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ABSTRACT 

Face is one of the most common biometric modalities which is used for identification. 

In this context, face recognition has gained an important role in biometric applications 

based on identification systems during the last few decades. Since there is no physical 

interaction required during recognition or identification, it's easy to deploy and 

implement. In face recognition, a face is categorized as known or unknown by 

comparing a face with all the faces in a database. Due to inherent distinct features, 

human face analysis is one of the most effective methods of identifying individuals. 

Nowadays, utilizing hyperspectral images in face recognition is one of the most 

important research topics in biometrics, since they contain additional significant 

spectral information compared to 2D images which have only information in spatial 

dimensions (texture and structure). A hyperspectral image is a data cube containing 

two spatial and one spectral dimension. Hyperspectral image samples are captured by 

a hyperspectral camera which operates at multiple narrow bands within the visible 

spectrum and neighboring near-infrared spectra. Hyperspectral imaging provides new 

prospects for improving face recognition accuracy since they contain information in 

both space and spectral axes. Hence significant information for each person regarding 

the skin based on reflected, absorbed and released electromagnetic energy at different 

wavelengths can be extracted. Additional spectral information which is not embedded 

in traditional grey/color facial images provides an opportunity to improve the 

recognition accuracy. Hyperspectral imaging employs spatial and spectral relationship 

simultaneously, which improves segmentation and classification in the respective 

applications.  Difficulties encountered in visible light-based face recognition systems, 

such as the variance in orientation, illumination or expressions can be minimized by 
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employing hyperspectral imaging. Besides these opportunities, hyperspectral images 

pose some challenges such as low signal to noise ratios, high dimensionality, and data 

acquisition needs expensive cameras with multiple sampling in visible and near-

infrared spectra. Despite mentioned challenges, hyperspectral images contain more 

independent and significant information obtained from different sub-bands than 2D 

images. Hence, hyperspectral images represented in 3D-cubes are by far more capable 

in classification processes, which is also ideal for spoofing attacks.  

In this thesis, we propose novel methods for feature extraction for facial hyperspectral 

image recognition. The main goal of the thesis is to improve the recognition accuracy 

of hyperspectral face images. In the first method, three different approaches are 

proposed employing 3D discrete wavelet transform (3D-DWT) to extract features from 

the subbands generated by discrete wavelet decomposition. Three approaches include 

3D-subband energy (3D-SE), 3D-subband overlapping cube (3D-SOC) and 3D-global 

energy (3D-GE), which extract different feature vector for each approach containing 

the energy values calculated from different wavelet sub-bands at different levels of 

decomposition. Feature vectors generated by three different approaches go through a 

classifier to complete the face recognition task. In the second proposed method, fusion 

of spectral information into a single 2D image is achieved by band-specific signal to 

noise ratio (SNR) based weighting. The fusion method assigns weights based on the 

calculated band-specific SNR values, weighted sum of the bands generate a single 2D 

face image. Hence, each pixel along spectral axis is fused to a single pixel resulting a 

2D output face image for each 3D hyperspectral face cube. In the third method, in 

order to fuse spectral bands in hyperspectral face cubes, we apply discrete wavelet 

transform (DWT) to each pixel along the spectral axis consecutively until the spectral 

vector for each pixel is decimated to a single pixel transforming the 3D input spectral 
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face image cube into a 2D output image. 2D output images obtained by the second and 

third methods are processed using principal component analysis method and face 

recognition is performed with the help of a classifier. 

The experimental results reveal that recognition accuracy of all proposed methods by 

using standard hyperspectral databases outperform alternative hyperspectral face 

recognition of the state-of-the-art methods. 

 Keywords: hyperspectral face image, face recognition, discrete wavelet transform, 

feature extraction, classification, signal to noise ratio.  
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ÖZ 

Yüz, kimlik tanıma için kullanılan en yaygın biyometrik yöntemlerden biridir. Bu 

bağlamda, yüz tanıma, son birkaç on yılda kimlik tanıma sistemlerine dayanan 

biyometrik uygulamalarda önemli bir rol oynamıştır. Yüz tanıma, kimlik tanımlama 

sırasında fiziksel bir etkileşim gerekmediğinden, dağıtımı ve uygulaması kolaydır. 

Yüz tanımada, bir yüz, veritabanındaki tüm yüzlerle karşılaştırılarak bilinen veya 

bilinmeyen olarak kategorize edilir. Doğasında farklı özellikler nedeniyle, insan yüzü 

analizi bireyleri tanımlamanın en etkili yöntemlerinden biridir. Günümüzde, yüz 

tanımada hiperspektral görüntülerin kullanılması, sadece mekansal boyutlarda (doku 

ve yapı) bilgi içeren 2D görüntülere kıyasla ek önemli spektral bilgi içerdiğinden, 

biyometride en önemli araştırma konularından biridir. Hiperspektral görüntü, iki 

uzamsal ve bir spektral boyut içeren bir veri küpüdür. Hiperspektral görüntü örnekleri, 

görünür spektrumda ve komşu kızılötesine yakın spektrumlarda birden çok dar bantta 

çalışan bir hiperspektral kamera tarafından yakalanır. Hiperspektral görüntüleme, hem 

boşlukta hem de spektral eksenlerde bilgi içerdiğinden yüz tanıma doğruluğunu 

iyileştirmek için yeni beklentiler sağlar. Bu nedenle, her insan için farklı dalga 

boylarında yansıtılan, emilen ve salınan elektromanyetik enerjiye dayanan cilt 

hakkında önemli bilgiler elde edilebilir. Geleneksel gri / renkli yüz görüntülerine 

gömülmeyen ek spektral bilgiler, tanıma doğruluğunu artırma fırsatı sunar. 

Hiperspektral görüntüleme aynı anda mekansal ve spektral ilişkiyi kullanır, bu da ilgili 

uygulamalarda segmentasyonu ve sınıflandırmayı geliştirir. Yönlendirme, aydınlatma 

veya ifadelerdeki varyans gibi görünür ışık tabanlı yüz tanıma sistemlerinde 

karşılaşılan zorluklar, hiperspektral görüntüleme kullanılarak en aza indirilebilir. Bu 

fırsatların yanı sıra, hiperspektral görüntüler düşük sinyal-gürültü oranları, yüksek 
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boyutluluk ve veri toplama gibi bazı zorluklar ortaya çıkarır ve görünür ve kızılötesine 

yakın spektrumlarda çoklu örnekleme ile pahalı kameralar gerektirir. Bahsedilen 

zorluklara rağmen, hiperspektral görüntüler 2D görüntülerden farklı alt bantlardan 

elde edilen daha bağımsız ve anlamlı bilgiler içerir. Bu nedenle, 3D küplerde temsil 

edilen hiperspektral görüntüler, kimlik sahtekarlığı saldırıları için de ideal olan 

sınıflandırma işlemlerinde çok daha yeteneklidir. 

Bu tezde, yüz hiperspektral görüntü tanıma için öznitelik çıkarımı için yeni yöntemler 

öneriyoruz. Tezin temel amacı, hiperspektral yüz görüntülerinin tanınma doğruluğunu 

arttırmaktır. İlk yöntemde, ayrık dalgacık ayrışımı ile oluşturulan alt bantlardan 

öznitelikler elde etmek için 3B ayrık dalgacık dönüşümü (3D-DWT) kullanılarak üç 

farklı yaklaşım önerilmektedir. Önerilen üç yaklaşım, 3B alt bant enerjisi (3D-SE), 3B 

alt bant örtüşen küp (3D-SOC) ve 3B küresel enerji (3D-GE) olup, farklı dalgacık alt 

bantlarından hesaplanan enerji değerlerini içeren her yaklaşım için farklı öznitelik 

vektörü çıkarılır. Üç farklı öznitelik vector sınıflandırıcıdan geçirilerek yüz tanıma 

işlemi tamamlanmaktadır. Önerilen ikinci yöntemde, spektral bilginin tek bir 2B 

görüntüye füzyonu, banda özgü sinyal/gürültü oranı (SNR) tabanlı ağırlıklandırma ile 

elde edilir. Füzyon yöntemi, hesaplanan banda özgü SNR değerlerine dayalı olarak 

ağırlıklar atanarak, bantların ağırlıklı toplamı tek bir 2B yüz görüntüsü oluşturulur. 

Üçüncü yöntemde, hiperspektral yüz küplerindeki spektral bantları birleştirmek için, 

her piksel için spektral vektör 3B giriş spektralini tek bir piksele dönüştürülene kadar 

spektral eksen boyunca her piksele ayrı dalgacık dönüşümü (DWT) uygulayarak, yüz 

küpü bir 2B çıktı görüntüsüne dönüştürülür. İkinci ve üçüncü yöntemlerle elde edilen 

2B çıktı görüntüleri Ana bileşenler analizi yöntemi ile dönüştürülerek bir sınıflandırıcı 

yardımı ile yüz tanıma işlemi gerçekleştirilmektedir.  
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Deneysel sonuçlar, standart hiperspektral veri tabanları kullanılarak önerilen tüm 

yöntemlerin doğruluğunun, modern yöntemlerin alternatif hiperspektral yüz tanıma 

işleminden daha iyi performans gösterdiğini ortaya koymaktadır. 

Anahtar Kelimeler: hiperspektral yüz görüntüsü, yüz tanıma, ayrık dalgacık 

dönüşümü, özellik çıkarımı, sınıflandırma, sinyal-gürültü oranı. 
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

Face recognition has gained an important role in biometric application based 

identification systems during last few decades. In face recognition task, by comparing 

a face with a database that contains many faces, system can categorize a face as either 

known or unknown [1]. Identifying facial features, which is divided in two categories 

(global and local) is one of the most effective methods to analyze the human face. In 

global category such as the whole face, while in local category such as regions of eyes, 

nose, and mouth vary significantly in details across each individual [2]. Face 

recognition systems in visible light have some challenges such as variance in 

orientation, illumination or face expression which causes the certain variability in 

embedded information [3]. As most of faces consist of two eyes, mouth and nose which 

are in the same location, face expression is a difficult problem in face recognition 

systems. Face recognition comparing to other biometrics such as iris, palmprint and 

fingerprint recognition has an advantage of non-contacting and no interacting with the 

person for identification. One way to overcome mentioned challenges is using depth 

information of 3D face images. Facial hyperspectral images are a new topic in 

biometrics as it improves the recognition performance according to the significant 

information included in spectral dimension.  
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In this thesis, the focus is on the feature extraction and spectral information fusion for 

recognition and classification of facial hyperspectral images. In the first proposed 

method, 3D discrete wavelet transform (3D-DWT) is employed to extract features 

from the subbands generated by discrete wavelet decomposition in three different 

approaches. Three approaches include 3D-subband energy (3DSE), 3D-subband 

overlapping cube (3D-SOC) and 3D-global energy (3D-GE), which extract different 

feature vector for each approach containing the energy values calculated from different 

wavelet subbands at different levels of decomposition. Feature vectors generated by 

three different approaches go through a classifier to complete the face recognition task.  

In the second proposed method, discrete wavelet transform (DWT) is applied to each 

pixel along the spectral axis consecutively until the spectral vector for each pixel is 

decimated to a single pixel transforming the 3D input spectral face image cube into a 

2D output image. In the third proposed method, band-specific signal to noise ratio 

(SNR) based weighting is proposed to achieve a single 2D image by fusion of spectral 

information. The fusion method assigns weights based on the calculated band-specific 

SNR values, weighted sum of the bands generate a single 2D face image. Hence, each 

pixel along spectral axis is fused to a single pixel resulting a 2D output face image for 

each 3D hyperspectral face cube. 2D output images obtained by the second and third 

methods are processed using principal component analysis method and face 

recognition is performed with the help of a classifier. In this manner three standard 

hyperspectral face databases (HSFD) are used. PolyU-HSFD [4], CMU-HSFD [5] and 

UWA-HSFD [6].  

