
Cyclic Scheduling Problem of a Flexible Robotic

Cell with a Self-Buffered Robot

Fatma Mohamed Ali Al-Hindwan

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Industrial Engineering

Eastern Mediterranean University
July 2018

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Assoc. Prof. Dr. Ali Hakan Ulusoy

Acting Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science in Industrial Engineering.

Assoc. Prof. Dr. Gökhan İzbirak

 Chair, Department of Industrial

Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Industrial

Engineering.

Asst. Prof. Dr. Hüseyin Güden

Supervisor

Examining Committee

1. Asst. Prof. Dr. Elif Binboğa

2. Asst. Prof. Dr. Sahand Daneshvar

3. Asst. Prof. Dr. Hüseyin Güden

iii

ABSTRACT

Extensive usage of automatic processing in industries has created Flexible

Manufacturing Systems (FMSs). In a robotic FMS there are some Computer

Numerical Control (CNC) machines for processing the parts, there is an input buffer

for keeping unprocessed parts and an output buffer for finished parts, and at least one

robot for transporting the parts in the system and loading/unloading the machines,

and a central computer controlling the system. Such systems provide advantage in

flexibility and standardization in production systems and they have been employed in

recent years in order to keep up with the market competition. In order to use the

system efficiently the system should be scheduled carefully. In this content, the order

of the robot actions such as robot movements and loading/unloading activities should

be determined for maximizing the system’s efficiency. When the system repeats a

cycle in its run maximizing the efficiency is equivalent to minimizing the cycle time.

This thesis considers a robotic FMS in which there is a single self-buffered robot

which has the ability to carry more than one part at a time in an inline robotic cell

where parts produced are identical. The system repeats a cycle in its long run. The

problem is to determine the schedule of the system for minimizing the cycle time. A

Mixed Integer Programming (MIP) model of the problem is developed to find the

optimal solutions. Since the developed MIP model could not solve the large size

problems a Simulated Annealing meta-heuristic algorithm is developed to solve

those problems. Performances of the proposed methods and considered robotic FMS

cells are evaluated on several numerical instances. Numerically, it has been shown

that the performances of the proposed methods are satisfactory and the performance

iv

of the robotic FMS increases significantly by using a self-buffered robot up to some

robot buffer capacity. After a point more robot buffer capacity becomes useless.

Keywords: Flexible Manufacturing Systems, Cyclic Robotic FMS Scheduling, Self-

Buffered Robot.

v

ÖZ

Sanayide otomasyona dayalı üretimin geniş şekilde kullanımı Esnek Üretim

Sistemleri’ni (EÜSleri’ni) ortaya çıkarmıştır. Robotlu bir EÜS’de parçaları işlemek

için CNC makineler, işlenmemiş parçaları tutmak için bir stok alanı, bitmiş parçalar

için bir stok alanı, parçaları sistemde taşımak ve makineleri yüklemek/boşaltmak için

en az bir robot ve sistemi kontrol eden bir merkezi bilgisayar vardır. Böyle sistemler

esneklik ve standartlaşma konularında avantaj sağlamaktadır ve son yıllarda rekabet

edebilmek için tercih edilmektedirler. Sistemin verimli bir şekilde kullanılabilmesi

için dikkatlice çizelgelenmesi gerekmektedir. Bu kapsamda, robot hareketi ve

yükleme/boşaltma gibi robot faaliyetleri sistem verimliliğini en büyükleyecek şekilde

belirlenmelidir. Sistem çalışırken bir döngüyü tekrarlıyor ise döngü süresinin en

küçüklenmesi sistem verimliliğinin en büyüklenmesiyle aynıdır.

Bu tezde, birden fazla parçayı aynı anda taşıyabilecek kendi stok alanına sahip bir

robotun bulunduğu ve parçaların özdeş olduğu bir robotlu EÜS ele alınmıştır. Sistem

uzun süreli çalışmasında bir döngüyü tekrarlar. Problem, döngü süresini en

küçükleyecek sistem çizelgesinin bulunmasıdır. En iyi çözümleri bulmak üzere

problemin Karışık Tamsayılı Programlama (KTP) modeli geliştirilmiştir. Geliştirilen

KTP modeli büyük boyutlu problemleri çözemediği için bu problemleri çözmek

amacı ile Tavlama Benzetimi modern-sezgisel algoritması geliştirilmiştir. Geliştirilen

yöntemlerin ve ele alınan EÜS hücresinin performansları çeşitli sayısal problemler

üzerinden değerlendirilmiştir. Önerilen yöntemlerin memnun edici bir performansa

sahip oldukları ve ele alınan robotlu EÜS’nin performansının kendi stok alanı olan

robot kullanılarak belli bir stok kapasitesine kadar önemli derecede arttığı sayısal

vi

olarak gösterilmiştir. Belli bir noktadan sonra daha fazla robot stok alanının olması

faydasızdır.

Anahtar Kelimeler: Esnek Üretim Sistemleri, Döngülü Robotlu EÜS Çizelgeleme,

Kendinden Stok Alanlı Robot.

vii

DEDICATION

I dedicate this thesis to my late father who had a dream one day that I was on top of

the mountains and he told me to him that meant that someday I will reach great

heights to achieve my countless dreams. He was the reason I never gave up to

become at the top of everything I ever work on.

viii

ACKNOWLEDGMENT

I would like to extend my gratefulness and indebtedness to my Supervisor Assist.

Prof. Dr. Hüseyin Güden who has continuously shared his wisdom and knowledge

which has indefinite description and for guiding, advising and directing me through

what has been only what I can describe as an interesting journey through my thesis.

He saw the ability in my performance from the beginning of my Master journey and

he gave me the motivation to put in as much effort as required to make an outcome

that I can be proud of. Most of all, I would like to thank him for always encouraging

me by making me believe that someday I would become a successful academic.

I would also like to thank all my Professors who have taught me during my Master

Degree. Assoc. Prof. Dr. Gökhan İzbirak for teaching us to think outside the box so

that we can be productive engineers. Assoc. Prof. Dr. Adham Mackieh for showing

us the importance of how hypothesizing any factors can lead to a definite conclusion.

Prof. Dr. Bela Vizvari for pointing out that even though we are mathematicians we

should remember simplification is always better. And Assist. Prof. Dr. Sahand

Daneshvar for making our exams hard enough so that we learn to work as hard as we

can.

My special gratitude also goes to two of my great friends, Tareq Babaqi and Katriye

Dalcı for being always supportive and helpful during the period of my Masters by

providing me with encouraging environment. Lastly, I would like to thank my family

because without them I would have never had the pleasure of writing this

acknowledgment to being with.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

1 INTRODUCTION .. 1

1.1 Motivation .. 6

2 LITERATURE REVIEW ... 7

2.1 Robots with Single Gripper ... 9

2.2 Robots with Dual Gripper .. 16

2.3 Robots with either Single or Dual Gripper .. 18

2.4 Robots with Dual Arm ... 19

2.5 Robots with Swap Ability .. 19

2.6 Robots with Output Buffer at Each Machine ... 20

2.8 Robots with Input and Output Buffer at Each Machine 21

2.9 Robot with Buffer Capacity ... 22

3 PROBLEM DEFINITON ... 23

3.1 Notations and Definitions .. 23

3.2 Distance Matrix Derivation.. 25

3.3 Process Time .. 33

4 METHODOLOGY ... 35

4.1 Mixed Integer Programming Model .. 35

x

4.2 Software Used to Solve the Model .. 45

4.3 Cycle and Variables Representation .. 46

4.4 Simulated Annealing Algorithm .. 48

4.4.1 Creating the Initial Current Order ... 49

4.4.2 Defining x Variables and Setting Best Order.. 51

4.4.3 Starting the Iteration Loop .. 52

4.4.4 Strategy Used for New Solution ... 52

4.4.5 Condition for Finding a Better Solution ... 56

5 RESULTS AND DISCUSSION ... 58

5.1 Cycle Time Calculation ... 58

2.2 Cycle Time for Robot Buffer Capacity > m and ≤ 2m 64

5.3 Comparison between MIP Model and SA Algorithm Results 67

5.3.1 Case 1: δ = 2, ε = 1, P = 0 ... 68

5.3.2 Case 2: δ = 2, ε = 1, P = 22 ... 76

5.3.3 Case 3: δ = 2, ε = 1, P = 40 ... 85

5.3.4 Case 4: δ = 2, ε = 1, P = 50 ... 90

5.3.5 Case 5: δ = 2, ε = 1, P = 100 ... 92

5.3.6 Case 6: δ = 2, ε = 1, P = 5000 ... 97

5.4 Effect of Robot Buffer Capacity on Cycle Time ... 101

5.5 Cycle Time is same for Various Process Times .. 108

5.6 Cycle Time Increase with Increase in Process Time 108

5.7 Cycle Time after Robot Buffer Capacity > 1 is Constant for Large Process

Times.. 112

5.8 Waiting Time is considered for One Machine ... 113

6 CONCLUSION AND FUTURE RECOMMENDATIONS 118

xi

6.1 Conclusions .. 118

6.2 Future Recommendations .. 120

REFERENCES .. 121

APPENDICES ... 128

Appendix A: Simulated Annealing Solution Time Convergence Graphs for Case

when δ = 2, ε = 1, P = 0, P = 22, P = 40, P = 50 and P = 100 129

Appendix B: Simulated Annealing Solution Time Convergence Graphs for Case

when δ = 2, ε = 1, P = 5000 ... 143

xii

LIST OF TABLES

Table 2.1: Literature Survey Table .. 8

Table 4.1: Representation of Constraint (4.2) and (4.3) .. 38

Table 5.1: Case when m = 2, δ = 2, ε = 1, K = 1, P = 22 ... 58

Table 5.2: Describing Completion Time Calculation for Case when m = 2, δ = 2, ε =

1, K = 1, P = 22 .. 60

Table 5.3: Case when m = 2, δ = 2, ε = 1, K = 2, P = 22 ... 63

Table 5.4: Case when m = 2, δ = 2, ε = 1, K = 3, P = 22 ... 65

Table 5.5: Case when m = 2, δ = 2, ε = 1, K = 4, P = 22 ... 66

Table 5.6: Case when δ = 2, ε = 1, P = 0 ... 68

Table 5.7: Case when m = 4, δ = 2, ε = 1, K = 2, P = 0 ... 71

Table 5.8: Case when m = 4, δ = 2, ε = 1, K = 3, P = 0 ... 71

Table 5.9: Case when m = 4, δ = 2, ε = 1, K = 4, P = 0 ... 73

Table 5.10: Case when m = 5, δ = 2, ε = 1, K = 1, P = 0 ... 73

Table 5.11: Case when m = 5, δ = 2, ε = 1, K = 2, P = 0 ... 74

Table 5.12: Case when m = 5, δ = 2, ε = 1, K = 3, P = 0 ... 74

Table 5.13: Case when m = 5, δ = 2, ε = 1, K = 4, P = 0 ... 75

Table 5.14: Case when m = 5, δ = 2, ε = 1, K = 5, P = 0 ... 75

Table 5.15: Case when δ = 2, ε = 1, P = 22 ... 76

Table 5.16: Case when m = 4, δ = 2, ε = 1, K = 2, P = 22 ... 79

Table 5.17: Case when m = 4, δ = 2, ε = 1, K = 4, P = 22 ... 82

Table 5.18: Case when m = 5, δ = 2, ε = 1, K = 3, P = 22 ... 83

Table 5.19: Case when m = 5, δ = 2, ε = 1, K = 5, P = 22 ... 84

Table 5.20: Case when δ = 2, ε = 1, P = 40 ... 86

xiii

Table 5.21: Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 ... 88

Table 5.22: Case when δ = 2, ε = 1, P = 50 ... 91

Table 5.23: Case when δ = 2, ε = 1, K = 2, P = 100 .. 94

Table 5.24: Case when m = 5, δ = 2, ε = 1, K = 1, P = 100 95

Table 5.25: Case when m = 5, δ = 2, ε = 1, K = 2, P = 100 96

Table 5.26: Case when δ = 2, ε = 1, P = 5000 ... 99

Table 5.27: Case when m = 5, δ = 2, ε = 1, K = 1, P = 5000 100

Table 5.28: Case when m = 3, δ = 2, ε = 1, K = 1, P = 0 ... 109

Table 5.29: Case when m = 3, δ = 2, ε = 1, K = 1, P = 22 109

Table 5.30: Case when m = 3, δ = 2, ε = 1, K = 1, P = 40 110

Table 5.31: Case when m = 3, δ = 2, ε = 1, K = 1, P = 50 110

Table 5.32: Case when m = 3, δ = 2, ε = 1, K = 1, P = 100 111

Table 5.33: Case when m = 3, δ = 2, ε = 1, K = 1, P = 5000 111

Table 5.34: Relation of Process Times, Number of Machines and Robot Buffer

Capacity ... 113

Table 5.35: Case when m = 2, δ = 2, ε = 1, K = 2, P = 50 114

Table 5.36: Case when m = 2, δ = 2, ε = 1, K = 2, P = 100 114

Table 5.37: Case when m = 3, δ = 2, ε = 1, K = 2, P = 50 115

Table 5.38: Case when m = 3, δ = 2, ε = 1, K = 2, P = 100 115

xiv

LIST OF FIGURES

Figure 1.1: Inline Robotic Cell with a Self-Buffered Robot .. 5

Figure 3.1: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {Lj, Uj} 25

Figure 3.2: Example when Activity a ϵ {L1} and Activity b ϵ {L2} 26

Figure 3.3 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {I} 27

Figure 3.3 b: Case when Activity a ϵ {I} and Activity b ϵ {Li, Ui} 27

Figure 3.4: Example when Activity a ϵ {L2} and Activity b ϵ {I} 28

Figure 3.5 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {O} 29

Figure 3.5 b: Case when Activity a ϵ {O} and Activity b ϵ {Li, Ui} 29

Figure 3.6: Example when Activity a ϵ {Li, Ui} and Activity b ϵ {O} 30

Figure 3.7 a: Case when Activity a ϵ {I} and Activity b ϵ {O} 31

Figure 3.7 b: Case when Activity a ϵ {O} and Activity b ϵ {I} 31

Figure 3.8: Example when Activity a ϵ {I} and Activity b ϵ {O} 32

Figure 3.9: Case when Activity a, b ϵ {I} .. 32

Figure 3.10: Case when Activity a, b ϵ {O} .. 33

Figure 4.1: Representation of Constraint (4.4) by an Example of Case 1 39

Figure 4.2: Representation of Constraint (4.6) by an Example of Case 1 41

Figure 4.3: Representation of Constraint (4.7) .. 41

Figure 4.4: Representation of Constraint (4.8) .. 42

Figure 4.5: Solution Page for 2 Machine Case with K = 1, P = 22............................ 47

Figure 4.6: Representation of a Cycle for a 2 Machine Case 48

Figure 4.7: Creating Initial Current Order ... 49

Figure 4.8: Initial Current Order Created for 2 Machine Case 50

xv

Figure 4.9: Initial Current Order for 2 Machine Case Represented by Activities and

Machines .. 50

Figure 4.10: General Initial Current Order .. 51

Figure 4.11: General Initial Current Order Represented by Activities L, U, I and O.51

Figure 4.12: Setting x Variables to Lower Bound 1 .. 51

Figure 4.13: Swapping Strategy for New Solution to be generated........................... 53

Figure 4.14: Swapping Strategy to Generate New Solution 54

Figure 4.15: Swapping Strategy for Robot Buffer Capacity 1 54

Figure 4.16: New Orders generated for 2 Machines with K = 1 55

Figure 5.1: Gantt Chart for Case when m = 2, δ = 2, ε = 1, K = 1, P = 22 62

Figure 5.2: Comparison between MIP and SA Cycle Time for 2 Machines with P = 0

 .. 69

Figure 5.3: Comparison between MIP and SA Cycle Time for 3 Machines with P = 0

 .. 69

Figure 5.4: Comparison between MIP and SA Cycle Time for 2 Machines with P =

22 .. 77

Figure 5.5: Comparison between MIP and SA Cycle Time for 3 Machines with P =

22 .. 77

Figure 5.6: Gantt Chart for Case when m = 4, δ = 2, ε = 1, K = 2, P = 22 81

Figure 5.7: Comparison between MIP and SA Cycle Time for 2 Machines with P =

40 .. 85

Figure 5.8: Comparison between MIP and SA Cycle Time for 3 Machines with P =

40 .. 85

Figure 5.9: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 89

xvi

Figure 5.10: Comparison between MIP and SA Cycle Time for 2 Machines with P =

50 .. 90

Figure 5.11: Comparison between MIP and SA Cycle Time for 3 Machines with P =

50 .. 90

Figure 5.12: Comparison between MIP and SA Cycle Time for 2 Machines with P =

100 .. 92

Figure 5.13: Comparison between MIP and SA Cycle Time for 3 Machines with P =

100 .. 93

Figure 5.14: Comparison between MIP and SA Cycle Time for 2 Machines with P =

5000 .. 97

Figure 5.15: Comparison between MIP and SA Cycle Time for 3 Machines with P =

5000 .. 98

Figure 5.16: Robot Buffer Capacity Effect on Cycle Time for 2 Machines 101

Figure 5.17: Robot Buffer Capacity Effect on Cycle Time for 2 Machines and P =

5000 .. 101

Figure 5.18: Robot Buffer Capacity Effect on Cycle Time for 3 Machines 102

Figure 5.19: Robot Buffer Capacity Effect on Cycle Time for 3 Machines and P =

5000 .. 102

Figure 5.20: Robot Buffer Capacity Effect on Cycle Time for 4 Machines 104

Figure 5.21: Robot Buffer Capacity Effect on Cycle Time for 4 Machines and P =

5000 .. 105

Figure 5.22: Robot Buffer Capacity Effect on Cycle Time for 5 Machines 106

Figure 5.23: Robot Buffer Capacity Effect on Cycle Time for 5 Machines and P =

5000 .. 107

Figure 5.24: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40 117

1

Chapter 1

INTRODUCTION

A flexible manufacturing system has been widely used over the years because it has

the ability to adapt to changes in the process of production without causing any

delays and thus increasing the efficiency while processing products at a faster pace.

Machine and routing flexibility are the two types offered by a flexible manufacturing

system for the production process to be improved. When a new product type is

created the system changes to adjust itself and this refers to machine flexibility.

While the performance of the same set of operations by all the machines are referred

to as routing flexibility.

Extensive scheduling and designing of the system is required which makes it

complicated and thus only skilled workers can run such systems in industries which

lead to high cost and this poses as a disadvantage of a flexible manufacturing system.

However, defective products are prevented because of the ability of the system to

adapt to changes in the product and thus the cost is reduced in the long run.

The increase in flexibility which in turn increases the profit of an industrialized

company that operates a production line automatically by implementing modern

technology such as flexible manufacturing systems that are made up of robots are

known as flexible manufacturing robotic cells.

2

Since most industries strive in the market competition, they have chosen to use

flexible robotic cells for higher production and greater efficiency and some of these

industries include: aerospace, automotive, metal conductors and machinery. Some

real examples of where FMS are applied include the Ingersoll-Rand Corporation for

the hoist division in Virginia, USA. They built a parallel track cell with drill

machines and machining centers on either sides of the track and a roller conveyor to

transport processed parts. Aluminum and cast iron castings are the unfinished parts

that enter the production line and finally motor cases are the finished products. Other

industries include the Vought Aerospace in Dallas, USA where the FMS is made up

of CNC machines that produce different components of aircrafts and Allen-Bradley

Company that has 26 workstation cells to produce motor starters and many more.

Generally, a robotic cell consists of input and output buffers at the beginning and end

of a production line so that unfinished parts can be stored at the input buffer and

finished products are stored at the output buffer. Then between those buffers there

are m machines that process the parts and these are CNC machines which are

computer controlled. A single robot or in some cases multiple robots are responsible

for handling the parts and transporting them between the machines and from or to the

input and output buffer and also for loading and unloading operations.

There are two types of commonly used robotic cell environments which is either

flowshop or jobshop. A flowshop robotic cell means that a part has to go through all

the machines for processing in the same sequence. However, a jobshop robotic cell

has machines that perform the same set of operations so a job can be processed by

any of the machines. Other characteristics of a robotic cell include the number of

robots used which is either single or multiple. Usually, when multiple robots are used

3

there should more than one track for them to move because a single track means that

there will be collision between robots. Therefore studies proposing collision free

robotic cells with multiple robots have been considered.

During the start of robotic cell studies the most common robot type was a single

gripper robot which means the robot only had the ability to handle one part at a time.

Later on, studies proposed a dual gripper which can handle two parts at once. So for

example, a robot will pick up an unfinished part from the input buffer and then move

to a machine that finished processing a part rotates the wrist to pick up the finished

part and then rotates again to load the machine with the unfinished part. Another type

that has not been studied extensively is the dual arm robot which differs from a dual

gripper robot since it can place the arms at two successive machines consequently

rather than working on the same machine at a time. Other types of robots include

swap able robots and multifunction robots with hybrid grippers.

Layout of a production line is either inline or circular which from its name indicates

that the machines are placed in series in an inline layout. Circular layout is usually

seen to be more efficient because the robot has the ability to move clockwise or

anticlockwise thus decreasing the travel time. When the travel time is |𝑖 − 𝑗|𝛿

between two consecutive machines then it is known as additive travel time for

0 ≤ 𝑖, 𝑗 ≤ 𝑚 + 1. However, most studies consider a constant travel time δ between

any pair of machines. And finally there is Euclidean travel time 𝛿𝑖𝑗 which must

satisfy three properties and one of them is the triangle inequality𝛿𝑖𝑗 + 𝛿𝑗𝑘 ≥ 𝛿𝑖𝑘.

When the robot travels between machines it can either pick up a part as soon as it

finishes processing which defines the no wait constraint or it can leave the part on the

4

machine for an undefined amount of time which is referred to as the free pickup

criteria. Sometimes the part can stay on the machine for an interval and that is known

as the interval pickup criteria.

