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ABSTRACT 

Earthquake resistant structures must meet the conditions specified in the standard 

seismic codes of the country. Force-based method is a commonly used method for 

design and analysis of buildings. The method requires preliminary design of elements 

to determine the period of the building. Furthermore, iteration can be carried out to 

satisfy inter-storey drift limits specified by the seismic codes. Recently developed 

“first storey single degree of freedom”(FSSDOF) approach by Mousavi and Şensoy, 

is used to determine base shear according to Stability Coefficient (SC) using “Stability 

Coefficient Response Spectrum” (SCRS). SCRS is formed due to period dependence 

feature of stability coeffient and spectral acceleration is plotted versus SC for an 

inverted pendulum with a known height.  FSSDOF is used as a single degree of 

freedom (SDOF) system since the height of first storey rarely  changes during the 

design process and the shear force acting on the first storey is directly equal to the base 

shear. In order to create response spectra, dynamic response of SDOF systems is 

analysed by using Newmark’s Method for linear systems. In this thesis, two structures 

of different heights, five storey and nine storey, were designed and analyzed for 

different yield strength reduction factors by force based design. Then by calculating 

the equivalent SC of the fundamental vibration period, base shears were obtained by 

conventional response spectra and SC response spectra were compared. Higher base 

shear values were obtained by SCRS since P-delta effect is inherited within the 

equation of motion. 

Keywords: stability coefficient response spectrum, first storey single degree of 

freedom system, force based design, multi-storey buildings. 
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ÖZ 

Depreme dayanıklı yapılar, ülkenin standart sismik kodlarında belirtilen koşulları 

karşılamalıdır. Kuvvete dayalı yöntem, yapıların tasarımı ve analizi için en yaygın 

kullanılan yöntemlerden biridir. Yöntem binanın temel periyodunu belirlemek için 

elemanların ön tasarımını gerektirir. Ayrıca, sismik kodlar tarafından belirlenen katlar 

arası ötelelenme sınırlarını karşılamak için iterasyon yapılması gerekebilir. Mousavi 

ve Şensoy tarafından yeni geliştirilen “Birinci Kat Tek Serbestlik Derecesi”(FSSDOF) 

yaklaşımı, “Stabilite Katsayısı Davranış Spektrumu” (SCRS) kullanılarak Stabilite 

Katsayısına (SC) göre taban kesme kuvvetini belirlemek için kullanılır. SCRS, 

stabilite katsayısının periyot bağımlılığı özelliği sayesinde oluşturulur ve spektral 

ivme, bilinen bir yüksekliğe sahip ters bir sarkaç için SC değerine karşı çizilir. Birinci 

katın yüksekliği tasarım sürecinde nadiren değiştiği ve birinci kat üzerinde etkili olan 

kesme kuvveti doğrudan taban kesim kuvvetine eşit olduğu için FSSDOF, tek 

serbestlik dereceli (SDOF) sistem olarak kullanılmıştır. Davranış spektrumlarını 

oluşturmak için, Newmark’ın doğrusal sistemler için geliştirdiği yöntem kullanılarak 

SDOF sisteminin dinamik davranışı analiz edilmiştir. Bu tezde, biri beş katlı diğeri 

dokuz katlı olan iki yapı, farklı azaltma faktörleri için kuvvete dayalı tasarım metodu 

ile tasarlanıp analiz edilmiştir. Daha sonrasında, klasik davranış spektrumu ve temel 

titreşim periyodu eşdeğer SC değerini hesaplayarak SC davranış spektrumu ile elde 

edilen taban kesme kuvveti karşılaştırılırmıştır. P-delta etkisi hareket denklemi içine 

yerleştirilmiş olduğu için, SCRS ile daha yüksek taban kesme değerleri elde edilmiştir. 

 

Anahtar kelimeler: kararlılık-katsayı davranış spektrumu, birinci katlı tek serbestlik 

derecesi sistemi, kuvvete dayalı tasarım, çok katlı binalar. 
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Chapter 1 

1. INTRODUCTION 

Ground vibrations occur during an earthquake and these vibrations cause forces and 

deformations on structures. If the structure can not bear these seismic forces, the 

building may eventually collapse. As observed from the large earthquakes in the past 

(the 1995 Kobe, the 1999 Kocaeli, the 1999 Chi-Chi, etc.), in case of  building failures 

big losses occur in terms of human casualties and properties. For this reason, seismic 

codes are created in order to prevent the structure from collapsing during an 

earthquake. Although these codes differ from country to country, their use in 

seismically active regions is mandatory. When designing a structure, priority is given 

to life safety and to ensure this, excessive damage to the building should be prevented. 

However, ensuring zero damage to a building is very costly and uneconomical. 

Therefore, in moderate to severe earthquakes, buildings are allowed to be slightly 

damaged.  

Conventional method used to satisfy seismic building codes is forced-based design 

due to its simplicity. Base shear can be directly calculated through couple of equations. 

In this method, preliminary design is carried out to estimate fundamental period of 

vibration. From the response spectrum, spectral acceleration corresponding to the 

period of the structure is obtained. The spectral acceleration is multiplied with the 

seismic weight (W) to calculate total lateral seismic force. Then, this force is 

distributed along the height of the structure to be applied as equivalent static lateral 
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force. The strength of the structure should be able to cope with the applied equivalent 

lateral forces to prevent structural collapse. These static lateral forces represent the 

effects of earthquake. Commonly iteration is required as it does not meet the code 

requirements at the first trial. This is a major handicap as all calculations need to be 

repeated all over again. Calvi, Priestley, and Kowalsky (2008) specified three main 

weakness of force-based design. The method assumes an initial stiffness to obtain the 

structural period, which is considered as weakness of the method. However, stiffness 

can not be known until the design is completely finished because stiffness depends on 

element strength. Another weakness of the system is distributing seismic forces among 

elements according to their initial stiffness, this assumption is not correct for certain 

structures as it is not proper to assume that the different elements can be forced to yield 

at the same time. The last weakness is the assumption that yield-reduction factors are 

the same for all type of structures and materials which is not correct. Due to these 

shortcomings, in 2000 Priestley and Kowalsky developed another commonly used 

design method which is “Direct Displacement Based Design” (DDBD).  Although, 

forced-based design has some deficiencies, the methodology is widely used in seismic 

codes. Because of this reason, in this thesis this method is used as conventional method 

for structural design and analysis. 

DDBD method determines the design performance of the structures based on their 

displacement limits. For this reason, during the design process key paramater is 

displacement. Calvi, Priestley, and Kowalsky (2008) define the main difference of 

DDBD from force-based design method as DDBD design the structure by peak 

displacement response of a single degree of freedom (SDOF) system, rather than by 

its initial stiffness. The methodology can be briefly summarized as follows (Ye, Xiao, 

& Hu, 2019); an equivalent SDOF system is used to represent the multi storey building 
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by equivalent mass me, effective height he  and target displacement Δd are used to 

represent the equivalent system. When design-based earthquakes are applied, the 

original MDOF system can behave nonlinearly. To take this into account, SDOF 

system is linearized by the effective stiffness, ke. The effective viscous damping ratio, 

ζe can be estimated by use of existing ductility-damping diagrams. Then, effective 

period Te, which corresponds to target displacement is identified from displacement 

response spectrum. Effective stiffness is obtained based on effective period and target 

displacement which is used to calculate the design base shear. Finally, the base shear 

is distributed to each story as lateral forces. 

Nevertheless, both forced-based design and DDBD do not consider the effect created 

by the action of gravity loads when a structure has a lateral displacement, which is 

named as P-delta effect (Adam, Ibarra, & Krawinkler, 2004; Rahimi & Estekanchi, 

2015).  P-delta effect causes a reduction in lateral resistance of a structure. Under 

severe dynamic excitations, load carrying capacity of a structure may be partially or 

completely lost due to this effect (Gupta & Krawinkler, 2000; Jäger & Adam, 2013; 

Adam & Ibarra, 2014). For elastic structures under static forces, P-delta effect 

elongates the vibration period of the building, as a result stiffness is reduced. 

Nevertheless, P-delta effect becomes complicated for inelastic response, and under 

dynamic loading. (Mousavi & Şensoy, 2019). Stability Coefficient (SC) is used to 

measure P-delta effect. In the past constant value was being used for SC but Aydınoğlu 

and Fahjan (2003) in their studies showed that SC actually depends on the period. 