1.2 Facial Hyperspectral Images  

In spectral imaging, information is collected and processed through electromagnetic 

spectrum. In hyperspectral imaging, the spectrum of each pixel is obtained for the 
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purpose of detection and recognition of objects [7]. In facial hyperspectral images, 

samples are captured at multiple narrow bands within the neighborhood of visible light 

in the electromagnetic spectrum, which reveals significant information that is not 

evident in traditional grey/color images.  A hyperspectral image is a data cube with 

two spatial and one spectral dimension. Hyperspectral camera operates at multiple 

narrow bands of the visible spectrum and beyond hence hyperspectral imaging cover 

a wide range of wavelengths. Hyperspectral imaging measures contiguous spectral 

bands which include spectral details in the visible, near-infrared or ultraviolet bands, 

hence it imports more information comparing to traditional grey/color images. As the 

spectrum is divided into many bands, significant information for each person regarding 

the skin based on reflected, absorbed and released electromagnetic energy at different 

wavelengths can be achieved [8]. Having many bands, hyperspectral images contains 

extra significant information in spectral bands, compared to traditional grey/color 

facial image data [8-9]. Although, the acquisition of hyperspectral images is more 

sophisticated which involves more expensive cameras with multiple sampling in near-

infrared and ultraviolet spectra, the recent improvements in camera technologies and 

optics made it more economical and plausible. Despite of relatively higher acquisition 

cost, the amount of independent information coming from different sub-bands is much 

more than a standard 2D camera. Hence, hyperspectral images represented in 3D-

cubes are by far more capable in classification processes, which is also ideal for 

spoofing attacks. In order to further improve segmentation, recognition and 

classification of the images, hyperspectral imaging employ spatial and spectral 

relationship simultaneously. By employing the application of hyperspectral imaging, 

difficulties encountered in visible light-based face recognition systems, such as the 

variance in orientation, illumination or expressions can be minimized [3]. 
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1.3 Problem Definition 

There are several difficulties and limitations encountered in face recognition such as 

variations in skin color under different illumination, different face angles and variance 

in orientation, clarity of the face image according to the distance of subject from 

camera and face expression [49]. To overcome some of mentioned difficulties and 

limitations, spectral information of hyperspectral face images can be employed in face 

recognition systems. In addition to opportunities, hyperspectral images pose some 

challenges such as low signal to noise ratios in some spectral bands, high 

dimensionality and data acquisition needs expensive cameras with multiple sampling 

in visible and near-infrared spectra. Regarding high dimensionality of hyperspectral 

face images, in almost all existing hyperspectral face recognition techniques there are 

algorithms which are adopted for dimensionality reduction in the form of feature 

extraction.  

1.4 Thesis Objectives 

This thesis work is about overcoming the challenges in face recognition by using 

spectral information of hyperspectral face images for feature extraction and 

classification. The main objectives of this research work are listed below: 

1. Using 3D Discrete Wavelet Transform (DWT) to isolate 3D data into 

frequency sub-bands. 3D-DWT decompose volumetric data in horizontal, 

vertical and depth directions. Hence it is an appropriate decomposition 

procedure for feature extraction in 3D data.  

2. Applying Discrete Wavelet Transform (DWT) for dimensionality reduction 

and feature extraction. DWT analyze signals in time and frequency domains 

simultaneously.  Hence it is an appropriate procedure to analyze spectral 

information in facial hyperspectral images 
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3. Using band-specific signal to noise ratio (SNR) based weighting to fuse 

spectral information acquired through different spectral bands into a single 2D 

image. 

1.5 Thesis Contributions 

In this research work, several methods are proposed to improve the recognition 

performance. Major contributions of this thesis are listed below: 

1. Extracting the wavelet coefficients of whole hyperspectral image cube by 3D-

DWT as a feature vector. The texture property is calculated by energy value 

from different wavelet sub-bands at different levels of decomposition. 

2. To avoid edge-blurring effects and spatial information loss, each hyperspectral 

face image is divided to adjacent cubes and an overlapping cube. To fuse 

spatio-spectral information in overlapping cubes in each hyperspectral face 

image, 3D wavelet features are extracted globally.  

3. In the n-level 3D-DWT at each level, a filtered signal is represented by detail 

coefficients, which only span half of the frequency band. The original signal 

has frequency of π/2 instead of π according to the Nyquist’s rule, after filtering 

the original signal by a highpass filter H and a lowpass filter L. In addition to 

the first level of 3D-DWT decomposition, by using LLL sub-band for another 

level of 3D-DWT, we can extract additional information from second level of 

3D-DWT. 

4. Introducing spectral band fusion by developing a single 2D image from a 

hyperspectral image cube by applying discrete wavelet transform (DWT) to 

each pixel along the spectral axis consecutively.  

5. Introducing a new method to generate a 2D face image instead of 3D face cube 

by fusing spectral band after multiplying each band with a weight based on a 
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band-specific signal to noise ratio (SNR). Signal is assumed to dominate the 

noise resulting a high SNR in the middle band (visible band). Hence the 

middle band is used for the segmentation of the region of interest for SNR 

calculation. A mask with zero and one value is created in this band where one 

is given to each pixel in the homogeneous region and zero to all pixels in other 

clusters.  Multiplying each spatial coordinate in each band with this mask help 

segment the homogeneous region in the specific band. 

1.6 Thesis Overview  

In Chapter 2 feature extraction, selection, dimensionality reduction and classification in 

state-of- the-art are discussed in detail for hyperspectral face recognition. Chapter 3 

presents proposed method using 3D discrete wavelet transform for hyperspectral face 

recognition. It contains feature extraction, feature selection and classification for proposed 

method. Results are compared with several state-of-the-art facial hyperspectral images 

methods. In Chapter 4, we introduce a novel approach to improve hyperspectral face 

recognition using band-specific signal to noise ratio (SNR) based weighting to fuse 

spectral information acquired through different spectral bands into a single 2D image. 

Chapter 5 describes a new method to generate 2D face image instead of 3D face cube by 

utilizing DWT based fusion along spectral axis. Chapter 6 concludes this thesis and 

proposes future work based on this thesis work. 
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Chapter 2 

2 LITERATURE REVIEW ON FACIAL 

HYPERSPECTRAL IMAGES 

2.1 Introduction 

Face recognition has a special role in biometrics in the past several years since it is 

non-contact process comparing to other biometrics systems such as fingerprint, 

palmprint and iris. This advantage helps capturing face images from a distance to 

identify the person without interacting [1]. Hence it has gotten special attention due to 

security difficulties by law enforcement.  

Face recognition due to the variance in orientation, illumination and expressions is a 

challenging subject [3]. 2D face recognition has achieved significant development 

however still there are difficulties to overcome the mentioned challenges. One way to 

overcome mentioned challenges is the use of 3D face images which contain depth 

information [3]. However, 3D images also have limitations, but comparing to 2D face 

images they contain more information. 

2.2 Hyperspectral Imagery 

The human eye is able to recognize only a narrow interval of the light spectrum which 

is known as visible light (380nm-750nm). By considering spectrum beyond the visible 

light, the information that can be collected increase. Hence hyperspectral images (HSI) 

by collecting dozens of images in the narrow interval of energy wavelength (10-20 

nm) are formed. Hyperspectral images mostly cover visible to near infrared 
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electromagnetic spectrum which has wavelengths between 400 nm to 1400 nm. 

Hyperspectral cameras capture images by using special techniques which combine 

spectral and spatial information. Hyperspectral image is a form of 3D images with two 

spatial and one spectral dimensions [30].   

Hyperspectral imagery is a popular topic in remote sensing applications and due to the 

high cost of devices it was not popular topic in biometrics applications [58]. The recent 

improvements in technologies and optics made hyperspectral cameras more 

economical and accessible, hence methods utilized for remote sensing problems have 

been applied to biometrics applications.    

2.3 Hyperspectral Face Recognition 

Hyperspectral cameras operate in multiple narrow bands of visible spectrum and 

beyond to sample a face which resulting in more biometric information. This operation 

samples a face in spatial and spectral domain, resulting more information compared to 

traditional 2D grey/color images. This significant information can be related to distinct 

personal patterns originating from skin tissues, blood and organ structure [3]. There is 

another advantage regarding to spectral information which is distinguishing the real 

human face from mask or a photograph. In order to improve segmentation, 

classification and recognition of the images, hyperspectral face images based 

approaches employ spatial and spectral relationship simultaneously. Spectral 

dimension contains spectral information of faces which is related to inherent 

characteristics of subject. Since spectral dimension is captured across wide range of 

spectrum, it provides abundant information regarding to spectral response of each face 

which is different for each person [10].  
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By employing the application of facial hyperspectral image, difficulties encountered 

in visible light based face recognition systems, such as the variance in orientation, 

illumination or expressions can be minimized which helps to improve face recognition 

accuracy [3]. Besides these opportunities, hyperspectral images pose some challenges 

such as low signal to noise ratios, inter-band misalignment, high data dimensionality 

and data acquisition needs expensive cameras with multiple sampling in visible and 

near-infrared spectra. Despite of mentioned challenges, hyperspectral images 

represented in 3D-cubes are by far more capable in classification processes, which is 

also ideal for spoofing attacks. Bands near blue wavelength caused by high photon 

energy are usually the reason of low signal to noise ratio (SNR) [11]. Due to subject 

movements during hyperspectral face image acquisition inter-band misalignment 

occurs [11]. Fig 2.1 illustrates a hyperspectral face image that contains 33 bands from 

the PolyU hyperspectral face database (HSFD).  

Figure 2.1: A sample of hyperspectral face cube of 33 bands from the Poly U- 

HSFD [4]. 
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2.4 Feature Extraction   

Due to high data dimensionality of hyperspectral face images feature extraction is a 

challenging task comparing to traditional grey/color images. This challenge is the main 

reason that there are not plenty of researches regarding to hyperspectral face 

recognition. Most researchers have extracted the features by sampling the 

hyperspectral face image [8-12-13] while some of them have just applied Principal 

Component Analysis (PCA) for feature extraction and dimensionality reduction [9].  

2.4.1 2D Features Extraction Algorithms  

In [12] Pan et al. used spectral features of hyperspectral face images in the near 

infrared range (NIR) (700 nm to 1000 nm). The spectral features from hair, forehead, 

cheeks, lips and chin for each subject are sampled manually for 31 bands. Mahalanobis 

distance is used to compare spectral features to perform face recognition accuracy rate. 

Robila in [14] extracted spectral features of six regions (chin, nose, ear, eye, forehead 

and top lip) for eight subjects in the range of 400 nm to 900 nm. To comprehend the 

spectral power and spectral angle between each subject, means for each spectra 

location of six regions are computed. This process is applied to 120 bands of each 

hyperspectral face image.    

Due to different physical absorption of face skin, Di et al. [9] used feature band 

selection to identify two feature band subsets and proposed three different methods for 

hyperspectral face recognition. These two feature band subsets are corresponded to 

hemoglobin compound which are located at 540 nm and 580 nm. They applied single 

band (2D)2PCA, whole bands (2D)2PCA with decision fusion and band subset fusion-

based (2D)2PCA for hyperspectral face recognition. 
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Chen et al. [15] first perform denoising since hyperspectral face images contain 

significant amount of noise. Denoised face cube is cropped by eye coordinate, then 

log-polar transform is applied to each band of cropped face. To obtain invariant 

features to rotation and scale, 2D FFT is applied to log-polar face images to extract 2D 

Fourier Spectrum (FS).  

