can move to the second machine and unload the finished part. 

Obviously, after unloading a finished part the robot has to go to the output 

buffer for unloading the finished part, only then can it go back to the input 

buffer to pick up an unfinished part. 

However, it can be seen from the schedule of robot moves for the case with robot 

buffer capacity of size 2 that these restrictions are minimized since after picking up 

an unfinished part from the input buffer the robot can also unload a machine that 

finished processing as a second activity and having two unloading activities one after 
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another indicates that two parts are held by the robot at the same time. Also, after 

that when a machine is loaded with the unfinished part and the robot is still holding a 

finished part the robot can go back to the input buffer to pick up another part and at 

this point the robot is again holding two parts at the same time. After that it can be 

seen that the finished part is put to the output buffer but the robot is still holding one 

unfinished part and then machine 2 is unloaded with a finished part and at this point 

the robot is again holding two parts. The last two activities of the robot in that cycle 

include loading machine 1 with an unfinished part and then putting a finished part on 

the output buffer and then at this point it can be seen that the robot has no parts. 

Thus, this sequence of activities has seen to reduce the cycle time which proves that 

increase in robot buffer capacity further minimizes cycle time. 

2.2 Cycle Time for Robot Buffer Capacity > m and ≤ 2m 

In this section we discuss the impact of increasing in the robot buffer capacity to a 

size that is greater than the number of machines and less than or equal to a size that is 

two times the number of machines. So if we continue to consider a 2 machine case, 

we will have two more cases which are 2 machines with robot buffer capacity of 3 

and 2 machines with robot buffer capacity of 4. 
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Case 1: m = 2, δ = 2, ε = 1, K = 3, P = 22 

Table 5.4: Case when m = 2, δ = 2, ε = 1, K = 3, P = 22 

Activity 

(a) 

L1 O2 U2 L2 O1 I1 I2 U1 C 

Xab = 1 XL1O2  XO2U2 XU2L2 XL2O1 XO2I1 XI1I2 XI2U1 XU1L1 

24 

ta 0 5 8 9 12 19 20 23 

Ya
+
 1 0 1 1 0 0 0 1 

Ya
-
 1 1 1 0 0 1 2 2 

When the buffer capacity is more than m which in this case is 3 the robot has the 

ability to hold two unfinished parts and one finished part or two finished parts and 

one unfinished part at the same time which indicates that rather than visiting the 

input buffer once followed by unloading a machine once now the robot has the 

ability to either visit the input buffer two times and hold two unfinished parts 

followed by visiting a machine and unloading a finished part or visiting the input 

buffer once and unloading two machines with 2 finished parts. 

It can be seen from the schedule of robot moves above that the robot visits the input 

buffer and carries an unfinished part and then it carries another unfinished part from 

the input buffer. After that the robot visits machine 1 and unloads a finished part and 

at this moment the robot is holding 3 parts. Then the robot loads machine 1 with an 

unfinished part and after that it visits the output buffer to put a finished part. After 

that the robot moves to machine 2 to unload a finished part and then load the 

machine with an unfinished part. Lastly, the robot moves to the output buffer to put a 

finished part and at the end of this activity the robot has no parts being held. 
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The cycle time was seen to have further minimized with increase in the robot buffer 

capacity and this is due to the further flexibility in the robot move schedule. 

Case 2: m = 2, δ = 2, ε = 1, K = 4, P = 22 

Table 5.5: Case when m = 2, δ = 2, ε = 1, K = 4, P = 22 

Activity 

(a) 

L1 U2 L2 I1 I2 O2 O1 U1 C 

Xab = 1 XL1U2  XU2L2 XL2I1 XI1I2 XI2O2 XO2O1 XO1U1 XU1L1 

24 

ta 0 3 4 9 10 17 18 23 

Ya
+
 1 2 2 2 2 1 0 1 

Ya
-
 1 1 0 1 2 2 2 2 

When robot buffer capacity is exactly two times the number of machines which in 

this case it is 4 it means that the robot can hold two finished parts and two unfinished 

parts at the same time indicating that it can visit the output buffer and input buffer 

one time because it means at some point when the robot is holding 2 finished parts 

after unloading two machines and then it visits the input buffer and picks up 2 

unfinished parts it can then move to the output buffer to put those 2 finished parts to 

the output buffer. 

The schedule of cycle moves above was as follows the robot goes to the input buffer 

to pick up an unfinished part having already carried two finished parts from a 

previous cycle and then it picks up another unfinished part from the input buffer and 

at this point the robot is holding 4 parts. Then it moves to the output buffer to put 

both the finished parts. After that the robot moves to machine 1 to unload a finished 
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part and then loads an unfinished part and then it moves to machine 2 to unload a 

finished part and then load an unfinished part. 

It can be seen that for this case the cycle time could no longer be minimized and 

there may be two main reasons for this: 

1. Process time effect. 

2. Cumulative distance matrix plus completion time effect. 

In section 5.4 the effect of process time on the cycle time with increasing robot 

buffer capacity will be further discussed. 

5.3 Comparison between MIP Model and SA Algorithm Results 

In this section, the cycle time found by the MIP model for 2, 3 and 4 machine case 

with one buffer capacity is compared to the cycle time found by the SA algorithm for 

2, 3, 4 and 5 machine cases with solution time recorded. 

Six cases were considered for travelling time of 2 time units and loading/unloading 

time of 1 time units and the cases differed with differing process times ranging from 

0, 22, 40, 50, 100 and 5000. These cases were considered so that the effect of process 

time along with waiting time can be later studied and discussed. Also the buffer 

capacity size ranged from size 1 to 2𝑚 for each machine case. 

It must also be noted that even though the solution time for the SA algorithm might 

seem bigger for the 2 machine case when compared to the MIP model, the time by 

which the algorithm reaches the optimal solution is actually shorter but the solution 

time was recorded when all the iterations were completed. This solution time 

convergence was portrayed by a graph with solution time on the X-axis and cycle 
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time on the Y-axis. These graphs were made for all the cases and the will be 

presented in Appendix A for Case 1, Case 2, Case 3, Case 4, and Case 5 and 

Appendix B for Case 6. 

5.3.1 Case 1: δ = 2, ε = 1, P = 0 

Table 5.6: Case when δ = 2, ε = 1, P = 0 

MIP Model Simulated Annealing Algorithm 
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1 32 0.06 

2 

1 32 42 

2 20 0.39 2 20 31 

3 20 0.42 3 20 40 

4 20 0.47 4 20 45 

3 

1 60 0.19 

3 

1 60 46 

2 44 60.56 2 44 30 

3 28 357.84 3 28 8 

4 28 560.95 4 28 43 

5 28 561.30 5 28 45 

6 28 635.67 6 28 47 

4 

1 96 1.86 

4 

1 96 124 

 

2 56 81 

3 56 22 

4 36 113 

5 36 124 

6 36 128 

7 36 132 

8 36 29 

5  5 

1 140 44 

2 92 112 

3 68 122 

4 68 139 

5 48 147 

6 44 169 

7 44 176 

8 44 177 

9 44 187 

10 44 187 
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It can be seen that the optimal solution was found by the SA algorithm when 

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as 

shown in Figure (5.2) and Figure (5.3), also with reduced time since most of the 

optimal solutions were actually found at 1 s or less even though completion of the 

iterations took longer. This proves that the SA algorithm modeled is adequate enough 

to be used.  

