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ABSTRACT

Extensive usage of automatic processing in industries has created Flexible
Manufacturing Systems (FMSs). In a robotic FMS there are some Computer
Numerical Control (CNC) machines for processing the parts, there is an input buffer
for keeping unprocessed parts and an output buffer for finished parts, and at least one
robot for transporting the parts in the system and loading/unloading the machines,
and a central computer controlling the system. Such systems provide advantage in
flexibility and standardization in production systems and they have been employed in
recent years in order to keep up with the market competition. In order to use the
system efficiently the system should be scheduled carefully. In this content, the order
of the robot actions such as robot movements and loading/unloading activities should
be determined for maximizing the system’s efficiency. When the system repeats a

cycle in its run maximizing the efficiency is equivalent to minimizing the cycle time.

This thesis considers a robotic FMS in which there is a single self-buffered robot
which has the ability to carry more than one part at a time in an inline robotic cell
where parts produced are identical. The system repeats a cycle in its long run. The
problem is to determine the schedule of the system for minimizing the cycle time. A
Mixed Integer Programming (MIP) model of the problem is developed to find the
optimal solutions. Since the developed MIP model could not solve the large size
problems a Simulated Annealing meta-heuristic algorithm is developed to solve
those problems. Performances of the proposed methods and considered robotic FMS
cells are evaluated on several numerical instances. Numerically, it has been shown

that the performances of the proposed methods are satisfactory and the performance



of the robotic FMS increases significantly by using a self-buffered robot up to some

robot buffer capacity. After a point more robot buffer capacity becomes useless.

Keywords: Flexible Manufacturing Systems, Cyclic Robotic FMS Scheduling, Self-

Buffered Robot.
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Sanayide otomasyona dayali iiretimin genis sekilde kullanimi1 Esnek Uretim
Sistemleri’ni (EUSleri’ni) ortaya c¢ikarmistir. Robotlu bir EUS’de parcalar1 islemek
icin CNC makineler, islenmemis pargalar1 tutmak i¢in bir stok alani, bitmis parcalar
icin bir stok alani, pargalart sistemde tagimak ve makineleri yiiklemek/bosaltmak i¢in
en az bir robot ve sistemi kontrol eden bir merkezi bilgisayar vardir. Boyle sistemler
esneklik ve standartlasma konularinda avantaj saglamaktadir ve son yillarda rekabet
edebilmek i¢in tercih edilmektedirler. Sistemin verimli bir sekilde kullanilabilmesi
icin dikkatlice ¢izelgelenmesi gerekmektedir. Bu kapsamda, robot hareketi ve
yiikleme/bosaltma gibi robot faaliyetleri sistem verimliligini en biiyiikleyecek sekilde
belirlenmelidir. Sistem ¢alisirken bir dongiiyii tekrarliyor ise dongli siiresinin en

kiigiiklenmesi sistem verimliliginin en biiyiiklenmesiyle aynidir.

Bu tezde, birden fazla pargay1 ayni anda tasiyabilecek kendi stok alanina sahip bir
robotun bulundugu ve parcalarn 6zdes oldugu bir robotlu EUS ele alinmistir. Sistem
uzun streli caligmasinda bir dongiliyli tekrarlar. Problem, dongii siiresini en
kiiciikleyecek sistem c¢izelgesinin bulunmasidir. En iyi ¢oziimleri bulmak {izere
problemin Karigik Tamsayili Programlama (KTP) modeli gelistirilmistir. Gelistirilen
KTP modeli biiyiik boyutlu problemleri ¢ozemedigi icin bu problemleri ¢ozmek
amaci ile Tavlama Benzetimi modern-sezgisel algoritmasi gelistirilmistir. Gelistirilen
yontemlerin ve ele alinan EUS hiicresinin performanslari cesitli sayisal problemler
iizerinden degerlendirilmistir. Onerilen ydntemlerin memnun edici bir performansa
sahip olduklar1 ve ele alinan robotlu EUS nin performansinin kendi stok alani olan

robot kullanilarak belli bir stok kapasitesine kadar énemli derecede arttig1 sayisal



olarak gosterilmistir. Belli bir noktadan sonra daha fazla robot stok alaninin olmasi

faydasizdir.

Anahtar Kelimeler: Esnek Uretim Sistemleri, Dongiilii Robotlu EUS Cizelgeleme,

Kendinden Stok Alanli Robot.
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Chapter 1

INTRODUCTION

A flexible manufacturing system has been widely used over the years because it has
the ability to adapt to changes in the process of production without causing any
delays and thus increasing the efficiency while processing products at a faster pace.
Machine and routing flexibility are the two types offered by a flexible manufacturing
system for the production process to be improved. When a new product type is
created the system changes to adjust itself and this refers to machine flexibility.
While the performance of the same set of operations by all the machines are referred

to as routing flexibility.

Extensive scheduling and designing of the system is required which makes it
complicated and thus only skilled workers can run such systems in industries which
lead to high cost and this poses as a disadvantage of a flexible manufacturing system.
However, defective products are prevented because of the ability of the system to

adapt to changes in the product and thus the cost is reduced in the long run.

The increase in flexibility which in turn increases the profit of an industrialized
company that operates a production line automatically by implementing modern
technology such as flexible manufacturing systems that are made up of robots are

known as flexible manufacturing robotic cells.



Since most industries strive in the market competition, they have chosen to use
flexible robotic cells for higher production and greater efficiency and some of these
industries include: aerospace, automotive, metal conductors and machinery. Some
real examples of where FMS are applied include the Ingersoll-Rand Corporation for
the hoist division in Virginia, USA. They built a parallel track cell with drill
machines and machining centers on either sides of the track and a roller conveyor to
transport processed parts. Aluminum and cast iron castings are the unfinished parts
that enter the production line and finally motor cases are the finished products. Other
industries include the Vought Aerospace in Dallas, USA where the FMS is made up
of CNC machines that produce different components of aircrafts and Allen-Bradley

Company that has 26 workstation cells to produce motor starters and many more.

Generally, a robotic cell consists of input and output buffers at the beginning and end
of a production line so that unfinished parts can be stored at the input buffer and
finished products are stored at the output buffer. Then between those buffers there
are m machines that process the parts and these are CNC machines which are
computer controlled. A single robot or in some cases multiple robots are responsible
for handling the parts and transporting them between the machines and from or to the

input and output buffer and also for loading and unloading operations.

There are two types of commonly used robotic cell environments which is either
flowshop or jobshop. A flowshop robotic cell means that a part has to go through all
the machines for processing in the same sequence. However, a jobshop robotic cell
has machines that perform the same set of operations so a job can be processed by
any of the machines. Other characteristics of a robotic cell include the number of

robots used which is either single or multiple. Usually, when multiple robots are used

2



there should more than one track for them to move because a single track means that
there will be collision between robots. Therefore studies proposing collision free

robotic cells with multiple robots have been considered.

During the start of robotic cell studies the most common robot type was a single
gripper robot which means the robot only had the ability to handle one part at a time.
Later on, studies proposed a dual gripper which can handle two parts at once. So for
example, a robot will pick up an unfinished part from the input buffer and then move
to a machine that finished processing a part rotates the wrist to pick up the finished
part and then rotates again to load the machine with the unfinished part. Another type
that has not been studied extensively is the dual arm robot which differs from a dual
gripper robot since it can place the arms at two successive machines consequently
rather than working on the same machine at a time. Other types of robots include

swap able robots and multifunction robots with hybrid grippers.

Layout of a production line is either inline or circular which from its name indicates
that the machines are placed in series in an inline layout. Circular layout is usually
seen to be more efficient because the robot has the ability to move clockwise or
anticlockwise thus decreasing the travel time. When the travel time is |i —j|&
between two consecutive machines then it is known as additive travel time for
0 <1i,j <m+ 1. However, most studies consider a constant travel time 6 between

any pair of machines. And finally there is Euclidean travel time §;; which must

satisfy three properties and one of them is the triangle inequalitys;; + 8;, = &y.

When the robot travels between machines it can either pick up a part as soon as it

finishes processing which defines the no wait constraint or it can leave the part on the

3



machine for an undefined amount of time which is referred to as the free pickup
criteria. Sometimes the part can stay on the machine for an interval and that is known

as the interval pickup criteria.

The processing of parts is repeated in a similar sequence and the movement of the
robot is fixed to repeat the sequence which represents a cycle. Parts processed may
either be identical or non-identical. In one cycle when one part is processed the
strategy of production is called 1-unit. If two parts are processed in a cycle then it is
a 2 unit cycle and so on. In a cycle a set of operations are performed which is
repeated in the same sequence in the next cycle. Cycle time is the duration of one
cycle and the aim of most studies is to schedule the order of robot moves in a manner
that reduces cycle time which in turn meets the common objective of maximizing

throughput. Such a problem is an optimization problem.

In this study the main contribution is to study self-buffered robots which means the
robot has a buffer that can store any amount of parts. For example, if the robot buffer
capacity is 2 it means the robot can store one part and handle one part. Figure (1.1)
shows an example of a self-buffered robot with the ability to handle 2 parts. The
main problem is minimizing cycle time by scheduling robot moves for a robotic cell

with a self-buffered robot.



@ : finished part
O : Unfinished part

Figure 1.1: Inline Robotic Cell with a Self-Buffered Robot

The study is considered for 2, 3, 4 and 5 machines case where the CNC machines are
identical in a parallel machine flowshop environment with one machine in each stage
and an inline layout with a single robot that has a single gripper and the parts
produced are identical and the robot travel time is additive which means the travel
time between any two machines is|i — j|6 . In one cycle only one part is processed

by each machine indicating it is a 1 unit cycle and the criterion of pick up is free.

Any scheduling problem is classified in terms of a|Bly where a refers to machine
environment a = R,‘%’fr(ml,...,mm) where R defines the environment, g defines
robot type, | defines layout, m defines number of stages, r defines number of robots
and (mg,...,m,,) indicates how many machines are there in one stage. The
processing characteristics p = (pickup criteria, travel time metric, part type,
production strategy) and the objective function is y. Our scheduling problem will be

classified as follows:

1‘?F,,1l"|1‘I (my)|(free, additive, Cyclic — 1)|Minimize cycle time



Initially, an MIP model for the problem is created and used to find exact solutions for
2 and 3 machines case. However, since solution time is extremely long for robotic
cells with 4 machines or more, a heuristic approach is used by applying the simulated
annealing algorithm and then comparison between exact and heuristic approach is

analyzed.

This study will be classified into the following: Chapter 2 will include a literature
review of all common studies, Chapter 3 will include problem definition, Chapter 4
compromises methodology, Chapter 5 includes the results and discusses the relative

meaning of the results found and finally Chapter 6 concludes the study.
1.1 Motivation

Flexible Manufacturing Cells as seen are employed by several industries and the
efficiency of the FMC system depends entirely on the schedule of the system.
Finding the most efficient schedule for such an FMC system is an important factor to
most industries. Because of its importance there is a huge literature studying this
optimization. However, studies mainly focus on robots of different types and a major
gap was realized concerning a self-buffered robot. Currently only one study has
considered a self-buffered robot in such systems which may increase the

performance of the FMC significantly.



Chapter 2

LITERATURE REVIEW

In this study, we consider a flexible robotic cell with m machines that are served by a
single robot with a single gripper that has a buffer capacity and thus the ability to
store finished or unfinished parts along with handling one part when the capacity of
the buffer is more than one. The layout of the cell is inline and has one input buffer
that stores unfinished products and one output buffer that stores finished products.
The travel time of the robot between the machines or between the input buffer and a
machine or between the machine and an output buffer is additive and a product can
stay on the machine for any amount of time corresponding to the free pickup criteria.
Parts produced are identical and only one unit is processed in a cycle. The objective
is to minimize cycle time by scheduling robot moves and the main focus of the study
is to show how the robot buffer capacity can reduce cycle time compared to single
gripper robots with no buffer capacity. An MIP model of the problem was created
and was used to solve the problem for an exact solution. However, large problems

were solved by applying the simulated annealing heuristic algorithm.

Since this study considered a production environment that is flowshop and when
there is only a single robot, all the literature that will be reviewed in this following
chapter will contain articles that considered the same environment and number of
robots. Differences will be seen among the robot type and whether it is single

gripper, dual gripper, dual arm, and robot with swap ability and whether there are



machine or robot buffers considered since the main focus of this study has to do with
the type of robot and whether applying a buffer capacity will have an impact on the

cycle time. Table (2.1) shows all the articles that were surveyed.

Table 2.1: Literature Survey Table

Avrticle No. of Tg?e Layout Pickup -I:I_ri?xgl Part Prod. Buffer Solution
No. Machines Robot Criteria Metric Types Strategy space Method
1 M. Single Clrc_ular, Blocking Constant Identical 1 unit UiEiF .
machines Inline Polynomial
2 bl Single | Circular | Blocking Constant Identical 1 unit Bl s
machines proof
. Algorithm
3 ma:(zz‘h?nes Single Mobile Constant 'I\gg:]ttllpcl :I’ MPS solved by
GAMS
4 o Single No wait Additive Identical 1 unit Polynomial
machines
3 Unary NP
5 . Single Mobile Constant Multiple MPS complete
machines
proof
6 o Single Mobile Free Additive Multiple MPS Polynomial
machines
3 Proof of
7 S Single Inline Blocking Constant Identical 1 unit Seth_l etal.
conjecture
3 . ; - . Heuristic
8 i Single Inline Additive Multiple MPS approach
9 3. Single | Circular | No wait Additive Multiple 1 unit Polynomial
machines
2,3 . . . - Multiple, 1 unit, .
10 e Single | Circular | No wait Additive Identical 5 unit Polynomial
11 2 3 Single | Circular | No wait Additive Identical . unit, Pyramlqal
machines 2 unit permutation
12 M Dual Circular Additive Identical 1 unit Permutation
machines
Symmetric
M A A A O A A TSP, NP
13 el TS Single | Circular No wait Additive, Identical 1 unit hardness
General
5and M . . . - . - Lower bound
14 RGeS Single Inline No wait Additive Identical K unit o
15 2. Dual Circular Constant Multiple MPS e
machines approach
2and M Gilmore
16 - Dual Circular | No wait Additive Multiple MPS Gomory,
machines .
Polynomial
M Additive,
17 ; Single | Circular | Blocking Constant, Identical K unit Polynomial
machines -
Euclidean
18 2. Single Inline No wait Constant Identical e llie Sensﬂn{lty
machines 2 unit analysis
M e Comparative
19 : Dual Circular Free Additive Identical 1 unit machine P
machines Study
hasan O
20 2. Single Inline No wait Additive Identical . unit, SenS|t|\{|ty
machines 2 unit analysis
Additive, .
21 M. Single | Circular Free Constant, Identical Ol
machines : schedules
Euclidean
22 3. Single Inline No wait Additive Identical . unit, DA i
machines 2 unit cycles
23 el TS Single | Circular Free Additive Identical 1 unit Polynomial
M Branch and
24 el TS Single Inline No wait Euclidean Identical 1 unit bound
algorithm




Article No. of Tgfe Layout Pickup -I:Ifi?xsl Part Prod. Buffer Solution
No. Machines Robot Criteria Metric Types Strategy space Method
M Single n . . .
25 machines | Dual Circular Free Constant Identical K unit Polynomial
Parallel
26 M. Dual machine, Free Constant Identical K unit Lauoel Zoug
machines . method
Circular
Each .
27 mac'\r?ines Single Inline Free Additive Multiple MPS machine Dgnlllr;r;mt
hasan O Y
M Interval,
28 . Dual No wait, Constant Identical 1 unit Polynomial
machines
Free
M . . . . . . Branch &
29 RGeS Single | Circular No wait Euclidean Identical 1 unit Bound
Each
30 o Single | Circular Free Additive Identical 1 unit machine Structur_al
machines Analysis
has I/0
31 M. Single 'T‘"”e' Free Additive Identical 1 unit Polynomial
machines Circular
Each
32 M. Dual Circular Free Additive Identical K unit machine Lauzel 21T
machines method
has 1/0
88 : and_ ) Single | Circular Interval Additive Identical K unit Lauzel 21T
machines method
Single
34 2 . with Clr_cullar Free,_No Additive Identical K unit AN @B
machine swap | vsinline wait performance
able
Single
35 2. Gl Inline Additive Identical 1 unit Sen5|t|\{|ty
machines | swap analysis
able
M MIP model,
36 el TS Single Inline No wait Euclidean Identical K unit solved by
CPLEX
2, 3 and Identical . .
! Dual . L. 1 unit, Dominant
37 M. arm Circular Free Additive . K unit cycles
machines Multiple
MILP,
2 Branch &
38 . Single | Circular Free Additive Multiple 1 unit bound,
machines .
Simulated
Annealing
39 M. Dual Inline Free Additive Identical 2 unit Lol duing
machines method
M . . . . . Branch and
40 TrEGRTTEE Single Inline Euclidean Multiple K unit bound
M Parallel MILP,
41 . Single | machine, Free Additive Multiple Simulated
machines . .
Inline Annealing
42 M Sl Circular Free Additive Identical K unit Polynomial
machines , Dual
. Robot .
43 2 Single | niine | Interval | Additive | Identical | 1 unit with DR
machines | , Dual cycles
buffer
This M Parallel Robot MIP,
stud machines Single | machine, Free Additive Identical 1 unit with Simulated
Y Inline buffer Annealing

2.1 Robots with Single Gripper
In the current literature some of the studies that considered single gripper robots
include [1 — 11], [13 — 14], [17 — 18], [20 — 24], [29], [31], [33], [36], [38], [40 — 41]

and out of these studies the articles that considered m machines case are [1 — 2], [4],
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[6], [13 — 14], [17], [21], [23 — 24], [29], [31], [33], [36] and [40 — 41]. Robotic cell
with 2 machines were studied in [3], [10 — 11], [18], [20], [38] and those with 3
machines were considered in [3], [5], [7 — 11], [22] and [33]. A 5 machine robotic
cell was also studied in [14]. In terms of the layout of the cell, [1 — 2], [9 — 11], [13],
[17], [21], [23], [29], [31], [33] and [38] implemented a circular layout. Whereas [1],
[7 — 8], [14], [18], [20], [22], [24], [31], [36], [40] and [41] considered an inline
layout. A mobile layout which is a generalization of the other two layouts was
studied earlier in [3] and [5 — 6]. The pickup criteria studied by [4], [9 — 11], [13 —
141, [18], [20], [22], [24], [29] and [36] was the no walit pick up criteria. On the other
hand, [6], [21], [23], [31], [38] and [41] implemented the free pickup criteria and
[33] studied interval pickup criteria. The blocking constraint states that when a part
finishes processing on a machine, the machine does not have the ability to process
another part until the finished part has been unloaded by the robot and this was seen
in [1 - 2], [7] and [17]. Additive travel time metric was considered in [4], [6], [8 —
11], [13 — 14], [17], [20 - 23], [31], [33] and [41]. Constant travel time metric was
implemented in [1 — 3], [5], [7], [17 — 18] and [21] and the Euclidean travel time was
studied by [17], [21], [24], [29], [36] and [38]. Identical parts were produced in [1 —
4], [7], [10 — 11], [13 — 14], [17 — 18], [20 — 24], [29], [31], [33] and [36]. Whereas
multiple parts were produced in [3], [5 — 6], [8 — 10], [38] and [40 — 41]. In a cycle
when one unit is produced it is called a 1-unit cycle and this was studied in [1 — 2],
[4], [7], [9 — 11], [13], [18], [20], [22 — 24], [29], [31] and [38]. A 2-unit cycle was
considered in [10 — 11], [18], [20] and [22] and a k-unit cycle was studied by [14],
[17], [33], [36] and [40]. And finally MPS cycles is a cycle strategy that can be

implemented only by multiple part types and its partitions sets with identical parts
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and produces each set in one cycle and thus the name Minimal Part Set and this was

studied in [3], [5 — 6] and [8].