The processing of parts is repeated in a similar sequence and the movement of the

robot is fixed to repeat the sequence which represents a cycle. Parts processed may

either be identical or non-identical. In one cycle when one part is processed the

strategy of production is called 1-unit. If two parts are processed in a cycle then it is

a 2 unit cycle and so on. In a cycle a set of operations are performed which is

repeated in the same sequence in the next cycle. Cycle time is the duration of one

cycle and the aim of most studies is to schedule the order of robot moves in a manner

that reduces cycle time which in turn meets the common objective of maximizing

throughput. Such a problem is an optimization problem.

In this study the main contribution is to study self-buffered robots which means the

robot has a buffer that can store any amount of parts. For example, if the robot buffer

capacity is 2 it means the robot can store one part and handle one part. Figure (1.1)

shows an example of a self-buffered robot with the ability to handle 2 parts. The

main problem is minimizing cycle time by scheduling robot moves for a robotic cell

with a self-buffered robot.

5

Figure 1.1: Inline Robotic Cell with a Self-Buffered Robot

The study is considered for 2, 3, 4 and 5 machines case where the CNC machines are

identical in a parallel machine flowshop environment with one machine in each stage

and an inline layout with a single robot that has a single gripper and the parts

produced are identical and the robot travel time is additive which means the travel

time between any two machines is|𝑖 − 𝑗|𝛿 . In one cycle only one part is processed

by each machine indicating it is a 1 unit cycle and the criterion of pick up is free.

Any scheduling problem is classified in terms of α|β|γ where α refers to machine

environment 𝛼 = 𝑅𝑚,𝑟
𝑔,𝑙 (𝑚1, … ,𝑚𝑚) where R defines the environment, g defines

robot type, l defines layout, m defines number of stages, r defines number of robots

and (𝑚1, … ,𝑚𝑚) indicates how many machines are there in one stage. The

processing characteristics β = (pickup criteria, travel time metric, part type,

production strategy) and the objective function is γ. Our scheduling problem will be

classified as follows:

𝑅𝐹𝑚,1
1,|_|(𝑚1)|(𝑓𝑟𝑒𝑒, 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒, 𝐶𝑦𝑐𝑙𝑖𝑐 − 1)|𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒

6

Initially, an MIP model for the problem is created and used to find exact solutions for

2 and 3 machines case. However, since solution time is extremely long for robotic

cells with 4 machines or more, a heuristic approach is used by applying the simulated

annealing algorithm and then comparison between exact and heuristic approach is

analyzed.

 This study will be classified into the following: Chapter 2 will include a literature

review of all common studies, Chapter 3 will include problem definition, Chapter 4

compromises methodology, Chapter 5 includes the results and discusses the relative

meaning of the results found and finally Chapter 6 concludes the study.

1.1 Motivation

Flexible Manufacturing Cells as seen are employed by several industries and the

efficiency of the FMC system depends entirely on the schedule of the system.

Finding the most efficient schedule for such an FMC system is an important factor to

most industries. Because of its importance there is a huge literature studying this

optimization. However, studies mainly focus on robots of different types and a major

gap was realized concerning a self-buffered robot. Currently only one study has

considered a self-buffered robot in such systems which may increase the

performance of the FMC significantly.

7

Chapter 2

LITERATURE REVIEW

In this study, we consider a flexible robotic cell with m machines that are served by a

single robot with a single gripper that has a buffer capacity and thus the ability to

store finished or unfinished parts along with handling one part when the capacity of

the buffer is more than one. The layout of the cell is inline and has one input buffer

that stores unfinished products and one output buffer that stores finished products.

The travel time of the robot between the machines or between the input buffer and a

machine or between the machine and an output buffer is additive and a product can

stay on the machine for any amount of time corresponding to the free pickup criteria.

Parts produced are identical and only one unit is processed in a cycle. The objective

is to minimize cycle time by scheduling robot moves and the main focus of the study

is to show how the robot buffer capacity can reduce cycle time compared to single

gripper robots with no buffer capacity. An MIP model of the problem was created

and was used to solve the problem for an exact solution. However, large problems

were solved by applying the simulated annealing heuristic algorithm.

Since this study considered a production environment that is flowshop and when

there is only a single robot, all the literature that will be reviewed in this following

chapter will contain articles that considered the same environment and number of

robots. Differences will be seen among the robot type and whether it is single

gripper, dual gripper, dual arm, and robot with swap ability and whether there are

8

machine or robot buffers considered since the main focus of this study has to do with

the type of robot and whether applying a buffer capacity will have an impact on the

cycle time. Table (2.1) shows all the articles that were surveyed.

Table 2.1: Literature Survey Table

Article

No.

No. of

Machines

Type

of

Robot

Layout
Pickup

Criteria

Travel

Time

Metric

Part

Types

Prod.

Strategy

Buffer

space

Solution

Method

1
M

machines
Single

Circular,

Inline
Blocking Constant Identical 1 unit

TSP,

Polynomial

2
M

machines
Single Circular Blocking Constant Identical 1 unit

NP complete
proof

3
2, 3

machines
Single Mobile Constant

Multiple,

Identical
MPS

Algorithm

solved by
GAMS

4
M

machines
Single No wait Additive Identical 1 unit Polynomial

5
3

machines
Single Mobile Constant Multiple MPS

Unary NP
complete

proof

6
M

machines
Single Mobile Free Additive Multiple MPS Polynomial

7
3

machines
Single Inline Blocking Constant Identical 1 unit

Proof of

Sethi et al.

conjecture

8
3

machines
Single Inline Additive Multiple MPS

Heuristic
approach

9
3

machines
Single Circular No wait Additive Multiple 1 unit Polynomial

10
2, 3

machines
Single Circular No wait Additive

Multiple,

Identical

1 unit,

2 unit
 Polynomial

11
2, 3

machines
Single Circular No wait Additive Identical

1 unit,

2 unit

Pyramidal

permutation

12
M

machines
Dual Circular Additive Identical 1 unit Permutation

13
M

machines
Single Circular No wait

Symmetric,

Additive,

General

Identical 1 unit
TSP, NP
hardness

14
5 and M

machines
Single Inline No wait Additive Identical K unit

Lower bound

method

15
2

machines
Dual Circular Constant Multiple MPS

Heuristic

approach

16
2 and M

machines
Dual Circular No wait Additive Multiple MPS

Gilmore

Gomory,

Polynomial

17
M

machines
Single Circular Blocking

Additive,
Constant,

Euclidean

Identical K unit Polynomial

18
2

machines
Single Inline No wait Constant Identical

1 unit,
2 unit

Sensitivity

analysis

19
M

machines
Dual Circular Free Additive Identical 1 unit

Each

machine

has an O

Comparative
Study

20
2

machines
Single Inline No wait Additive Identical

1 unit,

2 unit

Sensitivity

analysis

21
M

machines
Single Circular Free

Additive,

Constant,
Euclidean

Identical
Optimal

schedules

22
3

machines
Single Inline No wait Additive Identical

1 unit,

2 unit

Dominant

cycles

23
M

machines
Single Circular Free Additive Identical 1 unit Polynomial

24
M

machines
Single Inline No wait Euclidean Identical 1 unit

Branch and

bound
algorithm

9

Article

No.

No. of

Machines

Type

of

Robot

Layout
Pickup

Criteria

Travel

Time

Metric

Part

Types

Prod.

Strategy

Buffer

space

Solution

Method

25

M
machines

Single
. Dual

Circular Free Constant Identical K unit Polynomial

26
M

machines
Dual

Parallel

machine,

Circular

Free Constant Identical K unit
Lower bound

method

27
M

machines
Single Inline Free Additive Multiple MPS

Each
machine

has an O

Dominant

cycles

28
M

machines
Dual

Interval,
No wait,

Free

Constant Identical 1 unit Polynomial

29
M

machines
Single Circular No wait Euclidean Identical 1 unit

Branch &
Bound

30
M

machines
Single Circular Free Additive Identical 1 unit

Each

machine

has I/O

Structural

Analysis

31
M

machines
Single

Inline,

Circular
Free Additive Identical 1 unit Polynomial

32
M

machines
Dual Circular Free Additive Identical K unit

Each

machine
has I/O

Lower bound

method

33
3 and M

machines
Single Circular Interval Additive Identical K unit

Lower bound

method

34
2

machine

Single
with

swap

able

Circular

vs inline

Free, No

wait
Additive Identical K unit

Pure cycle

performance

35
2

machines

Single

with

swap
able

Inline Additive Identical 1 unit
Sensitivity

analysis

36
M

machines
Single Inline No wait Euclidean Identical K unit

MIP model,

solved by

CPLEX

37

2, 3 and

M

machines

Dual
arm

Circular Free Additive

Identical

,

Multiple

1 unit,
K unit

Dominant

cycles

38
2

machines
Single Circular Free Additive Multiple 1 unit

MILP,

Branch &

bound,
Simulated

Annealing

39
M

machines
Dual Inline Free Additive Identical 2 unit

Lower bound

method

40
M

machines
Single Inline Euclidean Multiple K unit

Branch and

bound

41
M

machines
Single

Parallel

machine,
Inline

Free Additive Multiple

MILP,

Simulated
Annealing

42
M

machines

Single

, Dual
Circular Free Additive Identical K unit Polynomial

43
2

machines

Single

, Dual
Inline Interval Additive Identical 1 unit

Robot
with

buffer

Dominant

cycles

This

study

M

machines
Single

Parallel
machine,

Inline

Free Additive Identical 1 unit
Robot
with

buffer

MIP,
Simulated

Annealing

2.1 Robots with Single Gripper

In the current literature some of the studies that considered single gripper robots

include [1 – 11], [13 – 14], [17 – 18], [20 – 24], [29], [31], [33], [36], [38], [40 – 41]

and out of these studies the articles that considered m machines case are [1 – 2], [4],

10

[6], [13 – 14], [17], [21], [23 – 24], [29], [31], [33], [36] and [40 – 41]. Robotic cell

with 2 machines were studied in [3], [10 – 11], [18], [20], [38] and those with 3

machines were considered in [3], [5], [7 – 11], [22] and [33]. A 5 machine robotic

cell was also studied in [14]. In terms of the layout of the cell, [1 – 2], [9 – 11], [13],

[17], [21], [23], [29], [31], [33] and [38] implemented a circular layout. Whereas [1],

[7 – 8], [14], [18], [20], [22], [24], [31], [36], [40] and [41] considered an inline

layout. A mobile layout which is a generalization of the other two layouts was

studied earlier in [3] and [5 – 6]. The pickup criteria studied by [4], [9 – 11], [13 –

14], [18], [20], [22], [24], [29] and [36] was the no wait pick up criteria. On the other

hand, [6], [21], [23], [31], [38] and [41] implemented the free pickup criteria and

[33] studied interval pickup criteria. The blocking constraint states that when a part

finishes processing on a machine, the machine does not have the ability to process

another part until the finished part has been unloaded by the robot and this was seen

in [1 – 2], [7] and [17]. Additive travel time metric was considered in [4], [6], [8 –

11], [13 – 14], [17], [20 - 23], [31], [33] and [41]. Constant travel time metric was

implemented in [1 – 3], [5], [7], [17 – 18] and [21] and the Euclidean travel time was

studied by [17], [21], [24], [29], [36] and [38]. Identical parts were produced in [1 –

4], [7], [10 – 11], [13 – 14], [17 – 18], [20 – 24], [29], [31], [33] and [36]. Whereas

multiple parts were produced in [3], [5 – 6], [8 – 10], [38] and [40 – 41]. In a cycle

when one unit is produced it is called a 1-unit cycle and this was studied in [1 – 2],

[4], [7], [9 – 11], [13], [18], [20], [22 – 24], [29], [31] and [38]. A 2-unit cycle was

considered in [10 – 11], [18], [20] and [22] and a k-unit cycle was studied by [14],

[17], [33], [36] and [40]. And finally MPS cycles is a cycle strategy that can be

implemented only by multiple part types and its partitions sets with identical parts

11

and produces each set in one cycle and thus the name Minimal Part Set and this was

studied in [3], [5 – 6] and [8].

Even though some similarities and differences can be seen among these papers in

terms of the characteristics of the robotic cell. The main difference between them lies

in the contribution of each article.

The problem in [1] is finding the robot cyclic schedule that is the shortest for the

cyclic scheduling of identical parts. In contrast to previous papers, the problem in

this paper is a case where they consider m arbitrary number of machines, but all parts

are the same. 𝑂(𝑚3) polynomial time is solved by an approach of dynamic

programming. Pyramidal permutations are a concept relied on heavily in the paper’s

analysis which is connected to the travelling salesman problem. In [2] proof that the

problem is strongly NP complete was undertaken. In [3] for a robotic cell with two

machines and part types are multiple, an efficient algorithm is provided that was used

to optimize the problem of part sequencing and move cycles of robots. A

computational program known as General Algebraic Modelling System (GAMS) was

used to test the algorithm. For a robotic cell with 3 machines and part types are

identical, the repetition of 1 unit cycles optimality has a conjecture that was

addressed and it was shown that the cycles that are more complicated is dominated

by such a procedure when two units are produced.

The Cyclic Robotic Flowshop Problem (CRFP) in the version that is solved in

polynomial time is studied in [4]. Processing times are numerical in the problem and

the no wait constraint is considered. When triangle inequality is satisfied by the

operation times, it is shown that 𝑂(𝑚5) can be improved. The problem is solved by

12

an algorithm that is derived in 𝑂(𝑚3 log𝑚) time. [5] proved that the problem of part

sequencing is unary NP complete when the version is recognition and that when one

unit is produced; the robot move cycles that are potentially optimal are 2 out of 6.

Part sequencing problems that are solved efficiently are defined by the remaining

four cycles.

Considering the classification of the cycles of robots moves associated with the

problem of part sequencing was proved in [6] that out of the 𝑚! available cycles of

robot moves exactly 2𝑚–2 are solved in polynomial time. While the cycles that are

remaining associated with the problem of part sequencing are unary NP-hard. For a

robotic flowshop with 3 machines, it was conjectured in [7] that optimal production

is yielded when the unit cycle is 1. The conjecture validity was established. In [8]

move cycles of robots and the sequence of parts that together lead to cycle time

minimization which is required to produce a set of minimal parts are determined.

Previous algorithms that were provided and intractability proofs for different cell

configurations are used for a heuristic procedure to be developed for the problem of

part sequencing for different move cycles of robots in a robotic cell with 3 machines.

They described how the heuristic methodology can be extended for a robotic cell

with 4 machines and they tested it.

The complexity of sequencing of parts problem is analysed for a 3-machine robotic

cell when moves of robots are of different periodical patterns. Complexity is

investigated for six possible 1 unit cycles in the problem of part sequencing in [9].

The optimization and feasibility problem for each of them is considered and it was

seen that out of the six cases, the problem of feasibility is polynomial for 4 of them

and NP complete for the other two. In [10] two cases were studied: Case of 2

13

machines and parts processed are multiple: after being reduced to classical flowshop

no wait problem of 2 machines, it was seen that the problem is solved by 𝑂(𝑛 log 𝑛)

polynomial algorithm and case of 3 machines and parts processed are identical: move

cycles of robots are considered when parts visit the machine either once or twice. In

[11] there is a threefold contribution:

1. Active schedules which are the so-called notion on cycle times are discussed

in more detail. In this case, the no wait criterion is applied in which

operations are executed by robots as early as possible.

2. Conjecture of one cycle is presented in a new approach.

3. Conjecture of one cycle is settled completely. Counterexamples are

constructed by the new approach which proves that for 𝑚 ≥ 4 machines the

conjecture is not valid any longer. Two cases were distinguished: 1.

equidistant machines when cells are regular. 2. The non-regular cells. And

then the dominance of the cycle was demonstrated to be different for two

configurations.

[13] studies the computational complexity of finding robot moves shortest route

between one machine and the next. Even though this complex problem was discussed

in previous literature, previous studies took into consideration some assumptions

which were dropped in this paper and NP hardness is proved in the strong sense

when there are symmetric travel times between the robotic cell machines and triangle

inequality is satisfied. The robotic cell scheduling problem considered in [14] has

processing windows which are unbounded. A conjecture was presented which

provides production cycle optimality with structure. Lower bound method was used

to prove optimality of the conjecture. Results confirm Agnetis conjecture that claims

14

dominant cycles degree in a robotic cell that is in a no wait condition can be bounded

by 𝑚–1 machines. Agnetis proves conjecture for 𝑚 = 2 and 3. [14] studies for m

and 𝑚 = 5.

In [17] a polynomial algorithm was presented that produce solutions for multiunit

cycles for classes of robotic cells which are most commonly known: constant,

additive and Euclidean travel time. The optimal solutions are within constant factor

per unit cycle time. In [18] the objective was to find on 2 machines the process times

by operations being allocated to the machines as well as finding the move cycles of

robot that will jointly lead to cycle time minimization. Rather than the previous proof

that 1-unit robot move cycles are optimal, it was proved that either 1 or 2-unit robot

move cycles are optimal depending on given parameters.

Generally, it is assumed that since a tool magazine is stored with all tools that are

required, the operations can be performed by the CNC machines. But, the capacity of

the tool magazine is limited and the numbers of tools which are usually required

exceed the capacity. Thus, [20] considers the following assumption: due to

constraints in tooling, operations can be performed on the first machine while others

are performed on the second machine. While the operations that are remaining can be

performed on either one of the two machines. In [21] the knowledge concerning

cyclic schedules with respect to the robotic cells of different classes that are the three

travel times: additive, constant and Euclidean was discussed. [22] considers part

processing time as a decision variable for robot move cycles of 1 unit and 2 unit and

a new lower bound was proposed. And also, a new robot move cycle was proposed

which possesses the flexibility of operation. A cyclic solution is produced by an

algorithm presented in [23]. The cycle time is a factor 10/7 of the optimal solution

15

per unit. 𝑂(𝑚) time runs the algorithm where m corresponds to number of machines

in the cell. Compared to the 3/2 best known guarantee, this result proved to be an

improvement. [24] proposed an exact algorithm which is the branch and bound

algorithm for a cyclic schedule to be optimal when processing times are flexible.

Based on machine and robot capacity constraints, the cycle time prohibited intervals

are used to formulate the problem. After the developed model is analysed,

transformation of the problem is conducted for the nonprohibited intervals of cycle

time to be enumerated.

[29] initially used method of prohibited intervals to formulate the problem and then

interval bounds were linearly expressed, and subsets were used to divide the intervals

and nonprohibited intervals were enumerated in each subset. In [31] NP hardness

proof was conducted when 1-unit cycle optimality was obtained for a circular layout

robotic cell with pickup criteria that is free and when the travel time metric is

additive, and the throughput increase was assessed. [33] considered a special case of

𝑚 = 3 and they analysed the case when processing times are controllable and

manufacturing cost associated with processing time was considered. Results proved

that at least one of two pure cycles reach optimality and proved that pure cycles are

dominant compared to classical cycles.

[36] used binary variables to define machine availability constraints in the scheduling

problem of multicyclic robotic flowshop cell when formulating the MIP model, the

input sequence is fixed which is not the case for multicyclic production. MIP model

was solved by CPLEX software and generated instances that are random proved that

the MIP approach proposed can solve scheduling problems in real life efficiently.

[38] proved NP hardness for the two-machine robotic cell scheduling problem with

16

sequence dependent setup times. They also developed a time complex lower bound

of the problem using the algorithm of Gilmore and Gomory. And finally, an MILP

model was developed to address determination of best robot moves and parts

sequencing.

[40] developed analytical properties and branch and bound scheme that are specific

and efficient based on the problem characteristics, which allow the solution search

process to eliminate infeasible or dominated solutions. [41] introduced additional

constraints such as machine eligibility and parallel machines with different

processing speeds at each stage. They developed an MILP model and minimized

makespan for hybrid flowshop scheduling problem and a simulated annealing

algorithm which used a neighbourhood structure with block properties was

employed.

2.2 Robots with Dual Gripper

The articles that studied dual gripper robots include [12], [15 – 16], [26], [28] and

[39] and out of these studies the articles that considered m machines case are [12],

[16], [26], [28] and [39]. Robotic cell with 2 machines were studied in [15 - 16]. In

terms of the layout of the cell, [12], [15 – 16] and [26] implemented a circular layout.

Whereas [39] considered an inline layout. The pickup criteria studied by [16] and

[28] was the no wait pick up criteria. On the other hand, [26], [28] and [39]

implemented the free pickup criteria and [28] studied interval pickup criteria.

Additive travel time metric was considered in [12], [16] and [39]. Constant travel

time metric was implemented in [15], [26] and [28]. Identical parts were produced in

[12], [26], [28] and [39]. Whereas multiple parts were produced in [15] and [16]. 1-

unit cycle was studied in [12] and [28]. A 2-unit cycle was considered in [39] and a

17

k-unit cycle was studied by [26]. And finally MPS cycles was studied in [15] and

[16].

In [12] the analytical framework that exists in the literature was extended for all 1-

unit cycles to be systematically developed for 2 machine robotic cells with a dual

gripper robot and then the difference between dual gripper and single gripper is

investigated in terms of cycle time advantage.

Finding part sequence optimality is known to be strongly NP hard even when they

provide the sequence of robot moves. A framework which is modelled and notated is

provided in [15] for the NP hard family of problems to be studied which are

associated with robot move sequences which are optimal. An algorithm which is

approximate is developed with the guarantee ratio of worst case performance of 3/2

which is estimated using a linear program without lower bound being calculated. The

system operation at steady state under numerous options of cyclic scheduling was the

focus of [16]. The problem of 2 machines was solved by the Gilmore Gomory

heuristic approach on problem instances that are randomly generated. Testing

procedures indicate that less than 10% of relative errors are realized when cycle time

lower bound at optimality is compared. A comparison between single and dual

gripper robots was carried out by conducting productivity gain estimation. There was

between 18% and 36% realization in relative improvement. [26] provides insights to

managers on how a dual gripper robot is beneficial and how a parallel machine cell

along with a dual gripper robot is more beneficial. Throughput improvement are

realised when such improvements are considered. [28] considers scheduling a robotic

cell with a dual gripper robot. The cases considered initially are the no wait and free

pick up cells. For the case when the pickup criteria is no wait, polynomial time

18

algorithm was used to find the optimal solution and when it was free, the algorithm

was used to find the asymptotically optimal solution. For an interval robotic cell the

problem was proved to be NP hard. Also results showed that throughput improved

significantly when dual gripper was used rather than single gripper. In [39] a

methodology for optimizing a robotic cell with a hub re-entrant machine was newly

introduced. For all robot move cycles the cycle time is determined to find the lower

bound of the cycle time for the dual gripper robot. The optimal sequence of robot

tasks is determined which was a 2-unit cycle. The cycle time lower bound was also

obtained for the dominant cycle and the optimal solution found for this cycle was

demonstrated and they proved that for the robotic cell with hub machine that is re-

entrant this is the most appropriate option.