 
Figure 5.2: Comparison between MIP and SA Cycle Time for 2 Machines with P = 0 

 
Figure 5.3: Comparison between MIP and SA Cycle Time for 3 Machines with P = 0 
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It must also be noted that when the MIP model was run for a 4 machine case it took 

longer than 24 hours without providing the optimal solution thus even though the 

optimality of some of the cycle time provided by the SA algorithm for the 4 and 5 

machine case is not guaranteed, the solution time is extremely small compared to 

how long it would have taken the MIP model to find the optimal solution. 

For the case when 𝑚 = 4, 𝛿 = 2, 𝜀 = 1, 𝑃 = 0, 𝐾 = 2 it can be seen in Table (5.7) 

that since process time has no impact here forming the optimal schedule is easy since 

the buffer can hold two parts that means two loading/unloading activities followed 

by two output/input buffer putting/picking up activities will give the optimal 

schedule and hence we can prove whether the cycle time found by the SA algorithm 

was optimal. And it was seen that the cycle time was in fact optimal. 

Similarly for the case when the buffer capacity is 3 which means the robot can hold 

three parts indicating three putting/picking up activities followed by three 

output/input buffer putting/picking up activities will give the optimal schedule and 

hence we can prove as shown in Table (5.8) whether the cycle time found by the SA 

algorithm was optimal. And it was seen that the cycle time was in fact optimal. 



Table 5.7: Case when m = 4, δ = 2, ε = 1, K = 2, P = 0 

a 
L1 U1 L2 U2 O1 O2 I1 I2 L3 U3 L4 U4 O3 O4 I3 I4 C 

ta 0 1 4 5 12 13 24 25 32 33 36 37 40 41 52 53 

56 Ya
+
 0 1 1 2 1 0 0 0 0 1 0 2 1 0 0 0 

Ya
-
 1 1 0 0 0 0 1 2 1 0 0 0 0 0 1 2 

                                              

Table 5.8: Case when m = 4, δ = 2, ε = 1, K = 3, P = 0 

a L1 U1 L2 U2 L3 U3 O1 O2 O3 I1 I2 I3 L4 U4 O4 I4 C 

ta 0 1 4 5 8 9 14 15 16 27 28 29 38 39 42 53 

56 Ya
+
 0 1 1 2 2 3 2 1 0 0 0 0 0 1 0 0 

Ya
-
 2 2 1 1 0 0 0 0 0 1 2 3 2 2 2 3 
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Similarly for the case when the buffer capacity is 4 which means the robot can hold 

four parts indicating four loading/unloading activities followed by four output/input 

buffer putting/picking up activities will give the optimal schedule and hence we can 

prove as shown in Table (5.9) whether the cycle time found by the SA algorithm was 

optimal. Also in this case the optimal solution was found.  

For the cases when the robot buffer capacity was 5, 6, 7 and 8 it does not need to be 

proved that the optimal solution was found since 36 is the minimum cycle time that 

can be found in this case since the schedule discussed above is the minimum in terms 

of cumulative distance matrix plus completion time. 

As per the same discussions the cycle times for the 5 machine case for buffer 

capacity 1, 2, 3, 4 and 5 will also be proved by optimal schedules when process time 

has no affect in Tables (5.10), (5.11), (5.12), (5.13) and (5.14). And for those cases it 

was also seen that all the cycle times were optimal except for the case when buffer 

capacity was 5. For the cases when the 𝐾 was 6, 7, 8, 9 and 10 optimality did not 

need to be proved since 44 is the minimum cycle time that can be found. 



Table 5.9: Case when m = 4, δ = 2, ε = 1, K = 4, P = 0 

a 
L1 U1 L2 U2 L3 U3 L4 U4 O1 O2 O3 O4 I1 I2 I3 I4 C 

ta 0 1 4 5 8 9 12 13 16 17 18 19 30 31 32 33 

36 Ya
+
 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0 

Ya
-
 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 

 

Table 5.10: Case when m = 5, δ = 2, ε = 1, K = 1, P = 0 

a 
L1 U1 O1 I1 L2 U2 O2 I2 L3 U3 O3 I3 L4 U4 O4 I4 L5 U5 O5 I5 C 

ta 0 1 12 25 30 31 40 53 60 61 68 81 90 91 96 109 120 121 124 137 

140 Ya
+
 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 

Ya
-
 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 
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Table 5.11: Case when m = 5, δ = 2, ε = 1, K = 2, P = 0 

a 
L1 U1 L2 U2 O1 O2 I1 I2 L3 U3 L4 U4 O3 O4 I3 I4 L5 U5 O5 I5 C 

ta 0 1 4 5 14 15 28 29 36 37 40 41 46 47 60 61 72 73 76 89 

92 Ya
+
 0 1 1 2 1 2 0 0 0 1 1 2 1 0 0 0 0 1 0 0 

Ya
-
 1 1 0 0 0 0 1 2 1 1 0 0 0 0 1 2 1 1 1 2 

                  

Table 5.12: Case when m = 5, δ = 2, ε = 1, K = 3, P = 0 

a 
L1 U1 L2 U2 L3 U3 O1 O2 O3 I1 I2 I3 L4 U4 L5 U5 O4 O5 I4 I5 C 

ta 0 1 4 5 8 9 16 17 18 31 32 33 42 43 46 47 50 51 64 65 

68 Ya
+
 0 1 1 2 2 3 2 1 0 0 0 0 0 1 1 2 1 0 0 0 

Ya
-
 2 2 1 1 0 0 0 0 0 1 2 3 2 2 1 1 1 1 2 3 
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Table 5.13: Case when m = 5, δ = 2, ε = 1, K = 4, P = 0 

a 
L1 U1 L2 U2 L3 U3 L4 U4 O1 O2 O3 O4 I1 I2 I3 I4 L5 U5 O5 I5 C 

ta 0 1 4 5 8 9 12 13 18 19 20 21 34 35 36 37 48 49 52 65 

68 Ya
+
 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0 0 1 0 0 

Ya
-
 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 3 3 3 4 

                  

Table 5.14: Case when m = 5, δ = 2, ε = 1, K = 5, P = 0 

a 
L1 U1 L2 U2 L3 U3 L4 U4 L5 U5 O1 O2 O3 O4 O5 I1 I2 I3 I4 I5 C 

ta 0 1 4 5 8 9 12 13 16 17 20 21 22 23 24 37 38 39 40 41 

44 Ya
+
 0 1 1 2 2 3 3 4 4 5 4 3 2 1 0 0 0 0 0 0 

Ya
-
 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 1 2 3 4 5 
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5.3.2 Case 2: δ = 2, ε = 1, P = 22 

