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ABSTRACT

In this thesis, we focus on numerical solutions of general linear multi-term fractional
differential equations (FDEs) with fractional derivatives defined in the Caputo sense.
Multi-term fractional order differential equations are involving both ordinary and
fractional derivative operators. Numerical methods plays very crucial role for solving
fractional differential equations, since analytical solutions are not always possible for
solving them. Memory trait of fractional calculus is one of the main reason for
difficulty of developing analytical techniques for such a equations. Therefore, there
has been considerable interest in solving FDEs numerically in recent years and many
powerful schemes have been developed. Essentially, most of the developed methods
are modified from original versions for classical differential equations and applied to

FDEs.

In this study, we introduce a numerical technique based on the fractional Taylor
vector and we construct fractional Taylor operational matrix of fractional integration
to solve multi-term FDEs. The main characteristic of this technique is to reduce the
given IVP of fractional order to a system of algebraic equations by employing the
fractional Taylor operational matrix of fractional integration. Finally, this set of
algebraic equations can be solved easily and efficiently for unknown coefficients by
using computer programming. Consequently, by using these coefficients, the
approximate solution of the given problem can be obtained. Some numerical
examples are presented to demonstrate the accuracy and applicability of given
method. The approximate solutions obtained by use of given technique are compared

with numerical results of some other methods in literature and exact solutions of

11



given problems. From these results, we can conclude that the presented technique is
efficient and applicable for solving high order multi-term fractional order differential

equations numerically.

Keywords: numerical solutions, fractional Taylor vector,fractional differential
equations, spectral method, Caputo fractional derivative, Riemann-Liouville

fractional integral, operational matrices.
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Bu tez calismasinda, Caputo kesirli tiirevlerine sahip, genel lineer ¢ok terimli kesirli
diferansiyel denklemlerin sayisal yontem ile ¢oziimlerine odaklanilmigtir. Cok terimli
kesirli tiirevlere sahip diferansiyel denklemler, hem klasik hem kesirli tiirev
operatorleri iceren denklemlerdir.  Analitik metodlar ile kesirli tiirevlere sahip
diferansiyel denklemlerin c¢oziimlerine ulasmak her zaman miimkiin olmadigindan,
sayisal metodlar bu tiir denklemlerin ¢oziimlerinde cok 6nemli bir rol oynamaktadir.
Kesirli analizin uzun hafiza 6zelligi, bu tiir diferansiyel denklemlerin ¢oziimii icin
analitik yontemler gelistirmeyi zorlastiran en 6nemli sebeplerden biridir. Bu nedenle,
kesirli tiirevli diferansiyel denklemlerin sayisal yontemler kullanilarak ¢6ziimii son
yillarda biiylik ilgi gormektedir ve bunun sonucu olarak bir¢ok giiclii teknik
gelistirilmistir. Aslinda, gelistirilen yoOntemlerin ¢ogu, klasik diferansiyel
denklemlerin  ¢6ziimii i¢in  kullamilan orijinal versiyonlardan degistirilip

giincellenerek kesirli diferansiyel denklemlere uygulanan yontemlerdir.

Bu c¢alismada, ¢ok terimli kersirli diferansiyel denklemlerin sayisal ¢oziimleri igin,
kesirli Taylor vektoriine dayanan bir yontem sunulmaktadir. Sunulan yontemin ana
amaci, kesirli Taylor vektoriinden yararlanarak kesirli integrasyonun operasyonel
matrisini olusturmak ve bu matrisi kullanarak, verilen ¢ok terimli kesirli diferansiyel
denklemin bir cebirsel denklem sistemine indirgenmesini saglamaktir. Son olarak,
elde edilen bu cebirsel denklem sistemi, bilgisayar programlamas: kullanilarak,
bilinmeyen katsayi1 icin verimli bir bicimde ¢o6ziilebilmektedir. Sonuc¢ olarak, elde
edilecek katsayillar kullanilarak, verilen problemin yaklagik c¢oziimii elde

edilmektedir. Sunulan yontemin verimlili§ini ve uygulanabilirligini test edebilmek



icin baz1 Ornekler verilmistir. Sunulan yontem kullanilarak elde edilen yaklagik
coziimler, verilen problemlerin kesin ¢Oziimleri ve literatiirde bulunan bazi diger
sayisal yontemler ile karsilastirilmistir. Elde edilen sonuglar ve karsilagtirmalar,
sunulan yontemin, ¢ok terimli kesirli diferansiyel denklemlerin yaklagik ¢oziimlerine

ulagmakta ¢ok basarili ve verimli oldugunu kanitlamaktadir.

Anahtar Kelimeler: sayisal coziimler, kesirli diferansiyel denklem, spektral metod,
Caputo kesirli tiirevi, Riemann-Liouville kesirli integrali, kesirli Taylor vektorii,

operasyonel matrix.
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Chapter 1

INTRODUCTION

1.1 Fractional calculus: A brief history and some applications

An emerging field of mathematical analysis; fractional calculus, which can be
described as generalisation of ordinary differentiation and integration to arbitrary
non-integer orders. Although the title “integration and differentiation of arbitrary
order” being more proper for this topic, a misnomer designation; “fractional calculus”
is in use from the days of L’Hospital. The history of fractional calculus is almost as
long as the history of traditional calculus, beginning with some speculations of G.W.
Leibniz (1695) and L. Euler (1730). However, fractional calculus and fractional
differential equations (FDEs) are rapidly developing and increasingly becoming
popular in recent years. Some of famous mathematicians, who have provided crucial
contributions for fractional calculus, contains P.S. Laplace (1812), J.B.J. Fourier
(1822), N.H. Abel (1823-1826), J. Liouville (1832-1873), B. Riemann (1847), A.K.
Griinwald (1867-1872), A.V. Letnikov (1868-1872), H. Laurent (1884), J. Hadamard
(1892), S. Pincherle (1902), H. Weyl (1917), H.T. Davis (1924-1936), A. Zygmund
(1935-1945), E.R. Love (1938-1996), D.V. Widder (1941), M. Riesz (1949) and so
on [13]. Since fractional derivative is not necessarily unique, there are some different
well-known definitions in the literature, i.e. Griinwald—Letnikov derivative, RL
fractional derivative and Caputo derivative are some important ones.  The

progressively developing history of this old and yet novel topic can be found



in [1]- [5]. In fact, fractional calculus provides the mathematical modeling of some
crucial phenomena like social and natural in a more powerful way than the ordinary
one. Because, if we compare with the classical calculus, the fractional calculus has
the long interaction features, namely memory effects. Therefore, this memory treat of
fractional calculus can better illustrate different kinds of nonlinear dynamics in both
theories and mathematical modeling of engineering problems. Over the last few
decades, many applications were reported in many fields of science and engineering
such as chaotic systems [6], fluid mechanics [8], viscoelasticity [9], optimal control
problems [10, 11], chemical kinetics [12], electrochemistry [14], biology [15],
physics [16], bioengineering [17], finance [18], social sciences [47], economics [48],
optics [49], chemical reactions [50], rheology [51] and so on. Due to the importance
of FDEs, the solutions of them are attracting widespread interest. On the other hand,
due to reason that we mention before about the difficulty of analytical solutions,

numerical techniques becomes more crucial for solving such equations.

In this thesis, we will focus to solve multi-term FDEs numerically, which are one of
the most important type of FDEs, that is a system of mixed fractional and ordinary
differential equations and involving more than one fractional differential operators.
Nowadays, they are widely appearing for modeling of many important processes,
especially for multirate systems. Their approximate solution is then a strong subject

that deserves high interest.