Even though some similarities and differences can be seen among these papers in
terms of the characteristics of the robotic cell. The main difference between them lies

in the contribution of each article.

The problem in [1] is finding the robot cyclic schedule that is the shortest for the
cyclic scheduling of identical parts. In contrast to previous papers, the problem in
this paper is a case where they consider m arbitrary number of machines, but all parts
are the same. 0(m3) polynomial time is solved by an approach of dynamic
programming. Pyramidal permutations are a concept relied on heavily in the paper’s
analysis which is connected to the travelling salesman problem. In [2] proof that the
problem is strongly NP complete was undertaken. In [3] for a robotic cell with two
machines and part types are multiple, an efficient algorithm is provided that was used
to optimize the problem of part sequencing and move cycles of robots. A
computational program known as General Algebraic Modelling System (GAMS) was
used to test the algorithm. For a robotic cell with 3 machines and part types are
identical, the repetition of 1 unit cycles optimality has a conjecture that was
addressed and it was shown that the cycles that are more complicated is dominated

by such a procedure when two units are produced.

The Cyclic Robotic Flowshop Problem (CRFP) in the version that is solved in
polynomial time is studied in [4]. Processing times are numerical in the problem and
the no wait constraint is considered. When triangle inequality is satisfied by the
operation times, it is shown that 0(m®) can be improved. The problem is solved by

11



an algorithm that is derived in 0 (m3logm) time. [5] proved that the problem of part
sequencing is unary NP complete when the version is recognition and that when one
unit is produced; the robot move cycles that are potentially optimal are 2 out of 6.
Part sequencing problems that are solved efficiently are defined by the remaining

four cycles.

Considering the classification of the cycles of robots moves associated with the

problem of part sequencing was proved in [6] that out of the m! available cycles of

robot moves exactly 2m- 2 are solved in polynomial time. While the cycles that are
remaining associated with the problem of part sequencing are unary NP-hard. For a
robotic flowshop with 3 machines, it was conjectured in [7] that optimal production
is yielded when the unit cycle is 1. The conjecture validity was established. In [8]
move cycles of robots and the sequence of parts that together lead to cycle time
minimization which is required to produce a set of minimal parts are determined.
Previous algorithms that were provided and intractability proofs for different cell
configurations are used for a heuristic procedure to be developed for the problem of
part sequencing for different move cycles of robots in a robotic cell with 3 machines.
They described how the heuristic methodology can be extended for a robotic cell

with 4 machines and they tested it.

The complexity of sequencing of parts problem is analysed for a 3-machine robotic
cell when moves of robots are of different periodical patterns. Complexity is
investigated for six possible 1 unit cycles in the problem of part sequencing in [9].
The optimization and feasibility problem for each of them is considered and it was
seen that out of the six cases, the problem of feasibility is polynomial for 4 of them

and NP complete for the other two. In [10] two cases were studied: Case of 2
12



machines and parts processed are multiple: after being reduced to classical flowshop
no wait problem of 2 machines, it was seen that the problem is solved by O(nlogn)
polynomial algorithm and case of 3 machines and parts processed are identical: move
cycles of robots are considered when parts visit the machine either once or twice. In
[11] there is a threefold contribution:

1. Active schedules which are the so-called notion on cycle times are discussed
in more detail. In this case, the no wait criterion is applied in which
operations are executed by robots as early as possible.

2. Conjecture of one cycle is presented in a new approach.

3. Conjecture of one cycle is settled completely. Counterexamples are
constructed by the new approach which proves that for m > 4 machines the
conjecture is not valid any longer. Two cases were distinguished: 1.
equidistant machines when cells are regular. 2. The non-regular cells. And
then the dominance of the cycle was demonstrated to be different for two

configurations.

[13] studies the computational complexity of finding robot moves shortest route
between one machine and the next. Even though this complex problem was discussed
in previous literature, previous studies took into consideration some assumptions
which were dropped in this paper and NP hardness is proved in the strong sense
when there are symmetric travel times between the robotic cell machines and triangle
inequality is satisfied. The robotic cell scheduling problem considered in [14] has
processing windows which are unbounded. A conjecture was presented which
provides production cycle optimality with structure. Lower bound method was used

to prove optimality of the conjecture. Results confirm Agnetis conjecture that claims
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dominant cycles degree in a robotic cell that is in a no wait condition can be bounded

by m-1 machines. Agnetis proves conjecture for m = 2 and 3. [14] studies for m

and m = 5.

In [17] a polynomial algorithm was presented that produce solutions for multiunit
cycles for classes of robotic cells which are most commonly known: constant,
additive and Euclidean travel time. The optimal solutions are within constant factor
per unit cycle time. In [18] the objective was to find on 2 machines the process times
by operations being allocated to the machines as well as finding the move cycles of
robot that will jointly lead to cycle time minimization. Rather than the previous proof
that 1-unit robot move cycles are optimal, it was proved that either 1 or 2-unit robot

move cycles are optimal depending on given parameters.

Generally, it is assumed that since a tool magazine is stored with all tools that are
required, the operations can be performed by the CNC machines. But, the capacity of
the tool magazine is limited and the numbers of tools which are usually required
exceed the capacity. Thus, [20] considers the following assumption: due to
constraints in tooling, operations can be performed on the first machine while others
are performed on the second machine. While the operations that are remaining can be
performed on either one of the two machines. In [21] the knowledge concerning
cyclic schedules with respect to the robotic cells of different classes that are the three
travel times: additive, constant and Euclidean was discussed. [22] considers part
processing time as a decision variable for robot move cycles of 1 unit and 2 unit and
a new lower bound was proposed. And also, a new robot move cycle was proposed
which possesses the flexibility of operation. A cyclic solution is produced by an

algorithm presented in [23]. The cycle time is a factor 10/7 of the optimal solution
14



per unit. O(m) time runs the algorithm where m corresponds to number of machines
in the cell. Compared to the 3/2 best known guarantee, this result proved to be an
improvement. [24] proposed an exact algorithm which is the branch and bound
algorithm for a cyclic schedule to be optimal when processing times are flexible.
Based on machine and robot capacity constraints, the cycle time prohibited intervals
are used to formulate the problem. After the developed model is analysed,
transformation of the problem is conducted for the nonprohibited intervals of cycle

time to be enumerated.

[29] initially used method of prohibited intervals to formulate the problem and then
interval bounds were linearly expressed, and subsets were used to divide the intervals
and nonprohibited intervals were enumerated in each subset. In [31] NP hardness
proof was conducted when 1-unit cycle optimality was obtained for a circular layout
robotic cell with pickup criteria that is free and when the travel time metric is
additive, and the throughput increase was assessed. [33] considered a special case of
m = 3 and they analysed the case when processing times are controllable and
manufacturing cost associated with processing time was considered. Results proved
that at least one of two pure cycles reach optimality and proved that pure cycles are

dominant compared to classical cycles.

[36] used binary variables to define machine availability constraints in the scheduling
problem of multicyclic robotic flowshop cell when formulating the MIP model, the
input sequence is fixed which is not the case for multicyclic production. MIP model
was solved by CPLEX software and generated instances that are random proved that
the MIP approach proposed can solve scheduling problems in real life efficiently.

[38] proved NP hardness for the two-machine robotic cell scheduling problem with
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sequence dependent setup times. They also developed a time complex lower bound
of the problem using the algorithm of Gilmore and Gomory. And finally, an MILP
model was developed to address determination of best robot moves and parts

sequencing.

[40] developed analytical properties and branch and bound scheme that are specific
and efficient based on the problem characteristics, which allow the solution search
process to eliminate infeasible or dominated solutions. [41] introduced additional
constraints such as machine eligibility and parallel machines with different
processing speeds at each stage. They developed an MILP model and minimized
makespan for hybrid flowshop scheduling problem and a simulated annealing
algorithm which used a neighbourhood structure with block properties was
employed.

2.2 Robots with Dual Gripper

The articles that studied dual gripper robots include [12], [15 — 16], [26], [28] and
[39] and out of these studies the articles that considered m machines case are [12],
[16], [26], [28] and [39]. Robotic cell with 2 machines were studied in [15 - 16]. In
terms of the layout of the cell, [12], [15 — 16] and [26] implemented a circular layout.
Whereas [39] considered an inline layout. The pickup criteria studied by [16] and
[28] was the no wait pick up criteria. On the other hand, [26], [28] and [39]
implemented the free pickup criteria and [28] studied interval pickup criteria.
Additive travel time metric was considered in [12], [16] and [39]. Constant travel
time metric was implemented in [15], [26] and [28]. Identical parts were produced in
[12], [26], [28] and [39]. Whereas multiple parts were produced in [15] and [16]. 1-

unit cycle was studied in [12] and [28]. A 2-unit cycle was considered in [39] and a
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k-unit cycle was studied by [26]. And finally MPS cycles was studied in [15] and

[16].

In [12] the analytical framework that exists in the literature was extended for all 1-
unit cycles to be systematically developed for 2 machine robotic cells with a dual
gripper robot and then the difference between dual gripper and single gripper is

investigated in terms of cycle time advantage.

Finding part sequence optimality is known to be strongly NP hard even when they
provide the sequence of robot moves. A framework which is modelled and notated is
provided in [15] for the NP hard family of problems to be studied which are
associated with robot move sequences which are optimal. An algorithm which is
approximate is developed with the guarantee ratio of worst case performance of 3/2
which is estimated using a linear program without lower bound being calculated. The
system operation at steady state under numerous options of cyclic scheduling was the
focus of [16]. The problem of 2 machines was solved by the Gilmore Gomory
heuristic approach on problem instances that are randomly generated. Testing
procedures indicate that less than 10% of relative errors are realized when cycle time
lower bound at optimality is compared. A comparison between single and dual
gripper robots was carried out by conducting productivity gain estimation. There was
between 18% and 36% realization in relative improvement. [26] provides insights to
managers on how a dual gripper robot is beneficial and how a parallel machine cell
along with a dual gripper robot is more beneficial. Throughput improvement are
realised when such improvements are considered. [28] considers scheduling a robotic
cell with a dual gripper robot. The cases considered initially are the no wait and free

pick up cells. For the case when the pickup criteria is no wait, polynomial time
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algorithm was used to find the optimal solution and when it was free, the algorithm
was used to find the asymptotically optimal solution. For an interval robotic cell the
problem was proved to be NP hard. Also results showed that throughput improved
significantly when dual gripper was used rather than single gripper. In [39] a
methodology for optimizing a robotic cell with a hub re-entrant machine was newly
introduced. For all robot move cycles the cycle time is determined to find the lower
bound of the cycle time for the dual gripper robot. The optimal sequence of robot
tasks is determined which was a 2-unit cycle. The cycle time lower bound was also
obtained for the dominant cycle and the optimal solution found for this cycle was
demonstrated and they proved that for the robotic cell with hub machine that is re-

entrant this is the most appropriate option.
2.3 Robots with either Single or Dual Gripper

Studies that compared single and dual gripper robots include [25] and [42]. And in
both those studies the robotic cell was assumed to have m machines and the layout of
the cell was circular. The parts produced were identical with K-unit being produced
per cycle with free pickup criteria. The only difference was that [25] implemented a
constant travel time while [42] considered an additive travel time metric. [25]
provides valuable insights to production managers regarding how productivity is
maximized for both single and dual gripper cells for any combination of
requirements for processing and physical parameters. [42] provides an insight into
schedules for productivity maximization of either dual or single gripper robotic cells.
And the performance of dual gripper robotic cells under relevant conditions was

studied.
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2.4 Robots with Dual Arm

A dual arm robot was studied by [37] in a cell with either 2, 3 or m machines and a
circular layout. The travel time metric was additive and parts produced were either
identical or multiple and thus either 1 unit or k unit per cycle were produced. The
pickup criteria were free. [37] identified optimal sequence when identical parts are
processed for 2 and 3 machine cases. Also cells with m machines were studied and
they derived structural results for the case. For cells with two machines, they also
analysed the case when parts processed are of multiple types. They proved that
productivity was higher in dual arm robots compared to robot with single arm or

single gripper and the gains realized were quantified.
2.5 Robots with Swap Ability

A special type of robot was proposed by [34] and [35] and that is a robot with swap
ability. A robot with swap ability can handle only one part at once but the constraint
of blocking is eliminated since an occupied machine can be simultaneously loaded or
unloaded. In these studies the cell was made up of 2 machines and an additive travel
time metric when the parts produced were identical and 1-unit cycle was considered
in [35] while a k-unit cycle was studied in [34]. The layout considered was inline in
[35] and both circular and inline in [34] and the pickup criteria studied were free and

no wait.

[34] concentrate on a class of pure cycles which are newly introduced in which less
than m parts are processed in a cycle compared to previous studies were pure cycles
were m unit cycles meaning m parts are produced in a cycle. [35] studies robotic
cells which are reentrant in which the centered robot can swap and part types

processed are identical. In the beginning, the optimality regions are determined when
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a part enters the first machine for the second time. The same is done when the part
enters the second machine for the second time. And optimality regions are
determined when a part enters the two machines for the second time. They then
perform a sensitivity analysis for the parameters related to cycle time objective

function and results indicate that gain in productivity is realized in a swap able robot.
2.6 Robots with Output Buffer at Each Machine

In all the previous studies that were discussed the cell had only input and output
buffers at the beginning and end of the robotic production line. However, [19] and
[27] proposed having an output buffer for each machine in the line and discussed
how this would affect reduction in cycle time. Both studies considered an m machine
case with an additive travel time metric and a pickup criterion that is free. However,
[19] considered a dual gripper robot in a circular layout robotic cell when parts
produced are multiple and the strategy of production is MPS cycles. On the other
hand, [27] considered a single gripper robot in an inline layout robotic cell when

parts produced are identical and 1 unit is produced in a cycle.

Practically it has been studied that the advantage of a dual gripper is that there is
increase in cell productivity compared to a single gripper. [19] provided an extended
insight and conceptual framework to the scheduling problem with a dual gripper
robot. For the robotic cell with a dual gripper in which the production is cyclic, a
modelling framework is provided. Active cycles were the so-called cycles they
focused on and the feasibility and combinatorial issues of the problem were studied.
Complete family of active cycles are described by an algorithm approach that was
provided. Moreover, in an m machine case with gripper switching time that is small,

a polynomial time algorithm was devised for a 1-unit cycle optimal solution to be
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found. With presence of an output buffer at each machine with capacity of 1 unit, a
comparative study was employed between single and dual gripper. Results showed
that more productivity was realized from dual grippers when compared to single
grippers. Two models that are different are considered in [27]. The first model is a
robotic cell with a single gripper robot and at each machine there is an output buffer
with unit capacity. The second model is a robotic cell with a dual gripper robot and is
bufferless. Concentrated Robot Move sequence (CRM) cycles are the focus of this
study. Under common conditions in practice, the equivalence in the throughput of
these two models is this paper’s main outcome. Discussions indicated that the model
with an output buffer had total cost that was 20% less than the model with a dual
gripper. And this result argues the fact that there is equivalence between the two

models.
2.8 Robots with Input and Output Buffer at Each Machine

In the previous two studies only an output buffer at each machine is considered.
However, [30] and [32] proposed having an input and output buffer for each
machine in the production line and discussed how this would affect reduction in
cycle time. Both studies considered an m machine case in a circular layout robotic
cell with an additive travel time metric, a pickup criterion that is free and parts
produced are identical. However, [30] considered a single gripper robot and 1 unit is
produced in a cycle. On the other hand, [32] considered a dual gripper robot and k

unit is produced in a cycle.