Therefore, giving a constant value to SC causes false results. Moreover, Kalkan and 

Graizer (2007) stated that when forming a response spectrum for P-delta affected 

systems if the height of pendulum is not kept constant, period is not a sufficient 

measure. Instead of plotting spectral information against period of vibration, Mousavi 
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and Şensoy (2019) by using this dependence on period feature of SC they plotted 

spectral information against SC, and they have named their method “stability 

coefficient response spectrum” (SCRS). To be able to use the spectrum in MDOF 

systems, they formed a new system which is called “first-storey-single-degree-of-

freedom” (FSSDOF) system. First-storey can be used to represent SDOF system since 

it has a lot of significant features like: 

• The total seismic load of the building is equal to the first-storey axial load, 

• The base-shear is equal to the first-storey shear force, 

• The height of the first storey seldomly changes during design, 

• The first storey dynamic loading is known (Mousavi & Şensoy, 2019). 

In FSSDOF system the equation of motion is derived for inverted-pendulum to 

consider the effect of height as well. By use of SCRS through FSSDOF approach 

safety against P-delta effect is ensured as it is inherited within the equation of motion. 

In this thesis, two different structures, five and nine storey buildings, are designed by 

the conventional method. For each structure design different yield strength reduction 

factors (Ry=4 and Ry=8) are used. After the design, base shear obtained from the 

conventional response spectrum compared with SCRS through FSSDOF approach. 

 After the introduction given in this chapter, the methodology is briefly explained in 

the second chapter. Then, in the third chapter, the forming of response spectra is 

determined. The design of five-storey and nine-storey buildings are given in the fourth 

chapter. In the fifth chapter, base shears obtained from SCRS and conventional 

response spectrum are compared. Finally, a general conclusion is made to sum up the 

main points and results of the whole thesis. 
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Chapter 2 

2. THE METHODOLOGY 

In this thesis, Force-Based Design (FBD) method was used for design and analysis of 

multi-storey buildings. The new method named “SCRS through the FSSDOF 

approach” developed by Mousavi and Şensoy (2019) which was used in comparison 

to see the P-delta effect. Both methods are briefly explained below. 

2.1 Conventional Method – Force-Based Design  

Force-based design is a static procedure which is used in earthquake resistant design 

of structures. This method is more commonly used for seismic design codes. The 

underlying idea of force-based design contains the specification and attainment of a 

minimum strength, based on assumptions like initial stiffness, design earthquake 

intensity and ductile capacity of the structure, using force reduction factor (Priestley 

& Pettinga , 2005). The method, by taking into the applied horizontal loads and vertical 

forces arising from the weight of the structure itself, examines the stability and the 

deformation of the structure, and the stress and the strain capacity of each structural 

member. The procedure is based on Equivalent Static Lateral Force methodology. The 

applied static loads on a structure are used to represent earthquake induced dynamic 

loads. Concentrated lateral forces due to dynamic loading act where the concentration 

of mass at each floor exists. In addition, concentrated lateral forces generally follow 

the fundamental mode of the structure. In other words, the force is larger as the 

elevations is higher as seen in Fig. 2.1.  
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F3 

F2 

F1 

 

So, the maximum lateral displacements and lateral forces are expected at the top storey 

of a building (ElAttar, Zaghw, & Elansary, 2014). 

 

 

 

 

 

Figure 2.1: (a) Illustration of equivalent static lateral force method, and (b) 

Illustration of fundamental mode shape 

The main objective of this procedure is to determine a base shear corresponding to a 

response spectrum. Base shear force is estimated considering parameters like 

importance level of the structure, load carrying system of the structure, and determined 

effective ground acceleration based on earthquake zone. TS500 determines the base 

shear force according to the following formula;  

 Vb = 
W A(T1)

R T1
  (1) 

where 

Vb = Base shear force, total equivalent earthquake load acting on the building 

used in Equivalent Earthquake Load Method, 

W = The weight of the structure obtained by using the live load participation 

factor, 

A(T) = Spectral acceleration coefficient, 

T = The first natural vibration period of the building, 

R = Earthquake load reduction coefficient. 

Vb 

(a) (b) 
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Here, yield deformation spectra were used which is explained in more detail in Chapter 

3. Therefore, the base shear force is calculated by multiplying the seismic weight of 

the building directly by the spectral acceleration rather than calculating it by the 

parameters mentioned above. 

 Vb = Sa(T1).W (2) 

where  

Sa (T1) = Spectral acceleration coefficient corresponding to the period of the         

structure. 

After the estimation of the base shear, equivalent lateral forces are spread along the 

height of the structure. Distribution of base shear force according to Turkish Standard, 

TS500 is calculated as shown below; 

 Fi =(Vb - ∆FN)
wi Hi

∑ wj Hj
N
j=1

 

 

(3) 

   

and   
   

 ∆FN=0.0075 N Vb (4) 

 

where 

Fi = Equivalent lateral load acting on floor i, 

Hi = The storey height of the floor i of the building, 

wi = The weight of the floor level i calculated using the live load participation factor,  

ΔFN = Additional equivalent earthquake load affecting the top floor of the structure, 

N = The total number of floors from the foundation top of the building. 

This method requires preliminary design at the beginning of the design process to 

obtain initial stiffness of the building. Since a realistic design cannot be made without 
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knowing the equivalent lateral load, iteration is required. The static lateral load is 

recalculated each time as it changes depending on the period and weight of the 

building. The assumptions made when using this method are; 

• The structure is rigid,  

• The first mode dominates the structural response, 

• The building is perfectly fixed to the foundation,  

• All joints of the building have same acceleration during an earthquake,   

• Dominant effect of the earthquake is the horizontal forces of different magnitudes 

along the height of the building.  

2.2 New Method – Stability Coefficient Response Spectra (SCRS) 

through the First Storey Single Degree of Freedom (FSSDOF) System  

Stability Coefficient Response Spectra (SCRS) through the First Storey Single Degree 

of Freedom (FSSDOF) system is a fairly new method developed by Mousavi and 

Şensoy (2019). This approach is mainly developed to take P-delta effect into 

consideration while designing a structure.  Seismic forces cause the structure to deform 

in horizontal direction, while the gravity loads are still acting. On account of this, 

secondary moments appear in the structure which is equal to the constant vertical load 

P, times lateral displacement of the structure Δ. In other words, gravity loads reduce 

the lateral stiffness of buildings. However, the main concern with P-delta effect is not 

the reduction in lateral stiffness or strength of the building. If the ground acceleration 

motion is severe enough, the structure might be brought into the negative post-yield 

stiffness. If the effective stiffness at the largest displacement remains positive, P-delta 

effect is not very important, but if the stiffness becomes negative then, there is a 

possibility of collapse of the structure (Gupta & Krawinkler, 2000). Moreover, 

Williamson (2003) stated in his research that earthquakes may also have vertical 
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acceleration and stability effect is important even if axial load is very low. In this 

method, inverted-pendulum is used as single degree of freedom (SDOF) system due 

to the mentioned concerns. By this way, P-delta effect is placed into the equation of 

motion. 

 
Figure 2.2: (a) The inverted pendulum model, and   (b) Bilinear hysteretic behaviour 

(Mousavi & Şensoy, 2019) 

The equation of motion of an inverted pendulum in which P-delta effect is taken into 

account and base excitation is applied can be expressed as (Hjelmstad & Williamson, 

1998; Adam & Jäger, 2012); 

 mh2 ∅̈ + cϕ∅̇+ M(s) = -mh𝑥̈h (5) 

and  

 M(s) = M(ϕ) – 𝜃Kϕ0ϕ (6) 

where  

m = lumped mass, 

P = vertical load, 

h = height of the pendulum, 
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M(𝜙) = inelastic spring resistance,  

𝜙 = the angular position of the mass, 

ẍh = horizontal ground acceleration, 

M(𝜙) = inelastic spring resistance,  

Kϕ0 = initial rotational stiffness of the spring,  

𝜃 = stability coefficient. 

The equation of stability coefficient of the elastic system under the vertical load P, is 

defined as; 

 𝜃 =  
P. h

Kϕ0
 (7) 

Aydınoğlu and Fahjan (2003) proved that SC is time dependent for a pendulum with 

constant height and using it as a constant value is inaccurate. This idea can be 

supported by the following equation, which is derived from the Equation (7).   

  θ = 
g/h

ω0²
=  

ωG²

ω0²
 (8) 

where  

𝜔0 = initial frequency and is equal to Kϕ0 / (mh2). 

The dependence of SC on the period of the structure can be used to form stability 

coefficient response spectra. Putting a limit to the SC at each storey of a multi storey 

building is equivalent to putting a limit to vibration period of each level (Mousavi & 

Şensoy, 2019). By this way, necessary lateral stiffness for each level can be obtained. 

However, to be able to achieve this, input motions for all elevations should be known. 

In fact, input motions are normally known only at the first level of the building. 

