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ABSTRACT

This thesis relies on various fractional differential equations. Based on the classical
fixed point theorem summarized by what known as the Banach contraction mapping
theorem, nonlinear alternative of Leray-Schauder type and Krasnoselskii’s fixed point
theorem, a three different nonlinear fractional differential equations are considered.

In chapter four we study the existence and uniqueness for the solution of the nonlinear
sequential fractional differential equation involving Caputo fractional derivative and
associated with nonlocal integral boundary conditions. In chapter five with a little
modifications on the same problem mentioned in the previous chapter lead us to define
a new function space with different norm, the boundary condition for this problem can
be considered as a generalization of the boundary conditions associated with the
problem in chapter four. For these two chapters we illustrate our results by examples

given at the end of each one.

Whereas, in chapter six which can be considered as two parts, we investigate the
existence and uniqueness for the solution of the nonlinear fractional differential
equations involving Hadamard and Caputo-Hadamard fractional derivative associated
with three points integral boundary conditions, for the applicability of our results we

give some examples at the end of this chapter as well.

Keywords: fractional differential equation, sequential, Caputo, Hadamard, nonlocal

integral boundary conditions



Oz

Bu tez, ¢esitli kesirli diferansiyel denklemlere dayanmaktadir. Banach sabit nokta
teoremi, Leray-Schuader sabitnokta teoreminin dogrusal olmayan alternatifi ve
Krasnoselskii sabit nokta teoremleri kullanilarak, {i¢ farkli dogrusal olmayan kesirli

diferansiyel denklemler dikkate alinmistir.

Dérdiincii boliimde, dogrusal olmayan sirali kesirli diferansiyel denklemin ¢éziimii
icin Caputo kesirli tlirevi iceren ve yerel olmayan integral sinir kosullariyla iligkili
varlig1 ve tekligi inceleyecegiz. Besinci boliimde ise, dnceki bdliimde bahsedilen
problem iizerinde yapilan bazi degisiklikler, farklt norma sahip yeni bir fonksiyon
uzayl tanimlamamiza yol agmis, ve bu bolimdeki problemle iligkili sinir kosullari
dordiincii boliimde verilen probleme ait sinir kosullarinin genellesmesi olarak
distinilmistiir. Bu iki bolimde elde edilen sonuclar her bolimin sonunda verilen

orneklerle desteklenmistir.

Ayrica, iki kisma ayrilan altinct bolimde, Hadamard ve Caputo-Hadamard kesirli
tiirevlerini igeren ve li¢ nokta integral sinir kosullar1 verilen dogrusal olmayan kesirli
diferansiyel denklemlerin ¢éziimiiniin varligi ve tekligi arastirilmistir. Bu boliimiin

sonunda elde edilen sonuclarin uygulamasi olarak da bazi 6rnekler verilmistir.

Anahtar kelimeler: kesirli diferansiyel denklemler, Sirali-Caputo- Hadamard kesirli

tiirevleri, yerel olmayan integral sinir kosullari
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Chapter 1

INTRODUCTION

The calculus of integrals and derivatives of any arbitrary real or complex order known
as what called fractional calculus, this subject has gained more importance for the
duration of the past three decades because of its widely used applications in science
fields, such as physics, biology, control theory,... etc. The idea of fractional calculus
is generally restricted from a question raised up in 1695 by L'Hopital to Wilhelm

Leibniz who proposed the nth derivative notation

d"y

,n=012,...,
dx"

L'Hopital asked what ifn:1/2?.[1]. “Fractional derivatives were consequently

mentioned in some framework, by Euler (1730), Lagrange(1772), Laplace(1812),
Lacroix(1819), Fourier(1822), Liouville(1832), Riemann(1847), Greer(1859),
Holmgren (1865), Griinwald (1867), Letnikov (1868), Sonin (1869), Laurent(1884),

Nekrassov (1888), Krug(1890), and Weyl(1917)”.

The topic of this thesis deals with the integration 1“ and differentiation D“ of random
order DE’s. In some fractional integro-DE’s a functions of more than one variable is
concerned. In this work we focus on functions with one real variable. With the aim of
make the thesis suitable for the readers we start the discussion from general properties

and statements of fractional calculus and pass from general cases to special ones. In



addition, some areas of current applications of fractional calculus involving the
theories of FDE’s are Probability and Statistics, Control Theory of Dynamical

Systems, Optics and Signal Processing, Chemical Physics, and so on.

Recently in the theory of FDE’s many new results have been obtained. The main
purpose of this thesis is to study the existence and uniqueness for the solutions of the
nonlinear FDE’s with BC’s. The theory of FDE’s involving different kinds of BC’s has
been a field of interest in pure and applied mathematics sciences. In addition to the
classical two-point BC’s, great attention is paid to non-local multipoint and integral
BC’s. In this work we focus our study on boundary conditions for ordinary FDE's. This
thesis contains a total of seven chapters. Chapter 2 (Preliminaries and Definitions)
offers some basic properties and definitions from Mathematical Analysis such as
special functions, functional spaces, several fractional operators. These concepts are
introduced to prepare the reader for the understanding of the applications which are

established in the later chapters done in this work.

Chapter 3 (FDE’s Involving (Caputo/Hadamard) FD’s) provides the recent researches

about the nonlinear FDE and nonlinear SFDE’s involving several fractional operators

suchassuchasg | 0 ul ") and fractional Derivatives such as RL DY, c DY, H DY and

cH DY . With several types of BC’s.

Chapter 4 (On SFDE’s with nonlocal integral BC’s) motivated by recent researches
done on the SFDE’s. This chapter provides a new type of SFDE’s with nonlocal
integral BC’s, where Nonlocal conditions are used to describe certain features of

physical, chemical or other processes occurring in the internal positions of the given



region, while integral BC’s provide a plausible and practical approach to modeling the
problems of blood flow. For more details, check, [1], [2]. The recent research onFDE’s
can be found in [3]-[17]. SFDE’s have also taken a notable attention, for illustration see
[5]-[10]. In this chapter based on the classical FPT, the existence and uniqueness for
the SFDE’s given there has been discussed, provided with some examples that
illustrate the obtained results. To the best of our awareness, studying of SFDE’s with

nonlocal integral BC’s has yet to be initiated.

Chapter 5 (Nonlinear SFDE’s Involving Caputo fractional derivative with Nonlocal
BC’s) motivated by current researches done by authors who develop the theory of
FDE’s and its applications by generalizing the familiar fractional operators such as RL
and Caputo fractional operators. For more specification, reader can refer to [1], [2],

and [18] and references mentioned therein.

FDE’s with different types of BC’s has been more attractive for the researchers
because of their applications in applied sciences, specially what known nonlocal
multipoint and integral BC’s, for more illustration, generally, the nonlocal multipoint
conditions describe certain structures of physical or other processes happening in the
interior locations of the given region. While integral BC’s help to forming the
problems of blood flow. For more clarification, reader can refer to [1], [2]. For recent
work done on FDE’s we suggest the reader to check the articles [19]-[37] and the
references cited therein. SFDE’s also received extensive attention, see [4]-[10]. In this
chapter we study the classical FPT for the SFDE’s with nonlocal BC’s. And we finalize
the chapter with examples that illustrate the obtained results. To the best of our
awareness, studying the SFDE’s with four-point nonlocal integral BC’s has yet to be

initiated.



Chapter 6 (Nonlinear FDE’s Involving |, Di) and Di) with 3-Point Integral BC’s)

provides a study for FDE’s which involve both of | Di) and ., Di;)with 3-Point

Integral BC’s, the existence and uniqueness for solutions of both BVP’s has been
investigated, for the applicability of our results some examples are introduced at the
end of the chapter. To the best of our knowledge, the study of FDE’s with 3-point
Integral BC’s has yet to be initiated. It is notable that fractional operators are more
proper in describing some phenomena in applied sciences and engineering, for instance
R. Almeida et al [58] investigate how the best value of the order of fractional derivative
can be found to minimize the error in some statistical models, they found out that for
some statistical models fractional derivative gives minimum error than using the
ordinal derivatives. Finally the conclusion and future work will be discussed in chapter

seven.

Also in the last decades the researchers put more efforts in studying FDE’s involving
RL and Capoto fractional derivative more than FDE’s that contain Hadamard’s
fractional derivative. More details are given in [45-50], moreover FDE’s involving
Hadamard’s fractional derivative has less attention than the one contains either R-L
fractional derivative or Capoto fractional derivative. The recent work done on FDE’s

can be found in [38-44, 51-58].



Chapter 2

PRELIMINARIES AND DEFINITIONS

In this chapter we mention the most important mathematical tools including

definitions, properties, propositions, lemmas and theorems related to the most familiar
fractional integrals such as g, Ii) H Ii) and the fractional Derivatives such as Di)
D!, ,D"and ., D!

2.1 Special Functions

Definition 2.1.1. T'(v)= je“t”‘ldt,Vu >0, is called a Gamma Function.

0

Definition 2.1.2.

* 1 ‘ - -
y (v,u) = jx“’le’xdx, iscalled the Incomplete Gamma function.
VI (V)3

Property 2.1.3.

(i) r(1)=1.

(ii) F(U+1)=UF(U),U>O. If r e N then F(U+1)=U!

Definition 2.1.4. B(y,z)=[0**(1-0)"" dv,Vy,z >0, is called a Beta Function.

O e



Definition 2.1.5.

y z =|v’ l dv,0< k<1, is called Incomplete Betta Function.

O ey X

Property 2.1.6. Vy,z >0,

(i) B(v.2)=B(z)

i r(yr()
(i) BU2) =y
2.2 Function Spaces

Given the Banach space C[a,b] of all continuous functions from[a,b] — R with

the norm |g|=sup|g(t),¥ te[a,b].
a<t<b

Vo =0,assume g, (t)=(t—a)’ g(t), define the space C,[a,b] which is the

space that contains g such thatg, € C [a, b], where g is any continuous function.
space C,[a,b]endowed with the norm ||g|| = sup (t—a)" |g (t)| is a Banach space
te[a,b]

as well.