1.2 Literature review on numerical methods for fractional

differential equations

The extension of present numerical techniques for classical integer order differential
equations to their corresponding FDEs is not an easy process. However, there are
various numerical techniques have been developed for solving FDEs in literature. In
this section, we give some examples of existing numerical methods in literature that
used to solve FDEs. An Adams type predictor-corrector method is discussed in [19]
by Diethelm et al. Laplace transforms for the solution of FDEs is introduced in [20]
by Podlubny. In [21], Cenesiz et al. solved Bagley—Torvik equation by generalized
Taylor collocation method. In [8, Chapter 6], Zheng and Zhang used variational
iteration method and homotopy perturbation technique to solve FDEs. In [22], Ray
and Bera applied Adomian decomposition method for the solution of a FDEs as an
alternative method of Laplace transform. Tau method introduces for solving fractional
partial differential equations in [23] by Vavani and Aminataei. In [54], Rani et al.
applied the numerical inverse Laplace transform technique based on the Bernstein
operational matrix to find the solution to FDEs. In [55], Khashan et al. introduced a
collocation technique based on Haar wavelet to solve Riccati type differential
equations with non-integer order numerically. In [56], Li and Sun applied block pulse
operational matrices of differentiation to approximate FDEs. In [57], Saadamandi and
Denghan presented a method based on the shifted Legendre-tau idea for solving a
class of initial BVPs for the fractional diffusion equations with variable coefficients.
In [58], Abuasad et al. applied fractional multi-step differential transformed technique
to get numerical approximations to fractional stochastic SIS epidemic model with

imperfect vaccination. In [59], Veeresha et al. used the q -homotopy analysis



transform method to solve fractional Kolmogorov—Petrovskii—Piskunov (FKPP)
equation. In [60], Silva et al. used the conformable Laplace transform to discuss
solution of some fractional linear differential equations with constant coefficients.
In [61], Pitolli applied a collocation method based on fractional B-splines for the
solution of FDEs. In [62], finite difference method on Non-Uniform Meshes for
Time-Fractional Advection—Diffusion Equations used by Fazio et al. In [24], Odibat

et al. applied homotopy analysis technique to solve nonlinear FDEs and so on.

1.3 Spectral methods

Spectral methods are numerical techniques used to solve classical or fractional
differential equations in applied mathematics. In 1938, spectral methods introduced
by Lanczos [68] by showing the powerful role of Fourier series and Chebyshev
polynomials for solutions of some problems. Applying spectral methods to solve
many different types of integral and differential equations numerically, has received
considerable interest in recent years, because of their easy applicability over finite and
infinite intervals. Spectral methods are highly related to finite element methods and
they depend on very similar ideas. The principal difference is that the finite element
methods utilize basis functions that are nonzero only on trivial subdomain, while
spectral methods utilize basis functions which are nonzero over the entire domain.
That is to say, finite element methods utilize a local approach, whereas spectral
methods take on a global approach. Therefore, when the solution is smooth, spectral
methods have very good error properties, that is the so-called “exponential
convergence” being the fastest possible. These highly accurate methods are based on
expressing the approximate solution of differential equation as a linear combination

of a chosen set of orthogonal basis functions and choosing the coefficients in the sum



in order to satisfy the solution of differential equation [69]. In general, there are three
types of such a methods; collocation, Tau and Galerkin. We focus on collocation

spectral method.

The collocation is based on interpolation. Similar to finite difference method, the
collocation spectral method uses collocation points, namely a set of grid points in the
domain. In our work, for discretization of multi-term FDEs, we use spectral collocation

method with fractional Taylor basis which are easy to approximate the functions.

1.4 Structure of the thesis

In this thesis, motivated by the results reported in [27, 30] for solving a smaller class
of problems where the highest order of derivative is an integer and involving at most
one noninteger order derivative, we go further and establish a method for numerical
solutions for higher order and arbitrary multi-term fractional FDEs which have a

general form
D%y(1) = £ (1.3(1),D%y(0), DPy(1)... DPY() ) £ €[O.R) (L)

where D* representing the Caputo fractional derivative of order o > 0 and we assume

that 0 < Bop < B1 < ... <Pr < o, yP)(0) =Y,, p=0,1,..n where n — 1 < & < n.

In this work, our main purpose is to present an effective, reliable method to
approximate IVP for the Eq.(1.1). Therefore, a numerical approach based on
fractional Taylor vector is proposed to solve the initial value problem of general type
of multi-term FDEs. The core idea of this method is to present and employ the

operational matrix of fractional integration based on fractional Taylor vector to given



problem and reduce it to a set of algebraic equations which can be efficiently solved.

The structure of the thesis is organized as follows. In Chapter 2, we briefly introduce
some necessary definitions and preliminary ideas of fractional calculus. In Chapter 3,
we give existence and uniqueness results for FDEs. Also, linear multi-term FDEs are
introduced in Section 3.3 and some existing numerical techniques are given in Section
3.3.1. In Chapter 4, we introduce an algorithm based on fractional Taylor operational
matrix of fractional integration to solve multi-term FDEs numerically. Also, given
method has been applied to nine examples to demonstrate the efficiency and

applicability. A final conclusion is presented in the last chapter.



Chapter 2

PRELIMINARIES

In this chapter, we introduce basic definitions of some special functions which have
very important roles in fractional calculus. We also briefly give some necessary
definitions of fractional derivatives and integrals and some properties that will be used

later.

2.1 Basic Functions of Fractional Calculus

2.1.1 Gamma Function

The gamma function is a very useful and well-known function in mathematics, that is
one commonly used generalisation of the factorial function to complex numbers. This

function is introduced by Euler in the 18th century.

Definition 2.1.1. The Gamma function is given by the Euler integral of the second
kind

I'(k) = / e tdr
0

where Re(k) > 0 and 1"~! = ¢(n—Dlogr,
Gamma function is related to factorial by following relation:

T(k) = (k—1)!.



2.1.2 Beta Function
The beta function has a crucial role in calculus because of its close relation to the

gamma function. It’s also called as Euler’s integral of the first kind.

Definition 2.1.2. The beta function or the Euler integral of the first kind is given as

following

B(n,m) :/Olt”‘l(l — )" dr

for Re(n), Re(m)> 0.

The beta and gamma functions have relation as given in following equation

2.1.3 Mittag—Leffler Function
The ML function is a simple generalisation of the exponential function exp(m). i.e.
replacing m! =T'(m+ 1) by (aum)! =I'(oum + 1) in the denominator of the power terms

of the exponential series. The definition of ML function is given in following:

Definition 2.1.3. The ML function of one parameter is defined as

ZZ;')F m—i—

where n > 0.



The two parameter ML function is given as

lg')l“ m—i—m

where n,m > 0.

2.2 Fractional Derivative and Integral
2.2.1 Riemann-Liouville Fractional Integral

Definition 2.2.1. The RL fractional integral to order o of an integrable function y(z) is

defined to be
1 / ! |
—— [ (t—5)% "y(s)ds, o>0
1) = { 1@ Jo @.1)
y(t), a=0
When applied to a power function, it yields the following result:
%) = M(r)c+oc o>0,c>—1 (2.2)
[c+o+1) T '

The operator has a commutativity property, that is

1Py (t) = IP1%(t), &, > 0

and it is linear, that is to say

I%(Ary1 (1) +A2ya (1)) = AtI% (1) + Axd %y (1)

for any two functions y;,y, and constants A,A5.



2.2.2 Caputo Fractional Derivative
Definition 2.2.2. The fractional derivative of y(¢) of the order o in the Caputo sense is
given as
. d/
Doy =17 (590} -1 <o e 23)
2.2.3 Some properties
1. The RL fractional integral and Caputo fractional derivative do not usually

commute with each other. The Newton-Leibniz identity given below provides

an important relation between them:

=1 £

1%(D%(1)) = y(1) = ¥ yV(0) (2.4)

where j—1 <o <j, jeEN.

2. The Caputo fractional derivative also has the following substitution identity. If

we write y;(¢) = y(¢R) and ¢ = /R, then we have

1

D% (1) = ﬁDa)’l(Q) (2.5)

where j—1<a<j, jeN.

10



Chapter 3

FRACTIONAL DIFFERENTIAL EQUATIONS

3.1 Introduction
Fractional differential equations (FDEs), which are the generalisation of the ordinary
differential equations to a arbitrary order, involve fractional derivatives of the form

(d*/dx®) , where o > 0. Here, o is not necessarily to be an integer number.