Mousavi and Sensoy (2019) developed a new method by using this and other features 
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of the first storey such as; axial load on the base level is the total load of the whole 

building calculated by using live load participation factor, the acting shear force is 

equal to base shear and the height does not change very often. The new method is 

called First Storey Single Degree of Freedom System (FSSDOF).  In this method, the 

first storey is used to represent single degree of freedom system so that all features 

mentioned above can be used.  It should be pointed out that the aim of this method is 

to determine the required lateral stiffness for the first storey. The method cannot be 

used to represent the dynamic features of the multi storey building. In order to use this 

method effectively, SCRS should be formed, which is explained in the next chapter. 
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Chapter 3 

3. RESPONSE SPECTRA 

The actual time history record is required for seismic design and analysis of a structure 

to be built at a certain location. However, it is unlikely to achieve such records for 

every building field. Moreover, performing a seismic analysis of a structure based on 

the peak ground acceleration only is not very sufficient, because each earthquake is 

different and the response of the structure relies upon the frequency of the ground 

motion and its dynamic characteristics. Therefore, response spectrum is very 

convenient tool for structural seismic analysis. Response spectrum is actually derived 

from time history analysis. But in this method, instead of considering the response of 

the structure at each time instance, maximum response of it is considered. The 

maximum response is obtained for each period. In other words, the response spectrum 

is a plot of maximum response of all SDOF systems under the ground motion 

excitation for given damping ratio. 

To be able to form a response spectrum, the dynamic response of SDOF system should 

be numerically evaluated. Generally, analytical solution of the equation of motion for 

a SDOF system can not be obtained if the dynamic loading varies arbitrarily (Chopra, 

2011). This problem can be overcome by numerical time-stepping methods to solve 

various types of differential equations.  For this purpose, the Newmark’s Method 

(1959) is adopted which depends on the equations given below;   

 𝑢̇i+1 = 𝑢̇i +[(1-γ)∆t] 𝑢̇i + (γ∆t) 𝑢̈i+1  (9) 
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  ui+1 = ui + (∆t)𝑢̇i + [(0.5-𝛽)(∆𝑡)²]𝑢̈𝑖 + [𝛽(∆𝑡)²]𝑢̈𝑖 + 1 (10) 

   

𝛽 and 𝛾 are parameters which are used to define the change of acceleration over a time 

step and to determine the method’s stability and accuracy properties. Usually 𝛾 is 

chosen as  
1

2
 and 𝛽 varies between 

1

6
 to 

1

4
. 

Safkan (2018) selected ground motions by considering hazard deaggregation study 

results using the parameters like magnitude, distance and the target intensity measure 

which were obtained from the seismic hazard assessment study of Cagnan and 

Tanircan (2010). In this thesis, these ground motions were used as input motion to 

form response spectra especially for Cyprus. List of datasets used as input motion are 

given in Table 3.1. 

   

 

# Name Year  Location Mag. 

(Mw) 

RJB 

(km

) 

VS 

(m/s) 

Fault 

Type 1 PEER531 1986 Puerta La Cruz 6.1 67.5 442 Reverse 

2 PEER686 1987 Whitter 

Narrows 

5.9 40.9 390 Reverse 

3 PEER 

750 

1989 Loma Prieta 6.9 79 623 Reverse 

4 PEER208

9 

2002 Alaska 6.7 106 341 Strike Slip 

5 PEER016

3 

1975 Oroville 5.7 9.8 590 Normal 

6 PEER450

0 

2009 L`Aquila Italy 6.3 60.8 535 Normal 

7 PEER112

2 

1995 Kozani, Greece 6.4 72.8 650 Normal 

8 PEER026

6 

1980 Sahop Casa 

Flores 

6.3 19.0 242 Strike Slip  

9 PEER026

8 

1980 Sahop Casa 

Flores 

6.3 39.1 260 Strike Slip 

10 PEER031

3 

1981 Corinth, Greece 6.6 10.3 361 Normal 

11 PEER046

3 

1981 Taiwan 5.9 26.4 309 Reverse 

12 PEER053

5 

1986 San Jacinto 

Valley 

6.1 30.7 331 Reverse 

13 PEER054

8 

1986 Chalfant Valley 6.2 21.6 371 Strike Slip 

14 PEER071

8 

1987 Imperial Valley 

Wildlife 

6.2 17.6 179 Strike Slip 

15 PEER330

0 

1999 Chi Chi 6.3 27.6 553 Reverse  

16 PEER272

7 

1999 Chi Chi 6.2 76.3 247 Strike Slip 

17 PEER441 1983 Borah Peak 6.9 80 324 Normal 

Table 3.1: Ground motion dataset  used  as  input  motion  for  the  response  spectra 
(Safkan, 2018)
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3.1 Conventional Response Spectra 

3.1.1 Numerical Evaluation of Dynamic Response 

In the conventional method, mass-spring-damper (MSD) system is used to represent 

SDOF systems. The illustration of the model is shown in Fig 3.1. The mass is allowed 

to move in only one direction, therefore, the system has only one degree of freedom. 

 
Figure 3.1: Mass-spring-damper model 

The equation of motion for the system is; 

  m𝑥̈(t) + c𝑥̇(t) + kx(t) = 𝐹(𝑡) (11) 

Under the ground motion excitation F(t) is defined as; 

F(t) =  -m𝑥̈g(t)  

where  

m = mass of the structure, 

c = damping coefficient, 

k = stiffness, 

x = displacement, 

𝑥̇ = velocity,  

𝑥̈ = acceleration, 

𝑥̈g(t) = horizontal ground acceleration. 

For the linear systems Newmark’s original formula can be modified as shown below; 

   𝑚𝑢̈i+1 + c𝑢̇i+1 +kui+1 = pi+1 (12) 

𝒙 (t) 
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The summary of time-stepping solution of Newmark’s method is given in Table 3.2. 

In here, linear acceleration method is used and to simplify the calculations, initial 

conditions (u(0), 𝑢̇(0),  and 𝑢̈(0)) are taken as zero.  The implementation of the method 

is carried out in a MATLAB program, this program is given in Appendix A.  
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Table 3.2: Newmark’s method for linear systems 

Special Cases Constant average acceleration method; 𝛾 = 
1

2
 and 𝛽 = 

1

4
 

 Linear acceleration method; 𝛾 = 
1

2
 and 𝛽 = 

1

6
 

1.  Initial Calculations 

 
1.1. 𝑢̈0 = 

𝑝0-c𝑢̇0-ku0

𝑚
 

 1.2. Select ∆t 

 1.3. a1 = 
1

𝛽(∆𝑡)²
 m + 

𝛾

𝛽∆𝑡
c,  

              a2 = 
1

𝛽∆𝑡
 m +( 

𝛾

𝛽
 – 1) c, 

             a3 =( 
1

2𝛽
 – 1) m + ∆𝑡 ( 

𝛾

𝛽
 – 1) c, 

 1.4. 𝑘̂ = k + a1 

2.  Calculations for each time step, i = 0, 1, 2,… 

 2.1. 𝑝̂i+1 = pi+1 + a1ui + a2𝑢̇i +a3𝑢̈i 

 
2.2. ui+1 = 

𝑝̂i+1

𝑘̂
 

 2.3. 𝑢̇i+1 = 
𝛾

𝛽∆𝑡
 ( ui+1 – ui ) + (1 - 

𝛾

𝛽
 )𝑢̇i + ∆𝑡 ( 1 - 

𝛾

𝛽
 )𝑢̈i 

 2.4. 𝑢̈i+1 = 
1

𝛽 (∆𝑡)²
 ( ui+1 – ui ) - 

1

𝛽∆𝑡
𝑢̇i +  ( 

1

2𝛽
 -1 ) 𝑢̈i 

3.  Repeat the process for the next time step.  

 

 Change i by i + 1 and carry out steps 2.1 to 2.4 for the next 

time step. 
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3.1.2 Forming Response Spectra 

The determination of the yield strength (fy) and yield deformation (uy) of the system is 

important for design purposes for limiting the ductility demand to a particular value. 

The force-deformation relation for a structure during the initial loading can be 

idealized by an elastic-perfectly plastic (elastoplastic) relation. In Fig 3.2, typical 

loading, unloading, and reloading cycle for an elastoplastic system is shown. 

 
Figure 3.2: Elastoplastic force–deformation relation (Chopra, 2011) 

At the initial loading, the system is elastic with stiffness k, until it reaches the yield 

strength. At this point yielding starts, and corresponding deformation is known as yield 

deformation. Force is assumed to be constant and stiffness is kept zero during the 

yielding. The yield strength value is the same in both negative and positive directions. 

Unloading is parallel to the loading and reloading path. Newmark and Veletsos (1960) 

developed a response spectrum for elastoplastic systems which can directly determine 

yield strength or yield deformation. For this method, the yield strength reduction factor 

Ry and the peak linear deformation u0 should be known. During the design, yield 

strength reduction factor Ry is selected by the designer and it is defined by;  
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 Ry =  
f0

fy
= 

u0

uy
 (13) 

where 

fo = peak earthquake induced resisting force in the corresponding linear system ( fo = 

ku0 ), 

fy = yield strength ( fy = kuy ). 

