Hexagonal Grid Approximation of the Solution of
Two Dimensional Heat Equation

Nouman Arshad

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
n
Mathematics

Eastern Mediterranean University
August 2020
Gazimagusa, North Cyprus



Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor
of Philosophy in Mathematics.

Prof. Dr. Nazim Mahmudov
Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Doctor of Philosophy in Mathematics.

Assoc. Prof. Dr. Suzan Cival Buranay
Supervisor

Examining Committee

1. Prof. Dr. Hiiseyin Aktuglu

2. Prof. Dr. Elimhan Mahmudov

3. Prof. Dr. Nazim Mahmudov

4. Prof. Dr. Emine Misirli

5. Assoc. Prof. Dr. Suzan Cival Buranay




ABSTRACT

We consider the first type boundary value problem of heat equation
% = (g%‘ + g%‘) + f (x1,x2,¢) in two space dimensions on special polygons with
interior angles o, j =1,2,...,M, where a; € {%, %, %} , @ is positive constant and f
is the heat source. To approximate the solution we develop two difference problems
on hexagonal grids using two layers with 14 points. It is proved that the given implicit
schemes in Difference Problem 1 and Difference Problem 2 are unconditionally
stable. We also show that the convergence of the given difference problems to the
exact solution are the order of O (h2 +12) and O (h4 —l—’L‘) respectively on the grids,
where h and ‘/Tgh are the step sizes in space variables x; and x, respectively and T is

the step size in time. The theoretical results are justified by numerical examples on

rectangle, trapezoid and parallelogram.

Furthermore, a two layer implicit method on hexagonal grids is also proposed for
approximating the solution to first type boundary value problem of the heat equation

d 92 02
5 =0 (ﬁ + ﬁ) —bu+ f(x1,x2,t) on rectangle where ® > 0, b > 0 are constants

and f is the heat source. For the hexagonal grids that have centers % units away from

the sides of the rectangle at time moment t with one of the neighboring point in the
pattern emerging through the sides a special scheme is given. The unconditional
stability of the implicit scheme and the convergence of the approximate solution
having order O (h4 + ‘52) where & and \/7§h are the step sizes in space variables x; and
x; respectively and T being the step size in time, are proved. The method is applied on

test problems and the obtained numerical results justify the given theoretical results.

Keywords: Finite difference method, Hexagonal grid, Stability analysis, Error bounds,
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Two dimensional heat equation.
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0Y/

I¢ agilar o mj=12,...M,a;c {%, %, %} olan 6zel cokgenler iizerinde, iki boyutlu

%u
ax%

1s1 denkleminin %—? = o

+ 327%’) + f(x1,x2,1), ® > 0 sabit, f ise 1s1 kaynagi olmak
tizere birinci tip sinir deger problemi ele alinir. Coziimiin yaklagik hesaplanmasi igin,
altigen 1zgara diiglimler iizerinde 14 nokta kullanarak iki adet farklar problemleri
geligtirilir. Farklar Problemi 1 ve Farklar Problemi 2’de verilen ortiilk semalarin
kosulsuz kararli oldugu kamitlanmistir.  Ayrica, verilen farklar problemlerinin
¢oziimlerinin, sirast ile O(h? + 1) ve O(h* 4 t) mertebelerinden 1zgaralar iizerindeki
kesin coziime yaklagtig1 gosterilmistir ki siras1 ile 7 ve ‘/7§h , X] Ve X uzay
degiskenlerine ait adim uzunluklari, T ise zaman degiskenine ait adim uzunlugudur.
Teorik sonuclar dikdortgen, yamuk ve paralelkenar iizerindeki sayisal orneklerle
dogrulanmaktadir.

Ayrica, dikdortgen iizerinde 1s1 denkleminin %—’; = 0)(327%‘ + 3272‘) — bu + f(x1,x2,1),
® > 0,b > 0 sabitler, f ise 1s1 kaynag1 olmak iizere birinci tip sinir deger probleminin
yaklagik ¢oziimii icin altigen 1zgaralar lizerinde iki katmanli ortiik yontem de
onerilmektedir. Her ¢ zaman aninda dikdortgenin kenarlarindan merkezi //2 birim
uzaklikta olan altigen 1zgaralar i¢in ki model icinde bir komsulugu dikdortgenin
kenarindan disar1 c¢ikar, 6zel bir sema verilmistir. Verilen ortiik semanin kosulsuz
kararliligr ve yaklasik ¢6ziimiin diigtimler iizerinde O(h4 + 1:2) mertebeden u kesin
coziimiine yakinsadigir ispatlanmistir ki sirasi ile & ve ‘/Tgh , X1 Ve Xp uzay
degiskenlerine ait adim uzunluklari, T ise zaman degiskenine ait adim uzunlugudur.

Daha sonra, yontem test problemlerine uygulamis ve elde edilen sayisal sonuglarin

verilen teorik sonuclar1 dogruladigr goriilmiistiir.



Anahtar Kelimeler: Sonlu farklar yontemi, Altigen 1zgara, Kararlilik analizi, Hata

sinirlari, Iki boyutlu 1s1 denklemi.
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Chapter 1

INTRODUCTION

There are many real world applications, particularly partial differential equations for
which the solution cannot be calculated using standard analytical methods. Therefore,
the numerical methods to approximate the solution of such problems have gained
much importance in recent years. For example the dynamical problem of
thermodiffusion in an elastic solid given in Dryja [1] where, finite difference and
finite element methods were used to approximate the solution. It is also well known
that by finite difference method for the approximation of the partial differential
equation, the construction of economical schemes is of great importance because one
of the most important issues in numerical methods for the solution of dynamical
problems is the well-founded choice of stable and economical computational
algorithms. By an economical scheme we mean a scheme which is unconditionally
stable and total number of arithmetic operations needed to solve this difference

scheme is proportional to the number of the grid points.

In numerical calculations of nuclear reactors it has been found worthwile to use the
implicit schemes for the solution of two dimensional age-diffusion equation by
Ehrlich and Hurwitz [2]. Most recently, in Ahmed et al. [3] a novel and time efficient
positivity preserving numerical scheme to find the solution of epidemic model
involving reaction-diffusion system in three dimension has been designed. In Igbal et
al. [4] an unconditionally stable and structure preserving computational technique for

fractional order Schnakenberg model has been given.



Icosahedral-hexagonal grids were investigated more than half century ago for their
suitability to meteorological application. Sadourny et al. [5], and Williamson [6]
solved the nondivergent barotropic vorticity equation with finite difference methods
on such grids. Their results were more favorable then those of the more usual
spherical grids. Since then the hexagonal grid was extended to the integration of the
primitive equations of fluid dynamics by Sadourney [7], Sadourney and Morel [8] and
Masuda [9]. They tried to apply the governing equations of momentum form to the
hexagonal grid directly and develop a conservative finite difference scheme. Masuda
and Ohnishi [10] reinvestigated the integration scheme of the primitive equation
model with icosahedral-hexagonal grid system and its application to the shallow
water equation. The authors used the stream function and velocity potential as the
dependent variables of the primitive equations instead of the velocity components and
obtained satisfactory approximation to the integration of the shallow water equation.
Also, Sadourney [7], Thacker [11], Thacker [12], Salmon and Talley [13],
Nickovi¢ [14], considered various aspects of the finite differencing on hexagonal
grids. Later, Nickovic et al. [15] showed that hexagonal lattices have some advantages
over commonly used square grids. As the authors in NickovicC et al. [15] state “having
better isotropy, they provide more accurate dispersion of gravity waves than square
grids do and therefore they can be more appropriate for simulation of smaller-scale

divergent processes’.

Hexagonal grid approach was also studied in reservoir simulation and simulation of
electrical wave phenomena. Pruess and Bodvarsson [16] used seven-point finite
difference method for improved grid orientation performance in pattern steam floods
of heavy oil reservoirs. It was shown that for seven-point floods, hexagonal grid

method provides good numerical accuracy at subtentially less computational work



than rectangular grid method (five or nine point methods).

Taking into consideration that the hexagonal grid is a more natural choice to emulate
the isotropy of the Laplacian operator, the approximation of the solution of the
Dirichlet type boundary value problems for the two dimensional Laplace equation and
heat equations were of interest. Such as high accuracy implicit schemes on triangular
nets whose meshes are equilateral triangles for the two dimensional homegeneous
diffusion equation were studied by Richtmyer and Morton [17]. Therein, the analogue
of O (h2+1:2) accurate, unconditionally stable three layer scheme with 9-point on
hexagonal grids and a three layer scheme with 21-point, a two layer scheme with
14-point both converging with order O (h4 +1:2) to the exact solution on hexagonal
grids were given. However, the diffusion problem with heat source on hexagonal
grids that have centers g units away from the sides of the rectangle at any time
moment ¢ with neighboring points emerging through these sides were not considered.
Kara [18] gave the compact scheme of 4th order using hexagonal grid for convection
diffusion equation to approximate its solution. Numerical results were given on
parallelogram showing more accurate results with less computational time than the
standard central difference scheme. In the article of Lee et al. [19] hexagonal grid
finite difference methods were derived in finite volume approach involving standard
Laplacian. The obtained schemes were used in the simulation of electrical wave
phenomena propagated in two dimensional reserved-C type cardiac tissue, exhibiting
both linear and spiral waves more efficiently than similar computation carried on
rectangular finite volume schemes. Most recently, Dosiyev and Celiker [20] gave the
approximation on the hexagonal grid of the Dirichlet problem for Laplace’s equation.
The fourth order matching operator on the hexagonal grid was constructed and

applied to justify a hexagonal version of the combined Block-Grid method for the



Dirichlet problem with corner singularity. Thus, they obtained O (h*) order of
accuracy where, h is the step size when using the 7-point scheme on the hexagonal
grid instead of using 9-point scheme on the rectangular grid giving the computational
advantages such as memory space and computational cost. Further, Dosiyev and
Celiker [21] investigated a fourth order block-hexagonal grid approximation for the
solution of Laplace’s equation on special polygons with singularities. It has been
justified that in these polygons if the boundary functions away from the singular
corners are from the Holder classes C4’7‘,0 < A < 1, the uniform error is of order

0 (h4) when the hexagon grid is applied in the “nonsingular” part of the domain.

The solution to first type boundary value problem of heat equation,

du *u  d*u
§:w<a_xf+8_x§) + f(x1,x2,1) (L.1)

on special polygons with interior angles o;x, j = 1,2,...,M, for o € {%, %, % where,

® > 0 and f is the heat source by using hexagonal grids, two implicit methods on

two layers with 14-point has been given in Buranay and Nouman [22]. Under the

assumption that the heat source and the initial and boundary functions are given such
. . 6-+0.,3+% ..

that the exact solution belongs to the Holder space Cy, , 0 <o <1, itis proved

that the given Difference Problem 1 and Difference Problem 2 converge to the exact

solution with O (h2 + 1:2) and O (h4 + 17) order of accuracy on the grids respectively.

In this study we give the findings of Buranay and Nouman [22], that the theoretical
results are given in Chapter 2 and numerical results are given in Chapter 4.
Furthermore, we also propose a highly accurate two layer implicit scheme on

hexagonal grids to approximate the solution of the first type boundary value problem



of heat equation

ou ?u  d*u
gzm(a—X%—Fa—x%)—bu—l—f(Xl,xz,t) (1.2)

on rectangle where, ® > 0, b > 0 are constants, A special scheme is given for the
grid points having the ghost points in the pattern with centers g units away. We prove
that the given scheme is unconditionally stable and the constructed difference problem
converge to exact solution on the grids with order of accuracy of O (h4 + ’cz). Then we
consider several test problems in Chapter 5, to justify the theoretical results obtained in
Chapter 2 and Chapter 3. Numerical results are accompanied by the tables and figures.

We also pre announce the various research areas where the methodology given in this

thesis may be extended.