In [16] Chen et al. extracted features for each cropped hyperspectral face cube with 

five different methods named local binary pattern (LBP), histogram of oriented 

gradients (HOG), log-polar transform, Gabor filter bank and Zernike moments. Then 

classifies each face into one of the existing classes. LBP [17] is the method which 

divide an image into local regions and label every pixel of an image by thresholding 

the local neighborhood pixels of each pixel with the center pixel and considers the 

result as a binary number. Histogram of oriented gradients (HOG) [18] describes 

object appearance and shape by the distribution of intensity gradients. HOG is 

computed for the pixels within small connected regions of the facial image then all 

these histograms will be concatenated. To implement HOG five steps, exist which are 

gradient computation, orientation binning, descriptor blocks, block normalization and 

a classifier [16]. Log-polar transform [19] has significant property which converts 

scaling factor in (x, y) coordinates to spatial shift in log-polar coordinates (ρ, θ). Fast 

Fourier transform (FFT) is applied to log-polar image to obtain Fourier spectrum 

which is scale/rotation invariant features along ρ. To convert Cartesian coordinates (x, 

y) to log-polar coordinates (ρ, θ) is formulated as, 

𝜌 = 𝑙𝑜𝑔√𝑥2 + 𝑦2 𝑎𝑛𝑑 𝜃 = tan−1
𝑦

𝑥
 𝑖𝑓 𝑥 > 0. (2.1) 

Gabor filter bank [20-21] by filtering a facial image with a bank of complex Gabor 

filter calculates the magnitude responses of an image. After downsampling magnitude 
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responses of an image will be normalized by using zero-mean and unit variance. After 

normalization process these magnitude responses are added to the output filtered 

image. The 2D Gabor filters in the spatial domain can be defined as a Gaussian kernel 

function by the following formula in the complex plane wave, 

𝜓𝑢,𝑣(𝑥, 𝑦) =
𝑓𝑢

2

𝜋𝜅𝜂
𝑒

−((
𝑓𝑢

2

𝜅2)𝑋2+(
𝑓𝑢

2

𝜂2)𝑌2)
𝑒𝑗2𝜋𝑓𝑢𝑋 (2.2) 

where 𝑋 = 𝑥𝑐𝑜𝑠𝜃𝑣 + 𝑦𝑠𝑖𝑛𝜃𝑣 and 𝑌 = −𝑥𝑠𝑖𝑛𝜃𝑣 +  𝑦𝑐𝑜𝑠𝜃𝑣. The pixel coordinates are 

denoted by x and y, the frequency of the complex sinusoid and the orientation of the 

wavelet are denoted by fu and 𝜃𝑣  respectively. The ratio between frequency of the 

complex sinusoid (center frequency) and the size of the Gaussian envelope is 

determined by 𝜅 and 𝜂. Zernike moments [22] are orthogonal moments which has the 

property of rotation invariant. It means the magnitudes of Zernike moments for any 

image after rotating does not change. Hence the features which are extracted from 

Zernike moments can easily be constructed to an arbitrary high order. The order which 

the reconstructed image is close to the original one is defined as the maximum order. 

Zernike moments features are only rotation invariant. Hence to obtain an image with 

scale/translation invariance, a normalization process using its regular moments is 

applied to the image. Then rotation invariant Zernike features can be extracted from 

normalized image. Zernike is defined as a set of complex polynomials which form a 

complete orthogonal set over the interior of the unit circle [23]. These polynomials are 

defined as, 

𝑉𝑚𝑛 = 𝑅𝑛𝑚(𝜌)𝑒𝑗𝑚𝜃 (2.3) 

where 𝜌 defines the length of vector from origin to the pixel (𝑥, 𝑦). 𝜃 = tan−1 𝑦

𝑥
 is the 

angle between vector 𝜌 and x axis. Radial polynomial (𝑅𝑛𝑚(𝜌) ) is defined as, 
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𝑅𝑛𝑚(𝜌) = ∑ (−1)𝑠 (𝑛−𝑠)!

𝑠!(((𝑛+|𝑚|) 2⁄ )−𝑠)!(((𝑛−|𝑚|) 2⁄ )−𝑠)!
𝜌𝑛−2𝑠(𝑛−|𝑚|) 2⁄

𝑠=0   (2.4) 

The projection of the image onto orthogonal basis functions is defined by Zernike 

moments. The Zernike moment for a continuous image function 𝑓(𝑥, 𝑦) with order n 

and repetition m that just exists inside the unit circle (𝑥2 + 𝑦2 = 1) is 

𝐴𝑚𝑛 =
𝑛 + 1

𝜋
∬ 𝑓(𝑥, 𝑦)[𝑉𝑛𝑚(𝑥, 𝑦)]∗ 𝑑𝑥 𝑑𝑦 (2.5) 

2.4.2 3D Features Extraction Algorithms 

In [13] Shen and Zheng employed 3D Gabor wavelet to extract features form facial 

hyperspectral images. Gabor wavelets with different central frequencies has the 

advantage of analyzing and exploring the information in spatio-spectral domain in 

hyperspectral data cube simultaneously. To extract features from hyperspectral image 

cube a family of M×N×Z Gabor wavelets with different frequencies is selected which 

is defined as, 

Ψ𝑓𝑚,𝜑𝑛,𝜃𝑘
(𝑥, 𝑦, 𝑧),   𝑓𝑚 =

𝑓𝑚𝑎𝑥

2𝑚
,  𝜑𝑛 =

𝑛𝜋

𝑁
 , 𝜃𝑧 =

𝑘𝜋

𝐾
  (2.6) 

The amplitude and orientations of central frequency are defined by 𝑓𝑚 and (𝜑𝑛, 𝜃𝑧) 

respectively. fm is the frequency vector points with the same direction with different 𝜃 

when 𝜑 = 0 . To simplify the representation of the wavelets, Ψ𝑓𝑚,𝜑𝑛,𝜃𝑧
 denotes as 

Ψ𝑚,𝑛,𝑘 . The information about local signal variances is represented by the inner 

product of signal with wavelet set Ψ𝑚,𝑛,𝑘  at location (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ). The convolution 

results are considered to explore information at all possible locations in spatio-spectral 

domain (x,y,z). The magnitude of convolution reveals the strength of variations across 

spatial and spectral domains. 

Uzair et al. [11] employed 3D discrete cosine transform (DCT) to extract spatio-

spectral features. 2D or 3D images can be expressed as a linear combination of 
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mutually uncorrelated cosine basis functions [24-25] by DCT. A compact energy 

spectrum of the signal can be generated by DCT. The low frequency coefficients of a 

compact energy spectrum are related to signal information. Hence the features are 

selected from low frequency coefficients. In [11] they extracted features from the 

whole hyperspectral face image by global 3D-DCT which has the advantage of 

modeling the spatio-spectral information simultaneously. They represented each 

hyperspectral facial cube by a small number of low frequencies DCT coefficients. 

In [26] each hyperspectral face cube is divided into small overlapping 3D cubelets. 

Each of these 3D cubelets rearranged to the 2D matrix which each column corresponds 

to spectral response of all bands at a specific location. The first and second order 

statistics of each cubelets are computed by the mean vector and covariance of 2D 

matrix. In each cubelets the spread of information is indicated by the order statistics. 

The mean vector is added to each column of covariance matrix to mix the information 

of both order statistics. 3D cubelet is transformed to a singular variable by computing 

the Frobenius norm of mean and covariance matrix addition. Each 3D cubelets is 

replaced by its related single value resulting from Frobenius norm. Thus, by fusing 

information in all bands, a single 2D matrix represents hyperspectral face cube. 

In [3] Vartak and Bharadi used Hybrid Wavelet Type I (HWI), Hybrid Wavelet Type 

II (HWII) and Kekre Wavelet (KW) to generate texture feature extraction. The PolyU 

Hyperspectral face database is used in this work. Hyperspectral face images contain 

33 bands with front (F|), left (L) and right (R) side view for each subject. They grouped 

each hyperspectral face image into eleven sub-bands (each three bands consider as one 

band). In each hyperspectral face image three components (F, L and R) are considered 

which each of them is divided into 4×4 non-overlapping blocks for five level 
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decomposition. This process generates feature vectors by applying HWI, HWII and 

KW transforms to each subject. These feature vectors are applied to intra class and 

inter class testing to generate genuine and forgery classes. Multi-algorithmic and 

Multi-instance fusion are used to analyze these test results. For multi-algorithmic 

fusion the feature vectors of HWI, HWII and KW are fused and for multi-instance 

fusion the feature vectors of front, right and left side view samples are fused. 

Liang et al. [10] proposed 3D Local Derivative Pattern (LDP) to analyze hyperspectral 

faces and encode each face cube into binary numbers as a 3D high order texture 

descriptor. To describe the changes in multi-directions and extract detailed features in 

multi-dimensional images, 3D directional derivative pattern and binarization function 

are employed in this method respectively. Since the spectral responses in hyperspectral 

images do not change roughly across the most wavelengths hence discriminative 

information related to spectral dimension may exist in some specific wavelengths. 3D 

LDP is a suitable method to extract features in hyperspectral face images as it functions 

in both spatial and spectral dimensions. After calculating features to represent an 

image as a vector histogram of a feature are estimated.  
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Chapter 3 

3 3D-DWT BASED FEATURE EXTRACTION IN 

HYPERSPECTRAL FACIAL IMAGERY 

3.1 Introduction 

Recognition of humans by face, which is divided into two categories, i.e. global and 

local approaches has a special role in biometrics [12, 13]. Identifying individuals is 

one of the most basic examples of human face analysis [2]. Nowadays hyperspectral 

face recognition provides new opportunities for improving recognition accuracy since 

it contains more information compared to traditional 2D imagery which only contains 

spatial information (texture and structure). In facial hyperspectral images, samples are 

captured at multiple narrow bands within the neighborhood of visible light in the 

electromagnetic spectrum, which reveals significant information that is not evident in 

RGB images.  

In hyperspectral images, the spectrum is divided into many bands, hence contains 

significant information regarding the skin at different wavelengths [4]. Having many 

bands, hyperspectral images contain extra significant information in spectral bands, 

compared to traditional grey/color facial image data [8, 9]. Hyperspectral imaging-

based approaches employ spatial and spectral relationship simultaneously in order to 

further improve segmentation and classification of the images. Furthermore, distinct 

personal patterns originating from tissues, blood and organ structure can be captured 

using hyperspectral imaging. By employing the application of hyperspectral imaging, 
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difficulties encountered in visible light-based face recognition systems, such as the 

variance in orientation, illumination or expressions can be minimized [3].  

In this chapter, three new methods for improving classification on hyperspectral face 

images are proposed. We employ 3D-DWT in each method to extract features from 

facial hyperspectral images. These methods are called 3D-subband energy (3D-SE), 

3D-subband overlapping cube (3D-SOC) and 3D-Global Energy (3D-GE). 3D-DWT 

is employed to extract wavelet coefficients and, in each method, the energy vector is 

calculated from the wavelet coefficients in different manner. The extracted energy 

vector is regarded as the feature vector, where, the feature vectors are classified using 

k nearest neighbor (k-NN) and Collaborative Representation Classifier (CRC) 

classifiers. PolyU [4], CMU [5] and UWA [6] Hyperspectral Face Databases are used 

in these methods. Classification accuracies are evaluated by four test scenarios which 

3D-GE method performance in terms of accuracy comparing to several existing 

methods improves significantly. 

This chapter includes two contributions which are listed below: 

1. The first contribution involves isolating the 3D data into frequency subbands 

using 3D Discrete Wavelet Transform (DWT). It is an appropriate procedure 

for feature extraction in 3D data since 3D-DWT decompose volumetric data in 

horizontal, vertical and spectral directions.  

2. The second contribution is about feature extraction by using wavelet 

coefficients energy by three different approaches.   
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3.2 Databases 

In order to provide a benchmark database for advance research, the PolyU-HSFD was 

developed by the Biometric Research Center (UGC/CRC) at Hong Kong Polytechnic 

University [4]. This database acquired using the CRI’s VariSpec Liquid Crystal 

Tuneable Filter (LCTF). The database contains significant appearance (hair style and 

skin conditions), since it is constructed over a long period of time. The data cube 

contains 33 bands in the wavelength between 400 nm and 720 nm by step size of 10 

nm. The datacube size is 220×180×33. Each subject has three different types of views, 

frontal (F), right (R) and left (L). There are 48 subjects in the database which contains 

151, 125 and 124 datacubes for front, right and left images, respectively. Fig. 3.1 

shows 33 bands of a face cube with frontal view in PolyU hyperspectral face database 

(HSFD). 