Define L' ([a, b] , R) the space of measurable functions, which is also a Banach space,

b
with the norm g = ﬂg (t)dt, g:[a,b] >R is Lebesgue integrable function.

Definition 2.2.1. Consider the IntervalJ c R. A function g:J — R is absolutely

continuous on Jif Ve>0, 3 5(e)>0 such that for all finite set of pairwise disjoint
subintervals (u,,v,) < J satisfying >"(v, —u,) <& then > |g (v, )-g(u, )[<e.

The collection of all absolutely continuous functions on J is denoted by AC (J )



Remark 2.2.2. If J =[a,b], then the following are equivalent

(i) g € AC[a,b].
(ii) g has a derivative g’ almost everywhere, the derivative is Lebesegue integrable and

9(r)-9(a)=[9'(t)dt, vz e[ab]

(i) If there exist a Lebesegue integrable function h on [a,b] such that

T

g(r)—g(a)zjh(t)dt,vf e[a,b].

a

Properties 2.2.3.
(i)Ifh ,h, € AC[a,b] then h + h,,hh, e AC[a,b].
UDHQGAC@b}QiOHﬂ1%eAChb]

(i) If h_is Lipschitz continuous function then h, is absolutely continuous.

Definition 2.2.4.
Given the functiong:J — R theng e AC”(J),v=12,... if g e AC(J)

Particularly, AC'(J) = AC(J).

Definition 2.2.5. Let(S ,d ) be a metric space. G:S — S is said to be Lipschitzian
if there is I, > 0 with d (G(s1 ),G(s2 ))S l.d (s1 S, ),VSl ,S, €S,S, #5S,.

According to the above definition, if G is Lipschitzian then it is continuous, when

when | <1 then is said to be contraction mapping.

Theorem 2.2.6. (Banach’s Contraction mapping principle).



Let (S, d) be a complete metric space, if G: S — S is a contraction mapping then
()G has a unique fixed point s € S, that is G(s)=s.
(i) Vs, €S, we have limG"(s,) = s, with

n
IG

d(G“(SO),s)sl_lG d($5,G"(5,))-

Theorem 2.2.7. Given a complete metric space (S,d), G:S — S satisfying

d (G(sl),G(s2 ))Sa)(d (sl,s2 )),VSl,s2 €S, here ®:[0,00] —»[0,] is any monotonic
increasing function with

lim" (t)=0, for afixed t>0, the G has a unique fixed point with limG" (s,)=s,VseS.

n—oo X—0

Theorem 2.2.8. (Nonlinear alternative of Leray-Schauder type)

Given the open subset V of a Banach space S,0eV , andlet G:V — S

be a contraction such that G (\7) is bounded, then either

(i)G has afixed pointin V, or
(ii))3u(0,1) and ve oV such that v = xG(v) holds.

Theorem 2.2.9. (Arzela-Ascoli Theorem)

G = C(S,R) is compact iff it is closed, bounded and equicontinuous.

Theorem 2.2.10. (Krasnoselskii’s Theorem)

Given the Banach space (E||||) closed convex B — E, A is open, where A c B,

and p e A, assume that G : A— B can be written as G =G, +G,,

In addition G(K) IS bounded set in B satisfying



(i)G,: A— B is compact

(ii) G, : A— B is a contraction, 3 a continuous nondecreasing function
@:[0,00] > [0,0] with w(a,) > a,,a, >0,such that

G, (a,)-G,(a,)| < o(|a,-a,|).forany a,,a, € A

then either

(i)3a, € A such that G (a, ) =ay,

or

(i) 3acdAand 1€(0,1) witha= AG(a)+(1-1)p.

2.3 RL-Fractional Integrals and RL-Fractional Derivatives.

Definition2.3.1. Letg:[a,b] > R, then

(12.9)(7): The left sided RL-Fractional integral :FLQ)J.(T—S)“ g(s)ds, a<z,Re(9)>0,
1 b
(w179)(z): The right sided RL-Fractional integral = o) ——[(s- s)ds,z <b,Re(8)>0.

Remark 2.3.2. If & =n,n € N, then RL-fractional integrals are equivalent to the well-

known n-th integrals of the form

(RLI;g)(r):ﬂ.. !g dslzi%g(s)ds.
(Ru;g)(r):jf. jg(sn)dsn dslzi ((tn_—rl))n' g(s)ds

whereas, the RL-fractional derivatives are defined by :

(RLDgg)( )= (drjni%);)g(s)ds,n:[Re(a)]ﬂ,ee(C,(Re(H)zo),

(D% 9)(c ):G_i]nj%g(s)ds,n:[Re(e)]+1,ee<c,(Re(e)zo).



where [-] is the greatest integer function.

when d=n,ne N u{O} then by definition one can easly show the following results
((w.D'9)(r)=(D; g)(z) =0 (7).
(i1)(. D% 9)(r) = 0" (7).

(iii) (. DY 0)(r) = (1) g (r).n e N,

Now, we consider some special case

Casel. 0<Re(0)<1,

(RLD:+9)(T)=&£”n—_l9)g(S)dS :

(RLDgg)(T):_ij(SL

10



R
q -1 — F(r)(b_ X)giqil >
(.08 (6-0)"")0) = =gy Re(@) 20

Remark 2.3.4. It is remarkable from the above properties that for a Particular case

whend=1and Re(q)=>0,

g _(X_a)_q
(RLDa+1)(X)— T '

D1 .
(RL b- )( ) F(l—q)
thatis, Dc#0, VceR..

also, for j=1,2,...,n=[ Re(q) |+1, then

(D (t-2)"™")(x)=( . DS (b-1)"")(x)=0.

Properties 2.3.5. If Re(q)>0and n=[Re(q)]+1

(i) The equality(,, D.g)(z) =0, is valid iff g(z Zc, 7-a)’

(ii)(. DLg)(z)=0iff g(z Zd b—7)"

where, ¢,,d, e R, 1 =12,...,n

Lemma 2.3.6. If Re(q)>0and Re(r)>0, then the following

|q+(RL|;+g)(X):( qu'g)(x),
a1 (rty 9) (%)= (w17 9)(%).

hold at almost every pointin[a,b],vg e L [a,b], Whenq+r>1.

11



It is convenient to mention here that the above lemma holds true in case when
Hadamard fractional integrals are also applied. Next, some properties for Caputo

fractional derivatives will be discussed.

2.4. Caputo Fractional Derivative

Itisturnout that 5 D" has a weak points in some real models, indeed, a new definition

of fractional derivatives has to be introduced. The Caputo fractional derivative of order
@ proposed by an Italian mathematician is an alternative fractional derivative to the

RL- fractional derivative which given by

v (U_u)n—a-l h(n) (u)
(ch+9)(U)=£ r(n-0) du .n-1<@<neN,

g(”)(u) , 0N,

Caputo 1967, it is important to note that the Caputo derivative is more restrictive than

the RL-fractional derivative as it requires the nth derivative of the function g . Which
leads to assume that it is exist whenever the . D" is used, and fortunately in the most

applications the used functions have the nth derivative.

Consider the set of functionsg(t), continuous and integrable in any finite interval

(0,y),yeR.For the D" it is required that the nth derivative of the function must

integrable, Next in this study all functions are already assumed to satisfy this condition.

The following results are some main properties of the . DV

n

(i)cDLg(7) = 127°D"g(7), where D" is the standard differentiation operator D" = —

Nt

T

12



(if)lim ¢ D g(7) = 9" (z),
lim .D%g(r)=9""(z)-g"(0).

g—n-1

(iii) . D (ag(7)+Bh(r))=a DL g(r)+ B Dih(7), @, B R,

(iv) . D2 D'g ()= . D "9 (<) = D" ‘D! g 7)

) 0% (30(0) =3[ 06" 1) (oo o).

1=0 1=0
(Vi) DIb=0, b is a constant.

re+1 ,,
(vii)cD;tre: F(¢9+1—q)T
0, n-1<g<n, #<n-1 #eN.

, h=1<g<n, d>n-1 AR,

2.5. Hadamard and Caputo-Hadamard Fractional Operators

This section deals with some properties of Hadamard and Caputo-Hadamard
fractional operators. One of the most difference between these operators and the others

is the kernel than contains a logarithmic function.

Definition 2.5.1. Given the continuous function g, the fractional integral of order &

proposed by Hadamard is

" qu(z')=ﬁ-:[(ln%f4@dr, q>0,

provided that the integral exist.

Definition 2.5.2. For a continuous functiong :[a,oo) — R, the Hadamard fractional

derivative of order @ >0 is defined as

13



D7) =(r;—rjn ir(nl_q)(m%jn_q_l@dr,

qge(n-1n), n=[q]+1, 5:r(ij,[q] is the integer part of g e R

Definition 2.5.3. Forg:[a,oo)—HR, where gis at least a differentiable function
n—times, the Caputo Hadamard fractional derivative (“*D®) of order q is

D% (t)= F(nl—q) i[lnan_q_l 5" @ds,

Lemma 2.5.4. Let
ueC}([a,T |,R),where C}[a,T ]={u:[a,T | >R:6"ueC[a,T ||

then

Definition 2.5.5. [59], The Caputo fractional derivative is said to be of nr sequential

order if the relation
(¢D™)u(t)=cD" (D" u(t)

holds true forn=2,3,...