Chapter 2

HEXAGONAL GRID APPROXIMATION OF THE
SOLUTION TO HEAT EQUATION ON SPECIAL

POLYGONS

2.1 Introduction

In this chapter, we give two layer implicit schemes with 14-point by using the
hexagonal grids for approximating the solution of first type boundary value problem
of heat equation in two space dimensions on special polygons  with interior angles
o, j=1,2,...M, where a; € {%,%,%} The heat source, initial and boundary
functions are given such that on Qy = Q x [0,T], where x = (x,x) € Q and

t € [0, T] the solution belongs to the Holder space C)f7J,r(x’3Jrj (@T) ,0<a < 1. Special

difference schemes are proposed for the hexagonal grids that have centers % units
away from the sides of these polygons at time moment ¢, which have a neighboring
point in the pattern emerging through these sides. In Section 2.2, we give the
boundary value problem of first type for two dimensional heat equation on special
polygons. In Section 2.3, a two layer implicit difference scheme with 14-point on
hexagonal grids called Difference Problem 1 is proposed and it is proved that this
scheme is unconditionally stable. The solution of the constructed Difference Problem
1 converges to the exact solution on the grids with O (h2 —1—172) order of accuracy. In
Section 2.4, we give a two layer implicit unconditionally stable scheme with 14-point

on hexagonal grids called Difference Problem 2. We showed that the solution of the

constructed Difference Problem 2 converges to the exact solution on the grids with



0 (h4 + ‘C) order of accuracy. Here, & and ‘/Tgh are the step sizes in space variables x|
and x, respectively, and T being the time step size. Numerical results are given in
Chapter 4 to justify the theoretical results. Three test problems are constructed of
which for the Example 4.1 and Example 4.2 the exact solution is know but for

Example 4.3, the exact solution is not given.

We remark that the theoretical results given in this chapter are published in [22].

2.2 First Type Boundary Value Problem of Heat Equation on Special
Polygons

Let x = (x1,x2), and Q be an open simply connected polygon and v;, j = 1,2,...,M,
be its sides, including the ends, enumerated counterclockwise (Vg = Vys, V1 = Vpr+1),

and also let o, j = 1,2,...,M, where o € {4, 1,2} be the interior angles formed by

M
the sides v;_; and v;. Furthermore, let S = |J v; be the boundary for Q and denote
j=1
by Q = QUS the closure of Q. Let Qr = Q x (0,T), with lateral surface S7 more
accurately the set of points (x,#), x € S and ¢ € [0,T] also Q7 shows the closure of

. . L5 = .
Qr. Let [ be a noninteger positive number, C,’/ (QT) be the Banach space of functions

u(x,t) that are continuous in Q7 together with all derivatives of the form

aF+S1+52u
Wf0r27+S1+S2<l (2.1)
with bounded norm
(]
! .
lull g =g+ Y (g (2.2)
X, (QT) j=0
where,
(j) ar—i—sl +52 u )
<I/t> = max NS 52 7]2071727"'7[1] (23)
or 2r+slz+’s2:j Or or axllasz




W® = @ + @ 2.4)

or+sitsyy, \
(”);(cl) = ) <ﬁ> (2.5)
2r+s1+s2=[l] Jt axl1 ax22 x
[=2r—s1—5)
0 gty \ T
<”>(2 = <ﬁ> (2.6)
t 0<l- 2/ —syc2 \O170X}10X5 /
and the quantities (u)} <u)£3 for o, B € (0, 1) are defined as
. /
<u>g — Sup ’u(‘x7t) L/tgxx 7t)’ (27)
), (wegy Y
. /
Wh= s MmN Zull) 2.8)

@), canegy =t

We consider the first type boundary value problem for two space dimensional heat

equation BVP1:

Lu= f(x,t) on Qr, (2.9)
u(x,0) = ¢@(x) on Q, (2.10)
u(x,t) =0 (x,t) on Sr, (2.11)

_ —_d 9? 9? :
where, x = (x1,x) and L= §; — ® (a—x% + E) and ® > 0 is a constant.

The differentiability properties of solutions of boundary value problems for the
Laplace’s equation on polygons were given by Volkov [23]. For elliptic equations, the
behaviour of solutions near singularities of the boundary of the domain had been
treated by Kondrat’ev [24]. For the differentiability properties of solutions of the

parabolic equations on cylindrical domains with smooth boundary, see LadyZenskaja



et al. [25], and Friedman [26]. The smoothness of solutions of parabolic equations in
regions with edges was studied by Azzam and Kreyszig in [27] for the Dirichlet and
for the mixed boundary value problems in [28]. Hence, in this paper the obtained
subsequent theoretical and numerical results are given under the assumption that the
heat source function f (x,7) and the initial and boundary functions @ (x) and ¢ (x,7)
are given such that the BVP1 (2.9) - (2.11) has unique solution u belonging to the
class nga’H% (0r)-

Remark 2.1: It is known that the use of classical finite difference method to solve
the boundary value problems with singularities is ineffective. Therefore, a special
construction is usually needed for the numerical scheme near the singularities in such
a way that the order of convergence is the same as in the case of a smooth solution (see
Dosiyev and Celiker [20], Dosiyev [29] and Dosiyev et al. [30]).

2.3 Second Order Accurate Difference Problem

Let i > 0, we assign Q" a hexagonal grid on Q, with step size /4, defined as the set of

nodes

i/_]'/ B \/g(l/_‘_J/)

o = {x: (x1,x2) €EQ:x) =

i’:1,2,...;j’:04_—1i2,...} (2.12)

as shown in Figure 2.1, Figure 2.2 and Figure 2.3 when Q is a rectangle, parallelogram

and trapezoid respectively.

Let U’},j =1,2,...,M be the set of nodes on the interior of v; and let f)? =7v;_1MNv; be
M _

the j —th vertex of Q, " = | (D? Uﬁ?),Qh = Q"US". We assume that the lengths of
j=1

the sides of the polygon are given such that irregular hexagon grids only have a right

neighboring point or a left neighboring point emerging through the side of 2 when the
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Figure 2.3: Hexagonal grid on trapezoid.

center of the hexagon is % units away from this side. Accordingly, we shall call these

points right ghost points and left ghost points. Further, let Q*/*, Q" denote the set of
interior nodes whose distance from the boundary is % and the hexagon has a left ghost
point as shown in Figure 2.4 or a right ghost point given in Figure 2.5 respectively. We

also denote by Q** = Q*" JQ*" and Q% = Q™M Q*". Next, let

i k= 1,...,M’} (2.13)

_ T ,
Yo = 4 Ik = kT, ’C:M, k=0,...M 5, (2.14)
and the set of internal nodes and lateral surface nodes be defined by
Qlye = Q' x v, = {(x,t):xEQh, tEYT} (2.15)

S}%zthT(T:{(x,t):xeSh,te?T}. (2.16)

Let Q vy, = Q" x y; C Qy; and Q" = Q" x y; C QMy; and Q* 'y = Q* Ty U

11



Q*y, also Q¥ = Q' \ Qv We use the following notations:

Py denotes the center of the hexagon.

Patt (Py) is the pattern of the hexagon consisting the neighboring points P;,i = 1, ..., 6.

Inc denotes the incidence matrix related to the neighborhood topology of all the
hexagon centers.

As (K) present the eigenvalues Ay, s = 1,2, ..., N of real matrix K € RV*V,

Also
h 3 h 3
u];,jrl = M(XI_E,XQ‘th,t—i‘T), ulgjlzu(xl—i,)cz—\/?_h,t%—’t)
ullg:‘l = u(xl—h,xz,t—kr), ufg;“IZM(xrl-h,xz,t—l—‘c)
h 3 h 3
u];);i-l — u(x1+§,x2—§h,t+’c), u’;,:] :u(xl-l—E,XQ-l-\/T_h,l-l-’C)
wpt' = u(xixot+1), gt =u(poxa,t+1), (Pxat+1) €SE (217

where, the value of p=ux; — % if Py € Q*'y; and p=x; + 4 if Py € Q"™ as also given
in (2.29). Analogously, the values ”];’5 i=0,...,6 and u’I‘JA present the exact solution at
the same space coordinates of P; i = 0,...,6 and P4 respectively, but at time level 7.
. k+1 . k+1 .
Also we use the notations uh;],j, i=0,..,6, uh;PA, and u’,‘wpi, i=0, ...,6,u’fl7T7PA to
present the numerical solution at the same space coordinates of P;, i =0,...,6 and P4
: : k+3
for time moments ¢ + T and ¢ = kT, respectively. Further, fPO = f (xl,xz,H— %) and

1
for 2= f (Poxa,t + %) where pis as defined in (2.29).

For the numerical solution of the BVP we propose the following difference problem

12



Figure 2.4: The illustration of the solution uj;"'

and ”1;32 on the left ghost points.

k

k
u P,

Figure 2.5: The illustration of the solution uljgjl and u’,%s on the right ghost points.
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Difference Problem 1

@)hﬁu’;lj;l = Azt +y on Q% (2.18)

@} 1l = Aj 1y o+ Ej 10+ on Q" (2.19)
upe=0(x), t=00nQ" (2.20)

upr = (x,1) on Sk (2.21)

fork=0,...,.M' — 1, where

11
Vo= fn 2.22)
]
Vo= fy - fk+2, (2.23)
@ ! (— —(f) k1 _ ufgjl, (2.24)
Ak (1_20) o 6 -
h,»clxl = E—h—z Mpo‘i—ﬁi:zlupi, ( . 5)
oF k+1 l+7_('0 k+1_£( ( + l—l—T)
h,Tu - T 3h2 MPO 3h2 u p n7-x27
3 3
+u(p,x2+\/7_h,t+’c) +u(p,x — gh,t—l—‘c)) , (2.26)
. 20 V3 . 3
Eh,‘Cq) = 9h (¢(p7x2+ 2 h7t+1)+¢<p7x2_7h>t+1)

. V3 N V3
+¢(p7x2+7h7t)+¢(p7x2_ThJ)
1 0 N 1 8w ~
+ <_ +—) O(p,x2,t+71) + (_&JFW) 0(p,x2,1), (2.27)
1 7o ® V3
* ko k
Pt = <rm)“’)o+m<“@’xz+7h’f>

3
+M(p,)€2—gl’l,f)—l—u(P—f—T],XQ,f)) ’ (228)
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and,

(2.29)

2.3.1 The Stability and Convergence Analysis for Difference Problem 1

Theorem 2.1 (Theorem 2 of Buranay and Nouman [22]): The order of
approximation of the implicit scheme in Difference Problem 1 is O (h2 + ’cz).

Proof. (Proof of Theorem 2 of Buranay and Nouman [22]) Let (x1,x,7 +T) € Q*Y; be
the center of the hexagon (Fy) at time moment ¢ + T. By the continuity of the solution
u, the heat equation (2.9) is also satisfied at the boundary points (p,x2,# + 5) denoted
by P4. Therefore, we give O (h2 +‘|:2) difference approximation of the heat equation

(2.9) at (p,x2,t+75) when p = x| — % as

k+1 k
u —u 2
h>T7PA h717PA _ k+l k+] k+l
T = 0 (ﬁ (uh7’C,P0 - Zuh,‘C,PA + uh,‘C,PQ
+ 2 uk+1 _2uk+1 —|—uk+1 +£ uk —2uk —i—uk
3h2 h,T,P h,T,Py h,T,P; h2 h,t,Py h,T,Py h,t,.P>
2 k 2 k k k+% 2.30

+ 32 Upzpy — “Up g py T Unzpy +fPA : (2.30)

Using the equation (2.30) the following equation can be derived for the sum of the

approximate solution at left ghost points P, at time moments 7 + T, and t = kT

h? 8 1 1 h?
WLk _ B TS S N S S Wy
h7T7P2 h’T7P2 o 2"50) h7T1PA 3 h7T7PA h7T7P0 3 h7T7P1 3 h7T1P3 ZFC(D h7T7PA
8 k k 1 k 1 k h2 +l
2
t3Uher, ~Unap T 3Uhap T 3Mhan T 50 h (2.3

Analogously, we use the following difference approximation of the heat equation (2.9)

at the boundary points (p,x2,7 + 5) when p = x| + %

15



k+1 k
u —u 2
h,T,Pa htPa k+1 k+1 k+1
T = o (h2 (uh,r,Po B 2uh,’E7PA + uhﬂ,PS

2 (k1 Il kel 2 (x k r

+ W (uh’T’P4 N 2uh7T7PA + uh7T7P6> + ﬁ (uhvtvp() o 2uh7T7PA + uh,T7P5>
2 [k k k k+3

T3 (“hm — 2z p, uh,npé)) +/fp, *- (2.32)

with order of approximation O (h* + %) . The sum of the approximate solution at right

ghost points P5 at time moments 7 + T, and ¢ = kT is obtained from (2.32)

2 2
= i, 8 ki [RE NSRS =

k+1 k _ . - . ot
Uhaps TUhaps = prpther T 3Mheey T Uhen T 3Mhan T 31k T o thaks
8 4 " 1, 1, W gyl
2
T3Una ey~ hapy T U T 3R T 5 Ry (2.33)

Using (2.31), (2.33) and (2.18) we obtain the scheme (2.19). Let the error function be

€1 = upr — u. Then g, ¢ satisfies the following difference problem

Oneey ! = Ancel o+ P on Q¥ (2.34)
@& = Ajigh o+ W5 on QM (2.35)
e = 0,1=00nQ, (2.36)
gnr = Oon Sk (2.37)
where,
W= At — 0 1y, (2.38)
P = At — 0 Myt (2.39)

Let (:);,7T be the operator that coincides with @, 1 for the points in QOhYT, and coincides
with G)}';’T for the points in Q**y;. Analogously, let /A\h7T be the operator that coincides
with Ay, ¢ for the points in Q% and coincides with A}"m_ for the points in Q*y;. Further
Pk denotes the truncation error W% and W& for the points belonging to Q%y; and Q*y;

respectively. Then the system (2.34)-(2.37) can be given as

16



Oneeht! = Apcef+PFon Oy, (2.40)
e = 0,t=00nQ (2.41)
g = Oon Sk (2.42)

Using Taylor’s expansion around the point (xl,xz,H— %) and from the assumption
6+0€,3+% — . . . Tk 2 2
that u € C, (Or), we obtain the approximation order to be ¥* = O (h* 4 1?).