2.3 Robots with either Single or Dual Gripper

Studies that compared single and dual gripper robots include [25] and [42]. And in

both those studies the robotic cell was assumed to have m machines and the layout of

the cell was circular. The parts produced were identical with K-unit being produced

per cycle with free pickup criteria. The only difference was that [25] implemented a

constant travel time while [42] considered an additive travel time metric. [25]

provides valuable insights to production managers regarding how productivity is

maximized for both single and dual gripper cells for any combination of

requirements for processing and physical parameters. [42] provides an insight into

schedules for productivity maximization of either dual or single gripper robotic cells.

And the performance of dual gripper robotic cells under relevant conditions was

studied.

19

2.4 Robots with Dual Arm

A dual arm robot was studied by [37] in a cell with either 2, 3 or m machines and a

circular layout. The travel time metric was additive and parts produced were either

identical or multiple and thus either 1 unit or k unit per cycle were produced. The

pickup criteria were free. [37] identified optimal sequence when identical parts are

processed for 2 and 3 machine cases. Also cells with m machines were studied and

they derived structural results for the case. For cells with two machines, they also

analysed the case when parts processed are of multiple types. They proved that

productivity was higher in dual arm robots compared to robot with single arm or

single gripper and the gains realized were quantified.

2.5 Robots with Swap Ability

A special type of robot was proposed by [34] and [35] and that is a robot with swap

ability. A robot with swap ability can handle only one part at once but the constraint

of blocking is eliminated since an occupied machine can be simultaneously loaded or

unloaded. In these studies the cell was made up of 2 machines and an additive travel

time metric when the parts produced were identical and 1-unit cycle was considered

in [35] while a k-unit cycle was studied in [34]. The layout considered was inline in

[35] and both circular and inline in [34] and the pickup criteria studied were free and

no wait.

[34] concentrate on a class of pure cycles which are newly introduced in which less

than m parts are processed in a cycle compared to previous studies were pure cycles

were m unit cycles meaning m parts are produced in a cycle. [35] studies robotic

cells which are reentrant in which the centered robot can swap and part types

processed are identical. In the beginning, the optimality regions are determined when

20

a part enters the first machine for the second time. The same is done when the part

enters the second machine for the second time. And optimality regions are

determined when a part enters the two machines for the second time. They then

perform a sensitivity analysis for the parameters related to cycle time objective

function and results indicate that gain in productivity is realized in a swap able robot.

2.6 Robots with Output Buffer at Each Machine

In all the previous studies that were discussed the cell had only input and output

buffers at the beginning and end of the robotic production line. However, [19] and

[27] proposed having an output buffer for each machine in the line and discussed

how this would affect reduction in cycle time. Both studies considered an m machine

case with an additive travel time metric and a pickup criterion that is free. However,

[19] considered a dual gripper robot in a circular layout robotic cell when parts

produced are multiple and the strategy of production is MPS cycles. On the other

hand, [27] considered a single gripper robot in an inline layout robotic cell when

parts produced are identical and 1 unit is produced in a cycle.

Practically it has been studied that the advantage of a dual gripper is that there is

increase in cell productivity compared to a single gripper. [19] provided an extended

insight and conceptual framework to the scheduling problem with a dual gripper

robot. For the robotic cell with a dual gripper in which the production is cyclic, a

modelling framework is provided. Active cycles were the so-called cycles they

focused on and the feasibility and combinatorial issues of the problem were studied.

Complete family of active cycles are described by an algorithm approach that was

provided. Moreover, in an m machine case with gripper switching time that is small,

a polynomial time algorithm was devised for a 1-unit cycle optimal solution to be

21

found. With presence of an output buffer at each machine with capacity of 1 unit, a

comparative study was employed between single and dual gripper. Results showed

that more productivity was realized from dual grippers when compared to single

grippers. Two models that are different are considered in [27]. The first model is a

robotic cell with a single gripper robot and at each machine there is an output buffer

with unit capacity. The second model is a robotic cell with a dual gripper robot and is

bufferless. Concentrated Robot Move sequence (CRM) cycles are the focus of this

study. Under common conditions in practice, the equivalence in the throughput of

these two models is this paper’s main outcome. Discussions indicated that the model

with an output buffer had total cost that was 20% less than the model with a dual

gripper. And this result argues the fact that there is equivalence between the two

models.

2.8 Robots with Input and Output Buffer at Each Machine

In the previous two studies only an output buffer at each machine is considered.

However, [30] and [32] proposed having an input and output buffer for each

machine in the production line and discussed how this would affect reduction in

cycle time. Both studies considered an m machine case in a circular layout robotic

cell with an additive travel time metric, a pickup criterion that is free and parts

produced are identical. However, [30] considered a single gripper robot and 1 unit is

produced in a cycle. On the other hand, [32] considered a dual gripper robot and k

unit is produced in a cycle.

Literature has extensively studied robotic cells that are bufferless. Few studies have

considered each machine with an output buffer and their results showed that such a

configuration can improve the throughput. [30] considered a robotic cell where each

22

machine has an output and input buffer with one unit capacity and their results

showed that there was no throughput improved when compared to the output buffer

model. [32] is the first that considers scheduling of a robotic cell with input and

buffer at each machine and unit capacity and a dual gripper robot. An optimal

throughput upper bound that is tight is first obtained and an asymptotically optimal

sequence is then obtained using this bound under common condition in practice.

Then, the realized productivity improvement was quantified when using input and

output buffers with unit capacity at each machine. Production managers can use these

results to measure gain in productivity when installation of unit capacity buffers at

each stage of processing of a cluster tool with a dual gripper is conducted.

2.9 Robot with Buffer Capacity

The only study that considered a robot with a buffer capacity that is infinite is [43]

and the robotic cell studied in the article was a 2 machine cell with an inline layout,

single and dual gripper robot and parts produced are identical and 1 unit produced in

each cycle. The travel time metric was additive and the pickup criterion was interval.

They considered the single gripper robot with buffer capacity and compared it to a

dual gripper robot with no buffer capacity to see whether it further improves the

cycle time over that for classical robotic cells where robots have no buffer space.

They derived the dominant cycles for both the cases and the results indicate that self-

buffered robot leads to reduction in cycle time and performs more efficiently when

compared to dual gripper robots and robots with swap ability.

The main contribution in this study is that m machines were considered rather than 2

and an MIP model was created and the results were compared to that of the simulated

annealing algorithm rather than deriving the dominant cycles.

23

Chapter 3

PROBLEM DEFINITON

The cyclic scheduling problem considered is defined by many notations. Other than

the commonly known notations such as process time, number of machines, etc., four

activities that are repeated 𝑚 times in every cycle by the robot such as loading,

unloading and moving the parts within the robotic cell are considered. The problem

is to determine the order of these activities that are performed by the robot 4𝑚 times

in total with the objective of minimizing cycle time for the FMC system described.

These set of activities are separately defined below.

3.1 Notations and Definitions

𝒎: number of machines that makeup the robotic cell considered.

𝒑: part process time by a machine.

𝑲: robot buffer capacity which is the number of parts that can be held by the robot.

𝑰𝒊: activity which involves taking the 𝑖𝑡ℎ unfinished part from the input buffer after

moving to it where 𝐼 = {𝐼1, 𝐼2, …… , 𝐼𝑚}

𝑳𝒊: activity which involves loading an unfinished part to the 𝑖𝑡ℎ machine after

moving to it where 𝐿 = {𝐿1, 𝐿2, …… , 𝐿𝑚}

𝑼𝒊: activity which involves unloading a finished part from 𝑖𝑡ℎ machine after moving

to it where 𝑈 = {𝑈1, 𝑈2, …… , 𝑈𝑚}

𝑶𝒊: activity which involves putting 𝑖𝑡ℎ finished part to the output buffer after moving

to it where 𝑂 = {𝑂1, 𝑂2, …… , 𝑂𝑚}

𝑨: union of the activities 𝐼, 𝐿, 𝑈, 𝑂

24

When activity 𝐼𝑖 is completed the robot stays at the input buffer and similarly it stays

at the output buffer when activity 𝑂𝑖 is completed. When activity 𝑈𝑖 or 𝐿𝑖 is

completed the robot stays at the 𝑖𝑡ℎ machine. It must be noted that 𝑖 refers to the

machine number when it is considered for activities 𝐿 and 𝑈. However, 𝑖 refers to the

𝑖𝑡ℎ finished or unfinished part when it is considered from activities 𝑂 and 𝐼.

During each cycle these set of activities are carried out by the robot and the same set

of operations are repeated in each cycle. The time taken for a cycle to be completed

also known as cycle time is the duration spanning from starting the first activity and

completing all the other activities and then at the end coming back to the same

activity we started with. A setup is needed in the beginning of each cycle which can

either mean all machines are emptied or loaded. The machine is only loaded and

unloaded once per cycle. The cycle time depends on the activities of the robot that

include traveling from one machine to another and loading and unloading. Thus, for

the cycle time to be calculated we need to consider travel time, loading and

unloading time between any two activities and a distance matrix is formulated for

this reason.

𝜺: time spent picking up/putting a part from/to a machine or input/output buffer.

𝜹: time taken by the robot to travel between two successive machines or between

input/output buffer and a machine.

𝒅𝒂𝒃: time that is required for the operation executed by the robot between for

completing activity b after 𝑎.

25

It must be noted that activity 𝑎 must be followed by activity 𝑏 and machine process

times are not included in the 𝑑𝑎𝑏 formula because it is not an activity carried out by

the robot.

3.2 Distance Matrix Derivation

Below the different cases will be discussed to show how the distance matrix was

found along with an example for each case.

Case 1: 𝑎 𝜖 {𝐿𝑖 , 𝑈𝑖} and 𝑏 𝜖 {𝐿𝑗 , 𝑈𝑗}

This case is divided into 4 subdivisions where 𝑖 ≠ 𝑗:

1. activity 𝑎 is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is loading machine 𝑗 (𝐿𝑗)

2. activity 𝑎 is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is unloading machine 𝑗 (𝐿𝑗)

3. activity 𝑎 is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is loading machine 𝑗 (𝑈𝑗)

4. activity 𝑎 is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is unloading machine 𝑗

(𝑈𝑗)

Figure 3.1: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {Lj, Uj}

So, at the completion of 𝐿𝑖 activity the robot will move to machine 𝑗 at travel time 𝛿

and the distance between those two machines is 𝑖 – 𝑗. Since machine 𝑖 might not

26

always be before machine 𝑗, the absolute of the distance must be taken as |𝑖 – 𝑗| and

then once the robot reaches machine 𝑗 it will execute the operation of putting the

unfinished part at the end of the loading activity with time 𝜀. So, 𝑑𝑎𝑏 = 𝜀 + |𝑖 – 𝑗|𝛿.

It must be noted that 𝜀 is only considered for the second activity because 𝑑𝑎𝑏 is the

time between completion time of 𝑎 and completion time of 𝑏. The completion time

of 𝑎 indicates that the activity has already been executed at the beginning of

considering this formulation.

By considering an example of this case it might be clearer. For activity 𝑎 being 𝐿1

that means it will load machine 1 with an unfinished part and activity 𝑏 will be 𝐿2

which means it will load machine 2 with an unfinished part.

Example of Case 1: 𝑎 𝜖 {𝐿1} and 𝑏 𝜖 {𝐿2}

Figure 3.2: Example when Activity a ϵ {L1} and Activity b ϵ {L2}

𝑑𝐿1𝐿2 = |1 – 2|𝛿 + 𝜀 = 𝜀 + 𝛿

27

Case 2: (𝑎 𝜖 {𝐿𝑖, 𝑈𝑖} 𝑎𝑛𝑑 𝑏 𝜖 {𝐼}) 𝑜𝑟 (𝑎 𝜖 {𝐼} 𝑎𝑛𝑑 𝑏 𝜖 {𝐿𝑖, 𝑈𝑖})

This case is divided into 4 subdivisions where 𝑖 ≠ 𝑗:

1. activity a is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is unloading input buffer (𝐼)

2. activity a is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is unloading input buffer

(𝐼)

3. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is loading machine 𝑖 (𝐿𝑖)

4. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is unloading machine 𝑖

(𝑈𝑖)

Figure 3.3 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {I}

Figure 3.3 b: Case when Activity a ϵ {I} and Activity b ϵ {Li, Ui}

28

So at the completion of 𝐼 activity the robot will move to machine 1 at travel time 𝛿

and then from machine 1 to machine 𝑖 at travel time 𝛿 with the distance between

those two machines being 𝑖 − 1 and then once the robot reaches machine 𝑖 it will

execute the operation of putting the unfinished part which takes time 𝜀 at the end of

the loading activity. So, 𝑑𝑎𝑏 = 𝜀 + 𝛿 + (𝑖 − 1)𝛿 = 𝜀 + 𝑖𝛿.

For example, if activity 𝑎 is 𝐿2 that means it will load machine 2 with an unfinished

part and activity 𝑏 will be 𝐼 which means it will pick up an unfinished part from the

input buffer.

Example of Case 2: 𝑎 𝜖 {𝐿2 } and 𝑏 𝜖 {𝐼}

Figure 3.4: Example when Activity a ϵ {L2} and Activity b ϵ {I}

𝑑𝐿2𝐼 = (2–1)𝛿 + 𝛿 + 𝜀 = 𝜀 + 2𝛿

Case 3: (𝑎 𝜖 {𝐿𝑖, 𝑈𝑖} and 𝑏 𝜖 {𝑂}) or (𝑎 𝜖 {𝑂} and 𝑏 𝜖 {𝐿𝑖, 𝑈𝑖})

This case is divided into 4 subdivisions where 𝑖 ≠ 𝑗:

1. activity 𝑎 is loading machine 𝑖 (𝐿𝑖) and activity 𝑏 is loading output buffer (𝑂)

29

2. activity 𝑎 is unloading machine 𝑖 (𝑈𝑖) and activity 𝑏 is loading output buffer

(O)

3. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is loading machine 𝑖 (𝐿𝑖)

4. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is unloading machine 𝑖

(𝑈𝑖)

Figure 3.5 a: Case when Activity a ϵ {Li, Ui} and Activity b ϵ {O}

Figure 3.5 b: Case when Activity a ϵ {O} and Activity b ϵ {Li, Ui}

So at the completion of 𝐿𝑖 activity the robot will move from machine 𝑖 to machine 𝑚

at travel time 𝛿 with the distance between those two machines being 𝑚 – 𝑖 and then

from machine 𝑚 to the output buffer with travel time 𝛿 and then once the robot

reaches output buffer it will execute the operation of putting the finished part which

30

will take time ε at the end of the loading activity. So, 𝑑𝑎𝑏 = 𝜀 + 𝛿 + (𝑚 − 𝑖)𝛿 = 𝜀 +

(𝑚– 𝑖 + 1)𝛿.

For example, if activity 𝑎 is 𝐿2 that means it will load machine 2 with an unfinished

part and activity 𝑏 will be 𝑂 which means it will put a finished part to the output

buffer.

Example of Case 3: 𝑎 𝜖 {𝐿2} and 𝑏 𝜖 {𝑂}

Figure 3.6: Example when Activity a ϵ {Li, Ui} and Activity b ϵ {O}

𝑑𝐿2𝑂 = (3–2)𝛿 + 𝛿 + 𝜀 = 𝜀 + 2𝛿

Case 4: (𝑎 𝜖 {𝐼} and 𝑏 𝜖 {𝑂}) or (𝑎 𝜖 {𝑂} and 𝑏 𝜖 {𝐼})

This case is divided into 2 subdivisions where:

1. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is loading output buffer

(𝑂)

2. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is unloading input buffer

(𝐼)

31

Figure 3.7 a: Case when Activity a ϵ {I} and Activity b ϵ {O}

Figure 3.7 b: Case when Activity a ϵ {O} and Activity b ϵ {I}

So at the completion of 𝐼 activity the robot will move to machine 1 at travel time 𝛿

and from machine 1 to machine m with the distance between those two machines

being 𝑚 – 1 and then from machine m to the output buffer with travel time 𝛿 and

then once the robot reaches output buffer it will execute the operation of putting the

finished part with time 𝜀 at the end of the activity. So, 𝑑𝑎𝑏 = 𝜀 + 𝛿 + (𝑚 − 1)𝛿 +

𝛿 = 𝜀 + (𝑚 + 1)𝛿.

For example, if activity a is 𝐼 that means it will pick up an unfinished part from input

buffer and activity 𝑏 will be 𝑂 which means it will put a finished part to the output

buffer.

32

Example of Case 4: 𝑎 𝜖 {𝐼} and 𝑏 𝜖 {𝑂}

Figure 3.8: Example when Activity a ϵ {I} and Activity b ϵ {O}

𝑑𝐼𝑂 = 𝛿 + (3 – 1)𝛿 + 𝛿 + 𝜀 = 𝜀 + 4𝛿

Case 5: (𝑎, 𝑏 𝜖 {𝐼}) or (𝑎, 𝑏 𝜖 {𝑂})

This case is divided into 2 subdivisions where:

1. activity 𝑎 is unloading input buffer (𝐼) and activity 𝑏 is unloading input buffer

(𝐼)

2. activity 𝑎 is loading output buffer (𝑂) and activity 𝑏 is loading output buffer

(𝑂)

Figure 3.9: Case when Activity a, b ϵ {I}

33

Figure 3.10: Case when Activity a, b ϵ {O}

So at the completion of 𝐼 activity the robot will not move since the second activity is

also picking up an unfinished part from the input buffer so it will execute the

operation of picking up the part and the time taken for this operation at the end of

this activity is 𝜀. And the same is true if the completion of 𝑂 activity is followed by

another activity of putting a finished part on the output buffer. So, 𝑑𝑎𝑏 = 𝜀.

Thus, the distance matrix for all cases is summarized as follows:

𝑑𝑎𝑏 =

{

𝜀 + |𝑖 − 𝑗|𝛿 𝑖𝑓 𝑎 ∈ {𝐿𝑖 , 𝑈𝑖} 𝑎𝑛𝑑 𝑏 ∈ {𝐿𝑗 , 𝑈𝑗}

𝜀 + 𝑖𝛿 𝑖𝑓 (𝑎 ∈ {𝐿𝑖 , 𝑈𝑖} 𝑎𝑛𝑑 𝑏 ∈ 𝐼) 𝑜𝑟 (𝑎 ∈ 𝐼 𝑎𝑛𝑑 𝑏 ∈ {𝐿𝑖 , 𝑈𝑖})

𝜀 + (𝑚 − 𝑖 + 1)𝛿 𝑖𝑓 (𝑎 ∈ {𝐿𝑖 , 𝑈𝑖} 𝑎𝑛𝑑 𝑏 ∈ 𝑂) 𝑜𝑟 (𝑎 ∈ 𝑂 𝑎𝑛𝑑 𝑏 ∈ {𝐿𝑖 , 𝑈𝑖})

𝜀 + (𝑚 + 1)𝛿 𝑖𝑓 (𝑎 ∈ 𝐼 𝑎𝑛𝑑 𝑏 ∈ 𝑂) 𝑜𝑟 (𝑎 ∈ 𝑂 𝑎𝑛𝑑 𝑏 ∈ 𝐼)

𝜀 𝑖𝑓 (𝑎, 𝑏 ∈ 𝐼) 𝑜𝑟 (𝑎, 𝑏 ∈ 𝑂)

(3.1)

3.3 Process Time

The distance matrix does not contain process time since processing of a part is a

function of the machine and is not involved with any kind of operation executed by

the robot. However, in cases when process time is large, at some point in the cycle

this may lead to the robot waiting for some amount of time.

So when the first activity is loading machine 𝑖 (𝐿𝑖) with an unfinished part it will be

processed for 𝑝 time units, the robot will then travel between machines to carry out

34

other sets of activities while processing on machine 𝑖 continues until it is time to

unload machine 𝑖 (𝑈𝑖) with the finished part and the operation of unloading will

require unloading time of 𝜀 time units. Thus, regardless of the travelling time, the

time between activities 𝐿𝑖 and 𝑈𝑖 is at least 𝜀 + 𝑝 since 𝑈𝑖 cannot be completed

unless the processing of the part is completed. So if the activities between 𝐿𝑖 and 𝑈𝑖

take less than p time units, the robot will have to wait when it comes back to machine

𝑖 for unloading. The order in which the activities are executed have an impact on

whether there will be waiting time or not. It must be noted that this uncertain waiting

time amount is not considered in the dab formula.

Since in every cycle the same set of activities will be repeated in order for a cycle to

be fixed and for permutations to be avoided the first activity will always be fixed to

loading machine 1 (𝐿1) and thus the cycle ends when it comes back to the activity

again and this duration will be the cycle time and the objective will be for the cycle

time to be minimized by scheduling the order of robot activities.

35

Chapter 4

METHODOLOGY

Methods used to solve optimization problems are usually classified into two types,

either exact solution methods that provide optimal solutions that are guaranteed or

heuristic solution methods that do not guarantee optimality. They are also further

classified as either constructive methods which means that we start from no solution

and build up to a feasible or ultimately the optimal solution or improvement methods

which means we initially start from a feasible solution and build up to a better

solution. Examples of exact solution methods include: Branch and Bound algorithm,

MIP (Mixed Integer Programming), IP (Integer Programming), LP (Linear

Programming) or NMIP (Non-Linear Mixed Integer Programming) models,

Polynomial algorithm, etc. On the other hand examples of heuristic or meta-heuristic

approaches include: simulated annealing, genetic algorithm, tabu search, etc.