Table 5.15: Case when δ = 2, ε = 1, P = 22 

MIP Model Simulated Annealing Algorithm 
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2 

1 38 0.09 

2 

1 38 62 

2 28 0.26 2 28 42 

3 24 0.33 3 24 71 

4 24 0.45 4 24 58 

3 

1 60 0.31 

3 

1 60 56 

2 44 21.52 2 44 37 

3 40 227.83 3 40 46 

4 28 65.70 4 28 54 

5 28 70.02 5 28 59 

6 28 71.78 6 28 61 

4 

1 96 1.70 

4 

1 96 61 

 

2 68 66 

3 56 92 

4 52 103 

5 36 141 

6 36 118 

7 36 125 

8 36 117 

5  5 

1 140 167 

2 92 90 

3 72 101 

4 68 128 

5 60 275 

6 44 311 

7 44 325 

8 44 306 

9 44 355 

10 44 345 

It can be seen that the optimal solution was found by the SA algorithm when 

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as 

shown in Figure (5.4) and (5.5), also with reduced time since most of the optimal 

solutions were actually found at times ranging between 0 and 2 s for the 2 machine 
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case and times ranging between 7 and 35 s for the 3 machine case even though 

iteration completion took a longer time.  

 
Figure 5.4: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

22 

 
Figure 5.5: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

22 

It is logically evident that with increase in process time the cycle time can never be 
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the cycle time for all buffer capacities in 4 and 5 machine case was equivalent to that 

of the cycle time when process time was 0 indicates that the cycle time is optimal. 

However, it can be seen that the cycle time for 𝑚 = 4, 𝐾 = 2 and 𝐾 = 4 as well as 

𝑚 = 5, 𝐾 = 3 and 𝐾 = 5 were not equal to the cycle times when process time was 0. 

For the case when 𝑚 = 4, 𝛿 = 2, 𝜀 = 1, 𝑃 = 22, 𝐾 = 2 it can be seen that since 

process time has an impact forming the optimal schedule is not as easy. Since the 

buffer can hold two parts that means two loading/unloading activities followed by 

two output/input buffer putting/picking up activities will give the optimal schedule 

and hence we can prove whether the cycle time found by the SA algorithm was 

optimal. However, now along with that in mind we should also consider a schedule 

in such a way that we can avoid waiting time so that means that between a loading 

and unloading activity of any machine the total completion time of unloading must 

be at least the process time plus the time taken to pick up the finished part. Thus my 

suggestion was that the optimal schedule will look something like Table (5.16) where 

two input buffer activities are directly followed by two loading activities and also 

two unloading activities are directly followed by two output buffer activities. And it 

can be seen that the cycle time found was optimal. 

 

 



Table 5.16: Case when m = 4, δ = 2, ε = 1, K = 2, P = 22 

a 
L1 L2 I3 I4 L3 U4 L4 U1 O1 O2 U2 U3 O3 O4 I1 I2 C 

ta 0 3 8 9 16 19 20 27 36 37 44 47 52 53 64 65 68 

m2  0 5 6 13 16 17 24 33 34 41       

m3     0 3 4 11 20 21 28 31      

m4 48 51 56 57 64 67 0 7 16 17 24 27 32 33 44 45  

Ya
+
 0 0 0 0 0 1 0 2 1 0 1 2 1 0 0 0 

 

Ya
-
 1 0 1 2 1 1 0 0 0 0 0 0 0 0 1 2 
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The Gantt chart for this case is shown in Figure (5.6). In the Gantt chart for 2 

machine case it was seen that the time a part stays on the machine between loading 

and unloading is exactly the process time. However in this case it can be seen that 

after 22 time units of processing for machine 1 the part stayed on the machine idle 

for 4 time units and for machine 2 the part stayed on the machine for 18 time units. 

For machine 3 the part stayed on the machine idle for 8 time units and for machine 4 

the part stayed on the machine idle for 44 time units.  

Since this case is a robot buffer with the ability to hold two parts then two output 

buffer activities can follow each other, two input buffer activities can follow each 

other or unloading activity can be followed by a loading activity.  

Similarly for the case when the buffer capacity is 4 which means the robot can hold 

four parts indicating four putting/picking up activities followed by four output/input 

buffer loading/unloading activities will give the optimal schedule. However, since 

process again plays a role here a better schedule is having 4 input buffer activities 

followed by 4 loading/unloading activities and finally 4 output buffer activities as 

shown in Table (5.17). Also in this case the optimal solution was found.  

As per the same discussions the cycle times for the 5 machine case for buffer 

capacity 3 and 5 are proved by optimal schedules in Table (5.18) and (5.19) when 

process time has an effect. The concept of a 5 machine with robot buffer capacity 3 is 

similar to that of a 4 machine with buffer capacity 2 and thus the generalized 

schedule of the case is applied. Also the 5 machine with robot buffer capacity 5 is 

similar to that of a 4 machine with buffer capacity 4 and thus a generalized schedule 

of the case will be applied and in both cases cycle time was optimal. 



 
Figure 5.6: Gantt Chart for Case when m = 4, δ = 2, ε = 1, K = 2, P = 22 
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 Table 5.17: Case when m = 4, δ = 2, ε = 1, K = 4, P = 22 

a 
L1 U2 L2 U3 L3 U4 L4 U1 O1 O2 O3 O4 I1 I2 I3 I4 C 

ta 0 3 4 7 8 11 12 23 32 33 34 35 46 47 48 49 52 

m2 48 51 0 3 4 7 8 20 28 29 30 31 42 43 44 45  

m3 44 47 48 51 0 3 4 15 24 25 26 27 38 39 40 41  

m4 40 43 44 47 48 51 0 11 20 21 22 23 34 35 36 37  

Ya
+
 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0 

 

Ya
-
 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 
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Table 5.18: Case when m = 5, δ = 2, ε = 1, K = 3, P = 22 

a 
L1 L2 I3 I4 I5 L3 U4 L4 U5 L5 O1 O2 U1 U2 U3 O3 O4 O5 I1 I2 C 

ta 0 3 8 9 10 17 20 21 24 25 28 29 40 43 46 53 54 55 68 69 72 

m2  0 5 6 7 14 17 18 21 22 25 26 37 40        

m3      0 3 4 7 8 11 12 23 26 29       

m4 51 53 59 60 61 68 71 0 3 4 7 8 19 22 25 32 33 34 47 48  

m5 47 50 55 56 57 64 67 68 71 0 3 4 15 18 21 28 29 30 43 44  

Ya
+
 0 0 0 0 0 0 1 1 2 2 1 0 1 2 3 2 1 0 0 0 

 