Thus, the approximation order for the implicit scheme in Difference Problem 1 is

O (h*+1%). O

Next we analyze the stability for the Difference Problem 1 by using spectral method.
Let us label the interior grid points in Q"y; by Q i, J=1,2,...,N at every time level
along spatial variable x; (lexicographical ordering). The neighbouring topology of all

hexagon centers can be given by the set
T ={(i,j) : if the grid Q; € Part (Q;), i # j,1 <i,j <N}, (2.43)

and shows the sparsity pattern of the incidence matrix /nc. Thus, the entries of the

matrix Inc € RNV are

0if (i,)) ¢ T,

1if (i,j) € T.

The algebraic linear system of equations obtained by the Difference Problem 1 can be

given in matrix form:

KUM= SUF 41 (F“% + Gk*) : (2.45)

17



where, K, S € RV*N are given as

7T 7T
K= (1+ﬁ3), S= (l—ﬁB), (2.46)
and
1
B=D;—lnce RN*N. (2.47)

Here U1, U*, F¥+2 and G are vectors of order N and F¥*2 and GX* are obtained
by evaluating the heat source function in (2.22), (2.23) at time level (k + %) T and the
boundary and initial functions in Difference Problem 1 (2.18)-(2.21) respectively. Also
k* denotes that values at time moments 7 + T, and ¢ = kT are used and / is the identity
matrix, D is a diagonal matrix with entries

2if Q; € Q¥
dyjj= ,j=1,2,...,N. (2.48)

Tif Qj e Q'
Lemma 2.1 (Lemma 6.2 of Axelsson [31]): Let K = [k;;] be N x N matrix with

ki; <0 for all i # j and k; > 0. If K is strictly diagonally dominant then K is an

M-matrix.

Theorem 2.2 (Theorem 4.9 of Axelsson [31]): If K = [k;;] is strictly diagonally
dominant or irreducibly diagonally dominant then K is nonsingular. If in addition its

diagonal entries are positive i.e. k;; > 0 then Re(A; (K)) > O for all eigenvalues A of

K.

Lemma 2.2 (Lemma 5 of Buranay and Nouman [22]): a) The matrix B in (2.47) is

symmetric positive definite matrix.

18



b) The matrix K in (2.46) is nonsingular M-matrix and is also symmetric positive

definite matrix.

Proof. (Proof of Lemma 5 of Buranay and Nouman [22])

a) Using (2.43) if Q; € Part (Qj) for i # j, 1 <i,j < N this implies that
Q; € Patt (Q;) giving Inc” = Inc. Thus, B is symmetric and since hexagonal grid is
connected grid in a simply connected polygon Q, using (2.47) one can easily show
that the matrix B is irreducibly diagonally dominant matrix with b; >0, i = 1...,N.
Hence by Theorem 2.2, B is positive definite matrix.

b) The main diagonal entries k; > 0, i = 1,...,N and k;; < 0 for i # j, and
I <ij <N. Since ki > 1%-?4 |kij| for all i = 1,2,..,N, the matrix

=1, j#i

K=1I+ %Dl — %I ne is strictl; dizigonally dominant matrix and Lemma 2.1 implies
that K is an M-matrix and it’s inverse K~! > 0. Also KT = <I+ %B) ! =K and K is
symmetric real matrix. Therefore, all eigenvalues A of K are real. Using Theorem 2.2

we obtain that Re(As(K)) = Ag(K) > 0 for all eigenvalues Ay of K thus, K is

symmetric positive definite matrix. [

Theorem 2.3 (Theorem 6 of Buranay and Nouman [22]): The implicit scheme of
the Difference Problem 1 is unconditionally stable and the solution uy, ; converges to

the exact solution u of (2.9) - (2.11) with order of accuracy (h2 + 1:2) .

Proof. (Proof of Theorem 6 of Buranay and Nouman [22]) On the basis of Lemma
2.2, the matrices B and K are symmetric and positive definite matrices. Since K is

symmetric K~! is also symmetric and the eigenvalues of K~! satisfy 0 < A (K _]) <

1

1+37 , min, (A+(B))

< 1 for 2% > 0 and we get |K~1||, < 1. Also
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(k's)" = sk'= (1-%3) <I+%B>_l

= (Ii ) (1- %3) Adj(1+ %3)

_ <1+°)—2TB) I——(I+w—;B>
h det(1+9B) * N
T . T
(528)Adi (1+757B)]
ot \ ! Wt 1
- (1+ ﬁB) (1 _ ﬁB> —K's. (2.49)

where, det (I + %B) and Adj <I + %B) are the determinant and the adjoint matrix
of K =1+ %B, respectively. Thus K~'S is real symmetric matrix therefore, the

eigenvalues Ag (K *15) are real. Using Gershgorin Theorem for the estimation of the

spectrum of the matrix B gives
0 <Ay (B) <4. (2.50)

Since B is symmetric positive definite matrix, it follows that B = PTDP with P
orthogonal and D diagonal matrix of eigenvalues As(B). Then K =1+ 7B =
~1

PT(1+%D)Pand K~ = PT (1+%D)  Pand

Kls—p (1+ﬁ1)> PP (I—ﬁD)P 2.51)

~1
that is the matrix K—1S is similar to (I + %D) (I — %D) so from (2.49) we get

xs(<l+%1)>l (I—%D))‘

IK71s],=p (K1) = max

1<s<N

1 —% min (As(B))

<5< ot
< — <1 for —= > 0. (2.52)
Lot p
L+ min, (A (B)) "

Using (2.52) and by induction follows that
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o, < st o el (] + o)
2 2 ? ’
k
o K+l v
< o Hzﬂk;o(HF : 2+HG 2). (2.53)

Since K~'S is real symmetric matrix it is also normal matrix hence, Von Neumann
condition for stability is sufficient as well as necessary for stability (see Lax and
Richtmyer [32]). Therefore, equation (2.53) yields that the implicit scheme in
Difference Problem 1 is unconditionally stable. The error function €, ; satisfying

(2.40)-(2.42) can be given in the matrix form (2.45) at time level t = (k+ 1) T as
KEM! = SEF 1 7Pk, (2.54)
where, E is vector of order N. Thus, from Theorem 2.1 and (2.53), (2.54) we have
k+1 : k' 2, 2
E H < Hlp H < (h , 2.55
s v e

where, ¢ is positive constant independent from /4 and T and depends on the bounded

derivatives of the solution u of the form (2.1) of at most sixth order in the truncation

A~

error Wk as given in (2.38) and (2.39). Let
He’,ﬁl = max ‘eﬁl = ||£*+1]|.., then on the basis of norm concordance
CNC o f=(r )
and using (2.55) we get
ek = |||, 01 (2. (2.56)

Therefore, the solution uy, ; converges to the exact solution u with order of accuracy

(h*+12). u
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2.4 Fourth Order Accurate Implicit Difference Problem

Letf"+1 f(x1,x2,647), f"“

defined in (2.29). Analogously 05

We give the following difference problem for the solution of the given BVP1.

Difference Problem 2

f(p,x2,t+7) and fPA f(p,x2,t) where, pis as

k+1 _ 0%
f

ax' (x1,x2,t41)

and 82 fk-H

2 .
X1 ,xz,t—i-r)

Ouauf ! = Anguth .+ on QVy, (2.57)
x k+l . Ak Tk =~ xh
@hﬂuh’,c = Ah,‘c”hﬂ + Eh,‘Cq) + Y on Q Yz, (258)
wr = @), t=00nQ" (2.59)
upr = 0(x,z) onS% (2.60)
k=0,...M" —1, where
i|‘“j — fk+1 hz <az fk+l+az fk-i-l>7 (261)
~ k41 1 k+1 k+1
Vo= 9610)f %mfPA L
1
+16h2 (az fk+1+82 fk+1) (262)
~ 3 4w
@ k+1 — e e k+1 = 263
it (45r h2)”P0 * 241 3h2 Z; (263)
Al = 2+ iuk (2.64)
T4 T 4 '
~ 17  l4m 1 20 V3
x  k+1 k+1
= (=——+=% — ~ht
O ot (241-+ 3h2)”1’0 +(24r 3h2) (”(p’x” y i)
3
+u(p,xy — Th,t—kt) +u(p+n,x2,t+’c)) , (2.65)
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- 1 4w \/§ \/§
B = [ .2® V3 3
< ( 36'c+9h2) (¢(P,X2+ > h,t +7) 4+ 0(p,x2 5 h,t+r)>

(T o) Mot 19+ 5 <¢<ﬁ,xz+§h,r>

18t = 9n? 361
ol ?m)) - 0 266
/~\Z’Tuk = %ulﬁo + % (u(p,xz + ?h,t)
+u(p,x2—?h,t)nLu(p—H],xz,t)) , (2.67)

and p, p,m are as defined in (2.29).

We remark that  in (2.61) can be taken as (see also Lee et al. [19])

k+1 k+l
¥ = 33, Z . (2.68)

2.4.1 The Stability and Convergence Analysis of Difference Problem 2

Theorem 2.4 (Theorem 7 of Buranay and Nouman [22]): The order of
approximation of the implicit scheme in Difference Problem 2 is O (h4 + ’c) .

Proof. (Proof of Theorem 7 of Buranay and Nouman [22]) Let (x1,x2,¢ 4+ 1) € Q"
be the center of the hexagon (Py) at time level t + 7. The heat equation (2.9) is also
satisfied at the boundary points (p,x2,7+T) and (p,x2,t) where, p = x; — % We give

the difference approximation of the heat equation (2.9) at these boundary points (Py4)

k+1 k

A2 B Y N (e B 7SS NP S R o
T - h2 h,t,Py /’l T,Py h,t.P>
n Sl ) SETRPY S L) ) A 269)
342 h,t,Py h,T,Py h,t,P3 : :
k+1 k
u —u 4
h,T,Py htPy k k k
T = 0 (h2 (u/’l T,Py 2”/’1,’C,PA + uh,’C,Pg

4 k k k k
3h2 <u/’l T,Py zuh,TjPA + uh,’C7P3> ) + fPA : (270)
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respectively, both with order of approximation O (h2 —H‘). For the left ghost points

from the equation (2.69) we get.