4.1 Mixed Integer Programming Model

In this study the optimization problem for scheduling the robot moves in order to

minimize cycle time is modeled as a MIP Model which indicates that some of the

decision variables are integer while others are non-integer. An MIP model is an exact

approach that is discussed in detail below. The decision variables of the problem are

as follows:

36

Decision Variables:

𝒙𝒂𝒃 = {
1, if the robot performs activity a before activity b

0, otherwise

𝒕𝒂: activity a completion time

𝑪: cycle time

𝒛𝒊 = {
1, if activity Ui is performed after activity Li
0, otherwise

𝒀𝒂
−: the number of parts on the robot that are unfinished at the end of activity a

𝒀𝒂
+: the number of parts on the robot that are finished at the end of activity a

M: is a big number that is defined

Definition of the notations 𝒎, 𝒑, 𝑲, 𝑰, 𝑳, 𝑼, 𝑶, 𝑨, 𝜺 and 𝒅𝒂𝒃 can be referred from

Chapter 3 on pages 23 and 24.

𝑀𝑖𝑛 𝐶 (4.1)

𝑠. 𝑡

∑ 𝑥𝑎𝑏 = 1

𝑎 ∈ 𝐴− 𝑏

 ∀ 𝑏 𝜖 𝐴 (4.2)

∑ 𝑥𝑎𝑏 = 1

𝑏 ∈ 𝐴− 𝑎

 ∀ 𝑎 𝜖 𝐴 (4.3)

𝑡𝑏 ≥ 𝑡𝑎 + 𝑑𝑎𝑏 −𝑀(1 − 𝑥𝑎𝑏) ∀ 𝑎 ≠ 𝑏 𝜖 𝐴, 𝑏 ≠ 𝐿1 (4.4)

𝑡𝑈𝑖 − 𝑡𝐿𝑖 ≤ 𝑀𝑧𝑖 𝑖 = 1,… . ,𝑚 (4.5)

𝑡𝑈𝑖 ≥ 𝑡𝐿𝑖 + (𝜀 + 𝑝) − 𝑀(1 − 𝑧𝑖) 𝑖 = 1,… . ,𝑚 (4.6)

𝑡𝐿𝑖 ≤ 𝑡𝑈𝑖 + 𝐶 + (𝜀 + 𝑝)(1 − 𝑧𝑖) 𝑖 = 1, … . ,𝑚 (4.7)

𝐶 ≥ 𝑡𝑎 + 𝑑𝑎𝐿1𝑥𝑎𝐿1 ∀ 𝑎 𝜖 𝐴 − 𝐿1 (4.8)

37

𝑥𝑎𝑏 ∈ {0 , 1} ∀ 𝑎 ≠ 𝑏 𝜖 𝐴 (4.9)

𝑡𝑎 ≥ 0 ∀ 𝑎 𝜖 𝐴 (4.10)

𝐶 ≥ 0 (4.11)

𝑧𝑖 ∈ {0 , 1} 𝑖 = 1, … . ,𝑚 (4.12)

𝑌𝑏
+ ≥ 𝑌𝑎

+ + 1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈 (4.13)

𝑌𝑏
+ ≤ 𝑌𝑎

+ + 1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈 (4.14)

𝑌𝑏
+ ≥ 𝑌𝑎

+ − 1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂 (4.15)

𝑌𝑏
+ ≤ 𝑌𝑎

+ − 1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂 (4.16)

𝑌𝑏
+ ≥ 𝑌𝑎

+ − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼 (4.17)

𝑌𝑏
+ ≤ 𝑌𝑎

+ + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼 (4.18)

𝑌𝑏
+ ≥ 𝑌𝑎

+ − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿 (4.19)

𝑌𝑏
+ ≤ 𝑌𝑎

+ + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿 (4.20)

𝑌𝑏
− ≥ 𝑌𝑎

− + 1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼 (4.21)

𝑌𝑏
− ≤ 𝑌𝑎

− + 1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐼 (4.22)

𝑌𝑏
− ≥ 𝑌𝑎

− − 1 − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿 (4.23)

𝑌𝑏
− ≤ 𝑌𝑎

− − 1 + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝐿 (4.24)

𝑌𝑏
− ≥ 𝑌𝑎

− − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈 (4.25)

𝑌𝑏
− ≤ 𝑌𝑎

− + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑈 (4.26)

𝑌𝑏
− ≥ 𝑌𝑎

− − (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂 (4.27)

𝑌𝑏
− ≤ 𝑌𝑎

− + (𝐾 + 1)(1 − 𝑥𝑎𝑏) ∀ 𝑎 𝜖 𝐴, 𝑏 ∈ 𝑂 (4.28)

𝑌𝑎
+ + 𝑌𝑎

− ≤ 𝐾 ∀ 𝑎 𝜖 𝐴 (4.29)

𝑌𝑎
+ ≥ 0 ∀ 𝑎 𝜖 𝐴 (4.30)

𝑌𝑎
− ≥ 0 ∀ 𝑎 𝜖 𝐴 (4.31)

38

(4.1) is the objective function which is cycle time minimization where cycle time is

the amount of time that spans when a system starts at a specific state and comes back

to the same state again.

(4.2) and (4.3) are like the constraints of the assignment problem which indicates that

in (4.2) if 𝑎 is 𝐼, 𝑂, 𝑈 or 𝐿 and we assume that only 𝐼 is the activity that is active then

only it should pass to another activity. There cannot be two activities passing to

another activity at the same time and this constraint holds for all 𝑎 except when

𝑎 = 𝑏. Similarly in (4.3) for all 𝑏 equal to either 𝐼, 𝑂, 𝑈, 𝐿 if we assume that I is the

activity that is performed after the activity that is active then it should be performed

after only one of the activities and this constraint holds for all b except when 𝑎 = 𝑏.

For example if it is a 1 machine case, then there will be only 4 activities. If it is

shown as an assignment problem then it will look like this:

 Table 4.1: Representation of Constraint (4.2) and (4.3)

a L1 U1 I1 O1

L1 XU1L1 XI1L1 XO1L1

U1 XL1U1 XI1U1 XO1U1

I1 XL1I1 XU1I1 XI1O1

O1 XL1O1 XU1O1 XI1O1

b

39

So, if 𝑥𝑂𝐿, 𝑥𝐿𝑈, 𝑥𝑈𝐼 and 𝑥𝐼𝑂 were equal to 1 then the order of the cycle would be 𝑂,

𝐿, 𝑈, 𝐼 and then again back to 𝑂. These two constraints guarantee that all activities

have to be performed only once for each machine.

In (4.4) if 𝑥𝑎𝑏 = 1 it means activity 𝑎 is performed before 𝑏 and if that is the case

then the completion time of activity 𝑏 will be equal or greater than completion time

of activity a plus the distance matrix between activity 𝑎 and 𝑏 identified by 𝑑𝑎𝑏 thus:

𝑡𝑏 ≥ 𝑡𝑎 + 𝑑𝑎𝑏. However, if 𝑥𝑎𝑏 = 0 indicating that activity 𝑎 is not performed

before 𝑏 then 𝑡𝑏 ≥ 𝑡𝑎 + 𝑑𝑎𝑏 −𝑀 and since 𝑀 is a very big number that means

𝑡𝑏 − 𝑡𝑎 − 𝑑𝑎𝑏 ≥ − 𝑀 which is infeasible and thus this constraint ensures or

guarantees feasibility of successive activities because when 𝑥𝑎𝑏 = 0 there must be no

relation between activity 𝑎 and 𝑏. For Example, if 𝑎 = 𝐿1, 𝑏 = 𝐿2, 𝛿 = 2, 𝜀 = 1.

From Case 1 of our distance matrix it was seen that for 𝑎 𝜖 {𝐿𝑖} and 𝑏 𝜖 {𝐿𝑗},

𝑑𝐿𝑖𝐿𝑗 = |𝑖 − 𝑗|𝛿 + 𝜀 and thus 𝑑𝐿1𝐿2 = |1 − 2|𝛿 + 𝜀 = 𝛿 + 𝜀 = 2 + 1 = 3 and let us

assume 𝑡𝑎 was 3. Since 𝑥𝐿1𝐿2 is 1 in this case because activity 𝑏 is performed after a,

𝑡𝑏 = 3 + 3 = 6.

Figure 4.1: Representation of Constraint (4.4) by an Example of Case 1

40

Also, it should be noted that activity 𝑏 cannot be 𝐿1 because in the problem

definition chapter we discussed that 𝐿1 will always be fixed as first activity to avoid

permutation.

In (4.5) activity of unloading a finished part from machine 𝑖 must be performed after

the loading of machine 𝑖 with an unfinished part. Otherwise the constraint must be

deemed infeasible. Thus, if 𝑧𝑖 is 1 meaning activity 𝐿𝑖 is before 𝑈𝑖 then 𝑡𝑈𝑖 − 𝑡𝐿𝑖 ≤

𝑀 which means 𝑡𝑈𝑖 ≤ 𝑡𝐿𝑖 +𝑀, since 𝑀 is a very big number it basically means the

completion time of 𝑈𝑖 must be greater than completion time of 𝐿𝑖. However if

𝑧𝑖 = 0 indicating that activity 𝑈𝑖 is not performed after Li then 𝑡𝑈𝑖 − 𝑡𝐿𝑖 ≤ 0 which

means𝑡𝑈𝑖 ≤ 𝑡𝐿𝑖 which is infeasible since the completion time of the 𝑈𝑖 cannot be

less than that of 𝐿𝑖. This constraint guarantees whether constraint (4.6) or (4.7) is

active because only one of them will be active at the same time.

If 𝑧𝑖 = 1 meaning activity 𝐿𝑖 is before 𝑈𝑖 then (4.6) is active and that means 𝑡𝑈𝑖 ≥

 𝑡𝐿𝑖 + (𝜀 + 𝑝) which means completion time of 𝑈𝑖 is atleast completion time of 𝐿𝑖

plus the processing time of the part and the time taken to pick up the part from the

machine. This means that after activity 𝐿𝑖 is completed if the activity following it is

𝑈𝑖 then assuming process time is 0 the least amount of completion time of activity 𝑈𝑖

is the time taken to pick up the part because other times can include travel time and

picking up/putting time for all activities between 𝐿𝑖 and 𝑈𝑖. However if process time

is too large and by the time the robot comes back to machine 𝑖 and processing of the

part was not completed, the robot will have to wait for a maximum amount of the

process time itself. For Example, if 𝑎 = 𝐿1, 𝑏 = 𝑈1, 𝛿 = 2, 𝜀 = 1, 𝑝 = 100 and let

41

us assume 𝑡𝑎 was 20. Since 𝑈𝑖 is 1 in this case because activity 𝑈𝑖 is performed after

𝐿𝑖, 𝑡𝑈𝑖 ≥ 20 + 1 + 100 = 121.

Figure 4.2: Representation of Constraint (4.6) by an Example of Case 1

However in (4.7) if 𝑧𝑖 = 0 then activity 𝑈𝑖 is performed before 𝐿𝑖 and hence, we

need to guarantee feasibility. 𝑡𝐿𝑖 ≤ 𝑡𝑈𝑖 + 𝐶 + (𝜀 + 𝑝) which becomes 𝑡𝑈𝑖 ≥ 𝑡𝐿𝑖 −

(𝜀 + 𝑝) − 𝐶 which means that the time span between the cycle time and completion

time of activity 𝐿𝑖 plus the processing time of a part and the time taken to pick up the

part from the machine must be less than or equal to completion time of activity 𝑈𝑖.

Figure 4.3: Representation of Constraint (4.7)

In (4.8) if activity 𝑎 is the last activity before the cycle is repeated from 𝐿1 again and

𝑎 is before 𝑏 where 𝑏 is the activity of loading machine 1 again meaning 𝑥𝑎𝐿1 = 1

then 𝐶 ≥ 𝑡𝑎 + 𝑑𝑎𝐿1 which means the cycle time is equal to completion of last

42

activity a plus the distance matrix from a back to first activity 𝐿1. However, if

𝑥𝑎𝐿1 = 0 meaning activity a is not before 𝐿1 then 𝐶 ≥ 𝑡𝑎 thus the constraint

becomes redundant.

Figure 4.4: Representation of Constraint (4.8)

Since 𝑥𝑎𝑏 is either 1 or 0 it is a binary decision variable which is defined by (4.9) and

the same goes for the decision variable 𝑧𝑖 which is also a binary decision variable

defined by (4.12).

The completion time of activity 𝑎 (𝑡𝑎) and the cycle time are both time standards and

thus they can defined as linear decision variables that are non-negative and this is

shown by (4.10) and (4.11).

Constraints (4.13) through (4.20) all deal with the number of finished parts on the

robot at the end of an activity. When 𝑥𝑎𝑏 = 1 it means that activity 𝑎 is performed

before 𝑏 and thus (4.13) and (4.14) reduces to 𝑌𝑏
+ ≥ 𝑌𝑎

+ + 1 and 𝑌𝑏
+ ≤ 𝑌𝑎

+ + 1. In

optimization it is stated that a hyperplane is a set of points which satisfy one linear

equation and it divides the space into half spaces determined by inequalities such as

(4.13) and (4.14). Thus, the hyperplane in our case is reduced to the following one

43

linear equation 𝑌𝑏
+ = 𝑌𝑎

+ + 1. It can be seen that in (4.13) and (4.14) activity 𝑏 is

unloading 𝑎 finished part which means that after completion of activity 𝑏 one more

finished part will be carried by the robot. On the contrary, when 𝑥𝑎𝑏 = 0 which

means activity 𝑎 is not performed before 𝑏 then (4.13) and (4.14) are reduced to

𝑌𝑏
+ ≥ 𝑌𝑎

+ + 1 − (𝐾 + 1) and 𝑌𝑏
+ ≤ 𝑌𝑎

+ + 1 + (𝐾 + 1) which is deemed

infeasible since there is no intersection point between the two equations.

When 𝑥𝑎𝑏 = 1 (4.15) and (4.16) reduces to 𝑌𝑏
+ ≥ 𝑌𝑎

+ − 1 and 𝑌𝑏
+ ≤ 𝑌𝑎

+ − 1.

Since it is two half spaces or two inequalities it is reduced to the following one linear

equation 𝑌𝑏
+ = 𝑌𝑎

+ − 1. It can be seen that in (4.15) and (4.16) activity 𝑏 is putting

a finished part on the output buffer which means that after completion of activity 𝑏

one more finished part will be removed from the robot. On the contrary, when

𝑥𝑎𝑏 = 0 then (4.15) and (4.16) are reduced to 𝑌𝑏
+ ≥ 𝑌𝑎

+ − 1 − (𝐾 + 1) and

𝑌𝑏
+ ≤ 𝑌𝑎

+ − 1 + (𝐾 + 1) which is deemed infeasible since there is no intersection

point between the two equations.

When 𝑥𝑎𝑏 = 1 (4.17) and (4.18) reduces to 𝑌𝑏
+ ≥ 𝑌𝑎

+ and 𝑌𝑏
+ ≤ 𝑌𝑎

+. Since it is two

half spaces or two inequalities it is reduced to the following one linear equation

𝑌𝑏
+ = 𝑌𝑎

+. It can be seen that in (4.17) and (4.18) activity 𝑏 is picking up an

unfinished part to the input buffer which means that after completion of activity 𝑏

there will be no finished parts added or removed to the robot buffer. On the contrary,

when 𝑥𝑎𝑏 = 0 then (4.17) and (4.18) are reduced to 𝑌𝑏
+ ≥ 𝑌𝑎

+ − (𝐾 + 1)and

𝑌𝑏
+ ≤ 𝑌𝑎

+ + (𝐾 + 1)which is deemed infeasible since there is no intersection point

between the two equations. The same set of equations are seen in (4.19) and (4.20)

44

for the case when activity 𝑏 is loading an unfinished part to the machine. Then again

there are no finished parts added or removed to the robot buffer.

Constraints (4.21) through (4.28) all deal with the number of unfinished parts on the

robot at the end of an activity. When 𝑥𝑎𝑏 = 1 (4.21) and (4.22) reduces to 𝑌𝑏
− ≥

 𝑌𝑎
− + 1 and 𝑌𝑏

− ≤ 𝑌𝑎
− + 1. Since it is two half spaces or two inequalities it is

reduced to the following one linear equation 𝑌𝑏
− = 𝑌𝑎

− + 1. It can be seen that in

(4.21) and (4.22) activity 𝑏 is picking up an unfinished part from the input buffer

which means that after completion of activity 𝑏 one more unfinished part will be

carried by the robot buffer. On the contrary, when 𝑥𝑎𝑏 = 0 which means activity 𝑎 is

not performed before 𝑏 then (4.21) and (4.22) are reduced to 𝑌𝑏
− ≥ 𝑌𝑎

− + 1 − (𝐾 +

1)and 𝑌𝑏
− ≤ 𝑌𝑎

− + 1 + (𝐾 + 1) which is deemed infeasible since there is no

intersection point between the two equations.

When 𝑥𝑎𝑏 = 1 (4.23) and (4.24) reduces to 𝑌𝑏
− ≥ 𝑌𝑎

− − 1 and 𝑌𝑏
− ≤ 𝑌𝑎

− − 1.

Since it is two half spaces or two inequalities it is reduced to the following one linear

equation 𝑌𝑏
− = 𝑌𝑎

− − 1. It can be seen that in (4.23) and (4.24) activity 𝑏 is loading

an unfinished part on the machine which means that after completion of activity 𝑏

one more unfinished part will be removed from the robot buffer. On the contrary,

when 𝑥𝑎𝑏 = 0 then (4.23) and (4.24) are reduced to 𝑌𝑏
− ≥ 𝑌𝑎

− − 1 − (𝐾 + 1) and

𝑌𝑏
− ≤ 𝑌𝑎

− − 1 + (𝐾 + 1) which is deemed infeasible since there is no intersection

point between the two equations.

When 𝑥𝑎𝑏 = 1 (4.25) and (4.26) reduces to 𝑌𝑏
− ≥ 𝑌𝑎

− and 𝑌𝑏
− ≤ 𝑌𝑎

−. Since it is two

half spaces or two inequalities it is reduced to the following one linear equation

45

𝑌𝑏
− = 𝑌𝑎

−. It can be seen that in (4.25) and (4.26) activity 𝑏 is unloading a finished

part from the machine which means that after completion of activity 𝑏 there will be

no unfinished parts added or removed to the robot buffer. On the contrary, when

𝑥𝑎𝑏 = 0 then (4.25) and (4.26) are reduced to 𝑌𝑏
− ≥ 𝑌𝑎

− − (𝐾 + 1) and 𝑌𝑏
− ≤ 𝑌𝑎

− +

(𝐾 + 1) which is deemed infeasible since there is no intersection point between the

two equations. The same set of equations are seen in (4.27) and (4.28) for the case

when activity 𝑏 is putting a finished part to the output buffer. Then again there are no

unfinished parts added or removed to the robot buffer.

(4.29) indicates that the number of finished and unfinished parts on the robot at the

end of the activity must not exceed the robot capacity. (4.30) and (4.31) are non-

negativity constraints for the decision variables 𝑌𝑎
−and 𝑌𝑎

+. Since these variables are

number of parts then they must be integer.

4.2 Software Used to Solve the Model

This model can be solved by many software programs. However, the software used

to solve this MIP model was a combination of Visual Studio 2017 and IBM ILOG

CPLEX Optimization Studio 12.8.0. Visual Studio is used for computer program

development which was founded by Microsoft as an IDE (Integrated Development

Environment) and languages such as C++ are built into it. CPLEX on the other hand

is a program used to solve models such as MIP, LP and so forth in order to provide

an optimal solution. CPLEX concert technology is a library that has C++ language

and thus the configuration between CPLEX and Visual Studio allows us to code in

C++ language in Visual Studio with the possibility of getting an optimal solution due

to the CPLEX configuration.

46

4.3 Cycle and Variables Representation

Since the distance matrix 𝑑𝑎𝑏 as well as variables 𝑥𝑎𝑏 are composed of two

consecutive activities where a represents an activity and b represents another activity

such as for example 𝑑𝑈1𝐿1 or 𝑥𝑈1𝐿1 it can be seen that 𝑎 and 𝑏 themselves are divided

in two parts the activity itself for example unloading and on which machine the

activity was carried out for example machine 1.

Thus, if we write the representation of 𝑥𝑎𝑏 as x[a][i][b][j] then 𝑎 and 𝑏 are an array

of 4 elements, while 𝑖 and 𝑗 are an array having m elements. Also, since it is easier

to deal with numbers rather than alphabets the activities 𝐿, 𝑈, 𝐼 and 𝑂 are represented

as 0, 1, 2, and 3. However, when the output is printed in the solutions page any

variables or activities represented as numbers are printed as their representations.

The same is true for the variables 𝑡𝑎, 𝑌𝑎
+, 𝑌𝑎

−, 𝑧𝑖 which are represented as t[a][i],

YP[a][i], YN[[a][i] and z[i]. An example of the solution page for a 2 machine case

with process time 22 and 𝐾 = 1 is shown in Figure (4.5).

47

Figure 4.5: Solution Page for 2 Machine Case with K = 1, P = 22

The cycle on the other hand is represented by 2 arrays Corder[i][j] where 𝑖 = 0

represents array of activities and 𝑖 = 1 represents array of machine on which

activity is conducted and 𝑗 has 4𝑚 elements since each activity is conducted once for

each machine or in terms of output or input buffer for each part that is carried or

dropped and there are 4 activities so if it is a 2 machine problem, there will be 8

activities in total, and if it is 3 machines there will be 12 activities in total and so

forth. So generally for an m machine case there will be 4m activities. For example, if

48

the following representation is printed as depicted in Figure (4.6) then the actual

cycle that is being represented is 𝐿1𝑈2𝑂2𝐼2𝐿2𝑈1𝑂1𝐼1 for a 2 machine case.