14



Chapter 3

FDE’s INVOLVING (CAPUTO/HADAMARD)

FRACTIONAL DERIVATIVE

In this chapter we mention the recent research about the FDE’s that include either
Caputo or Hadamard fractional derivatives. We focus on the research that include a
sequential type of FDE’s because recently the researchers give more efforts to
investigate this type of FDE’s and the existence for solution for this types of FDE’s

have been studied.

For instance, in [60], the authors investigate a 3-point SFDE:

{ch(D K)r(z)=h(zr(@), 1<y<2.p<z<o, (31)
r r

+
(p)=r(n)=r(c)=0 ,—0< p<N<O<m,
where p,o,n,k € R,k >0. For the SFDE (1) a new existence and uniqueness results

are obtained on arbitrary interval [p,c], p,o € R.

In [61], the authors discussed the nonlinear sequential Caputo fractional Integro-DE’s

with nonlocal multi-point BC’s. Of the form:
cDH(D+K)y(t)=h(t,y(t), cDOY(t).e 1°Y()) 2<<30<p,g<1,0<t<Lk >0,

y(0)=0, y'(0)=0, _Zrlciy(éi)wi(nr_(z))“V(S)d51521'0<’7<§1<"‘<§r <L

(3.2)

where h:[0,1]xR* >R ,u,c eR,i=12,...,r.

15



For SFDE (3.2) the existence uniqueness results were obtained.

Arfal et al. [62], introduced the human immunodeficiency virus (HIV) model in
fractional order scene, accordingly, motivated by this model, Jigiang et al. [63]

considered the system of FDE’s

(D+/”t) (T) f(r,p(r),q(r)),0<r<1,

71 (D+p)a(r)=g(t.p(r).a(r)) .0<z <L, (3.3)
p(O) =p'(0)=0,  p@)=4&a(s)
q(0)=a'(0)=0,  a()=¢&,p().

where A, 2 are parameters, 1< «, <2, 0<¢,(<1,¢,¢ €R, given the continuity of the
functions f,g:[0,1]xRxR — R. Leray-Schauder’s alternative has been applied to

investigate the existence for the solutions of the above system. Where the uniqueness

was obtained via Banach’s contraction principle.

In [64], the existence for solutions of IVP () of SFDE has been studied Based on some

fundamental theorems of FPT, where the SFDE there in is given by:

(cD?+6,,D" +6,.D" Z)q(r) 9(z.u(r)),qe(2.3),0<a<r<T, o0
™ (a)=c,, m=0,12.
where 6,6, are parameters, ¢ :[a,T]xR —->R.
In [65], the following SFDE with nonlocal RL fractional BC’s
(cD“+k.D“")a(z)=9(r.a(r)) @ (23,07 <Lk >0,
4(0)=q'(0)=0,  q(c)= F(Cp)I(n—x)p_lq(X)dx, p>0. (35)

where 0<n<g<1 for the SFDE (3.5) based on classical FPT the existence

uniqueness results were obtained.

16



In [66], A new set of BC’s were introduced for the following SFDE, based on some
fundamental theorems of FPT, existence and uniqueness property for the following

SFDE has been investigated.
D H(D+k)u(r)=f(7,u(r)) . 2<a<30<z<T,k>0,
cu(0)+> au(n)+du(T)=¢,

(3.6)
bu'(7,)+d,u'(T)=¢,,

cu"(7)+du"(T) =g,

where 0<7, <T, c,c,,C;,d,,d,,d;,6,5,,6 €R,i=12,....m

In [67], the existence and uniqueness for solutions of SFDE with nonlocal BC’s
involving lower-order fractional derivatives. The SFDE is given as follows:

(CD“+k D‘H)u( )=f(r,u(r)) ,2<a<30<7<T,k>0,au(y)+bu(T)=c,

a2 cDa—l ( )+b CDal (T)

acha—Z ( )+b CDa 2u( )

(3.7)

where a;,b,c, eR, 1=123 0<n<T.
For the SFDE (3.7) the uniqueness results were obtained based on theorem (2.2.8),
while, the existence for the solutions obtained by the theorems (2.2.10) and (2.2.12),

and what so called LeraySchauder degree theory.

Next, some recent work about Hadamard type FDE’s will be mentioned and as
introduced before, the most difference between Caputo and Hadamrd fractional
derivatives is that in the later one the kernel function in Hadamard is a logarithmic

function with arbitrary exponent.
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n [68], a new set of BC’s were introduced. The authors applied theorems (2.2.8),
(2.2.10) and (2.2.12), and what so called LeraySchauder degree theory on The FDE

which given as:

HDPX(T)=g(T,XT T)),Te[le pe 12]
HDry(T)=h(Z' x(7) r)) (S re(12] (3.8)
x(1)=0 e =H|”X(51),u>05e(1€)
y(1)=0, (e) "14y(8,),u>0,6,e(Le)

Ph. Thiramanus, S. K. Ntouyasand J. Tariboon [69] studied the Hadamard type of

FDE. Given as the following:

HDpX(T)+Q(T)g(X(T))=O, TE(].,OO), pe(l,Z]

m (3.9)
x(1)=0, HDp‘lx(oo):éeiHlﬂ'x(n)

where . >0, i=12,...,m

The existence of nonnegative multiple solutions for this type of FDE’s on an
unbounded domain were investigated. Examples are also presented to illustrate the

obtained results.

In [70] based on the classical FPT, the following FDE was investigated

HDpr(r):g(T,r(T)), l<7r<e, pe(lZ]
m (3.10)

r(1)=0, 2.0.1° an( —u15r(&)).

whered,n, €eR,i=12,....m, k=12,,...,n. Also

< py <<y, §<&E <<, gi[Le]xR>R.

18



In chapter 6, motivated by the mentioned researches about the Hadamard fractional
operators which mentioned above and the references therein, and based on the classical
FPT. A new nonlinear FDE with 3-point integral BC’s were investigated. Two

examples are introduced to make our results more obvious.
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Chapter 4

NONLINEAR SFDE’s WITH NONLOCAL BC’s

In this chapter we investigate the nonlinear SFDE subject to a new set of non- separated

non- local integral BC’s given as
DPH(D+A)u(t)=f(tut)), pe(L2], te[0,T],

g

au(n)+bu(T)= dlfu(s)ds, (4.1)

a,.D""u(n)+b, . D*u(T)= dzj'u (s)ds,
z

where,7€(0,T), 0<&<¢<T, >0, a,a,,b,b, d,d,eR

Applying the classical FPT on the above FDE. Results are illustrated by examples.

The following notations has been used for the rest of this chapter:

0, =ae" +he ™ —%(1— e¥), 6,=a+b-d¢,

n T
I(n—s)l_pe’“ds +b IT s) "eds +d Ie‘“dt
0 0

0, =d, (T —{), A=6,0,,-6,0,, AN=0,

6, —0,e™ 6.—-0.e"
(01('[)= 21 Azz . 0, (t)= 11 Alz '
1 t _a(t-r) p-2 F h —A(t=s) ]
Q (t,s)= e r—s dr, |Q,(t,x)h(x)dx=|e I *~h(s)ds,
l( ) r(p—l);[ ( ) ‘(')- 1( ) _([ RL

20



1
r'(2-p)

Q,(t,r)= (t-s) " Q(s,r)ds

= ——

It is obvious that

|921 - 022| 921 62267['—‘
14 (1) < max , =
(1) [ oW )
,-0u] 100
‘/UZ (t)‘ < maX( 11|A| = ' |A| = ¢2a

and

! T(ﬂ—s)l_pje"(S*X)RLlp’lh(x)dxds— ]7.77 s)l_pj'Ql(s,x)h(x)dxds

0

r'(2-p)
:ﬁ}“ Q1 (s,x) dsj (x)dx:]'Qz(n,x)h(x)dx.

Lemma 4.1. Consider WGC([O,T J ,R),then the solution of the following SFDE

given by
DPH(D+A)u(t)=w(t), pe(12], 0<t<T,
au (1) +bu(T) = Ju(s)ds, (4.2)
azCDp1u(77)+b2CDp1u(T):d2]'u(s)ds,
z

Is equivalent to:
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Proof: consider
DPH(D+A)u(t)=w(t)

apply 1°* to both sides of (4.4)

A 1P DPH(D+A)u(t) =q 17 w(t),
(D+A)u(t)+dy =g 177 w(t),
D(e*u(t))e™ +d, =5 1° w(t),
D(e"u(t))+d,e™ =& 17 w(t)

integrate both sides of (4.5)

e“u(t)—(u(0)+d,)+dye” —Ie“ P w(

22
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S
u(s)=ce ™ +c,+ Je"(H)RL 1““w(zr)dz
0

then

< < < c(s
d, fu(s)ds = d, [c.e**ds+d,c, [ds+d, | [ fe e plW(r)dr} ds
0 0 0 0\o0

cd _ [ foise -
:%(1—(3 l§)+dlco§+d1£[l‘e e 1W(z’)drjd5.

and
d _T[u(s)ds:ﬁ(e‘“—e‘”ﬁd G, (T—&)+d T[ j‘e‘(“) 1 *w(r)dr |ds.
2 /1 2¥0 24 RL

4 0

by the first boundary condition given by

au(n)+bu(T)

n T
—ace ™ +ac,+ aije’i(”’s) 1" *w(s)ds +bce ™ +be, +b I e 1P (s)ds
0 0

s r
- dlj[cle‘” +Cy+ Ie‘””‘s)l Pw(s) dstr
0

_de

- —LL(1-e*)+d, c0§+dj e 1P w(s) dsdr,
0

O ey =

(aaei” +he ‘%(Le”’t)jcl +(a+h -dg)c

e w(s) dsar - aJe 1 tw(s)ds b fo 71 w(s) s,
00 0

The second boundary condition
.
a,.D"u(n)+b, DPu(T)= dzju (s)ds,
¢

implies that
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Pe*ds +

©

~

O e 3
—~
=S

ov.—,—i

(T-s) "e*ds+d je‘”dt]c +d,(T-¢)c,

== (n—s)“’(ml P-lvv(s)—zie*ml ey

0

b, ﬁj(T —s) " ( o plh(s)—ﬂpie“(s‘r)ml plW(r)drjds

0 0

T/t
—dZJ'LJ'e’mS)RL 1P w(s) ds} dt

0

thus
gr T
Hllcl+912c0:d1j Q(r dsdr—aij‘Q1 17,5 )w(s )ds—le'Ql(T,s)w(s)ds,
00 0
n
0,.C, +0,,C, = azjw )ds +b J'w )ds —Aa jQz 17,5 )w(s )ds
0

—/‘Lbz_T[Q2 (T,s)w(s)ds —dZHQl(t,s Jw(s )dsdt.