8 h? 1
B N . K Y Ry
haTaPZ 4Tm 3 h7T7PA 410) h’T7PA haT7P0 3 h7T7P1
1, h?
I == L =5
3 Up 7 ps 40)pr , 2.71)
and from (2.70) results
2 2 2
uk :h_uk—i—l §_h_ uk ok _luk _luk _h_fk
h1T7P2 41(0 h717PA 3 4TO) h7T7PA h7T7PO 3 h7T7P1 3 h7T7P3 40) PA :

(2.72)

Analogously, when (x1,x2,¢ 4 1) € Q*"y, for the right ghost points approximation we

obtain
2 2
uk+l — h § uk+1 - h l/lk . uk+1 . luk+1
haLPS 41()0 3 h7T7PA 4Tm haT7PA h,T7P() 3 h,T7P4
1, h?
k1 T k]
55 g FEH 2 (2.73)
Mk — h_uk+l + § . h_ l/lk . l/lk . luk
h,t.Ps 4Tm h,T,Py 3 4Tm h,T.Py h,t,Py 3 h,T,Py
1, o,
——u ——fp.. 2.74
3 h,T,Pﬁ 4_0)pr ( )

Using (2.71)-(2.74) and (2.57) we obtain the scheme (2.58). Let the error function be

€yt = upr — u. Then g, ¢ satisfies the following difference problem

Oneehy' = Anseho+Phon Q7 (2.75)
@) &y = Aj.gho+ P on QM (2.76)
e = 0,t=00nQ 2.77)
g = OonSk, (2.78)

where,
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P = Ayt — O 1, (2.79)

P = A -0 T g (2.80)

Let @m be the operator that coincides with @hﬂ- for the points in Q%y,, and coincides
with (:);‘l . for the points in Q.. Analogously, let /A{h’T be the operator that coincides
with /N\h’T for the points in Q%" and coincides with /N\;"l . for the points in Qv Also
~k

¥ denotes the truncation error ¥X and W% for the points belonging to Q¥y; and Q*vy,

respectively. Then the system (2.75)-(2.78) can be given as

= = =k

@hﬂeﬁl = Ap<Ep+% on QM (2.81)
ene = 0,1=00nQ, (2.82)
gne = OonSh. (2.83)

Using Taylor’s expansion at the point (x,x2,7+7T) and from the assumption that u €
CS:OC’H% (@T) we obtain ‘?’ =0 (h4 + ‘c) order of the approximation. Therefore, the
order of approximation of the implicit scheme in Difference Problem 2 (2.57)-(2.60)
is O (h*+1). O
The algebraic linear system of equations obtained by the Difference Problem 2 can be

presented in matrix form
KUM= SU 42 (F 461, (2.84)

where, K, S € RV*VN are given as

~ ~ 1 0T ~\ ~ ~ 1

K = (D1 + ﬁlnc—I- ﬁB) , S = (D1 + ﬁlnc) , (2.85)
~ ~ 2

B = D,— gInc e RV, (2.86)

F* and G*" are vectors of order N obtained by evaluating the heat source function f
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in (2.61), (2.62) and the boundary and initial function values in Difference Problem 2
(2.57)-(2.60) respectively. Also k* denotes that values from (k + 1)t and k7 are used

and 51 ,52 are diagonal matrices with entries

% ifQ;€ Q' ‘
dy i , J=1,2,...,N, (2.87)
3JJ .
\ 5_471 lf QJ S Q*hYT
(
4 if QJ € QOh’YT ‘
djj . , , J=1,2,..,N, (2.88)
L 3 if Qj € Q"'y

respectively.

Lemma 2.3 (Lemma 8 of Buranay and Nouman [22]): The matrices K , Sin (2.85)

and B in (2.86) are symmetric positive definite matrices.

Proof. (Proof of Lemma 8 of Buranay and Nouman [22]) The matrix S s
nonnegative and strictly diagonally dominant matrix and B is irreducibly diagonally
dominant matrices with positive main diagonal entries. Since Inc is symmetric we get
§,§ are also symmetric. = Thus, Theorem 2.2 implies that §,§ have positive
eigenvalues. Therefore §,§ are symmetric positive definite matrices. Using K =
S+ %g and that the sum of two symmetric positive definite matrices is symmetric

positive definite gives K is symmetric positive definite. [

On the basis of Lemma 2.3, S is invertible and algebraic linear system (2.84) can be

rewritten as

AU = UFps! (ﬁ"*+5’<"), (2.89)
~ OT~ |~
A = 1+5;57B (2.90)
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Lemma 2.4 (Lemma 9 of Buranay and Nouman [22]): The matrix A in (2.90) is

symmetric positive definite.

Proof. (Proof of Lemma 9 of Buranay and Nouman [22]) S=1— 1—16§ and B have the
same basis vectors spanning their eigenspaces therefore on the basis of Lemma 2.3
and using that every real symmetric matrix is orthogonal equivalent to a real diagonal
matrix we have S = PTA|P and B= PTAyP where A; and A, are diagonal matrices and
P is orthogonal matrix of which the columns are the normalized basis vectors spanning

the eigenspaces of S and B. From AI_IAQ = AZAI_] it follows that
-~ ~ AT
S1B= (PTA;IP) PTAP = PTAAT'P = (S’IB) . 2.91)

So S7IB is symmetric, thus S~!'B commutes. Since the product of two symmetric
positive definite matrices that commute is also symmetric positive definite (see

Axelsson [31] and Taussky [33]) gives A (§_1§> >0 as:

~1 ~1 ~ 1

=B RS 'B2B?, (2.92)

“

o,
I

“

3!

=
|

N T~ . N it - B
that is S~'B is similar to the symmetric matrix B2S~!B2. Using that

~] ~

TR Bix=78":>0, (2.93)

for every z = Bix # 0. Thus, the eigenvalues A <§%§’1§%> > 0 implying that

A <§—11'§> > 0 and A, (Z) >0. 0

Theorem 2.5: Theorem 10 of Buranay and Nouman [22] The implicit scheme of the
Difference Problem 2 is unconditionally stable and the solution u), ; converges to the

exact solution u of (2.9) - (2.11) with order of accuracy O (h4 + ’c) .
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Proof. (Proof of Theorem 10 of Buranay and Nouman [22]) using (2.90) and Lemma

2.4 implies that

- 1
0< A (A 1) < g (M (g-@)) <1, (2.94)

<s<N

for % > 0 and since A is symmetric matrix A~! is also symmetric matrix, therefore

Hg_' H2 < 1. Also using (2.85)-(2.90) and the Gershgorin Theorem to estimate the
= < 2. Multiplying

®| @),

both sides of (2.89) by A~'and taking second norm and by using norm properties and

spectrum of B we get 0 < Ay (§> <8, and

induction gives

IN

ot = el vzl +le )

k ~I*
||U0H2+2fcklz1 (HFk

IN

Nk/*
. 2.
) e

Hence, the inequality (2.94) gives the Von Neumann necessary condition for stability.
Since A is real symmetric matrix it is also normal matrix and the condition (2.94) is as
well as the sufficient condition for stability (see Lax and Richtmyer [32]). Therefore,
equation (2.95) yields that the implicit scheme (2.57), (2.58) is unconditionally stable.
The error function €, ; satisfying (2.81)-(2.83) can be given in the matrix form (2.89)

at time level 7 = (k+ 1) T as
~ =k
AEM = R 15—y (2.96)

where, E is vector of order N. Thus, from Theorem 2.4 and (2.95), (2.96) we have

~K
¥ || <o (h*+1), (2.97)

k
Ek+1H <2t
AW

where, ¢; is positive constant independent from % and T and depends on the bounded
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derivatives of the solution u of the form (2.1) of at most sixth order in the truncation
~k

error P as given in (2.79) and (2.80). Using norm concordance and the inequality
(2.97) we get

Kt 1
thx

< || < 2 (i +7). (2.98)

Hence, the solution uy, ; converges to the exact solution u on the hexagonal grids with

accuracy order of (h4 + ’L') . [
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Chapter 3

IMPLICIT METHOD OF HIGH ACCURACY ON
HEXAGONAL GRIDS FOR APPROXIMATING THE

SOLUTION TO HEAT EQUATION ON RECTANGLE

3.1 Introduction
In this chapter, we give a highly accurate two layer Implicit method on hexagonal grids
for approximating the solution to first type boundary value problem of heat equation

Ju (azu d%u
=

o a_;c%+a_)c§> —bu+ f(x1,x2,1) 3.1

on rectangle where, ® > 0, b > 0 are constants. For the hexagonal grids that have
centers % units away from the sides of the rectangle at time moment ¢, which has
a neighboring point in the pattern emerging through these sides a special scheme is
given. In Section 3.2, we give the boundary value problem of 1st type for the heat
equation in (3.1) on a rectangle D under the assumption that the heat source and the
initial and boundary functions are given such that on Q7 = D x [0,T] the solution
belongs to the Holder space CSj%H% (@T) , 0 < a < 1. Hexagonal grid structure and
basic notations are also given. In Section 3.3, a two layer symmetric implicit difference
scheme with 14-point on hexagonal grid is proposed and it is proved that this scheme
is unconditionally stable and the solution of the given difference problem converges

to the exact solution with O (h4 —1—12) order of accuracy on the grids. Here /4 and ‘/7§h

are the step sizes in space variables x| and x, respectively and T being the time step

30



size. Chapter 4 presents the numerical experiments justifying the obtained theoretical
results. Three test problems are constructed of which for the Example 4.4 and Example
4.5 the constant b in (3.1) is zero and also the exact solution of Example 4.5 is not
given, and in Example 4.6 the constant b is nonzero. Moreover, for Example 4.4
and Example 4.5 (b = 0), the obtained results are compared with the numerical results
obtained by the two layer implicit scheme with 14-point on rectangular grids derived by
using the 9-point scheme approximation to the Laplacian operator Samarskii [34]. This
scheme is also unconditionally stable and has the order of convergence O (]h|4 +’C2>
where, h = 4 /h% + h% and A and h; are the step sizes along the spatial variables x; and
xp respectively. We applied incomplete block preconditioning (see Concus et al. [35],
Axelsson [36], and Buranay and Iyikal [37]) for the conjugate gradient method to
solve the obtained algebraic system of equations in all the examples. Accordingly, it is
numerically shown that the proposed scheme is computationally more economical than
the 14-point implicit scheme on rectangular grids when the block preconditioning of
the conjugate gradient method is used, and approximates more general heat equation
in the form (3.1) when b is positive constant as well.

3.2 First Type Problem on Rectangle and Basic Notations

Let D = {(x1,x2):0<x; <a;,0<xy;<ay} be an open rectangle where, ay is
multiple of V/3 and let v j» J=1,2,3,4, be its sides. Further, let § = '61 V; be the

j=

boundary of D and denote by D = DUS the closure of D. Let Q7 = D x (0,T) , with
lateral surface Sy more accurately the set of points (x,¢), x = (x1,x2) € S and
t € 0,T] also Q7 shows the closure of Q7. We give the boundary value problem of

first type for the two space dimensional heat equation BVP2:

31



o \F_

Figure 3.1: Hexagonal grid structure and ghost points on rectangle

ou %u  d%u

5 = 0} <ﬁ + %) —bu+ f(x1,x2,¢) on Qr, (3.2)
u(xp,x2,0) = @(x1,x) on Q, (3.3)
M(X1,)C2,I) = ¢(x17x27t) on ST; (34)

where, ® > 0 and b > 0 are constant. We assume that the heat source function
f(x1,x2,¢) and the initial and boundary functions @(xj,x;) and ¢ (xy,x2,7)
respectively, are given such that the problem (3.2)-(3.4) has unique solution u
belonging to the Holder class ija’ﬂ% (Or) . Let h > 0, with h = a; /N, where N is

positive integer and assign D’ a hexagonal grid on D, with step size h, defined as the

set of nodes
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l'/_j/ B \/§(ZI+]/)

Dt = {x:(xl,xz) €D:x| =

i’:1,2,...;j’:0i1i2,...} (3.5)

Let Dif,j = 1,...,4 be the set of nodes on the interior of v; and let ﬁﬁ? =V, 1NV, be
4 PUR—
the j —th vertex of D, S" = | (v; UD?), D" = D"US". Further, let D*'", D*'" denote
j=1
the set of interior nodes whose distance from the boundary is % and the hexagon has

a left ghost point or a right ghost point respectively, emerging through the side of the

rectangle. We also denote by D*" = D*'" U D*" and D" = D"\ D*".

Next, let the set of internal nodes and lateral surface nodes be defined by

Dy, = Di'xy = {(x,t) :xeD" re YT}, (3.6)

sh = th?T:{(x,t):xGSh,tE?T}. 3.7)

respectively, where y; and ¥, are same as given in (2.13) and (2.14) respectively. Let
Dy = D x v c DM, and D'y, = D" x y. C D' and
D'y, = D*'y U DMy, also DYy, = Dy \D*y;. Figure 3.1 shows the hexagonal
grid covering of the rectangle D for three time levels t — T, and 7 + 7.