In this part, existence and uniqueness theorems for FDEs are presented. Linear
multi-term FDEs, which is one of the most important type of FDEs and some existing

numerical methods for solving such equations are also briefly presented.

3.2 Existence and uniqueness theorems for FDEs
For any kind of differential equations, existence and uniqueness of the solution are too
crucial. Therefore, in this part, we will discuss about the existence and uniqueness

results of IVP for FDE in the following form

DPy(t) = f(1,y(1)) 3.1

Y0) = ¥, i=0,1,2,.n—1 3.2)

where DPy(t) denotes the Caputo fractional derivative of order p > 0, withn—1 < p <

n.

The existence and uniqueness results of the given IVP is presented in [31] that are a

11



very close to the corresponding ordinary theorems known in the first-order equations

case.

Theorem 1 (Existence). [31] Let B := [0,R*] x [y3—B,»)+B] with R* > 0and p >0

and the f : B — R be continous function. Moreover, let B := min {R*, <ﬁlﬂ(;)”+1)> } .

Then, 3y : [0,R] — R solving the IVP (3.1)-(3.2).

Theorem 2 (Uniqueness). [31] Let B := [0,R*] x [y§ — B,y + B] with R* > 0 and
B > 0. Moreover, assume that the f : B — R be bounded function on B and satisfy a

Lipschitz condition with respect to the second variable, namely,

\f(t,y)—f(t,z)\ SL‘_)}—Z‘

subject to a constant L > 0 independent of t,y,z. Then, expressing R as given in
Theorem 1, there exists mostly one function y : [0,R] — R that solves the IVP

(3.1)-(3.2).

To prove these two theorems we need to use following results.

Lemma 3. [31]If f is a continuous function, then IVP (3.1)-(3.2) is equivalent to the

nonlinear second kind Volterra integral equation

70 =% 00)+ 5 [ -9 eyt 33)

with n — 1 < p < n. That is to say, each solution of Volterra equation (3.3) is also a

solution of given IVP (3.1)-(3.2) and vice versa.

The generalisation of Banach’s fixed point theorem is used to get proof of the
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uniqueness theorem.

Theorem 4. [31] Assume that V be a nonempty closed subset of a Banach space
X, and let B,, > 0 Vn and so that Yoo B, converges. Furthermore, assume that the

mapping M : V — V satisfy the following inequality
1My —M"ul| < By [|v—ull, (3.4)

since My = M(M"flv) where MY = Mv, ¥n € N and for each v,u € V. So, M has a
unique fixed point v*. Moreover, for any vy € V, the sequence (M"vy);_, converges to

point v*.

Proof of Theorem 2. [31] As defined previously, discussing the case 0 < p < 1 only
will be enough to prove the uniqueness. Therefore, the Volterra equation (3.3) brings

to form

0=+ s [ (=27 fley(2))dz 35)

Hence, V = {y € C[0,R] : ||y —»}||., < B}. Clearly, the set V is a closed subset of the
Banach space of all continuous functions on [0, R|, equipped with the Chebyshev norm.
It can be also seen that V' is non-empty since y = y8 is in V. The operator M on V is

defined by

0 =+ s | (=2 f(ey(2)dz. (3.6)

By using this operator, we can rewrite the equation under consideration as following

13



and to prove uniqueness of the solution, we need to prove that M has a unique fixed
point. Therefore, let us investigate the features of the operator M. Firstly, noting that,

for0 <1 <t <R,

_ ﬁ /O“(,l_z)p ! dz_/o (12— )P f(zy(2) )dz (3.7)
= | (@ = ) etz /lltz(tz—Z)plf(Z,y(Z))dZ
< M=) (-0 - -2 e / Y- ]

= “F]ELLO)O 20 —n)P +1{ —13). (3.8)

shows that My is a continuous function. Furthermore, for y € V and 7 € [0, R] we get

)08 = | [ -2 @] < s I
1 ) Br(p+1) _
= ey RS g Ve =R

Hence, we can see that if y € V then My € V; namely, M maps the set V to itself.
Next, let us prove that Vn € Ny and for each ¢ € [0,R], we have
1My = M5 _jo.) <

O T

In order to prove this, the induction technique can be use. When n = 0, the statement

14



is easily true. For n — 1 — n, we write

My = Mo = (M) = M),
1 q p_l n—1 n—1a
— /O (4= 2" [ M "y(2)) — f(e, M™'5(2))]dz|.
<q<t

Next, using the Lipschits assumption on f and induction, we get

L q
Ml’ly_MnyA S su / q_z p—l Mn—l Ml’l 1 dZ
|| ||Loo[0,t] F(p) qugt 0 ( ) | ) ’
L t
< — [ (=27 sup |M"Yy(q) —M"(q)|dz
[(p) /O ( ) OSqI;t‘ @) }
< L [ sup i)~ s e
L(p)L(1+p(n—1)) Jo 0<g<t
< L sup |y(q) |/ )PP~y
- I(p)r(1+p(n—1)) 0<g<t
I(p)L'(1+p(n—1)) Leo[01] I(1+pn)

which is the desired result. Consequently, by taking Chebyshev norms on the interval
[0,7] we get
(Lt?

)"
HMny—Mn Hoo > m”)’ )’Hoo

It’s proved that the M satisfies the assumptions of Theorem 3 with 3, = (Lt?)/I'(1 +
pn). To use Theorem 3, we need to verify that )" B, converges. This is a well known

result; the limit

> Ltp
Z = E,(Lt")
= ['(1+ pn)

is the ML function of one parameter p, evaluated at Lt”. Then, applying the fixed point

theorem will give the uniqueness result for the solution of FDE. 0
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Proof of Theorem 1. [31] Similarly, we utilize the same operator M defined in (3.6)
and remember that it maps the convex, nonempty and closed set V = {y € C[0,R] :

[y =3 < B} toitself.

Let us now show that M is a continuous operator. Given any Y > 0, we can find ¢ > 0

so that

F63) = (.9 < LT(p+1) (3.10)

whenever |y —z| < @

Next, assume that y,§ € V so that ||y — || < ¢. Then, from (3.10)

£0.5(0) = £(E.50)] < S5 T(p+1) (1)

Vt € [0,R]. Therefore,

1

MYO=MTOL = w0y /(f<t—z>”1<f<z,y<z>>—f<z,y<z>>>dz

F(p+1)v/’ p—1 1P
—_— - — = — <
t’T(p) Jo (t=2)"dz P~ v

which shows that the operator M is continuous.

Next, let us consider the set of functions

M(V):={My:yeV}.
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For c € M(V), we get Vx € [0,R],

|d@|==KMwﬁﬂéb&+féyAO—@V*V@ﬂdwz
1

oy, -~ P
561+ 2y IR

IN

This result shows that M (V) is bounded in a pointwise sense. Furthermore, from proof

of Theorem 2 for 0 <t} <1, <R, we get that

(My)(0) — (My)(12)| < ﬁ%%gcm—nv+ﬁ—ﬁ>
< Z—Figﬂ:ﬁl) (th—11)P.
Hence, if |t; — 11| < @,
) T
0500~ () )| < 2 .

Here, we note that the right side of this expression is independent of y, and the set M (V')
is equicontinuous. Hence, by Arzela-Ascoli theorem, each sequence of functions from
M(V) have a uniformly convergent subsequence. Hence, M (V) is relatively compact.
Then, by Schauder’s fixed point theorem, M has a unique fixed point. By construction,

a fixed point of M is a solution of given IVP (3.1)-(3.2). ]

3.3 Linear multi-term FDEs
In this part, we rewrite and focus on the general type of multi-term FDE in Caputo

sense given in Eq.(1.1) in the following linear form

k
DU(t) = Y uiDPiy(t) + w1 y(t) + £ (), 0<1<R, (3.12)
i=0

17



with

yP(0)=Y,, p=0,1,...n—1 wheren—1 < a<n, (3.13)
u; (i=0,1,...,k) are known coefficients and

O0<Bo<Pr<..<Pr<a

Here, it’s also worth to mention that the highest order o need not to be an integer and
f(¢) is a known function. This equation is important in applications due to the fact it
can treat the problems with fractional force, therefore it is suitable for being treated

within fractional operators of Caputo type.