A simultaneous solution for the above equations for co, ¢1 leads to

7 T T
C, = 02, [w(s)ds +91szfw(s )ds _%IQZ (77,8 )w(s )ds

A 4 O 0
&b, 4 T 6,d, T

— !QZ(T,s)w(s)ds—qul(t,s)w(s)dsdt

0,0, | | 0,,a, | o.b,

S !!Ql(r,s)w(s)dsdm A"J‘ilQl(n,s)w(s)dSJr Abl-!Ql(T,S)W(S)dS'

o =22 [ (ru(syesor- 2% Qlws)w(s)ds—%jq(ns)w(s)ds

9123‘2 f 912b2 T 0122'
- .!w(s)ds——A !W(S) jQz Jw(s)ds
6,,Ab, ? 0,9, [
+T_([Qz(T,S)W(s)ds+T£!Ql(t,S)W(S)det-

substituting co, ¢1 in (4.6) we obtain
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T Ui T
_%ei‘IQl(T,s Jw(s )ds—@e*ﬂjw(s )ds —glz—bze’ﬂj'w(s )ds
A 0 A 0 A 0

% ‘“TIQZ(T,S)W(S)ds

018, | 11 2T O a,4 ¢

+ Aa -([W(S)dSJr !W(S)d —%!Qz( Jw(s )ds

60,7 | 0,d, ¢

-2 !QZ(T S)W(S)dS—TQQl(t,S)W(s)dsdt

00 | | 0,8, | 0,0,

N '([!Ql(r,s)w(s)dsdw Aai'([Ql(n,s)W(s)dsJr Abl_!Ql(T’S)W(S)dS'

Combining similar terms and by the help of notations the desired formula will be

obtained.
By direct computation the converse of our lemma holds true.

Lemma 4.2. The following inequalities

t t

le (t.7) pl(r)dx—le (t.z)p,(7)dr

0 0

tPt
<
ﬂr(p)

(_e_M +1)” P - pz”c ’

t t

IQZ (t.7) pl(r)dr—jQ2 (t,7)p,(7)dz

0 0

< (- +1)lp,- i

hold true on [0,T], p,, p, €C([0,T]).

Proof. Indeed,
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t
< J‘Ql t,7)dz|p, - p,,
0

1] ~A(t-r) p-2
gl e e el

0
1 tr i ~
< Heﬂ“ '(r—2)"" dedr | p, — p,|.
00
1

< _ _1) (_e—m "‘1)” P — pZ”c

T
< (—e A +1)|| P — p2||c .

1 t b AMz-1),. p-1
< t—z) " |e" " rdrdz||p, - p
] I~ .l
t T
< i J(t=e) " e [ ardz |, .
0

“(p-Dr2-p)r(-n)

0

B (—e"lt +1) !
~A(p-1r(2-p)r{i-p) g(t )
t(—e”lt +1) .l[(t 1)

_ 1-p p—1d _
A(p-1)r(2-p)r(-p) Franln el

1-p —
s ” P — p2||c

B t(—e " +1)
~A(p-1r(2-p)r(t-p)

B(p.2-p)[p— P,
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_ t(—e*M+1) F(p)F(Z—p)”p_p”
A(p-Yr(2-p)r(l-p) r(2) L

:tz(—eﬂ +1)||p1— P, ). -

Given a continuous function f :[0,T]— R, the Banach space Q=C ([O,T],R)

endowed with |ul. = sup
0<t<T

u (t)‘ , then the operator F : QQ — Q can be defined as:

—e M +1)

el

rpl

LN

e +1)dr

T tfl

|2|¢2I (p)( “t+1)dt+/1|a2|¢2%(—e“”+1)

T, _
+AWJ¢5ZQQ‘T+1yan@n+mA@T,

oy TP
R =R ﬂTm(eﬂ+w
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Theorem 4.3.Assume the continuity of f : [O,T]XR — R,and assume
(E,)3L; >0 such that ‘f (t,u)—f(t ,uz)‘ <L¢|u —u,|, vt €[0,T], Vu,u, € R. with

RL, <1,then there exist a unique solution of the SFDE (4.1).

Proof: Define

B, ={u eQ,|ul. < r},with r >1ML where M =sup |f(t,0)

0<t<T

First we show that 7B, c B, for this

Vu e B,, Vvt e[O,T]

(Fu)(t)= IQl(t,r) f (r,u(r))dr+a1,ul(t) Q(m7)f (r,u(r))dr

[

+hy (t ):[ (T, z')f( (r))dr—dl,ul(t) Ql(r,r)f(r,u(z'))dz'dr

O Sy
O ey =

d,, (t ‘T”Ql drdt Ady i, (t )]‘Qz(n,r)f(r,u(r))dr
<o 0
— b, 1, ( t)].Q2 dr+a2,u2(t)].f( d1'+b2,u2 ].f

But generally‘ f (t,u(t))‘ s‘f (tu(t))-f (t,O)M f(t,0)
Implies

[Ftut) <Ly ful, + sup |1 (t,0)

<L;r+M,.

This inequality leads to
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P

(Fu)(t)|< o p)(l_em)uf ()u ()|, +alal };(_p)(l—ein)uf (-).u(),
TP AT T oret —ar
R e ORI A e (R E TIO RGN

+|d2||¢zll%<lm<l—e*‘)dtuf (VO +Alaellel @)1 (0. uC)e
#2101 (1o )| 0 O, +aalldr | £ ()u ),
#BllfT [ () uC)

<Rx(L;r+M)<r.

Implying, Fu € B,,Yu € B, thatis 7B, — B,.

Next, F is a contractionhas to be shown, for this let u,u, € Q

t

sup IQl (t ,r)‘f (r,ul(r))— f (r,u2 (T))‘dl'

0<t<T 0

|7u, () - Fu, (t)|<

n

[Q(m.7)|f (z.u (7))~ f (7.0, (7)) d=

0

+lasup ()
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T

+Alb,| sup s, (t) ‘[QZ (T,T)‘f (r,ul(r))— f (T,u2 (z‘))‘dr

0<t<T 0

‘f (r,ul(r))— f (z‘,uz(r))‘dr
‘f (r,ul(r))— f (z‘,u2 (r))‘dr.

+|a2|SUp H (t)

0<t<T

+|b2|SUp Hy (t)

0<t<T

Ot ot 3

Assumption (E1), implies

[Fuy = Fu, | < Ly fluy —u, |,

TP AT 77p_1 —in L AT
B Ry e
1 Tt

¢ p
+|d1|¢1_|. r (1—e‘“)dr+|d2|¢2.[/1r(p)(l—e‘ﬂ)dt
¢

3 A0(p)

] T
+A|b,|(1-e M)”T@+/1|b2|(1—e a ) jfz +|a2|¢277+|b2|¢52Tj,

< LRy =, <~

End up with this, we conclude that ‘F is a contraction, and based on theorem (2.2.7)

the uniqueness property for the solution of the SFDE (4.1) holds true on [0,T].

Theorm 4.4. Given the continuous function f,

and assume(E,) 3 @eC ([O,T],R*)and a non decreasing

function y : R* — R* such that ‘f (t,u)‘ <o(t)z(Ju) v(t.u)€[0,T]xR
(E;) 3W >0 such that

w

]
2(W)|el, R

Then there exist at least one solution of the SFDE (4.1).

Proof. Stepl show that, for this,
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Consider the bounded set B, = {u € Q,|ul; <r}in Q Then by(E, )

‘(fu)(t )‘ = j.Ql(t ,7) f (r,u(r))dr+a,l,ul(t )]lQl(yy,z-) f (T,u(r))dr

0 0

\m

b (00 (T.) £ (20())dr—dya ()] [@u(r0) F (ru(e))dc

n

—d, s (t .T[].Ql drdt Aa,u, (t )J‘Q2 (n.7) f (r,u(r))dr

0

—

— Ab, 1, (1 )J.Q2 (T,z‘)(z‘,u(r))dr +a, 1, (1)

o
O e 3

f (r,u(z'))dz'+b2,u2 (t)l. f (r,u(z'))dr

Take sup, then

0<t<T

<|lw r)x t” —e M)+ L_l g
<lol 11| el L 1o )

rpl

bl e +|d||¢1u (e el [ e
¢

2l (1) A1 e ) <+ T ),
Implies,

| 7ule <[l 2(r)R

Step (2) show that F is equicontiuous

to do we lett,,t, [0, T Jwith t, <t,, then Yu e B, we have

‘(]—"u

l Q1 t, r Q1 t 2')) (r,u(r))dr

t

IQl (t2 , 2') f (r, u (r))dr

4

+
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(1) (1) [[0.07) ()
bl (6) - ) IR ) £ ()
s (4)- s ] @) (o) oo
i 4)- (o) £ )|
e (0) - ][l (.0)  (<0(e)) o
Al ()= ()RR (T ) £ ()

oyl (6) 1 ()] (220 (7))

0

b (8) 2 ()| (20 () o

0
—0, ast >t

Since the above inequality is independent of u, based on theorem (2.2.9)
We conclude thatis completely continuous.