3.3 Implicit Method of High Accuracy for the Solution of Problem
3.2)-34)

Let Py denote the center of the hexagon and Part (Py) denote the pattern of the hexagon
consisting the neighboring points P;,i = 1,...,6. Also u’;,jl denotes the exact solution
at the point P; and ullijl denotes the value at the boundary point for the time moment
t + 7T same as given in (2.17). Analogously, the values u’l‘,l_ i=0,...,6 and u’;)A present

the exact solution at the same space coordinates of P, i = 0,...,6 and P4 respectively,

but at time level t = kt. Further, ul;lj;./lﬂ, i=0,..,6, ul;:;lPA, and ”IZ,r,P,-’ i=0,..,6, ul}‘%PA
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present the numerical solution at the same space coordinates of P;, i = 0,...,6 and
1

P4 for time moments 7+ T and ¢ = kT, respectively and f£0+2 = f(x1,x2,t+3), and

ka f(p,x2,t + 7). For the numerical solution of BVP2 (3.2)-(3.4) we propose the

following difference problem

Highly Accurate Difference Problem (HADP)

Opttyt = Ajqity .+ on Dy, (3.8)
®h ity = Aj ity o+ Encd+y on DMy, (3.9)
e = @(x1,x),0=0,onD", (3.10)
upr = O(x1,x2,) on Sk, (3.11)

k=1,2,....M" —1, where

1 k-+ +l
vl o= fpoz-l-—h2<82f 2+a§2f£ 2), (3.12)
1 Kb\ s+l i)
2 _ k+1 k o\ 2 2
Vo= 96'c(n<f ~1h) (6 96m>f‘];f‘ +in
1 1
T (82 fr, 402 fk+2) : (3.13)
3 20 3 1 ) b
o = (222, 2, k1 L I k-+1 314
hat T T8 T\ a3 T s ,-;MP" G194
3 20 3 1 o b\
ANad==-Z—b)ib +(—4+———= K 3.15
byt (41 28 )”P0+ 24t 3248 l.;”f’l (3.15)
17  To 17 1 ) b
@2 k+1 — =) k+1 T 4
. oh Tl 2ar 32 T ag LGV TERIVT:

3
;h,t—l—r) +u(p,x, — gh,t—i—’c))

(u(p+n7x27t+T) +M(p,x2 +
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1 20 b\(.. 3 A
e - (L 20 b V3 V3
h7‘C¢ ( 36’C+9h2 72) <¢(p7x2+ ) h7t+T)+¢(p,X2 > h,l’—l—’C))

1 20 b N V3 N V3
B Vo, Ay
+<(36T+9hz )+ SR+ P~ ,>)
+ L_l_g_m_ﬂ_i_ﬁ_ h2b2 q)(’\x t-i-T)
18t 9n2 48wt ' 36 192w ) TP
1 8w Kb b K
S (L e T 5 X0t 3.16
(181: o2 " 18 36+1920)> 0(p.x2,1) (3.16)
17 7o 17 1 © b V3
Ak = (L0 Ve (22 Vo
hytt (241 32 48 )”P0+ ar T3 ag) | wpat )
3
+”(P,X2—ghﬁ)ﬂLu(PﬂLT],Xz,t)) (3.17)

and p and p are same as given in (2.29).

3.3.1 The Stability and Convergence Analysis for HADP (3.8)-(3.11)

Theorem 3.1: The order of approximation of the implicit scheme (3.8), (3.9) in HADP
is O (h*+1%).

Proof. Let (x1,x2,¢+1T) € D"y, be the center of the hexagon (Py) att = (k+ 1)1, k =
0,...,M —1 time levels. The heat equation (3.2) is also satisfied at the boundary points
(P,x2,t + 5) denoted by Py. Therefore, we give O (h2 + ’L'2) difference approximation

of the heat equation (3.2) at (p,x2, +5) when p = x| — g as

k+1 k

AN RN O O S NP W S S o
"C o hz h7TaPO hvtaPA h717P2

2
k+1 k+1 k+1
t3a (”h,r,Pl — 2y p, F ”h,r,&)
2 k k k
+ﬁ (”hmPo — 2 p, t uhsz)
2 k k k
+ 3h2 (uha’LPl - 2uh7’t?PA + uhaT7P3>

1 k+%
—3b (s, +then, ) + 15, 2 (3.18)

Using the equation (3.18) the following equation can be derived for the sum of left

ghost points P, at time moments 7 = (k+ 1)1, and r = k<
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2 1
k1l ok g 8 gk 1 Lo
Upzp, T Uhapy Unapy T 3Mna ey Mnap T 3Mhap

210
Ly Wy 8 & k L«
_guh:;,Pg, - %uh,T,PA + guh,’C,PA - Mh,’C,PO - guh,’C,Pl
1y Wb (1 W k)
3 Mhps T 10 (uh,‘c,PA + ”h,r,PA) - %fPA g (3.19)

Analogously, we use the following difference approximation of the heat equation (3.2)

at the boundary points (p,x2,7 + 5) when p = x| + %

k1 ok
uh,T,PA uh7T7PA I 0) 3 uk+1 _ 2uk+1 _|_ uk+1
"c - h2 h7T7P0 h7T7PA h7T7P5
2
k+1 k+1 k+1
+ 3h2 <u/’l,’C,P4 - Zuh,’C,PA + u/’l,T,Pﬁ)

2
k k k
t2 (”h,r,Po —2upqp, t+ ”h,r,Ps)

2 k k k
T 32 (”h,T,P4 —2uprp, uh7T7P6>

1 k+1
_Eb (M]h(j;}PA + ul’;mPA) +fPA . (3.20)

with order of approximation O (h2+1:2). The sum of left ghost points Ps at time

moments f = (k+ 1), and ¢ = k7 is obtained from (3.20)

2 8 1 1
K1,k b o 8 g L 1
Uhzps TP = prgthaks T 3Mhney T Mhan T 3 e T 3 R,
2
L S WU
210) uhytaPA 3 uhvtaPA uh7T7P0 3 uh7T7P4 3 uh7TaP6
h2b W kel
k+1 k +3
+E <uh7T,PA + uh,T,PA) - %fPA ° (321)

Further we give the following difference approximation of the heat equation (3.2) at

(B =~ =~ h
the boundary points (p,x2,t +1) and (p,x2,t) where, p = x1 — 5.
k1 k
“napy Mok (A (el ki e
"C o h2 uhvtaPO ha‘chA hvraPZ
n A (L gk e
3p2 \UhnPr hPa " ThitPs
k+1 k41
b, (3.22)

36



k1 k
u —u 4
h,T,Py htPy k k k
_hvPa  ThUPA ( 2 (uh wpy — 2Upop, T ”h,r,P2>

4 k k k
+ 352 (uhmPl B zuhmPA + ”h,r,P3>

—bujy . p, + 5, (3.23)

respectively, both with order of approximation O (h2 —I—’C). From (3.22) and (3.23)
we get the difference of the approximate solution on the left ghost points P, at time

moments ¢ = (k+ 1) T, and t = k7 as;

Lk B S T B S TR B S5 Ry 3
ht Py h,r,PZ - h TP 3 h,T,Py 3 h,t,P; 3 h,T,Py
1 1 8
k k k k
U p,t 3%h,P + 3UhaPy T 3Ry
h%b h?
K1k N e gk
i (e —the,) = 4 (f 7). G

Analogously, when (x1,x,¢ +1) € D*"y; for the difference of the right ghost points

approximation we obtain

Lk N oS O < T W o5 Ry o
h,T,Ps ht,Ps h TPy 3 h,T,Ps 3 h,T,Py 3 Uy TP
k 1 k 1 k 8 k
+uh,‘[,P0 + §uh,‘C,P6 + guh T P4 - guh T,Py
Rb [,
+1 k k+1 k
P (e k) (f 1), G23)

Using (3.19), (3.21) and (3.24),(3.25) in (3.8) we obtain the scheme (3.9). Let the error

function be €, 1 = uj, ; — u. Then g, ; satisfies the following difference problem

@t = Apcgh+¥ on Dy, (3.26)
®h it = Aj&h .+ W on Dy, (3.27)
€e = 0,6=0,onD" (3.28)
g = Oon Sk (3.29)

where, P! = A}muk - ®f11,r”k+l +y! and ¥? = A%_‘Tuk — G)ituk+1 +y2.  Using
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Taylor’s expansion around the point (x1,x2,7+ %) and from the assumption that
y P |y 2 P

ue C)f;r(x’3+7 (@T) , we obtain ¥! = 0O (h4 —|-12) and ¥2 = 0 (h4 -1-12) accuracy of
the approximation. O

Next we analyze the stability for the HADP using spectral method. The algebraic linear

system of equations obtained by HADP can be given in matrix form:
KU = KUR o (FE 4+ GY)), (3.30)

where, K1, K> € RV*N given as

®T T
K = (sl +ﬁ52> Ky = <S1 —ﬁ52>, (3.31)
1 bh?
S = Di+glne, Sy=B+--C (3.32)
1 1
B = Dz—glnc, C:D3+Elnc (3.33)

where Inc is the same as give in (2.44).

Also F¥" and G¥ are vectors of order N obtained by evaluating the heat source function
fin (3.12), (3.13) and the boundary and initial function values in HADP (3.8)-(3.11)
respectively and D1, D, D3 are diagonal matrices with entries

2ifQ; e D%y
dijj = , J=1,2,...,N, (3.34)

if Q; € DMy,

2if Q; € DYy,
. j=1,2,...,N, (3.35)

TifQ; € D™y,

dajj —
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d3jj — ) .]: 1727'-'7N1 (336)

respectively.

Definition 3.1 (Definition 4.2 in Axelsson [31]): A matrix K = [k;;] € RV*V is said
to be reducible if there exists a nonempty subset S € L = {1,2,..., N} with § # L, such
that g; ; = O for all index pairs (7, j) where i € S and j € L\S. A matrix is said to be

irreducible if it is not reducible.

Definition 3.2 (Definition 4.3 in Axelsson [31]): A directed path is said to be strongly

connected if to each ordered pair of disjoint points P;, P; there exists a directed path in

\

the graph, P,'OPI';, P, Py,....,

. P with ig = i,i, = j.
Definition 3.3 (Definition 4.4 in Axelsson [31]): The matrix K = [k;;] € RV*V is said
N
to be strictly diagonally dominant if |k;| > c; = Y }ki j| ,i=1,2,...,N and irreducibly
j=1
i#J
diagonally dominant if A is irreducible and i) |k; >|6;,i = 1,2,...,N, ii) |k| > o for

at least one index k.

Theorem 3.2 (Varga [38]): A matrix K is irreducible if and only if its directed graph

is strongly connected.

Lemma 3.1: a) The matrix Si,in (3.32) and the matrices B and C in (3.33) are
symmetric positive definite matrix.

b) The matrix K; in (3.31) and $7 in (3.32) are symmetric positive definite matrices.

Proof. a) Using (2.43) if E; € Patt (EJ) for i # j, 1 <i,j,< N this implies that
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E; € Part (E;) giving Inc” = Inc. Thus, S1,B, and C are real symmetric matrices
hence the eigenvalues of S1,B, and C are real. Also because hexagonal grid is
connected grid in the rectangle D, using (3.33) and Theorem 3.2 one can easily show
that the matrix B is irreducibly diagonally dominant matrices with b; > 0,i=1...,N.
Further, the matrices S, and C are strictly diagonally dominant matrices with positive
diagonal entries therefore by Theorem 2.2, S1,B and C are positive definite matrices

b) From (3.32) since the sum of two symmetric positive definite matrices is also
symmetric positive definite, so S and K; are symmetric positive definite

matrices. O]

Theorem 3.3: The implicit scheme of the HADP is unconditionally stable and the
solution uy,  of (3.8) - (3.11) converges to the exact solution u of BVP2 (3.2) - (3.4)
with order of accuracy O (h*+12).

Proof. On the basis of Lemma 3.1, the matrix S is symmetric and positive definite

matrix hence invertible. The linear system (3.30) can be written as

T _ T _ _ * *
(1+ﬁ(51) 152)U"“=<1—ﬁ(51) 1Sz>U"+T(51) I(Fk +Gk>7 (3.37)

On the other hand from (3.31)-(3.36)

1 1 1 bh? bh?
—]—-B C=1—-—B.S=(1—-—"\B+—1 .
Si g C T ( 160)) T (3.38)

where, B, C are same as given in (3.33) and 7 € RV*V is the identity matrix. Because
(Sl)_lSz commutes and S| and S, are symmetric implies that (Sl)_lSz is also
symmetric matrix . Since the product of two symmetric positive definite matrices that
commute is also symmetric positive definite (see Axelsson [31] and Taussky [33])

gives Ag ((Sl)_1S2> > 0. Let A= (I—i—%(Sl)_lSz) obviously A is symmetric
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positive definite matrix. Let A = (1 -2 (S D! Sz> .