After the evaluation of the elastic system as stated in section 3.1.1, peak deformation 

in the corresponding linear system u0 can be determined. Yield deformation can be 

calculated by dividing u0 by Ry. In order to form response spectra, yield deformation 

should be calculated for each period. MATLAB code created for the conventional 

response spectrum is included in the Appendix B. Response Spectra are plotted 

against fundamental vibration period for;  

 Dy = uy             Vy =𝜔nuy               Ay = 𝜔n
2uy  (14) 

where 

𝜔n = natural frequency of the SDOF system (𝜔n = 
2𝜋

𝑇
), 

Dy = Spectral displacement, 

Vy = Spectral velocity, 

Ay = Spectral acceleration. 

In order to form the conventional response spectrum, elastic response spectrum should 

be obtained so that peak deformation can be determined for each period. By the yield 

strength response spectra, yield strength can be obtained directly by;  

  fy = 
Ay

𝑔
𝑤 (15) 

where 
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w = weight of the structure. 

Conventional response spectra created for Cyprus with 5% damping ratio is shown in 

Fig 3.3 to 3.6 for Ry = 1,2,4, and 8. 
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Figure 3.3: Conventional response spectra (ζ = 5%) for selected ground motions for 

Ry=1 

 

Ry = 1 
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Figure 3.4: Conventional response spectra (ζ = 5%) for selected ground motions for 

Ry=2 

 

 

 

 

Ry = 2 
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Figure 3.5: Conventional response spectra (ζ = 5%) for selected ground motions for 

Ry=4 

 

 

 

Ry = 8 

Ry = 4 
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Figure 3.6: Conventional response spectra (ζ = 5%) for selected ground motions for 

Ry=8 

 

 

 

 

 

 

 

 

Ry = 8 
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3.2 New method – Stability Coefficient Response Spectra  

3.2.1 Numerical Evaluation of Dynamic Response 

Newmark’s original formula was required to adapt for the inverted pendulum model 

to be able to create SCRS. Adaption steps used for Newmark’s method are placed in 

the Appendix C and the summary of steps are shown in Table 3.3. It is essential to 

use height as a constant value in inverted pendulum-based response spectra. Because 

the period dependent feature of SC can be adapted by use of constant height.  
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Special Cases Constant average acceleration method; 𝛾 = 
1

2
 and 𝛽 = 

1

4
 

 Linear acceleration method; 𝛾 = 
1

2
 and 𝛽 = 

1

6
 

1.  Initial Calculations 

 1.1. Select ∆t and ∆∅ 

 1.2. a1 = 
1

𝛽(∆𝑡)²
 mh2 + 

𝛾

𝛽∆𝑡
c∅, 

 1.3. a2 = 
1

𝛽∆𝑡
 mh2 +( 

𝛾

𝛽
 – 1) c∅ , 

 1.4. a3 =( 
1

2𝛽
 – 1) mh2 + ∆𝑡 ( 

𝛾

𝛽
 – 1) c∅  

 1.5. 𝑘̂ = K∅0 + a1 

2.  Calculations for each time step, i = 0, 1, 2,… 

 2.1. 𝑝̂i+1 = pi+1 + a1∅i + a2∅̇i +a3∅̈i 

 
2.2. ∅i+1 = 

𝑝̂i+1

𝑘̂
 

 2.3. ∅̇i+1 = 
𝛾

𝛽∆𝑡
 ( ∅i+1 – ∅i ) + (1 - 

𝛾

𝛽
 )∅̇i + ∆𝑡 ( 1 - 

𝛾

𝛽
 )∅̈i 

 2.4. ∅̈i+1 = 
1

𝛽 (∆𝑡)²
 ( ∅i+1 – ∅i )) - 

1

𝛽∆𝑡
∅̇i +  ( 

1

2𝛽
 -1 ) ∅̈i 

3.  Repeat for the next time step.  

3.1.  

 Change i by i + 1 and carry out steps 2.1 to 2.4 for the next time 

step. 

 

 

 

 

 

 

 

Table 3.3: Modified Newmark’s method for inverted pendulum model
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3.2.2 Forming Response Spectra 

Yielding displacements are calculated using the maximum displacements as in the 

conventional method. The period-dependent feature of SC is used to plot response 

spectra against SC with a constant height of 3 m which is the first storey height of the 

designed buildings. Stability coefficient response spectra is illustrated in Fig 3.7 to 

3.10 for Ry = 1,2,4, and 8.  

When SCRS and conventional response spectra are compared, spectral information is 

slightly higher in SCRS since it includes P-delta effect as well. The vibration period 

can not represent P-delta effect unless the height of the pendulum is kept constant 

(Kalkan & Graizer, 2007). 
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Figure 3.7: Stability coefficient response spectra (ζ = 5%) for selected ground 

motions for Ry=1 

 

 

Ry = 1 

Ry = 2 



28 
 

 
Figure 3.8: Stability coefficient response spectra (ζ = 5%) for selected ground 

motions for Ry=2 

 

 

 

 

 

Ry = 2 
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Figure 3.9: Stability coefficient response spectra (ζ = 5%) for selected ground 

motions for Ry=4 

 

Ry = 4 
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Figure 3.10: Stability coefficient response spectra (ζ = 5%) for selected ground 

motions for Ry=8 

 

 

 

 

 

 

 

 

Ry = 8 
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3.3 Ductility Demand Curves 

Ductility Demand can simply be expressed as the ratio of the peak non-linear 

displacement um to the yield displacement uy. These curves vary considerably 

according to the ground motion. For this reason, forming the ductility curve by taking 

the mean of many ground motions is a more reasonable approach. With this approach 

in Figures 3.11 and 3.12, ductility demand curves were plotted by taking the mean of 

17 ground motions. A MATLAB code was written to obtain peak nonlinear 

displacement and to plot the ductility demand curve is added to the Appendix D. 
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Figure 3.11: Ductility Demand Curve for yield reduction factor four 

Ry = 4 
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Figure 3.12: Ductility Demand Curve for yield reduction factor eight 

 

 

 

 

 

 

 

 

 

 

Ry = 8 
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Chapter 4 

4. BUILDING DESIGN 

A five-storey building and a nine-storey building were designed according to Turkish 

Standard (TS 500) and Turkish Earthquake Code (2007). These structures were 

designed and analysed in order to see and compare the P-delta effect in long and short 

buildings.  Concrete grade C25 was used for the two buildings and S420 was used for 

the reinforcement. In Fig 4.1 and Fig 4.2, five storey and nine storey buildings 

designed in SAP2000 are illustrated respectively. A typical storey plan is given in Fig 

4.3. The middle part was kept empty as it represents the staircase and elevator space. 

The reason for placing this space in the middle part is to form a regular building. In 

regular buildings, when lateral force is applied, the structure moves equally so the 

energy dissipation is even at both side of the structure. Nonetheless, in irregular 

structures since the energy dissipation is not equal, there is more force on one side. For 

this reason, there will be more damage in one side and this may even cause collapse 

of the whole building.  

Here, only the design steps and results of a five-storey building with a yield reduction 

factor of four are included. The load transferred from the stairs, slabs, walls, and beams 

to the columns is shown in the Table 4.1.  
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Figure 4.1: Five-storey building modelled in SAP2000 
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Figure 4.2: Nine-storey building modelled in SAP2000 
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Figure 4.3: Typical storey plan 
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Staircase Loads 

 Landing Stair 

Dead Load 
Plaster + 

Cladding 

 

1.5 kN/m2 
Plaster + 

Cladding 

 

1.5 kN/m2 

 
Self-weight of 

slab 
4 kN/m2 

Self-weight of 

slab 
4 kN/m2 

   Wight of stair 1.875 kN/m2 

Live Load From TS 498 3.5 kN/m2 From TS 498 3.5 kN/m2 

Slab Loads 

 S101, S102, and S103 B101 and B102 

Dead Load Plaster + 

Cladding 

 

1 kN/m2 Plaster + 

Cladding 

 

1 kN/m2 

 Self-weight of 

slab 

3 kN/m2 Self-weight of 

slab 

3 kN/m2 

Live Load From TS 498 2 kN/m2 From TS 498 5 kN/m2 

Wall Loads 

Dead Load Wall 

4.809 kN/m 

4.809 kN/m 

 Plaster 1.019 kN/m 

Beam Loads 

Dead Load Self-weight of Beam 2.5 kN/m 

 

 

 

 

 

 

Table 4.1: Summary of loads applied on columns
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4.1 Preliminary Design 

In conventional method, preliminary design is required to obtain equivalent lateral load 

which includes determination of slab thickness, beam dimensions and column 

dimensions. 