Literature has extensively studied robotic cells that are bufferless. Few studies have
considered each machine with an output buffer and their results showed that such a

configuration can improve the throughput. [30] considered a robotic cell where each
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machine has an output and input buffer with one unit capacity and their results
showed that there was no throughput improved when compared to the output buffer
model. [32] is the first that considers scheduling of a robotic cell with input and
buffer at each machine and unit capacity and a dual gripper robot. An optimal
throughput upper bound that is tight is first obtained and an asymptotically optimal
sequence is then obtained using this bound under common condition in practice.
Then, the realized productivity improvement was quantified when using input and
output buffers with unit capacity at each machine. Production managers can use these
results to measure gain in productivity when installation of unit capacity buffers at

each stage of processing of a cluster tool with a dual gripper is conducted.
2.9 Robot with Buffer Capacity

The only study that considered a robot with a buffer capacity that is infinite is [43]
and the robotic cell studied in the article was a 2 machine cell with an inline layout,
single and dual gripper robot and parts produced are identical and 1 unit produced in
each cycle. The travel time metric was additive and the pickup criterion was interval.
They considered the single gripper robot with buffer capacity and compared it to a
dual gripper robot with no buffer capacity to see whether it further improves the
cycle time over that for classical robotic cells where robots have no buffer space.
They derived the dominant cycles for both the cases and the results indicate that self-
buffered robot leads to reduction in cycle time and performs more efficiently when

compared to dual gripper robots and robots with swap ability.

The main contribution in this study is that m machines were considered rather than 2
and an MIP model was created and the results were compared to that of the simulated

annealing algorithm rather than deriving the dominant cycles.
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Chapter 3

PROBLEM DEFINITON

The cyclic scheduling problem considered is defined by many notations. Other than
the commonly known notations such as process time, number of machines, etc., four
activities that are repeated m times in every cycle by the robot such as loading,
unloading and moving the parts within the robotic cell are considered. The problem
is to determine the order of these activities that are performed by the robot 4m times
in total with the objective of minimizing cycle time for the FMC system described.
These set of activities are separately defined below.

3.1 Notations and Definitions

m: number of machines that makeup the robotic cell considered.
p: part process time by a machine.
K: robot buffer capacity which is the number of parts that can be held by the robot.

I;: activity which involves taking the i*" unfinished part from the input buffer after

A: union of the activities I, L, U, O
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When activity I; is completed the robot stays at the input buffer and similarly it stays
at the output buffer when activity O0; is completed. When activity U; or L; is
completed the robot stays at the i*® machine. It must be noted that i refers to the
machine number when it is considered for activities L and U. However, i refers to the

it" finished or unfinished part when it is considered from activities 0 and 1.

During each cycle these set of activities are carried out by the robot and the same set
of operations are repeated in each cycle. The time taken for a cycle to be completed
also known as cycle time is the duration spanning from starting the first activity and
completing all the other activities and then at the end coming back to the same
activity we started with. A setup is needed in the beginning of each cycle which can
either mean all machines are emptied or loaded. The machine is only loaded and
unloaded once per cycle. The cycle time depends on the activities of the robot that
include traveling from one machine to another and loading and unloading. Thus, for
the cycle time to be calculated we need to consider travel time, loading and
unloading time between any two activities and a distance matrix is formulated for

this reason.

&: time spent picking up/putting a part from/to a machine or input/output buffer.

&: time taken by the robot to travel between two successive machines or between
input/output buffer and a machine.

d,p: time that is required for the operation executed by the robot between for

completing activity b after a.
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It must be noted that activity a must be followed by activity b and machine process
times are not included in the d,;, formula because it is not an activity carried out by

the robot.
3.2 Distance Matrix Derivation

Below the different cases will be discussed to show how the distance matrix was

found along with an example for each case.

Case l:ae{L;U;}and b e {L;, U;}

This case is divided into 4 subdivisions where i # j:
1. activity a is loading machine i (L;) and activity b is loading machine j (L;)
2. activity a is loading machine i (L;) and activity b is unloading machine j (L;)
3. activity a is unloading machine i (U;) and activity b is loading machine j (U;)
4. activity a is unloading machine i (U;) and activity b is unloading machine j

U))

@(—)1(—1!1.(—)1(—)1;;(—)@

a=Li b=Lj
a="Ui b="Uj

Figure 3.1: Case when Activity a € {Li, Ui} and Activity b € {Lj, Uj}

So, at the completion of L; activity the robot will move to machine j at travel time §

and the distance between those two machines is i - j. Since machine i might not
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always be before machine j, the absolute of the distance must be taken as |i - j| and

then once the robot reaches machine j it will execute the operation of putting the

unfinished part at the end of the loading activity with time €. So, d, = € + |i - j|6.

It must be noted that ¢ is only considered for the second activity because d, is the
time between completion time of a and completion time of b. The completion time
of a indicates that the activity has already been executed at the beginning of

considering this formulation.

By considering an example of this case it might be clearer. For activity a being L,
that means it will load machine 1 with an unfinished part and activity b will be L,

which means it will load machine 2 with an unfinished part.

Example of Case 1: a € {L,} and b € {L,}

o o B &

OG-

a=L1 b=L2

k2
Lad

Figure 3.2: Example when Activity a € {L1} and Activity b € {L,}

dL1L2:|1_2|6+g:€+6
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Case2:(ae{L;,U}andbe{l})or (ae{l}and b e {L; U;})

This case is divided into 4 subdivisions where i # j:
1. activity a is loading machine i (L;) and activity b is unloading input buffer ()
2. activity a is unloading machine i (U;) and activity b is unloading input buffer
(1)
3. activity a is unloading input buffer (I) and activity b is loading machine i (L;)
4. activity a is unloading input buffer (I) and activity b is unloading machine i

D)

D DO
Y

b=1 a=Li
a="Ui

Figure 3.3 a: Case when Activity a € {L;, Ui} and Activity b € {I}

1(—)i.(—)i(—}m.(—)®

Figure 3.3 b: Case when Activity a € {I} and Activity b € {L;, U;}
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So at the completion of I activity the robot will move to machine 1 at travel time §
and then from machine 1 to machine i at travel time § with the distance between
those two machines being i — 1 and then once the robot reaches machine i it will
execute the operation of putting the unfinished part which takes time ¢ at the end of

the loading activity. So,dg, = e+ 6+ (i — 1)6 =&+ i6.

For example, if activity a is L, that means it will load machine 2 with an unfinished
part and activity b will be I which means it will pick up an unfinished part from the

input buffer.

Example of Case 2: a € {L, } and b € {I}

1{—}2{—}3(—)®

b=1I a=L1

Figure 3.4: Example when Activity a € {L,} and Activity b € {I}

dy;=@-1)5+6+¢e=e+268

Case3:(ae{L;, Uitandbe{0})or(ae{0O}and b € {L;,U;})

This case is divided into 4 subdivisions where i # j:

1. activity a is loading machine i (L;) and activity b is loading output buffer (0)
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2. activity a is unloading machine i (U;) and activity b is loading output buffer
(©)
3. activity a is loading output buffer (0) and activity b is loading machine i (L;)

4. activity a is loading output buffer (0) and activity b is unloading machine i

Uy

o 8 &
@(—)lHi.(—)i(—)m.

a=Li b=0
a="Ui

Figure 3.5 a: Case when Activity a € {L;, U;j} and Activity b € {O}

Figure 3.5 b: Case when Activity a € {O} and Activity b € {L;, Ui}

So at the completion of L; activity the robot will move from machine i to machine m

at travel time § with the distance between those two machines being m - i and then
from machine m to the output buffer with travel time § and then once the robot

reaches output buffer it will execute the operation of putting the finished part which

29



will take time ¢ at the end of the loading activity. So,d,, = e+ 6+ (m—i)d = e+

(m-i+ 1)8.

For example, if activity a is L, that means it will load machine 2 with an unfinished
part and activity b will be O which means it will put a finished part to the output

buffer.

Example of Case 3: a € {L,} and b € {0}

8 8 5 o

®<_)1H

| ]
[

a=L2 b=0

Figure 3.6: Example when Activity a € {L;, U;j} and Activity b € {O}

dio=(3-2)6+8+e=¢g+26

Case4: (ae{l}and b e {0}) or (ae {O}and b € {I})

This case is divided into 2 subdivisions where:
1. activity a is unloading input buffer (1) and activity b is loading output buffer
(0)
2. activity a is loading output buffer (0) and activity b is unloading input buffer

(N
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a=1] b=D

Figure 3.7 a: Case when Activity a € {1} and Activity b € {O}

Figure 3.7 b: Case when Activity a € {O} and Activity b € {1}

So at the completion of I activity the robot will move to machine 1 at travel time §
and from machine 1 to machine m with the distance between those two machines
being m - 1 and then from machine m to the output buffer with travel time § and
then once the robot reaches output buffer it will execute the operation of putting the
finished part with time ¢ at the end of the activity. So, dy, =€+ 6+ (m—1)5 +

§d =¢e+ (m+ 1)6.

For example, if activity a is I that means it will pick up an unfinished part from input
buffer and activity b will be O which means it will put a finished part to the output

buffer.
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Example of Case 4: a € {I}and b € {0}

a:]: b:D

Figure 3.8: Example when Activity a € {1} and Activity b € {O}

dp=6+B-1)5+6+e=¢c+45

Case 5: (a,be{I})or(a,be{0})

This case is divided into 2 subdivisions where:

1. activity a is unloading input buffer (I) and activity b is unloading input buffer

1)
2. activity a is loading output buffer (0) and activity b is loading output buffer
(0)
] & & ] ]
l [€&=—> i |[€&—> | [ m (—)@
a=I.b=1

Figure 3.9: Case when Activity a, b € {I}
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a=0,b=0

Figure 3.10: Case when Activity a, b € {O}

So at the completion of I activity the robot will not move since the second activity is
also picking up an unfinished part from the input buffer so it will execute the
operation of picking up the part and the time taken for this operation at the end of
this activity is €. And the same is true if the completion of O activity is followed by

another activity of putting a finished part on the output buffer. So, 4,, = «.

Thus, the distance matrix for all cases is summarized as follows:

e+ |i—j|o ifa € {L,U} andb € {L;U;}
e+i6 if (a € {L,U}andb € or (a €elandb € {L;,U;})
dep = e+ (m—-i+1)6 if(a € {L,U}andb €0)or (a €0 andb € {L;,U;}) (3.1)
e+ (m+1)5 if (a €landb €0)or (a E0andb €1)
£ if (a,b €or (a,b €0)

3.3 Process Time

The distance matrix does not contain process time since processing of a part is a
function of the machine and is not involved with any kind of operation executed by
the robot. However, in cases when process time is large, at some point in the cycle

this may lead to the robot waiting for some amount of time.

So when the first activity is loading machine i (L;) with an unfinished part it will be
processed for p time units, the robot will then travel between machines to carry out
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other sets of activities while processing on machine i continues until it is time to
unload machine i (U;) with the finished part and the operation of unloading will
require unloading time of & time units. Thus, regardless of the travelling time, the
time between activities L; and U; is at least € + p since U; cannot be completed
unless the processing of the part is completed. So if the activities between L; and U;
take less than p time units, the robot will have to wait when it comes back to machine
i for unloading. The order in which the activities are executed have an impact on
whether there will be waiting time or not. It must be noted that this uncertain waiting

time amount is not considered in the dab formula.

Since in every cycle the same set of activities will be repeated in order for a cycle to
be fixed and for permutations to be avoided the first activity will always be fixed to
loading machine 1 (L;) and thus the cycle ends when it comes back to the activity
again and this duration will be the cycle time and the objective will be for the cycle

time to be minimized by scheduling the order of robot activities.
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Chapter 4

METHODOLOGY

Methods used to solve optimization problems are usually classified into two types,
either exact solution methods that provide optimal solutions that are guaranteed or
heuristic solution methods that do not guarantee optimality. They are also further
classified as either constructive methods which means that we start from no solution
and build up to a feasible or ultimately the optimal solution or improvement methods
which means we initially start from a feasible solution and build up to a better
solution. Examples of exact solution methods include: Branch and Bound algorithm,
MIP (Mixed Integer Programming), IP (Integer Programming), LP (Linear
Programming) or NMIP (Non-Linear Mixed Integer Programming) models,
Polynomial algorithm, etc. On the other hand examples of heuristic or meta-heuristic
approaches include: simulated annealing, genetic algorithm, tabu search, etc.

4.1 Mixed Integer Programming Model

In this study the optimization problem for scheduling the robot moves in order to
minimize cycle time is modeled as a MIP Model which indicates that some of the
decision variables are integer while others are non-integer. An MIP model is an exact
approach that is discussed in detail below. The decision variables of the problem are

as follows:
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Decision Variables:

o = {1, if the robot performs activity a before activity b
ab = |, otherwise

t,: activity a completion time
C: cycle time

7 = {1, if activity Ui is performed after activity Li
L= o, otherwise

Y, : the number of parts on the robot that are unfinished at the end of activity a

Y} : the number of parts on the robot that are finished at the end of activity a

M: is a big number that is defined

Definition of the notations m, p, K, I, L, U, 0, A, € and d,; can be referred from

Chapter 3 on pages 23 and 24.

Min C

s.t

Z Xap = 1 VbeA
a€d-b

z Xap =1 VaeA
beA-a

ty = tg+ dgp — M1 — x4) Va+beAb=+ L,
ty, — ty, < Mz i=1,....m
ty, = t, +(e+p)—MA - z) i=1,....,m
t,, < ty,+ C+(e+p)A— z) i=1,..m
C =ty + dar Xar, VaeA— L,
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(4.2)
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(4.5)
(4.6)
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xab € {011}

t, = 0
Cc =

z; € {0,1}

Yy =2V 4+ 1—-K+1D(A - xg)
Yy <Y+ 1+E+1DA - xg)
Yf =V —1—K+DA - xg)
Yf <YVi—1+E+DA - xg)
Yb+ > Y - (K+ 11— xg)

Vb, <Y+ K+ - xg)

v, 2 Y - (K+ 1D - xgp)

Vb <Y+ K+ - xg)

Yy =YV + 1—(K+ 11— x4)
Y, <Y;+1+K+1D(A - xg)
Yy =2 YV - 1—(K+ 11— x4)
Yy <Y, —14+K+1D(A - xg)
Y, 2 Y, —(K+1)(1 - xg)

Y, <Yy +(K+1)(A - xgp)

Y, 2 Y, —(K+1)(A - xg)

Y, <Yy +(K+1D(A - xg)
Yi+ Y, <K

Yf =0

Y, =0
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Va+bed

VaeA

VaeAb €0
VYaeADb €1
VYaeADb €1
VYaeAb €L
VYaeAb €L
VaeAb €l
VaeAb €l
VaeAb €L
VaeAb €L
YaeAb eU
YaeAb eU
YaeAb €0

YaeAb €0

(4.9)
(4.10)
(4.11)
(4.12)
(4.13)
(4.14)
(4.15)
(4.16)
(4.17)
(4.18)
(4.19)
(4.20)
(4.21)
(4.22)
(4.23)
(4.24)
(4.25)
(4.26)
(4.27)
(4.28)
(4.29)
(4.30)

(4.31)



(4.1) is the objective function which is cycle time minimization where cycle time is
the amount of time that spans when a system starts at a specific state and comes back

to the same state again.

(4.2) and (4.3) are like the constraints of the assignment problem which indicates that
in(4.2)ifaisI, 0, U or L and we assume that only I is the activity that is active then
only it should pass to another activity. There cannot be two activities passing to
another activity at the same time and this constraint holds for all a except when
a = b. Similarly in (4.3) for all b equal to either I, O, U, L if we assume that | is the
activity that is performed after the activity that is active then it should be performed
after only one of the activities and this constraint holds for all b except when a = b.
For example if it is a 1 machine case, then there will be only 4 activities. If it is

shown as an assignment problem then it will look like this:

Table 4.1: Representation of Constraint (4.2) and (4.3)

a L, U, I O,
b
Ly Xuia X Xoil1
U Xuu X Xoiwuz
I1 Xiin Xuin Xii01
O; Xrio1 Xuio1 Xio1
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So, if xo, X1y, Xy and x;o were equal to 1 then the order of the cycle would be 0,
L, U, I and then again back to 0. These two constraints guarantee that all activities

have to be performed only once for each machine.

In (4.4) if x4, = 1 it means activity a is performed before b and if that is the case
then the completion time of activity b will be equal or greater than completion time
of activity a plus the distance matrix between activity a and b identified by d;, thus:
t, = tq+ dgp. However, if x,, = 0indicating that activity a is not performed
before b then t, > t, + d,, — M and since M is a very big number that means
ty, — tqg— dgp = — M which is infeasible and thus this constraint ensures or
guarantees feasibility of successive activities because when x,;, = 0 there must be no
relation between activity a and b. For Example, if a=L,;, b=1L,, § =2, e = 1.
From Case 1 of our distance matrix it was seen that for a e {L;} and b € {L;},
dLl.L]. =li—jl6+eandthusd;, ;,=[1-2|0+e=6+e=2+1=3and let us

assume t, was 3. Since x;_, is 1 in this case because activity b is performed after a,

t,=3+3=6.

1 €2 2 |[€—2 °
a=L1 b=L2

Figure 4.1: Representation of Constraint (4.4) by an Example of Case 1
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Also, it should be noted that activity b cannot be L, because in the problem
definition chapter we discussed that L; will always be fixed as first activity to avoid

permutation.

In (4.5) activity of unloading a finished part from machine i must be performed after

the loading of machine i with an unfinished part. Otherwise the constraint must be

2

deemed infeasible. Thus, if z; is 1 meaning activity L; is before U; then t,, — t,, <
M which means t;, < t,, + M, since M is a very big number it basically means the
completion time of U; must be greater than completion time of L;. However if
z; = 0 indicating that activity U; is not performed after Li then ¢, — t;, < 0 which
meanst,, < t;, which is infeasible since the completion time of the U; cannot be

less than that of L;. This constraint guarantees whether constraint (4.6) or (4.7) is

active because only one of them will be active at the same time.