(A%T)T = A= (1-25 507" s) (1+ﬁ(51) 152>_1
1

N det<1+%(51)*152> ( "2 (Sl) lSz)Adj (1+%(S1)_152>

= (I—I—h (S1)” lSz>_1 I_det(1+ (S) ><I+%(51)_lsz>
(5 (51)7'52) Adj (1+— 's)]
= (1+53 650" lsz) (15 (s0)7"s2) =4 (3.39)

Thus A™'A is symmetric matrix. Also let P be orthogonal and D be diagonal matrix
of eigenvalues A ((S )7152) .Then (I—I—% (51)7152> = pT <I+ "“D) P and

(1+ T (S1)” 152) —PT<I+ D) 'Pand

(1+g(sl)“sz>_l (1——(51) S ) _pT <1+ %B)_lmﬂ (1—%13)10

h? h?
(3.40)
1 -
that is the matrix A~'A is similar to <I + mD) (I — %D) so from (3.39)
gl 1) g~>—1< oot )
HA AHz =P (A A> e As {(H_ ok =520
-1
1-%7 mmN(kS ((S]) Sz>) o
< . < 1 for -5 > 0. (3.41)
1497 min (b ((51)'52)) h
and from Gerchgorin’s circle theorem we have
0<As;(B)<4 (3.42)

From (3.38) and (3.42) and on the basis of Lemma 3.1 that K| = S + OS5 is symmetric

positive definite matrix we have
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T 1 ot bt
Ky = S1+—52:(1—|—’Eb)1+(——+———)3

h? 8 K2 16

0T 1 ot b1
A (K1) = xs(swﬁsz)=<1+w>+(—§+ﬁ—ﬁ)xs<3>

((Sl + %Sz>l> —~ H (Sl + %Sz>l

2

<

|-

where 1 :min{l—I—"cb,%-l—%bt—i— %} then

H(K1>_1H2§Tl]<2 (3.43)

Next using (3.41) and (3.43) by induction results

IN

o, = Al o <o, (e

k
HUOHZJFZ,{/ZOT(HFM%

#lel)
2 2

k/
. 44
o) G40

IN

The error function €, ; satisfying (3.26)-(3.29) can also be given in the matrix form

(3.37) as

<I+ % (Sl)_l Sz) gttt = <I

(O9

= (51)—152> ek (8) Pk, (3.45)

where 8k+1,8k and ‘T’H% are vectors of order N. Thus, from Theorem 3.1 and (3.44),

(3.45) we have

]

<6 (h*+1%), (3.46)

k
<2 Y || Pt
2= A TH ’
K'=0

where, c3 is positive constant independent from /4 and T and depends on the bounded
derivatives of the solution u of the form (2.1), where 2r + 51 + 52 < 6 + @, in the
truncation errors ¥ and W*. Since A~'A is symmetric real matrix it is also normal

matrix and Von Neuman Condition for stability is sufficient as well as necessary for
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stability ( see Lax and Richtmyer [32]). Therefore, equation (3.44) yields that the

implicit  scheme  (3.8), (3.9) is  unconditionally stable. Let
He’;l“;l = max Sﬁl = H8k+1 Hw, then on the basis of norm concordance

€ Dhynfi=(k+1)t}
and using (3.46) we get

k+1
th,r

<], s e . (3.47)

Therefore, the solution uy, ¢ of (3.8) - (3.11) converges to the exact solution u of (3.2) -

(3.4) with order of accuracy (h4 + ‘cz) . ]
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Chapter 4

NUMERICAL RESULTS

4.1 Introduction
To justify the theoretical results given in Chapter 2 and Chapter 3, we construct several

test examples. Numerical results are presented via tables and figures.

In section 4.2 we apply Difference Problem 1 and Difference Problem 2 to show that
the order of convergence of the approximate solution to the exact solution of the

problem (2.9) - (2.11) is O (h* 4+ 7?) and O (h* + 1) respectively.

In section 4.3 we apply Highly Accurate Difference Problem to illustrate that the order
of convergence of the approximate solution to the exact solution of the problem (3.2) -
(3.4) is of order O (h* +17?).

4.2 Numerical Results for the Problem (2.9) - (2.11)

We consider three examples for the problem (2.9) - (2.11), when the value of ® =1 for
the operator L = % - (% + %)

We take the open polygon €, as the rectangle,

3
QRec:{(x17x2)30<X1<1,0<xZ<\/7_} (4.1)
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the trapezoid,

V3 x
QTm:{(xl,xz):0<x2<7,0<x1<72§+1 (42)
and the parallelogram,
/3 x
Qpyr = , 0 —+1 4.3
Pa {()q x0):0<x<— > \/_ <\/_+ (4.3)

All the computations are performed using Mathematica in double precision on a
personal computer with properties AMD Ryzen 7 1800X Eight Core Processor
3.60GHz. Also we used conjugate gradient method to solve the obtained algebraic
linear system of equations at each time level. All tables given in this section adopt the

following notations:

CTE¥ i=1,2,3 present the total Central Processing Unit time in seconds per time
level for the Example 4.1, Example 4.2 and Example 4.3 respectively. neg

means that CTE¥ j = 1,2,3 is less than one milliseconds.

Example 4.1 (Example 1 of Buranay and Nouman [22]): Test problem with smooth

boundary and initial functions in the pure diffusion case f=0

Lu = OonQr,

T T —
u(xy,x2,0) = sin <8x1+§xz> on
—512 T T
u(xi,x,t) = e =5 tsm<6x1 +§xz> on St,

.. —sn2 . .
and, the exact solution is u (x,x2,7) = e 36 'sin (gxl + %xz) )
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Example 4.2 (Example 2 of Buranay and Nouman [22]): Test problem with

decreased smoothness on the boundary, initial functions and heat source.

I3 37t% ) <Ig>+1147 25+1147 e~ 0
= — | =t12sin — — on
! 12 72 36 2 "
| A —_
u(xy,x,0) = §x16 +x, +10onQ
37 37
u(xg,x,t) = Exl + x5 +cos (t12> on St,

o ¥ I 37
and the exact solution is u (x1,x2,1) = 3x +x; +cos (tﬁ> :

On the grid points Q/y,, which is the closure of Q"y, we denote the error function

€1 by egifé(h T), ?fé(h’r) d IEgji(h’T) i = 1,2 when Q is the rectangle (g,.) , trapezoid
(Q7,4) and parallelogram (Qp,,) respectively, for the Example 4.1 and Example 4.2.

Also maximum norm of the errors max !8;, T! for the Example 4.1 and Example 4.2
Qhy

Exi(h,t)

(i =1,2) are denoted by HSRec Exi(h,t)

Exi(h,T)
STra

and HePar

_on QRec, 2770 and
Qp, respectively. Further, we denote the order of convergence of the approximate
solution uy, ¢ to the exact solution u for the Example 4.1 and Example 4.2 obtained by

using the Difference Problem 1 with

Exi(27#27*)
Exi ERec o .
Z%Rec = 10g2 Exz 2- (k1) 201y , 1=1,2, 4.4)
Jese .
Exi(27+27%)
Exi €7ra o :
29{Tm = lOgZ Exl —(ut1), x+1)) y L= 1,2, (45)
|e .
Exi(27#27%)
Exl Epar, w0 :
29{Par = lOgZ Exl (), 7»+1)) y 1= 1727 (46)
.

for the considered domains respectively. Table 4.1, Table 4.2, Table 4.3 demonstrate

the CTEX!, CTE*? and the maximum norm of the errors for h =27 u=3,4,5,6,7,8
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when T = 2_7°,7\. = 8,9,10,11,12,13 and the convergence order of uy ; to the exact
solution u# with respect to 4 and T obtained by using the constructed Difference Problem
1 for the Example 4.1 and Example 4.2 on rectangle, trapezoid and parallelogram
respectively. These tables show that the proposed Difference Problem 1 has quadratic

convergence order in both the spatial and time variables.

Next we solve both examples by using the Difference Problem 2 and denote the
obtained order of convergence of the approximate solution u, ; to the exact solution u

for the Example 4.1 and Example 4.2 (i = 1,2) by

Exi(27# 274
Exi ERec oo .
4C~RRec = 10g2 Exz 2 (1) 2—(+4)) y L= 1727 4.7)
Jeke .
Exi(27#27%)
8Tra - .
49{Tra lOgZ Exl —(u+1) p=(4)) y L= 1727 (4.8)
Jef .
Exi(27#27M)
Exi Epar, 0o .
49{Par = 10g2 Exz (D) 2= (A +4)) yi=1,2, 4.9)
Jefr .

for the considered domains respectively. Table 4.4, Table 4.5, Table 4.6 show the
CTE*!, CTF*, maximum norm of the errors for h = 27", u = 4,5,6,7,8 when
T=2"*2A=6,10,14,18,22 and the order of convergence of u, ¢ to the exact solution
u with respect to 4 and T obtained by using the constructed Difference Problem 2 for
the Example 4.1 and Example 4.1 on rectangle, trapezoid and parallelogram
respectively. These tables demonstrate that the approximate solution u; of the
proposed Difference Problem 2 converges to the exact solution u with fourth order in
the spatial variables and linearly with respect to time variable . Figure 4.1, Figure 4.2

. . Ex2(2702714)
and Figure 4.3 demonstrate the absolute error functions |€,.

Y
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Table 4.1: Computational time, maximum norm of the errors and the order of
convergence by using Difference Problem 1 for the Example 4.1 and Example 4.2
on rectangle.

I s S e e e
27327%)  neg 6.24429E —5 1.978 neg 9.35402E —3 1.983
27427%) 002 158525E—5 1.999 0.02 2.36716E—3 2.001
0.03 3.96648E —6 1.999 0.03 5.91299E —4 2.002

(

(

( )

(27°271) 016  9.92099E—7 2.000 0.19 1.47588E—4 2.003
( )

( )

1.52 2.48027E -7 2.000 1.66 3.68223E -5 2.004
3.50 6.19891E — 8 3.76 9.17993E — 6

Table 4.2: Computational time, maximum norm of the errors and the order of
convergence by using Difference Problem 1 for the Example 4.1 and Example 4.2

on trapezoid.
Exl Ex1(h,7) Exl Ex2 Ex2(h,) Ex2
(h7 T) cr eTra ZSRTra cT 8Tra ZEKTra

(27°27%) neg  7T47982E—5 1971 neg  1.40022E—2 1.989
(274277) 0.02 1.90801E—5 1.999 0.2 3.52824E—3 2.001
(272,2719) 005 477247E—6 1.999 0.05 8.81499E—4 2.002
(27°2711) 020 1.19371E—6 2.000 0.25 2.20072E—4 2.002
(277,271%) 220 298412E—7 2.000 2,33 5.49334E—5 2.002
(27%,275) 441  7.45783E-38 4.88  1.37127E -5

’ i;rz @727 and ‘sgfj(zfﬂzfl‘*) respectively, at time moments f = 0.25 and r = 0.75

obtained by using the Difference Problem 2 for the numerical solution of Example 4.2
whenh=2"%and t=2"14,
Example 4.3 (Example 3 of Buranay and Nouman [22]): A benchmark problem

Lu = f(x1,x2,t) on Qr,

u(xy;,x,0) = Oon QRrec

3
u(0,xp,t) = u(l,xz,t):u(xl,O,t):Lt(xl,g,t):OonST,

where,
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Table 4.3: Computational time, maximum norm of the errors and the order of
convergence by using Difference Problem 1 for the Example 4.1 and Example 4.2
on parallelogram.
I e S e e e
27327%)  neg 6.63405E —5 1.980 neg 1.31396E —2 1.992
2*4,2*9) 0.02 1.68183E -5 1.997 0.02 3.30422E —3 2.002
) 0.03 4.21369E —6 2.000 0.05 8.24839F —4 2.001
) 0.16 1.05350E—-6 2.001 0.19 2.06009E —4 2.002
277271%) 158  263097E—7 2.002 1.63 5.14365E—5 2.002
) 3.69  6.56738E —8 462  1.28391E-5

Table 4.4: Computational time, maximum norm of the errors and the order of
convergence by using Difference Problem 2 for the Example 4.1 and Example 4.2
on rectangle.

(h,7) cret e " gl crtR g ke
(2_4,2_6) neg 4.95534E -4 3965 0.02  4.66691E—3 3.981
( ) 0.03 3.17373E -5 3.997 0.08 2.95518E —4 3.999
(27%271%) 0.14 198759E—6 3.999 0.34 1.84851E—5 4.000
( )
( )

1.13 1.24291E -7 4.000 1.88 1.15518E -6 4.000
3.24 7.76738E —9 3.98 7.21861E —8

Table 4.5: Computational time, maximum norm of the errors and the order of
convergence by using Difference Problem 2 for the Example 4.1 and Example 4.2

on trapezoid.

Exl Ex1(h,) Exl Ex2 Ex2(h,7) Ex2
(h7 T) cr Tra 49{Tm cT Tra 4<‘KTra

2%27%) neg  597349E—4 3.967 0.02  5.24608E—3 3.980
) 003 3.81931E—5 3997 009 3.32497E —4 3.999
) 020 239154E—6 4.000 045 2.08008E—5 4.000

27727 ) 163 1.49520E—7 4.000 2.61 1.29993E —6 4.000
) 418  9.34338E —9 453  8.12356E —8

Table 4.6: Computational time, maximum norm of the errors and the order of
convergence by using Difference Problem 2 for the Example 4.1 and Example 4.2
on parallelogram.