Figure 4.6: Representation of a Cycle for a 2 Machine Case

4.4 Simulated Annealing Algorithm

The solver was used to run the MIP model for 2 machine and 3 machine cases, it

could not be used to solve larger machine problems such as 4 machine and 5 machine

case and that is due to the extensive solution time which is known to be one of the

cons of using exact solution methods. Thus, a heuristic approach was proposed to be

used for solving the 4 machine and 5 machine cases and that is the Simulated

Annealing Algorithm. A heuristic approach will not guarantee the optimal solution at

all times but the solution time will be reduced and this will be seen in the next

chapter.

Compared to using other heuristic approaches such as genetic algorithm, gradient

descent, etc. [44] stated the main advantages of using simulated annealing are:

1. Memory shortage problems are avoided because only one solution is used at a

time for a run.

2. Neighboring solutions produced are feasible and a repair algorithm is not

required leading to solutions that are highly diversified.

49

Generally the steps of the simulated annealing algorithm start with an initial solution

being constructed. Then the iteration loop begins and a neighboring solution is

found. If the neighboring solution is better than the current solution then it becomes

the new current solution. Else, if it was worse than the bad solution might be

accepted with some acceptance probability or otherwise rejected.

The Simulated Annealing algorithm coded in Visual-CPLEX solver for the model in

this study followed the steps below which was an extension to the MIP model.

4.4.1 Creating the Initial Current Order

Figure 4.7: Creating Initial Current Order

Figure (4.7) shows the algorithm that was coded to create a fixed initial current order

of activities that make a cycle. Since we previously defined that 𝑖 has 𝑚 elements we

fix the 𝑖 in Corder[i][j] to 0 and 1 since there will always be 2 arrays: 0 for activities

and 1 for machines.

50

The initial current order for a 2 machine case will look something like Figure (4.8)

which is a cycle in the form of 𝐿1𝐼2𝐿2𝑈1𝑂1𝑈2𝑂2𝐼1 when the numbers that

represented the activities are replaced by their actual representations and machines

are replaced by 𝑖 + 1 is a cycle of the form as depicted in Figure (4.9).

Figure 4.8: Initial Current Order Created for 2 Machine Case

Figure 4.9: Initial Current Order for 2 Machine Case Represented by Activities and

Machines

Generally, the idea of creating this initial order was because before loading a part on

the machine, the robot needs to pick up a part from the input buffer and after the part

is loaded it is processed and then unloaded after finishing processing and then finally

the unloaded part is moved to the output buffer. This order was considered for a

robot with buffer capacity 1 since an order created to consider robot buffer capacity 2

or higher will create an infeasible order for a robot with smaller buffer capacity. A

generalized initial current order for 𝑚 machine case is shown as Figure (4.10) and

Figure (4.11) represents the order in terms of activities 𝐿, 𝑈, 𝐼 and 𝑂.

0 1 3 2 3 1

0 2

0 1 1 0 0 0 1 1

L U O I O U

L I

1 2 2 1 1 1 2 2

51

Figure 4.10: General Initial Current Order

Figure 4.11: General Initial Current Order Represented by Activities L, U, I and O

The initial order was generated after testing a set of orders that in some cases seemed

to be infeasible depending on the robot buffer capacity as stated before. It will be

seen later in the results and discussion chapter that since this order represents a cycle

for a robot with buffer capacity of size 1 then in some cases optimal solution will be

reached from the first iteration.

4.4.2 Defining x Variables and Setting Best Order

After defining all the constraints of the model, before calculating the current

objective the variable x[a][i][b][j] is set to lower bound of 1 so that only the x

variables that appear in the current order are set to 1 while others are 0. And this is

coded by the algorithm shown in Figure (4.12).

Figure 4.12: Setting x Variables to Lower Bound 1

52

So for example, x[Corder[0][0]][Corder[1][0]][Corder[0][1]] [Corder[1][1]] is set to

1 for 𝑖 = 0. This basically means that we just take two consecutive elements or

activites from the array of Corder[i][j].

After that current objective is found by CPLEX solver and then variables x[a][i][b][j]

for current order is set back to lower bound 0. The best order is set to be equal to the

current order and the best objective is set to be equal to current objective.

4.4.3 Starting the Iteration Loop

In this algorithm the number of iterations is the stopping criteria. Since for cases

when number of machines was 2 or 3 the optimal solution was found by the exact

method it was easier to assume number of iterations required to reach optimal

solution and that was around 1000 iterations. However, for 4 and 5 machine cases the

number of iterations required trials until what can only seem as the minimum cycle

time found and that was fixed as the number of iterations required. For a 4 machine

case 2500 iterations were made and for 5 machine case the number of iterations

ranged between 3000 to 5000.

When the runs were made by the SA algorithm it must be noted that each run was

made 10 times which means if a case was run for 1000 iterations then those 1000

iterations were made 10 times. Out of those 10 times the result that gave the

minimum cycle time was selected.

Then the first step was to set new order equal to the current order.

4.4.4 Strategy Used for New Solution

At this point a new solution is generated and a swapping method is used to generate

the solution. The swap is conducted for 2 sets: one for activities and one for the

53

machine. So for example, if we have the initial current order for 2 machine case as

the one in Figure (4.10) then a random number a and b is generated between 1 and

4𝑚 – 1. Even though elements of 𝑗 range between 0 and 4𝑚 – 1 we never swap with

𝑗 = 0 which is the loading activity of machine 1 and this to avoid permutations.

So if 𝑎 = 4 and 𝑏 = 6 there will be a swap between 𝑎 and 𝑏 and the new order

will be as shown in Figure (4.13). It can be seen that the new order did not create any

difference since a swap between two output buffer activities does not reduce distance

matrix because the distance of travel will be the same. To avoid such a new order as

well as to avoid swapping when 𝑎 and 𝑏 are equal conditions are used in the

algorithm for the swap to be restricted as shown in Figure (4.14).

Figure 4.13: Swapping Strategy for New Solution to be generated

54

Figure 4.14: Swapping Strategy to Generate New Solution

It can be seen that this swap is conducted for 𝑖 = 0 and 𝑖 = 1 which is activities

and machines at the same time. It was also previously mentioned that since the order

for a robot with buffer capacity of size 1 is very restricted since for each machine the

order should always be the same that is Input buffer, Load, Unload, Output buffer a

separate swap method with a condition was coded just for this case and it is shown in

Figure (4.15).

Figure 4.15: Swapping Strategy for Robot Buffer Capacity 1

55

The code has a condition that if 𝑎 and 𝑏 are equal no swap will be conducted. In this

case, 𝑎 and 𝑏 are random numbers between 1 and 2𝑚 – 1. So if we deal with a 2

machine case with initial order as shown in Figure (4.10). Then 𝑎 can either be 1, 2

or 3 and 𝑏 can either be 1, 2 or 3 that means there are 6 possible swaps (𝑎 = 1, 𝑏 =

2), (𝑎 = 1, 𝑏 = 3), (𝑎 = 2, 𝑏 = 1), (𝑎 = 2, 𝑏 = 3), (𝑎 = 3, 𝑏 = 1) and (𝑎 = 3, 𝑏 =

2) and since 3 of them are the same to the other 3 that means there are 3 unique new

orders. So in general there are (2𝑚 − 1)(2𝑚 − 2) 2⁄ unique new orders for 𝑚

machine case.

It can also be seen from the code that there will be two sets of swaps since as stated

before 𝐼 should be followed by 𝐿 and 𝑈 should be followed by 𝑂. These 3 new orders

for the 2 machine case are as shown in Figure (4.16).

Figure 4.16: New Orders generated for 2 Machines with K = 1

56

After that a new order is printed after the swap. And variables x[a][i][b][j] is set to

lower bound of 1 so that only the new order x[a][i][b][j] variables are set to 1 while

others are 0. And then the new objective is found by CPLEX solver.

4.4.5 Condition for Finding a Better Solution

The first condition states that if the new objective is less than best objective found up

to this point than the new objective is the best objective and the new order is the best

order given that the order is feasible.

The second condition states that if the new objective is less than current objective

found than the new objective is the current objective and the new order is the current

order given that the order is feasible.

The third condition states that if Random Number < 𝑒
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒−𝑁𝑒𝑤 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒

𝑇

then we set the new objective to be equal to the current objective and the new order

to be the current order with the control parameter being 𝑇 = 𝜆 ∗ 𝑇1 where the ratio 𝜆

is 0 < 𝜆 < 1 and 𝑇 is known as temperature. This technique is known as the

cooling schedule and it is used rather than some fixed number because the difference

between the new and current objective is taken into account and thus the acceptance

of the bad solution decrease if the difference is big or if the temperature decreases.

Otherwise, if the order is infeasible and if Random Number < 𝑒
𝑊𝑜𝑟𝑠𝑒

𝑇 then we set the

new objective to be equal to the current objective and the new order to be the current

order which allows us to except infeasible orders. Where 𝑊𝑜𝑟𝑠𝑒 is any negative big

number such as -1000.

57

Also in the SA algorithm since the parameters ratio and worse affect the possibility

of getting the optimal solution they had to be varied according to the number of

machines. The parameter ratio was kept constant at 0.99 for all cases. However the

parameter worse was -5000 for the 2 machine case and -10000 for the 3, 4 and 5

machine case.

Finally the variables x[a][i][b][j] for the new order is set back to lower bound 0.And

then x[a][i][b][j] is set to lower bound of 1 so that only the best order x[a][i][b][j]

variables are set to 1 while others are 0. Lastly, the best objective is computed by

CPLEX solver if the order is feasible.

58

Chapter 5

RESULTS AND DISCUSSION

5.1 Cycle Time Calculation

In this section, a two machine case with robot buffer capacity 1 and 2 are given as

examples to show how the cycle time is calculated along with the other decision

variables that include the completion time of the activities (𝑡𝑎), the number of parts

on the robot that are unfinished at the end of activity a (𝑌𝑎
−), the number of parts on

the robot that are finished at the end of activity a (𝑌𝑎
+) and the binary decision

variables (𝑥𝑎𝑏) and (𝑧𝑖). The schedule in this example is the optimal solution of these

two cases that was found by the MIP model.

Case 1: m = 2, δ = 2, ε = 1, K = 1, P = 22

Table 5.1: Case when m = 2, δ = 2, ε = 1, K = 1, P = 22

Activity

(a)

L1 U2 O2 I2 L2 U1 O1 I1 C

Xab = 1 XL1U2 XU2O2 XO2I2 XI2L2 XL2U1 XU1O1 XO1I1 XI1L1

38

ta 0 3 6 13 18 23 28 35

Ya
+
 0 1 0 0 0 1 0 0

Ya
-
 0 0 0 1 0 0 0 1

Since the schedule of robot moves is as shown above that indicates that robot

performs activity 𝐿1 before 𝑈2 (𝑥𝐿1𝑈2 = 1), 𝑈2 before 𝑂2 (𝑥𝑈2𝑂2 = 1), 𝑂2 before 𝐼2

(𝑥𝑂2𝐼2 = 1), 𝐼2 before 𝐿2 (𝑥𝐼2𝐿2= 1), 𝐿2 before 𝑈1 (𝑥𝐿2𝑈1 = 1), 𝑈1 before 𝑂1 (𝑥𝑈1𝑂1 =

59

1), 𝑂1 before 𝐼1 (𝑥𝑂1𝐼1= 1) and finally 𝐼1 before 𝐿2 (𝑥𝐼1𝐿1 = 1). Thus, other

combination of activities will be zero and this is represented by equations (4.2) and

(4.3) in the mathematical model.

𝑌𝐿1
− and 𝑌𝐿2

− are 0 because at the end of loading a machine with an unfinished part the

robot has no parts left on it. In the model, this is represented by equations (4.23) and

(4.24). Also it must be noted that 𝑌𝐿1
+ and 𝑌𝐿2

+ will not exist because the robot will not

load the machine with a finished part. This is represented by equations (4.19) and

(4.20) in the model. On the other hand, 𝑌𝑈1
+ and 𝑌𝑈2

+ are 1 because at the end of

unloading a machine with a finished part the robot has one part. In the model, this is

represented by equations (4.13) and (4.14). Also it must be noted that 𝑌𝑈1
− and 𝑌𝑈2

−will

not exist because the robot will not unload the machine with an unfinished part. This

is represented by equations (4.25) and (4.26) in the model. When a part is taken to

the output buffer it means a finished part is put to the output buffer thus the robot has

no parts left so 𝑌𝑂1
+ and 𝑌𝑂2

+ are 0. This is represented by equations (4.15) and (4.16) in

the model. While equations (4.27) and (4.28) indicate that 𝑌𝑂1
− and 𝑌𝑂2

− will not exist

since the robot will not put an unfinished part to the output buffer. And when a part

is taken from the input buffer it means an unfinished part is picked up from the input

buffer thus the robot has one part so 𝑌𝐼1
− and 𝑌𝐼2

− are 1. This is represented by

equations (4.21) and (4.22) in the model. While equations (4.17) and (4.18) indicate

that 𝑌𝐼1
+ and 𝑌𝐼2

+ will not exist since the robot will not pick up a finished part from the

input buffer.

60

Table 5.2: Describing Completion Time Calculation for Case when m = 2, δ = 2, ε =

1, K = 1, P = 22

Buffer/

Machine

i

L1U2

δ = 2 since the time to travel from machine 1 to machine 2 is 2 time unit

and ε = 1 because at machine 2 the part is picked up so unloading time

is 1 time unit, dL1U2 = ε + |i – j|δ = 1 + |1 – 2| (2) = 1 + 2 = 3 and tU2 = 3

U2O2

δ = 2 since the time to travel from machine 2 to the output buffer is 2

time unit and ε = 1 because at the output buffer the part is put so

loading time is 1 time unit, dU2O2 = ε + (m – i + 1) δ = 1 + (2 – 2 + 1) (2)

= 1 + 2 = 3 and tO2 = 3 + 3 = 6

O2I2

3*δ = 6 since the time to travel from output buffer to input buffer is 6

time unit and ε = 1 because at the input buffer the part is picked up so

unloading time is 1 time unit, dO2I2 = ε + (m + 1) δ = 1 + (2 + 1) (2) = 1

+ 6 = 7 and tI2 = 6 + 7 = 13.

I2L2

2*δ = 4 since the time to travel from the input buffer to the machine 2 is

4 time unit and ε = 1 because at machine 2 the part is put so loading

time is 1 time unit, dI2L2 = ε + i δ = 1 + (2) (2) = 1 + 4 = 5 and tL2 = 13 +

5 = 18.

L2U1

δ = 2 since the time to travel from machine 2 to machine 1 is 2 time unit

and ε = 1 because at machine 1 the part is picked up so unloading time

is 1 time unit, dL2U1 = ε + |i – j|δ = 1 + |2 – 1| (2) = 1 + 2 = 3 and tU1 = 18

+ 3 + 2 = 23 where 2 is waiting time since machine 1 had to be

unloaded and process time of 22 time units was not fulfilled by the time

the robot was ready.

U1O1

2*δ = 4 since the time to travel from machine 1 to the output buffer is 4

time unit and ε = 1 because at the output buffer the part is put so

loading time is 1 time unit, dU1O1 = ε + (m – i + 1) δ = 1 + (2 – 1 + 1) (2)

= 1 + 4 = 5 and tO1 = 23 + 5 = 28.

O1I1

3*δ = 6 since the time to travel from output buffer to input buffer is 6

time unit and ε = 1 because at the input buffer the part is picked up so

unloading time is 1 time unit, dO1I1 = ε + (m + 1) δ = 1 + (2 + 1) (2) = 1

+ 6 = 7 and tI1 = 28 + 7 = 35.

I1L1

δ = 2 since the time to travel from the input buffer to the machine 1 is 2

time unit and ε = 1 because at machine 1 the part is put so loading time

is 1 time unit, dI1L1 = ε + i δ = 1 + (1) (2) = 1 + 2 = 3 and C = 35 + 3 =

38.

I O 1 2

61

Table (5.2) indicates how the completion times for each activity is calculated and

equation (4.4) was used when finding the completion time of activity 𝑏 while (4.6)

was applied in finding 𝑡𝑈1 since the completion time of activity 𝑈1 must be greater or

equal to the completion time of 𝐿1 which is 0 + the unloading time which is 1 and the

process time which is 22, thus 𝑡𝑈1 must be greater or equal 23. Equation (4.8) states

that the cycle time is greater or equal to the completion time of 𝐼1 which is 35 + (the

distance matrix 𝑑𝐼1𝐿1 which is 3)*(𝑋𝐼1𝐿1 which is 1) thus 𝐶 is greater or equal to 38.

It must also be noted that in this case 𝑧1 = 1 since for machine 1 activity 𝑈1 is

performed after 𝐿1. However, 𝑧2 = 0 since for machine 2 activity 𝑈2 is performed

before L2.

The Gantt Chart for this case is shown in Figure (5.1). A Gantt chart is used to

represent the processing time by each machine from start to end and for a certain

period. And also for the robot it represents the start and end for completion of each of

the activities in the chart and thus the horizontal axis is titled as time. For this 2

machine case it can be seen that for machine 1 after processing time of 22 time units

the machine will stay idle for another 16 time units with no part on it. As for machine

2 processing of the part starts at time 18 and it processed for 22 time units. The

machine is also idle with no part on it for 16 time units. The completion time of the

activities are represented by two bars one bar for total travel time and one bar for the

time taken for the robot to pick up or leave a part. It can also be seen that before the

unloading operation of machine 1 there was some waiting time for the robot and this

is because the machine did not finish processing. In some cases when two different

activities are carried out on the same machine then there will be no travel time.

Figure 5.1: Gantt Chart for Case when m = 2, δ = 2, ε = 1, K = 1, P = 22

U2 O2 I2 L2 U1 O1 I1 L1

0 5 10 15 20 25 30 35 40

Robot

Machine 1

Machine 2

Time

Gantt Chart for 2 Machines

Processing Time

Waiting Time for the Robot

Robot Travel Time

Time Taken to Pickup/Leave a Part

63

Case 2: m = 2, δ = 2, ε = 1, K = 2, P = 22

Table 5.3: Case when m = 2, δ = 2, ε = 1, K = 2, P = 22

Activity

(a)

L1 I2 O1 U2 L2 O2 I1 U1 C

Xab = 1 XL1I2 XI2O1 XO1U2 XU2L2 XL2O2 XO2I1 XI1U1 XU1L1

28

ta 0 3 10 13 14 17 24 27

Ya
+
 1 1 0 1 1 0 0 1

Ya
-
 0 1 1 1 0 0 1 1

One of the most important realizations of how increase in robot buffer capacity can

lead to minimization in cycle time is that when robot buffer capacity is just 1 that

indicates that the schedule of robot moves will always be constant in such a way that

after loading a machine with an unfinished part then the robot can perform either of

the following:

1. If the second machine is empty then the robot can go back to the input buffer

and take an unfinished part and load the second machine.

2. If the second machine had a part and processing of that part is finished then

the robot can move to the second machine and unload the finished part.

Obviously, after unloading a finished part the robot has to go to the output

buffer for unloading the finished part, only then can it go back to the input

buffer to pick up an unfinished part.

However, it can be seen from the schedule of robot moves for the case with robot

buffer capacity of size 2 that these restrictions are minimized since after picking up

an unfinished part from the input buffer the robot can also unload a machine that

finished processing as a second activity and having two unloading activities one after

64

another indicates that two parts are held by the robot at the same time. Also, after

that when a machine is loaded with the unfinished part and the robot is still holding a

finished part the robot can go back to the input buffer to pick up another part and at

this point the robot is again holding two parts at the same time. After that it can be

seen that the finished part is put to the output buffer but the robot is still holding one

unfinished part and then machine 2 is unloaded with a finished part and at this point

the robot is again holding two parts. The last two activities of the robot in that cycle

include loading machine 1 with an unfinished part and then putting a finished part on

the output buffer and then at this point it can be seen that the robot has no parts.

Thus, this sequence of activities has seen to reduce the cycle time which proves that

increase in robot buffer capacity further minimizes cycle time.

2.2 Cycle Time for Robot Buffer Capacity > m and ≤ 2m

In this section we discuss the impact of increasing in the robot buffer capacity to a

size that is greater than the number of machines and less than or equal to a size that is

two times the number of machines. So if we continue to consider a 2 machine case,

we will have two more cases which are 2 machines with robot buffer capacity of 3

and 2 machines with robot buffer capacity of 4.

65

Case 1: m = 2, δ = 2, ε = 1, K = 3, P = 22

Table 5.4: Case when m = 2, δ = 2, ε = 1, K = 3, P = 22

Activity

(a)

L1 O2 U2 L2 O1 I1 I2 U1 C

Xab = 1 XL1O2 XO2U2 XU2L2 XL2O1 XO2I1 XI1I2 XI2U1 XU1L1

24

ta 0 5 8 9 12 19 20 23

Ya
+
 1 0 1 1 0 0 0 1

Ya
-
 1 1 1 0 0 1 2 2

When the buffer capacity is more than m which in this case is 3 the robot has the

ability to hold two unfinished parts and one finished part or two finished parts and

one unfinished part at the same time which indicates that rather than visiting the

input buffer once followed by unloading a machine once now the robot has the

ability to either visit the input buffer two times and hold two unfinished parts

followed by visiting a machine and unloading a finished part or visiting the input

buffer once and unloading two machines with 2 finished parts.

It can be seen from the schedule of robot moves above that the robot visits the input

buffer and carries an unfinished part and then it carries another unfinished part from

the input buffer. After that the robot visits machine 1 and unloads a finished part and

at this moment the robot is holding 3 parts. Then the robot loads machine 1 with an

unfinished part and after that it visits the output buffer to put a finished part. After

that the robot moves to machine 2 to unload a finished part and then load the

machine with an unfinished part. Lastly, the robot moves to the output buffer to put a

finished part and at the end of this activity the robot has no parts being held.

66

The cycle time was seen to have further minimized with increase in the robot buffer

capacity and this is due to the further flexibility in the robot move schedule.