If z; = 1 meaning activity L; is before U; then (4.6) is active and that means t,, >
t;, + (¢ + p) which means completion time of U; is atleast completion time of L;
plus the processing time of the part and the time taken to pick up the part from the
machine. This means that after activity L; is completed if the activity following it is
U; then assuming process time is 0 the least amount of completion time of activity U;
is the time taken to pick up the part because other times can include travel time and
picking up/putting time for all activities between L; and U;. However if process time
is too large and by the time the robot comes back to machine i and processing of the
part was not completed, the robot will have to wait for a maximum amount of the

process time itself. For Example, ifa=L,;, b=U;, § =2, =1, p = 100 and let
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us assume t, was 20. Since U; is 1 in this case because activity U; is performed after

Ly, ty, = 20 +1+100 = 121.

®<_)1<_>

a=L1
b=1T1

[ ]

-0

Figure 4.2: Representation of Constraint (4.6) by an Example of Case 1

However in (4.7) if z; = 0 then activity U; is performed before L; and hence, we
need to guarantee feasibility. ¢;,, < ty, + € + (¢ + p) which becomes t,, = t,, —
(e + p) — C which means that the time span between the cycle time and completion
time of activity L; plus the processing time of a part and the time taken to pick up the

part from the machine must be less than or equal to completion time of activity U;.

=
=
£
- 41

| 1 1

tui et+p C-tri

Figure 4.3: Representation of Constraint (4.7)

In (4.8) if activity a is the last activity before the cycle is repeated from L, again and
a is before b where b is the activity of loading machine 1 again meaning x,;, = 1
then C = t, + dg,, Which means the cycle time is equal to completion of last
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activity a plus the distance matrix from a back to first activity L,. However, if
Xqr, =0 meaning activity a is not before L; then C = t, thus the constraint

becomes redundant.

dar 1

Figure 4.4: Representation of Constraint (4.8)

Since x,,, is either 1 or O it is a binary decision variable which is defined by (4.9) and
the same goes for the decision variable z; which is also a binary decision variable

defined by (4.12).

The completion time of activity a (t,) and the cycle time are both time standards and
thus they can defined as linear decision variables that are non-negative and this is

shown by (4.10) and (4.11).

Constraints (4.13) through (4.20) all deal with the number of finished parts on the
robot at the end of an activity. When x,;, = 1 it means that activity a is performed
before b and thus (4.13) and (4.14) reducesto ¥,f = Y + 1andV,” < Y/ + 1.In
optimization it is stated that a hyperplane is a set of points which satisfy one linear
equation and it divides the space into half spaces determined by inequalities such as

(4.13) and (4.14). Thus, the hyperplane in our case is reduced to the following one
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linear equation Y, = Y;7 + 1. It can be seen that in (4.13) and (4.14) activity b is
unloading a finished part which means that after completion of activity b one more
finished part will be carried by the robot. On the contrary, when x,, = 0 which
means activity a is not performed before b then (4.13) and (4.14) are reduced to
Y,y =Y +1-(K+1) and Y, <Y/ + 1+(K+1) which is deemed

infeasible since there is no intersection point between the two equations.

When x,, =1 (4.15) and (4.16) reduces to V,” = Y — 1and V,” < Y — 1.
Since it is two half spaces or two inequalities it is reduced to the following one linear
equation Y, = Y;/ — 1. It can be seen that in (4.15) and (4.16) activity b is putting
a finished part on the output buffer which means that after completion of activity b
one more finished part will be removed from the robot. On the contrary, when
Xqp = O0then (4.15) and (4.16) are reduced to Y, = Y — 1—(K+1) and
Y,b < Y; — 1+ (K + 1) which is deemed infeasible since there is no intersection

point between the two equations.

When x,, = 1 (4.17) and (4.18) reduces to ¥,* > Y; and ¥,* < Y;. Since it is two
half spaces or two inequalities it is reduced to the following one linear equation
Y,b = Yz It can be seen that in (4.17) and (4.18) activity b is picking up an
unfinished part to the input buffer which means that after completion of activity b
there will be no finished parts added or removed to the robot buffer. On the contrary,
when x,, = 0 then (4.17) and (4.18) are reduced to Y, > Y; — (K + 1)and

Y,) < Y; + (K + 1)which is deemed infeasible since there is no intersection point

between the two equations. The same set of equations are seen in (4.19) and (4.20)
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for the case when activity b is loading an unfinished part to the machine. Then again

there are no finished parts added or removed to the robot buffer.

Constraints (4.21) through (4.28) all deal with the number of unfinished parts on the
robot at the end of an activity. When x,;, = 1 (4.21) and (4.22) reduces to Y, >
Yo+ 1 and Y, < Y; + 1. Since it is two half spaces or two inequalities it is
reduced to the following one linear equation Y, = Y, + 1. It can be seen that in
(4.21) and (4.22) activity b is picking up an unfinished part from the input buffer
which means that after completion of activity b one more unfinished part will be
carried by the robot buffer. On the contrary, when x,;, = 0 which means activity a is
not performed before b then (4.21) and (4.22) are reducedto ¥, > Y, + 1 — (K +
Dand Y, < Y, + 1+ (K+1) which is deemed infeasible since there is no

intersection point between the two equations.

When x,, =1 (4.23) and (4.24) reduces to ¥, = Y, — land ¥, < Y, — 1.
Since it is two half spaces or two inequalities it is reduced to the following one linear
equation Y- = Y, — 1. It can be seen that in (4.23) and (4.24) activity b is loading
an unfinished part on the machine which means that after completion of activity b
one more unfinished part will be removed from the robot buffer. On the contrary,
when x4, = 0 then (4.23) and (4.24) are reduced to ¥, > Y; — 1 — (K + 1) and
Y, < Y, — 1+ (K + 1) which is deemed infeasible since there is no intersection

point between the two equations.

When x,;, = 1 (4.25) and (4.26) reducesto ¥, = Y, and Y, < Y, . Since it is two

half spaces or two inequalities it is reduced to the following one linear equation
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Y, = Y, . It can be seen that in (4.25) and (4.26) activity b is unloading a finished
part from the machine which means that after completion of activity b there will be
no unfinished parts added or removed to the robot buffer. On the contrary, when
Xap = 0then (4.25) and (4.26) arereducedto Y, > Y, —(K+1)andY, < Y; +
(K + 1) which is deemed infeasible since there is no intersection point between the
two equations. The same set of equations are seen in (4.27) and (4.28) for the case
when activity b is putting a finished part to the output buffer. Then again there are no

unfinished parts added or removed to the robot buffer.

(4.29) indicates that the number of finished and unfinished parts on the robot at the
end of the activity must not exceed the robot capacity. (4.30) and (4.31) are non-
negativity constraints for the decision variables Y, and Y. Since these variables are

number of parts then they must be integer.
4.2 Software Used to Solve the Model

This model can be solved by many software programs. However, the software used
to solve this MIP model was a combination of Visual Studio 2017 and IBM ILOG
CPLEX Optimization Studio 12.8.0. Visual Studio is used for computer program
development which was founded by Microsoft as an IDE (Integrated Development
Environment) and languages such as C++ are built into it. CPLEX on the other hand
is a program used to solve models such as MIP, LP and so forth in order to provide
an optimal solution. CPLEX concert technology is a library that has C++ language
and thus the configuration between CPLEX and Visual Studio allows us to code in
C++ language in Visual Studio with the possibility of getting an optimal solution due

to the CPLEX configuration.
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4.3 Cycle and Variables Representation

Since the distance matrix d,, as well as variables x,, are composed of two
consecutive activities where a represents an activity and b represents another activity
such as for example dy; ;. or xy,,,, it can be seen that a and b themselves are divided
in two parts the activity itself for example unloading and on which machine the

activity was carried out for example machine 1.

Thus, if we write the representation of x,;, as x[a][i][b][j] then a and b are an array
of 4 elements, while i and j are an array having m elements. Also, since it is easier
to deal with numbers rather than alphabets the activities L, U, I and O are represented
as 0, 1, 2, and 3. However, when the output is printed in the solutions page any

variables or activities represented as numbers are printed as their representations.

The same is true for the variables t,, Y;, Y;, z; which are represented as t[a][i],
YP[a][i], YN[[a][i] and z[i]. An example of the solution page for a 2 machine case

with process time 22 and K = 1 is shown in Figure (4.5).
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cycle time = 38

x L1 U2 =
x L2 Ul =
x Ul 01 =
x U2 02 =
x 11 L1 =
x 12 12 =
x 01_I1 =
x 02 12 =
tL1=0
t L2 = 20
t U1 = 23
t U2 =5
t I1 = 35
t 12 = 15
t 01 = 28
t 02 =8
YP L1 =
YP L2 =
YP U1 =
YP U2 =
YP_I1 =
YP 12 =
YP 01 =
YP 02 =
YN L1 =
YN L2 =
YN_U1 =
YN U2 =
YN_I1 =
YN_I2 =
YN 01 =
YN 02 =
71 = 1

72 = 0

Figure 4.5: Solution Page for 2 Machine Case with K =1, P = 22

N )

OO =00 000000k @0

The cycle on the other hand is represented by 2 arrays Corder[i][j] where i = 0
represents array of activities and i = 1 represents array of machine on which
activity is conducted and j has 4m elements since each activity is conducted once for
each machine or in terms of output or input buffer for each part that is carried or
dropped and there are 4 activities so if it is a 2 machine problem, there will be 8
activities in total, and if it is 3 machines there will be 12 activities in total and so

forth. So generally for an m machine case there will be 4m activities. For example, if
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the following representation is printed as depicted in Figure (4.6) then the actual

cycle that is being represented is L,U,0,1,L,U,0,1; for a 2 machine case.

i=0 i=1 i=2 i=3 i=4 i=3 j=6 i=7
' . ' . ' T ' i N . ' . ' e N .

2 2

]=|:| 0 1 3 Fa 0 1 3 s
N, % . L r L o N o N N o
r N [ ~ N ™ N N ™ ™)

=1 0 1 1 1 1 0 0 0
\ Fa N FEN . N N N % N .

Figure 4.6: Representation of a Cycle for a 2 Machine Case

4.4 Simulated Annealing Algorithm

The solver was used to run the MIP model for 2 machine and 3 machine cases, it
could not be used to solve larger machine problems such as 4 machine and 5 machine
case and that is due to the extensive solution time which is known to be one of the
cons of using exact solution methods. Thus, a heuristic approach was proposed to be
used for solving the 4 machine and 5 machine cases and that is the Simulated
Annealing Algorithm. A heuristic approach will not guarantee the optimal solution at
all times but the solution time will be reduced and this will be seen in the next

chapter.

Compared to using other heuristic approaches such as genetic algorithm, gradient

descent, etc. [44] stated the main advantages of using simulated annealing are:

1. Memory shortage problems are avoided because only one solution is used at a
time for a run.

2. Neighboring solutions produced are feasible and a repair algorithm is not

required leading to solutions that are highly diversified.
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Generally the steps of the simulated annealing algorithm start with an initial solution
being constructed. Then the iteration loop begins and a neighboring solution is
found. If the neighboring solution is better than the current solution then it becomes
the new current solution. Else, if it was worse than the bad solution might be

accepted with some acceptance probability or otherwise rejected.

The Simulated Annealing algorithm coded in Visual-CPLEX solver for the model in
this study followed the steps below which was an extension to the MIP model.

4.4.1 Creating the Initial Current Order

for (1 = 8; 1 < m; i++)

1
Corder[@][2 * i] = @;
Corder[1l][2 * i] = 1;
Corder[@][(2 * 1) + (2 * m) - 1] = 1;
Corder[1][(2 * 1) + (2 * m) - 1] = 1i;
Corder[@][(2 * i) + (2 * m)] = 3;
Corder[1][(2 * i) + (2 * m)] = 1i;

¥

for (1 = 1; 1 < m; 1++)

1
Corder[@][(2 * 1) - 1] = 2;
Corder[1][(2 * i) - 1] = 1i;

¥

Corder[@][(4 * m) - 1] = 2;

Corder[1][(4 * m) - 1] = 8;

Figure 4.7: Creating Initial Current Order

Figure (4.7) shows the algorithm that was coded to create a fixed initial current order
of activities that make a cycle. Since we previously defined that i has m elements we
fix the i in Corder[i][j] to 0 and 1 since there will always be 2 arrays: 0 for activities

and 1 for machines.
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The initial current order for a 2 machine case will look something like Figure (4.8)
which is a cycle in the form of L,I,L,U;0,U,0,1; when the numbers that
represented the activities are replaced by their actual representations and machines

are replaced by i + 1 is a cycle of the form as depicted in Figure (4.9).

( AN 4 N ( ) 4 AW 4 N[ N f N[ N
0 2 0 1 3 1 3 2

\ J \\ J \ v \, J \\ S \\ J \\ S \\ S

( AW 4 N ( ) 4 AY 4 AN 4 N f AW 4 )
0 1 1 0 0 1 1 0

\ g \| J \ v \ J \\ g \\ VA S \\ J

Figure 4.8: Initial Current Order Created for 2 Machine Case

( AW 4 N ( ) 4 AY 4 N[ N f AW 4 )
L I L U @) U @) I

\ g \| J \ v \, J \\ J \\ VA S \\ J

( \N/f N ( N 4 N[ N[ N f N[ )
1 2 2 1 1 2 2 1

\ g \| J \ J \ g \ J \\ VA S \\ J

Figure 4.9: Initial Current Order for 2 Machine Case Represented by Activities and
Machines

Generally, the idea of creating this initial order was because before loading a part on
the machine, the robot needs to pick up a part from the input buffer and after the part
is loaded it is processed and then unloaded after finishing processing and then finally
the unloaded part is moved to the output buffer. This order was considered for a
robot with buffer capacity 1 since an order created to consider robot buffer capacity 2
or higher will create an infeasible order for a robot with smaller buffer capacity. A
generalized initial current order for m machine case is shown as Figure (4.10) and

Figure (4.11) represents the order in terms of activities L, U, I and O.
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Figure 4.10: General Initial Current Order
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Figure 4.11: General Initial Current Order Represented by Activities L, U, I and O

The initial order was generated after testing a set of orders that in some cases seemed
to be infeasible depending on the robot buffer capacity as stated before. It will be
seen later in the results and discussion chapter that since this order represents a cycle
for a robot with buffer capacity of size 1 then in some cases optimal solution will be
reached from the first iteration.

4.4.2 Defining x Variables and Setting Best Order

After defining all the constraints of the model, before calculating the current
objective the variable x[a][i][b][j] is set to lower bound of 1 so that only the X
variables that appear in the current order are set to 1 while others are 0. And this is

coded by the algorithm shown in Figure (4.12).

for (i =8; i < (4% m - 1); i++)
x[Corder[@][1i]][Corder[1][i]][Corder[@][1 + 1]][Corder[1][1 + 1]].setLB(1);

x[Corder[@][4 * m - 1]][Corder[1][4 * m - 1]][Corder[@][@8]][Corder[1][0]].5etlLB(1);

Figure 4.12: Setting x Variables to Lower Bound 1
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So for example, x[Corder[0][0]][Corder[1][O]][Corder[0][1]] [Corder[1][1]] is set to
1 for i = 0. This basically means that we just take two consecutive elements or

activites from the array of Corder[i][j].

After that current objective is found by CPLEX solver and then variables x[a][i][b][j]
for current order is set back to lower bound 0. The best order is set to be equal to the
current order and the best objective is set to be equal to current objective.

4.4.3 Starting the Iteration Loop

In this algorithm the number of iterations is the stopping criteria. Since for cases
when number of machines was 2 or 3 the optimal solution was found by the exact
method it was easier to assume number of iterations required to reach optimal
solution and that was around 1000 iterations. However, for 4 and 5 machine cases the
number of iterations required trials until what can only seem as the minimum cycle
time found and that was fixed as the number of iterations required. For a 4 machine
case 2500 iterations were made and for 5 machine case the number of iterations

ranged between 3000 to 5000.

When the runs were made by the SA algorithm it must be noted that each run was
made 10 times which means if a case was run for 1000 iterations then those 1000
iterations were made 10 times. Out of those 10 times the result that gave the

minimum cycle time was selected.

Then the first step was to set new order equal to the current order.
4.4.4 Strategy Used for New Solution
At this point a new solution is generated and a swapping method is used to generate

the solution. The swap is conducted for 2 sets: one for activities and one for the
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machine. So for example, if we have the initial current order for 2 machine case as
the one in Figure (4.10) then a random number a and b is generated between 1 and
4m - 1. Even though elements of j range between 0 and 4m - 1 we never swap with

j = 0 which is the loading activity of machine 1 and this to avoid permutations.

Soifa = 4 and b = 6 there will be a swap between a and b and the new order
will be as shown in Figure (4.13). It can be seen that the new order did not create any
difference since a swap between two output buffer activities does not reduce distance
matrix because the distance of travel will be the same. To avoid such a new order as
well as to avoid swapping when a and b are equal conditions are used in the

algorithm for the swap to be restricted as shown in Figure (4.14).