Exl1 Ex1(h,) Ex1 Ex2 Ex2(h,t) Ex2
(h7 T) cr SPar 4mPar cr ePar 49{Par

27427%  neg 5.25821E —4 3.963 0.02 4.35263E—3 3.981
) 0.03 337165E—5 3.998 0.06 2.75544E—4 3.999
) 0.17  2.11066E—6 4.000 030 1.72353E—5 4.000

27727%) 119 1.31906E—7 4.000 1.81 1.07708E—6 4.000
) 3.98  8.24304E—9 478  6.73085E —8
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‘85;2(1:“2'")/

6x107"

4x10°

2x10% ]

t=0.25 t=0.75

Ex2(2762714)

Figure 4.1: Absolute error function ’8Rec ’ at = 0.25 and ¢ = 0.75 obtained

by using Difference Problem 2 for the Example 4.2.

t=0.25 t=0.75

. ) . Ex2(2762-14) .
Figure 4.2: Absolute error function [€p, . at = 0.25 and t = 0.75 obtained

by using Difference Problem 2 for the Example 4.2.
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15 Voo 1500

Ex2(2762714)

Figure 4.3: Absolute error function ’eTm at = 0.25 and ¢ = 0.75 obtained

by using Difference Problem 2 for the Example 4.2.

49 3
flx,x,t) = xf <x%—\/7—x2> sin (x; — 1) cos?

41

3 2009 3 49 4
— (x% — gxz) sint [ xl sin(x; — 1) + leg cos (x; — 1)

64

£ 49
+x* sin(x] — 1)} —2x sin(x; —1)sint.

The exact solution of Example 4.3 is not given. Using the proposed Difference
Problem 1 we obtain the approximate solution u, ., (x1,X2,¢) at each time level for
pu=4,56,and A =9,10,11 respectively. Table 4.7 presents u, ., 1 (x1,X2,) at the
grid points  (0.125,3,1), (025%3.1), (0375,43.1), (05.42.1),
(0 625, \g, ) (O 75, \g, ) and <O 875, \g, ) and the order of convergence at the

point P (x1,x;,7) denoted by

Uy-42-9 (P) —ty-s 5-10 (P)

EKEX3 =1 )
rec (P) = log, Up-s 5-10 (P) —ty—6 5-11 (P)

(4.10)

Next by applying the given Difference Problem 2 we obtain the approximate solution
Uy una (X1,X2,1) at each time level for y =4,5,6, and A = 6, 10,14 respectively. The

approximate solution at the same chosen grid points and the order of convergence at
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Table 4.7: Solution at some points on ¢t = 1, and the order of convergence by using

Difference Problem 1 for the Example 4.3.

P Uy-4p-9 (P) Upy—s52-10 (P) Upy—6 11 (P) 29{1@3( )
(0.125, g 1) —458409E—6 —103024E—6 —14070E—7 1.998
(0 25,43, ) _1.80759E—6 6.79206E —6  8.94335E—6 1.999
(0.375,¥3.1) 7.67420E-5  9.37204E—5  9.79542E -5  2.004
(05,93,1)  435627E—4  4.64628E—4  471821E—4 2011
(0.625,3.1) 136634E-3  140760E—3  141775E—3 2.023
(075.42,1) 287207E-3  291762E—3  2.92870E—3 2.039
(0.875,¥3.1) 375741E-3  3.78878E-3  379627E-3  2.066
these points
4REzd (P) = log, :22:7’22160 ((};)) __L;zzzll ((I;)) . (4.11)

are shown in Table 4.8. By analyzing the values of (4.10) and (4.11) in the fifth columns
of Table 4.7 and Table 4.8 respectively, we conclude that the convergence follow the 2n
order in both in spatial and time variables on = 1 when Difference Problem 1 is used,
and it is fourth order in the spatial variables and linear in time variable while Difference
Problem 2 is applied. Figure 4.4 illustrates the approximate solution i, -14 (x1,x2,1)
of the Example 4.3 obtained by using Difference Problem 2 at time moments ¢t = 0.25
andr = 1.

4.3 Numerical Results for the Problem (3.2) - (3.4)

We consider the open rectangle D = {(xl,xz) 0<x<1,0<xp < \/T§} which is
same as Qg in (4.1) , and we take 7 € [0,1]. Three examples are considered for
which the exact solution of Example 4.4 and Example 4.6 are known and the exact
solution of Example 4.5 is not given explicitly. To solve the obtained algebraic system

of equations in all the examples, we applied incomplete block-matrix factorization of

the block tridiagonal stiffness matrices and use as preconditioners for the conjugate
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Table 4.8: Solution at some points on ¢t = 1, and the order of convergence by using

Difference Problem 2 for the Example 4.3.
P iy o s(P) sy 0(P) oy n(P)  4FES(P)

(0.125,{—5,1) 121289E —7 1.53563E—7 1.55701E—7 3.916
(0.25,\1/—3,1) 9.57959E —6 9.6543E—6 9.65919E —6 3.933
(0.375,{—65,1) 9.91752E —5 9.93431E—5 9.93539E—5 3.958
(0.5,{5,1) 473794 —4 47TA143E —4 4.74165E —4 3.988
(0.625,{—65,1) 142033 —3  1.42094E —3 1.42098E —3 3.931
(0.75,\{—5,1) 293121E —3 2.93202E —3 2.93207E—3 4.018
(0.875,{—65,1) 3.79768E —3 3.79832E —3 3.79836E —3 4.000

”2:62-14("1,"2,f)// | - 7 le.ﬁj.u(xl,xz,t)/,-*/ |
/ %2 ;

t=0.125

Figure 4.4: The approximate solution u,6 514 (x1,x2,1) at time moments ¢ = 0.25 and
t = 1 for the Example 4.3 obtained by using Difference Problem 2.
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gradient method (see Concus et al. [35], Axelsson [36] and Buranay and lyikal [37]) .
For experimental investigation of the computational efficiency we also consider the
aj

rectangular grids on D with step sizes h; = M along the spatial variable x; and

hy = A‘;—zzalong xp where, M| and M are positive integers

DM = fx=(x;,x) €D x| =ihy, xo = jhy, i=1,2,..M—1,

j=12,.M,—1}. (4.12)

—hih o .
Let D" be the closure of D2 and denotes the set of interior and boundary grid

points and
DMy = phita oy = {(x,t) xe DMt e VT} ’

where, V¢ is as given in (2.13). The following unconditionally stable 14-point implicit
method on rectangular grids is taken which is derived from usig the 9-point scheme for
the approximation of the Laplacian operator and approximates the first type boundary

value problem (3.2)-(3.4) when the value of the constant » = 0 in (3.2) (see Samarskii

[34]).
Tupre = 061Ay L +0(1—061) At .+ 002 Aguy '+ (1—62) Agu ¢
+m%/\1/\2u’;;1 + B on D2y, (4.13)
upe = @(x1,x2),6=0, on _hl’hz, (4.14)
upr = O(x1,x2,¢) on Sk (4.15)
where,
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1 n 1 m
_ 1 k1 B 4.16
o1 2 120 2T 1t (4.16)

t — t
ry — u(xy,x, —f—’l:i u(xi,x,t) (4.17)

Aluk = (u(x1+hy,x2,t) —2u(x1,x2,1) +u(x; —hy,xp,t h? (4.18)
1

Muf = (u(xl,x2+h2,t)—2u(x1,x2,t)+u(x1,x2—h2,t))/h% (4.19)

2 2

B = f+ EAlf+ EAZf and f _f<x1,xz,l‘+§> (4.20)

In Example 4.4 and Example 4.5 the value of the constant b in (3.2) is zero, hence both
problems are solved by the given implicit method HADP and by the implicit method
(4.13)-(4.15). In Example 4.6 the constant b is 0.5 and the problem is solved by HADP.

Tables and figures given in this section adopt the following notations:

M*,, denotes the proposed implicit method HADP on hexagonal grids.
Mﬁ p denotes the 14-point implicit method on rectangular grids given in (4.13)-(4.15).
N (M) shows the number of grid points in the stifness matrix obtained by the
method Mﬁ p for the the corresponding values of 4 and 7.
NT(MR,,) shows the number of grid points in the stifness matrix obtained by the
method Mﬁ p for the the corresponding values of 4 and T
Pre” (M{’E1 p) is the preconditioning time of the stifness matrix obtained by the method
H
Mi4p-
Pre"* (MR ) is the preconditioning time of the stifness matrix obtained by the method
R
Miyp-
Con"* (M%) is the condition number of the preconditioned stifness matrix obtained
by the method M%7, .
Conh’T(MﬁP) is the condition number of the preconditioned stifness matrix obtained

by the method M~ .
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CTMir presents the Central Processing Unit time in seconds per time level for the
H
method M p.
CTMisr presents the Central Processing Unit time in seconds per time level for the
R
method M7, p.
H . . . . .
TCTMi4r shows the total Central Processing Unit time in seconds required for the
solution at r = 1, by the method Mﬁ p-
TCTMtir shows the total Central Processing Unit time in seconds required for the
solution at # = 1, by the method M¥, ..
TCTYans) is the total Central Processing Unit time in seconds required for the
solution at t+ = 1, by the analytical method when the infinite series in the
formula are approximated by taking S’ number of terms.

neg means that CPU's is less than one milliseconds.

H

The numerical solution obtained by the proposed method Mﬁp is denoted by Uy 1

for h = 27" and T = 2~ where u, A are positive integers. Analogously the numerical

solution obtained by the method MR, , is denoted by u .- On the grid points D"y,

R
2-#2-
which is the closure of Dy, we present the error function €j,,; obtained by the given

method M, by eMiir(h:%) and on the grid points D122y, (closure of DM22y) we use

eMiar(h%) to show the error function €nr obtained by the method M. Also

are denoted by

. H
maximum norm of the errors max )SMMP(h’T)
Dh'YT

R
and max )SM 1ap(h,7)
Dhl’thT

HgMﬁPwm

, and HeMﬁP(h’T) :

respectively.  Further, we give the order of

o)

R

convergence of the approximate solution u o=

, and u , to the exact solution u

H
27K

obtained by using the methods Mﬁ p and Mﬁ p Tespectively with
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M (2712

€
H
RMizr = o =
& ML p(2- 1) 2-(042))
) eMfp27#27)
S)'{MMP = ]()g2 >
SM{?4P(27(;1+1)727(7»+2))

4.21)

(4.22)

accordingly. In Example 4.1 and Example 4.2 the realization of the method Mﬁp is

given by taking 4y = h and hy = \/Tgh

Example 4.4:

du *u d*u

o ol ad

u(x1,x2,0) = 0.07x7*+0.3x§ 4 1on D

u(xy,x2,t) = v(xy,x2,t) onSr,

where the heat source and the exact solution are,

+f(x17x27t) on QT7

(4.23)

o a o
F(xnx0,1) = (3 v 5) 1245 cos (r3+7> —e ' = (640) (5+ ) [0.07x4% 4 0.3x4 ]

v(x1,x0,0) = 0.07x87%4+0.3x8% 4sin(PH3) 4

respectively.

(4.24)

Table 4.9, demonstrates the CTMi4», CTMi4r and the maximum norm of the errors for

h =2H"u= 456,78 when T = 2_7“,7L = 6,8,10,12,14 and the order of

convergences EKMﬁP, RMiir when o = 0.8. Table 4.10, shows the same quantities by

using the methods M, and MR, when a = 0.01. These tables show that both

methods have fourth order convergence in spatial variables and second order

convergence in time variable. On the other hand the second column and fifth columns

of these tables show the computtational time required in seconds per time level

CTMii» and CTMtr for the method Mﬁp and Mﬁp respectively. By analyzing the
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Table 4.9: Computational time, maximum norm of the errors and the order of
convergence obtained by using the proposed method Mﬁp and the method Mﬁp for
the Example 4.4 when o0 = 0.8.

(h,7) CTM{{4P gMﬁP(th) %Mﬁp CTMﬁP gMﬁP(th) SRMﬁP

274279 neg 4.19389E —5 neg 4.26584E —5

2*5,2*8) 0.047 2.62266E —6 3.9992 0.047 2.66787E—6 3.9991

2772717 0.641  1.02449E—8 4.0000 1.016  1.04224E—8  3.9999

|
(270271%) 0.156 1.63922E—7 3.9999 0.234  1.66749E—7  3.9999
(
(

278271%) 2578  6.40304E—10 4.0000 4312  6.51384E—10 4.0000

values of CTMir and CTMir we conclude that the proposed method is more
economical in computational time per time when the block preconditioning of the
conjugate gradient method is used. This conclusion is also supported by the results
given in Table 4.11 which demonstrates the number of grid points NM(M{QP) and
N"T(MR,,) in the stifness matrices, the preconditioning times Pre/*(M%,) and
Pre* (MR ), the condition numbers of the preconditioned matrices Con”"(M,,)
and Con"" (M{e4 p) and the total computational time required in seconds 7C TMir and
TCTMisr by the methods Mﬁp and Mﬁp, respectively for the Example 4.1. The
Figure 4.5, demonstrates the absolute error function ‘sMﬁP(Tﬂflo)‘ , at time moments
t =0.25,0.5,0.75,1 obtained by using the proposed method Mﬁp for the numerical
solution of Example 4.4 when & = 27% and © = 27!V for a2 = 0.8. Analogously, Figure

at the same time moments

. R —6 ~—10
4.6 shows the absolute error function ‘SMMP(Z 2 )‘

obtained by the method Mﬁp when h=2"%and =279 fora = 0.8.