Case 2: m = 2, δ = 2, ε = 1, K = 4, P = 22

Table 5.5: Case when m = 2, δ = 2, ε = 1, K = 4, P = 22

Activity

(a)

L1 U2 L2 I1 I2 O2 O1 U1 C

Xab = 1 XL1U2 XU2L2 XL2I1 XI1I2 XI2O2 XO2O1 XO1U1 XU1L1

24

ta 0 3 4 9 10 17 18 23

Ya
+
 1 2 2 2 2 1 0 1

Ya
-
 1 1 0 1 2 2 2 2

When robot buffer capacity is exactly two times the number of machines which in

this case it is 4 it means that the robot can hold two finished parts and two unfinished

parts at the same time indicating that it can visit the output buffer and input buffer

one time because it means at some point when the robot is holding 2 finished parts

after unloading two machines and then it visits the input buffer and picks up 2

unfinished parts it can then move to the output buffer to put those 2 finished parts to

the output buffer.

The schedule of cycle moves above was as follows the robot goes to the input buffer

to pick up an unfinished part having already carried two finished parts from a

previous cycle and then it picks up another unfinished part from the input buffer and

at this point the robot is holding 4 parts. Then it moves to the output buffer to put

both the finished parts. After that the robot moves to machine 1 to unload a finished

67

part and then loads an unfinished part and then it moves to machine 2 to unload a

finished part and then load an unfinished part.

It can be seen that for this case the cycle time could no longer be minimized and

there may be two main reasons for this:

1. Process time effect.

2. Cumulative distance matrix plus completion time effect.

In section 5.4 the effect of process time on the cycle time with increasing robot

buffer capacity will be further discussed.

5.3 Comparison between MIP Model and SA Algorithm Results

In this section, the cycle time found by the MIP model for 2, 3 and 4 machine case

with one buffer capacity is compared to the cycle time found by the SA algorithm for

2, 3, 4 and 5 machine cases with solution time recorded.

Six cases were considered for travelling time of 2 time units and loading/unloading

time of 1 time units and the cases differed with differing process times ranging from

0, 22, 40, 50, 100 and 5000. These cases were considered so that the effect of process

time along with waiting time can be later studied and discussed. Also the buffer

capacity size ranged from size 1 to 2𝑚 for each machine case.

It must also be noted that even though the solution time for the SA algorithm might

seem bigger for the 2 machine case when compared to the MIP model, the time by

which the algorithm reaches the optimal solution is actually shorter but the solution

time was recorded when all the iterations were completed. This solution time

convergence was portrayed by a graph with solution time on the X-axis and cycle

68

time on the Y-axis. These graphs were made for all the cases and the will be

presented in Appendix A for Case 1, Case 2, Case 3, Case 4, and Case 5 and

Appendix B for Case 6.

5.3.1 Case 1: δ = 2, ε = 1, P = 0

Table 5.6: Case when δ = 2, ε = 1, P = 0

MIP Model Simulated Annealing Algorithm

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

2

1 32 0.06

2

1 32 42

2 20 0.39 2 20 31

3 20 0.42 3 20 40

4 20 0.47 4 20 45

3

1 60 0.19

3

1 60 46

2 44 60.56 2 44 30

3 28 357.84 3 28 8

4 28 560.95 4 28 43

5 28 561.30 5 28 45

6 28 635.67 6 28 47

4

1 96 1.86

4

1 96 124

2 56 81

3 56 22

4 36 113

5 36 124

6 36 128

7 36 132

8 36 29

5 5

1 140 44

2 92 112

3 68 122

4 68 139

5 48 147

6 44 169

7 44 176

8 44 177

9 44 187

10 44 187

69

It can be seen that the optimal solution was found by the SA algorithm when

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as

shown in Figure (5.2) and Figure (5.3), also with reduced time since most of the

optimal solutions were actually found at 1 s or less even though completion of the

iterations took longer. This proves that the SA algorithm modeled is adequate enough

to be used.

Figure 5.2: Comparison between MIP and SA Cycle Time for 2 Machines with P = 0

Figure 5.3: Comparison between MIP and SA Cycle Time for 3 Machines with P = 0

32

20 20 20

32

20 20 20

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 2 Machines with P = 0

MIP SA

60

44

28 28 28 28

60

44

28 28 28 28

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 3 Machines with P = 0

MIP SA

70

It must also be noted that when the MIP model was run for a 4 machine case it took

longer than 24 hours without providing the optimal solution thus even though the

optimality of some of the cycle time provided by the SA algorithm for the 4 and 5

machine case is not guaranteed, the solution time is extremely small compared to

how long it would have taken the MIP model to find the optimal solution.

For the case when 𝑚 = 4, 𝛿 = 2, 𝜀 = 1, 𝑃 = 0, 𝐾 = 2 it can be seen in Table (5.7)

that since process time has no impact here forming the optimal schedule is easy since

the buffer can hold two parts that means two loading/unloading activities followed

by two output/input buffer putting/picking up activities will give the optimal

schedule and hence we can prove whether the cycle time found by the SA algorithm

was optimal. And it was seen that the cycle time was in fact optimal.

Similarly for the case when the buffer capacity is 3 which means the robot can hold

three parts indicating three putting/picking up activities followed by three

output/input buffer putting/picking up activities will give the optimal schedule and

hence we can prove as shown in Table (5.8) whether the cycle time found by the SA

algorithm was optimal. And it was seen that the cycle time was in fact optimal.

Table 5.7: Case when m = 4, δ = 2, ε = 1, K = 2, P = 0

a
L1 U1 L2 U2 O1 O2 I1 I2 L3 U3 L4 U4 O3 O4 I3 I4 C

ta 0 1 4 5 12 13 24 25 32 33 36 37 40 41 52 53

56 Ya
+
 0 1 1 2 1 0 0 0 0 1 0 2 1 0 0 0

Ya
-
 1 1 0 0 0 0 1 2 1 0 0 0 0 0 1 2

Table 5.8: Case when m = 4, δ = 2, ε = 1, K = 3, P = 0

a L1 U1 L2 U2 L3 U3 O1 O2 O3 I1 I2 I3 L4 U4 O4 I4 C

ta 0 1 4 5 8 9 14 15 16 27 28 29 38 39 42 53

56 Ya
+
 0 1 1 2 2 3 2 1 0 0 0 0 0 1 0 0

Ya
-
 2 2 1 1 0 0 0 0 0 1 2 3 2 2 2 3

72

Similarly for the case when the buffer capacity is 4 which means the robot can hold

four parts indicating four loading/unloading activities followed by four output/input

buffer putting/picking up activities will give the optimal schedule and hence we can

prove as shown in Table (5.9) whether the cycle time found by the SA algorithm was

optimal. Also in this case the optimal solution was found.

For the cases when the robot buffer capacity was 5, 6, 7 and 8 it does not need to be

proved that the optimal solution was found since 36 is the minimum cycle time that

can be found in this case since the schedule discussed above is the minimum in terms

of cumulative distance matrix plus completion time.

As per the same discussions the cycle times for the 5 machine case for buffer

capacity 1, 2, 3, 4 and 5 will also be proved by optimal schedules when process time

has no affect in Tables (5.10), (5.11), (5.12), (5.13) and (5.14). And for those cases it

was also seen that all the cycle times were optimal except for the case when buffer

capacity was 5. For the cases when the 𝐾 was 6, 7, 8, 9 and 10 optimality did not

need to be proved since 44 is the minimum cycle time that can be found.

Table 5.9: Case when m = 4, δ = 2, ε = 1, K = 4, P = 0

a
L1 U1 L2 U2 L3 U3 L4 U4 O1 O2 O3 O4 I1 I2 I3 I4 C

ta 0 1 4 5 8 9 12 13 16 17 18 19 30 31 32 33

36 Ya
+
 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0

Ya
-
 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4

Table 5.10: Case when m = 5, δ = 2, ε = 1, K = 1, P = 0

a
L1 U1 O1 I1 L2 U2 O2 I2 L3 U3 O3 I3 L4 U4 O4 I4 L5 U5 O5 I5 C

ta 0 1 12 25 30 31 40 53 60 61 68 81 90 91 96 109 120 121 124 137

140 Ya
+
 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Ya
-
 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

74

Table 5.11: Case when m = 5, δ = 2, ε = 1, K = 2, P = 0

a
L1 U1 L2 U2 O1 O2 I1 I2 L3 U3 L4 U4 O3 O4 I3 I4 L5 U5 O5 I5 C

ta 0 1 4 5 14 15 28 29 36 37 40 41 46 47 60 61 72 73 76 89

92 Ya
+
 0 1 1 2 1 2 0 0 0 1 1 2 1 0 0 0 0 1 0 0

Ya
-
 1 1 0 0 0 0 1 2 1 1 0 0 0 0 1 2 1 1 1 2

Table 5.12: Case when m = 5, δ = 2, ε = 1, K = 3, P = 0

a
L1 U1 L2 U2 L3 U3 O1 O2 O3 I1 I2 I3 L4 U4 L5 U5 O4 O5 I4 I5 C

ta 0 1 4 5 8 9 16 17 18 31 32 33 42 43 46 47 50 51 64 65

68 Ya
+
 0 1 1 2 2 3 2 1 0 0 0 0 0 1 1 2 1 0 0 0

Ya
-
 2 2 1 1 0 0 0 0 0 1 2 3 2 2 1 1 1 1 2 3

75

Table 5.13: Case when m = 5, δ = 2, ε = 1, K = 4, P = 0

a
L1 U1 L2 U2 L3 U3 L4 U4 O1 O2 O3 O4 I1 I2 I3 I4 L5 U5 O5 I5 C

ta 0 1 4 5 8 9 12 13 18 19 20 21 34 35 36 37 48 49 52 65

68 Ya
+
 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0 0 1 0 0

Ya
-
 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 3 3 3 4

Table 5.14: Case when m = 5, δ = 2, ε = 1, K = 5, P = 0

a
L1 U1 L2 U2 L3 U3 L4 U4 L5 U5 O1 O2 O3 O4 O5 I1 I2 I3 I4 I5 C

ta 0 1 4 5 8 9 12 13 16 17 20 21 22 23 24 37 38 39 40 41

44 Ya
+
 0 1 1 2 2 3 3 4 4 5 4 3 2 1 0 0 0 0 0 0

Ya
-
 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 1 2 3 4 5

76

5.3.2 Case 2: δ = 2, ε = 1, P = 22

Table 5.15: Case when δ = 2, ε = 1, P = 22

MIP Model Simulated Annealing Algorithm

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

2

1 38 0.09

2

1 38 62

2 28 0.26 2 28 42

3 24 0.33 3 24 71

4 24 0.45 4 24 58

3

1 60 0.31

3

1 60 56

2 44 21.52 2 44 37

3 40 227.83 3 40 46

4 28 65.70 4 28 54

5 28 70.02 5 28 59

6 28 71.78 6 28 61

4

1 96 1.70

4

1 96 61

2 68 66

3 56 92

4 52 103

5 36 141

6 36 118

7 36 125

8 36 117

5 5

1 140 167

2 92 90

3 72 101

4 68 128

5 60 275

6 44 311

7 44 325

8 44 306

9 44 355

10 44 345

It can be seen that the optimal solution was found by the SA algorithm when

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as

shown in Figure (5.4) and (5.5), also with reduced time since most of the optimal

solutions were actually found at times ranging between 0 and 2 s for the 2 machine

77

case and times ranging between 7 and 35 s for the 3 machine case even though

iteration completion took a longer time.

Figure 5.4: Comparison between MIP and SA Cycle Time for 2 Machines with P =

22

Figure 5.5: Comparison between MIP and SA Cycle Time for 3 Machines with P =

22

It is logically evident that with increase in process time the cycle time can never be

smaller when compared to the cycle time of a process time that was smaller. So since

38

28
24 24

38

28
24 24

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 2 Machines with P = 22

MIP SA

60

44
40

28 28 28

60

44
40

28 28 28

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 3 Machines with P = 22

MIP SA

78

the cycle time for all buffer capacities in 4 and 5 machine case was equivalent to that

of the cycle time when process time was 0 indicates that the cycle time is optimal.

However, it can be seen that the cycle time for 𝑚 = 4, 𝐾 = 2 and 𝐾 = 4 as well as

𝑚 = 5, 𝐾 = 3 and 𝐾 = 5 were not equal to the cycle times when process time was 0.

For the case when 𝑚 = 4, 𝛿 = 2, 𝜀 = 1, 𝑃 = 22, 𝐾 = 2 it can be seen that since

process time has an impact forming the optimal schedule is not as easy. Since the

buffer can hold two parts that means two loading/unloading activities followed by

two output/input buffer putting/picking up activities will give the optimal schedule

and hence we can prove whether the cycle time found by the SA algorithm was

optimal. However, now along with that in mind we should also consider a schedule

in such a way that we can avoid waiting time so that means that between a loading

and unloading activity of any machine the total completion time of unloading must

be at least the process time plus the time taken to pick up the finished part. Thus my

suggestion was that the optimal schedule will look something like Table (5.16) where

two input buffer activities are directly followed by two loading activities and also

two unloading activities are directly followed by two output buffer activities. And it

can be seen that the cycle time found was optimal.

Table 5.16: Case when m = 4, δ = 2, ε = 1, K = 2, P = 22

a
L1 L2 I3 I4 L3 U4 L4 U1 O1 O2 U2 U3 O3 O4 I1 I2 C

ta 0 3 8 9 16 19 20 27 36 37 44 47 52 53 64 65 68

m2 0 5 6 13 16 17 24 33 34 41

m3 0 3 4 11 20 21 28 31

m4 48 51 56 57 64 67 0 7 16 17 24 27 32 33 44 45

Ya
+
 0 0 0 0 0 1 0 2 1 0 1 2 1 0 0 0

Ya
-
 1 0 1 2 1 1 0 0 0 0 0 0 0 0 1 2

80

The Gantt chart for this case is shown in Figure (5.6). In the Gantt chart for 2

machine case it was seen that the time a part stays on the machine between loading

and unloading is exactly the process time. However in this case it can be seen that

after 22 time units of processing for machine 1 the part stayed on the machine idle

for 4 time units and for machine 2 the part stayed on the machine for 18 time units.

For machine 3 the part stayed on the machine idle for 8 time units and for machine 4

the part stayed on the machine idle for 44 time units.

Since this case is a robot buffer with the ability to hold two parts then two output

buffer activities can follow each other, two input buffer activities can follow each

other or unloading activity can be followed by a loading activity.

Similarly for the case when the buffer capacity is 4 which means the robot can hold

four parts indicating four putting/picking up activities followed by four output/input

buffer loading/unloading activities will give the optimal schedule. However, since

process again plays a role here a better schedule is having 4 input buffer activities

followed by 4 loading/unloading activities and finally 4 output buffer activities as

shown in Table (5.17). Also in this case the optimal solution was found.

As per the same discussions the cycle times for the 5 machine case for buffer

capacity 3 and 5 are proved by optimal schedules in Table (5.18) and (5.19) when

process time has an effect. The concept of a 5 machine with robot buffer capacity 3 is

similar to that of a 4 machine with buffer capacity 2 and thus the generalized

schedule of the case is applied. Also the 5 machine with robot buffer capacity 5 is

similar to that of a 4 machine with buffer capacity 4 and thus a generalized schedule

of the case will be applied and in both cases cycle time was optimal.

Figure 5.6: Gantt Chart for Case when m = 4, δ = 2, ε = 1, K = 2, P = 22

L2

I3

I4

L3

U4

L4

U1 O1

O2

U2

U3

O3

O4

I1

I2

L1

0 10 20 30 40 50 60 70

Robot

Machine 1

Machine 2

Machine 3

Machine 4

Time

Gantt Chart for 4 Machines

Processing Time

Machine Idle Time with Waiting Part

Time Taken to Pickup/Leave a Part

Robot Travel Time

82

 Table 5.17: Case when m = 4, δ = 2, ε = 1, K = 4, P = 22

a
L1 U2 L2 U3 L3 U4 L4 U1 O1 O2 O3 O4 I1 I2 I3 I4 C

ta 0 3 4 7 8 11 12 23 32 33 34 35 46 47 48 49 52

m2 48 51 0 3 4 7 8 20 28 29 30 31 42 43 44 45

m3 44 47 48 51 0 3 4 15 24 25 26 27 38 39 40 41

m4 40 43 44 47 48 51 0 11 20 21 22 23 34 35 36 37

Ya
+
 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0

Ya
-
 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4

83

Table 5.18: Case when m = 5, δ = 2, ε = 1, K = 3, P = 22

a
L1 L2 I3 I4 I5 L3 U4 L4 U5 L5 O1 O2 U1 U2 U3 O3 O4 O5 I1 I2 C

ta 0 3 8 9 10 17 20 21 24 25 28 29 40 43 46 53 54 55 68 69 72

m2 0 5 6 7 14 17 18 21 22 25 26 37 40

m3 0 3 4 7 8 11 12 23 26 29

m4 51 53 59 60 61 68 71 0 3 4 7 8 19 22 25 32 33 34 47 48

m5 47 50 55 56 57 64 67 68 71 0 3 4 15 18 21 28 29 30 43 44

Ya
+
 0 0 0 0 0 0 1 1 2 2 1 0 1 2 3 2 1 0 0 0

Ya
-
 1 0 1 2 3 2 2 1 1 0 0 0 0 0 0 0 0 0 1 2

84

Table 5.19: Case when m = 5, δ = 2, ε = 1, K = 5, P = 22

a
L1 U2 L2 U3 L3 U4 L4 U5 L5 U1 O1 O2 O3 O4 O5 I1 I2 I3 I4 I5 C

ta 0 3 4 7 8 11 12 15 16 25 36 37 38 39 40 53 54 55 56 57 60

m2 57 0 1 4 5 8 9 12 13 22 33 34 35 36 37 50 51 52 53 54

m3 53 56 57 0 1 4 5 8 9 18 29 30 31 32 33 46 47 48 49 50

m4 49 52 53 56 57 0 1 4 5 14 25 26 27 28 29 42 43 44 45 46

m5 45 48 49 52 53 56 57 0 1 10 21 22 23 24 25 38 39 40 41 42

Ya
+
 0 1 1 2 2 3 3 4 4 5 4 3 2 1 0 0 0 0 0 0

Ya
-
 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 1 2 3 4 5

85

5.3.3 Case 3: δ = 2, ε = 1, P = 40

It can be seen that the optimal solution was found by the SA algorithm when

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as

shown in Figure (5.7) and (5.8), also with reduced time since most of the optimal

solutions were actually found at times ranging between 0 and 4 s for the 2 machine

case and times ranging between 0 and 9 s for the 3 machine case.

Figure 5.7: Comparison between MIP and SA Cycle Time for 2 Machines with P =

40

Figure 5.8: Comparison between MIP and SA Cycle Time for 3 Machines with P =

40

56

42 42 42

56

42 42 42

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 2 Machines with P = 40

MIP SA

66

52

42 42 42 42

66

52

42 42 42 42

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 3 Machines with P = 40

MIP SA

86

Since the optimality of the cycle times was proven for the case when process time

was 22 and it can be seen that all the cycle times for 4 and 5 machine case are

equivalent to that for process time equal to 40 thus it is sure that optimality was

reached. However case of 5 machine and buffer capacity of size 6 seems to have a

produced a cycle time of 48.

Table 5.20: Case when δ = 2, ε = 1, P = 40

MIP Model Simulated Annealing Algorithm

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

2

1 56 0.06

2

1 56 55

2 42 0.39 2 42 37

3 42 0.42 3 42 53

4 42 0.39 4 42 59

3

1 66 0.28

3

1 66 65

2 52 16.11 2 52 35

3 42 73.36 3 42 50

4 42 38.75 4 42 60

5 42 64.59 5 42 64

6 42 42.64 6 42 66

4

1 96 0.94

4

1 96 68

2 68 92

3 56 81

4 52 117

5 42 155

6 42 169

7 42 160

8 42 165

5 5

1 140 213

2 92 110

3 72 158

4 68 180

5 60 174

6 48 169

7 44 185

8 44 217

9 44 221

10 44 221

87

In order to prove that the case for buffer capacity 6 was not optimal, the optimal

schedule shown in Table (5.21) that is generalized for this case is pretty simple since

the robot can hold 6 parts that means 5 input buffer activities followed by 5

unloading/loading activities which is followed by 5 output buffer activities will give

optimal solution. And since the unloading activity for each machine is exactly at the

end of the cycle process time will not affect the schedule. And it can be seen that the

cycle time found was indeed not the optimal solution.

The Gantt chart for this 5 machine case is shown in Figure (5.9), the processing of a

part on each machine took 40 time units and the part stayed on the machine idle

waiting for the robot for 2 time units and this was the case in all the 5 machines.

Also, since the robot buffer has the ability to hold 6 parts that indicates that 5 output

buffer activities can be followed by 5 input buffer activities.

 Table 5.21: Case when m = 5, δ = 2, ε = 1, K = 6, P = 40

a
L1 U2 L2 U3 L3 U4 L4 U5 L5 O1 O2 O3 O4 O5 I1 I2 I3 I4 I5 U1 C

ta 0 3 4 7 8 11 12 15 16 19 20 21 22 23 36 37 38 39 40 43 44

m2 40 43 0 3 4 7 8 11 12 15 16 17 18 19 32 33 34 35 36 39

m3 36 39 40 43 0 3 4 7 8 11 12 13 14 15 28 29 30 31 32 35

m4 32 35 36 39 40 43 0 3 4 7 8 9 10 11 24 25 26 27 28 31

m5 28 31 32 35 36 39 40 43 0 3 4 5 6 7 20 21 22 23 24 27

Ya
+ 1 2 2 3 3 4 4 5 5 4 3 2 1 0 0 0 0 0 0 1

Ya
-
 4 4 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 5 5

89

Figure 5.9: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40

U2

L2

U3

L3

U4

L4

U5

L5

O1

O2

O3

O4

O5

I1

I2

I3

I4

I5

U1

L1

0 5 10 15 20 25 30 35 40 45

Robot

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Time

Gantt Chart for 5 Machines

Processing Time

Time Taken to Pickup/Leave a Part

Machine Idle Time with Waiting Part

Robot Travel Time

90

5.3.4 Case 4: δ = 2, ε = 1, P = 50

It can be seen that the optimal solution was found by the SA algorithm when

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as

shown in Figure (5.10) and (5.11) also with reduced time since most of the optimal

solutions were actually found at times ranging between 0 and 1 s for the 2 machine

case and times ranging between 1 and 24 s for the 3 machine case.