Figure 4.13: Swapping Strategy for New Solution to be generated
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else {

a=rand() % ((4 *m) - 1) + 1;
b = rand() % ((4 * m) - 1) + 1;

while ((a == b) || ((Norder[@][a] == 2) & (Norder[@][b] == 2)) || ((Norder[@][a] == 3) &% (Norder[@][b] == 3)))
{

b =rand() % ((4 *m) - 1) + 1;
b

temp = Norder[@][a];
Norder[@][a] = Norder[@][b];
Norder[@][b] = temp;
temp = Norder[1][a];
Norder[1][a] = Norder[1][b];
Norder[1][b] = temp;

Figure 4.14: Swapping Strategy to Generate New Solution

It can be seen that this swap is conducted for i = 0 and i = 1 which is activities
and machines at the same time. It was also previously mentioned that since the order
for a robot with buffer capacity of size 1 is very restricted since for each machine the
order should always be the same that is Input buffer, Load, Unload, Output buffer a
separate swap method with a condition was coded just for this case and it is shown in

Figure (4.15).

if (RBK == 1)

1
a=rand() % ((2 *m) - 1) + 1;
b = rand() ¥ ((2 * m) - 1) + 1;
while (a == b)
{

b =rand() % ((2 *m) - 1) + 1;

¥
temp = Norder[8][2 * a];
Norder[@][2 * a] = Norder[@][2 * b];
Norder[8][2 * b] = temp;
temp = Norder[1][2 * a];
Norder[1][2 * a] = Norder[1][2 * b];
Norder[1][2 * b] = temp;
temp = Norder[8][(2 * a) - 1];
Morder[®][(2 * a) - 1] = Norder[®][(2 * b) - 1];
Morder[@][(2 * b) - 1] = temp;
temp = Norder[1][(2 * a) - 1];
Morder[1][(2 * a) - 1] = Morder[1][(2 * b) - 1];
Morder[1][(2 * b) - 1] = temp;

¥

Figure 4.15: Swapping Strategy for Robot Buffer Capacity 1
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The code has a condition that if a and b are equal no swap will be conducted. In this

case, a and b are random numbers between 1 and 2m - 1. So if we deal with a 2
machine case with initial order as shown in Figure (4.10). Then a can either be 1, 2
or 3 and b can either be 1, 2 or 3 that means there are 6 possible swaps (a = 1,b =
2, (a=1,b=3),(a=2,b=1),(a=2,b=3), (a=3,b=1) and (a=3,b =
2) and since 3 of them are the same to the other 3 that means there are 3 unique new
orders. So in general there are (2m — 1)(2m —2)/2 unique new orders for m

machine case.

It can also be seen from the code that there will be two sets of swaps since as stated
before I should be followed by L and U should be followed by 0. These 3 new orders

for the 2 machine case are as shown in Figure (4.16).
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Figure 4.16: New Orders generated for 2 Machines with K =1
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After that a new order is printed after the swap. And variables x[a][i][b][j] is set to
lower bound of 1 so that only the new order x[a][i][b][j] variables are set to 1 while
others are 0. And then the new objective is found by CPLEX solver.

4.4.5 Condition for Finding a Better Solution

The first condition states that if the new objective is less than best objective found up
to this point than the new objective is the best objective and the new order is the best

order given that the order is feasible.

The second condition states that if the new objective is less than current objective
found than the new objective is the current objective and the new order is the current

order given that the order is feasible.

Current objective—New objective

The third condition states that if Random Number < e T

then we set the new objective to be equal to the current objective and the new order
to be the current order with the control parameter being T = A = T; where the ratio A
IS0 < A< 1andTis known as temperature. This technique is known as the
cooling schedule and it is used rather than some fixed number because the difference
between the new and current objective is taken into account and thus the acceptance
of the bad solution decrease if the difference is big or if the temperature decreases.

Otherwise, if the order is infeasible and if Random Number < ew then we set the
new objective to be equal to the current objective and the new order to be the current
order which allows us to except infeasible orders. Where Worse is any negative big

number such as -1000.
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Also in the SA algorithm since the parameters ratio and worse affect the possibility
of getting the optimal solution they had to be varied according to the number of
machines. The parameter ratio was kept constant at 0.99 for all cases. However the
parameter worse was -5000 for the 2 machine case and -10000 for the 3, 4 and 5

machine case.

Finally the variables x[a][i][b][j] for the new order is set back to lower bound 0.And
then x[a][i][b][j] is set to lower bound of 1 so that only the best order x[a][i][b][j]
variables are set to 1 while others are 0. Lastly, the best objective is computed by

CPLEX solver if the order is feasible.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Cycle Time Calculation

In this section, a two machine case with robot buffer capacity 1 and 2 are given as
examples to show how the cycle time is calculated along with the other decision
variables that include the completion time of the activities (t,), the number of parts
on the robot that are unfinished at the end of activity a (Y;), the number of parts on
the robot that are finished at the end of activity a (Y;7) and the binary decision
variables (x,;) and (z;). The schedule in this example is the optimal solution of these

two cases that was found by the MIP model.

Casel:m=2,0=2,e=1,K=1,P=22

Table 5.1: Casewhenm=2,6=2,¢=1,K=1,P=22

Activity L, U, O, I, L, U; 0O, I C
(a)
Xab=1 | Xuwz | Xueoz | Xoarz | Xietz | Xeour | Xuior | Xown | Xiws
ta 0 3 6 13 18 23 28 35
38
Y. 0 1 0 0 0 1 0 0
Ya 0 0 0 1 0 0 0 1

Since the schedule of robot moves is as shown above that indicates that robot
performs activity L, before U, (x,,y, = 1), U, before 0, (xy,0, = 1), O, before I,

(xo,1, = 1), I, before L, (x;,,,= 1), L, before U (x,,y, = 1), U; before 04 (xy,0, =
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1), 0, before I; (xo,,,= 1) and finally I; before L, (x;,, = 1). Thus, other
combination of activities will be zero and this is represented by equations (4.2) and

(4.3) in the mathematical model.

Y, and Y, are O because at the end of loading a machine with an unfinished part the
robot has no parts left on it. In the model, this is represented by equations (4.23) and
(4.24). Also it must be noted that Y;* and Y;! will not exist because the robot will not
load the machine with a finished part. This is represented by equations (4.19) and
(4.20) in the model. On the other hand, Y;;, and Y} are 1 because at the end of
unloading a machine with a finished part the robot has one part. In the model, this is
represented by equations (4.13) and (4.14). Also it must be noted that Y;;, and Y, will
not exist because the robot will not unload the machine with an unfinished part. This
is represented by equations (4.25) and (4.26) in the model. When a part is taken to
the output buffer it means a finished part is put to the output buffer thus the robot has
no parts left so Y, and Y, are 0. This is represented by equations (4.15) and (4.16) in
the model. While equations (4.27) and (4.28) indicate that Y, and Y, will not exist
since the robot will not put an unfinished part to the output buffer. And when a part
is taken from the input buffer it means an unfinished part is picked up from the input
buffer thus the robot has one part so Y; and Y, are 1. This is represented by
equations (4.21) and (4.22) in the model. While equations (4.17) and (4.18) indicate
that Y,j and Y,: will not exist since the robot will not pick up a finished part from the

input buffer.
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Table 5.2: Describing Completion Time Calculation for Case when m=2,6=2, &=
1, K=1,P=22

Buffer/
Machine 1 2
i

\ )
T

Ll & =2 since the time to travel from machine 1 to machine 2 is 2 time unit
and € = 1 because at machine 2 the part is picked up so unloading time
is1timeunit, dyy,=¢c+fi—jo=1+[1-2|](2)=1+2=3andty, =3

L J
T

U,0 0 = 2 since the time to travel from machine 2 to the output buffer is 2

20>

time unit and € = 1 because at the output buffer the part is put so
loading time is 1 time unit, dy,0; =+ (M —-i1+1)8=1+2-2+1) (2)
=1+2=3andtp;=3+3=6

L J
3*3 = 6 since the time to travel from' output buffer to input buffer is 6
O.l, time unit and & = 1 because at the input buffer the part is picked up so
unloading time is 1 time unit, dozp =+ (Mm+1)8=1+2+1)(2)=1
+6=7andt,=6+7=13.

L J
2%§ = 4 since the time to travel from the input buffer to the machine 2 is
4 time unit and € = 1 because at machine 2 the part is put so loading
time is 1 time unit, dp,=e+id=1+2)(2)=1+4=5andt, =13+
5=18.

b,

\ J

T
0 = 2 since the time to travel from machine 2 to machine 1 is 2 time unit
and € = 1 because at machine 1 the part is picked up so unloading time
is1timeunit,douyi=¢e+i—jd=1+2-1(2)=1+2=3and ty; =18
+ 3 + 2 = 23 where 2 is waiting time since machine 1 had to be
unloaded and process time of 22 time units was not fulfilled by the time
the robot was ready.

L.U;

L J

2*5 = 4 since the time to travel from machine 1 tz) the output buffer is 4
time unit and € = 1 because at the output buffer the part is put so
loading time is 1 time unit, dyios =e+(M—-i+1)8d=1+2-1+1) (2)
=1+4=5andto; =23 +5=28.

U0,

L J
3*3 = 6 since the time to travel from 01Y1tput buffer to input buffer is 6
time unit and &€ = 1 because at the input buffer the part is picked up so
unloading time is 1 time unit, do;py =e¢+(mM+1)8=1+(2+1)(2)=1
+6=7andt; =28+ 7=35.

Oi1l1

L J
T
0 = 2 since the time to travel from the input buffer to the machine 1 is 2
time unit and € = 1 because at machine 1 the part is put so loading time
isltimeunit,dy,=€e+id=1+(1)2)=1+2=3andC=35+3=
38.

1L
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Table (5.2) indicates how the completion times for each activity is calculated and
equation (4.4) was used when finding the completion time of activity b while (4.6)
was applied in finding ¢, since the completion time of activity U; must be greater or
equal to the completion time of L; which is 0 + the unloading time which is 1 and the
process time which is 22, thus t;;, must be greater or equal 23. Equation (4.8) states
that the cycle time is greater or equal to the completion time of I; which is 35 + (the

distance matrix d;, ;, which is 3)*(X, ., which is 1) thus C is greater or equal to 38.

It must also be noted that in this case z; = 1 since for machine 1 activity U; is
performed after L,. However, z, = 0 since for machine 2 activity U, is performed

before L.

The Gantt Chart for this case is shown in Figure (5.1). A Gantt chart is used to
represent the processing time by each machine from start to end and for a certain
period. And also for the robot it represents the start and end for completion of each of
the activities in the chart and thus the horizontal axis is titled as time. For this 2
machine case it can be seen that for machine 1 after processing time of 22 time units
the machine will stay idle for another 16 time units with no part on it. As for machine
2 processing of the part starts at time 18 and it processed for 22 time units. The
machine is also idle with no part on it for 16 time units. The completion time of the
activities are represented by two bars one bar for total travel time and one bar for the
time taken for the robot to pick up or leave a part. It can also be seen that before the
unloading operation of machine 1 there was some waiting time for the robot and this
is because the machine did not finish processing. In some cases when two different

activities are carried out on the same machine then there will be no travel time.
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Machine 2

Gantt Chart for 2 Machines

Figure 5.1: Gantt Chart for Case whenm=2,6=2,e=1,K=1,P=22
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Case2:m=2,0=2,e=1,K=2,P=22

Table 5.3: Case whenm=2,6=2,¢=1,K=2,P =22

ACtiVity L, I, O, U, L, O, 1 U; C
(a)
Xab=1 | Xz | Xizor | Xowz | Xuarz | Xizoz | Xoziw | Xiur | Xuis
ta 0 3 10 13 14 17 24 27
28
Y. 1 1 0 1 1 0 0 1
Ya 0 1 1 1 0 0 1 1

One of the most important realizations of how increase in robot buffer capacity can
lead to minimization in cycle time is that when robot buffer capacity is just 1 that
indicates that the schedule of robot moves will always be constant in such a way that
after loading a machine with an unfinished part then the robot can perform either of
the following:

1. If the second machine is empty then the robot can go back to the input buffer
and take an unfinished part and load the second machine.

2. If the second machine had a part and processing of that part is finished then
the robot can move to the second machine and unload the finished part.
Obviously, after unloading a finished part the robot has to go to the output
buffer for unloading the finished part, only then can it go back to the input

buffer to pick up an unfinished part.

However, it can be seen from the schedule of robot moves for the case with robot
buffer capacity of size 2 that these restrictions are minimized since after picking up
an unfinished part from the input buffer the robot can also unload a machine that

finished processing as a second activity and having two unloading activities one after
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another indicates that two parts are held by the robot at the same time. Also, after
that when a machine is loaded with the unfinished part and the robot is still holding a
finished part the robot can go back to the input buffer to pick up another part and at
this point the robot is again holding two parts at the same time. After that it can be
seen that the finished part is put to the output buffer but the robot is still holding one
unfinished part and then machine 2 is unloaded with a finished part and at this point
the robot is again holding two parts. The last two activities of the robot in that cycle
include loading machine 1 with an unfinished part and then putting a finished part on

the output buffer and then at this point it can be seen that the robot has no parts.

Thus, this sequence of activities has seen to reduce the cycle time which proves that
increase in robot buffer capacity further minimizes cycle time.

2.2 Cycle Time for Robot Buffer Capacity > m and <2m

In this section we discuss the impact of increasing in the robot buffer capacity to a
size that is greater than the number of machines and less than or equal to a size that is
two times the number of machines. So if we continue to consider a 2 machine case,
we will have two more cases which are 2 machines with robot buffer capacity of 3

and 2 machines with robot buffer capacity of 4.

64



Casel:m=2,6=2,¢e=1,K=3,P=22

Table 5.4: Case whenm=2,6=2,¢=1,K=3,P=22

ACtiVity L, O, U, L, 0O, 1 I, U C
(a)
Xab=1 | Xpuoz | Xouz | Xuztz | Xizor | Xoanw | Xz | Xieur | Xuin
t, 0 5 8 9 12 19 20 23
24
Y. 1 0 1 1 0 0 0 1
Ya 1 1 1 0 0 1 2 2

When the buffer capacity is more than m which in this case is 3 the robot has the
ability to hold two unfinished parts and one finished part or two finished parts and
one unfinished part at the same time which indicates that rather than visiting the
input buffer once followed by unloading a machine once now the robot has the
ability to either visit the input buffer two times and hold two unfinished parts
followed by visiting a machine and unloading a finished part or visiting the input

buffer once and unloading two machines with 2 finished parts.

It can be seen from the schedule of robot moves above that the robot visits the input
buffer and carries an unfinished part and then it carries another unfinished part from
the input buffer. After that the robot visits machine 1 and unloads a finished part and
at this moment the robot is holding 3 parts. Then the robot loads machine 1 with an
unfinished part and after that it visits the output buffer to put a finished part. After
that the robot moves to machine 2 to unload a finished part and then load the
machine with an unfinished part. Lastly, the robot moves to the output buffer to put a

finished part and at the end of this activity the robot has no parts being held.
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The cycle time was seen to have further minimized with increase in the robot buffer

capacity and this is due to the further flexibility in the robot move schedule.

Case2:m=2,0=2,e=1,K=4,P=22

Table 5.5: Case whenm=2,6=2,¢=1,K=4,P=22

ACtiVity L, U, L, I I, O, O, U, C
(a)
Xab=1 | Xpuz | Xuaz | Xeaiw | Xz | Xipoz | Xozor | Xown | Xuita
[ 0 3 4 9 10 17 18 23
24
Ya+ 1 2 2 2 2 1 0 1
Ya 1 1 0 1 2 2 2 2

When robot buffer capacity is exactly two times the number of machines which in
this case it is 4 it means that the robot can hold two finished parts and two unfinished
parts at the same time indicating that it can visit the output buffer and input buffer
one time because it means at some point when the robot is holding 2 finished parts
after unloading two machines and then it visits the input buffer and picks up 2
unfinished parts it can then move to the output buffer to put those 2 finished parts to

the output buffer.

The schedule of cycle moves above was as follows the robot goes to the input buffer
to pick up an unfinished part having already carried two finished parts from a
previous cycle and then it picks up another unfinished part from the input buffer and
at this point the robot is holding 4 parts. Then it moves to the output buffer to put

both the finished parts. After that the robot moves to machine 1 to unload a finished
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part and then loads an unfinished part and then it moves to machine 2 to unload a

finished part and then load an unfinished part.

It can be seen that for this case the cycle time could no longer be minimized and
there may be two main reasons for this:
1. Process time effect.

2. Cumulative distance matrix plus completion time effect.

In section 5.4 the effect of process time on the cycle time with increasing robot

buffer capacity will be further discussed.
5.3 Comparison between MIP Model and SA Algorithm Results

In this section, the cycle time found by the MIP model for 2, 3 and 4 machine case
with one buffer capacity is compared to the cycle time found by the SA algorithm for

2, 3, 4 and 5 machine cases with solution time recorded.

Six cases were considered for travelling time of 2 time units and loading/unloading
time of 1 time units and the cases differed with differing process times ranging from
0, 22, 40, 50, 100 and 5000. These cases were considered so that the effect of process
time along with waiting time can be later studied and discussed. Also the buffer

capacity size ranged from size 1 to 2m for each machine case.

It must also be noted that even though the solution time for the SA algorithm might
seem bigger for the 2 machine case when compared to the MIP model, the time by
which the algorithm reaches the optimal solution is actually shorter but the solution
time was recorded when all the iterations were completed. This solution time
convergence was portrayed by a graph with solution time on the X-axis and cycle
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time on the Y-axis. These graphs were made for all the cases and the will be
presented in Appendix A for Case 1, Case 2, Case 3, Case 4, and Case 5 and
Appendix B for Case 6.

531Casel:6=2,e=1,P=0

Table 5.6: Casewhend=2,e=1,P=0

MIP Model Simulated Annealing Algorithm
[72) wn
5 E E-‘g,\%gaéo ST 52 E-‘g,\%ﬂéﬂéo 52
: O E = = . Ec — +—
SES |35 0FS5 2L 285 35% 0F S5 3L
1 32 0.06 1 32 42
) 2 20 0.39 5 2 20 31
3 20 0.42 3 20 40
4 20 0.47 4 20 45
1 60 0.19 1 60 46
2 44 60.56 2 44 30
3 3 28 357.84 3 3 28 8
4 28 560.95 4 28 43
5 28 561.30 5 28 45
6 28 635.67 6 28 47
1 96 1.86 1 96 124
2 56 81
3 56 22
4 36 113
4 4 5 36 124
6 36 128
7 36 132
8 36 29
1 140 44
2 92 112
3 68 122
4 68 139
5 48 147
> S 6 44 169
7 44 176
8 44 177
9 44 187
10 44 187
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It can be seen that the optimal solution was found by the SA algorithm when
comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as
shown in Figure (5.2) and Figure (5.3), also with reduced time since most of the
optimal solutions were actually found at 1 s or less even though completion of the

iterations took longer. This proves that the SA algorithm modeled is adequate enough

to be used.