Ya
-
 1 0 1 2 3 2 2 1 1 0 0 0 0 0 0 0 0 0 1 2 
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Table 5.19: Case when m = 5, δ = 2, ε = 1, K = 5, P = 22 

a 
L1 U2 L2 U3 L3 U4 L4 U5 L5 U1 O1 O2 O3 O4 O5 I1 I2 I3 I4 I5 C 

ta 0 3 4 7 8 11 12 15 16 25 36 37 38 39 40 53 54 55 56 57 60 

m2 57 0 1 4 5 8 9 12 13 22 33 34 35 36 37 50 51 52 53 54  

m3 53 56 57 0 1 4 5 8 9 18 29 30 31 32 33 46 47 48 49 50  

m4 49 52 53 56 57 0 1 4 5 14 25 26 27 28 29 42 43 44 45 46  

m5 45 48 49 52 53 56 57 0 1 10 21 22 23 24 25 38 39 40 41 42  

Ya
+
 0 1 1 2 2 3 3 4 4 5 4 3 2 1 0 0 0 0 0 0 

 

Ya
-
 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 1 2 3 4 5 
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5.3.3 Case 3: δ = 2, ε = 1, P = 40 

It can be seen that the optimal solution was found by the SA algorithm when 

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as 

shown in Figure (5.7) and (5.8), also with reduced time since most of the optimal 

solutions were actually found at times ranging between 0 and 4 s for the 2 machine 

case and times ranging between 0 and 9 s for the 3 machine case.  

 
Figure 5.7: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

40 

 
Figure 5.8: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

40 
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Since the optimality of the cycle times was proven for the case when process time  

was 22 and it can be seen that all the cycle times for 4 and 5 machine case are 

equivalent to that for process time equal to 40 thus it is sure that optimality was 

reached. However case of 5 machine and buffer capacity of size 6 seems to have a 

produced a cycle time of 48.  

Table 5.20: Case when δ = 2, ε = 1, P = 40 

MIP Model Simulated Annealing Algorithm 
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2 

1 56 0.06 

2 

1 56 55 

2 42 0.39 2 42 37 

3 42 0.42 3 42 53 

4 42 0.39 4 42 59 

3 

1 66 0.28 

3 

1 66 65 

2 52 16.11 2 52 35 

3 42 73.36 3 42 50 

4 42 38.75 4 42 60 

5 42 64.59 5 42 64 

6 42 42.64 6 42 66 

4 

1 96 0.94 

4 

1 96 68 

 

2 68 92 

3 56 81 

4 52 117 

5 42 155 

6 42 169 

7 42 160 

8 42 165 

5  5 

1 140 213 

2 92 110 

3 72 158 

4 68 180 

5 60 174 

6 48 169 

7 44 185 

8 44 217 

9 44 221 

10 44 221 
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In order to prove that the case for buffer capacity 6 was not optimal, the optimal 

schedule shown in Table (5.21) that is generalized for this case is pretty simple since 

the robot can hold 6 parts that means 5 input buffer activities followed by 5 

unloading/loading activities which is followed by 5 output buffer activities will give 

optimal solution. And since the unloading activity for each machine is exactly at the 

end of the cycle process time will not affect the schedule. And it can be seen that the 

cycle time found was indeed not the optimal solution. 

The Gantt chart for this 5 machine case is shown in Figure (5.9), the processing of a 

part on each machine took 40 time units and the part stayed on the machine idle 

waiting for the robot for 2 time units and this was the case in all the 5 machines. 

Also, since the robot buffer has the ability to hold 6 parts that indicates that 5 output 

buffer activities can be followed by 5 input buffer activities. 

 

 

 



 Table 5.21: Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 

a 
L1 U2 L2 U3 L3 U4 L4 U5 L5 O1 O2 O3 O4 O5 I1 I2 I3 I4 I5 U1 C 

ta 0 3 4 7 8 11 12 15 16 19 20 21 22 23 36 37 38 39 40 43 44 

m2 40 43 0 3 4 7 8 11 12 15 16 17 18 19 32 33 34 35 36 39  

m3 36 39 40 43 0 3 4 7 8 11 12 13 14 15 28 29 30 31 32 35  

m4 32 35 36 39 40 43 0 3 4 7 8 9 10 11 24 25 26 27 28 31  

m5 28 31 32 35 36 39 40 43 0 3 4 5 6 7 20 21 22 23 24 27  

Ya
+ 1 2 2 3 3 4 4 5 5 4 3 2 1 0 0 0 0 0 0 1 

 

Ya
-
 4 4 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 5 5 
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Figure 5.9: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 
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5.3.4 Case 4: δ = 2, ε = 1, P = 50 

It can be seen that the optimal solution was found by the SA algorithm when 

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as 

shown in Figure (5.10) and (5.11) also with reduced time since most of the optimal 

solutions were actually found at times ranging between 0 and 1 s for the 2 machine 

case and times ranging between 1 and 24 s for the 3 machine case.  

 
Figure 5.10: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

50 

 
Figure 5.11: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

50 
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Table 5.22: Case when δ = 2, ε = 1, P = 50 

MIP Model Simulated Annealing Algorithm 

N
o
. 
o
f 

m
a
ch

in
es

 

(m
) 

B
u

ff
er

 

C
a
p

a
ci

ty
 

(K
) 

C
y
cl

e 

T
im

e 

(t
im

e 

u
n

it
) 

S
o
lu

ti
o
n

 

T
im

e 
(s

) 

N
o
. 
o
f 

m
a
ch

in
es

 

(m
) 

B
u

ff
er

 

C
a
p

a
ci

ty
 

(K
) 

C
y
cl

e 

T
im

e 

(t
im

e 

u
n

it
) 

S
o
lu

ti
o
n

 

T
im

e 
(s

) 

2 

1 66 0.13 

2 

1 66 54 

2 52 0.22 2 52 37 

3 52 0.42 3 52 52 

4 52 0.66 4 52 59 

3 

1 70 0.28 

3 

1 70 66 

2 52 20.03 2 52 41 

3 52 31.34 3 52 49 

4 52 47.14 4 52 64 

5 52 49.67 5 52 58 

6 52 273.26 6 52 64 

4 

1 96 0.75 

4 

1 96 171 

 

2 76 110 

3 56 54 

4 52 140 

5 52 161 

6 52 181 

7 52 170 

8 52 180 

5  5 

1 140 196 

2 92 111 

3 82 158 

4 68 183 

5 64 187 

6 52 196 

7 52 246 

8 52 261 

9 52 290 

10 52 271 

As for the 4 and 5 machine cases when robot buffer capacity is greater than m it can 

be seen that the cycle time is 52 and this is in fact the optimal solution without using 

an optimal schedule as a proof since one of the constraints indicate that the 

completion time of unloading any machine must be greater than the completion time 

of loading that machine by at least the process time = 50 + the time taken to pick up 

the part which is equal to 1 and because the cycle time is equal to the completion 



92 

 

time of the last activity which is unloading and it is 51 + the distance matrix from 

unloading machine 𝑖 to loading machine 𝑖 which is 1 the minimum cycle time that 

can be reached for process time 50 is in fact 52. 