4.1.1 Determination of Slab Thickness  

According to TS500, thickness of two-way slabs can not be less than the value 

obtained from Equation 16; 

 h  ≥  
lsn

15 + 
20

m

( 1 – 
αs

4
 ) and h ≥ 80 mm (16) 

where  

h = thickness of slab, 

lsn = free span of slab in short direction, 

m = the ratio of slab long edge length to short edge length, 

𝛼s = the ratio of slab continuous edge lengths to total edge lengths. 

In addition, the ratio of slab thickness of a one-way slab to free span cannot be less 

than the values given below; 

For simple support, single span slab  1/25, 

For continuous slab    1/30, 

For cantilever slab    1/12. 

Considering these restrictions, the minimum slab thickness required for each slab is 

determined below; 
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In order to provide continuity in each slab, slab thickness is selected as 11 cm. 

4.1.2 Determination of Beam Dimensions 

Beam dimensions should be determined to satisfy the TS 500 regulations which are 

illustrated in the following figure. 

 
Figure 4.4: Required beam cross section dimensions according to TS 500 

Considering the Turkish Earthquake Code (2007), beam width can not be less than 

250 mm. The determined beam cross section is;  

 

Slab thickness 

Slab ID m Load 

Disctrubution 

lsn 

(cm) 

𝜶s hmin (cm) 

S101 1.23 Two-way 3.75 0.7753 10 

S102 1.45 Two-way 3.75 0.7041 11 

S103 1.53 Two-way 2.95 0.6049 9 

B101 - One-way 1.275 - 11 

B102 - One-way 1.275 - 11 

Column or Shear wall 

Table 4.2: Calculation of slab thickness
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Table 4.3: Determination of beam cross-section 

As a result, 250x400 is selected. 

4.1.3 Determination of Column Dimensions 

In conventional buildings, load transfer is from slabs to beams and beams to columns. 

In preliminary design, column dimensions are determined according to the vertical 

load generated from the impact areas of the columns. The domain of the column 

consists of half of the slabs and beams around the column. Since the structure is 

symmetrical, there are actually four columns to be designed. The domain of each 

column is shown in Table 4.4. 

Table 4.4: The domain of each column 

Column Beam Beam Beam Beam Slab  Slab Slab  Slab  

ID ID ID ID ID ID ID ID ID 

2A A-1-2 A-2-3 2-A-B - S101 B101 - - 

2B B-1-2 B-2-3 2-A-B 2-B-C S101 S102 B101 B102 

3A A-2-3 A-3-4 3-A-B - S101 S103 - - 

3B B-2-3 B-3-4 3-A-B 3-B-C S101 S102 S103 - 

After calculating the axial loads on each column, column dimensions are determined 

according to the TS 500 minimum column area restriction. 

 
Ac ≥ 

Nd

0.9fcd
 

(17) 

According to TS500, the smallest dimension of rectangular columns cannot be smaller 

than 250 mm. In TEC 2018 it is stated that the smallest column section is 300 mm.  

Although the design was made according to TEC 2007, in order to stay on the safe 

   Selected 

bw (mm) ≥ 250  ≤ (a+h)  250 

h (mm) ≥ 300 ≥ 360 (3t) 400 
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side, 300 mm was chosen as the smallest column section. The axial loads were 

increased by 10% for taking into account horizontal loads and to reduce the number of 

iterations. 

Table 4.5: Determination of column cross section of five storey building 

Column ID Nd min Ac Selected 

Dimensions 
2A 66411.32 221.37 300x300 

2B 126210.22 420.70 300x400 

3A 61762.77 205.88 300x300 

3B 154690.81 441.97 350x450 

Table 4.6: Determination of column cross section of nine storey building 

4.2 Iteration for Determining the Horizontal Loads 

After the preliminary design, the spectral acceleration corresponding to the designed 

building was obtained, which was used to calculate the equivalent earthquake forces. 

In general, the column cross sections determined in preliminary design are not 

sufficient to bear the applied load, therefore, the column sizes are increased. The 

corresponding spectral acceleration value changes when the column dimensions are 

increased. Determining the final horizontal loads and column cross sections requires 

several iterations like this. The axial loads on the columns were increased by 10% in 

order to decrease the number of iterations. Three iterations were required for a five-

story structure with a yield reduction factor of four, one iteration for the same structure 

Column ID Nd min Ac Selected 

Dimensions 
2A 155142.33 443.26 350x450 

2B 294919.26 589.84 500x600 

3A 144543.71 481.81 500x300 

3B 361407.53 721.37 500x750 
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with a yield reduction factor of eight, two iterations for a nine-story structure with a 

yield reduction factor of four, and one iteration for the same structure with a yield 

reduction factor of eight.  

Then, the vibration period of the structure and its corresponding spectral acceleration 

from the conventional response spectrum were determined. Equivalent earthquake 

loads were calculated from the spectral acceleration as given in Equation 3 and 4. 

Then, they were imposed on the structure and it was checked whether the structural 

elements can bear these loads. In the tables below, the checks of each iteration and the 

new structural element sizes determined for the next iteration, are given. After the 

lateral loading, if an element can still service letter S is typed to indicate that element 

size is sufficient. If not, letter I is typed to indicate that the structural element is 

insufficient and its size should be increased.  
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Table 4.7: Results of first iteration of a five storey building with reduction factor four 

 

 
 

Iteration 1 
        

Tx(sec) 1.02 
       

Ty(sec) 1.01 
       

Sa(g) 0.093 
       

Sa(g) 0.093 
       

Selected Beam 

Section 

25x40 
       

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 
Selected Column 

Section 

30x30 30x40 30x40 30x30 30x30 35x45 35x45 30x30 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 
Selected Column 

Section 

30x30 35x45 35x45 30x30 30x30 30x40 30x40 30x30 

Beam ID 2-A-B 2-B-C 2-C-D 3-A-B 3-B-C 3-C-D 4-A-B 4-B-C 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID 4-C-D 5-A-B 5-B-C 5-C-D A-1-2 A-2-3 A-3-4 A-4-5 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID A-5-6 B-1-2 B-2-3 B-3-4 B-4-5 B-5-6 C-1-2 C-2-3 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID C-3-4 C-4-5 C-5-6 D-1-2 D-2-3 D-3-4 D-5-6 D-6-7 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 
Z=3 S I I S I S I I 

Z=6 S S S S I S S I 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 
Z=3 I S I S S I I S 

Z=6 I S S I S S S S 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 
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Table 4.8: Results of second iteration of a five storey building with reduction factor 

four 

 

 

Iteration 2 
        

Tx(sec) 0.97  

       

Ty(sec) 0.97 
       

Sa(g) 0.101

37 

       

Sa(g) 0.101

37  

       

Selected Beam 

Section 

25x40 
       

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 
Selected Column 

Section 

30x30 30x45 30x45 30x30 30x35 35x45 35x50 30x35 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 
Selected Column 

Section 

30x35 35x45 35x50 30x35 30x30 30x45 30x45 30x30 

Beam ID 2-A-B 2-B-C 2-C-D 3-A-B 3-B-C 3-C-D 4-A-B 4-B-C 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID 4-C-D 5-A-B 5-B-C 5-C-D A-1-2 A-2-3 A-3-4 A-4-5 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID A-5-6 B-1-2 B-2-3 B-3-4 B-4-5 B-5-6 C-1-2 C-2-3 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID C-3-4 C-4-5 C-5-6 D-1-2 D-2-3 D-3-4 D-5-6 D-6-7 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 
Z=3 S I I S S  S S S  
Z=6 S S S S S S S S 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 
Z=3 S S S S S I I S 

Z=6 S S S S S S S S 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 
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Table 4.9: Results of third iteration of a five storey building with reduction factor four 

Iteration 3 
        

Tx(sec) 0.96  

       

Ty(sec) 0.95 
       

Sa(g) 0.101

85 

       

Sa(g) 0.101

71  

       

Selected Beam 

Section 

25x40 
       

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 
Selected Column 

Section 

30x30 30x50 30x50 30x30 30x35 35x45 35x50 30x35 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 
Selected Column 

Section 

30x35 35x45 35x50 30x35 30x30 30x50 30x50 30x30 

Beam ID 2-A-B 2-B-C 2-C-D 3-A-B 3-B-C 3-C-D 4-A-B 4-B-C 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID 4-C-D 5-A-B 5-B-C 5-C-D A-1-2 A-2-3 A-3-4 A-4-5 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID A-5-6 B-1-2 B-2-3 B-3-4 B-4-5 B-5-6 C-1-2 C-2-3 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID C-3-4 C-4-5 C-5-6 D-1-2 D-2-3 D-3-4 D-5-6 D-6-7 
Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 
Z=3 S S S S S  S S S  
Z=6 S S S S S S S S 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 
Z=3 S S S S S S S S 

Z=6 S S S S S S S S 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 
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4.3 Storey Drift and Stability Coefficient Check According to 

TEC2007 

After the third iteration since all structural elements were sufficient, the sections of the 

elements were determined. However, according to TEC 2007, it is necessary to check 

the relative storey drifts and stability coefficient values. If these conditions are not 

fulfilled, it is necessary to increase the dimensions of the elements and check them 

again.  