Multi-term FDEs have very useful features and they can describe complex multi-rate
physical processes in a numerous way and can be applied in many different kind of
fields, see e.g. [2,4,20,25]. Basset equation [28] and Bagley—Torvik [29] equations
can be given as important examples for smaller class of multi-term FDEs. Existence,
uniqueness and stability of solution for multi-term FDEs are discussed in [31-33,46].
3.3.1 Some numerical techniques for solving Multi-term FDEs

In this subsection, we will briefly review some techniques that used to solve
multi-term FDEs numerically. Due to difficulty of finding the exact solutions for
multi-term FDEs, many new numerical techniques have been developed to investigate
the numerical solutions for such equations. In [40], Diethelm et al. wused a
generalization of the classical one-step Adams—Bashforth-Moulton technique for
first-order equations for solving nonlinear FDEs. Haar wavelets for the solution of
fractional Volterra and Fredholm integral equations are considered in [41] by Lepik.

Differential Transform Method (DTM) have been carried out for various types of
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problems, including the Bagley—Torvik, Ricatti and composite fractional oscillation
equations for the application of the technique in [35] by Arikoglu and Ozkol. In [26],
Diethelm and Ford applied Adams—Bashforth—-Moulton method to solve multi-order
FDEs of the general form. In [34], Saw and Kumar introduced a scheme based on
collocation technique and shifted Chebyshev polynomials (SCP) to solve multi-term
fractional order IVP. A method based on using Boubaker polynomial operational
matrix of fractional integration have been applied to solve multi-order FDEs in [38]
by Bolandtalat et al. In [63], the solution of multi-term FDEs expressed in terms of
ML functions evaluated at matrix arguments by Popolizio. In [64], the differential
transformation is proposed as convenient for finding solution to the IVP involving
multiple Caputo fractional derivatives of generally non-commensurate orders by

Rebenda.
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Chapter 4

NUMERICAL SOLUTIONS FOR MULTI-TERM FDEs
WITH FRACTIONAL TAYLOR OPERATIONAL

MATRIX OF FRACTIONAL INTEGRATION

4.1 Fractional Taylor Basis Vector

We shall make use of the fractional Taylor vector,
T,s(t) = 1,682,620, .../ (4.1)

for m € N and & > 0 in the work of this thesis.

4.2 Approximation of function
Suppose that T,,5(t) C H, where H is the space of all square integrable functions on the
interval [0, 1]. For any y € H, since S = span { 1,962, ...,t’"s} is a finite dimensional

vector space in H, then, y has a unique best approximation y, € S, so that

vwes, ly—ydl <lly—=yl

Therefore, the function y is approximated by fractional Taylor vector as following

m
Yy, = Z cit® = CT'T,5(1) (4.2)
i=0
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where T,,5(¢) denote the fractional Taylor vector and

CT =[co,c1,¢2, 0y Cm] (4.3)

are the unique coefficients.

4.3 Construction of fractional Taylor operational matrix of fractional
integration

By using the property of RL fractional integral given in Eq.(2.2) and Eq.(4.1), we

construct the fractional Taylor operational matrix of fractional integration as following

1%(T,5(1)) =
— 1o C(3+1) _§+a [(28+1) 128+ [(md+1) md+o
To+D)! *TEtatD)’ Tstot]) 1 Tmd+at1)
= t“Mang(t) “4.4)
where
1 r'é+1 r(26+1 r 1
Mo — dig (5+1) _T(@8+1) (m5+1)

Ca+1) T(¢+a+1) T(28+a+1)" "T(md+o+1)

denotes the operational matrix of integration.

If we define G, as

o 1 rd+1) IL@28+1) T(md+1)
T C(o+1) T3 4+a+1)T(284+a+1) " T(md+o+1)
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then, we can rewrite the Eq.(4.4) as
I(Ty5(t)) = %G x Try5(1) (4.5)

where * denotes the operation of multiplying matrices term by term.

4.4 The Numerical Algorithm

In this part, we give the numerical algorithm of fractional Taylor method to solve given

multi-term IVP of fractional order [45].
Let us recall the linear multi-term FDE defined in Eq.(3.12) and Eq.(3.13),
k
D%(t) = Y uiDPy(t) + e 1y(t) + f(t), 0<1<R,
i=0
subject to the

y(p)(O) =Y,, p=0,1,..,n—1wheren—1 <a<n
u; (i=0,1,...,k) are known coefficients and

O0<Bo<Pr<..<Pr<a
The procedure to solve given equation above is explained step by step as following.

As a first step, by using the transformation g = 7 /R, we replace the variable ¢ € [0, R]

with g € [0, 1]. Now, by using Eq.(2.5) in Eq.(3.12), we get

1 ko A
ﬁDayl(Q) =) ﬁ”iDBl)ﬂ(Q) +uy1y1(q) + f1(9),0< g < 1 (4.6)
i=0
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where f1(g) = f(¢R) and y;(q¢) = y(¢qR). Same as Eq.(4.2), we approximate the y;(q)

as

chq =C"T,5(q) (4.7)

such that T,5(q) = [1,4%,¢%,...,¢"]" is the fractional Taylor vector and the unique

coefficients CT is unknown vector which is defined in Eq.(4.3).

Next step, employing the RL fractional integral for the both sides of (4.6), we have

1 (q) nzl (j)(o—i-)tj zk: 1 B (q)— niil (j)(o-i-)tj
oo | Y1G) = 2 Y o = 2L o Ui “yilg y -
R% j=0 : J! < RB: l =0 ! J!
+uer1I%y1(q) +1%f1(q) (4.8)
where y(P)(0) = Vp,p=0,1,....,n—1where n; — 1 < ; < n.
From this place, by substituting initial conditions (3.13), we have
1 1 s o
e 1(9)] = Z,W’“ ‘()] + w1 1% (q) +hi(q) (4.9)

sothathl(q)zlafl(q)—l—%(zn 1V”>+Zl o 7l P <Z, OV”).

Now, by using the Eq.(4.5), we approximate the fractional integrals in above equation

and we get

1 ko Y
— [T T5(9)] = Y =5 uiCT q* P (Gop, * T5(q))
R i:ORB’
+ ke 114%CT (G x Ts(q)) + 11 (q) (4.10)
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As a final step, by taking the collocation points ¢; = j/m (j =0, 1,...,m) in Eq.(4.10),
we get m+ 1 linear algebraic equations. This linear system can be solved for the

unknown vector CT. Consequently, y (¢) can be approximated by Eq.(4.7).

4.5 Error Estimation

In this part, an error estimation based on residual error function for the proposed
method will be presented. The residual error estimation was used in [71,72] and from
these results, we can conclude that, this error estimation is very effective. Let y,, 5(¢)

and y(7) be numerical and exact solutions of given IVP (3.11)-(3.12).

Substituting y,, 5(¢) into IVP (3.11)-(3.12) we get,

D* ym5 ZuDﬁIYmS_uk+1ym8 f(t) :Rm(t)
i=0

where R, (t) is the residual function. By using the above equation and Eq.(3.11) we

have
D*(y(t) = ym,s(t ZMDB’ = Ym3(1)) = w1 (Y() = Y 3(t)) = R (1)
Now, we define the error function as
ems = V(1) = Ym5(1)-

Next, using this error function we get

k
Da€m73 — Z u,'DBiem’s — U185 = R, (l)
i=0

24



with initial conditions e, 5(0) = 0 and ¢/, 5(0) = 0. Solving this equation in the same
way presented in Section 4.4, we get the approximate error estimation e, 5(¢) of
proposed method. Consequently, the approximation of maximum absolute error can
be estimated by

Em,S :max{‘em’5| ,0 <t SR}

In the case that the exact solution of the given problem is unknown, this presented error

estimation can be used to show the accuracy of the obtained results.