Figure 3.1: Frontal view of a hyperspectral face cube containing 33 bands form 

PolyU-HSFD. 
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The Robotics Institute of Carnegie Mellon University developed CMU hyperspectral 

face database [5]. The prototype spectro-polarimetric camera is used to develop this 

database. There are 48 subjects. Each datacube in this database contains 65 bands in 

range of 450-1090 nm with a step size of 10 nm. The database contains different 

sessions for each person according to lighting combinations and each person has 4-20 

cubes according the light combinations. In our experiments the sessions with all lights 

on and all subjects which have 1-5 cubes are chosen. Fig. 3.2 illustrates even bands of 

a face cube in CMU hyperspectral face database (HSFD). 

Figure 3.2: A sample of hyperspectral face cube containing even bands form 

CMU-HSFD. 
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Figure 3.3: A sample 33 bands of hyperspectral face cube form UWA-HSFD. 

The UWA [6] hyperspectral face database which is developed by an indoor imaging 

system using a CRI’s VariSpec LCTF integrated with a photon focus camera. There 

are 70 subjects in the database which contains 120 hyperspectral cubes. Each data cube 

contains 33 bands in the wavelength between 400 nm and 720 nm by step size of 10 

nm. The datacube size is 1024×1024×33. In Fig. 3.3 a sample of face cube containing 

33 bands is shown from UWA hyperspectral face database (HSFD). 

3.3 Three Dimensional Discrete Wavelet Transform   

In 3D discrete wavelet transform (DWT), the 1D analysis filter bank is applied to each 

of the three dimensions. Hence the procedure can be considered as a combination of 

three 1D-DWT in the X, Y (spatial) and Z (depth) dimensions [27-28]. The 3D-DWT 

which isolates the data into frequency sub-bands can be regarded as a more advanced 

preprocessing method for 3D coding compared with 2D methods [29]. It considers the 
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correlation of 3D data cubes, which helps to improve the compression. The basic idea 

is to represent a signal as a superposition of wavelets. 3D-DWT has an advantage by 

decomposing volumetric data in horizontal, vertical and depth directions unlike 2D-

DWT which decomposes only in horizontal and vertical dimensions [30]. For the 

hyperspectral images, 3D-DWT is performed by applying one dimensional DWT filter 

banks on three spatio-spectral dimensions [31]. Data cube of size 𝐵1 × 𝐵2 × 𝐵3 after 

applying 1D-DWT to the first, second and third directions, result two, four and eight 

sub-bands, each of size ( 
𝐵1

2
× 𝐵2 × 𝐵3),( 

𝐵1

2
×

𝐵2

2
× 𝐵3),( 

𝐵1

2
×

𝐵2

2
×

𝐵3

2
 ) respectively. 

Fig. 3.4 demonstrates 3D data decomposition into eight sub-bands after applying 

single level decomposition. 

The 3-D DWT centered by a tensor product [32],  

𝐼(𝑥,𝑦,𝑧) = (𝐿𝑥⨁𝐻𝑥) ⊗ (𝐿𝑦⨁𝐻𝑦) ⊗ (𝐿𝑧⨁𝐻𝑧)

=  𝐿𝑥𝐿𝑦𝐿𝑧⨁𝐿𝑥𝐿𝑦𝐻𝑧⨁𝐿𝑥𝐻𝑦𝐿𝑧⨁𝐿𝑥𝐻𝑦𝐻𝑧⨁𝐻𝑥𝐿𝑦𝐿𝑧⨁𝐻𝑥𝐿𝑦𝐻𝑧⨁𝐻𝑥𝐻𝑦𝐿𝑧 

⨁𝐻𝑥𝐻𝑦𝐻𝑧  

(3.1) 

where the direct sum and tensor product are expressed by ⨁ and ⊗, respectively. The 

spatial (horizontal and vertical) domains and the spectral dimension of an image are 

represented by X, Y and Z directions respectively. Along three dimensions, the 

parameters L and H represent the low-pass and high-pass filters respectively.  

The subband that passed through the low pass filter in horizontal, vertical and depth 

directions is called LLL. This band refers to the approximation of data cube.  Marginal 

plane in each direction is shown by subbands which are passed through high-pass 

filters in only one direction. The boundary lines are defined by subbands which are 

passed through high-pass filters in two directions. Vertexes angle of the data cube is   



   

 

Figure 3.4: One level 3D-DWT procedure [33]. 
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shown by HHH band which passed through high pass filter in horizontal, vertical and 

spectral directions [30]. 

3.4 The State-Of-The-Art Hyperspectral Feature Extraction  

3D-DWT has been used efficiently in video coding [32], 3D medical analysis [34] and 

multi band remotely sensed images. Xian Guo et al. [35] employed 3D-DWT to extract 

features by applying it to the series of local cubes around the central pixel. By 

implementing 3D-DWT along spatio-spectral dimensions, wavelet coefficients from 

eight subbands capture the variations in the respective dimensions. The local 3D-DWT 

texture is represented by the energy values of the wavelet coefficients which are 

defined in three ways: pixel-based shift (PDWT), non-overlapping (WDWT), and 

overlapping cube (OWDWT), respectively.  

3.4.1 Pixel-Based Shift  

In this method, a local cube around each voxel (3D pixel) is used to process 3D texture 

and then the local texture measure is calculated by the quadratic sum of the wavelet 

coefficients in respective subbands. 𝐸(𝑊) is the subband energy where W is a local 

cube with B as horizontal, vertical and N as spectral dimensions respectively. 𝑃(𝑖, 𝑗, 𝑘) 

represents the wavelet coefficient in the local cube centered by the voxel (𝑖, 𝑗, 𝑘). 

   𝐸(𝑊) = ∑ ∑ ∑ 𝑃(𝑖, 𝑗, 𝑘)2

𝑁 2𝐿⁄

𝑘=1

 

𝐵 2𝐿⁄

𝑗=1

𝐵 2𝐿⁄

𝑖=1

 (3.2) 

Each pixel in the given image is used as the center of a local moving cube in PDWT 

which is subject to a large computational cost. 
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Figure 3.5: 3D- DWT framework for hyperspectral feature extraction followed by 

classification [35]. 

3.4.2 Overlapping Cube  

In this section, there exist four adjacent cubes, i.e., surrounding W1, W2, W3, and W4 

cubes and the overlapping central cube. To avoid edge-blurring effects and spatial 

information loss, Guo et al. [35] consider the spatial relationship of these adjacent 

cubes. Weighted feature representation is introduced to deal with the pixels in the 

overlapping area. At each local cube the 3D wavelet features are extracted to fuse 

spatio-spectral information in overlapping cubes, where the overlapping 3D texture is 

defined as a weighted linear combination of the neighboring texture energy values. 

𝑂𝑊𝐷𝑊𝑇 =
𝜔1𝐸(𝑊1) + 𝜔2𝐸(𝑊2) + ⋯ + 𝜔𝑛𝐸(𝑊𝑛)

𝜔1 + 𝜔2 + ⋯ + 𝜔𝑛
 (3.3) 

The weight and texture measurement of local cube 𝑊𝑛 are defined by 𝜔𝑛 and 𝐸(𝑊𝑛), 

respectively. The weight is defined by the Euclidean distance between a local cube and 

the overlapping central cube. Fig. 3.5 demonstrates the 3D-DWT feature extraction 

framework for hyperspectral image classification [35]. 

3.5 Proposed Hyperspectral Face Feature Extraction Methods 

Considering, PDWT and OWDWT locally extracting the 3D texture [35] for 

classification in hyperspectral satellite imagery, three alternative global methods are 

proposed in hyperspectral face recognition for improved performance. The proposed 
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methods are 3D-subband energy (3D-SE), 3D-subband overlapping cube (3D-SOC) 

and 3D-Global Energy (3D-GE).  

3.5.1 3D-Subband Energy (3D-SE)  

In this section, 3D-DWT feature extraction based on extracting the wavelet 

coefficients of the whole cube is proposed. The texture property is defined by the 

subband cube around each wavelet coefficient. 

𝐸𝑔(𝑊) = ∑ ∑ ∑ 𝑃𝑔(𝑖, 𝑗, 𝑘)2

𝑄/2

𝑘=1

 

𝑁/2

𝑗=1

𝑀/2

𝑖=1

 (3.4) 

𝜀 = [𝐸𝑔(𝐿𝐿𝐿) , 𝐸𝑔(𝐿𝐿𝐻), … . . , 𝐸𝑔(𝐻𝐻𝐿) , 𝐸𝑔(𝐻𝐻𝐻)] (3.5) 

The energy of the whole cube is defined by 𝐸𝑔(𝑊), where W represents the 3D-DWT 

subband cube with M, N and Q in horizontal, vertical and spectral dimensions 

respectively. The wavelet coefficient in the subband cube centered by the voxel 

(𝑖, 𝑗, 𝑘) is defined as 𝑃𝑔(𝑖, 𝑗, 𝑘). The ε is the energy vector of all 8 subbands. The 

framework for 3D-SE is shown in Fig. 3.6. 

 

Figure 3.6: 3D-DWT framework for hyperspectral feature extraction using 3D-SE.  

3.5.2 3D-Subband Overlapping Cube (3D-SOC) 

In this section, there exist four adjacent cubes, i.e., surrounding W1, W2, W3, and W4 

cubes and the overlapping central cube. To avoid edge-blurring effects and spatial 

information loss, the spatial relationship of these adjacent cubes is considered. 
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Weighted feature representation is introduced to deal with the pixels in the overlapping 

area. At each local cube, the 3D wavelet features are computed globally to fuse spatio-

spectral information in overlapping cubes, where the overlapping 3D texture is defined 

as a weighted linear combination of the neighboring texture energy values. 

Ω𝑔 =
𝜔1𝐸𝑔(𝑊1) + 𝜔2𝐸𝑔(𝑊2) + ⋯ + 𝜔4𝐸𝑔(𝑊4)

𝜔1 + 𝜔2 + 𝜔3 + 𝜔4
 (3.6) 

Φ   =[Ω𝑔(LLL), Ω𝑔(LLH),….., Ω𝑔(HHL), Ω𝑔(HHH)] (3.7) 

In (3.6), the weighted linear combination of the neighboring global texture measures 

is defined by Ω𝑔. The weighted linear combination of all eight subbands is represented 

as vector Φ. Fig. 3.7 illustrates the 3D-DWT framework using 3D-SOC for 

hyperspectral feature extraction. 

Figure 3.7: 3D-DWT framework for hyperspectral feature extraction using 3D-SOC. 

3.5.3 3D-Global Energy (3D-GE) 

In this section, the 3D wavelet coefficients of the whole cube after the first and second 

level of 3D-DWT are extracted. The second level 3D-DWT is extracted from LLL 

subband of considered and the observation was that the performance saturates beyond 

two levels of 3D-DWT transform. The wavelet coefficients characterize the texture 

feature vectors given in equations (3.9) and (3.11). 
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𝐸𝐺
(1)(𝑍) = ∑ ∑ ∑ 𝑃𝐺

(1)(𝑖, 𝑗, 𝑘)2

𝑄/2

𝑘=1

 

𝑁/2

𝑗=1

𝑀/2

𝑖=1

 (3.8) 

εG
(1)

=[EG
(1)(1)LLL ,EG

(1)(2)LLH,…..,EG
(1)(7)HHL ,EG

(1)(8)HHH] (3.9) 

𝐸𝐺𝐿𝐿𝐿
(2) (𝑍) = ∑ ∑ ∑ 𝑃𝐺𝐿𝐿𝐿

(2) (𝑖, 𝑗, 𝑘)2

𝑄/4

𝑘=1

 

𝑁/4

𝑗=1

𝑀/4

𝑖=1

 (3.10) 

εGLLL
(2)

=[EGLLL
(2) (LLL) ,EGLLL

(2) (LLH),…, EGLLL
(2) (HHL) ,EGLLL

(2) (HHH)] (3.11) 

𝐸𝐺
(1)(𝑍) and 𝐸𝐺𝐿𝐿𝐿

(2) (𝑍)are the first and second level energy of global cube, respectively. 