Finally, by showing thatuwhich is the solution for the equation u=6Fu,o € [O,l]is
bounded we complete all conditions of theorem (2.2.10), to do so, and for t [0, T],
suppose that is u a solution, then

()=l (0] 5(Jef 2(r))R <[l 2(Jul. )R-

implies

ol
ol 2(ul. )R
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But by(E,) 3W > 0 such that W = u] .
let Z :{u e Q:|ul. <W}. It is clear that F:Z —Q

is continuous and completely continuous, by the defined Z,Au € 6Z such that

u=6Fu,0< 6 <1, therefore, based on theorem (2.2.10), we deduce that 7 has

U e Z which solves the SFDE.

Theorem 4.5.Given the continuous function f that is satisfying the condition

(E,)and |f (t,u)[<y(t),V(t,u)e[0,T]xR, where,y e C([0,T],R" with osgltjg‘y(t)‘ =yl

Moreover, suppose LR™ <1,then the problem (4.1) has at least one solution.

Proof.

Construct B, = {u e Q,|uf. < r} be a close set, with r > R||y| ., define two operators 7, 7,

on B, as

(BU)(t)=aum(t) [Q(n.7) f(z.u(r))de

0

—

+byy (1) [Qu(T,7) f (r,u(r))dr

Ql(r,r) f (r,u(r ))drdl‘

|
e
RS
—~—~
—
~

—do, (1) | [Q(t7) f (T,U(T ))drdt

N ey O — iy ©
<N Ot O

—Aa,ut, (1) |Q, (17.7) f (r,u(r ))dr

o
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T

by (1) [Qu (T.2) F (2,02 ) dr+ae (t)]z f(r.u(c))de

0

.
+b2y2(t)Jf(T,u(r))df.
0
vv,ueB,, then|Zu+ZFy| <R|y|. <r. Thus Fu+FveB,.

By condition(E, ) and R”,

then one can easy show that | 7u— 7| < LR

u _V"c < ”U _V“c
Implying that 7, is a contraction.

Moreover, the continuity of A holds because of continuity of f

and

Tyl (1-¢)
AT

(p)

|Aul. < , hence  is uniformly bounded.

For showing the compactness of 7. Fixing sup|f (t,u)|= f,, ¥(t,u)€[0,T]xB,
and for

t,t,€[0,T]t, <t,, then

HJ—"lu (t)-FAu(t, )H <
t

ij

(Q(t7)=Q(t7)) f (ru(r))de

1
0

The RHS of the above inequality approaches 0, as t, — t,. It is notable that also the
same side is independent of u that is 7 is relatively compact, theorem (2.2.9) implying
that 7 is compact.Hence, the existence property for the solution of the SFDE (4.1)ho|ds
by theorem (2.2.10).
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Examples.

Given the following SFDE

(CD‘°’/’-'+2(:DJ/2)u(t):\/21 (tS";;(t)+etcostj,Osts4,
t°+49

1)+3u(4)= —_[ (s)ds,

: D”2u(1)+5c D“2u(4)=5[ u(s)ds

4.7)

here

f(t,u(t))=\/tzl+—49(t5izg(t)+e“ cost],

T=441=2 p:g,a1=2,a2:1,b1:3,b2:5,d1:—1,d2:5,

n=1¢=2(=3.

d
6. =ae " +be ——L(1-e*)=0.761,
h=ae e T -2 )
6, =a +b —d<& =6,

T

jT s) " e*ds+d Ie‘“dt—248,

n
_[(77 —s) "eds+ b
0

o

Oy =92(T—§)=
A=06,,0,,—-06,0, =-145.

with

Then

_ 0, — 0, - _5g8
¢1=max[|921 Oy| [0 62 \]:max(m.s 5 24.8-5¢ JzO.l?,

Al A 145 145

, j; 0.036.
A A

16, -0, \ell—ﬂzeﬂq (0.76—6 0.76—6¢
= MmaxX
145 ' 145

9, :max[

Implying
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R <2.083

To apply Theorem (4.3) we need to show that conditions

t sinr—sinr|
f(t,r)-f(t,r,)= 1 2
‘ (tr)—f( 2)‘ m 49 |
si|r—r|,
49" 7
and
LR< 4—19(2.083) <0.043<1.

Therefore, according to theorem (4.3) the uniqueness for the solution of the SFDE

(4.7) holds true.
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Chapter 5

NONLINEAR SFDE’s INVOLVING CAPUTO

FRACTIONAL DERIVATIVE WITH NONLOCAL BC’s

This chapter, based on the FPT develops the existence theory for SFDE’s involving
-D",where r e(l,Z]With nonlocal integral BC’s. Examples are introduced for the

purpose of illustration the applications of our results.

In this chapter the uniqueness and existence for the solutions of the following SFDE

associated with a new set of nonlocal integral BC’s has been investigated.

(D +AcDH)y(t)=g(t,y(t), D y(t)), re(12], 0<t <T,

aiy(y)+b1y(T):cl_[y(s)ds+dl, (5.1)

azcDr‘ly(,u)+bzcDr‘ly(T):czfy(s)ds+d2,

2]

where, 0<u<T, a,b,c,deRi=12 0<r<o<T.

Notations:

T r-1 (1_ em )

Q:Q1+Q21 Q1:Q1+ /”LF(r)

nl(t):(dz_p+dlﬂ+$]e_ﬂ —(ﬁ-i-dl—o-J, 772 (t): (Clpa_i_&]e_ﬁ _E’

Qu Qqv q v Q qv q qu
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e ) R U b e i o
s HE R o230

b e—it(azﬂpj_%1 ng(t)ze—it[bzﬁ]_bz_ﬂ1

()22 )-e (2

v

where

t

i U
J(ﬂ s1rJ'e‘“s‘m)RLlr‘lw(m)dmds= L I(u—s)lfr G, (s,m)w(m)dmds

r(2-r)y

N—
ot—

IU TG, (s,m dsjw(m)dm jG g, m)w(m)dm

Lemma 5.1. vwe C([0,T],R).The solution of SFDE .
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(cD"+4.D7)y(t)=w(t), re(12],

ay(n)+hy(T)=c[y(s)ds+d,

.
a,.Dy(n)+b, Dy (T)= CZJ. y(s)ds+d,,
v (5.2)

is

y(t)=m(t)+ ie (L m)w(m)dm-+7, (1

O ey
O ey

G, (s,m)w(m)dmds

S u
+17(t) J.G1 m)dmds +7, (t) |G, (« m)dm+
0

0

e
—x

1 (1) |G, (T, m)w(m)dm+7 (t) [w(m)dm+7, (t)l'w(m)dm+ (5.3)

G, (. m)w(m)dm+7,(t) |G, (T, m)w(m)dm

s (t)

Ot O ey
O tm—— ©

Proof. From the previous chapter the solution of SFDE (C D" + A Dr‘l) y(t)=w(t)
is
t
y(t)=Me™ +M, + _fe"(“s)RLl “"w(s)ds . (5.4)
0

To find M, and M, Indeed

t
AM j e ds +
0

S

r(21_ r) j;(t —s)l-f (RL I ’—1W(s)_}bj'efﬂ(sfm)RL| HW(m)dmjds

0

First BC of (5.2) implies
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M, (aie‘i” +be " - (1-e* ))+ M, (a +b —cz)=d, + clj'je‘(”)l “w(m)dmds
00

H T
—a, [e 1 w(s)ds by e w(s)ds .
0 0

and the second BC of (5.2), implies

A
+M,c, (T - o) (5.6)

)7 T
MO{C_Z(e‘“”—e‘”)+ 42, j(/,z—s)l_re‘“ds+ Ab, J'(T s) “SdsJ
0 0

A simultaneous solution of (5 5) and (5.6), leads to

o e R e e

(2o +_ij (26sm)w(m)dm

- ba’;j+%j£Gl(T m)w(m)dm+((§—f)li61(s m)w(m)dmds

_ a;_ijw(m)dm+(aaiijGz(u m)w(m)dm

_ lc;_l')oj:[w(m)dmJ{b;/})’OIGZ(T,m)w(m)dm 67

+(£j]61 (T,m)h(m)dm—d—z—dl—a—(c—2 .T[ G, (s, m)w(m)dmds+%;fw(m)dm

(5.8)

Substituting (5.7) and (5.8) in equation (5.4) implying
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d,p dpoc d, ) _, (d, do 0
t = —2 1 —1 - _2 L G t’ d
y(t) K w + - + : e [U + w ﬂﬁ! L (t,m)w(m)dm
'71(t
P0G co

%

5 m)dmds +

qov

3 e

qu

[

&P

ﬂz(t)

C2
v

qu

o

ﬂs(t)

[

S5 fotmmman:
7a(t)
o e o

775(t)

_&( j‘“}jw dm{ (b;—fje‘“ﬁW(m)dm

(

176 (1) (1)

LAp
qu

al
v

b,Ap
qu

b4

IGz(y,m)w(m)dm+ -

i

0

K je_h ﬁGz (T,m)w(m)dm.

By

7g(t) 7o(t)

direct computation the converse of the lemma holds true.