4.6 Illustrative Examples

To show the applicability and effectiveness of the given method, we give nine examples
in this section. To approximate the solution of given problems, the presented fractional
Taylor method applied to each example. Approximate solutions obtained by use of
presented method have been compared with analytical solutions and also with results
of some other techniques in literature. From this comparisons, we can conclude that the
presented technique is providing very good results and very effective for approximating
the solution of multi-term FDEs. To compute the numerical results, MATLAB version

R2015a has been used.

For choosing 3, we usually take either 6 = 1 or d = oo — ||, the fractional part of o.
4.6.1 Example 1

For the first example, let us focus on multi-order FDE in the form given below [37]

DU(t) = upDPy(t) +u DPy(t) + uaDPy (1) + usDPy(e) + f(r), 0<t <R, (4.11)

y(0) =Vo, ¥ (0)=W

25



We let o =2,Vy =V, = 0,R = 1, the coefficients uy = up = —1,u; = 2,u3 = 0 and

Bo=0,B1=1,B2=> L and the function £(z) is

2048 8

Y /6.5 1.5

)= — 14¢° 421 — —=t 4r —2.
FO) ="+ /m 0oy * “3m

The exact solution is y(¢) = ¢7 — 2.

To solve Eq.(4.11), let us apply the given procedure step by step which is implemented

in previous section.
As a first step, replace variable ¢ € [0,R] to g € [0, 1] by taking g = /R.
Next, we use the Eq.(2.5) and get

1
I@Dam(é]): R—BDBO (@‘FWDBI (Q)‘FR—BDBZ (Q)+R—BDB3 yi(q) + f1(q)

(4.12)

where 0 < g <1.

Now, using Eq.(2.4) we have

2 01(0) =71(0) = @y11(0)) = 2% P (31(g) — 31(0) — 17(0))

+ RBlla PLy1(g) = 1(0) — gy1/(0))

+Rle°‘ P2(31(9) = 31(0) = g1/(0))

+ 310‘ Bs (v1(g) —y1(0) —gy17(0))

RB:

+I1%f1(q). (4.13)
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Next, using Eq.(4.13) and putting initial conditions y(0) = Vp, y'(0) =V} into equation

1 Uy o
—(C"T5(q) — Vo — RgVy) = ﬁla Po(CTT,,5(q) — Vo — RqV1)

RO
+ % 1% PUCTT,5(q) — Vo — RqV1)
n 1% 1%7P2(CTT,5(q) — Vo — RqV1)
+ 51 P(C Ts(q) Vo — RaVh)
+1%f1(q)- 19
From Eq.(4.5), we have
% (C"Tu5(q) — Vo — RgV1)
— I%QG—BOCT(GQ_BO * T (q)) — Rﬁorlz(;qi_;s +1) Yo RBobrt‘O(((]xa:B[;Zir 2) .
N % 4" PICT (Gyp, * Trus(q)) — Rﬁlrbz;q :il i Rm?gj;l 2"
N % 4" P2 CT (Gy_p, * Tus(q)) — ngqi—;: T Rmﬁff; 2"
* %qa_&CT(Ga—Bz *Tu3(q)) = Rﬁsljzchi_ﬁﬁj +1) o~ RB3;2£$:B;3F]‘|‘ 2) .
+1%/1(q)- )

Now, taking R = 1 in Eq.(4.15) and putting the given values for Vy, Vi, u;,B; where

i =0,1,2,3 into this equation, we get

C'T,5 = 24'CT (G1 % T5(q)) — ¢°/*CT (G3 )2 % Ti5(q)) — *C (G * Tus(q)) + 12 fi (q)

(4.16)

Finally, taking the collocation points ¢; = j/m (j = 0,1,...,m) generates a linear

algebraic system of dimension m + 1 with unknown vector C”. In order to solve this
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system by using presented method and comparing the results, we choose & = 1 and

different values of m.

To show the efficiency, we compared the numerical results with the method given

in [37].

Table 4.1, compares the obtained results for absolute error with m = 4,6,7. We
observe from Table 1 that, the absolute errors for presented method are smaller and

the numerical solution is more accurate for the same size of m.

Table 4.1: The comparison for absolute errors of the proposed scheme and method
given in [37] with m = 4,6,7

Present method Method in Present method Method in Present method Method in
t m=4 [371m=4 m=6 [371m=6 m="7 [B7lm=17
0.2 0.0116 0.0844 6.81430698097618e-07 0.0044 1.040834086e-16 2.81025203108243e-15
0.4 0.0032 0.3501 1.01100805164899¢-04 0.0079 2.498001805e-16 6.63358257213531e-15
0.6 0.0108 0.6734 1.2907314422994e-05 0.0143 1.665334537e-16 3.27515792264421e-15
0.8 0.0037 1.0234 1.16246682382747¢-04 0.0214 3.330669074e-16 4.25770529943748e—-14
1.0 0.0026 1.6700 1.11299947542775e-05 0.0280 1.110223025¢e-16 2.43819897540083e—13

In Fig. 4.1-Fig. 4.3, we present the graphical representation of comparison between
exact solution and the numerical solutions obtained by given method and the method
of [37] for the problem (4.11) with m = 4,6, 7 respectively. From these results, we can
conclude that m = 4 and m = 6 give larger absolute error, while m = 7 gives smaller
absolute error (10719) and more precise numerical solution. These comparisons also
shows that the results obtained by given method is closer to the exact solution than the

results of [37].
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—©&— Presented Method (m=4)
—*— Method of [37] (n=4)
—k— Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.1: Graphical representation of exact solution and the numerical solutions
obtained by presented method and the method of [37] with m,n =4

—©6— Presented Method (m=6)
0 " —>— Method of [37] (n=6)
M. —%— Exact Solution
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-0.25

-0.35

-0.45 I I I I I I I I I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.2: Graphical representation of exact solution and the numerical solutions
obtained by presented method and the method of [37] with m,n =6

29



0.05

—©&— Presented Method (m=7)
0 —>— Method of [37] (n=7)
—k— Exact Solution

-0.05

01+

-0.25

-0.35

_0.45 Il L L L L Il Il Il 1 ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.3: Graphical representation of exact solution and the numerical solutions
obtained by presented method and the method of [37] with m,n =7

In Fig. 4.4, we show the graphical representation of absolute errors obtained by using

presented method and the method of [37] with m,n = 6.
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—*— Presented Method (m=6)
Method of [37] (n=6)

0.025

0.015

Absolute Error

0.005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 4.4: The behaviour of absolute errors obtained by using given technique and
the method of [37] with m,n = 6.

From Fig. 4.4, we can conclude that the absolute error obtained by our method is

remaining smaller and stable while the absolute error of other method is increasing in

the interval [0, 1].

In Fig. 4.5-Fig. 4.6, we give the graphical representation of absolute errors obtained

by using proposed method with m = 4,7 respectively.
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Figure 4.5: The absolute error result with m = 4.

3<10'16

Absolute Error with m=7
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t

Figure 4.6: The absolute error result with m = 7.
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A pseudo-code for MATLAB implementation of Example 1 is given below.

Algorithm 1: fractionalTaylormethod.m

alpha = 2;
beta=[1,1/2,0];
Uk=[2,—1,—1];

func =@(t) t” +2048 /(429 x sqrt (pi)) %15 — 14 %1% + 421> — 12 — ...
8/ (3% sqrt(pi)) xt'> +4xt —2;

t0=0;R=1;

y0 = [0;0];

m=4;

delta = 1;

[A,b] = fractionalTaylor(al pha, beta, Uk, func, t0, R, y0, m, delta)

C = linsolve(A,D)

[s,¥] = approxSoln(C)

4.6.2 Example 2
In this example, we focus on Eq.(4.11) with ow = 2,V = V| = 0, the coefficients ug =

up=—1,u; =0,us =2and Bp =0,B, = %,[33 = % and the function is

The exact solution of this equation is y(t) = 3. [37]

Applying the same procedure to given problem as presented in Example 1, we get the
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following equation

CTT5 =24"CT (G 3% T5(q)) — g*CT (Gy 3 % Thus(q)) — 4*CT (G2 * Th5(q)) + I fi(q)

(4.17)

As we stated in previous example, collocating this equation at the nodes ¢; = j/m
(j=0,1,...,m) generates a set of algebraic equations. In this example, to solve this

sysem for CT, we choose 8 = 1, 1.5 and different values of .