In equation 3.10, Z represents the global cube with M, N and Q dimensions, which 

correspond horizontal, vertical and spectral dimensions respectively. 𝑃𝐺
(1)(𝑖, 𝑗, 𝑘) and  

𝑃𝐺𝐿𝐿𝐿
(2) (𝑖, 𝑗, 𝑘) are the first and second level wavelet coefficients corresponding to the 

voxel (𝑖, 𝑗, 𝑘) in the global cube respectively. εG
(1)

 and εGLLL
(2)

 are the energy vectors of 

the first and second level of all eight subbands. εG
(1)

 and εGLLL
(2)

 are concatenated to make 

a vector, εG
T with 16 coefficients. The 3D-DWT based 3D-GE method is demonstrated 

in Fig. 3.8. First and second level 3D-DWT of LLL subband for a hyperspectral face 

cube for Poly-U, CMU and UWA hyperspectral face databases are demonstrated in 

Fig. 3.9, Fig. 3.10 and Fig. 3.11 respectively.   
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Figure 3.8: 3D-DWT framework for hyperspectral feature extraction using 3D-GE. 
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(a) 

(b) 

Figure 3.9: First and second level 3D-DWT of LLL subband for a hyperspectral 

face cube from PolyU-HSFD. (a) first level, (b) second level. 
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(a) 

(b) 

Figure 3.10: First and second level 3D-DWT of LLL subband for a hyperspectral 

face cube from CMU-HSFD. (a) first level, (b) second level. 
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(a) 

(b) 

Figure 3.11: First and second level 3D-DWT of LLL subband for a hyperspectral 

face cube from UWA-HSFD. (a) first level, (b) second level. 

3.6 Classifiers  

The k-NN classifier is used for evaluating the recognition rate in terms of accuracies 

in this thesis. Additionally, in this chapter, CRC (collaborative representation 

classifier) is employed for recognition rate comparison with k-NN classifier. In the 

following subsection, k-NN and CRC classifiers and their techniques are described.  
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3.6.1 k- Nearest Neighbor Classifier (k-NN) 

k-Nearest Neighbor (k-NN) is one of the common classifiers that is used in face 

recognition. Image is classified by a majority vote that is given by the k neighbours of 

it [38]. A distance matrix which is the Euclidean distance between the testing image 

feature and each training image feature is calculated. The first k elements in summation 

value of distance matrix which are ordered in ascending manner are selected to choose 

the majority class value for image classification. Each sample belongs to a known class 

(Cn) and the test image is categorized to the class which has the majority value 

according to the first k elements [30-40]. 

3.6.2 Collaborative Representation Classifier (CRC) 

Let define a matrix 𝐵 = [𝐵1, 𝐵2, … . , 𝐵𝑀]  whose columns are the training image 

feature vectors, where M is the number of subjects in the database, and the training 

samples of the subject is defined by 𝐵𝑘 = [𝐵𝑘1, 𝐵𝑘2, … . , 𝐵𝑘𝐶], where 𝑘 ∈ [1, 𝑀], and 

C is the number of bands in the hyperspectral face image. Let the column of 𝐴 =

[𝑎1, 𝑎2, … . , 𝑎𝐶] be a testing hyperspectral face cube with C faces. 

The optimization problem in Equation 3.12 corresponds to Collaborative 

representation classifier (CRC) [41], 

𝜎̃𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎‖𝑎𝑘 −𝐵𝜎‖2
2 + 𝜆‖𝜎‖2

2 (3.12) 

where λ is a regularization parameter and 𝜎̃𝑘 = [𝜎̃𝑘1, 𝜎̃𝑘2, … , 𝜎̃𝑘𝑀]. The solution for 

Equation 3.12 can be easily derived as: 

𝜎̃𝑘 = (𝐵𝑇𝐵 + 𝜆𝐼)−1𝐵𝑇𝑎𝑘                         𝑘 ∈ [1, 𝐶] (3.13) 

𝑃 = (𝐵𝑇𝐵 + 𝜆𝐼)−1𝐵𝑇 and it does not depend on 𝑎𝑘 hence it can be pre-calculated as 

a projection matrix just simply project 𝑎𝑘 onto 𝑃 via P𝒂𝒌 [41]. The CRC classifies a 

face 𝑎𝑘 as:  
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𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑎𝑘) =  𝑎𝑟𝑔𝑚𝑖𝑛𝑖  {
‖𝑎𝑘 − 𝐵𝑖𝜎̃𝑘𝑖‖2

‖𝜎̃𝑖‖2
} ,                 𝑖 ∈ [1, 𝑀] 

 

(3.14) 

CRC classifies each testing image to the class with minimal regularized reconstruction 

error. 

3.7 Experimental Results  

In this section we first clarify four different test scenarios which are utilized for a fair 

comparison, then the recognition rates of proposed methods are compared with state-

of-the-art hyperspectral face image recognition methods. 

3.7.1 Test Scenarios Distribution  

1. First scenario: First 38 subjects with all data cubes (hyperspectral image) of 

frontal hyperspectral face images with 33 and 24 bands in PolyU-HSFD are 

selected. Due to the high noise, first six and the last three bands are removed 

[13, 26] leaving behind 24 bands. The leave-one-out method is applied to train 

and test the classifier.  

2. Second scenario: In this scenario, the first 25 subjects of frontal hyperspectral 

face images with 4 data cubes including 33 and 24 bands in PolyU-HSFD were 

chosen. Two of four cubes for each subject were selected randomly for training. 

The rest were selected as the test sets [11]. 

3. Third scenario: All data cubes of the first 25 subjects (frontal, right and left) of 

hyperspectral face images with all the bands in PolyU-HSFD were selected. 

Leave one out validation approach is adopted in the training and testing of the 

classifiers.  

4. Fourth scenario: In this scenario, first 25 subjects of frontal face images with 

24 spectral bands in PolyU-HSFD are used in the experiment. For each subject, 

2 cubes are selected randomly for training. The rest of the 63 cubes are used 

for testing [1, 11]. In order to verify our results in other databases, we used 
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CMU-HSFD and UWA-HSFD in this scenario. In CMU, we selected all 

subjects which have 1-5 cubes and for each subject one cube is randomly used 

for the training set and the rest of the cubes as a testing set [11]. In UWA, for 

each subject, one cube is randomly selected for training and the rest 50 cubes 

as a testing set [11]. 

3.7.2 Experimental Results and Comparison 

The performance analysis involved using the average accuracy and standard deviation 

(STD) through the process of randomly picking training and testing datasets ten times 

for all scenarios. The accuracy is defined as the percentage of the ratio of the correctly 

classified hyperspectral faces over the total number of hyperspectral faces in the test 

set. We set the number of nearest neighbor predictor three in the k-NN classifier and 

the regularization parameter λ to 0.001 in CRC classifier.  

Figure 3.12: ROC curve of 3D-GE and 3D-SOC for a subject from the PolyU-

HSFD. 
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Figure 3.13: ROC curve of 3D-GE and 3D-SOC for a subject from the CMU-

HSFD. 

Figure 3.14: ROC curve of 3D-GE and 3D-SOC for a subject from the UWA-

HSFD. 
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Fig. 3.12, Fig. 3.13 and Fig. 3.14 show the receiver operating characteristic (ROC) 

curves for 3D-GE and 3D-SOC methods under fourth scenario in PolyU-HSFD, CMU-

HSFD and UWA-HSFD, respectively. The ROC curves show the true positive rate 

(TPR) against false positive rate (FPR).  

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.15) 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (3.16) 

𝐴𝐶𝐶 =  
𝐹𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.17) 

where TP, FN, FP and TN denote true positive, false negative, false positive and true 

negative which are between interval [0,1]. The area under the curve (AUC) indicates 

the classifier performance, the larger AUC implies the higher classification 

performance. Since the ROC curve in multiclass problems require                                            

𝑛2 − 𝑛 − 1 dimensional hypersurface, hence the visualization of it is impossible. 

However, it is possible to extend two-class ROC curve to multiclass [42]. This 

approach has two forms: one versus all and one versus one. In one-versus-all form, the 

classification performance is evaluated for class ‘one’ and all of the remaining classes 

are considered into a single class ‘not one’. Therefore, details of specific 

misclassification errors of the class ‘not one’ are not available [16]. In this context, we 

have adopted one-versus-all approach. 

Table 3.1 shows that the experimental results after 3D-SOC, 3D-SE and 3D-GE are 

applied to first test scenario. The proposed 3D-GE has achieved the recognition with 

94.73% ± 2.16 and 95.57% ± 1.41 accuracies in the first scenario by using k-NN and 

CRC classifiers, respectively. The experimental results of second testing scenario are 
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shown in Table 3.2. The proposed 3D-GE for 33 and 24 bands by using [k-NN/CRC] 

classifiers has been tested and [89.33% ± 2.32 / 91.76% ± 1.57] and                            

[86.71% ± 1.11 / 90.36% ± 1.15] accuracies have been obtained, respectively. The 

results in Tables 3.1 and 3.2 show that using all bands (33) instead of 24 bands 

improves the recognition rate. The results suggest that the removed noisy bands 

contain useful information and 3D-DWT has an advantage of extracting them. Table 

3.3 shows significant improvement of recognition over [3], after the proposed 3D-GE 

is applied to third scenario for frontal, right and left 94.16% ± 1.23, 78.94% ± 2.19 and 

83.2% ± 1.67 by using k-NN classifier and 94.43% ± 2.1, 83.35% ± 2.3 and 87.97% ± 

1.6 by using CRC. The experimental results of fourth testing scenario are shown in 

Table 3.4. The proposed 3D-GE has achieved the recognition 96.66% ± 1.2 and 98.61 

± 1.3 and 98.28% ± 1.05 by using CRC classifiers in PolyU-HSFD, CMU-HSFD and 

UWA-HSFD, respectively. 

Table 3.1: First scenario recognition accuracy (%) 

Bands PDWT [35] 
OWDWT 

[35] 
3D-SE  3D-SOC  

Proposed 

3D-GE 

 (k-NN) 

Proposed 

3D-GE 

(CRC) 

33 94.02±1.15 94.13±1.84 94.28±2.50 94.35±2.06 94.73±2.16 95.57±1.41 

24 83.43±2.10 83.95±1.67 89.58±2.43 89.91±1.32 90.52±2.53 92.34±1.15 
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Table 3.2: Second scenario recognition accuracy (%)    

Bands 
BS-WFD 

[9] 

Best 

Individual 

3D Gabor 

[13] 

3D-SE 

 
3D-SOC  

Proposed 

3D-GE 

 (k-NN) 

Proposed 

3D-GE 

(CRC) 

33 - - 87.66±1.70 88.67±1.53 89.33±2.32 91.76±1.57 

24 79.00 82.00 85.33±2.00 85.45±2.50 86.71±1.11 90.36±1.15 

Table 3.1 shows that the recognition accuracy for proposed method is lower if all bands 

do not be used in feature extraction. Comparing Table 3.1 and Table 3.2 shows that 

adopting 25 subjects instead of 38 (all subjects) subjects in feature extraction help 

improving the recognition rate regarding more subjects in training set. CRC classifier 

comparing to k-NN has higher recognition accuracy since CRC classifies each testing 

image to the class with minimal regularized reconstruction error. 

Table 3.3: Third scenario recognition accuracy (%) 

Type of 

views 

HWII 

 [3] 

Best 

Individual 

3D Gabor 

[13] 

3D-SE  

 

3D-SOC  

 

Proposed 

3D-GE 

 (k-NN) 

Proposed 

3D-GE 

(CRC) 

Front 74.3 93.3±2.42 94±1.45 94.16±1.23 94.16±1.23 94.43±2.1 

Right 77.5 74.45±1.81 77.61±1.9 78.94±2.19 78.94±2.19 83.35±2.3 

Left 74.3 79.85±2.32 81.62±1.16 83.2±1.67 83.2±1.67 87.97±1.6 
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In Table 3.3 front view for proposed method has higher recognition accuracy 

comparing o right and left views. This occur because of more features are exist in 

whole face comparing to just right or left side of a face. CRC classifier comparing to 

k-NN has higher recognition accuracy since CRC classifies each testing image to the 

class with minimal regularized reconstruction error. 