4.3.1 Relative Storey Drift Check 

TEC 2007 determines that relative storey drift can not be greater than 0.02. This is 

checked as shown in the following equations; 

 ∆i = di – di-1 (18) 

 𝛿i = R ∆i (19) 

 (𝛿𝑖)𝑚𝑎𝑥

ℎ𝑖
 

(20) 

where 

di = displacement of the storey i of the structure due to reduced earthquake loads, 

∆i = reduced relative storey drift of the storey i of the structure, 

𝛿i = effective relative storey displacement of the storey i of the building. 

The storey drift checks of the building in x and y direction are illustrated in Table 

4.10. The condition of drift less than 0.02 at each floor was provided in all designed 

buildings. 
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Table 4.10: Storey drift check of a five storey building with a reduction factor four 

 X - Direction Y – Direction 

Z 

(m

) 

di ∆i 𝜹i 𝜹i/hi ≤0.02 di ∆i 𝜹i 𝜹i/hi ≤0.02 

15 0.04 0.003 0.01

36 

0.004

5 

OK 0.04 0.004 0.01

40 

0.004

7 

OK 

12 0.03 0.007 0.02

60 

0.008

7 

OK 0.03 0.006 0.02

52 

0.008

4 

OK 

9 0.03 0.009 0.03

52 

0.011

7 

OK 0.03 0.009 0.03

48 

0.011

6 

OK 

6 0.02 0.010 0.04

08 

0.013

6 

OK 0.02 0.010 0.04

00 

0.013

3 

OK 

3 0.01 0.008 0.03

16 

0.010

5 

OK 0.01 0.008 0.03

08 

0.010

3 

OK 

4.3.2 Stability Coefficient Check 

According to TEC 2007 stability coefficient can not be greater than 0.2. The check of 

this condition is as follows; 

  θ = 
(∆𝑖)𝑎𝑣𝑔 ∑ 𝑤𝑗

𝑁
𝑗=1

Vihi
 (21) 

 where  

(∆𝑖)avg = average reduced relative storey drift of the storey i of the structure, 

wj = storey weight of the storey i, calculated using live load participation coefficient, 

Vi = shear force acting on the storey i of the structure in the direction of the 

considered earthquake, 

hi = storey height of the storey i. 

In order to do this check, the seismic weight and shear force of each storey must be 

calculated. Base shear force is distributed to each storey as shown in Equation 3 and 

4. In table 4.13, check results are given and all stability coefficient values were less 

than the limit 0.2. This code specified limits were satisfied in other designed buildings 

as well. 
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Table 4.11: Calculation of weight of each storey of a five storey building 

E
le

v
a
ti

o
n

 (
m

) 

S
la

b
 

S
ta

ir
ca

se
 

B
ea

m
 

W
a
ll

 

C
o
lu

m
n

 

T
o
ta

l 

S
ei

sm
ic

 W
ei

g
h

t 
(k

N
) 

D
ea

d
 

L
iv

e 

D
ea

d
 

L
iv

e 

D
ea

d
 

D
ea

d
 

D
ea

d
 

D
ea

d
 

L
iv

e 

3 749.4 530.7 214.0 129.9 295.9 624.8 153.3 2037.4 660.6 2235.6 

6 749.4 530.7 214.0 129.9 295.9 624.8 153.3 2037.4 660.6 2235.6 

9 749.4 530.7 214.0 129.9 295.9 624.8 153.3 2037.4 660.6 2235.6 

12 749.4 530.7 214.0 129.9 295.9 624.8 153.3 2037.4 660.6 2235.6 

15 749.4 530.7 214.0 129.9 295.9 - 153.3 1412.6 660.6 1610.8 

         ΣW 10553.1 

Table 4.12: Calculation of shear force acting on each storey of a five storey building 

∆FN (kN) 40.25    

Elevation (m) Wj (kN) wiHi (kN.m) WiHi/ΣWiHi Vi (kN) 

3 2235.58 6706.74 0.07 75.95 

6 2235.58 13413.49 0.15 151.90 

9 2235.58 20120.23 0.22 227.85 

12 2235.58 26826.98 0.29 303.80 

15 1610.83 24162.46 0.26 313.87 

Table 4.13: Storey drift check of a five storey building with a reduction factor four 

   X - Direction Y – Direction 

Z 

(

m

) 

(di)avg (∆i)avg Vi 𝜽i ≤0.12 (di)avg (∆i)avg Vi 𝜽i ≤0.12 

15 0.036

3 

0.003

4 

313.8 

 

0.013 

 

OK 0.035

6 

0.003

4 

314.3 

 

0.013 

 

OK 

12 0.032

9 

0.006

4 

303.8 

 

0.013 

 

OK 0.032

2 

0.006

3 

304.2 

 

0.013 

 

OK 

9 0.026

5 

0.008

7 

227.8 

 

0.022 

 

OK 0.025

9 

0.008

6 

228.1 

 

0.021 

 

OK 

6 0.017

8 

0.010

1 

152 

 

0.028 

 

OK 0.017

4 

0.009

8 

152.1 0.027 

 

OK 

3 0.007

8 

0.007

8 

75.9 

 

0.026 

 

OK 0.007

6 

0.007

6 

76.05 

 

0.025 

 

OK 
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Chapter 5 

5. INCLUSION OF P-DELTA EFFECT 

Buildings were designed using conventional response spectrum. However, P-delta 

effect is not included in these spectra. In order to see the P-delta effect, after the design 

of the building, the equivalent SC corresponding to the fundamental vibration period 

of the building was calculated by using Equation 22 and the corresponding spectral 

acceleration from SCRS was calculated and compared. 

 

 T0=2π √
𝜃. ℎ

𝑔
 

(22) 

The comparisons are in the table below. 

Table 5.1: Comparison of base shears obtained by conventional response spectrum and 

SCRS 

 Five-Storey Building Nine-Storey Building 

 R=4 R=8 R=4 R=8 

Conventional     

Tx (sec) 0.96 1.02 1.19 1.37 

Sa (g) 0.10185 0.0467 0.0865 0.0534 

Vb (kN) 1074.84 489.01 1922.31 1137.43 

SCRS     

𝜃x 0.0748 0.0862 0.1173 0.1555 

Sa (g) 0.1035 0.0473 0.0889 0.0547 

Vb (kN) 1092.57 495.71 1974.96 1164.27 

Conventional     

Ty (sec) 0.95 1.01 1.18 1.36 

Sa (g) 0.10171 0.0467 0.087 0.0549 

Vb (kN) 1073.36 488.65 1932.75 1169.38 

SCRS     
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𝜃y 0.0763 0.0845 0.1153 0.1532 

Sa (g) 0.1036 0.0478 0.0887 0.0563 

Vb (kN) 1093.31 500.59 1971.56 1199.20 

When the earthquake load obtained using SCRS was applied to a five-story building 

with a reduction factor of four, it was observed that some columns of the building 

failed. This shows that, when the P-delta effect is not taken into account, although the 

limitations in the earthquake code is satisfied, it can be a cause of failure of the 

structural elements or even collapse of the whole building. As shown in Tables 5.3 and 

5.4, as the height of the building increases, the effect of the P-delta effect increases as 

it is directly related to the weight of the building. It is a known fact that the P-delta 

effect increases in long-term buildings, and the results of this study are compatible 

with this judgement. 
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Table 5.2:  Checking the adequacy of structural elements under earthquake load 

obtained from SCRS 

 

Tx(sec) 0.96  

       

Ty(sec) 0.95 
       

Sa(g) 0.103

5 

       

Sa(g) 0.103

6 

       

Selected Beam 

Section 

25x40 
       

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 
Selected Column 

Section 

30x30 30x50 30x50 30x30 30x35 35x45 35x50 30x35 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 

Selected Column 

Section 

30x35 35x45 35x50 30x35 30x30 30x50 30x50 30x30 

Beam ID 2-A-B 2-B-C 2-C-D 3-A-B 3-B-C 3-C-D 4-A-B 4-B-C 

Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID 4-C-D 5-A-B 5-B-C 5-C-D A-1-2 A-2-3 A-3-4 A-4-5 

Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID A-5-6 B-1-2 B-2-3 B-3-4 B-4-5 B-5-6 C-1-2 C-2-3 

Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Beam ID C-3-4 C-4-5 C-5-6 D-1-2 D-2-3 D-3-4 D-5-6 D-6-7 

Z = 3 m S S S S S S S S 

Z = 6 m S S S S S S S S 

Z = 9 m S S S S S S S S 

Z = 12 m S S S S S S S S 

Z = 15 m S S S S S S S S 

Column ID 2A 2B 2C 2D 3A 3B 3C 3D 

Z=3 I  S S I  S  S S  S  
Z=6 S S S S S S S S 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 

Column ID 4A 4B 4C 4D 5A 5B 5C 5D 

Z=3 S  S S  S  I  S S I  
Z=6 S S S S S S S S 

Z=9 S S S S S S S S 

Z=12 S S S S S S S S 

Z=15 S S S S S S S S 
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Table 5.3: Increase in base shear (%) of a five storey building due to P-delta effect 

 Five Storey Building 

 R=4 R=8 

 X-Direction Y-Direction X-Direction Y-Direction 

Increase in Vb 

(%) 

1.65 1.86 1.37 2.44 

Table 5.4: Increase in base shear (%) of a nine storey building due to P-delta effect 

 Nine Storey Building 

 R=4 R=8 

 X-Direction Y-Direction X-Direction Y-Direction 

Increase in Vb 

(%) 

2.74 2.01 2.36 2.55 
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Chapter 6 

6. CONCLUSION 

Ground vibrations created by earthquakes cause damage to buildings. Therefore, if a 

building is located in a seismically active region, the design according to earthquake 

codes are mandatory. Earthquake codes have a guiding role in seismic building design. 

After the design of the building, second order effect and storey drift of the structure 

should be checked according to the codes. If the structure does not fulfill the specified 

code limits, iteration should be continued until it does. 

P-delta has a significant effect if the structure is not a short period system. Because in 

long-period structures it causes prolongation of the period and decrease in lateral 

stiffness. If neglected, it may even cause collapse of the whole structure. For this 

reason, it is very convenient to create a response spectrum that includes the P-delta 

effect. Thus, the P-delta effect will be included when obtaining the spectral 

acceleration. Stability coefficient response spectrum was formed in this aspect. 

FSSDOF system with a known height was used as a SDOF system so that P-delta 

effect is placed into the equation of motion. In order to emphasize the importance of 

the P-delta effect, base shears obtained from the conventional response spectrum, and 

from stability coefficient response spectrum were compared. Considering the base 

shear values, a slight increase of 1-3% was observed. However, when the spectral 

acceleration obtained from SCRS was imposed on the building, failure of the four 

columns were observed. Although the building was designed according to the 
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earthquake code and fulfilled the all specified limits, it could not bear the load 

containing the P-delta effect. So, P-delta effect cannot be ignored in real life, as its 

negligence can cause serious problems.  

There is only one limitation for the formed SCRS which is they can only be used for 

the buildings with the first storey height of 3 m. If the first storey height is not 3 m, the 

spectra would give wrong spectral information. 

Recommendations: 

• In this study, spectral acceleration, including the P-delta effect, is 

imposed on the building and it is observed that there are elements that 

cannot bear the load. By taking this into consideration, the building can 

be designed using the spectral acceleration obtained from SCRS and 

the building designed with the conventional response spectrum can be 

compared in terms of cross section of structural elements, structure 

weight, and the base shear and equivalent lateral loads on the structure. 

• Earthquake codes have a limit for stability coefficient but they do not 

consider the vibration period of the buildings. This limit can be used as 

a starting point to reduce the number of iterations. For this purpose, 

SCRS through FSSDOF approach can be used. However, in the 

equations developed by Mousavi and Şensoy, rotational stiffness is 

used since inverted pendulum is used as SDOF system and further 

research is required to determine the equivalent lateral horizontal 

stiffness of the first floor.  

• In this thesis SCRS are formed for first storey height of 3 m. This can 

be increased (e.g 4 m, 5 m and 6 m) in further studies.  
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Appendix A: The Implementation of Newmark’s Method in a 

MATLAB Program 

load gm1.txt 

g=9.810; 

dt=0.005; 

zet=0.05; 

endp=3; 

m=1; 

Ag=-g*gm1(:,2); 

T(1)=0.01; 

for j=1:round(endp/dt)  

    if dt/T(j)<=0.551 

        gamma=0.5; 

        beta=1/6;     

    else 

        gamma=0.5; 

        beta=0.25; 

    end 

    omega(j)=2*pi/T(j); 

    k=(omega(j))^2*m; 

    c=2*m*omega(j)*zet; 

    a1=m/(beta*dt^2)+gamma*c/(beta*dt); 

    a2=m/(beta*dt)+c*(gamma/beta-1);      

    a3=m*(1/(2*beta)-1)+dt*c*(gamma/(2*beta)-1); 

    K=k+a1;   

    for i=1:length(Ag)-1 

        u(1)=0; 

        v(1)=0; 

        ac(1)=0; 

        Ag_(i+1)=Ag(i+1)+a1*u(i)+a2*v(i)+a3*ac(i); 

        u(i+1)=Ag_(i+1)/K; 

        v(i+1)=gamma/(beta*dt)*(u(i+1)-u(i))+(1-gamma/beta)*v(i)+(1-

gamma/(2*beta))*dt*ac(i); 

        ac(i+1)=1/(beta*(dt^2))*(u(i+1)-u(i))-1/(beta*dt)*v(i)-(1/(2*beta)-

1)*ac(i); 

    end 

    Sd(j,1)=max(abs(u)); 

    Spv(j,1)=Sd(j)*omega(j); 

    Spa(j,1)=Sd(j)*(omega(j))^2/g; 

    T(j+1,1)=T(j)+dt; 

end 
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Appendix B: MATLAB Code for Yield Deformation Response 

Spectrum 

load gm1u0.txt 

T(1)=0.01; 

g=9.810; 

endp=3; 

dt=0.01; 

R=4; 

uy=gm1u0(:,1)/R; 
  

for j=1:round(endp/dt)  

    omega(j)=2*pi/T(j); 

    Sd=uy; 

    Spv(j,1)=Sd(j)*omega(j); 

    Spa(j,1)=Sd(j)*(omega(j))^2/g; 

    T(j+1,1)=T(j)+dt; 

end 

  

%Ag(end)=[]; 

T(end)=[]; 

%Sd(2,1)=0; Spv(1:2,1)=0;Spa(1:2,1)=max(abs(Ag))/g; 

subplot(2,1,1) 

 %figure('Name','Spectral Displacement','NumberTitle','off') 

 plot(T,Sd,'LineWidth',2.) 

 grid on 

xlabel('Period (sec)','FontSize',13); 

ylabel('Sd (m)','FontSize',13); 

title('Displacement Spectrum','FontSize',13) 
  

subplot(2,1,2) 

 %figure('Name','Pseudo Acceleration Spectrum','NumberTitle','off') 

 plot(T,Spa,'LineWidth',2.) 

 grid on 

xlabel('Period (sec)','FontSize',13); 

ylabel('Spa (g)','FontSize',13); 

title('Pseudo Acceleration Spectrum','FontSize',13) 

 

 

loglog(x,gm1,x,gm2,x,gm3,x,gm4,x,gm6,x,gm7,x,gm8,x,gm9,x,gm10,x,gm11

,x,gm12,x,gm14,x,gm15,x,gm16,x,gm18,x,gm19,x,gm20,'HandleVisibility','of

f') 

hold on 

xlim([0.1 3]) 

loglog(x,M,'k','linewidth',2,'DisplayName','Median response spectrum') 
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loglog(x,percentile84th,'--r','linewidth',2,'HandleVisibility','off') 

loglog(x,percentile16th,'--r','linewidth',2,'DisplayName','16th and 84th 

percentile response spectra') 
  

hold off 
  

xlabel('Period','FontSize',13); 

ylabel('Spa (g)','FontSize',13); 

%title('Response Spectra of Selected Ground Motions','FontSize',13) 

legend  

annotation('textbox', [0.7, 0.1, 0.1, 0.1], 'String', "R=8") 
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Appendix C: Adaptation of Newmark’s Method for Inverted 

Pendulum Model 

Equation of Motion for Inverted Pendulum: mh2 ∅̈i+1 + c∅ ∅̇
i+1+ K∅0 ∅i+1= pi+1 

Two main equation of Newmark’s Method is adapted to inverted pendulum model 

as; 

∅̇i+1 = ∅i + [(1 - γ)∆t]∅̇ i + (γ∆t)∅̈i+1                  (1) 

∅i+1 = ∅i + ∆t∅̇i + [(0.5 – β)(∆t)2]∅̈i + [𝛽(Δt)2]∅̈i+1     (2) 

In the second equation ∅̈i+1 is brought to left side of the equation. 