While other cycle times found were equivalent to the case when process time was 40, 

it was seen that when robot buffer capacity was 2 for 4 machine case and when robot 

buffer capacity was 3 and 5 for 5 machine case the cycle time differed from that of 

process time 40. Proving the optimality of these cases seemed to be extremely 

strenuous and thus their optimality could not be guaranteed. 

5.3.5 Case 5: δ = 2, ε = 1, P = 100 

It can be seen that the optimal solution was found by the SA algorithm when 

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as 

shown in Figure (5.12) and (5.13), also with reduced time since most of the optimal 

solutions were actually found at times ranging between 0 and 5 s for the 2 machine 

case and times ranging between 0 and 14 s for the 3 machine case.  

 
Figure 5.12: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

100 
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Figure 5.13: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

100 

As for the 4 and 5 machine cases when robot buffer capacity is greater than 1 it can 

be seen that the cycle time is 102 and this is in fact the optimal solution without 

using an optimal schedule as a proof since one of the constraints indicate that the 

completion time of unloading any machine must be greater than the completion time 

of loading that machine by at least the process time = 100 + the time taken to pick up 

a part which is equal to 1 and because the cycle time is equal to the completion time 

of the last activity which is unloading and it is 101 + the distance matrix from 

unloading machine 𝑖 to loading machine 𝑖 which is 1 the minimum cycle time that 

can be reached for process time 100 is in fact 102. 
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Table 5.23: Case when δ = 2, ε = 1, K = 2, P = 100 

MIP Model Simulated Annealing Algorithm 
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2 

1 116 0.13 

2 

1 116 56 

2 102 0.31 2 102 41 

3 102 0.66 3 102 55 

4 102 0.61 4 102 58 

3 

1 120 0.27 

3 

1 120 63 

2 102 17.11 2 102 40 

3 102 33.16 3 102 44 

4 102 81.28 4 102 54 

5 102 72.99 5 102 61 

6 102 85.95 6 102 65 

4 

1 124 0.61 

4 

1 124 182 

 

2 102 66 

3 102 117 

4 102 142 

5 102 168 

6 102 183 

7 102 179 

8 102 178 

5  5 

1 142 217 

2 120 132 

3 102 127 

4 102 145 

5 102 190 

6 102 186 

7 102 194 

8 102 207 

9 102 227 

10 102 199 

The only cases that might not be optimal are 5 machine cases when robot buffer 

capacity is 1 and 2. In order to prove optimality of the case when robot buffer 

capacity is 1 it is evident that since the robot can only hold one part every unloading 

activity must be followed by output buffer activity which is followed by input buffer 

activity and finally loading activity and process time effect is considered as shown in 

Table (5.24). Thus, it is proven that 142 is not the optimal solution. 



Table 5.24: Case when m = 5, δ = 2, ε = 1, K = 1, P = 100 

a 
L1 I5 L5 U2 O2 U4 O4 I2 L2 I4 L4 U3 O3 I3 L3 U1 O1 U5 O5 I1 C 

ta 0 3 14 21 30 35 40 53 58 63 72 75 82 95 102 107 118 121 124 137 140 

m2 82 85 96 103     0 5 14 17 24 37 44 49 60 63 6 79  

m3 41 52 59 68 73 78 91 96 101 110 113    0 5 16 19 22 35  

m4 68 71 82 89 98 103     0 3 10 23 30 35 46 49 52 65  

m5   0 7 16 21 26 39 44 49 58 61 68 81 88 93 104 107    

Ya
+
 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 

 

Ya
-
 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 
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 Table 5.25: Case when m = 5, δ = 2, ε = 1, K = 2, P = 100 

a 
L1 I4 O5 U4 L4 O4 I3 U3 L3 O1 I5 U2 L2 I1 O2 U5 L5 O3 I2 U1 C 

ta 0 3 16 21 22 27 40 47 48 55 68 73 74 79 92 95 96 99 112 115 116 

m2 42 45 58 63 64 69 82 89 90 97 110 115 0 5 18 21 22 25 38 41  

m3 68 71 84 89 90 95 108 115 0 7 20 25 26 31 44 47 48 51 64 67  

m4 94 97 110 115 0 5 18 25 26 33 46 51 52 57 70 73 74 77 90 93  

m5 20 23 36 41 42 47 60 67 68 75 88 93 94 99 112 115 0 3 16 19  

Ya
+
 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 

 

Ya
-
 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 
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For the case when robot buffer capacity is 2 the schedule shown in Table (5.25) was 

found by using the optimal schedule when process time is 5000 and then if the cycle 

time found using that schedule was less than 120 that indicates that cycle time 120 is 

not optimal. It is seen that the cycle time found was 116 which is less than 120 thus 

120 was not optimal solution. 

5.3.6 Case 6: δ = 2, ε = 1, P = 5000 

It can be seen that the optimal solution was found by the SA algorithm when 

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as 

shown in Figure (5.14) and (5.15), also with reduced time since most of the optimal 

solutions were actually found at times ranging between 0 and 9 s for the 2 machine 

case and times ranging between 0 and 6 s for the 3 machine case even though 

iteration completion took a longer time.  

 
Figure 5.14: Comparison between MIP and SA Cycle Time for 2 Machines with P = 

5000 
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Figure 5.15: Comparison between MIP and SA Cycle Time for 3 Machines with P = 

5000 

 

As for the 4 and 5 machine cases when robot buffer capacity  is greater than 1 it can 

be seen that the cycle time is 5002 and this is in fact the optimal solution without 

using an optimal schedule as a proof since one of the constraints indicate that the 

completion time of unloading any machine must be greater than the completion time 

of loading that machine by at least the process time = 5000 + the time taken to pick 

up a part which is equal to 1 and because the cycle time is equal to the completion 

time of the last activity which is unloading and it is 5001 + the distance matrix from 

unloading machine 𝑖 to loading machine 𝑖 which is 1 the minimum cycle time that 

can be reached for process time 5000 is in fact 5002. 
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Table 5.26: Case when δ = 2, ε = 1, P = 5000 

MIP Model Simulated Annealing Algorithm 

N
o
. 
o
f 

m
a
ch

in
es

 

(m
) 

B
u

ff
er

 

C
a
p

a
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ty
 

(K
) 

C
y
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e 

T
im

e 
(t

im
e 

u
n
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) 

S
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T
im

e 
(s

) 

N
o
. 
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m
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(m
) 

B
u

ff
er

 

C
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p
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ty
 

(K
) 

C
y
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e 

T
im

e 
(t

im
e 

u
n

it
) 

S
o
lu

ti
o
n

 

T
im

e 
(s

) 

2 

1 5016 1.36 

2 

1 5016 66 

2 5002 0.55 2 5002 44 

3 5002 0.76 3 5002 60 

4 5002 0.69 4 5002 57 

3 

1 5020 0.23 

3 

1 5020 73 

2 5002 18.14 2 5002 38 

3 5002 97.66 3 5002 54 

4 5002 140.69 4 5002 64 

5 5002 216.19 5 5002 73 

6 5002 259.91 6 5002 83 

4 

1 5024 0.67 

4 

1 5024 203 

 

2 5002 107 

3 5002 135 

4 5002 168 

5 5002 192 

6 5002 225 

7 5002 219 

8 5002 212 

5  5 

1 5038 304 

2 5002 131 

3 5002 170 

4 5002 205 

5 5002 250 

6 5002 276 

7 5002 282 

8 5002 296 

9 5002 172 

10 5002 265 

The only cases that might not be optimal are 5 machine cases when robot buffer 

capacity is 1. In order to prove optimality of the case the same schedule used for 

process time 100 is applied in Table (5.27). This concludes that cycle time 5038 is in 

fact the optimal solution. 