Table 3.4: Fourth scenario recognition accuracy (%) 

Databases 
Gabor 

wavelet  

[15,26] 

3D-SOC  

Log-

polar 

FFT2  

[15] 

3D-

LDP 

[10] 

Band 

fusion 

+PLS 

[26] 

Feature 

extraction 

and CRC 

[16] 

Proposed 

3D-GE 

(CRC) 

PolyU 91.3±2.1 93.61±2.2 94.6±2.5 95.3±1.6 95.2±1.6 96.4±2.3 96.66±1.2 

CMU 91.6±2.9 95.83±1.8 95.6±1.7 94.8±2.6 99.1±0.6 98.0±0.7 98.61±1.3 

UWA 91.5±3.07 96.13±2.1 - - 98.2±1.2 - 98.28±1.05 

In this contribution 3D-DWT is employed for feature extraction which has a 

computational complexity of 𝒪(𝑁3) where 𝑁is an input’s dimension. It is same/high 

comparing to mentioned state of the art methods in Table 3.4. In [13], they employed 

3D-Gabor wavelet to extract features of hyperspectral face images which has the same 

computational complexity of 𝒪(𝑁3). In [15-16], features are extracted by 2D Fast 

Fourier Transform (FFT) from the log-polar images hence the computational 

complexity of FFT is 𝒪(𝑁𝑙𝑜𝑔𝑁). In [26], the first and second order statistics of each 

cubelets (section 2.4.2) are computed by the mean vector and covariance of 2D matrix 

which covariance matrix computation has a computational complexity of 𝒪(𝑁2). 
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The proposed 3D-GE improves the recognition rates since in the second-level 3D-

DWT the extracted features from LLL subband of first-level 3D-DWT contain more 

information. 

3.8 Conclusion 

In this chapter three alternative 3D-DWT-based methods for the feature extraction for 

hyperspectral face recognition and classification, namely 3D-subband energy, 3D-

subband overlapping cube and 3D-global energy are proposed. Hyperspectral faces are 

represented by the energy measures calculated from the respective subbands using the 

first and second level of 3D-DWT. The extracted feature vectors were used as the input 

to the k-NN and CRC classifiers for performance measurement. Experimental results 

on PolyU-HSFD, CMU-HSFD and UWA-HSFD using the proposed methods were 

compared with several alternative methods on hyperspectral face recognition. The 

results show that the 3D-GE performance in terms of accuracy outperforms several 

existing methods using PolyU, CMU and UWA databases. 
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Chapter 4 

4 SNR BASED FUSION OF SPECTRAL BANDS FOR 

IMPROVED HYPERSPECTRAL FACE 

RECOGNITION 

4.1 Introduction 

In this chapter a new method is proposed to improve hyperspectral face recognition. 

High dimensionality and low signal to noise ratio are the challenges which are posed 

by hyperspectral images. Low signal to noise ratio appears in certain spectral bands 

which are mostly located near the blue wavelength. We proposed a new method to 

overcome these problems without losing information from spectral bands.  

This chapter is included two contributions which are listed below:  

1. In the first contribution, the middle band is chosen as the reference for 

determining homogeneous regions of interests for SNR calculations 

throughout all bands hence it is assumed to contain a high SNR level. This is 

required, due to the fact that the noise may dominate the signal in the peripheral 

bands. Having the middle band as the reference band we apply K-means 

clustering method for segmentation of the region of interests (RIO) 

representing homogeneous regions. The cluster/region with a maximum 

number of pixels (i.e. largest connected component) which may correspond to 

a uniform background or skin region is selected for SNR calculation. The 
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largest region is declared as the mask marking the homogeneous region which 

is used to calculate the SNR for each spectral band. The SNR value is used to 

calculate the band-specific weight values. 

2.  In the second contribution, all bands are fused to a single band by multiplying 

each band with a weigh based on a band-specific SNR values. This method 

converts 3D hyperspectral face cubes into 2D face images which contain 

contributions from each spectral subbands through the method we developed. 

Generated 2D images go through PCA for dimensionality reduction. The 

feature vectors result from PCA are classified by using k-NN and CRC 

classifiers. 

4.2 Signal to Noise Ratio (SNR) Estimation  

In 3D hyperspectral image cubes, both spatial and spectral correlations are included 

[54]. Hyperspectral face image can be represented by a matrix of true unknown signal 

combined by additive noise. High dimensionality and low signal to noise ratio are the 

challenges which are posed by hyperspectral images. Low signal to noise ratio appears 

in certain spectral bands which are located near the blue wavelength.  

Signal to Noise ratio (SNR) is a mathematical method for quality analysis of 

hyperspectral images. There is a problem to compute a metric in hyperspectral images 

since they do not have reference data to be compared with [49]. Linlin Xu [55] 

proposed the SNR calculation for a hyperspectral image, for a given band k. He 

proposed to calculate the SNR as follow. 

𝑆𝑁𝑅𝑘 = 10𝑙𝑜𝑔10

∑ (𝐼𝑖𝑗
𝑘 )

2
𝑖𝑗

∑ (𝐼𝑖𝑗
𝑘 − 𝜇𝑘)

2
𝑖𝑗

 (4.1) 



43 

𝑆𝑁̂𝑅𝑘 =
𝑆𝑁𝑅𝑘

∑ 𝑆𝑁𝑅𝑘


𝑘=1

= [𝑆𝑁̂𝑅1, 𝑆𝑁̂𝑅2, , … . , 𝑆𝑁̂𝑅𝛽] (4.2) 

Where 𝐼𝑖𝑗
𝑘  denotes the pixel at spatial location 𝑖, 𝑗  in an area where pixels are 

homogeneous in the 𝑘th band in spectral domain. The mean value of 𝐼𝑖𝑗
𝑘  is defined by 

𝜇𝑘. The selection of homogeneous area is important since SNR estimation depends on 

this area. Normalized SNR for each band is given in Equation 4.2.   

4.3 K-means Clustering Algorithm  

Cluster analysis (data clustering) discover the standard grouping of a set of patterns, 

points, or objects. Data clustering is an unsupervised learning or classification which 

means there is no predefined class or label. A collection of data in a cluster are Similar 

to one another and share common characteristics and dissimilar to the data in other 

clusters. Clustering algorithm group unlabeled data (object) which are considered to 

be similar based on common characters or features [50]. 

K-means clustering which is a type of unsupervised learning is one of the easy and 

well-known algorithms for grouping data/objects [51]. This algorithm based on feature 

similarity, will find groups in the data, and the number of groups (initial centroids) are 

represented by the variable K [53]. K-means algorithm assign each data point to the 

closest centroid based on features similarity iteratively. The position of centroid for 

each cluster is moved by the means of the data points assigned to center. This 

procedure repeats until no centroid is shifted in an iteration which means the minimum 

shift is below the threshold. The grouping is done when the distances between data 

and its cluster centroid is minimized. K-means clustering algorithm because of its 

simplicity and high speed has an advantage of processing on big data [52].  
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4.4 Proposed Method Using K-means Clustering to Estimate SNR 

Calculating SNR in a region which is constant or with low frequency signal content 

which is regarded as homogeneous is important. In a homogeneous region, the additive 

noise dominates the signal since the signal is of low frequency nature. In this regard, 

homogeneous regions are of our region of interest for the calculation of SNR values 

for each band. Determining such regions require segmentation. In this chapter, K-

means based clustering is used to segment the homogenous region of interests.  

In this approach, we assume that the middle band in hyperspectral face image has 

higher SNR values since they are far away from blue and infrared bands which have 

lower SNR [49]. Hence the middle band is used for the segmentation of the region of 

interest for SNR calculation. K-means clustering is applied with, K=3 and the cluster 

with the largest number of pixels are chosen the homogeneous region of interest.  A 

mask with zero and one value is created in this band where one is given to each pixel 

in the homogeneous region and zero to all pixels in other clusters. The mask for a 

subject in PolyU, CMU and UWA databases are shown in Fig. 4.1(c), Fig. 4.2(c) and 

Fig. 4.3(c) respectively. Multiplying each spatial coordinate (𝑖, 𝑗) in each band with 

this mask help to segment the homogeneous region in each band. The illustration of 

each band after applying mask for a subject in PolyU, CMU and UWA databases are 

shown in Fig. 4.4, Fig.4.5 and Fig. 4.6 respectively. The SNR value is calculated for 

each band of hyperspectral face image using Eq. 4.1 and normalized by Eq. 4.2.  
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                     (a)                                         (b)                                  (c) 

Figure 4.1: (a) the middle band, (b) three segmented region, (c) created mask for a 

subject in hyperspectral face cube from the Poly U-HSFD. 

 

                    (a)                                          (b)                                  (c) 

Figure 4.2: (a) the middle band, (b) three segmented region, (c) created mask for a 

subject in hyperspectral face cube from the CMU-HSFD. 

                      (a)                                      (b)                                   (c) 

Figure 4.3: (a) the middle band, (b) three segmented region, (c) created mask for a 

subject in hyperspectral face cube from the UWA-HSFD. 
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Figure 4.4: The illustration of each band after applying mask for a subject in 

PolyU-HSFD. 

Figure 4.5: The illustration of each band after applying mask for a subject in 

CMU-HSFD. 

Figure 4.6: The illustration of each band after applying mask for a subject in 

UWA-HSFD. 

The normalized 𝑆𝑁̂𝑅 corresponding to each band is used as a band-specific weight of 

each spatial coordinate (𝑖, 𝑗) in the respective band. According to 𝑆𝑁̂𝑅 value of each 

band, the bands with more information have more weight. All pixels with spatial 
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coordinate (𝑖, 𝑗) along spectral direction 𝛽 are added and results 2D face image instead 

of 3D face cube. Following the fusion of the 3D face cubes, 2D face images are 

cropped according to the eye coordinates and resized to 64×64 [44]. Visualization of 

the fusion process of the 2D face image for a subject in PolyU, CMU and UWA 

databases are shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9 respectively. Each cropped 2D 

image is applied to PCA for dimensionality reduction, then they are applied to k-NN 

and CRC classifiers. Fig. 4.10, Fig. 4.11 and Fig. 4.12 illustrates the 𝑆𝑁̂𝑅 value of 

each band of a subject from PolyU, CMU and UWA databases. 

 Figure 4.7: Fusion process of the 2D face image for a subject from PolyU-

HSFD. 
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Figure 4.8: Fusion process of the 2D face image for a subject from CMU-HSFD. 
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Figure 4.9: Fusion process of the 2D face image for a subject from UWA-HSFD. 
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Figure 4.10: 𝑆𝑁̂𝑅 value for each band of a hyperspectral face cube from the Poly 

U-HSFD. 

Figure 4.11: 𝑆𝑁̂𝑅 value for each band of a hyperspectral face cube from the CMU-

HSFD. 
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Figure 4.12: 𝑆𝑁̂𝑅 value for each band of a hyperspectral face cube from the 

UWA-HSFD. 

4.5 Experimental Results and Comparison 

The experiments are performed on three hyperspectral face databases (HSFD), PolyU-

HSFD [4], CMU-HSFD [5] and UWA-HSFD [6] which are explained in details in 

section 3.2 to validate the performance of the proposed methods. 

4.5.1 Testing Set Distribution  

The experimental methodology suggested by [11, 13] is adopted for PolyU-HSFD, 

where first 25 subjects of frontal face images with all 33 spectral bands are used in the 

experiment. For each subject, 2 cubes are selected randomly for training. The rest of 

the 63 cubes are used for testing. In CMU-HSFD, as suggested by [11], we selected 

the session for each subject with all lights on which contain 1-5 cubes. One cube is 

randomly chosen for training set and the rest cubes as testing set for each subject. 

Following the experimental methodology of [11], in UWA, for each subject one cube 

is randomly selected for training and the rest 50 cubes as testing set. 
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4.5.2 Experimental Results Comparison 

The proposed methods are performed ten times to create training and testing sets 

randomly to generate the average accuracy and standard deviation (STD). The 

accuracy of correct classification is defined as the correctly classified hyperspectral 

faces over the total number of hyperspectral faces in the test set. For classification        

k-NN and CRC classifiers are adopted which are explained in details in section 3.6.1 

and 3.6.2. 

Figure 4.13: ROC curve of the proposed SNR fusion method, for all three standard 

databases by adopting k-NN classifier. 
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Figure 4.14: ROC curve of the proposed SNR fusion method, for all three standard 

databases by adopting CRC classifier. 