MIP vs SA for 2 Machines withP=0

EMIP mSA

Cycle Time

1 2 3 4
Robot Buffer Capacity

Figure 5.2: Comparison between MIP and SA Cycle Time for 2 Machines with P = 0

MIP vs SA for 3 Machines with P =0

m MIP mSA

60 60

28 28

Cycle Time

Robot Buffer Capacity

Figure 5.3: Comparison between MIP and SA Cycle Time for 3 Machines with P =0
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It must also be noted that when the MIP model was run for a 4 machine case it took
longer than 24 hours without providing the optimal solution thus even though the
optimality of some of the cycle time provided by the SA algorithm for the 4 and 5
machine case is not guaranteed, the solution time is extremely small compared to

how long it would have taken the MIP model to find the optimal solution.

For the case whenm =4, 6§ =2, =1, P =0, K = 2 it can be seen in Table (5.7)
that since process time has no impact here forming the optimal schedule is easy since
the buffer can hold two parts that means two loading/unloading activities followed
by two output/input buffer putting/picking up activities will give the optimal
schedule and hence we can prove whether the cycle time found by the SA algorithm

was optimal. And it was seen that the cycle time was in fact optimal.

Similarly for the case when the buffer capacity is 3 which means the robot can hold
three parts indicating three putting/picking up activities followed by three
output/input buffer putting/picking up activities will give the optimal schedule and
hence we can prove as shown in Table (5.8) whether the cycle time found by the SA

algorithm was optimal. And it was seen that the cycle time was in fact optimal.
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Table 5.7: Case whenm=4,86=2,¢=1,K=2,P=0

a L U; L U, O, O, I I Ls Us L4 Uy O; Oy I3 I4 C
ta 0 1 4 5 12 13 24 25 32 33 36 37 40 41 52 53
Ya 0 1 1 2 1 0 0 0 0 1 0 2 1 0 0 0 56
Ya 1 1 0 0 0 0 1 2 1 0 0 0 0 0 1 2
Table 5.8: Casewhenm=4,6=2,¢=1,K=3,P=0
a L U; L, U, Ls Us O O, O3 I I, I3 Ly U4 Oy I4 C
ta 0 1 4 5 8 9 14 15 16 27 28 29 38 39 42 53
Ya 0 1 1 2 2 3 2 1 0 0 0 0 0 1 0 0 56
Ya 2 2 1 1 0 0 0 0 0 1 2 3 2 2 2 3




Similarly for the case when the buffer capacity is 4 which means the robot can hold
four parts indicating four loading/unloading activities followed by four output/input
buffer putting/picking up activities will give the optimal schedule and hence we can
prove as shown in Table (5.9) whether the cycle time found by the SA algorithm was

optimal. Also in this case the optimal solution was found.

For the cases when the robot buffer capacity was 5, 6, 7 and 8 it does not need to be
proved that the optimal solution was found since 36 is the minimum cycle time that
can be found in this case since the schedule discussed above is the minimum in terms

of cumulative distance matrix plus completion time.

As per the same discussions the cycle times for the 5 machine case for buffer
capacity 1, 2, 3, 4 and 5 will also be proved by optimal schedules when process time
has no affect in Tables (5.10), (5.11), (5.12), (5.13) and (5.14). And for those cases it
was also seen that all the cycle times were optimal except for the case when buffer
capacity was 5. For the cases when the K was 6, 7, 8, 9 and 10 optimality did not

need to be proved since 44 is the minimum cycle time that can be found.
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Table 5.9: Casewhenm=4,0=2,¢=1,K=4,P=0

a L U; L, U, Ls Us L4 Uy O O, O3 O4 I P I3 I4 C
ta 0 1 4 5 8 9 12 13 16 17 18 19 30 31 32 33
Ya 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0 36
Ya 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4
Table 5.10: Case whenm=5,6=2,e=1,K=1,P=0
a Ly | U | O | Ih | Ly | Uy | Oy I | Lg | U3 | O3] I3 | Lg| Uy | Oy Iy Ls Us Os Is C
ta 0 1 12 | 25 | 30 | 31 | 40 | 53 | 60 | 61 | 68 | 81 | 90 | 91 | 96 | 109 | 120 | 121 | 124 | 137
Ya 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 140
Ya 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




Table 5.11: Case whenm=5,6=2,e=1,K=2,P=0

a Li | U | Ly | Uy | O | O] 4 lo | Ls | Us | La | Usg | O3 | O | I3 I4 Ls Us Os Is C
ta 0 1 4 5 14 | 15 | 28 | 29 | 36 | 37 | 40 | 41 | 46 | 47 | 60 | 61 72 73 76 89
Ya 0 1 1 2 1 2 0 0 0 1 1 2 1 0 0 0 0 1 0 0 92
Ya 1 1 0 0 0 0 1 2 1 1 0 0 0 0 1 2 1 1 1 2
Table 5.12: Case whenm =5,6=2,e=1,K=3,P=0
a Ly | U | Ly [ Uy | L3 | U3 | O | O | O3 | 4 P I3 | Ly | Us | Ls | Us Oy Os Iy Is C
ta 0 1 4 5 8 9 16 | 17 | 18 | 31 | 32 | 33 | 42 | 43 | 46 | 47 50 51 64 65
Ya 0 1 1 2 2 3 2 1 0 0 0 0 0 1 1 2 1 0 0 0 68
Ya 2 2 1 1 0 0 0 0 0 1 2 3 2 2 1 1 1 1 2 3




Table 5.13: Case whenm =5,6=2,e=1,K=4,P=0

a Li | Up | Lo | Uy | Ls [ Us | Lsg | Ug | O1 | Oy | O3] Os| Iy P I3 I4 Ls Us Os Is C
ta 0 1 4 5 8 9 12 | 13 | 18 | 19 | 20 | 21 | 34 | 35 | 36 | 37 48 49 52 65
Ya 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0 0 1 0 0 68
Ya | 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 3 3 3 4
Table 5.14: Case whenm=5,6=2,e=1,K=5,P=0
a Ly | U | Ly | Uy | Ls | Us | Lg | Us | Ls | Us | Oy | O | O3 | Of | Os I P I3 I4 Is C
ta 0 1 4 5 8 9 12 | 13 | 16 | 17 | 20 | 21 | 22 | 23 | 24 | 37 38 39 40 41
Ya 0 1 1 2 2 3 3 4 4 5 4 3 2 1 0 0 0 0 0 0 44
Yo | 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 1 2 3 4 5




532Case2:60=2,e=1,P=22

Table 5.15: Casewhen 6 =2,e=1,P =22

MIP Model Simulated Annealing Algorithm
wn wn
HC_DE,-\ E-‘g,\gwoc §@ HC_)GE),-\ E-‘gﬁgmoc §@
SSESEZEEEE Sy S5E|SETREET st
e O nkF = O n
1 38 0.09 1 38 62
5 2 28 0.26 5 2 28 42
3 24 0.33 3 24 71
4 24 0.45 4 24 58
1 60 0.31 1 60 56
2 44 21.52 2 44 37
3 3 40 227.83 3 3 40 46
4 28 65.70 4 28 54
5 28 70.02 5 28 59
6 28 71.78 6 28 61
1 96 1.70 1 96 61
2 68 66
3 56 92
4 52 103
4 4 5 36 141
6 36 118
7 36 125
8 36 117
1 140 167
2 92 90
3 72 101
4 68 128
5 60 275
S > 6 44 311
7 44 325
8 44 306
9 44 355
10 44 345

It can be seen that the optimal solution was found by the SA algorithm when
comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as
shown in Figure (5.4) and (5.5), also with reduced time since most of the optimal

solutions were actually found at times ranging between 0 and 2 s for the 2 machine
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case and times ranging between 7 and 35 s for the 3 machine case even though

iteration completion took a longer time.

MIP vs SA for 2 Machines with P = 22

m MIP mSA

24 24 24

Cycle Time

1 2 3
Robot Buffer Capacity

Figure 5.4: Comparison between MIP and SA Cycle Time for 2 Machines with P =
22

MIP vs SA for 3 Machines with P = 22

EMIP mSA

60 60

28 28

Cycle Time

Robot Buffer Capacity

Figure 5.5: Comparison between MIP and SA Cycle Time for 3 Machines with P =
22

It is logically evident that with increase in process time the cycle time can never be

smaller when compared to the cycle time of a process time that was smaller. So since
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the cycle time for all buffer capacities in 4 and 5 machine case was equivalent to that
of the cycle time when process time was 0 indicates that the cycle time is optimal.
However, it can be seen that the cycle time for m = 4, K = 2 and K = 4 as well as

m =5, K = 3 and K = 5 were not equal to the cycle times when process time was 0.

For the case when m =4, § =2, e =1, P =22, K = 2 it can be seen that since
process time has an impact forming the optimal schedule is not as easy. Since the
buffer can hold two parts that means two loading/unloading activities followed by
two output/input buffer putting/picking up activities will give the optimal schedule
and hence we can prove whether the cycle time found by the SA algorithm was
optimal. However, now along with that in mind we should also consider a schedule
in such a way that we can avoid waiting time so that means that between a loading
and unloading activity of any machine the total completion time of unloading must
be at least the process time plus the time taken to pick up the finished part. Thus my
suggestion was that the optimal schedule will look something like Table (5.16) where
two input buffer activities are directly followed by two loading activities and also
two unloading activities are directly followed by two output buffer activities. And it

can be seen that the cycle time found was optimal.
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Table 5.16:

Casewhenm=4,6=2,e=1,K=2,P=22

a L, L, I3 14 Ls Uy L4 U, O, O, U, Us O3 O4 I I C
ta 0 3 8 9 16 19 20 27 36 37 44 47 52 53 64 65 68
m; 0 5 6 13 16 17 24 33 34 41
ms 0 3 4 11 20 21 28 31
My 48 51 56 57 64 67 0 7 16 17 24 27 32 33 44 45
Yl 0 0 0 0 0 1 0 2 1 0 1 2 1 0 0 0
Ya 1 0 1 2 1 1 0 0 0 0 0 0 0 0 1 2




The Gantt chart for this case is shown in Figure (5.6). In the Gantt chart for 2
machine case it was seen that the time a part stays on the machine between loading
and unloading is exactly the process time. However in this case it can be seen that
after 22 time units of processing for machine 1 the part stayed on the machine idle
for 4 time units and for machine 2 the part stayed on the machine for 18 time units.
For machine 3 the part stayed on the machine idle for 8 time units and for machine 4

the part stayed on the machine idle for 44 time units.

Since this case is a robot buffer with the ability to hold two parts then two output
buffer activities can follow each other, two input buffer activities can follow each

other or unloading activity can be followed by a loading activity.

Similarly for the case when the buffer capacity is 4 which means the robot can hold
four parts indicating four putting/picking up activities followed by four output/input
buffer loading/unloading activities will give the optimal schedule. However, since
process again plays a role here a better schedule is having 4 input buffer activities
followed by 4 loading/unloading activities and finally 4 output buffer activities as

shown in Table (5.17). Also in this case the optimal solution was found.

As per the same discussions the cycle times for the 5 machine case for buffer
capacity 3 and 5 are proved by optimal schedules in Table (5.18) and (5.19) when
process time has an effect. The concept of a 5 machine with robot buffer capacity 3 is
similar to that of a 4 machine with buffer capacity 2 and thus the generalized
schedule of the case is applied. Also the 5 machine with robot buffer capacity 5 is
similar to that of a 4 machine with buffer capacity 4 and thus a generalized schedule
of the case will be applied and in both cases cycle time was optimal.
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Figure 5.6: Gantt Chart for Case whenm =4,6=2,¢=1,K=2,P =22




Table 5.17: Case whenm=4,6=2,e=1,K=4,P =22

a L, U, L, Us Ls Uy L4 U, O, O, O3 Oy Iy I I3 (7 C
ta 0 3 4 7 8 11 12 23 32 33 34 35 46 47 48 49 52
m, 48 51 0 3 4 7 8 20 28 29 30 31 42 43 44 45
ms 44 47 48 51 0 3 4 15 24 25 26 27 38 39 40 41
my 40 43 44 47 48 51 0 11 20 21 22 23 34 35 36 37
Ya 0 1 1 2 2 3 3 4 3 2 1 0 0 0 0 0
Ya 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4




Table 5.18: Case whenm=5,8=2,e=1,K=3,P=22

a L, | Lo | I3 I4 Is | Ls | Us | Ly | Us | Ls | Oy | Oy | Up | Uy | Us | O3 | Os | Os Iy I C
ta 0 3 8 9 |10 |17 | 20 | 21 | 24 | 25 | 28 | 29 | 40 | 43 | 46 | 53 54 55 68 69 72

m; 0 5 6 7 |14 |17 | 18 | 21 | 22 | 25 | 26 | 37 | 40

ms 0 3 4 7 8 | 11 |12 | 23 | 26 | 29

mg | 51 | 583 |59 | 60 | 61|68 | 71| O 3 4 7 8 | 19 | 22 | 25 | 32 33 34 47 48

ms | 47 | 50 | 55 | 56 | 57 | 64 | 67 | 68 | 71 | O 3 4 | 15|18 | 21 | 28 29 30 43 44

Ya 0 0 0 0 0 0 1 1 2 2 1 0 1 2 3 2 1 0 0 0

Ya 1 0 1 2 3 2 2 1 1 0 0 0 0 0 0 0 0 0 1 2




Table 5.19: Case whenm=5,8=2,e=1,K=5,P=22

a L1 | U | Ly | U3 | Ls | Us | Ly | Us | Ls | U | O1 | Oy | O3 | Oy | Os Iy 1> I3 (7 Is C
ta 0 3 4 7 8 |11 |12 | 15 | 16 | 25 | 36 | 37 | 38 | 39 | 40 | 53 54 55 56 57 60

m, | 57| O 1 4 5 8 9 |12 |13 | 22 | 33 | 34 | 35 | 36 | 37 | 50 o1 52 53 54

mg | 53 | 56 | 57 | O 1 4 5 8 9 | 18 | 29 | 30 | 31 | 32 | 33 | 46 47 48 49 50

mg | 49 | 52 | 53 | 56 | 57 | O 1 4 S | 14 | 25| 26 | 27 | 28 | 29 | 42 43 44 45 46

ms | 45 | 48 | 49 | 52 | 53 | 56 | 57 | O 1 10 | 21 |22 | 23 | 24 | 25| 38 39 40 41 42

Ya 0 1 1 2 2 3 3 4 4 5 4 3 2 1 0 0 0 0 0 0

Ya 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 1 2 3 4 5




5.33Case3:0=2,e=1,P=40

It can be seen that the optimal solution was found by the SA algorithm when
comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as
shown in Figure (5.7) and (5.8), also with reduced time since most of the optimal
solutions were actually found at times ranging between 0 and 4 s for the 2 machine

case and times ranging between 0 and 9 s for the 3 machine case.

MIP vs SA for 2 Machines with P = 40

mMIP mSA

56
42

Cycle Time

1 2 3 4
Robot Buffer Capacity

Figure 5.7: Comparison between MIP and SA Cycle Time for 2 Machines with P =
40

MIP vs SA for 3 Machines with P =40

EMIP mSA
66 66

52 52

42 4 42 42

Cycle Time

Robot Buffer Capacity

Figure 5.8: Comparison between MIP and SA Cycle Time for 3 Machines with P =
40
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Since the optimality of the cycle times was proven for the case when process time
was 22 and it can be seen that all the cycle times for 4 and 5 machine case are
equivalent to that for process time equal to 40 thus it is sure that optimality was
reached. However case of 5 machine and buffer capacity of size 6 seems to have a

produced a cycle time of 48.

Table 5.20: Case when 8 =2,e=1, P =40

MIP Model Simulated Annealing Algorithm
[%2] [72)
5 E E-‘g,\%ﬂéﬂéo S5 2 E-‘?A%ggo 52
- E © =| =2 . Ec = +—
SEC|35%|0FS5 2E 285 35 0F 5 3E
1 56 0.06 1 56 55
5 2 42 0.39 5 2 42 37
3 42 0.42 3 42 53
4 42 0.39 4 42 59
1 66 0.28 1 66 65
2 52 16.11 2 52 35
3 3 42 73.36 3 3 42 50
4 42 38.75 4 42 60
5 42 64.59 5 42 64
6 42 42.64 6 42 66
1 96 0.94 1 96 68
2 68 92
3 56 81
4 52 117
4 4 5 42 155
6 42 169
7 42 160
8 42 165
1 140 213
2 92 110
3 72 158
4 68 180
5 60 174
5 S 6 48 169
7 44 185
8 44 217
9 44 221
10 44 221
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In order to prove that the case for buffer capacity 6 was not optimal, the optimal
schedule shown in Table (5.21) that is generalized for this case is pretty simple since
the robot can hold 6 parts that means 5 input buffer activities followed by 5
unloading/loading activities which is followed by 5 output buffer activities will give
optimal solution. And since the unloading activity for each machine is exactly at the
end of the cycle process time will not affect the schedule. And it can be seen that the

cycle time found was indeed not the optimal solution.