Table 5.27: Case when m = 5, δ = 2, ε = 1, K = 1, P = 5000 

a 
L1 I5 L5 U2 O2 U4 O4 I2 L2 I4 L4 U3 O3 I3 L3 U1 O1 U5 O5 I1 C 

ta 0 3 14 21 30 35 40 53 58 63 72 75 82 95 102 5005 5016 5020 5022 5035 5038 

m2 4980 4983 4994 5001     0 5 14 17 24 37 44 4947 4958 4961 4964 4977  

m3 4939 4950 4957 4966 4971 4976 4989 4994 4999 5008 5017    0 4903 4914 4917 4920 4933  

m4 4966 4969 4980 4987 4996 5001     0 3 10 23 30 4933 4944 4947 4950 4963  

m5   0 7 16 21 26 39 44 49 58 61 68 81 88 4991 5002 5005    

Ya
+
 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 

 

Ya
-
 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 
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5.4 Effect of Robot Buffer Capacity on Cycle Time 

In this section, effect of robot buffer capacity on the cycle time is portrayed by 

Figure (5.16) and (5.18) for the 2 and 3 machine case with process times 0, 22, 40, 

50 and 100. While the process time of 5000 is shown in Figure (5.17) and (5.19).  

 
Figure 5.16: Robot Buffer Capacity Effect on Cycle Time for 2 Machines 

 
Figure 5.17: Robot Buffer Capacity Effect on Cycle Time for 2 Machines and P = 

5000 
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It can be seen that for all process times reduction in cycle time was seen when robot 

buffer capacity is 2. However, robot buffer capacity above 2 showed no impact on 

cycle time reduction except for the case when process time was 22. 

 
Figure 5.18: Robot Buffer Capacity Effect on Cycle Time for 3 Machines 

 
Figure 5.19: Robot Buffer Capacity Effect on Cycle Time for 3 Machines and P = 

5000 
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It can be seen that for process times 50, 100 and 5000 reduction in cycle time was 

seen when robot buffer capacity is 2. However, robot buffer capacity above 2 showed 

no impact on cycle time reduction. But for process time 0 and 40   reduction in cycle 

time was also seen when robot buffer capacity was 3 and no impact was seen after 

that and this was true except for process time 22 where reduction in cycle time was 

also realized for robot buffer capacity of size 4. 

Effect of robot buffer capacity on the cycle time is portrayed by Figure (5.20) and 

(5.22) for the 4 and 5 machine case with process times 0, 22, 40, 50 and 100. While 

the process time of 5000 is shown in Figure (5.21) and (5.23).  

It can be seen that for 4 machine case process times 100 and 5000 reduction in cycle 

time was seen when robot buffer capacity is 2. However, robot buffer capacity above 

2 showed no impact on cycle time reduction. But for process time 0 and 50   

reduction in cycle time was also seen when robot buffer capacity was 3 and 4 and no 

impact was seen after that and this was true except for process time 22 and 40 where 

reduction in cycle time was also realized for robot buffer capacity of size 5. 

And for 5 machine case when process times were 100 and 5000 reduction in cycle 

time was seen when robot buffer capacity is 2. However, robot buffer capacity above 

2 showed no impact on cycle time reduction. But for process time 22, 40 and 50 

reduction in cycle time was also seen when robot buffer capacity was 3, 4, 5 and 6 

and no impact was seen after that and this was true except for process time 0 where 

reduction in cycle time was realized until buffer capacity of size 5. 

 



 
Figure 5.20: Robot Buffer Capacity Effect on Cycle Time for 4 Machines 
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Figure 5.21: Robot Buffer Capacity Effect on Cycle Time for 4 Machines and P = 5000 
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Figure 5.22: Robot Buffer Capacity Effect on Cycle Time for 5 Machines  
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Figure 5.23: Robot Buffer Capacity Effect on Cycle Time for 5 Machines and P = 5000 
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5.5 Cycle Time is same for Various Process Times 

In this section the impact of process time on the cycle time is discussed and why 

cycle time can be constant for various process times. As an example, we will take the 

optimal schedule found for the 3 machine case with 𝐾 = 1 but with process times 0 

and 22 as shown in Table (5.28) and (5.29). 

The distance matrix dab is not a function of process time and thus the process time 

does not affect the cycle time of a robot unless there is waiting time which causes the 

robot to wait until the machine finishes processing which leads to increase in cycle 

time. It can be seen in the case when process time was 0 and 22 that between loading 

and unloading any of machine 1, 2 or  

3 that by the time the unloading activity was reached processing of the part on that 

machine was finished and thus there was no waiting time and because there was no 

waiting time, the effect of process time was none and the cycle time for both process 

times was equal. 

5.6 Cycle Time Increase with Increase in Process Time  

On the other hand, in the case where process times were 40, 50, 100 and 5000 it was 

seen that there was some waiting time because the cumulative 𝑑𝑎𝑏 plus completion 

time of last activity was less than the process time meaning that the robot had to wait 

until processing was completed and that waiting time was the cause of increase in 

cycle time and these cases are shown in Tables (5.30), (5.31), (5.32) and (5.33). 



Table 5.28: Case when m = 3, δ = 2, ε = 1, K = 1, P = 0 

a 
L1 I2 L2 I3 L3 U1 O1 U2 O2 U3 O3 I1 C 

dab 0 2 + 1 4 + 1 4 + 1 6 + 1 4 + 1 6 + 1 4 + 1 4 + 1 2 + 1 2 + 1 8 + 1 2 +1 

ta 0 3 8 13 20 25 32 37 42 45 48 57 60 

m2   0 5 12 17 24 29      

m3     0 5 12 17 22 25    

 