5.1 Existence and Uniqueness For the Solution of SFDE

Next, based on FPT we investigate the uniqueness and existence for the solution of

SFDE (5.1), to do so we introduce the function space given as the following

¥

=(Cr71[0,T ]=||“||r_1)’ and the continuous f:[0,T >R, it is clear that Wis a

Banach space with the norm||y||r_1=Sup‘y(t)‘+sup‘CDHy(t)‘, an operator
0<t<T 0<t<T

F

Y — ¥ associated with the problem can be defined as
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t

)(t)=m ('[)+J'G1 (t.m)g(m,y(m), D"*y(m))dm

0

E

+
=
N
~—~
—
~

G, (s,m)g(m,y(m),D"*y(m))dmds

Ol ) O

(t)

G, (s,m)g(m,y(m),D"*y(m))dmds

+
>

et T Oy

»

+17,(t) |G (1. m) g (m, y(m), Dr_l)’(m))dm

—, o

+775( ) Gl(T m)g(m,y(m),CD'fly(m))dm

() g(m,y(m),CD“’ly(m))dm

+
S

g(m y(m), D"ly(m))dm

+
=
~
/-\
\-/
RN O+ O O

+175 (t) [G, (1, m) g (m, y(m), c D"y (m))dm

(5.9)

O ey ©

(t)

G,(T.m)g (m, y(m), ¢ Dr‘ly(m))dm.

+
S

One can easily show

(D7 )(t)=( "D ) (1) + [ g (m y(m), . D"y (m) o

t

~4[G, (. m)g(m y(m), ¢ Dty(m))dm
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(D)0 fo(m.y(m). D2y ()

(<D™, )(t) fg(m,y(m), D"y (m))dm

T O+ Ot—x

Q)

+(C Dr_l’78)(t) 2 (1.m)g (m, y(m), ¢ Dr_ly(m))dm

O ey O

+(c Dr_lﬂg)(t) G,(T.m)g (m, y(m), Dr‘ly(m))dm,

(5.10)

We set the following notations for computational convenience

r-1 r-1

Tr—l ) . B . }
Ql:[ﬂl“(r)(l_e H)+”772”‘([ﬂli(r)(l_e A )dS+||U3||£ﬂ;(r)(1_e ! )ds
r-1 re1
s 1l s ()

AT (r) AT (r)
(- +1)J

ul—e " +1
ol Tl T

o

S T e R R P e
0 w

/IF(r) ]I‘(r)
r r-1 iy o Trt )
+HCD lm”—/ﬁﬁ(r)(l—e ’“)+HCD lﬂs“m(l—e ’”)

1-e ™ T(1—e ™
o070 oo o

Q=Q+Q-T [(1—e-” )Urr(i) +1J+1J.

Before introducing our main existence and uniqueness results for the SFDE (5.1) we suppose

that the following assumptions holds true.
(A1)g:[0,T]xRxR — R is jointly continuous

(A2) 3L, >0 such that

‘g(t,y,y)—g(t,z,f)‘s L, (|y—z|+‘§—2‘),Vte[O,T],y,z,y,z eR
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(A3)3 a function y C ([O,T] , ]R+) such that

lg(t.y.2) <7(t), V(t.y,2)€[0,T]xRxR.
(Ad)3he C([O,T],]R*) and a nondecreasing function y :R* > R"
(A5)suchthat [g(t,y,z)|<h(t) z(|y|+|z]),¥(t,y,2) [0, T|xRxR

there exist a constant W >0 such that

w

>1.
Jn ., + Il (W) @

The unigueness result will be introduced by next theorem.

Theorem 5.2. Assume both (A1), (A2) satisfy. If L Q <1, then there exist a unique solution

for the SFDE (5.1) on [0,T].

Proof. Consider F defined by (5.9) and construct a ball

||771||r—1 +N QQ
1

g

={yeC,[0T]:|y| , <a} with, a> where N = sup

0<t<T

9(1,0,0).
First we show that 7B, c B, for any y € B,, then

Kfv)(t)\SHmM G, (t:m) g (m. y(m), ;D" y(m)) dm

+[2,| HGl (s,m) Hg m y(m), Dr’ly(m))‘dmds+
0

g =y
Ot O'—.'ﬂ

7] 11G. (s, m)Hg (m,y(m), Dr‘ly(m))‘dmds +

U

”774"_([‘61 (,u, m)Hg (m, y(m), c D“ly(m))‘dm +

o (7)o (m.y (), &y () fm
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el Jlo(m.y(m). .y () am
i o y(m) .y (m)em-+
i o m (). 0y ()
bl (7 (). 0y ()
o
a(ty(t). oy (1) =Laen,
en
1<l +(La+N,)
(el el e )
el o)

,u(l— e*ﬂ) T (1— e )
2 2

|-

e

e+ T oz |+ e

+||774

e

<[] +(Lya+Ng Q. (5.11)
and

|cD Ay < H(c Dr’lnl)HJr(Lga+ N, )
T r-1 T
R M| e I I ) o

r-1

Ve
r1 ,Urfl —Au r-1 T T
HeP ey e )4l D ] S (- )

1- T(1-e
°pr 1777H H Dr_l??s” ( e )+HCDr_1779H ( ﬂ’e ) )

DT

<[cD™ M +(La+N,)Q,.
(5.12)

Combining (5.11) and (5.12) we get
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”}—yn r1 S||771||r_1 +(Lga+ Ng )(Ql +Q,) :”771”r—1 +<Lga+ NQ )Q =a,
Which implies that 7B, = B, .

Next, JF is a contraction has to be shown, for this. Vy,ze ¥

(#0206 ma(my(m) 0 y(m)-g(m2(m), 02 (m)fom
+ ‘Gl(t,m)Hg m,y(m),cDr‘ly(m))—g(m,z(m),CDr‘lz(m))‘dmds

+msl] )]G, (t m)Hg (m,y(m),cD"*y(m))—-g(m.z(m), Dr‘lz(m))‘dmds

|
|

Ao oo y(m). D (m) - {m2(m). 2
A 16 (T (). D () - 2 (). 02
i flo(m.y(m). Dy (m)) g (m.2(m). . Oz (m) e
A Jlo(my(m).0y(m)-a(m.z(m). D" 2o

+||778||I‘G2 (4, m)Hg (m, y(m), Dr—ly(m))— 9 (m, z(m), ¢ Dr—lz(m))‘dm

+||779||j(|:‘G2 (T, m)Hg (m.y(m).cD"y(m))-g(m.z(m), Dr—lz(m))‘dm

(5.13)
<L,Qfy-7,.
In a like manner
Hc DAY - D"l]-"zH <L,Q[y-7, - (5.14)

From (5.13) and (5.14) it follows that

l7y-72l., <LQly-7...
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From the above inequality, the contraction property for 7 has been satisfied. Implying the

uniqueness for the solution of SFDE (5.1) on[0,T | which guaranteed by theorem (2.2.7).

Theorem5.3. Let (A1), (A2) and (A3) satisfy. If L,Q, <1, then at least there exist one solution

of SFDE (5.1) on[0,T].

Proof. Consider the ball B, ={y e ¥:|y|, , <a} with|r] , +|7|Q<a and. We define
two operators F; and 7, onB, as

t
(Fy)(t)= le(t,m)g(m, y(m), ¢ Dr’ly(m))dm,

0

(FU)(t)=m(t)+ 7 (t) [ [G(s,;m)g(m,y(m), D" y(m))dmds

O ey
O e

ey (0) G, (5m) g (m, y(m), ¢ Dy (m))cds

w0

+1, (t)IGl (/uv m) g (m’ y(m)’ c Dr‘ly(m))dm

+77s (t):[G1 (T.m)g (m, y(m), ¢ Drfly(m))dm

U

+7,(t) [g(m, y(m), ¢ D"y (m))dm

(t)

g(m,y(m),cDr‘ly(m))dm

+
3

N O o

+175 (t) |G, (2,m) g (m, y(m), . Dy (m))dm

(t)

+
3

O ey, - O

G,(T,m)g (m, y(m), ¢ D"ly(m))dm.

Fory,zeB,, itisclear that| Ry + Fz| , <|m| , +Q[r|<a thus Fy+FzeB,.
By using the condition (Az) , then one can also easily show that

”féy—féznr—l = L9Q3 ”y_ Z“r—l’
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which implies that F, is a contraction.

Moreover, F; is continuous because of continuity of f . And

t

(Fy)(t)< le (t, m)‘g (m, y(m), ¢ D”y(m))‘dm

<|7] ;1;(") (1—e*/1T )

Note that

0
r-1

(5.15)

(C Dr‘lj-"ly)(t) = DHHGl(t, m)g (m, y(m), ¢ D"ly(m))dm}

ZUQ (m, y(m), ¢ D'ly(m))‘dm+/1_j;62 (t, m)‘g (m, y(m), Dr*ly(m))‘dm

T —aT
<|y|T +m(1—e )-

(5.16)

From (5.15) and (5.16) we obtain

For showing the compactness of F, . Fixing

sup|g (t,y.z)|=9, ¥ (t, y, 2)€[0, T]xB,xB,

Fort,t, E[O,T], then
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‘}Zy(tz)_ﬁy(ti)‘ s

d. UGl (t,,m)-G,(t, m)dmjtjGl (tz,m)de —0ast, —>t,

i (5.17)
. DAY (L,)- D AY(t)|<
t b t
d. [jdm +/1sz (t,,m)—G,(t,,m)dm —/1sz (t,, m)dm} —0ast, —>t,
t 0 t
s s (5.18)

(5.17) and (5.18) implies

|BY(L)- Ay ()], —0. ast,—>t,

The independency of the term H]—]y (t,)-Fy(t )H _ ofU leads to deduce that 7; is relatively

compact, based on theorem (2.2.9) we conclude that #; is compact on B,. Hence, the existence

property for the solution of the SFDE holds by theorem (2.2.10).

Theorem5.4. Suppose that (A1), (A4) and (A5) satisfy. Then there exist a solution for the

SFDE (5.1) on [0,T].

Proof. Step 1, F maps bounded sets into bounded sets of ¥ has to be shown.