Figure 5.10: Comparison between MIP and SA Cycle Time for 2 Machines with P =

50

Figure 5.11: Comparison between MIP and SA Cycle Time for 3 Machines with P =

50

66

52 52 52

66

52 52 52

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 2 Machines with P = 50

MIP SA

70

52 52 52 52 52

70

52 52 52 52 52

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 3 Machines with P = 50

MIP SA

91

Table 5.22: Case when δ = 2, ε = 1, P = 50

MIP Model Simulated Annealing Algorithm

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

2

1 66 0.13

2

1 66 54

2 52 0.22 2 52 37

3 52 0.42 3 52 52

4 52 0.66 4 52 59

3

1 70 0.28

3

1 70 66

2 52 20.03 2 52 41

3 52 31.34 3 52 49

4 52 47.14 4 52 64

5 52 49.67 5 52 58

6 52 273.26 6 52 64

4

1 96 0.75

4

1 96 171

2 76 110

3 56 54

4 52 140

5 52 161

6 52 181

7 52 170

8 52 180

5 5

1 140 196

2 92 111

3 82 158

4 68 183

5 64 187

6 52 196

7 52 246

8 52 261

9 52 290

10 52 271

As for the 4 and 5 machine cases when robot buffer capacity is greater than m it can

be seen that the cycle time is 52 and this is in fact the optimal solution without using

an optimal schedule as a proof since one of the constraints indicate that the

completion time of unloading any machine must be greater than the completion time

of loading that machine by at least the process time = 50 + the time taken to pick up

the part which is equal to 1 and because the cycle time is equal to the completion

92

time of the last activity which is unloading and it is 51 + the distance matrix from

unloading machine 𝑖 to loading machine 𝑖 which is 1 the minimum cycle time that

can be reached for process time 50 is in fact 52.

While other cycle times found were equivalent to the case when process time was 40,

it was seen that when robot buffer capacity was 2 for 4 machine case and when robot

buffer capacity was 3 and 5 for 5 machine case the cycle time differed from that of

process time 40. Proving the optimality of these cases seemed to be extremely

strenuous and thus their optimality could not be guaranteed.

5.3.5 Case 5: δ = 2, ε = 1, P = 100

It can be seen that the optimal solution was found by the SA algorithm when

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as

shown in Figure (5.12) and (5.13), also with reduced time since most of the optimal

solutions were actually found at times ranging between 0 and 5 s for the 2 machine

case and times ranging between 0 and 14 s for the 3 machine case.

Figure 5.12: Comparison between MIP and SA Cycle Time for 2 Machines with P =

100

116

102 102 102

116

102 102 102

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 2 Machines with P = 100

MIP SA

93

Figure 5.13: Comparison between MIP and SA Cycle Time for 3 Machines with P =

100

As for the 4 and 5 machine cases when robot buffer capacity is greater than 1 it can

be seen that the cycle time is 102 and this is in fact the optimal solution without

using an optimal schedule as a proof since one of the constraints indicate that the

completion time of unloading any machine must be greater than the completion time

of loading that machine by at least the process time = 100 + the time taken to pick up

a part which is equal to 1 and because the cycle time is equal to the completion time

of the last activity which is unloading and it is 101 + the distance matrix from

unloading machine 𝑖 to loading machine 𝑖 which is 1 the minimum cycle time that

can be reached for process time 100 is in fact 102.

120

102 102 102 102 102

120

102 102 102 102 102

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 3 Machines with P = 100

MIP SA

94

Table 5.23: Case when δ = 2, ε = 1, K = 2, P = 100

MIP Model Simulated Annealing Algorithm

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e

(t
im

e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

2

1 116 0.13

2

1 116 56

2 102 0.31 2 102 41

3 102 0.66 3 102 55

4 102 0.61 4 102 58

3

1 120 0.27

3

1 120 63

2 102 17.11 2 102 40

3 102 33.16 3 102 44

4 102 81.28 4 102 54

5 102 72.99 5 102 61

6 102 85.95 6 102 65

4

1 124 0.61

4

1 124 182

2 102 66

3 102 117

4 102 142

5 102 168

6 102 183

7 102 179

8 102 178

5 5

1 142 217

2 120 132

3 102 127

4 102 145

5 102 190

6 102 186

7 102 194

8 102 207

9 102 227

10 102 199

The only cases that might not be optimal are 5 machine cases when robot buffer

capacity is 1 and 2. In order to prove optimality of the case when robot buffer

capacity is 1 it is evident that since the robot can only hold one part every unloading

activity must be followed by output buffer activity which is followed by input buffer

activity and finally loading activity and process time effect is considered as shown in

Table (5.24). Thus, it is proven that 142 is not the optimal solution.

Table 5.24: Case when m = 5, δ = 2, ε = 1, K = 1, P = 100

a
L1 I5 L5 U2 O2 U4 O4 I2 L2 I4 L4 U3 O3 I3 L3 U1 O1 U5 O5 I1 C

ta 0 3 14 21 30 35 40 53 58 63 72 75 82 95 102 107 118 121 124 137 140

m2 82 85 96 103 0 5 14 17 24 37 44 49 60 63 6 79

m3 41 52 59 68 73 78 91 96 101 110 113 0 5 16 19 22 35

m4 68 71 82 89 98 103 0 3 10 23 30 35 46 49 52 65

m5 0 7 16 21 26 39 44 49 58 61 68 81 88 93 104 107

Ya
+
 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0

Ya
-
 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1

96

 Table 5.25: Case when m = 5, δ = 2, ε = 1, K = 2, P = 100

a
L1 I4 O5 U4 L4 O4 I3 U3 L3 O1 I5 U2 L2 I1 O2 U5 L5 O3 I2 U1 C

ta 0 3 16 21 22 27 40 47 48 55 68 73 74 79 92 95 96 99 112 115 116

m2 42 45 58 63 64 69 82 89 90 97 110 115 0 5 18 21 22 25 38 41

m3 68 71 84 89 90 95 108 115 0 7 20 25 26 31 44 47 48 51 64 67

m4 94 97 110 115 0 5 18 25 26 33 46 51 52 57 70 73 74 77 90 93

m5 20 23 36 41 42 47 60 67 68 75 88 93 94 99 112 115 0 3 16 19

Ya
+
 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1

Ya
-
 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1

97

For the case when robot buffer capacity is 2 the schedule shown in Table (5.25) was

found by using the optimal schedule when process time is 5000 and then if the cycle

time found using that schedule was less than 120 that indicates that cycle time 120 is

not optimal. It is seen that the cycle time found was 116 which is less than 120 thus

120 was not optimal solution.

5.3.6 Case 6: δ = 2, ε = 1, P = 5000

It can be seen that the optimal solution was found by the SA algorithm when

comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as

shown in Figure (5.14) and (5.15), also with reduced time since most of the optimal

solutions were actually found at times ranging between 0 and 9 s for the 2 machine

case and times ranging between 0 and 6 s for the 3 machine case even though

iteration completion took a longer time.

Figure 5.14: Comparison between MIP and SA Cycle Time for 2 Machines with P =

5000

5016

5002 5002 5002

5016

5002 5002 5002

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 2 Machines with P = 5000

MIP SA

98

Figure 5.15: Comparison between MIP and SA Cycle Time for 3 Machines with P =

5000

As for the 4 and 5 machine cases when robot buffer capacity is greater than 1 it can

be seen that the cycle time is 5002 and this is in fact the optimal solution without

using an optimal schedule as a proof since one of the constraints indicate that the

completion time of unloading any machine must be greater than the completion time

of loading that machine by at least the process time = 5000 + the time taken to pick

up a part which is equal to 1 and because the cycle time is equal to the completion

time of the last activity which is unloading and it is 5001 + the distance matrix from

unloading machine 𝑖 to loading machine 𝑖 which is 1 the minimum cycle time that

can be reached for process time 5000 is in fact 5002.

5020

5002 5002 5002 5002 5002

5020

5002 5002 5002 5002 5002

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

MIP vs SA for 3 Machines with P = 5000

MIP SA

99

Table 5.26: Case when δ = 2, ε = 1, P = 5000

MIP Model Simulated Annealing Algorithm

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e
(t

im
e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

N
o
.
o
f

m
a
ch

in
es

(m
)

B
u

ff
er

C
a
p

a
ci

ty

(K
)

C
y
cl

e

T
im

e
(t

im
e

u
n

it
)

S
o
lu

ti
o
n

T
im

e
(s

)

2

1 5016 1.36

2

1 5016 66

2 5002 0.55 2 5002 44

3 5002 0.76 3 5002 60

4 5002 0.69 4 5002 57

3

1 5020 0.23

3

1 5020 73

2 5002 18.14 2 5002 38

3 5002 97.66 3 5002 54

4 5002 140.69 4 5002 64

5 5002 216.19 5 5002 73

6 5002 259.91 6 5002 83

4

1 5024 0.67

4

1 5024 203

2 5002 107

3 5002 135

4 5002 168

5 5002 192

6 5002 225

7 5002 219

8 5002 212

5 5

1 5038 304

2 5002 131

3 5002 170

4 5002 205

5 5002 250

6 5002 276

7 5002 282

8 5002 296

9 5002 172

10 5002 265

The only cases that might not be optimal are 5 machine cases when robot buffer

capacity is 1. In order to prove optimality of the case the same schedule used for

process time 100 is applied in Table (5.27). This concludes that cycle time 5038 is in

fact the optimal solution.

Table 5.27: Case when m = 5, δ = 2, ε = 1, K = 1, P = 5000

a
L1 I5 L5 U2 O2 U4 O4 I2 L2 I4 L4 U3 O3 I3 L3 U1 O1 U5 O5 I1 C

ta 0 3 14 21 30 35 40 53 58 63 72 75 82 95 102 5005 5016 5020 5022 5035 5038

m2 4980 4983 4994 5001 0 5 14 17 24 37 44 4947 4958 4961 4964 4977

m3 4939 4950 4957 4966 4971 4976 4989 4994 4999 5008 5017 0 4903 4914 4917 4920 4933

m4 4966 4969 4980 4987 4996 5001 0 3 10 23 30 4933 4944 4947 4950 4963

m5 0 7 16 21 26 39 44 49 58 61 68 81 88 4991 5002 5005

Ya
+
 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0

Ya
-
 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1

101

5.4 Effect of Robot Buffer Capacity on Cycle Time

In this section, effect of robot buffer capacity on the cycle time is portrayed by

Figure (5.16) and (5.18) for the 2 and 3 machine case with process times 0, 22, 40,

50 and 100. While the process time of 5000 is shown in Figure (5.17) and (5.19).

Figure 5.16: Robot Buffer Capacity Effect on Cycle Time for 2 Machines

Figure 5.17: Robot Buffer Capacity Effect on Cycle Time for 2 Machines and P =

5000

116
102 102 102

66
52 52 52 56

42 42 42 38
28 24 24

32
20 20 20

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Effect on Cycle Time
for 2 Machines

P = 100 P = 50 P = 40 P = 22 P = 0

5016

5002 5002 5002

1 2 3 4

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Effect on Cycle
Time for 2 Machines and P = 5000

P = 5000

102

It can be seen that for all process times reduction in cycle time was seen when robot

buffer capacity is 2. However, robot buffer capacity above 2 showed no impact on

cycle time reduction except for the case when process time was 22.

Figure 5.18: Robot Buffer Capacity Effect on Cycle Time for 3 Machines

Figure 5.19: Robot Buffer Capacity Effect on Cycle Time for 3 Machines and P =

5000

120

102 102 102 102 102

70

52 52 52 52 52

66

52
42 42 42 42

60

44 40
28 28 28

60

44

28 28 28 28

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Affect on Cycle Time
for 3 Machines

P = 100 P = 50 P = 40 P = 22 P = 0

5020

5002 5002 5002 5002 5002

1 2 3 4 5 6

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Affect on Cycle Time
for 3 Machines and P = 5000

P = 5000

103

It can be seen that for process times 50, 100 and 5000 reduction in cycle time was

seen when robot buffer capacity is 2. However, robot buffer capacity above 2 showed

no impact on cycle time reduction. But for process time 0 and 40 reduction in cycle

time was also seen when robot buffer capacity was 3 and no impact was seen after

that and this was true except for process time 22 where reduction in cycle time was

also realized for robot buffer capacity of size 4.

Effect of robot buffer capacity on the cycle time is portrayed by Figure (5.20) and

(5.22) for the 4 and 5 machine case with process times 0, 22, 40, 50 and 100. While

the process time of 5000 is shown in Figure (5.21) and (5.23).

It can be seen that for 4 machine case process times 100 and 5000 reduction in cycle

time was seen when robot buffer capacity is 2. However, robot buffer capacity above

2 showed no impact on cycle time reduction. But for process time 0 and 50

reduction in cycle time was also seen when robot buffer capacity was 3 and 4 and no

impact was seen after that and this was true except for process time 22 and 40 where

reduction in cycle time was also realized for robot buffer capacity of size 5.

And for 5 machine case when process times were 100 and 5000 reduction in cycle

time was seen when robot buffer capacity is 2. However, robot buffer capacity above

2 showed no impact on cycle time reduction. But for process time 22, 40 and 50

reduction in cycle time was also seen when robot buffer capacity was 3, 4, 5 and 6

and no impact was seen after that and this was true except for process time 0 where

reduction in cycle time was realized until buffer capacity of size 5.

Figure 5.20: Robot Buffer Capacity Effect on Cycle Time for 4 Machines

124

102 102 102 102 102 102 102
96

76

56 52 52 52 52 52

96

68

56 52
42 42 42 42

96

68

56 52

36 36 36 36

96

56 56

36 36 36 36 36

1 2 3 4 5 6 7 8

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Affect on Cycle Time for 4 Machines

P = 100 P = 50 P = 40 P = 22 P = 0

105

Figure 5.21: Robot Buffer Capacity Effect on Cycle Time for 4 Machines and P = 5000

5024

5002 5002 5002 5002 5002 5002 5002

1 2 3 4 5 6 7 8

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Affect on Cycle Time for 4
Machines and P = 5000

P = 5000

106

Figure 5.22: Robot Buffer Capacity Effect on Cycle Time for 5 Machines

142

120

102 102 102 102 102 102 102 102

140

92
82

68 64

52 52 52 52 52

72

60

48 44 44 44 44 44

68

48

1 2 3 4 5 6 7 8 9 10

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Affect on Cycle Time for 5 Machines

P = 100 P = 50 P = 40 P = 22 P = 0

107

Figure 5.23: Robot Buffer Capacity Effect on Cycle Time for 5 Machines and P = 5000

5038

5002 5002 5002 5002 5002 5002 5002 5002 5002

1 2 3 4 5 6 7 8 9 10

C
yc

le
 T

im
e

Robot Buffer Capacity

Robot Buffer Capacity Affect on Cycle Time for 5
Machines and P = 5000

P = 5000

108

5.5 Cycle Time is same for Various Process Times

In this section the impact of process time on the cycle time is discussed and why

cycle time can be constant for various process times. As an example, we will take the

optimal schedule found for the 3 machine case with 𝐾 = 1 but with process times 0

and 22 as shown in Table (5.28) and (5.29).

The distance matrix dab is not a function of process time and thus the process time

does not affect the cycle time of a robot unless there is waiting time which causes the

robot to wait until the machine finishes processing which leads to increase in cycle

time. It can be seen in the case when process time was 0 and 22 that between loading

and unloading any of machine 1, 2 or

3 that by the time the unloading activity was reached processing of the part on that

machine was finished and thus there was no waiting time and because there was no

waiting time, the effect of process time was none and the cycle time for both process

times was equal.

5.6 Cycle Time Increase with Increase in Process Time

On the other hand, in the case where process times were 40, 50, 100 and 5000 it was

seen that there was some waiting time because the cumulative 𝑑𝑎𝑏 plus completion

time of last activity was less than the process time meaning that the robot had to wait

until processing was completed and that waiting time was the cause of increase in

cycle time and these cases are shown in Tables (5.30), (5.31), (5.32) and (5.33).

Table 5.28: Case when m = 3, δ = 2, ε = 1, K = 1, P = 0

a
L1 I2 L2 I3 L3 U1 O1 U2 O2 U3 O3 I1 C

dab 0 2 + 1 4 + 1 4 + 1 6 + 1 4 + 1 6 + 1 4 + 1 4 + 1 2 + 1 2 + 1 8 + 1 2 +1

ta 0 3 8 13 20 25 32 37 42 45 48 57 60

m2 0 5 12 17 24 29

m3 0 5 12 17 22 25

Table 5.29: Case when m = 3, δ = 2, ε = 1, K = 1, P = 22

a
L1 I2 L2 I3 L3 U1 O1 U2 O2 U3 O3 I1 C

dab 0 2 + 1 4 + 1 4 + 1 6 + 1 4 + 1 6 + 1 4 + 1 4 + 1 2 + 1 2 + 1 8 + 1 2 +1

ta 0 3 8 13 20 25 32 37 42 45 48 57 60

m2 0 5 12 17 24 29

m3 0 5 12 17 22 25

110

Table 5.30: Case when m = 3, δ = 2, ε = 1, K = 1, P = 40

a
L1 I3 L3 U2 O2 I2 L2 U1 O1 U3 O3 I1 C

dab 0 2 + 1 6 + 1 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 6 + 1 2 + 1 2 + 1 8 + 1 2 +1

wi 6

ta 0 3 10 13 18 27 32 41 48 51 54 63 66

m2 34 37 44 47 0 9 16 19 22 31

m3 0 3 8 17 22 31 38 41

Table 5.31: Case when m = 3, δ = 2, ε = 1, K = 1, P = 50

a
L1 U2 O2 I2 L2 U3 O3 I3 L3 U1 O1 I1 C

dab 0 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 2 + 1 8 + 1 6 + 1 4 + 1 6 + 1 8 + 1 2 +1

wi 2

ta 0 3 8 17 22 25 28 37 44 51 58 67 70

m2 48 51 0 3 6 15 22 29 36 45

m3 26 29 34 43 48 51 0 7 14 23

111

Table 5.32: Case when m = 3, δ = 2, ε = 1, K = 1, P = 100

a
L1 U3 O3 I3 L3 U2 O2 I2 L2 U1 O1 I1 C

dab 0 4 + 1 2 + 1 8 + 1 6 + 1 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 6 + 1 8 + 1 2 +1

wi 52

ta 0 5 8 17 24 27 32 41 46 101 108 117 120

m2 74 79 82 91 98 101 0 55 62 71

m3 96 101 0 3 8 17 22 77 84 93

Table 5.33: Case when m = 3, δ = 2, ε = 1, K = 1, P = 5000

a
L1 U2 O2 I2 L2 U3 O3 I3 L3 U1 O1 I1 C

dab 0 2 + 1 4 + 1 8 + 1 4 + 1 2 + 1 2 + 1 8 + 1 6 + 1 4 + 1 6 + 1 8 + 1 2 +1

wi 4952

ta 0 3 8 17 22 25 28 37 44 5001 5008 5017 5020

m2 4998 5001 0 3 6 15 22 4979 4986 4995

m3 4976 4979 4984 4993 5001 0 4957 4964 4973

112

5.7 Cycle Time after Robot Buffer Capacity > 1 is Constant for

Large Process Times

Another important realization is that as the process time increased the optimal cycle

time remained constant after robot buffer capacity greater than 1. For example in the

case when process time is 40 it can be seen that this was true only for the 2 machine

case and in the case when process time is 50 that was true for both 2 and 3 machine

case. However, in process time 100 and 5000 this was true for 2, 3, 4 and 5 machine

cases. So another realization is that with increase in process time the cycle time stays

constant after robot buffer capacity 1 for increasing number of machines. Table

(5.34) shows the relation of process time, number of machines and robot buffer

capacity.

This is mainly because with increase process time in order to avoid waiting time the

schedule for all the cases is in such way that the loading and unloading activity of

any machine is placed further apart and thus the maximum cumulative distance

matrix + completion time is surpassed which leads to the same cycle time for all

cases.

It must be noted that this indicates that with increased process time the impact of the

robot buffer capacity is negligible. However, it can be seen that there will always be

a difference between a single gripper and dual gripper robot since a dual gripper

robot in our study is represented by a single gripper robot with a buffer capacity of

size 2.

113

Table 5.34: Relation of Process Times, Number of Machines and Robot Buffer

Capacity

No. of

machines

(m)

Buffer

Capacity

(K)

Cycle Time (time unit)

Process

Time (40)

Process

Time (50)

Process

Time (100)

Process

Time

(5000)

2

1 56 66 116 5016

2 42 52 102 5002

3 42 52 102 5002

4 42 52 102 5002

3

1 66 70 120 5020

2 52 52 102 5002

3 42 52 102 5002

4 42 52 102 5002

5 42 52 102 5002

6 42 52 102 5002

4

1 96 96 124 5024

2 68 76 102 5002

3 56 56 102 5002

4 52 52 102 5002

5 42 52 102 5002

6 42 52 102 5002

7 42 52 102 5002

8 42 52 102 5002

5

1 140 140 142 5038

2 92 92 120 5002

3 72 82 102 5002

4 68 68 102 5002

5 60 64 102 5002

6 48 52 102 5002

7 44 52 102 5002

8 44 52 102 5002

9 44 52 102 5002

10 44 52 102 5002

5.8 Waiting Time is considered for One Machine

In this section it can be shown that if waiting time is considered for one machine than

no other machine will have waiting time as long as all the loading activities of other

machines come before the unloading activity of the machine with waiting time. As

an example the case with 2 and 3 machines for process time 50 and 100 and robot

buffer capacity 2 are shown in Tables (5.35), (5.36), (5.37) and (5.38)

114

Table 5.35: Case when m = 2, δ = 2, ε = 1, K = 2, P = 50

Activity

(a)

L1 I1 O1 U2 L2 I2 O2 U1 C

dab 0 2 + 1 6 + 1 2 + 1 1 4 + 1 6 + 1 2 + 1 1

wi 22

ta 0 3 10 13 14 19 26 51 52

m2 38 41 48 51 0 5 12 37

Table 5.36: Case when m = 2, δ = 2, ε = 1, K = 2, P = 100

Activity

(a)

L1 O1 I1 U2 L2 O2 I2 U1 C

dab 0 4 + 1 6 + 1 4 + 1 1 2 + 1 6 + 1 2 + 1 1

wi 70

ta 0 5 12 17 18 21 28 101 102

m2 84 89 96 101 0 3 10 83

Thus, it can be seen that since the waiting time was considered during unloading of

machine 1 and all the loading of activities were before the unloading activity of

machine 1 then the waiting time is considered only once.