The Gantt chart for this 5 machine case is shown in Figure (5.9), the processing of a
part on each machine took 40 time units and the part stayed on the machine idle
waiting for the robot for 2 time units and this was the case in all the 5 machines.
Also, since the robot buffer has the ability to hold 6 parts that indicates that 5 output

buffer activities can be followed by 5 input buffer activities.
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Table 5.21: Case whenm=5,6=2,¢=1,K=6,P =40

a Li | U | Lo | Us | Ls | Us | Ly | U | Ls | O | Oy | O3 | Os | Os5 | Iy I I3 (7 Is Ug C
ta 0 3 4 7 8 |11 |12 (15 |16 |19 | 20 | 21 | 22 | 23 | 36 | 37 38 39 40 | 43 44

m, | 40 [ 43 | O 3 4 7 8 |11 12 |15 |16 | 17 | 18 | 19 | 32 | 33 34 35 36 39

mg | 36 | 39 | 40 | 43 | O 3 4 7 8 |11 | 12 | 13 | 14 | 15 | 28 | 29 30 31 32 35

mg | 32 | 35|36 |39 |40 | 43| O 3 4 7 8 9 |10 | 11 | 24 | 25 26 27 28 31

ms | 28 | 31 |32 |3 |3 |39 |40 |43 | O 3 4 5 6 7 120 ] 21 22 23 24 27

Ya 1 2 2 3 3 4 4 5 5 4 3 2 1 0 0 0 0 0 0 1

Ya 4 4 3 3 2 2 1 1 0 0 0 0 0 0 1 2 3 4 5 5
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Figure 5.9: Gantt Chart for Case whenm=5,6=2,e=1,K=6,P =40




534 Case4:6=2,e=1,P=50

It can be seen that the optimal solution was found by the SA algorithm when
comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as
shown in Figure (5.10) and (5.11) also with reduced time since most of the optimal
solutions were actually found at times ranging between 0 and 1 s for the 2 machine

case and times ranging between 1 and 24 s for the 3 machine case.

MIP vs SA for 2 Machines with P =50

m MIP mSA

52 52 52 52 52 52

Cycle Time

1 2 3 4
Robot Buffer Capacity

Figure 5.10: Comparison between MIP and SA Cycle Time for 2 Machines with P =
50

MIP vs SA for 3 Machines with P =50
mMIP mSA

70 70

52 52 52 52 52 52 52 52 52 52

Cycle Time

Robot Buffer Capacity

Figure 5.11: Comparison between MIP and SA Cycle Time for 3 Machines with P =
50
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Table 5.22: Case when 8 =2,¢=1, P =50

MIP Model Simulated Annealing Algorithm
[72) [72)
“SGE)AE?Q%GE)GEJQ 5% = a%’g%ggoé§
5 £ E o = 5 . = £ s 2| =
é’ééagv&:a% 2 E §§§ SRT|0FE5 2 E
1 66 0.13 1 66 54
) 2 52 0.22 5 2 52 37
3 52 0.42 3 52 52
4 52 0.66 4 52 59
1 70 0.28 1 70 66
2 52 20.03 2 52 41
3 3 52 31.34 3 3 52 49
4 52 47.14 4 52 64
5 52 49.67 5 52 58
6 52 273.26 6 52 64
1 96 0.75 1 96 171
2 76 110
3 56 54
4 52 140
4 4 5 52 161
6 52 181
7 52 170
8 52 180
1 140 196
2 92 111
3 82 158
4 68 183
5 64 187
> > 6 52 196
7 52 246
8 52 261
9 52 290
10 52 271

As for the 4 and 5 machine cases when robot buffer capacity is greater than m it can
be seen that the cycle time is 52 and this is in fact the optimal solution without using
an optimal schedule as a proof since one of the constraints indicate that the
completion time of unloading any machine must be greater than the completion time
of loading that machine by at least the process time = 50 + the time taken to pick up

the part which is equal to 1 and because the cycle time is equal to the completion
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time of the last activity which is unloading and it is 51 + the distance matrix from
unloading machine i to loading machine i which is 1 the minimum cycle time that

can be reached for process time 50 is in fact 52.

While other cycle times found were equivalent to the case when process time was 40,
it was seen that when robot buffer capacity was 2 for 4 machine case and when robot
buffer capacity was 3 and 5 for 5 machine case the cycle time differed from that of
process time 40. Proving the optimality of these cases seemed to be extremely
strenuous and thus their optimality could not be guaranteed.
535Case5:6=2,e=1,P=100

It can be seen that the optimal solution was found by the SA algorithm when
comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as
shown in Figure (5.12) and (5.13), also with reduced time since most of the optimal
solutions were actually found at times ranging between 0 and 5 s for the 2 machine

case and times ranging between 0 and 14 s for the 3 machine case.

MIP vs SA for 2 Machines with P = 100

m MIP mSA

116 116

Cycle Time

1 2 3 4
Robot Buffer Capacity

Figure 5.12: Comparison between MIP and SA Cycle Time for 2 Machines with P =
100
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MIP vs SA for 3 Machines with P = 100

mMIP mSA

120 120

102 102 102 102 102 102 102 102 102 102

Cycle Time

Robot Buffer Capacity

Figure 5.13: Comparison between MIP and SA Cycle Time for 3 Machines with P =
100

As for the 4 and 5 machine cases when robot buffer capacity is greater than 1 it can
be seen that the cycle time is 102 and this is in fact the optimal solution without
using an optimal schedule as a proof since one of the constraints indicate that the
completion time of unloading any machine must be greater than the completion time
of loading that machine by at least the process time = 100 + the time taken to pick up
a part which is equal to 1 and because the cycle time is equal to the completion time
of the last activity which is unloading and it is 101 + the distance matrix from
unloading machine i to loading machine i which is 1 the minimum cycle time that

can be reached for process time 100 is in fact 102.
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Table 5.23: Case when 6 =2,¢=1,K=2,P =100

MIP Model Simulated Annealing Algorithm
14 > —~ I > —~
Bgﬁ;gﬁgwocéi’l HC_)GE),-\ QL)E,\ECDG)Q §\"L
SEESELEESE 28 258 SEL 6EsT 28
= O N - = O n k-
1 116 0.13 1 116 56
5 2 102 0.31 9 2 102 41
3 102 0.66 3 102 55
4 102 0.61 4 102 58
1 120 0.27 1 120 63
2 102 17.11 2 102 40
3 3 102 33.16 3 3 102 44
4 102 81.28 4 102 54
5 102 72.99 5 102 61
6 102 85.95 6 102 65
1 124 0.61 1 124 182
2 102 66
3 102 117
4 102 142
4 4 5 102 168
6 102 183
7 102 179
8 102 178
1 142 217
2 120 132
3 102 127
4 102 145
5 102 190
> > 6 102 186
7 102 194
8 102 207
9 102 227
10 102 199

The only cases that might not be optimal are 5 machine cases when robot buffer

capacity is 1 and 2. In order to prove optimality of the case when robot buffer

capacity is 1 it is evident that since the robot can only hold one part every unloading

activity must be followed by output buffer activity which is followed by input buffer

activity and finally loading activity and process time effect is considered as shown in

Table (5.24). Thus, it is proven that 142 is not the optimal solution.
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Table 5.24: Case whenm=5,6=2,¢=1,K=1,P =100

a L1 | Is [Ls| Uz | Oz | Usg [Os| I | L2 14 Ly | U3 | Oz | Iz | L3 U | O | Us | Os Iy C

ta 0 3 |14 21 30 35 (40 | 53 | 58 | 63 72 | 75|82 |95 | 102 | 107 | 118 | 121 | 124 | 137 | 140

my, | 82 | 85 | 96 | 103 0 5 14 |17 | 24 | 37| 44 | 49 | 60 | 63 6 79
mg | 41 |52 |59 | 68 | 73 | 78 | 91 |96 | 101 | 110 | 113 0 5 16 19 | 22 | 35
mg | 68 | 71|82 | 89 | 98 | 103 0 3 11023 | 30 | 35 | 46 | 49 | 52 | 65
ms 0 7 16 | 21 |26 |39 | 44 | 49 | 58 |61 |68 | 81 | 88 93 | 104 | 107




Table 5.25: Case whenm=5,86=2,e=1,K=2,P=100

a L, 14 Os U, Ly | O4 I3 Us Ls O, Is U, L, 1 0O, Us Ls O3 I, U, C

ta 0 (3|16 | 21 |22 |27 | 40 | 47 | 48 |55 | 68 | 73 |74 | 79| 92 | 95 | 96 | 99 | 112 | 115 | 116

m, (42 (45| 58 | 63 |64 |69 | 8 | 8 | 90 | 97| 110 | 115| 0 | 5 | 18 | 21 | 22 | 25 | 38 | 41

mg |68 | 71| 84 | 89 |90 |9 | 108 | 115 | O 7 120 | 25 |26 |31 | 44 | 47 | 48 | 51 64 | 67

mgy | 94 | 97 | 110 | 115 | 0 | 5 18 | 25 | 26 |33 | 46 | 51 |52 (57| 70 | 73 | 74 | 77 | 90 | 93

ms | 20 | 23 | 36 | 41 |42 | 47 | 60 | 67 68 | 75| 88 | 93 |94 |99 112 | 115 | O 3 16 19




For the case when robot buffer capacity is 2 the schedule shown in Table (5.25) was
found by using the optimal schedule when process time is 5000 and then if the cycle
time found using that schedule was less than 120 that indicates that cycle time 120 is
not optimal. It is seen that the cycle time found was 116 which is less than 120 thus
120 was not optimal solution.

5,36 Case 6:6=2,£=1,P=5000

It can be seen that the optimal solution was found by the SA algorithm when
comparing the cycle time of the 2 and 3 machine cases with that of the MIP model as
shown in Figure (5.14) and (5.15), also with reduced time since most of the optimal
solutions were actually found at times ranging between 0 and 9 s for the 2 machine
case and times ranging between 0 and 6 s for the 3 machine case even though

iteration completion took a longer time.

MIP vs SA for 2 Machines with P = 5000

mMIP mSA

5016 5016

5002 5002 5002 5002 5002 5002

Cycle Time

1 2 3 4
Robot Buffer Capacity

Figure 5.14: Comparison between MIP and SA Cycle Time for 2 Machines with P =
5000
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MIP vs SA for 3 Machines with P = 5000

mMIP mSA

50205020

50025002 50025002 50025002 50025002 50025002

Cycle Time

Robot Buffer Capacity

Figure 5.15: Comparison between MIP and SA Cycle Time for 3 Machines with P =
5000

As for the 4 and 5 machine cases when robot buffer capacity is greater than 1 it can
be seen that the cycle time is 5002 and this is in fact the optimal solution without
using an optimal schedule as a proof since one of the constraints indicate that the
completion time of unloading any machine must be greater than the completion time
of loading that machine by at least the process time = 5000 + the time taken to pick
up a part which is equal to 1 and because the cycle time is equal to the completion
time of the last activity which is unloading and it is 5001 + the distance matrix from
unloading machine i to loading machine i which is 1 the minimum cycle time that

can be reached for process time 5000 is in fact 5002.
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Table 5.26: Case when 6 =2,&=1, P=5000

MIP Model Simulated Annealing Algorithm
(B}
sE |8 |2sc EC 5L |58 |25 £
$sg8l35%|5a5 2E |29 58% |05 2E
S O = n £ O = ?
- [
1 5016 1.36 1 5016 66
5 2 5002 0.55 9 2 5002 44
3 5002 0.76 3 5002 60
4 5002 0.69 4 5002 57
1 5020 0.23 1 5020 73
2 5002 18.14 2 5002 38
3 3 5002 97.66 3 3 5002 54
4 5002 | 140.69 4 5002 64
5 5002 | 216.19 5 5002 73
6 5002 | 259.91 6 5002 83
1 5024 0.67 1 5024 203
2 5002 107
3 5002 135
4 4 4 5002 168
5 5002 192
6 5002 225
7 5002 219
8 5002 212
1 5038 304
2 5002 131
3 5002 170
4 5002 205
5 5 5 5002 250
6 5002 276
7 5002 282
8 5002 296
9 5002 172
10 5002 265

The only cases that might not be optimal are 5 machine cases when robot buffer
capacity is 1. In order to prove optimality of the case the same schedule used for
process time 100 is applied in Table (5.27). This concludes that cycle time 5038 is in

fact the optimal solution.
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Table 5.27: Case whenm =5,6=2,¢=1,K=1, P=5000

a L, Is Ls U, 0O, U, O, P} L. (7 Ly | Us | O3 I Ls U, 0O, Us Os (Fl C
ta 0 3 14 21 30 35 40 53 58 63 72 | 75 | 82 | 95 | 102 | 5005 | 5016 | 5020 | 5022 | 5035 | 5038

m, | 4980 | 4983 | 4994 | 5001 0 5 14 | 17 | 24 | 37 | 44 | 4947 | 4958 | 4961 | 4964 | 4977

m; | 4939 | 4950 | 4957 | 4966 | 4971 | 4976 | 4989 | 4994 | 4999 | 5008 | 5017 0 | 4903 | 4914 | 4917 | 4920 | 4933

m, | 4966 | 4969 | 4980 | 4987 | 4996 | 5001 0 3 | 10 | 23 | 30 | 4933|4944 | 4947 | 4950 | 4963

ms 0 7 16 21 26 39 44 49 58 | 61 | 68 | 81 | 88 | 4991 | 5002 | 5005

Y. 0 0 0 1 0 1 0 0 0 0 0 110 0 0 1 0 1 0 0

Y. | O 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1




5.4 Effect of Robot Buffer Capacity on Cycle Time
In this section, effect of robot buffer capacity on the cycle time is portrayed by
Figure (5.16) and (5.18) for the 2 and 3 machine case with process times 0, 22, 40,

50 and 100. While the process time of 5000 is shown in Figure (5.17) and (5.19).

Robot Buffer Capacity Effect on Cycle Time
for 2 Machines

mP=100 mP=50 mP=40 mP=22 mP=0

116

Cycle Time

1 2 3 4
Robot Buffer Capacity

Figure 5.16: Robot Buffer Capacity Effect on Cycle Time for 2 Machines

Robot Buffer Capacity Effect on Cycle
Time for 2 Machines and P = 5000
mP=5000
5016
§. 5002 5002 5002
1 2 3 4
Robot Buffer Capacity

Figure 5.17: Robot Buffer Capacity Effect on Cycle Time for 2 Machines and P =
5000
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It can be seen that for all process times reduction in cycle time was seen when robot
buffer capacity is 2. However, robot buffer capacity above 2 showed no impact on

cycle time reduction except for the case when process time was 22.

Robot Buffer Capacity Affect on Cycle Time
for 3 Machines

mP=100 mP=50 mP=40 mP=22 mP=0

120
102 102 102 102 102

5 52 52 52
4444 4240 42 42 42
28 2828 2828 2828

Cycle Time
(03]
N
(03]
N
N

1 2 3 4 5 6
Robot Buffer Capacity

Figure 5.18: Robot Buffer Capacity Effect on Cycle Time for 3 Machines

Robot Buffer Capacity Affect on Cycle Time
for 3 Machines and P = 5000
m P =5000

5020
£
'—
% 5002 5002 5002 5002 5002

1 2 3 4 5 6
Robot Buffer Capacity

Figure 5.19: Robot Buffer Capacity Effect on Cycle Time for 3 Machines and P =
5000
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It can be seen that for process times 50, 100 and 5000 reduction in cycle time was
seen when robot buffer capacity is 2. However, robot buffer capacity above 2 showed
no impact on cycle time reduction. But for process time 0 and 40 reduction in cycle
time was also seen when robot buffer capacity was 3 and no impact was seen after
that and this was true except for process time 22 where reduction in cycle time was

also realized for robot buffer capacity of size 4.

Effect of robot buffer capacity on the cycle time is portrayed by Figure (5.20) and
(5.22) for the 4 and 5 machine case with process times 0, 22, 40, 50 and 100. While

the process time of 5000 is shown in Figure (5.21) and (5.23).

It can be seen that for 4 machine case process times 100 and 5000 reduction in cycle
time was seen when robot buffer capacity is 2. However, robot buffer capacity above
2 showed no impact on cycle time reduction. But for process time 0 and 50
reduction in cycle time was also seen when robot buffer capacity was 3 and 4 and no
impact was seen after that and this was true except for process time 22 and 40 where

reduction in cycle time was also realized for robot buffer capacity of size 5.

And for 5 machine case when process times were 100 and 5000 reduction in cycle
time was seen when robot buffer capacity is 2. However, robot buffer capacity above
2 showed no impact on cycle time reduction. But for process time 22, 40 and 50
reduction in cycle time was also seen when robot buffer capacity was 3, 4, 5 and 6
and no impact was seen after that and this was true except for process time 0 where

reduction in cycle time was realized until buffer capacity of size 5.

103



Cycle Time

124

9696 96 96

Robot Buffer Capacity Affect on Cycle Time for 4 Machines

mP=100 mP=50 mP=40 mP=22 mP=0
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Robot Buffer Capacity

Figure 5.20: Robot Buffer Capacity Effect on Cycle Time for 4 Machines
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Robot Buffer Capacity Affect on Cycle Time for 4
Machines and P = 5000

P =5000
5024
5002 5002 5002 5002 5002 5002 5002
1 2 3 4 5 6 7 8
Robot Buffer Capacity

Figure 5.21: Robot Buffer Capacity Effect on Cycle Time for 4 Machines and P = 5000
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Robot Buffer Capacity Affect on Cycle Time for 5 Machines
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Figure 5.22: Robot Buffer Capacity Effect on Cycle Time for 5 Machines
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Robot Buffer Capacity Affect on Cycle Time for 5
Machines and P = 5000

m P =5000
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Robot Buffer Capacity

Figure 5.23: Robot Buffer Capacity Effect on Cycle Time for 5 Machines and P = 5000




5.5 Cycle Time is same for Various Process Times

In this section the impact of process time on the cycle time is discussed and why
cycle time can be constant for various process times. As an example, we will take the
optimal schedule found for the 3 machine case with K = 1 but with process times 0

and 22 as shown in Table (5.28) and (5.29).