Consider B, = {y e¥:|y| < a} be a bounded set in'¥' . Then by ( A4) we have

(Fy)(t) S||771||+i\61 (tm)|g(m,y(m), D"y (m))/dm

+ [, :[\Gl(s, m)Hg (m,y(m), Dr‘ly(m))‘dmds+

L Y SN

b ] 16 (5.m) g (. y(m), Dy (m) o

w0

e m (. y(m). .y ()
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6 (7.m)a(my(m). D () fm
el fla(my(m). 0"y (m)
] a(m.y(m). 0"y
e am)o(my(m), Dy ()

+||779||T£\Gz (. (m.y(m), . Oy (m))dm

<+ ] (L mih(m) 2(l,)om

16 (sm)n(m) 21, s =1 ]l 5. m (), e

+||f74||ﬁ01(ﬂ,m)\h(m)z(IIYIIr_l)dm+||f75||]\Gl(T,m)\h(m)ﬂt(llyllr_l)dm

+||f76||Ih #(I¥],.,)dm+ ||f77||Ih Z(Iyl,.,)dm

+||778||£‘Gz (e;m)[n(m) (], ) dm + s ! G, (T.m)h(m) (]ly],., )dm

Taking sup , implies that
0<t<T

Ossltjse \fy (t)‘ < ||’71|| + "h”Z(a) Q

(5.19)
In a like manner
sp 050} 0 () €.
0<t<T (520)

Combining (5.19) and (5.20) we get

¥ <l +Inl 2 (2) @
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Step (2) show that F is equicontiuous, to do we let t,,t, [0, T |witht, <t,.then Vu e B,

we have

() (t) - (A) ()] <] () -

n(t)

o amn(m) (], )em=J 0,mnm) 2(1,Jom

| ()= ()] i (5 mf () ], e

)-8 ] mi () ], s

() (e (e (m) 21, )

+‘775 (tz)_775 (ti)‘:[‘Gl (T’ m)‘ h(m)l(”y”rfl)dm

+‘776 (tz)_ne (tl)‘ Ih(m)l(”y"rl)dm

o ()1 ) Jm) 21, o

+‘778 (t) =7 (H)‘I‘Gz (4, m)‘ h (m)l("y”r—l)dm

+115 (t,) =729 (tl)\i\Gz (T.m)h(m)x(Jy], ,)dm 0, ast, -,

(5.21)

In a similar manner
‘C D Fy(t,)— ¢ D”}“y(tl)‘ —0 as t, —>t,. (5.22)

Since the above inequalities (5.21) and (5.22) are independent of Yy € B, , theorem (2.2.9) leads

to deduce that J is completely continuous.
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At last, by showing that any solution y for the equationy =6 Fy, 0<¢6 <1 is bounded,

we complete all conditions of theorem (2.2.8), to do so, and fort € [0 ,T], suppose that y is

a solution, then

[y ()| <[+ 2(2) @
implies

ly]

<1,
] +l9ll 2 (a) @

Butby (A;) 3W >0 such thatW = y| , let Z ={ye‘1’:||y|| <W}

The operator has the property that it is completely continuous by the defined Z,

thereisnoy e 0z such thaty = S5Fy for somed €(0,1). Therefore, theorem (2.2.8)

guarantees the existence property for the solution y € Z of F , Which solve the SFDE (5.1).

Examples. Given the following SFDE

(cD¥*+.D¥)y(t)= K( y(t) +tan‘1(cDV2y(t))+\/sin_5tJ ,0<t<3,

5+y(t)
y(0)+y(3)=] y(s)ds,

¢ D2y (0)+ . D*2y(3)= [ y(s)ds+1.

(5.23)

here

g(t,y(t),CD”y(t)):K( y(t) +tan1(CD]/2y(t))+\/sin_5t],

5+y(t)
A=la =a,=b =b,=c =c,=1
#=0,7=Lw=2T=3d =0,d,=1,
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q:(aie’ﬂ“+ble"T G (1 ))=0.42
p=(a,+b-cr)=1
| G (pmr0 -t la, ¢
o= ;t(e e )+F(2—r)£('u s) e
u=c2(T—a))—%p=—386
= [ 5224552 o
v q) q
C C
k| 52 |{& -0
qu v
= | 22 |- 282 +2 Je 7| <128
qo qgou ¢
Irol=| 27 |- 227 4 B |1 23
qu qu (¢
| 2-( 22 Je 7| <02
1y 1y
2] = b_z_(bz_/’je-ﬂ =0.23,
1y L
ol -| 222 )- 2036,
qu v
Inl-| %22 -2 036
qu v

Clearly g is continuous and Vte[0,3],VYy, z, y,zeR we have

e H

s+1y] 5[

‘f(t,y,z)—f(t,y,z)‘_

with Q, <11.25,Q, <21.72,Q, <18.17

Choosing K <

1+2

, then theorem (5.2) holds true.

(T- s) ‘sdsj <2.04,

+K‘tan‘1 y—tan‘li‘s L(‘y—sz—E‘),



To explain Theorem (5.4), consider

3/2
g(t,y(t),c D*y(t))=t’e ¥ In(1+ 2sin’ y(t))+1°Dy(t)+\/1+t2,
+

. D3/2y(t)

g(t,y,z)ztze‘yz In(L+ 2sin? y)+ﬂ+ 1+t%,t €[0,3], vy, zeR,

1+|7]

g is continuous and

lg(t,y, z)| <t? In3+1++/1+1t* = h(t),with|h]| =9(In3)+1++/10, h(t)eC,,[0,3],

This implies that g is bounded. All conditions of theorem (5.4) satisfied which implying the

existence property for the solution of the SFDE on [0,3].

For example which shows that Theorem (5.3) works, we let the function

g(t.y(t),cD¥?y(t))= L[ y(t) +tan™* (. D¥?y(t ))ﬂ/ﬁ]

1+y(t)

g is continuous and Lipschitzian.

Since

‘g(t, y’z)‘ < L(1+%+\/sin3tj:: 7(t) < L(2+%j1

We conclude that g is bounded, one can easily compute Q, <11.25, choose arbitrary L,

which satisfy the inequality LQ, <1, , then there exist a solution for the SFDE on [O, 3] :
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Chapter 6

NONLINEAR FDE INVOLVING ,,D” AND , D"

WITH 3- POINT INTEGRAL BC’s

In this chapter, based on FPT, the existence and uniqueness for the solution of nonlinear
(Hadamard (H) / Caputo-Hadamard (CH)) FDE’s of order r e(l, 2] with 3-point integral
BC’s are obtained.

Consider the following FDE’ associated with 3-point integral BC’s

(a) Nonlinear Hadamard FDE:

4D (t)=f(t,{(t)) 1<r<2,0<a<t<T,

£(@)=0, ¢(T,)=0J¢(s)ds, a<u<T, Oc<R

(6.1)
and
(b) Nonlinear Caputo-Hadamard FDE:
s DU(t)=h(tu®)), re(12], O<as<t<T,
u(2)=0, u(T,)=8fu(s)ds, we(aT,), ek
a (6.2)

where 8, are given constants.

Lemma6.1. Let w € C([a,TO],R) and ¢ eC? ([a,TO],R). The Hadamard FDE given by

"D'{(t)=m(t) ,re(12], O<a<t<T,

£(@)=0, x(T)=0[£(s)ds, ue(aT), OcR
8 6.3)
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has the solution given as follows

Proof. Applying ,, 1" to both sides of (6.3)

W1 (1 DG)(1)= w1 0(t)

£(t)= o)+ e, (mlj”

i1 a

Based on ¢ (&) =0, it s trivial to deduce thatc, =0,

then

™

—~

|

~
Il

0[¢ (s)ds, implies

a

r-1 u u r-1
lew(T0)+c1(|n£j =0jH|fw(s)ds+HclJ'(ln§J ds

a

that is

c{[ln%"}rl —QT(In ijr_l ds} = 6’]: w1 o(s)ds—, 1'o(T,)

56
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then

(6.6)

Substitute (6.6) in (6.5) and expand the Hadamard fractional integrals, then equation(6.4) is

obtained. By direct computation the converse of lemma (6.1) can be easily obtained.

Lemma 6.2. let WeC([a,TO],R) andu eC; ([a,TO],]R).The linear Caputo- Hadamard

F.D.E given by
wDu(t)=w(t) 1<r<2, 0<a<t<T

u(a)=0, u(TO):QTu(s)ds, a<u<T, SeR.
a (6.7)

has a solution represented by the following integral equation

19]£ (Insj 7 W(m)dmds—f(lnT‘)j _ W(s)ds] (6.8)
) m m s s

Proof. Because of similarity to the one done in lemma 6.1, we delete the proof
6.1 Existence and Uniqueness For the Problem

Next, based on FPT we investigate the uniqueness and existence for the solution of FDE (6.1

), to do so we introduce the function space given as the following

Assume ¥ =C([a,T,],R), f:[0,T,] >R, be a continuous function, it is clear that ¥ is

Banach space, we define the norm endowed with this space as||¢|| = sup ‘g(t)‘ and define
a<t<T,
the operator G, : ¥ —» V¥,
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Theorem 6.3. Consider the continuous function f :[a,TO]xR—>RWhich satisfy the
following condition (E, ) 3L, > Osuch that
1 (t¢)-f (L&) <L |¢-¢&, and L, Q <1, Vte[aT,], V¢, &eR Then there exist

a unique solution of the FDE (6.1) on[a, T, .