The Receiver Operating Characteristic (ROC) curves for SNR based fusion method 

for all three databases for k-NN and CRC classifiers are illustrated in Fig. 5.13 and 

Fig. 5.14 respectively. The ROC curves show the True Positive Rate (TPR) against 

False Positive Rate (FPR). Area Under the Curve (AUC) indicated the classifier 

hypersurface. However, by extending two-class ROC to multiclass the visualization 

can be possible [42]. This approach has two forms; one versus all and one-versus-one. 

In one-versus-all form, the classification performance is evaluated for class ‘one’ and 

all the remaining classes are considered into a single class ‘not one’. Therefore, details 

of specific misclassification errors of the class ‘not one’ are not available [15]. In this 

paper, we have adopted one-versus-all approach. Figure 4.14 shows that CRC 

classifier comparing to Figure 4.13 k-NN classifier for all three standard databases has 

higher recognition accuracy since its AUC is closer to one. 
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Comparisons of proposed method with several existing methods for all three databases 

are shown in Table 4.1. The accuracy of proposed SNR based band fusion method by 

adopting k-NN and CRC classifiers reach to 95.71%±2.3 (97.09%±1.32), 97.7%±1.91 

(98.93%±0.65) and 97.02%±1.63 (98.52%±1.24) for PolyU-HSFD, CMU-HSFD and 

UWA-HSFD databases respectively. The proposed method outperforms alternative 

methods of the state-of-the-art.  

 

  



 

 

Table 4.1: Recognition accuracy for proposed SNR band fusion method. 

Databases 

Gabor 

wavelet  

[15,26] 

Log-polar 

FFT2  

[15] 

3D LDP 

[10] 

Band 

fusion 

+PLS [26] 

Feature 

extraction 

and CRC 

[16] 

3D-GE  

Proposed 

DWT based 

band fusion 

method (Max 

Pooling)  

(CRC) 

Proposed 

SNR based 

band fusion 

method  

(k-NN) 

Proposed 

SNR based 

band fusion 

method 

(CRC) 

PolyU 91.3%±2.1 94.6%±2.5 95.3%±1.6 95.2%±1.6 96.4%±2.3 96.66%±1.2 97.07%±1.78 95.71%±2.3 97.09%±1.32 

CMU 91.6%±2.9 95.6%±1.7 94.8%±2.6 99.1%±0.6 98.0%±0.7 98.61%±1.3 98.88%±0.42 97.7%±1.91   98.93%±0.65  

UWA 91.5%±3.07 - - 98.2%±1.2 - 98.28%±1.05 98.37%±1.13 97.02%±1.63   98.52%±1.24  
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In Table 4.1, it can be seen that the results obtained from the proposed SNR based 

band fusion method using CRC classifier has higher recogniion rate comparing to same 

method using k-NN classifier. CRC has an advantage of classifying each testing image 

to the class with minimal regularized reconstruction error instead of classifying image 

by a majority vote that is given by the k neighbors of it in k-NN classifier. Proposed 

SNR based band fusion method comparing to our other two contributions has higher 

recognition accuracy since SNR value is used to calculate the band-specific weight 

values, higher SNR value means more information.  

In this contribution SNR value is used to calculate the band-specific weight which has 

a computational complexity of 𝒪(𝑁2).where 𝑁is an input’s dimension. In [13], they 

employed 3D-Gabor wavelet to extract features of hyperspectral face images which 

has the same computational complexity of 𝒪(𝑁3). In [15-16], features are extracted 

by 2D Fast Fourier Transform (FFT) from the log-polar images hence the 

computational complexity of FFT is 𝒪(𝑁𝑙𝑜𝑔𝑁). In [26], the first and second order 

statistics of each cubelets (section 2.4.2) are computed by the mean vector and 

covariance of 2D matrix which covariance matrix computation has a computational 

complexity of 𝒪(𝑁2). Computational complexity of proposed method is same as [26], 

better than [13] and higher than [15-16]. 

4.6 Conclusion 

In this chapter, we propose a novel method to fuse spectral bands in hyperspectral face 

image cubes to improve hyperspectral face recognition. The proposed method is able 

to overcome some of the challenges which are posed by hyperspectral face images 

such as high dimensionality and low signal to noise ratio. Proposed methods overcome 

these problems without losing information from spectral bands. In this method, each 
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3D face cube is fused along different spectral bands into a 2D image by using band-

specific SNR based weighting. Weights based on the estimated 𝑆𝑁̂𝑅 values scale the 

pixels intensities in each band, hence each pixel along spectral axis is fused to a single 

pixel. Each 2D face image go through PCA for dimensionality reduction and feature 

vector creation before k-NN and CRC based classifications. The experimental results 

using the SNR based weighting method show that, the performance in terms of 

classification accuracy outperforms several state-of-the-art methods using standard 

hyperspectral face databases, PolyU- HSFD, CMU-HSFD and UWA-HSFD. 
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Chapter 5 

5 DWT BASED FUSION ALONG SPECTRAL AXIS TO 

IMPROVE HYPERSPECTRAL FACE RECOGNITION 

5.1 Introduction 

As mentioned in previous chapters, facial hyperspectral images samples are captured 

at multiple narrow bands within the neighborhood of visible light in the 

electromagnetic spectrum, which reveals significant information that is not evident in 

RGB/grey images. This work is specially intended to benefit from the available rich 

3D-cube information to create more competitive results than 2D methods. RGB images 

are special version of hyperspectral images where the visible band is only quantized 

into three subbands (Red-Green-Blue). In other words, hyperspectral images not only 

include finer spectral details of the image in the visible band but also extends into near-

infrared or ultraviolet bands importing more information than RGB images. Therefore, 

from the information theory perspective hyperspectral images in the form of 3D-cubes 

definitely contain more information.  

In this chapter, we propose a new hyperspectral face recognition method using spectral 

band fusion. The proposed method extracts a single 2D image from a given 

hyperspectral image cube containing multiple spectral bands. The method effectively 

fuses spectral information by applying discrete wavelet transform (DWT) to each pixel 

along the spectral axis on each hyperspectral image cube. The DWT is applied 

consecutively to each vector of pixels extracted from the low-frequency component 
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from the previous decomposition. This process is iteratively repeated until the spectral 

vector for each pixel is decimated to a single pixel. Once all the pixels go through the 

same operation, the 3D input spectral image cube is transformed into a 2D output 

image. This operation can be regarded as a fusion since it transforms a hyperspectral 

image cube into a single 2D image. Generated 2D images go through Principle 

Component Analysis (PCA) for dimensionality reduction. The feature vectors result 

from PCA are classified by using k-NN and CRC classifiers. The results are compared 

with alternative methods in the literature. The performance of the proposed method in 

terms of accuracy outperforms existing methods using PolyU [4], CMU [5] and UWA 

[6] Hyperspectral Face Databases. 

This chapter includes two contributions which are listed below: 

1. The first contribution involves fusing spatio-spectral information by applying 

discrete wavelet transform (DWT) to each pixel along the spectral axis on each 

hyperspectral image cube. The DWT is applied consecutively to each spectral 

vector of pixels extracted from the low-frequency component from the 

previous decomposition. This process is iteratively repeated until the spectral 

vector for each pixel is decimated to a single-pixel transforming the 3D input 

spectral image cube into a 2D output image. 

2. The second contribution is about generating the feature vectors by applying 

principal component analysis (PCA) to transformed 2D images. 
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Figure 5.1: n level DWT procedure through lowpass filter bank. 

5.2 One Dimensional Discrete Wavelet Transform (DWT) 

Wavelet Transform provides a possibility of analyzing signals in time (spatial) and 

frequency domains simultaneously. Hence every frequency component is not resolved 

equally [43]. To analyze signal at different resolutions and scales, filtering and 

sampling operations are used respectively. DWT employs scaling and wavelet 

functions to analyze the signal at different frequency bands with different resolutions. 

Signals can be decomposed into different frequency bands by low and high pass 

filtering of the time domain signal. The original signal is first passed through a 

highpass filter H and a lowpass filter L. After filtering, the signal has a frequency of 

π/2 instead of π hence half of the samples according to the Nyquist’s rule can be 

removed [43]. 

DWT operates on signals which can be considered as a vector of real values, with the 

size of length 2𝑛, n ϵ {2, 3…}. The resulting vector has the same length as the original 

signal. This vector has two filtered parts, the first filtered part which has the length 

2𝑛 2⁄  includes the coefficients resulting from low-pass filtering (LPF) of the original 
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signal and the second filtered part which has the length 2𝑛 2⁄  includes the coefficients 

resulting from high-pass filtering (HPF) the original signal. The DWT is regarded as a 

multiresolution analysis which can analyze resolutions and scales in 1D discrete-time 

signal. For further decomposition, the procedure can be repeated n level. Fig. 5.1 

shows n level DWT filter bank showing the consecutive process through lowpass 

filtering.   

The first and simplest orthonormal wavelet basis is Haar wavelet. The Haar transform 

calculates pair wise averages and differences since it uses just two scaling and wavelet 

function coefficients. As in this transform there are no overlapping windows, only 

changes between adjacent pixels pairs can be reflected. 

The most popular wavelet family which is used for texture feature analysis is 

Daubechies wavelet family. Unlike Haar wavelet, Daubechies wavelet uses 

overlapping windows hence high frequency coefficient spectrum reflects all high 

frequency changes. Therefore, Daubechies wavelets are useful in noise removal [56].  

5.3 Principle Component Analysis 

The aim of principle component analysis (PCA) is to explain the variation in the set of 

the training set by a few variables. The most famous method based on PCA is an 

eigenface method [45]. In this method instead of analyzing the whole face image, 

analyzing the difference between individual face will be enough. 

Let the face image be the size of  𝑀 × 𝑀. To calculate eigenfaces, it is necessary to 

find a basis which is meaningful enough to re-express an ensemble face image [46]. 

Let training set be 𝛾 = [𝛾1, 𝛾2 … , 𝛾𝑁]. To produce a training set whose mean is zero, 
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each face differs from a mean face of training set [47]. Mean face and the vector of 

each face differs from the mean face are defined respectively as, 

𝝁 =
1

𝑁
∑ 𝛾𝑖

𝑁

𝑖=1

 (5.1) 

𝝍𝑖 = 𝜸𝑖 − 𝝁 (5.2) 

The aim of analyzing covariance is to find out how much the dimensions vary from 

the mean with respect to each other. The sign of covariance is more important than its 

exact value. Positive value indicates that both dimensions increase together. Negative 

value means as one dimension increases, the other decreases and zero covariance 

shows that the two dimensions are independent of each other [47]. After calculating 

all the possible covariance values between all the different dimensions, they are placed 

in a matrix which is in general presented by equation (5.3) [13]. In this case, it is better 

defined it as an equation (5.4) 

𝐶𝑛×𝑛 = (𝑐𝑖,𝑗 , 𝑐𝑖,𝑗 = 𝑐𝑜𝑣(𝐷𝑖𝑚𝑖 , 𝐷𝑖𝑚𝑗)) (5.3) 

𝐶 =
1

𝑁
∑ 𝝍𝑖𝝍𝑖

𝑇 = 𝐴𝐴𝑇

𝑁

𝑖=1

 (5.4) 

where 𝐴 = [𝝍1, 𝝍2, … , 𝝍𝑁]. 

Next step is finding the eigenvectors and eigenvalues of the covariance matrix which 

can differentiate the face images. Hence the eigenvectors and eigenvalues of the 

covariance matrix are the principal component of the training set. In general, the 

number of eigenfaces is equal to the number of face images in the training set. In large 

databases it means a lot of processing. To overcome this problem, it is possible to 

represent face images by using the best eigenfaces which are the ones with the largest 

eigenvalue. The highest eigenvalue with respective eigenvector which has the best 
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description of the data distribution is going to be used. Hence the 𝑘𝑡ℎ eigenvector 𝑢𝑘 

with maximum 𝜆𝑘 is chosen [48]. 