∅̈i+1 = 
1

β∆²
 ( ∅i+1 - ∅i ) - 

1

β∆t
 ∅̇i + (1 - 

1

2β
)∅̈i        (3) 

Substitute third equation in to the first one. 

∅̇i+1 = 
γ

β∆t
 ( ∅i+1 - ∅i ) + ( 1 - 

γ

β
 ) ∅̇i + Δt ( 1 - 

γ

2β
 )∅̈i        (4) 

Substitute equations 1, 3, and 4 into the Equation of Motion; 

mh2 [  
1

β∆²
 ( ∅i+1 - ∅i ) - 

1

β∆t
 ∅̇i + (1 - 

1

2β
)∅̈i  ] + c∅ [ 

γ

β∆t
 ( ∅i+1 - ∅i ) + ( 1 - 

γ

β
 ) ∅̇i + Δt 

( 1 - 
γ

2β
 )∅̈i ] +  K∅0 [ ∅i + ∆t∅̇i + [(0.5 – β)(∆t)2]∅̈i + [𝛽(Δt)2]∅̈i+1 ] 

 

[ K∅0 + ( 
γ

β∆t
c∅ + 

1

β∆t²
 mh2) ] ∅i+1 = pi+1 + [ 

1

𝛽∆𝑡
 mh2 + 

𝛾

𝛽∆𝑡
 c∅ ] ∅i + [ 

1

𝛽∆𝑡
 mh2 + (  

𝛾

𝛽
 – 

1 ) c∅ ] ∅̇i + [ ( 
1

2β
 – 1)mh2 + (

𝛾

2𝛽
 – 1)Δt c∅ ] ∅̈i 

 

k̂ = K∅0 + ( 
γ

β∆t
c∅ + 

1

β∆t²
 mh2) 

a1 = 
1

𝛽∆𝑡
 mh2 + 

𝛾

𝛽∆𝑡
 c∅ 

a2 =  
1

𝛽∆𝑡
 mh2 + (  

𝛾

𝛽
 – 1 ) c∅ 

a3 = ( 
1

2β
 – 1)mh2 + (

𝛾

2𝛽
 – 1)Δt c∅ 
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k̂ ∅i+1 = p̂i+1 

p̂i+1 = pi+1 + [ 
1

𝛽∆𝑡
 mh2 + 

𝛾

𝛽∆𝑡
 c∅ ] ∅i + [ 

1

𝛽∆𝑡
 mh2 + (  

𝛾

𝛽
 – 1 ) c∅ ] ∅̇i + [ ( 

1

2β
 – 1)mh2 + 

(
𝛾

2𝛽
 – 1)Δt c∅ ] ∅̈i 

p̂i+1 = pi+1 + a1 ∅i + a2 ∅̇i + a3 ∅̈i 
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Appendix D: The Implementation of Newmark’s Method for Non-

Linear Systems in a MATLAB Program 

load gm1.txt 

load gm1u0.txt 

g=9.810; 

dt=0.01; 

zet=0.05; 

endp=3; 

m=1; 

Ag=-g*gm20(:,2); 

n=length(Ag)-1; 

TOL=10e-11; 

R=8; 

u0=gm1u0; 

T(1)=0.01; 

 for j=1:round(endp/dt)  

     if dt/T(j)<=0.551 

         gamma=0.5; 

         beta=1/6;     

     else 

         gamma=0.5; 

         beta=0.25; 

     end 

     omega(j)=2*pi/T(j); 

     k=(omega(j))^2*m; 

     c=2*m*omega(j)*zet; 

     f0=k*u0(j); 

     fy=1/R*f0; 

     uy=fy/k; 

     a1=m/(beta*dt^2)+gamma*c/(beta*dt); 

     a2=m/(beta*dt)+c*(gamma/beta-1);      

     a3=m*(1/(2*beta)-1)+dt*c*(gamma/(2*beta)-1); 

     k_=k+a1; 

     u=zeros(length(Ag),1); 

     v=zeros(length(Ag),1); 

     ac=zeros(length(Ag),1); 

     fs=zeros(length(Ag),1); 

     Ag_(1)=0; 

     Ag_(2)=Ag(2)+a1*u(1)+a2*v(1)+a3*ac(1); 

     u(2)=Ag_(2)/k_; 

     v(2)=gamma*(u(2)-u(1))/(beta*dt)+v(1)*(1-gamma/beta)+dt*ac(1)*(1-

gamma/(2*beta)); 

     ac(2)=(u(2)-u(1))/(beta*dt.^2)-v(1)/(beta*dt)-ac(1)*(1/(2*beta)-1); 

     fs(2)=fs(1)+(u(2)-u(1))*k; 
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     for i=2:n 

         Ag_(i+1)=Ag(i+1)+a1*u(i)+a2*v(i)+a3*ac(i); 

         if (v(i)*v(i-1)<0) || (abs(fs(i))<fy) 

             u(i+1)=Ag_(i+1)/k_; 

             fs(i+1)=fs(i)+(u(i+1)-u(i))*k; 

             if abs(fs(i+1))>fy 

                 if fs(i+1)>0 

                     fs(i+1)=fy; 

                 else 

                     fs(i+1)=-fy; 

                 end 

             R_=Ag_(i+1)-fs(i)-a1*u(i);  

             U=u(i); 

             if fs(i)>fy 

                     kT=0; 

             else 

                     kT=k; 

             end 

             while abs(R_)>TOL  

                 kT_=kT+a1; 

                 du=R_/kT_; 

                 U=U+du; 

                 f=fs(i)+(U-u(i))*k; 

                 if abs(f)>=fy && f>0 

                     f=fy; 

                     kT=0; 

                 elseif abs(f)>=fy && f<0 

                     f=-fy; 

                     kT=0; 

                 else 

                     kT=k; 

                 end 

             R_=Ag_(i+1)-f-a1*U; 

             if abs(R_)<TOL 

                 u(i+1)=U; 

                 fs(i+1)=f; 

             end 

             end 

             end 

         else 

             if fs(i)>0 

                 fs(i+1)=fy; 

             else 

                 fs(i+1)=-fy; 

             end 

             R_=Ag_(i+1)-fs(i)-a1*u(i);  
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             U=u(i); 

             if fs(i)>fy 

                 kT=0; 

             else 

                 kT=k; 

             end 

             while abs(R_)>TOL  

                 kT_=kT+a1; 

                 du=R_/kT_; 

                 U=U+du; 

                 f=fs(i)+(U-u(i))*k; 

                 if abs(f)>=fy && f>0 

                     f=fy; 

                     kT=0; 

                 elseif abs(f)>=fy && f<0 

                     f=-fy; 

                     kT=0; 

                 else 

                     kT=k; 

                 end 

             R_=Ag_(i+1)-f-a1*U; 

             if abs(R_)<TOL 

                 u(i+1)=U; 

                 fs(i+1)=f; 

             end 

             end 

         end 

         v(i+1)=gamma*(u(i+1)-u(i))/(beta*dt)+v(i)*(1-

gamma/beta)+dt*ac(i)*(1-gamma/(2*beta)); 

         ac(i+1)=(u(i+1)-u(i))/(beta*dt.^2)-v(i)/(beta*dt)-ac(i)*(1/(2*beta)-1); 

     end 

     Sd(j,1)=max(abs((u(:,1)))); 

     Spv(j,1)=Sd(j)*omega(j); 

     Spa(j,1)=Sd(j)*(omega(j))^2/g; 

     T(j+1,1)=T(j)+dt; 

 end 

Ag(end)=[]; 

T(end)=[]; 

Sd(2,1)=0; Spv(1:2,1)=0;Spa(1:2,1)=max(abs(Ag))/g; 

subplot(2,1,1) 

 %figure('Name','Spectral Displacement','NumberTitle','off') 

 plot(T,Sd,'LineWidth',2.) 

 grid on 

xlabel('Period (sec)','FontSize',13); 

ylabel('Sd (mm)','FontSize',13); 

title('Displacement Spectrum','FontSize',13) 
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subplot(2,1,2) 

 %figure('Name','Pseudo Acceleration Spectrum','NumberTitle','off') 

 plot(T,Spa,'LineWidth',2.) 

 grid on 

xlabel('Period (sec)','FontSize',13); 

ylabel('Spa (g)','FontSize',13); 

title('Pseudo Acceleration Spectrum','FontSize',13) 
 

Ductility Demand Curve is plotted by; 

 

loglog(x,Mu,'k','linewidth',2) 

hold on 

xlim([0.1 3]) 

ylim([0 10]) 
  
  

hold off 
  

xlabel('Period','FontSize',13); 

ylabel('Ductility Demand','FontSize',13); 

%title('Response Spectra of Selected Ground Motions','FontSize',13) 

annotation('textbox', [0.7, 0.72, 0.1, 0.1], 'String', "R=8") 