Table 4.2 shows the results for obtained absolute errors by using presented method with
m = 2,3. From these results, we can see that, there is satisfactory agreement between
the exact solution and numerical solutions. The absolute error is achieved about 10713,
We also note that, the proposed method gives better results for m = 2 by taking 6 = 1.5.

In Fig. 4.7.(a), we show the graphical representation of obtained numerical solution

Table 4.2: The absolute errors with m = 2,3

t o0=1,m=2 0=15m=2 O0=1,m=3
0 0 0 0
0.1 0.010209105 1.3e-17 7.42e-17
0.2 0.008778787 4.68e-17 1.232e-16
0.3  0.001709047 1.11e-16 1.769e-16
04 0.005000117 2.082e-16 2.637e-16
0.5 0.005348703 3.608e-16 4.163e-16
0.6 0.006663287 5.829¢-16 6.661e-16
0.7 0.037035855 8.882¢e-16 9.992e-16
0.8 0.091769001 1.2212e-15 1.5543e-15
09 0.176862723 1.6653e-15 1.9984e-15
1.0 0.2983170221 2.2204e-15 2.8866¢e-15

and the exact solution of the given problem. Fig. 4.7.(b) presents the obtained absolute

error by using proposed method with m = 3.
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Figure 4.7: (a) The numerical and the exact solutions with m = 3. (b) The absolute
error with m = 3.

4.6.3 Example 3

Consider the multi-term fractional order IVP [34]

Dy(r) +1.3D15)y(¢) +2.6y(t) = sin(21), (4.18)

with initial conditions

where the equation have the series solution given by [35]

8561 o 2 a5 13 ay 169

t)= t t —1
%)= 36000000 T T42)' 5T@9) T 300(5.6)
8§ <, 2197 <, 26 52 44

TT62) T 5000(63)  50(64) o 50(6.9)

(4.19)

To solve this problem, we choose d = 1, and m = 10.

We give the comparison of series solution and the approximate solution obtained by
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given technique in Table 4.3. Table 4.4 compares the obtained absolute errors by using
presented method with the results of [34]. From this compared results, it can be seen
that the obtained approximate solution by use of given method is very close to series

solution for a small number of m.

Table 4.3: Comparison of numerical solution with series solution for Example 3

t Series Solution [35] Present Method m = 10

0.0 0 0
0.1 0.000147766 0.000147731
0.2 0.001274983 0.001275552
0.3 0.00439917 0.00440567
0.4 0.010405758 0.010441315
0.5 0.019962077 0.020094648
0.6 0.033452511 0.033841301
0.7 0.050923716 0.051890573
0.8 0.0720381 0.074169634
0.9 0.096035415 0.100321388

Table 4.4: Comparison for absolute errors of Example 3
t Present Method m = 10 Method in [34] m = 20

0.0 0 0
0.1 3.47449¢-08 5.2560e-7
0.2 5.69366e-07 1.7150e-6
0.3 6.49968e-06 8.2260e-6
0.4 3.55576e-05 3.7820e-5
0.5 0.000132571 0.0001353
0.6 0.00038879 0.000392
0.7 0.000966858 0.0009704
0.8 0.002131534 0.002135
0.9 0.004285973 0.00429

The compared results of Table 4.4 conclude that the proposed technique has better

approach to series solution with a smaller m.

The graphical representation of comparison between series solution and approximate
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solutions obtained by presented method and the method of [34] in the interval [0, 1] is
illustrated in Fig. 4.8.

0.14
—me Presented Method
Method of [34]
Series Solution [35]
0.12

0.1

0.04

0.02 -

0

0 0.1

0.2

0.3 0.4

Figure 4.8: The comparison between series solution and numerical solutions obtained
by presented method and the method of [34] with m = 10.

In Fig. 4.9, we show present graphical representation of absolute errors obtained by
using given technique and the method of [34] with m = 10.
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Figure 4.9: The behaviour of absolute errors obtained by using given technique and
the method of [34].

In Fig. 4.10, we show the graphical representation for series solution and the numerical
results of presented method for the interval [0, 10]. The results plotted in Fig. 4.10 are
in a very good and satisfactory agreement with the series solution given in [35] and the

results of [36].
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Figure 4.10: The behaviour of series solution and the approximate solution obtained
by proposed method for the interval [0, 10].

4.6.4 Example 4

Motivated by [40], we consider the following form of FDE,

ﬁtza—i—tz—t, a>1
D% (t)+y(r) = (4.20)
2 2—a 1 1-o 2
—_—1 - =1 -t a<l1
IG—a) - ~7H %=
with
¥(0)=0,y'(0) =~1

whose exact solution is y(t) = 1> — ¢

To apply the presented method to Eq.(4.20) and compare the results with methods
of [44], [40] and [67], we solve this problem with o« = 0.3,0.5,0.7,1.25,1.5,1.85, and

various values for 6 and m. The obtained results are presented as below.
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In Table 4.5, we list the results of obtained absolute errors for o« = 0.3,0.5,0.7 by use

of presented method. Also, the results for oo = 1.25,1.5,1.85 are given in Table 4.6.

Table 4.5: The Absolute Errors with m=3 and o0 < 1 for Example 4
t =03 oa=0.5 o=0.7

0 0 0 0
0.1 4.16e-17 8.33e-17 1.94e-16
0.2 8.33e-17 5.55e-17 2.78e-16
0.3 1.1le-16 2.78e-17 2.50e-16
04 1.67e-16 1.39e-16 2.50e-16
0.5 1.67e-16 1.11e-16 1.67e-16
0.6 1.67e-16 5.55e-17 2.78e-17
0.7 1.67e-16 8.33e-17 8.33e-17
0.8 3.05e-16 5.55e-17 1.11e-16
0.9 2.08e-16 1.25e-16 1.39e-16
1.0 19le-16 1.26e-16 891e-17

Table 4.6: The Absolute Errors with m=3 and o > 1 for Example 4.
t o=1.25 oa=15 o=1.85

0.0 0 0 0
0.1 1.39e-17 2.78e-17 1.25e-16
0.2 5.55e-17 5.55e-17 1.94e-16
0.3 5.55e-17 5.55e-17 2.22e-16
0.4 5.55e-17 2.78e-17 2.50e-16
0.5 1.11e-16 0 2.22e-16
0.6 1.67e-16 5.55e-17 1.67e-16
0.7 1.94e-16 5.55e-17 5.55e-17
0.8 3.05e-16 1.39e-16 5.55e-17
0.9 1.11e-16 8.33e-17 1.39e-17
1.0 8.2le-17 1.97e-16 1.06e-16

In Fig. 4.11.(a) and Fig. 4.11.(b), we give the graphical representation of obtained
results for numerical and exact solution of the given problem and absolute error for

o= 1.5 in the interval [0, 1]
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Figure 4.11: (a) The numerical and exact solutions for o = 1.5. (b) The absolute error
forou=1.5.

In Fig. 4.12, we plot the graphical representation for behavior of the obtained
approximate solution by use of the given method and the exact solution of the given

problem for oo = 1.5 in the interval [0, 15].

2501
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Exact Solution
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50

-50 !
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t
Figure 4.12: The behaviour of the obtained numerical and exact solutions with
o= 1.5 for the interval 7 € [0, 15]

Table 4.7 lists the obtained absolute errors for the given problem (4.20) at

t =1,5,10,50 and oo = 1.5 by use of presented method and some other methods in
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literature [40, 44, 67]. From this compared results, we can say that the numerical
solution obtained by use of given technique is in better agreement with the exact one

and obtained absolute error is smaller.