. . MO
Proof. Consider the set B, ={§et//,||§||§g} with 521 L0 where M = sup |f (t,0)|

— Ly a<t<T,
First we show that G, B, < B, for this

V¢ eB,, Vvt e[a,To]

I(GH4><t>|s$f£(mg}” (L6
(In;jrl £|9|ﬁ(ln;jrl f(mmg“(m)) dmds—]g(lnz)]r_l f(sscj(s)) ds}

r(r)

r-1 U r-1
(InT"j —Hf(lnsj ds
a 4 a

ButV¢ eB,, vVt €[0,T,] we have

[f ()<L, ||§||+Os<tt1<rT) |f(t,0)

<Lie+M.
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Using this inequality, implies

[Gu¢]<(Lig+M)x

AN

L, sup (Inj [|0|”

10 tY ast<T,\ @ - m
——sup I—(In—j ds+

r(l’)astsTOaS T

<(Lie+M)Q<e

Which implies that G, € B,,V¢ € B, that isG,, B, — B, , next we show the contraction
property of G, . V¢, &e Y

FENE

1 o)t
L In—
cree](ng)

viffez]

<L [¢-¢lesLQls-¢l.

LRI AL

" |

a

End up with this, we conclude that G, is a contraction, which implies the uniqueness for the

solution of the FDE (6.1) on[a, T, .

Theorem 6.4. Given the continuous function f :[a,To]x]R—>]R which satisfying the
condition(E, ), and

£ (t.5) <r(t),V(t.¢)e[a,T,]xR,where, y € C([a,T,],R" with sup  (8)| =7

Assume that also L,Q" <1, then there is at least one solution for FDE (6.1) on [&,T,].

Proof.
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Consider the close set S, ={£ e W,|¢] < A}, with 2> Q] y| . Define G, and G, on S,

as

In£ h 0“ In> HMdmds—T0 InT—O r4Mds
GG I i LG

F(r)((lngjrl—ez(ln:ljr_l ds]

For £, €S, then |Gy,& +Gy, ¢ < Q| < Athus G\, ¢ +G,,,¢ €8,

By condition(E, ) and Q" then one can easily show that:

||GH 24: - GH 2§” < Lf Q*

¢=¢l<fe=¢l
Which implies that G,,, is a contraction.

Moreover, G,,, is continuous because of continuity of f .

|G,:<] < ||;/||asstlg0 {ﬁ(ln ;—J }s %[In;—(’] , hence G, is uniformly bounded.

Now it will be shown that the operator G,,; is compact. Fixing sup ‘f (t,é’)‘ =f, and
(t.8)a Ty xS,

fort,t, €[a,T,].(f <t,),

then

[61:¢ () -Gl (1)) < F?r)[tj%[(ln%jm —(|n%jr_l]ds+iji%(|n%jr4 ds] 50
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The RHS of the above inequality approaches 0, ast, —t,, And the same side of the same
inequality is independent of ¢ implies that G, is relatively compact, based on theorem

(2.2.9) we deduce that G,,, is compact on S, Hence, the existence property for the solution of

the SFDE holds by theorem (2.2.10).

Theorem 6.5. Given the continuous function f : [a,TO]xR — R, Also assume that
(E,) Iwe C([a,TO],R+)and a non decreasing function y :R* —> R*
Such that | f (t,&)| <w(t)y (|<]), v (t.<) €[0T, ] xR

(E;) 3M >0 such that >1 , then there exist a solution for FDE (6.1) on

[wlv (M) @
[a,T,].
Proof. Stepl we show that G, :¥ —» ¥

Let S, ={¢ e W,[¢] <} beabounded setin¥ . Then by (E, )

To

ECIRCHE

a

+ T r-1 u S r-1
r(r)fIn2} —-@||{In=]| ds
O] -eflm3)
Take sup ,
ast<T,
Implies that
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r-1 /s r-1 T 1
o Sup [Int l jl[lnsj dmds—jl(lnT‘Jj ds
1 L (I ] q ast<T a - m m 7S S
n—| ds+

Sy () <) £y 2 [

Implies,
[Gugl<Iwlw (x) Q

Now, show that G, : ¥ — W is equicontinuous, to do we lett,,t, e[a,T,], (t, <t,) and
ges,.

f(s.¢(s))

S

ds

‘GHg(tz)—GHﬁ(H)‘Sﬁ f(s.¢(s))
R AT I

(o) o) (o | o Lo
wu) e

Ast, = t,. Since the above inequality is independent of ' € S_, based on theorem (2.2.10)

f(m,&(m))

m

we conclude that G,, is completely continuous.

Finally, by showing that X which is the solution for the equation ¢ =06G,,{, 0<0<1 is
bounded we complete all conditions of theorem (2.2.9), to do so, for t [O,TO], then
) =18Gug) )] <8 (Iwlw (x) @)<[wlw (x)

Implies

1<

———x<1,
[Wlw (x) @
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Butby (E;)3M >0 suchthat M |||, construct the setQ={¢ e W : || < M.

In addition of continuity of G, Q> Witis also completely continuous, by the defined Q2
thereisno £ € 0Q such thatd =5 F¢ for someod € (0,1). Therefore, based on theorem

(2.2.8), we deduce that G,;, F has a fixed point ¢ € Quwhich is a solution of the SFDE.

Example. Consider the non linear Hadamard FDE
LD (1) =f (4, g(t)) , 1<t <e,

£(1)=0. <(e 3[: s)ds, u=2, 6=3.
(69)

For the applicability of the results obtained by theorem (6.3), consider

Int? < (1)
H(t+a) () +1)

f(t, ;(t)) tefle]

Int? <]
e (t+4)° (|¢]+1)

And we can show that it is Lipschitzian with

The function f (t,¢)= ,is continuous on [1,e]

2
L= 2 a1 (0)- (1) < (mejg §|

and ]:[In:ljr ds = j( J _!'Ins) ds s(lnz)]/zj[ds=\/ﬁ

One can easily compute
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AT (ol(u-a)-1)

1.75

EEEEEGE

Implies that Q <1/ L,

All assumptions of theorem (6.3) holds true, implies the uniqueness of solution of FDE (6.9).

e'tan (£ (1))
To illustrate theorem (6.5) consider f (t,£(t)) = ,telle
0= e

e'tan”' (&)
f(t,d)=—F——=,
( () aNt? +143

e . 1
and | f (t,{)| £ ———==w(t ) with ||lw|=——and =],
[F(60) < =w(t) with )= and v ([¢])

with |w]w («),Q = 0.017086506

is continuous on[1,e],

By taking M >0.017086506 all the assumptions of theorem (6.5) hold, implies the existence
of solution for the FDE (6.9).

6.2 Main Results for FDE

Based on the classical FPT we investigate the problem of existence for the solution of the FDE
(6.2). Not to repeat ourselves we omit the proofs of the obtained existence results, since they

are similar to those done in the previous section.

Consider the operator G, : ¥ — ¥, which given as follows
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+
S T u
r In2-9 In—-1
(r)[n . (y(na j+aD
,Qﬁ(lnijrlh(m u(m))d—mds—Tf(lnT—ojr_lh(s u(s))ﬁ .
ol m ’ m s ’ S
For computational convenience, we let

sup | In—

t
l r-1 ( a}
D:—s pj' (In J ds+ 2=y x
2 _

r(r ( ast<Ty

Theorm 6.7. Consider the continuous function h: [a,TO] xR — Rand assume
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(E,)3L, > Osuch that|h(t,u,)—h(t,u, )<L, Ju, —u,|, a<t<T,,vu,u, eR.if

D <1/ L, then there exist a unique solution for the FDE (6.2) on[a, T, |.

Theorm 6.8. Consider the function h:[a,T,]xIR — R which is continuous and satisfying

the condition(E, )and suppose that |h(t,u)|<o(t),V(t,u)ela,T,]xRwhere

then

oeC([aT,],R")with sup |o(t) = o], moreover, it is assumed that L, < 1

0<t <T,

* 1

3 asolution for FDE (6.2) on [a,T, .

Theorem 6.9. Consider the continuous function h: [a,T]x R — R. Assume that
(E,)3reC ([a,T],R*)and a non decreasing functionv : R* — R*

Such that [h(t,u)| <y (t)o(|u]), v (t,u) €[0,T,]x R

(Es) Jaconstatnt W >0 such that >1, where

lrlo(W) D

Then the FDE (6.2) has a solution on [a,T,]

Example. we can take the same examples given in example (6.6), indeed

() olta-)-)

) A

~10.39849624,

e
< 1 In-2| +
r(r+1) a -

D" ~9.648496241

(r+1)
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Chapter 7

CONCLUSION AND FUTURE WORK

This thesis relies on various fractional differential equations. Based on the classical
fixed point theorem summarized by what known as the Banach contraction mapping
theorem, nonlinear alternative of Leray-Schuader type and Krasnoselskii’s fixed point

theorem, a three different nonlinear fractional differential equations were considered.

In chapter four we study the existence and unigqueness for the solution of the nonlinear
sequential fractional differential equation involving Caputo fractional derivative and
associated with nonlocal integral boundary conditions. In chapter five with a little
modifications on the same problem mentioned in the previous chapter lead us to define
a new function space with different norm, the boundary condition for this problem can
be considered as a generalization of the boundary conditions associated with the
problem in chapter four, for these two chapters we illustrate our results by examples

given at the end of each one.

Whereas, in chapter six which can be considered as two parts, we investigated the
existence and uniqueness for the solution of the nonlinear fractional differential
equations involving Hadamard and Caputo-Hadamard fractional derivative associated
with three points integral boundary conditions, for the applicability of our results we

give some examples at the end of this chapter as well.
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Future work concerns deeper analysis of particular fractional differential equations
involving Hadamard fractional operators. Since the main subject of this thesis the
SFDE, in the near future I would study the SFDE’s involving Hadamard fractional
derivative with nonlocal integral boundary conditions. Precisely, 1 would like to

investigate the existence and uniqueness of the following SFDE

(WD +2,DH)y(t)=g(t,y(t), D *y(t)), re(L2], 0<t <T,

ay(u)+by(T)=c,[y(s)ds+d,

a,, D'y (u)+b, Dr’ly(T)zczjy(s)dSerz,

@
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