Table 5.29: Case when m = 3, δ = 2, ε = 1, K = 1, P = 22 

a 
L1 I2 L2 I3 L3 U1 O1 U2 O2 U3 O3 I1 C 

dab 0 2 + 1 4 + 1 4 + 1 6 + 1 4 + 1 6 + 1 4 + 1 4 + 1 2 + 1 2 + 1 8 + 1 2 +1 

ta 0 3 8 13 20 25 32 37 42 45 48 57 60 

m2   0 5 12 17 24 29      

m3     0 5 12 17 22 25    
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Table 5.30: Case when m = 3, δ = 2, ε = 1, K = 1, P = 40 

a 
L1 I3 L3 U2 O2 I2 L2 U1 O1 U3 O3 I1 C 

dab 0 2 + 1 6 + 1 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 6 + 1 2 + 1 2 + 1 8 + 1 2 +1 

wi        6      

ta 0 3 10 13 18 27 32 41 48 51 54 63 66 

m2 34 37 44 47   0 9 16 19 22 31  

m3   0 3 8 17 22 31 38 41    

Table 5.31: Case when m = 3, δ = 2, ε = 1, K = 1, P = 50 

a 
L1 U2 O2 I2 L2 U3 O3 I3 L3 U1 O1 I1 C 

dab 0 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 2 + 1 8 + 1 6 + 1 4 + 1 6 + 1 8 + 1 2 +1 

wi          2    

ta 0 3 8 17 22 25 28 37 44 51 58 67 70 

m2 48 51   0 3 6 15 22 29 36 45  

m3 26 29 34 43 48 51   0 7 14 23  
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Table 5.32: Case when m = 3, δ = 2, ε = 1, K = 1, P = 100 

a 
L1 U3 O3 I3 L3 U2 O2 I2 L2 U1 O1 I1 C 

dab 0 4 + 1 2 + 1 8 + 1 6 + 1 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 6 + 1 8 + 1 2 +1 

wi          52    

ta 0 5 8 17 24 27 32 41 46 101 108 117 120 

m2 74 79 82 91 98 101   0 55 62 71  

m3 96 101   0 3 8 17 22 77 84 93  

Table 5.33: Case when m = 3, δ = 2, ε = 1, K = 1, P = 5000 

a 
L1 U2 O2 I2 L2 U3 O3 I3 L3 U1 O1 I1 C 

dab 0 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 2 + 1 8 + 1 6 + 1 4 + 1 6 + 1 8 + 1 2 +1 

wi          4952    

ta 0 3 8 17 22 25 28 37 44 5001 5008 5017 5020 

m2 4998 5001   0 3 6 15 22 4979 4986 4995  

m3 4976 4979 4984 4993 5001    0 4957 4964 4973  
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5.7 Cycle Time after Robot Buffer Capacity > 1 is Constant for 

Large Process Times 

Another important realization is that as the process time increased the optimal cycle 

time remained constant after robot buffer capacity greater than 1. For example in the 

case when process time is 40 it can be seen that this was true only for the 2 machine 

case and in the case when process time is 50 that was true for both 2 and 3 machine 

case. However, in process time 100 and 5000 this was true for 2, 3, 4 and 5 machine 

cases. So another realization is that with increase in process time the cycle time stays 

constant after robot buffer capacity 1 for increasing number of machines. Table 

(5.34) shows the relation of process time, number of machines and robot buffer 

capacity. 

This is mainly because with increase process time in order to avoid waiting time the 

schedule for all the cases is in such way that the loading and unloading activity of 

any machine is placed further apart and thus the maximum cumulative distance 

matrix + completion time is surpassed which leads to the same cycle time for all 

cases.  

It must be noted that this indicates that with increased process time the impact of the 

robot buffer capacity is negligible. However, it can be seen that there will always be 

a difference between a single gripper and dual gripper robot since a dual gripper 

robot in our study is represented by a single gripper robot with a buffer capacity of 

size 2. 
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Table 5.34: Relation of Process Times, Number of Machines and Robot Buffer 

Capacity 

No. of 

machines 

(m) 

Buffer 

Capacity 

(K) 

Cycle Time (time unit) 

Process 

Time  (40) 

Process 

Time  (50) 

Process 

Time  (100) 

Process 

Time  

(5000) 

2 

1 56 66 116 5016 

2 42 52 102 5002 

3 42 52 102 5002 

4 42 52 102 5002 

3 

1 66 70 120 5020 

2 52 52 102 5002 

3 42 52 102 5002 

4 42 52 102 5002 

5 42 52 102 5002 

6 42 52 102 5002 

4 

1 96 96 124 5024 

2 68 76 102 5002 

3 56 56 102 5002 

4 52 52 102 5002 

5 42 52 102 5002 

6 42 52 102 5002 

7 42 52 102 5002 

8 42 52 102 5002 

5 

1 140 140 142 5038 

2 92 92 120 5002 

3 72 82 102 5002 

4 68 68 102 5002 

5 60 64 102 5002 

6 48 52 102 5002 

7 44 52 102 5002 

8 44 52 102 5002 

9 44 52 102 5002 

10 44 52 102 5002 

 

5.8 Waiting Time is considered for One Machine 

In this section it can be shown that if waiting time is considered for one machine than 

no other machine will have waiting time as long as all the loading activities of other 

machines come before the unloading activity of the machine with waiting time. As 

an example the case with 2 and 3 machines for process time 50 and 100 and robot 

buffer capacity 2 are shown in Tables (5.35), (5.36), (5.37) and (5.38) 
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Table 5.35: Case when m = 2, δ = 2, ε = 1, K = 2, P = 50 

Activity 

(a) 

L1 I1 O1 U2 L2 I2 O2 U1 C 

dab 0 2 + 1 6 + 1 2 + 1 1 4 + 1 6 + 1 2 + 1 1 

wi        22  

ta 0 3 10 13 14 19 26 51 52 

m2 38 41 48 51 0 5 12 37  

 

Table 5.36: Case when m = 2, δ = 2, ε = 1, K = 2, P = 100 

Activity 

(a) 

L1 O1 I1 U2 L2 O2 I2 U1 C 

dab 0 4 + 1 6 + 1 4 + 1 1  2 + 1 6 + 1 2 + 1 1 

wi        70  

ta 0 5 12 17 18 21 28 101 102 

m2 84 89 96 101 0 3 10 83  

 

Thus, it can be seen that since the waiting time was considered during unloading of 

machine 1 and all the loading of activities were before the unloading activity of 

machine 1 then the waiting time is considered only once. 

On the other hand, if waiting time was considered for a machine and some of the 

loading activities of other machines came after it may be noticed that waiting time 

could be considered twice. 

From these optimal schedules we can also note that with increasing process time the 

waiting time is increased which in turn leads to increased cycle time 



Table 5.37: Case when m = 3, δ = 2, ε = 1, K = 2, P = 50 

a 
L1 I2 O3 U2 L2 I3 O2 U3 L3 O1 I1 U1 C 

dab 0 2 + 1 8 + 1 4 + 1 1 4 + 1 8 + 1 2 + 1 1 2 + 1 8 + 1 2 + 1 1 

wi              

ta 0 3 12 17 18 23 32 35 36 39 48 51 52 

m2 34 37 46 51 0 5 14 17 18 21 30 33  

m3 16 19 28 33 34 39 48 51 0 3 12 15  

Table 5.38: Case when m = 3, δ = 2, ε = 1, K = 2, P = 100 

a 
L1 O3 I3 U2 L2 I1 O2 U3 L3 O1 I2 U1 C 

dab 0 6 + 1 8 + 1 4 + 1 1 4 + 1 8 + 1 2 + 1 1 2 + 1 8 + 1 2 + 1 1 

wi            46  

ta 0 7 16 21 22 27 36 39 40 43 52 101 102 

m2 80 87 96 101 0 5 14 17 18 21 30 79  

m3 62 69 78 83 84 89 98 101 0 3 12 61  
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The Gantt chart for the 3 machine case with process time 50 and robot buffer 

capacity of size 2 is shown in Figure (5.24). In this chart it can be seen that the 

processing of a part for each machine was 50 time units with 2 time units’ idle time 

with no part on it. And in this case unloading activity of a machine is followed by 

loading activity and thus there is no travel time just pick up or leaving time for a part 

since the robot buffer can hold 2 parts reduction in cycle time was realized.  