Table 4.7: Comparison for absolute errors of proposed method and some other
numerical methods in literature at ¢ = 1,5,10,50 fora = 1.5

t Presented method Method of [44] Method of [40] Method of [67]

§=1/2,m=4 n =20 h=1/320 p=1T=1

1 7.99361e-14 9.10e-5 3.42¢-3 -
2.55795¢-13 2.42¢-3 - -

10 1.42109e-13 5.50e-3 - -
50 3.63798¢-12 3.74e-2 ; 1.2

In Fig. 4.13, the behaviour of absolute error for o« = 1.5 with m =4 and 6 = 1/2,1
atr € [0,50] is presented. From this graph, it can be seen that we get better results by
taking 8 = 1/2 for this example and the approximate solution is very close to exact

solution for a small number of m.

x10712

Absolute Error

0 5 1I0 15 20 2]5 310 5 B 410 415 5]0

t
Figure 4.13: The behaviour of the absolute errors for given technique where o0 = 1.5,
t €[0,50] withm =4 and d=1/2,1.
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4.6.5 Example 5
This example considers the following form of linear multi-term FDE with variable

coefficients [65]
aD*y(t) +b(t)DPy(t) + c(t)Dy(t) +e(t)DPy(1) + k(t)y(t) = £(¢), (4.21)

with,

where 0 < B, < 1, 1 <B; <2 and

ft)=—a— %tz‘ﬁl —c(t)t— _et)__op, +k(t) (2 - —>

whose the exact solution is y(1) =2 — 5.

We give the numerical solution for the given problem by proposed method for a =

1,b(t) = 1,c(t) =13,e(t) = t3,k(t) =13, Bp = 0.333,B; = 1.234 with § = 1.

In Table 4.8, we give the results for maximum errors obtained by use of proposed
method and comparison with the results of [65,66]. From this compared results, we
can see that the numerical solution obtained by use of given technique is closer to the

exact solution.
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Table 4.8: Maximum Errors of Example 5 forr = 1 with m = 3,4,5,6,10,20,40.

m  Present Method Method given in [66] Method given in [65]
3 4.44089%¢-16 4.4409¢e-16 -
4 6.66134e-16 1.4633e-13 -
5 4.44089e-16 3.2743e-12 6.88384e-5
6 4.44089e-16 1.0725e-13 -
10 2.22045e-15 - 3.00351e-6
20 3.47278e-13 - 1.67837e-7
40 1.46549e-13 - 1.02241e-8

Fig. 4.14 presents the graphical representation for behaviour of numerical and exact
solutions with m = 6. From this representation, we can see that the obtained

approximate solution is in a very good agreement with exact solution.

—=&— Numerical Solution

Exact Solution

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
Figure 4.14: The behaviour of the numerical and exact solutions with m = 6.

4.6.6 Example 6

Now, we consider the below FDE [44]

Y (t)+D"?y(t) —2y(1) = 0, t € (0,R], (4.22)

y(0)=1
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which arises, for example, in the study of generalized Basset force occuring when a
spherical object sinks in a (relatively dense) incompressible viscous fluid; see [28,53].
By use of Laplace Transformation of Caputo derivatives, we get the analytical solution

as following

y(t) = 3%/551/2,1/2(\/;) - 6%/;151/2,1/2(—2\/;) - 2\;5,

where the ML function E; ,(¢) with parameters A, u > 0 is given as

oo tk

Enult) = k;) T(Ak+u)

This ML function and its variations are very significant in fractional calculus and FDEs

[43].

In order to solve given problem by use of given method and compare the results, we

take # € (0,5] and use different values of & and m.

Table 4.9 lists the exact and obtained numerical solutions by use of presented method
and method of [44] for the given problem for m = 5,10,15,20. Comparison of this
results shows that, even for small values of m, the numerical solution obtained by use

of given technique is in a better agreement with exact one.

Table 4.9: The resulting values for Example 6, with R = 5 in some values of .

Proposed Method given Proposed Method given Proposed Method given Proposed Method given

Method in [44] Method in [44] Method in [44] Method in [44]

t Exact m=35 m=35 m=10 m =10 m=15 m=15 m=20 m =20
1 3.42445 3.42415 2.714336 3.425121 3.426525 3.42376044 3.42496 3.424563 3.424807
2 9.69088 9.670891 8.922571 9.692732 9.696794 9.68896761 9.692754 9.691185 9.691706
3 26.6414 26.60757 24.59981 26.64646 26.65929 26.6362145 26.64683 26.64225 26.64381
4 726729 72.53849 65.78029 72.68665 72.72038 72.6587861 72.68787 72.6752 72.67936
5 19777 197.5757 180.1481 197.8077 197.8994 197.731934 197.8112 197.7766 197.7879
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In Fig. 4.15.(a)-Fig. 4.17.(a), we present the graphical representation of comparison
between exact solution and the numerical solutions obtained by using given method
and the method of [44] with taking m = 5,10,20 respectively. Also in Fig. 4.15.(b)-
Fig. 4.17.(b) we show the behaviour of absolute errors obtained by given method and

the method of [44] in the interval [0, 1] with m = 5,10, 20.
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Figure 4.15: (a) The comparison of analytical solution and approximate solutions
obtained by the given technique and the method of [44] with m = 5. (b) The
behaviour of the absolute errors between the exact solution and numerical solutions
obtained by our method and the method given in [44] with m = 5.
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Figure 4.16: (a) The comparison of analytical solution and approximate solutions
obtained by the given technique and the method of [44] with m = 10. (b) The
behaviour of the absolute errors between the exact solution and numerical solutions
obtained by our method and the method given in [44] with m = 10.
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Figure 4.17: (a) The comparison of analytical solution and approximate solutions
obtained by the given technique and the method of [44] with m = 20. (b) The
behaviour of the absolute errors between the exact solution and numerical solutions
obtained by our method and the method given in [44] with m = 20.

From these graphical results represented in Fig. 15-Fig. 17, we can conclude that

the absolute error obtained by our method is remaining smaller when compared the

absolute error of method given in Ref. [44].
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4.6.7 Example 7
In this example, we consider a fractional linear differential equation involving two
fractional derivative operator with non-homogeneous initial condition [70]

3 1
Dyiy(t) +5D6,3(1) = —33(t), 1 € (0,K], R>0 (4.23)

y(0) =1
The analytical solution is given by
¥(t) = 2Eq(—1%/2) — Eo(—t%)
Here, Ey(t) denotes the ML function with one parameter.

We solve this problem for oo = 0.5 and R = 1,10. The approximate results obtained
by using presented technique with 8 = 1/2, R =1 and step size m = 2,3,5,15,25 are
presented in Table 4.10. Table 4.11 shows the relative error (%) results in percentage
values. In Figure 4.18, we show the graphical comparison of numerical and exact
solutions for ¢ € (0,10]. The graphical representation of obtained absolute errors for
m =2,5/15,25 and t € (0, 1] are presented in Figures 4.19-4.22 respectively. Also
in Figures 4.23-4.26, we give graphical comparison of numerical solution and exact

solution for m = 2,5,15,25 and ¢ € (0, 1] respectively.
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Table 4.10: Absolute Errors of Example 7 for R =1 with m = 2,3,5,15,25.

t m=2 m=23 m=>5 m=15 m=25
0 0 0 0 0 0
0.1 0.0089091 0.0017007 0.0000187 9.396e-12 3.973e-12
0.2 0.0048821 0.0002407 0.0000193 4.884e-12 2.138e-12
0.3 0.0014756 0.0004188 0.0000142 3.294e-12 1.439e-12
0.4 0.0009667 0.0005774 0.0000072 2.452e-12 1.068e-12
0.5 0.0024974 0.0004673 0.0000048 1.927e-12 8.41e-13
0.6 0.0032202 0.0002495 0.000005 1.573e-12 6.84e-13
0.7 0.0032345 0.0000381 0.0000048 1.315e-12 5.72e-13
0.8 0.0026266 0.0000842 0.0000032 1.121e-12 4.87e-13
0.9 0.0014694 0.000056 0.0000013 9.71e-13 4.22e-13
1.0 0.0001758 0.0001694 0.0000031 8.51e-13 3.67e-13

Figure 4.18: The behaviour of the numerical solution and exact solution for Example

11r
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0.4 .
0 1

7 with R = 10.