The distance matrix dab is not a function of process time and thus the process time
does not affect the cycle time of a robot unless there is waiting time which causes the
robot to wait until the machine finishes processing which leads to increase in cycle
time. It can be seen in the case when process time was 0 and 22 that between loading
and unloading any of machine 1, 2 or

3 that by the time the unloading activity was reached processing of the part on that
machine was finished and thus there was no waiting time and because there was no
waiting time, the effect of process time was none and the cycle time for both process

times was equal.
5.6 Cycle Time Increase with Increase in Process Time

On the other hand, in the case where process times were 40, 50, 100 and 5000 it was
seen that there was some waiting time because the cumulative d,; plus completion
time of last activity was less than the process time meaning that the robot had to wait
until processing was completed and that waiting time was the cause of increase in

cycle time and these cases are shown in Tables (5.30), (5.31), (5.32) and (5.33).
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Table 5.28: Case whenm=3,6=2,¢=1,K=1,P=0

a L, P L, I3 Ls U, O U, O, Us Os Iy C
dap 0 2+1 4+1 4+1 6+1 4+1 6+1 4+1 4+1 2+1 2+1 8+1 2+1
ta 0 3 8 13 20 25 32 37 42 45 48 57 60
m; 0 5 12 17 24 29

m3 0 5 12 17 22 25

Table 5.29: Case whenm=3,6=2,e=1,K=1,P=22

a Ly P L, I3 Ls U; O U, (o)) Us O3 I C
dap 0 2+1 4+1 4+1 6+1 4+1 6+1 4+1 4+1 2+1 2+1 8+1 2+1
ta 0 3 8 13 20 25 32 37 42 45 48 57 60
m; 0 5 12 17 24 29

ms3 0 5 12 17 22 25




Table 5.30: Case whenm=3,6=2,¢=1,K=1,P=40

a L, I3 Ls U, O, P L, U, O Us; O; I C
dab 0 2+1 6+1 2+1 4+1 8+1 4+1 2+1 6+1 2+1 2+1 8+1 2+1
Wi 6
ta 0 3 10 13 18 27 32 41 48 51 54 63 66
m; 34 37 44 47 0 9 16 19 22 31
ms 0 3 8 17 22 31 38 41

Table 5.31: Case whenm=3,86=2,¢=1,K=1,P=50

a L, U, 0O, P L, Us O; I3 Ls U, 01 I C
dab 0 2+1 4+1 8+1 4+1 2+1 2+1 8+1 6+1 4+1 6+1 8+1 2+1
Wi 2
ta 0 3 8 17 22 25 28 37 44 51 58 67 70
m; 48 51 0 3 6 15 22 29 36 45
m3 26 29 34 43 48 51 0 7 14 23




Table 5.32: Case whenm=3,6=2,¢=1,K=1,P=100

a L, Us O; I3 Ls U, O, P L, U, o]} Iy C
dab 0 4+1 2+1 8+1 6+1 2+1 4+1 8+1 4+1 2+1 6+1 8+1 2+1
Wi 52
ta 0 5 8 17 24 27 32 41 46 101 108 117 120
m; 74 79 82 91 98 101 0 55 62 71
ms 96 101 0 3 8 17 22 77 84 93

Table 5.33: Case whenm=3,6=2,¢=1,K=1, P=5000

a L, U, O, P L, Us O; I3 Ls U, 01 I C
dap 0 2+1 4+1 8+1 4+1 2+1 2+1 8+1 6+1 4+1 6+1 8+1 2+1
Wi 4952
ta 0 3 8 17 22 25 28 37 44 5001 5008 5017 5020
m; 4998 5001 0 3 6 15 22 4979 4986 4995
m3 4976 4979 4984 4993 5001 0 4957 4964 4973




5.7 Cycle Time after Robot Buffer Capacity > 1 is Constant for

Large Process Times

Another important realization is that as the process time increased the optimal cycle
time remained constant after robot buffer capacity greater than 1. For example in the
case when process time is 40 it can be seen that this was true only for the 2 machine
case and in the case when process time is 50 that was true for both 2 and 3 machine
case. However, in process time 100 and 5000 this was true for 2, 3, 4 and 5 machine
cases. So another realization is that with increase in process time the cycle time stays
constant after robot buffer capacity 1 for increasing number of machines. Table
(5.34) shows the relation of process time, number of machines and robot buffer

capacity.

This is mainly because with increase process time in order to avoid waiting time the
schedule for all the cases is in such way that the loading and unloading activity of
any machine is placed further apart and thus the maximum cumulative distance
matrix + completion time is surpassed which leads to the same cycle time for all

cases.

It must be noted that this indicates that with increased process time the impact of the
robot buffer capacity is negligible. However, it can be seen that there will always be
a difference between a single gripper and dual gripper robot since a dual gripper
robot in our study is represented by a single gripper robot with a buffer capacity of

size 2.
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Table 5.34: Relation of Process Times, Number of Machines and Robot Buffer

Capacity
Cycle Time (time unit)
No. of Buffer

machines | Capacity Process Process Process Process
(m) (K) Time (40) | Time (50) | Time (100) Time
(5000)

1 56 66 116 5016

5 2 42 52 102 5002
3 42 52 102 5002

4 42 52 102 5002

1 66 70 120 5020

2 52 52 102 5002

3 3 42 52 102 5002
4 42 52 102 5002

5 42 52 102 5002

6 42 52 102 5002

1 96 96 124 5024

2 68 76 102 5002

3 56 56 102 5002

4 4 52 52 102 5002
5 42 52 102 5002

6 42 52 102 5002

7 42 52 102 5002

8 42 52 102 5002

1 140 140 142 5038

2 92 92 120 5002

3 72 82 102 5002

4 68 68 102 5002

5 5 60 64 102 5002
6 48 52 102 5002

7 44 52 102 5002

8 44 52 102 5002

9 44 52 102 5002

10 44 52 102 5002

5.8 Waiting Time is considered for One Machine

In this section it can be shown that if waiting time is considered for one machine than
no other machine will have waiting time as long as all the loading activities of other
machines come before the unloading activity of the machine with waiting time. As
an example the case with 2 and 3 machines for process time 50 and 100 and robot

buffer capacity 2 are shown in Tables (5.35), (5.36), (5.37) and (5.38)
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Table 5.35: Case whenm=2,6=2,¢=1,K=2,P=50

Activity | L, I )] U, L, I, O, Uy C
(gaaz, 0 2+1 | 6+1 | 2+1 1 4+1 | 6+1 |2+1 1
Wi 22
ta 0 3 10 13 14 19 26 51 52
m; 38 41 48 51 0 5} 12 37

Table 5.36: Casewhenm=2,8=2,e=1,K=2,P=100

Activity | L, O Iy U, L, 0, b | U | C
((122, 0 4+1 | 6+1 | 4+1 1 2+1 | 6+1 |2+1 1
Wi 70
ta 0 ) 12 17 18 21 28 101 | 102
m; 84 89 96 101 0 3 10 83

Thus, it can be seen that since the waiting time was considered during unloading of
machine 1 and all the loading of activities were before the unloading activity of

machine 1 then the waiting time is considered only once.

On the other hand, if waiting time was considered for a machine and some of the
loading activities of other machines came after it may be noticed that waiting time

could be considered twice.

From these optimal schedules we can also note that with increasing process time the

waiting time is increased which in turn leads to increased cycle time
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Table 5.37: Case whenm=3,6=2,¢=1,K=2,P=50

a L P O3 U, L, I3 O, Us Ls O] I Uy C
dab 0 2+1 8+1 4+1 1 4+1 8+1 2+1 1 2+1 8+1 2+1 1
Wi

ta 0 3 12 17 18 23 32 35 36 39 48 51 52
m; 34 37 46 51 0 5 14 17 18 21 30 33

ms 16 19 28 33 34 39 48 51 0 3 12 15

Table 5.38: Case whenm=3,6=2,¢=1,K=2,P=100

a Ly O3 I3 U, L, I O, Us Ls )] P U; C
dab 0 6+1 8+1 4+1 1 4+1 8+1 2+1 1 2+1 8+1 2+1 1
Wi 46

ta 0 7 16 21 22 27 36 39 40 43 52 101 102
m; 80 87 96 101 0 5 14 17 18 21 30 79
ms3 62 69 78 83 84 89 98 101 0 3 12 61




The Gantt chart for the 3 machine case with process time 50 and robot buffer
capacity of size 2 is shown in Figure (5.24). In this chart it can be seen that the
processing of a part for each machine was 50 time units with 2 time units’ idle time
with no part on it. And in this case unloading activity of a machine is followed by
loading activity and thus there is no travel time just pick up or leaving time for a part

since the robot buffer can hold 2 parts reduction in cycle time was realized.

These charts indicate that the processing of a part does not go through all machines
and that is because those machines are in different stages thus it is a parallel machine

flowshop with one machine in each stage.
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Figure 5.24: Gantt Chart for Case whenm=15,6=2,e=1,K=6,P =40




Chapter 6

CONCLUSION AND FUTURE RECOMMENDATIONS

The main objective of this study was to analyze how increase in robot buffer capacity
impacted the cycle time by scheduling the robot moves in a manner by which the
cycle time was minimized for a flexible robotic cell with a single self-buffered robot
and single gripper for an m machine case in an inline layout where identical parts are

produced and 1-unit is produced in each cycle.

The contribution of the study was twofold. The first contribution was formulating a
general scheduling model for an m machine case for the self-buffered robot which
has not been implemented before and the second contribution was comparing the
optimal cycle time found by the mixed integer programming model to that found by

the simulated annealing algorithm for the same problem.
6.1 Conclusions

1. Simulated Annealing algorithm produced optimal solutions 94% of the time
when compared to the optimal solutions found by the MIP model since out of
a total of 168 runs made, optimality was not guaranteed for only 10 of those
cases.

2. Solution time was reduced while applying the SA algorithm since the time
taken to find the solution was much less when compared to the time taken by

the MIP model.
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SA algorithm can be applied in future studies since even though optimality is
not guaranteed, it can be found more often than not.

Robot buffer capacity does reduce the cycle time which indicates that the
performance of the system can be further improved and this is an advantage
that can be used by production managers in several industries.

Effect of robot buffer capacity diminishes with increase in process time since
cycle time remains constant after robot buffer capacity more than 1. This is
due to the fact that minimum cycle time is reached earlier with larger process
times.

Since there was always a change realized in cycle time between robot buffer
capacity 1 and 2 that means there will always be significant difference
between a single and dual gripper robot if we consider a dual gripper robot to
represent a single self-buffered robot with robot buffer capacity of size 2.
Increase in process time leads to increase in waiting time which in turn leads
to increase in cycle time. However, this is not always true since sometimes
the waiting time is less with increased process time even though cycle time is
increased and that is because the optimal schedule differs with different
process time and the effect of those schedules is also taken into account.
Cycle time is same for various process times when the difference between
process times is small and process time has no effect on cycle time
calculation.

. Waiting time is only considered for one machine if and only if all the loading
activities of other machines come before the unloading activity of the

machine with waiting time.
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6.2 Future Recommendations

1.

Robotic cell with a self-buffered single gripper robot and a circular layout
since this study and the previous study that included self-buffered robot
proposed employing an inline layout. So impact of the circular layout on the
performance of the FMS system with a self-buffered robot can be studied.
Robotic cell with a self-buffered dual arm robot. The study that previously
included a self-buffered robot did a comparison between single gripper self-
buffered robot and a bufferless dual gripper robot. However, comparison to a
dual arm self-buffered robot was not employed.

Comparison of inline and circular layout for a self-buffered single gripper
robot. To study whether the performance of an FMS system with a self-
buffered robot is further improved for a system with a circular layout.

Proof of generalized cyclic schedules that lead to optimal solutions for self-
buffered single gripper robot. Because if generalized schedules were created
than optimality of an m machine case can be easily proved for solutions
found by the simulated annealing algorithm.

Proof of single waiting time for self-buffered single gripper robot. The
question here will be if all the loading activities of machines come after the
unloading activity of the machine with waiting time is it in fact true that

waiting time will only be considered once?
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Appendix A: Simulated Annealing Solution Time Convergence

Graphs for Case when 6 =2,¢=1,P=0,P =22, P =40, P =50 and

P =100
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Figure A.1: Cycle Time vs Solution Time Convergence Graph form=2, K=1
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Figure A.2: Cycle Time vs Solution Time Convergence Graph form =2, K=2
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Figure A.3: Cycle Time vs Solution Time Convergence Graph form =2, K=3
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Figure A.4: Cycle Time vs Solution Time Convergence Graph form=2, K=4
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Figure A.5: Cycle Time vs Solution Time Convergence Graph form=3, K=1
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Figure A.6: Cycle Time vs Solution Time Convergence Graph form =3, K=2
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Figure A.7: Cycle Time vs Solution Time Convergence Graph form =3, K=3
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Figure A.8: Cycle Time vs Solution Time Convergence Graph form =3, K=4
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Figure A.9: Cycle Time vs Solution Time Convergence Graph form =3, K=5
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Figure A.10: Cycle Time vs Solution Time Convergence Graph form =3, K=6
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Figure A.11: Cycle Time vs Solution Time Convergence Graph form=4,K=1
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Figure A.12: Cycle Time vs Solution Time Convergence Graph form =4, K=2
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Figure A.13: Cycle Time vs Solution Time Convergence Graph form =4, K=3
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Figure A.14: Cycle Time vs Solution Time Convergence Graph form =4, K=4
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Figure A.15: Cycle Time vs Solution Time Convergence Graph form=4,K=5
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Figure A.16: Cycle Time vs Solution Time Convergence Graph form =4, K=6
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Figure A.17: Cycle Time vs Solution Time Convergence Graph form=4,K=7
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Figure A.18: Cycle Time vs Solution Time Convergence Graph form =4, K=8
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Figure A.19: Cycle Time vs Solution Time Convergence Graph form =5, K=1
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Figure A.20: Cycle Time vs Solution Time Convergence Graph form =5, K=2
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Figure A.21: Cycle Time vs Solution Time Convergence Graph form =5, K=3
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Figure A.22: Cycle Time vs Solution Time Convergence Graph form =5, K =4
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Figure A.23: Cycle Time vs Solution Time Convergence Graph form =5, K=5
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Figure A.24: Cycle Time vs Solution Time Convergence Graph form =5, K=6
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Figure A.25: Cycle Time vs Solution Time Convergence Graph form =5 K=7
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Figure A.26: Cycle Time vs Solution Time Convergence Graph form =5, K=8
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Figure A.27: Cycle Time vs Solution Time Convergence Graph form =5, K=9
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Figure A.28: Cycle Time vs Solution Time Convergence Graph form =5, K=10
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Appendix B: Simulated Annealing Solution Time Convergence

Graphs for Case when 6 =2,¢=1, P =5000
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Figure B.1: Cycle Time vs Solution Time Convergence Graph form=2, K=1
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Figure B.2: Cycle Time vs Solution Time Convergence Graph form =2, K=2
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Figure B.3: Cycle Time vs Solution Time Convergence Graph form=2, K=3
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Figure B.4: Cycle Time vs Solution Time Convergence Graph form =2, K=4

144




Cycle time

5018 T T T T T T T 1
0 10 20 30 40 50 60 70 80

Solution Time

Figure B.5: Cycle Time vs Solution Time Convergence Graph form=3, K=1
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Figure B.6: Cycle Time vs Solution Time Convergence Graph form =3, K =2
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Figure B.7: Cycle Time vs Solution Time Convergence Graph form =3, K=3
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Figure B.8: Cycle Time vs Solution Time Convergence Graph form =3, K=4
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Figure B.9: Cycle Time vs Solution Time Convergence Graph form =3, K=5
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Figure B.10: Cycle Time vs Solution Time Convergence Graph form =3, K=6
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Figure B.11: Cycle Time vs Solution Time Convergence Graph form =4, K=1
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Figure B.12: Cycle Time vs Solution Time Convergence Graph form=4, K =2
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Figure B.13: Cycle Time vs Solution Time Convergence Graph form =4, K=3
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Figure B.14: Cycle Time vs Solution Time Convergence Graph form =4, K =4
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Figure B.15: Cycle Time vs Solution Time Convergence Graph form =4, K=5
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Figure B.16: Cycle Time vs Solution Time Convergence Graph form =4, K =6
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Figure B.17: Cycle Time vs Solution Time Convergence Graph form =4, K =7
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Figure B.18: Cycle Time vs Solution Time Convergence Graph form =4, K =8

151




Cycle time

5080
5075
5070
5065 -—
5060
5055
5050
5045
5040

5035 T T T T T T 1
0 50 100 150 200 250 300 350

Solution Time

ime

Cycle t

Figure B.19: Cycle Time vs Solution Time Convergence Graph form =5, K=1
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Figure B.20: Cycle Time vs Solution Time Convergence Graph form =5, K =2
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Figure B.21: Cycle Time vs Solution Time Convergence Graph form =5, K =3

Cycle time
(9]
o
e
o

Cycle time

50

100 150
Solution Time

200

250

Figure B.22: Cycle Time vs Solution Time Convergence Graph form =5, K=4
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Figure B.23: Cycle Time vs Solution Time Convergence Graph form =5, K=5
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Figure B.24: Cycle Time vs Solution Time Convergence Graph form =5, K=6
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Figure B.25: Cycle Time vs Solution Time Convergence Graph form =5, K=7
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Figure B.26: Cycle Time vs Solution Time Convergence Graph form =5, K =8
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Figure B.27: Cycle Time vs Solution Time Convergence Graph form =5, K=9
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Figure B.28: Cycle Time vs Solution Time Convergence Graph form =5, K =10
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