These charts indicate that the processing of a part does not go through all machines 

and that is because those machines are in different stages thus it is a parallel machine 

flowshop with one machine in each stage. 

 

 

 

 

 

 

 

 



 
Figure 5.24: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 
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Chapter 6 

CONCLUSION AND FUTURE RECOMMENDATIONS 

The main objective of this study was to analyze how increase in robot buffer capacity 

impacted the cycle time by scheduling the robot moves in a manner by which the 

cycle time was minimized for a flexible robotic cell with a single self-buffered robot 

and single gripper for an m machine case in an inline layout where identical parts are 

produced and 1-unit is produced in each cycle.  

The contribution of the study was twofold. The first contribution was formulating a 

general scheduling model for an m machine case for the self-buffered robot which 

has not been implemented before and the second contribution was comparing the 

optimal cycle time found by the mixed integer programming model to that found by 

the simulated annealing algorithm for the same problem. 

6.1 Conclusions  

1. Simulated Annealing algorithm produced optimal solutions 94% of the time 

when compared to the optimal solutions found by the MIP model since out of 

a total of 168 runs made, optimality was not guaranteed for only 10 of those 

cases. 

2. Solution time was reduced while applying the SA algorithm since the time 

taken to find the solution was much less when compared to the time taken by 

the MIP model. 
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3. SA algorithm can be applied in future studies since even though optimality is 

not guaranteed, it can be found more often than not. 

4. Robot buffer capacity does reduce the cycle time which indicates that the 

performance of the system can be further improved and this is an advantage 

that can be used by production managers in several industries. 

5. Effect of robot buffer capacity diminishes with increase in process time since 

cycle time remains constant after robot buffer capacity more than 1. This is 

due to the fact that minimum cycle time is reached earlier with larger process 

times. 

6. Since there was always a change realized in cycle time between robot buffer 

capacity 1 and 2 that means there will always be significant difference 

between a single and dual gripper robot if we consider a dual gripper robot to 

represent a single self-buffered robot with robot buffer capacity of size 2. 

7. Increase in process time leads to increase in waiting time which in turn leads 

to increase in cycle time. However, this is not always true since sometimes 

the waiting time is less with increased process time even though cycle time is 

increased and that is because the optimal schedule differs with different 

process time and the effect of those schedules is also taken into account. 

8. Cycle time is same for various process times when the difference between 

process times is small and process time has no effect on cycle time 

calculation. 

9. Waiting time is only considered for one machine if and only if all the loading 

activities of other machines come before the unloading activity of the 

machine with waiting time. 
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6.2 Future Recommendations 

1. Robotic cell with a self-buffered single gripper robot and a circular layout 

since this study and the previous study that included self-buffered robot 

proposed employing an inline layout. So impact of the circular layout on the 

performance of the FMS system with a self-buffered robot can be studied. 

2. Robotic cell with a self-buffered dual arm robot. The study that previously 

included a self-buffered robot did a comparison between single gripper self-

buffered robot and a bufferless dual gripper robot. However, comparison to a 

dual arm self-buffered robot was not employed. 

3. Comparison of inline and circular layout for a self-buffered single gripper 

robot. To study whether the performance of an FMS system with a self-

buffered robot is further improved for a system with a circular layout. 

4. Proof of generalized cyclic schedules that lead to optimal solutions for self-

buffered single gripper robot. Because if generalized schedules were created 

than optimality of an m machine case can be easily proved for solutions 

found by the simulated annealing algorithm. 

5. Proof of single waiting time for self-buffered single gripper robot. The 

question here will be if all the loading activities of machines come after the 

unloading activity of the machine with waiting time is it in fact true that 

waiting time will only be considered once? 
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Appendix A: Simulated Annealing Solution Time Convergence 

Graphs for Case when δ = 2, ε = 1, P = 0, P = 22, P = 40, P = 50 and 

P = 100 

 
Figure A.1: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 1 

 
Figure A.2: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 2 
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Figure A.3: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 3 

 
Figure A.4: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 4 
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Figure A.5: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 1 

 
Figure A.6: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 2 
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Figure A.7: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 3 

 

 
Figure A.8: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 4 
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Figure A.9: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 5 

 

 
Figure A.10: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 6 

 

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

C
yc

le
 t

im
e

 

Solution Time 

Cycle Time 

P = 0

P = 22

P = 40

P = 50

P = 100

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

C
yc

le
 t

im
e

 

Solution Time 

Cycle Time 

P = 0

P = 22

P = 40

P = 50

P = 100



134 

 

 
Figure A.11: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 1 

 

 
Figure A.12: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 2 
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Figure A.13: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 3 

 

 
Figure A.14: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 4 
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Figure A.15: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 5 

 

 
Figure A.16: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 6 
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Figure A.17: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 7 

 

 
Figure A.18: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 8 
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Figure A.19: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 1 

 

 
Figure A.20: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 2 
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Figure A.21: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 3 

 

 
Figure A.22: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 4 
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Figure A.23: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 5 

 

 
Figure A.24: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 6 
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Figure A.25: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 7 

 

 
Figure A.26: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 8 
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Figure A.27: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 9 

 

 
Figure A.28: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 10 
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Appendix B: Simulated Annealing Solution Time Convergence 

Graphs for Case when δ = 2, ε = 1, P = 5000 

 
Figure B.1: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 1 

 

 
Figure B.2: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 2 
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Figure B.3: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 3 

 

 
Figure B.4: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 4 
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Figure B.5: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 1 

 

 
Figure B.6: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 2 
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Figure B.7: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 3 

 

 
Figure B.8: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 4 
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Figure B.9: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 5 

 

 
Figure B.10: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 6 
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Figure B.11: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 1 

 

 
Figure B.12: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 2 
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Figure B.13: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 3 

 

 
Figure B.14: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 4 
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Figure B.15: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 5 

 

 

 
Figure B.16: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 6 
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Figure B.17: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 7 

 

 
Figure B.18: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 8 
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Figure B.19: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 1 

 

 
Figure B.20: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 2 
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Figure B.21: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 3 

 

 
Figure B.22: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 4 
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Figure B.23: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 5 

 

 
Figure B.24: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 6 
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Figure B.25: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 7 

 

 
Figure B.26: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 8 
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Figure B.27: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 9 

 

 
Figure B.28: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 10 
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