49



Table 4.11: Relative Errors (%) of Example 7 for R =1 withm = 2,3,5,15,25.

t m=2 m=3 m=5 m=15 m=25
0 0 0 0 0 0
0.1 0.92396 0.17638 0.00194 9.74494e-10 4.12036e-10
0.2 0.52105 0.02569 0.00206 5.21303e-10 2.28214e-10
0.3 0.16147 0.04583 0.00156 3.60427e-10 1.57459e-10
0.4 0.10818 0.06462 0.00081 2.74378e-10 1.19539e-10
0.5 0.28532 0.05338 0.00055 2.20175e-10 9.5977e-11
0.6 0.375 0.02905 0.00058 1.83136e-10 7.9693e-11
0.7 0.38348 0.00452 0.00057 1.55872e-10 6.7761e-11
0.8 0.31672 0.01015 0.00038 1.35142e-10 5.8715e-11
0.9 0.18005 0.00686 0.00016 1.18905e-10 5.1665e-11
1.0 0.02187 0.02107 0.00038 1.05871e-10 4.5663e-11
%10
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Figure 4.19: Graphical results of absolute errors for Example 7 with m = 2.
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Figure 4.20: Graphical results of absolute errors for Example 7 with m = 5.
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Figure 4.21: Graphical results of absolute errors for Example 7 with m = 15.
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Figure 4.22: Graphical results of absolute errors for Example 7 with m = 25.
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Figure 4.23: The behaviour of numerical solution and exact solution for Example 7
with m = 2.
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Figure 4.24: The behaviour of numerical solution and exact solution for Example 7
with m = 5.
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Figure 4.25: The behaviour of numerical solution and exact solution for Example 7
with m = 15.
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Figure 4.26: The behaviour of numerical solution and exact solution for Example 7

with m = 25.
4.6.8 Example 8
Consider the equation [34]
3 24
D(xy(t) —l—y(l) — t4 _ —t3 _ z‘370c t4foc

fé—a) TG-a

with

The exact solution is given by

We take oo = 0.5 and applying presented method to this problem with a choose of

0=1/2andm=11.
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In Table 4.12, the results for absolute errors obtained by using given technique and the
method of [34] are presented. From this table, if we compare the given error values,
we can conclude that the presented method gives better results for solving the given
problem for the same step-size. In Figure 4.27, we give the graphical representation
for the behaviour of numerical and exact solutions for the given problem with taking
m = 10. From this figure, we can see that the numerical solutions and exact solutions

are in a very good agreement.

Table 4.12: Results for absolute errors of Example 8 for R = 1 with m = 10.
t Present Method m = 10 Method in [34] with m = 10

0 0 0
0.1 4.15e-14 4.78e-14
0.2 2.1e-14 9.78e-14
0.3 1.46e-14 1.19e-13
0.4 1.11e-14 1.26e-13
0.5 8.9e-15 1.46e-13
0.6 7.6e-15 1.68e-13
0.7 6.3e-15 1.66e-13
0.8 5.4e-15 1.52e-13
0.9 5.2e-15 1.84e-13
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Figure 4.27: The behaviour of numerical and exact solutions for Example 8 with
m = 10.
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4.6.9 Example 9
Now, we consider the FDE with two fractional derivative operator as given in following
[7]

D'"3y(t) +0.5D%3y(t) +y(t) = p(t), t € (O,R], R>0

with

¥(0) =1,y'(0) =2.

Let p(r) = 2.1782¢'/5 +1.1284¢'/2 4-0.75225¢3/% 4 (1 4 1)%. The exact solution is

given by y(t) = (1+1)%.

In order to solve this problem by presented technique, we choose & = 1, m = 2 and

R = 10, 20.

In Figures 4.28 and 4.29, the graphical representation of absolute errors obtained by
use of presented method for r € (0,10] and ¢ € (0,20] are given respectively. From
these graphs, we can conclude that the given technique gives very good results even

for a small step-size m = 2.
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Figure 4.28: Absolute error for Example 9 in the interval 7 € (0, 10].
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Figure 4.29: Absolute error for Example 9 in the interval ¢ € (0,20].

Figures 4.30 and 4.31 shows the graphical representation for the behaviour of exact
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solution and approximate solution obtained by use of given technique for given
problem in the intervals ¢ € (0, 10] and ¢ € (0,20] respectively. These graphical results

shows that the approximate solution is remain stable for different values of R and in a

very good agreement with exact solution.
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Figure 4.30: The behaviour of exact and approximate solutions for ¢ € (0, 10].
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Figure 4.31: The behaviour of exact and approximate solutions for 7 € (0,20)]

59



Chapter 5

CONCLUSION

During the past decades, multi-term FDEs has found many crucial application in many
branches of applied science and engineering. Thus, their solutions becomes more and
more important. In this study, we have focused on approximating the solution of such

a equations.

In this thesis, an operational matrix based on the fractional Taylor vector is used to
solve the multi-term FDEs numerically by reducing them to a set of linear algebraic
equations, which simplifies the problem. From comparison of the obtained results with
exact solutions and also with results of other techniques in the literature, we conclude
that the given method provides the solution with high accuracy. The findings also
show that, even for the small number of steps, we can get satisfactory results by using

presented method. All computational results are obtained by using MATLAB.

In presented method, constructing the operational matrix without any approximation
except the unknown function is an important benefit of using Taylor polynomials and
this is a crucial reason for better results. Also, fractional derivative of Taylor
polynomials can be evaluated easily and the use of these polynomials also provides

ease to approximate the functions.

It is important to highlight that the MATLAB program that used to calculate the
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computational problems, was particularly designed for given problem. However, the

general algorithm may be used for any problem of similar structure.

Concerning the difficulty of solving FDEs analytically, the presented method can have
important contributions to the field of numerical techniques by having very efficient

results and applicability even for a very less step size.
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Pseudo Code for the Numerical Algorithm
The pseudo code given below allows us to use proposed method in MATLAB to get a

numerical solution of a given problem. [52]

Algorithm 2: Fractional Taylor Method
[A,b] = fractionalTaylor(al pha, beta, Uk, func, t0, R, y0, m, delta)

% Input variables

% al pha is the highest order of fractional derivative of given equation

% beta is the order of fractional derivatives other than alpha. beta must be a
vector with descending ordered values

% Uk is the vector of coefficients

% func is defining the right hand side of given problem

% t0 and R denotes the left and right endpoints

% 0 is the initial conditions

% m denotes the number of steps

% delta is a real number greater than zero. We usually take delta =1 or
delta =fractional part of alpha

% Output variables

% A is an (m+ 1) x (m+ 1) matrix

% b is an (m+ 1) x 1 matrix

% using fractionalTaylor.m, where command fractionalTaylor.m is defined
by the Equation (4.10), gives us the linear system AC = B which is (m+ 1)

% algebraic equations with unknown coefficients CT

% Next step is to use matlab function linsolve(A,b) to solve obtained
algebraic equation for unknown coefficient vector CT with dimension (m+1).
C = linsolve(A,b)

% Output variables

% C is an (m+ 1) x 1 matrix which is the solution of linear system AC = B
% Next step is substituting obtained coefficients to approxSoln() as input,
where the command approxSoln() defined by Equation (4.7), we get the
approximate solution of given problem

[s,y] = approxSoln(C)

% Input variables
% C is the vector of coefficients obtained in previous step.

% Output variables
% s is the nodes on [¢0,R] in which the approximate solution calculated
% y is the numerical solution evaluated in the points of s.
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