Next we consider the test problem in Example 4.5 taken from Henner et al. [39]:
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Table 4.10: Computational time, maximum norm of the errors and the order of
convergence obtained by using the proposed method Mﬁ p and the method Mﬁ p for
the Example 4.4 when o = 0.01.

(h, T) CTM{{;P gMﬁP (h,T) S{MﬁP CTM§4P EMIIQ4P(h7'C) SRMﬁP
(27427°)  neg 4.19389E —5 neg 2.98695E —5

(272,27%)  0.047 2.62266E—6 3.9994 0.047 1.86757TE—6  3.9994
(20,2719 0.188  1.63922E—7 3.9999 0219 1.16726E—7  3.9999
(277,271%) 064  1.02449E—8 4.0000 1.016 7.29597E—9  3.9999
(28527 25 6.40298E —10 4.0000 4.25  4.56001E —10 3.9999

Table 4.11: sizes of the stiffness matrices, precoditioning times and the condition
numbers of the preconditioned stiffness matrices and the total computational time
required by the methods M%,, and M%,, for the Example 4.4 when o = 0.8.

(l’l,”C) (2—4,2—6) (2—5,2—8) (2—6’2—10) (2—7,2—12) (2—8,2—14)
N (ML) 233 977 4001 16193 65153

N (MR,) 225 961 3969 16129 65025
Pre""(MY,,)  neg neg 0.063 0.36 2.797
Pre" (ME,,)  neg neg 0.062 0.359 2.625
Con"*(MY,,) 0.99997  0.99993  0.99989 0.99986 0.99983
Con™*(ME,,) 099991  0.99988  0.99987 0.99985 0.99981
TCTMier 0.61 9.09 194.84 2659.03 42582.52
TCTMr 0.70 11.83 272.91 4258.53 71073.79

X, e
1 0.5 e

t=0.75

Figure 4.5: The absolute error function

10 00

Mip(27°277)

SMﬁP (2767271

0 .
) ,at time moments 7 =

0.25,0.5,0,75,1 obtained by using the proposed method Mﬁ p for the Example 4.4.
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eMip(2702719)

Figure 4.6: The absolute error function
0.25,0.5,0,75, 1 obtained by using the proposed method Mﬁ p for the Example 4.4.

, at time moments ¢ =

Example 4.5:

ou u  u
E = 0.25 (a—x% + a—x%) on QT7

3 _
u(x1,x2,0) = 0.0lxpxp (1 —xp) (%—)Q) onD,

M(X1,)C2,t) = OonS7,

The exact solution of the problem in Example 4.5 is not given. However, using Fourier

method the analytical solution was obtained in Henner et al. [39] as follows

64AIR 2 < et (2n+ 1)mx;
u )C],XQ,Z = o sin
( ) 0 n’;él (2n+1)2(2m+1)2 Ly,
gin 2+ D 4.25)
L,

60



NS

For the given example we take, a> = ® = 0.25,A = 0.01,l;, = 1,1, =%, and

l’lz m2
I (12 i ) , (4.26)

By applying the proposed implicit method Mﬁ p we obtain the approximate solution

uglfmfx (x1,x2,1) at each time level for u = 4,5,6, and A = 10,12,14 respectively.

Table 4.12 presents u!, , , (x1,%2,) at the grid points (o 125, gl) (0 25, gl)

(0.375,%3.1), (05,%3.1), (0.625,43,1), (075,42,1) and (0.875,%3,1) and

M
the order of convergence EK ¥ (P) at the point P (x1,x2,t) given as

(4.27)

H
9'{h;[: (P) = lOgZ

R

Table 4.13 shows the numerical solution Uy yn

(x1,x2,¢) obtained by the method
MR, , at the same grid points and the corresponding order of convergence ER 1‘“’ (P) at

the point P (x1,xp,t) given by

R R
9{];:1{?4}7 (P) _ ]0g2 u27472710 (P) u2—572—12 (P) (428)
i 122—5’2—12 (P)— “5—672—14 (P)

Analyzing the values of (4.27) and (4.28) in the fifth columns of Table 4.12, and Table
4.13 we conclude that for both methods the convergence follow the 4th order in the
spatial variables and 2nd order in time variable. Further, Table 4.14 illustrates the
computational cost comparisons of the methods MﬁP,MﬁP and by the analytical
method TCTM4n(2) when the infinite series in the explicit solution are computed by
taking 200. This table shows the number of grid points in the stifness matrices
N'Y(MELL) and N'T(ME,), the preconditioning times Pre""(MI,) and
Pre* (MR ) the condition numbers of the preconditioned stiffness matrices

Con"*(MH,,),Con™*(MR,,) and the total computational time required in seconds

61



Table 4.12: Solution at some points on ¢t = 1, and the order of convergence obtained

by MY, for the Example 4.5.

MH
P u§,472,10 (P) u;{_sg_lz (P) u§_672_14 (P) R, (P)
(0.125,42,1) 4.84787E—5 484769E -5 4.84768E—5 4.00078
(0.25,42,1)  831064E—5 831033E—-5 8.31031E—5 4.00027
(0.375,¥3.1) 1.03883E—4 103879E—4 1.03879E—4 4.00016
(0.5.42,1)  110808E—4 1.10804E —4 1.10804 4 4.00001
(0.625,23,1) 1.03883E—4 1.03879E—4 1.03879E—4 4.00016
(0.75,3,1)  831064E—5 831033E—5 8.31032E—5 4.00027
(0.875,Y3,1) 484787E—5 434769E—5 4.84763E—5 4.00078

IC TMﬁP, TCTMir of the methods Mﬁ p and Mﬁp respectively for the Example 4.4.

Analyzing the data in Table 4.14 we conclude that the given implicit method Mﬁ pls
computationally more time efficient when block preconditioning for the conjugate
gradient method is used. Although the stiffness matrix in the obtained algebraic linear
systems at each time level has 7 nonzero diagonals the method MﬁP requires the
value of 7 net points of each hexagon from the previous time level. When Mﬁp is
used the stiffness matrix has 5 nonzero diagonals and the method uses the values of 9
points of the pattern of the rectangular net from the previous time level. Since the
constructed preconditioner for specific & and T values is reused over the time levels
the cost of the preconditioner is amortized but the use of 9 points rather then 7 points
from the previous time level increases the computational time required by the method
Mﬁp to solve the algebraic system of equations over the time moments. Figure 4.7

illustrates the approximate solution /! (x1,x2,t) for the Example 4.5 obtained

2—672—10
by using the given method Mﬁp at time moments ¢ = 0.25,0.5,0.75,1, whereas the

approximate solution u’;ﬁ 510 (x1,x2,¢) at the same time moments is presented in

Figure 4.8 obtained by the method Mﬁ p-
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Table 4.13: Solution at some points on ¢ = 1, and the order of convergence obtained
by M&,,, for the Example 4.5.

P By o) W n(P) B, (P) R (p)
(0.125,3,1) 4.847746E —5 484T687E—5  4.847683E—5 4.00011
(0.25,{-3,1) 8310411E—5 8310320E—5 8.310314E—5 4.00003
(0.375,¥3.1) 1.038801E—4 1038790E—4  1.038789E—4 4.00001
(0.5.42,1)  11080S4E—4 1.108042E —4  1.108041E 4 4.00001
(0.625,3,1) 1.038801E 4 1.0387890E —4 1.038790E —4 4.00001
(0.75,¥3,1)  8310411E—5 8310320E—5 8310314E—5 4.00003
(0.875,Y3,1) 4.847746E 5 484T687E—5 4.347683E—5 4.00011

Table 4.14: Computational efficiency comparison of the methods Mﬁp, Mﬁp, and
M g (200 for the solution at 7 = 1 for the Example 4.5.

(h,’C) (2747278) (275’2710) (27672712)
N (ML) 233 977 4001

N (MR ) 225 961 3969
Pre"*(ME,,)  neg 0.016 0.078
Pre"(MR,,)  neg 0.015 0.063
Con™* (M ,) 099997  0.99993 0.99989
Con™ (MF,,) 099991  0.99988 0.99987
TCTM i 2.45 38.20 864.88
TCTMr 278 47.25 983.63
TCTYan2000 53 124 891,024 14,595,648
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H
uz‘6 2w

(xl,xz,t) uf-'n.z-m (xl,xz,f)

D.0004 0.0004
0.0003
0.0002

t=0.25 1.0 ™ t=0.5 1.0 00

uf_rﬁlz_w (xl,xz,r)

uf_rﬁ.z_m (xl,xz,t)

t=0.75 1.0 in 00

Figure 4.7: The approximate solution ug,()’z,lo (x1,x2,t) for the Example 4.5 obtained
by using the given method Mﬂp at time moments r = 0.25,0.5,0.75, 1.

s o (3x5.1) 1y 0 (X %0.1)

0.0004
0.0003

0.5

t=0.25

tlf‘é »240 (x1 > xg :r)

0.0003
0.0002
0.0001
0.0000

t=0.75 1.0 ™

Figure 4.8: The approximate solution u§_6’2_10 (x1,x2,t) for the Example 4.5 obtained
by using the given method Mﬁp at time moments ¢ = 0.25,0.5,0.75, 1.
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Table 4.15: Computational times, maximum norm of the errors and the order of
convergence obtained by using the proposed method Mﬁ p for the Example 4.6.

7) CcTMiw  TCTMr  ||gMitp(hD) RM{4p
27427%)  neg 0.61 2.378442E —5

(n,
(2
(2~ 52) 0.047  9.907 1.543029E — 6 3.9462
(2762719 0.172  207.547 1.015411E—7 3.9256
(
(

277277) 0735  2904.99 6.623985E—9  3.9382
278271%) 2829 50743  4.251592E—10 3.9616

Example 4.6:
du 82u %u
5 = axl a 2 —0.5u+ f(x1,x2,1) on Qr,
37 ﬂ _
u(xy,x,0) = Exl"’ +x, +1onD
u(xy,xp,t) = v(xy,x2,¢) onSr,

where the heat source and the exact solution are,

B 37 3 7 1147 2 1147 %
f(XI,Xz,t) = —(Et sm(t )-'—W + 36 Xz)
1 32 37

+0.5 <§x1 +x, +cos <t12>>
13 & 37
v(xp,x2,t) = Exf’ +x, 4 cos (tﬁ>

respectively.

Table 4.15, demonstrates the CTMﬁP, TCTMs» and the maximum norm of the errors
for h = 2" u=4,56,7,8 when 1 = 27 A = 6,8,10,12,14 and the order of
convergences RMiar of uﬁr (x1,x2,1) to the exact solution u with respect to 4 and T
obtained by using the proposed method MZ, 1ap- Figure 4.9 shows the absolute error

eMiip(2702710

function )| at time moments 7 = 0.25,0.5,0.75, 1 obtained by the given

method Mﬁ p for the Example 4.6.

65



gMﬁP(276a2710)

Figure 4.9: The absolute error function , at time moments ¢t =

0.25,0.5,0,75, 1 obtained by using the proposed method Mﬁp for the Example 4.6.

66



Chapter 5

CONCLUSION AND FURTHER RESEARCH

Using hexagonal grids we proposed two unconditionally stable two layer implicit
difference problems with 14-point for the solution of first type boundary value
problem of heat equation (2.9) - (2.11) in two space dimensions on special polygons.
Furthermore, an implicit method of high accuracy on hexagonal grids for the
approximation of the solution of first type boundary value problem (3.2) - (3.4) is
given. The methodology given in this research may be extended to the following

research topics.

1. Construction of the highly accurate splitting schemes (fractional step methods)
and using alternating direction methods (ADI) (see Peaceman and
Rachford [40], Douglas [41], Bagrinovskii and Godunov [42] and
Marchuk [43]) for the solution of first type boundary value problem of heat
equation in three space dimension.

2. Construction of the special difference problems for the first order derivatives
of the solution of first type boundary value problem of two dimensional heat
equation on rectangle with respect to the space variables. For the derivative
of the solution of first type boundary value problem of one dimensional heat
equation, with respect to the space variable see Buranay and Farinola [44].

3. Construction of implicit method for the approximation of the solution to heat

equation on domains with smooth boundary.
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