On the other hand, if waiting time was considered for a machine and some of the

loading activities of other machines came after it may be noticed that waiting time

could be considered twice.

From these optimal schedules we can also note that with increasing process time the

waiting time is increased which in turn leads to increased cycle time

Table 5.37: Case when m = 3, δ = 2, ε = 1, K = 2, P = 50

a
L1 I2 O3 U2 L2 I3 O2 U3 L3 O1 I1 U1 C

dab 0 2 + 1 8 + 1 4 + 1 1 4 + 1 8 + 1 2 + 1 1 2 + 1 8 + 1 2 + 1 1

wi

ta 0 3 12 17 18 23 32 35 36 39 48 51 52

m2 34 37 46 51 0 5 14 17 18 21 30 33

m3 16 19 28 33 34 39 48 51 0 3 12 15

Table 5.38: Case when m = 3, δ = 2, ε = 1, K = 2, P = 100

a
L1 O3 I3 U2 L2 I1 O2 U3 L3 O1 I2 U1 C

dab 0 6 + 1 8 + 1 4 + 1 1 4 + 1 8 + 1 2 + 1 1 2 + 1 8 + 1 2 + 1 1

wi 46

ta 0 7 16 21 22 27 36 39 40 43 52 101 102

m2 80 87 96 101 0 5 14 17 18 21 30 79

m3 62 69 78 83 84 89 98 101 0 3 12 61

116

The Gantt chart for the 3 machine case with process time 50 and robot buffer

capacity of size 2 is shown in Figure (5.24). In this chart it can be seen that the

processing of a part for each machine was 50 time units with 2 time units’ idle time

with no part on it. And in this case unloading activity of a machine is followed by

loading activity and thus there is no travel time just pick up or leaving time for a part

since the robot buffer can hold 2 parts reduction in cycle time was realized.

These charts indicate that the processing of a part does not go through all machines

and that is because those machines are in different stages thus it is a parallel machine

flowshop with one machine in each stage.

Figure 5.24: Gantt Chart for Case when m = 5, δ = 2, ε = 1, K = 6, P = 40

I2

O3 U2

L2

I3 O2

U3

L3

O1

I1

U1

L1

0 10 20 30 40 50 60

Robot

Machine 1

Machine 2

Machine 3

 Time

Gantt Chart for 3 Machines

Processing Time

Robot Travel Time

Time Taken to Pickup/Leave a
Part

118

Chapter 6

CONCLUSION AND FUTURE RECOMMENDATIONS

The main objective of this study was to analyze how increase in robot buffer capacity

impacted the cycle time by scheduling the robot moves in a manner by which the

cycle time was minimized for a flexible robotic cell with a single self-buffered robot

and single gripper for an m machine case in an inline layout where identical parts are

produced and 1-unit is produced in each cycle.

The contribution of the study was twofold. The first contribution was formulating a

general scheduling model for an m machine case for the self-buffered robot which

has not been implemented before and the second contribution was comparing the

optimal cycle time found by the mixed integer programming model to that found by

the simulated annealing algorithm for the same problem.

6.1 Conclusions

1. Simulated Annealing algorithm produced optimal solutions 94% of the time

when compared to the optimal solutions found by the MIP model since out of

a total of 168 runs made, optimality was not guaranteed for only 10 of those

cases.

2. Solution time was reduced while applying the SA algorithm since the time

taken to find the solution was much less when compared to the time taken by

the MIP model.

119

3. SA algorithm can be applied in future studies since even though optimality is

not guaranteed, it can be found more often than not.

4. Robot buffer capacity does reduce the cycle time which indicates that the

performance of the system can be further improved and this is an advantage

that can be used by production managers in several industries.

5. Effect of robot buffer capacity diminishes with increase in process time since

cycle time remains constant after robot buffer capacity more than 1. This is

due to the fact that minimum cycle time is reached earlier with larger process

times.

6. Since there was always a change realized in cycle time between robot buffer

capacity 1 and 2 that means there will always be significant difference

between a single and dual gripper robot if we consider a dual gripper robot to

represent a single self-buffered robot with robot buffer capacity of size 2.

7. Increase in process time leads to increase in waiting time which in turn leads

to increase in cycle time. However, this is not always true since sometimes

the waiting time is less with increased process time even though cycle time is

increased and that is because the optimal schedule differs with different

process time and the effect of those schedules is also taken into account.

8. Cycle time is same for various process times when the difference between

process times is small and process time has no effect on cycle time

calculation.

9. Waiting time is only considered for one machine if and only if all the loading

activities of other machines come before the unloading activity of the

machine with waiting time.

120

6.2 Future Recommendations

1. Robotic cell with a self-buffered single gripper robot and a circular layout

since this study and the previous study that included self-buffered robot

proposed employing an inline layout. So impact of the circular layout on the

performance of the FMS system with a self-buffered robot can be studied.

2. Robotic cell with a self-buffered dual arm robot. The study that previously

included a self-buffered robot did a comparison between single gripper self-

buffered robot and a bufferless dual gripper robot. However, comparison to a

dual arm self-buffered robot was not employed.

3. Comparison of inline and circular layout for a self-buffered single gripper

robot. To study whether the performance of an FMS system with a self-

buffered robot is further improved for a system with a circular layout.

4. Proof of generalized cyclic schedules that lead to optimal solutions for self-

buffered single gripper robot. Because if generalized schedules were created

than optimality of an m machine case can be easily proved for solutions

found by the simulated annealing algorithm.

5. Proof of single waiting time for self-buffered single gripper robot. The

question here will be if all the loading activities of machines come after the

unloading activity of the machine with waiting time is it in fact true that

waiting time will only be considered once?

121

REFERENCES

[1] Crama, Y., & Van De Klundert, J. (1997). Cyclic scheduling of identical parts in

a robotic cell. Operations Research, 45(6), 952-965.

[2] Crama, Y., & Van de Klundert, J. (1997). Robotic flowshop scheduling is

strongly NP-complete.

[3] Levner, E., Kats, V., & Levit, V. E. (1997). An improved algorithm for cyclic

flowshop scheduling in a robotic cell. European Journal of Operational

Research, 97(3), 500-508.

[4] Hall, N. G., Kamoun, H., & Sriskandarajah, C. (1998). Scheduling in robotic

cells: Complexity and steady state analysis. European Journal of Operational

Research, 109(1), 43-65.

[5] Levner, E., & Kats, V. (1998). A parametric critical path problem and an

application for cyclic scheduling. Discrete Applied Mathematics, 87(1-3), 149-

158.

[6] Sriskandarajah, C., Hall, N. G., & Kamoun, H. (1998). Scheduling large robotic

cells without buffers. Annals of Operations Research, 76, 287-321.

[7] Crama, Y., & Van de Klundert, J. (1999). Cyclic scheduling in 3-machine robotic

flow shops. Journal of Scheduling, 2, 35-54.

122

[8] Kamoun, H., Hall, N. G., & Sriskandarajah, C. (1999). Scheduling in robotic

cells: Heuristics and cell design. Operations Research, 47(6), 821-835.

[9] Brauner, N., & Finke, G. (1999). On a conjecture about robotic cells: new

simplified proof for the three-machine case. INFOR: Information Systems and

Operational Research, 37(1), 20-36.

[10] Agnetis, A., & Pacciarelli, D. (2000). Part sequencing in three-machine no-wait

robotic cells. Operations Research Letters, 27(4), 185-192.

[11] Agnetis, A. (2000). Scheduling no-wait robotic cells with two and three

machines. European Journal of Operational Research, 123(2), 303-314.

[12] Brauner, N., & Finke, G. (2001). Cycles and permutations in robotic

cells. Mathematical and Computer Modelling, 34(5-6), 565-591.

[13] Sethi, S. P., Sidney, J. B., & Sriskandarajah, C. (2001). Scheduling in dual

gripper robotic cells for productivity gains. IEEE Transactions on Robotics and

Automation, 17(3), 324-341.

[14] Brauner, N., Finke, G., & Kubiak, W. (2003). Complexity of one-cycle robotic

flow-shops. Journal of Scheduling, 6(4), 355-372.

[15] Mangione, F., Brauner, N., & Penz, B. (2003). Optimal cycles for the robotic

balanced no-wait flow shop. In International Conference of Industrial

Engineering and Production Management-IEPM (p. cdrom).

123

[16] Drobouchevitch, I. G., Sethi, S., Sidney, J., & Sriskandarajah, C. (2004). A note

on scheduling multiple parts in two-machine dual gripper robotic cell: Heuristic

algorithm and performance guarantee. International Journal of Operations and

Quantitative Management, 10(4), 297-314.

[17] Sriskandarajah, C., Drobouchevitch, I., Sethi, S. P., & Chandrasekaran, R.

(2004). Scheduling multiple parts in a robotic cell served by a dual-gripper

robot. Operations Research, 52(1), 65-82.

[18] Geismar, H. N., Dawande, M., & Sriskandarajah, C. (2005). Approximation

algorithms for k-unit cyclic solutions in robotic cells. European Journal of

Operational Research, 162(2), 291-309.

[19] Akturk, M. S., Gultekin, H., & Karasan, O. E. (2005). Robotic cell scheduling

with operational flexibility. Discrete Applied Mathematics, 145(3), 334-348.

[20] Gultekin, H., Akturk, M. S., & Karasan, O. E. (2006). Cyclic scheduling of a 2-

machine robotic cell with tooling constraints. European Journal of Operational

Research, 174(2), 777-796.

[21] Geismar, H. N., Dawande, M. W., & Sethi, S. P. (2005). Dominance of cyclic

solutions and challenges in the scheduling of robotic cells. SIAM review, 47(4),

709-721.

124

[22] Gultekin, H., Akturk, M. S., & Karasan, O. E. (2007). Scheduling in a three-

machine robotic flexible manufacturing cell. Computers & operations

research, 34(8), 2463-2477.

[23] Geismar, H. N., Dawande, M., & Sriskandarajah, C. (2007). A (10/7)-

approximation algorithm for an optimum cyclic solution in additive travel-time

robotic cells. IIE Transactions, 39(2), 217-227.

[24] Yan, P., Chu, C., Che, A., & Yang, N. (2008, December). An algorithm for

optimal cyclic scheduling in a robotic cell with flexible processing times.

In Industrial Engineering and Engineering Management, 2008. IEEM 2008.

IEEE International Conference on (pp. 153-157). IEEE.

[25] Geismar, H. N., Chan, L. M. A., Dawande, M., & Sriskandarajah, C. (2008).

Approximations to Optimal k‐Unit Cycles for Single‐Gripper and Dual‐Gripper

Robotic Cells. Production and Operations Management, 17(5), 551-563.

[26] Geismar, H. N., Dawande, M., & Sriskandarajah, C. (2006). Throughput

Optimization in Constant Travel‐Time Dual Gripper Robotic Cells with Parallel

Machines. Production and Operations Management, 15(2), 311-328.

[27] Dawande, M., Pinedo, M., & Sriskandarajah, C. (2009). Multiple part-type

production in robotic cells: equivalence of two real-world

models. Manufacturing & Service Operations Management, 11(2), 210-228.

125

[28] Dawande, M., Geismar, H. N., Pinedo, M., & Sriskandarajah, C. (2009).

Throughput optimization in dual-gripper interval robotic cells. IIE

Transactions, 42(1), 1-15.

[29] Yan, P., Chu, C., Yang, N., & Che, A. (2010). A branch and bound algorithm

for optimal cyclic scheduling in a robotic cell with processing time

windows. International Journal of Production Research, 48(21), 6461-6480.

[30] Drobouchevitch, I. G., Geismar, H. N., & Sriskandarajah, C. (2010).

Throughput optimization in robotic cells with input and output machine buffers:

A comparative study of two key models. European Journal of Operational

Research, 206(3), 623-633.

[31] Rajapakshe, T., Dawande, M., & Sriskandarajah, C. (2011). Quantifying the

impact of layout on productivity: An analysis from robotic-cell

manufacturing. Operations Research, 59(2), 440-454.

[32] Geismar, N., Dawande, M., & Sriskandarajah, C. (2011). Productivity

improvement from using machine buffers in dual-gripper cluster tools. IEEE

Transactions on Automation Science and Engineering, 8(1), 29-41.

[33] Yildiz, S., Karasan, O. E., & Akturk, M. S. (2012). An analysis of cyclic

scheduling problems in robot centered cells. Computers & Operations

Research, 39(6), 1290-1299.

126

[34] Foumani, M., & Jenab, K. (2013). Analysis of flexible robotic cells with

improved pure cycle. International Journal of Computer Integrated

Manufacturing, 26(3), 201-215.

[35] Foumani, M., & Jenab, K. (2012). Cycle time analysis in reentrant robotic cells

with swap ability. International Journal of Production Research, 50(22), 6372-

6387.

[36] Zhou, Z., Che, A., & Yan, P. (2012). A mixed integer programming approach

for multi-cyclic robotic flowshop scheduling with time window

constraints. Applied Mathematical Modelling, 36(8), 3621-3629.

[37] Geismar, N., Manoj, U. V., Sethi, A., & Sriskandarajah, C. (2012). Scheduling

robotic cells served by a dual-arm robot. IIE Transactions, 44(3), 230-248.

[38] Zarandi, M. F., Mosadegh, H., & Fattahi, M. (2013). Two-machine robotic cell

scheduling problem with sequence-dependent setup times. Computers &

Operations Research, 40(5), 1420-1434.

[39] Foumani, M., Ibrahim, M. Y., & Gunawan, I. (2013, May). Scheduling dual

gripper robotic cells with a hub machine. In Industrial Electronics (ISIE), 2013

IEEE International Symposium on (pp. 1-6). IEEE.

[40] Lei, W., Che, A., & Chu, C. (2014). Optimal cyclic scheduling of a robotic

flowshop with multiple part types and flexible processing times. European

Journal of Industrial Engineering, 8(2), 143-167.

127

[41] Elmi, A., & Topaloglu, S. (2014). Scheduling multiple parts in hybrid flow

shop robotic cells served by a single robot. International Journal of Computer

Integrated Manufacturing, 27(12), 1144-1159.

[42] Jung, K. S., Geismar, H. N., Pinedo, M., & Sriskandarajah, C. (2015).

Approximations to optimal sequences in single-gripper and dual-gripper robotic

cells with circular layouts. IIE Transactions, 47(6), 634-652.

[43] Gundogdu, E., & Gultekin, H. (2016). Scheduling in two-machine robotic cells

with a self-buffered robot. IIE Transactions, 48(2), 170-191.

[44] Güden, H., & Meral, S. (2016). An adaptive simulated annealing algorithm-

based approach for assembly line balancing and a real-life case study. The

International Journal of Advanced Manufacturing Technology, 84(5-8), 1539-

1559.

128

APPENDICES

129

Appendix A: Simulated Annealing Solution Time Convergence

Graphs for Case when δ = 2, ε = 1, P = 0, P = 22, P = 40, P = 50 and

P = 100

Figure A.1: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 1

Figure A.2: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 2

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

10

30

50

70

90

110

130

0 10 20 30 40 50

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

130

Figure A.3: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 3

Figure A.4: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 4

10

30

50

70

90

110

130

0 20 40 60

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

10

30

50

70

90

110

130

0 10 20 30 40 50 60

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

131

Figure A.5: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 1

Figure A.6: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 2

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

20

40

60

80

100

120

140

160

0 10 20 30 40

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

132

Figure A.7: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 3

Figure A.8: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 4

20

40

60

80

100

120

140

160

0 10 20 30 40 50

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

133

Figure A.9: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 5

Figure A.10: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 6

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

134

Figure A.11: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 1

Figure A.12: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 2

30

50

70

90

110

130

150

170

0 50 100 150 200

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

0 20 40 60 80 100 120

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

135

Figure A.13: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 3

Figure A.14: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 4

30

50

70

90

110

130

150

170

0 20 40 60 80 100 120

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

0 50 100 150

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

136

Figure A.15: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 5

Figure A.16: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 6

30

50

70

90

110

130

150

170

0 50 100 150

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

0 50 100 150 200

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

137

Figure A.17: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 7

Figure A.18: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 8

30

50

70

90

110

130

150

170

0 50 100 150 200

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

0 50 100 150 200

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

138

Figure A.19: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 1

Figure A.20: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 2

30

50

70

90

110

130

150

170

190

0 50 100 150 200 250

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

190

0 20 40 60 80 100 120 140

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

139

Figure A.21: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 3

Figure A.22: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 4

30

50

70

90

110

130

150

170

190

0 50 100 150

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

190

0 50 100 150 200

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

140

Figure A.23: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 5

Figure A.24: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 6

30

50

70

90

110

130

150

170

190

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

190

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

141

Figure A.25: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 7

Figure A.26: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 8

30

50

70

90

110

130

150

170

190

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

190

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

142

Figure A.27: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 9

Figure A.28: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 10

30

50

70

90

110

130

150

170

190

0 100 200 300 400

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

30

50

70

90

110

130

150

170

190

0 100 200 300 400

C
yc

le
 t

im
e

Solution Time

Cycle Time

P = 0

P = 22

P = 40

P = 50

P = 100

143

Appendix B: Simulated Annealing Solution Time Convergence

Graphs for Case when δ = 2, ε = 1, P = 5000

Figure B.1: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 1

Figure B.2: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 2

5015

5016

5017

5018

5019

5020

5021

5022

5023

0 10 20 30 40 50 60 70

C
yc

le
 t

im
e

S olution Time

Cycle time

5000

5005

5010

5015

5020

5025

0 10 20 30 40 50

C
yc

le
 t

im
e

Solution Time

Cycle time

144

Figure B.3: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 3

Figure B.4: Cycle Time vs Solution Time Convergence Graph for m = 2, K = 4

5000

5005

5010

5015

5020

5025

0 10 20 30 40 50 60 70

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5005

5010

5015

5020

5025

0 10 20 30 40 50 60

C
yc

le
 t

im
e

Solution Time

Cycle time

145

Figure B.5: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 1

Figure B.6: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 2

5018

5020

5022

5024

5026

5028

5030

5032

5034

5036

5038

0 10 20 30 40 50 60 70 80

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5005

5010

5015

5020

5025

5030

5035

5040

0 5 10 15 20 25 30 35 40

C
yc

le
 t

im
e

Solution Time

Cycle time

146

Figure B.7: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 3

Figure B.8: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 4

5000

5005

5010

5015

5020

5025

5030

5035

5040

0 10 20 30 40 50 60

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5005

5010

5015

5020

5025

5030

5035

5040

0 10 20 30 40 50 60 70

C
yc

le
 t

im
e

Solution Time

Cycle time

147

Figure B.9: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 5

Figure B.10: Cycle Time vs Solution Time Convergence Graph for m = 3, K = 6

5000

5005

5010

5015

5020

5025

5030

5035

5040

0 10 20 30 40 50 60 70 80

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5005

5010

5015

5020

5025

5030

5035

5040

0 10 20 30 40 50 60 70 80 90

C
yc

le
 t

im
e

Solution Time

Cycle time

148

Figure B.11: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 1

Figure B.12: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 2

5020

5025

5030

5035

5040

5045

5050

5055

5060

0 50 100 150 200 250

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

0 20 40 60 80 100 120

C
yc

le
 t

im
e

Solution Time

Cycle time

149

Figure B.13: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 3

Figure B.14: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 4

5000

5010

5020

5030

5040

5050

5060

0 20 40 60 80 100 120 140 160

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

0 20 40 60 80 100 120 140 160 180

C
yc

le
 t

im
e

Solution Time

Cycle time

150

Figure B.15: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 5

Figure B.16: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 6

5000

5010

5020

5030

5040

5050

5060

0 50 100 150 200 250

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

0 50 100 150 200 250

C
yc

le
 t

im
e

Solution Time

Cycle time

151

Figure B.17: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 7

Figure B.18: Cycle Time vs Solution Time Convergence Graph for m = 4, K = 8

5000

5010

5020

5030

5040

5050

5060

0 50 100 150 200 250

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

0 50 100 150 200 250

C
yc

le
 t

im
e

Solution Time

Cycle time

152

Figure B.19: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 1

Figure B.20: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 2

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

0 50 100 150 200 250 300 350

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 20 40 60 80 100 120 140

C
yc

le
 t

im
e

Solution Time

Cycle time

153

Figure B.21: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 3

Figure B.22: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 4

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 20 40 60 80 100 120 140 160 180

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

5070

5080

0 50 100 150 200 250

C
yc

le
 t

im
e

Solution Time

Cycle time

154

Figure B.23: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 5

Figure B.24: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 6

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle time

155

Figure B.25: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 7

Figure B.26: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 8

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 50 100 150 200 250 300 350

C
yc

le
 t

im
e

Solution Time

Cycle time

156

Figure B.27: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 9

Figure B.28: Cycle Time vs Solution Time Convergence Graph for m = 5, K = 10

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 50 100 150 200

C
yc

le
 t

im
e

Solution Time

Cycle time

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

0 50 100 150 200 250 300

C
yc

le
 t

im
e

Solution Time

Cycle time