𝜆𝑘 =
1

𝑁
∑(𝒖𝑘

𝑇𝝍𝑖)2

𝑁

𝑖=1

 (5.5) 

𝑀2  eigenvectors and eigenvalues are determined by the covariance matrix of 

dimensions 𝑀2 × 𝑀2. It can be considered N−1 meaningful eigenvectors instead of 

𝑀2 significant eigenvectors if the dimension of image space is greater than the number 

of data points N≪ 𝑀2  [45]. The remaining eigenvectors are associated to the 

eigenvalues which have the value close or equal to zero. N eigenvectors (𝑉𝑙) from the 

(N×N) matrix 𝐿 = 𝜓𝜓𝑇 where 𝐿𝑚𝑛 = 𝜓𝑚
𝑇 𝜓𝑛 can be constructed by this analysis. The 

N training set of face images in the form of eigenfaces is determined by linear 

combinations these vectors [48], 

𝑢𝑙 = ∑ 𝑽𝑙𝑘𝝍𝑘

𝑁

𝑘=1

                𝑙 = 1, … , 𝑁 (5.6) 

A face image (γ) is transformed into its eigenfaces components which means it is 

projected into face space by the following operation: 

𝑤𝑝 =  𝒖𝑝
𝑇(𝜸 − 𝝁)                (5.7) 

5.4 Proposed Method for Fusion of Hyperspectral Face Cube along 

Spectral Axis by DWT 

Nowadays hyperspectral face recognition is a new topic in biometrics applications. 

Facial hyperspectral images have more information comparing to traditional 2D 

images according to different response of face in each spectrum. In this chapter, we 

propose a new approach in which, for each hyperspectral face cube, 1D-DWT is 

applied to vectors that are generated by each pixel along spectral axis. By considering 

the low frequency part after DWT downsampling, in each level the number of pixels 
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Figure 5.2: Frequency progress for n-level decomposition. 

which characterize the entire image decrease to half. Consecutive analysis of the low 

frequency part of the signal in the spectral axis of a hyperspectral image cube spans 

the half of previous level. Fig. 5.2 illustrate n level frequency spanning in DWT 

decomposition. By applying the same decomposition consecutively to lowpass 

component of each level, the last level results a single coefficient for each spectral 

vector for every spatial coordinate generating a 2D image instead of 3D cube. The 

number of levels is calculated by 𝑛 = 𝑙𝑜𝑔 𝑁 where N is the length of spectral bands in 

the hyperspectral face cube.  

In addition, we propose to adopt Maximum Pooling (Max Pooling) method, which is 

used in Convolutional Neural Networks [64] providing an approach to down sample 

feature maps by summarizing with the most activated presence of a feature [65]. This 

down sampling approach is shown in Fig. 5.3.  
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Figure 5.3: Max Pooling operation on feature map (2×2 window). 

After applying the approach, where n level DWT is applied to each vector that is 

generated by each pixel along spectral axis up to the level of decomposition that 

decimated the vector length to 4, we have adopted Max Pooling method to the 

generated 4 wavelet coefficients. This 1×4 vector can be considered similar to a matrix 

of 2×2 and the maximum valued pixels is chosen as the most activated presence of a 

feature. Generated final coefficient is a summarized version of the features detected in 

the vector resulting a 2D image instead of 3D cube for each spectral vector for every 

spatial coordinate. These 2D images are cropped according to the eye coordinates and 

resized to 64×64 [44].  Each cropped 2D image is applied to PCA for dimensionality 

reduction and k-NN and CRC use for classification. The proposed method is illustrated 

in Fig. 5.4. 

 

 



 

 

Figure 5.4: Proposed DWT based fusion along spectral axis.
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The proposes DWT based fusion which transforms a given 3D Hyperspectral image 

cube into a 2D image can be regarded as a smoothing operation in the spectral axis. 

Having a signal low-pass filtered n times using DWT based filter bank effectively 

removes the inherent noise added through the acquisition process of the hyperspectral 

imaging systems. Noise removal by DWT along spectral axis is the key for enhanced 

fusion framework proposed in this chapter. The operation is repeated n (𝑛 = 𝑙𝑜𝑔 𝑁) 

times to fuse N coefficients of each spectral vector into a single coefficient for each 

pixel spatial coordinate.  The method can be formulated as, 

𝛿𝑙𝑜𝑤(𝑥, 𝑦) = ∑ 𝐶(𝑥, 𝑦, 𝑧)ℎ(2𝑛 − 𝑧)

𝑁

𝑧=1

 (5.8) 

𝛿ℎ𝑖𝑔ℎ(𝑥, 𝑦) = ∑ 𝐶(𝑥, 𝑦, 𝑧)𝑔(2𝑛 − 𝑧)

𝑁

𝑧=1

 (5.9) 

Where 𝛿𝑙𝑜𝑤(𝑥, 𝑦) and 𝛿ℎ𝑖𝑔ℎ(𝑥, 𝑦) are the outputs of decomposed hyperspectral face 

cube after passing through highpass and lowpass filters for one level respectively.  

 𝐶(𝑥, 𝑦, 𝑧)  is the hyperspectral cube with x and y as spatial and z as a spectral 

dimensions.  ℎ(𝑧) and 𝑔(𝑧) are lowpass and highpass filters kernel respectively. As 

illustrated in Fig. 4.1, only low pass filter is used in a consecutive manner 

downsampling the signal by 2 which halves the signal (spectral vector) size after each 

iteration. This operation is repeated n (n=log N) times until a single sample is obtained. 

Alternative smoothing techniques can be proposed to transform the 3D Hyperspectral 

image cube into a 2D image. Simple averaging operation,𝛼(𝑥, 𝑦), for each pixel over 

the coefficients along the spectral axis would also generate a 2D image as follows: 

𝛼(𝑥, 𝑦) =
1

𝑁
∑ 𝐶(𝑥, 𝑦, 𝑧)

𝑁

𝑧=1

 (5.10) 
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Similarly, energy along the spectral axis is another form of smoothing which can be 

used to fuse the 3D image cubes into 2D image. The energy value, 𝜀(𝑥, 𝑦), for each 

pixel can be calculated by, 

𝜀(𝑥, 𝑦) = ∑ 𝐶(𝑥, 𝑦, 𝑧)2

𝑁

𝑧=1

 (5.11) 

                        (a)                                     (b)                                   (c) 

Figure 5.5: (a) average/db1, (b) energy, (c) proposed method for a subject from 

PolyU-HSFD. 

                       (a)                                       (b)                                     (c) 

Figure 5.6: (a) average/db1, (b) energy, (c) proposed method for a subject from 

CMU-HSFD. 
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                      (a)                                        (b)                                         (c) 

Figure 5.7: (a) average/db1, (b) energy, (c) proposed method for a subject from 

UWA-HSFD. 

Visualizations of the proposed DWT based fusion, fusion by averaging and fusion by 

energy along spectral axis for PolyU-HSFD, CMU-HSFD and UWA-HSFD are shown 

in Fig. 5.5, Fig. 5.6 and Fig. 54.7 respectively. In part (a)’s all images are blurred which 

are the average of an image along spectral axis, part (b)’s images are dark which are 

energy of an image (globally best value) along spectral axis and in part (c)’s all images 

are sharper since Max Pooling keeps the maximum valued pixels which is called as 

most activated presence of a feature. 

5.5 Experimental Results 

In order to validate the performance of the proposed method, we perform experiments 

on three hyperspectral face databases (HSFD): PolyU-HSFD [4], CMU-HSFD [5] and 

UWA-HSFD [6] which are explained in details in section 3.2. 

5.5.1 Testing Set Distribution  

The experimental methodology suggested by [11, 13] is adopted for PolyU-HSFD, 

where the first 25 subjects of frontal face images with all 33 spectral bands are used in 

the experiment. For each subject, 2 cubes are selected randomly for training. The rest 

of the 63 cubes are used for testing. In CMU-HSFD, as suggested by [11], we selected 

the session for each subject with all lights on which contain 1-5 cubes. One cube is 

randomly chosen for training set and the rest cubes as testing set for each subject. 
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Following the experimental methodology of [11], in UWA, for each subject one cube 

is randomly selected for training and the rest 50 cubes as testing set. 

5.5.2 Experimental Results and Comparison 

The proposed method is performed ten times to generate the average accuracy and 

standard deviation (STD) by randomly creating training and testing datasets. The 

accuracy of correct classification is defined as the correctly classified hyperspectral 

faces over the total number of hyperspectral faces in the test set. For classification        

k-NN and CRC classifiers are adopted which are explained in details in section 3.6.1 

and 3.6.2. 

Figure 5.8: ROC curve of the proposed band fusion method, fused by energy and 

average for a subject from the PolyU-HSFD by adopting CRC classifier. 
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Figure 5.9: ROC curve of the proposed band fusion method, fused by energy and 

average for a subject from the CMU-HSFD by adopting CRC classifier. 

 

Figure 5.10: ROC curve of the proposed band fusion method, fused by energy and 

average for a subject from the UWA-HSFD by adopting CRC classifier. 
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The Receiver Operating Characteristic (ROC) curves for fused by energy, fused by 

average and fused by DWT methods for all three databases are illustrated in Fig. 5.8, 

Fig. 5.9 and Fig. 5.10 respectively. The ROC curves show the True Positive Rate 

(TPR) against False Positive Rate (FPR) which are explained in section 3.7.2. Area 

Under the Curve (AUC) indicated the classifier performance, where larger AUC 

implies the higher performance. The visualization of the ROC curve in multiclass 

problems is impossible. However, by extending two-class ROC to multiclass the 

visualization can be possible which are explained in section 3.7.2 [42]. In this chapter, 

we have adopted one-versus-all approach. 

Comparisons of proposed method with several existing methods for all three databases 

are shown in Table 5.1. The accuracy of the proposed method reaches to 97.07%±1.78, 

98.88%±0.42 and 98.37%±1.13 for PolyU-HSFD, CMU-HSFD and UWA-HSFD 

databases by adopting CRC classifiers respectively. The proposed method outperforms 

the work by Uzair et al. [26], which also use the concept of fusion. Additionally, the 

proposed method outperforms the rest five of the state-of-the-art methods tested in all 

three standard hyperspectral databases. The proposed method improves the 

recognition rates due to the repeated low-pass filtering along the spectral axis, by using 

DWT based filter bank, which removes the inherent noise added through the 

acquisition process of the hyperspectral imaging systems. Noise removal by DWT 

along spectral axis and fusing pixels along spectral axis by applying Max Pooling to 

the vector of 4 wavelet coefficients and choosing the most activated presence of feature 

are a key factor for the proposed fusion framework introduced in this chapter



 

 

Table 5.1: Recognition accuracy for proposed DWT based band fusion method. 

Databases 

Gabor 

wavelet  

[15,26] 

Log-polar 

FFT2  

[15] 

3D LDP 

[10] 

Band 

fusion 

+PLS [26] 

Feature 

extraction 

and CRC 

[16] 

Proposed 

3D-GE  

Energy fused 

(k-NN/CRC) 

Average 

fused/db1 

(k-NN/CRC) 

Proposed 

band fusion 

method (Max 

Pooling) 

(k-NN/CRC) 

PolyU 91.3%±2.1 94.6%±2.5 95.3%±1.6 95.2%±1.6 96.4%±2.3 96.66%±1.2 
87.76%±2.16 

/ 
89.02%±2.16  

93.35%±2.10 
/ 

94.89%±1.28  

96.26%±1.83 
/ 

97.07%±1.78 

CMU 91.6%±2.9 95.6%±1.7 94.8%±2.6 99.1%±0.6 98.0%±0.7 98.61%±1.3 
90.24%±3.13 

/ 
91.70%±2.86 

94.31%±2.27 
/ 

95.14%±2.92 

97.89%±2.03 
/ 

98.88%±0.42 

UWA 91.5%±3.07 - - 98.2%±1.2 - 98.28%±1.05 
89.57%±2.87 

/ 
90.96%±1.74 

91.20%±2.09 
/ 

92.32%±2.54 

97.11%±1.16 
/ 

98.37%±1.13 

 

 



74 

Table 5.1 shows the improvement provided by the proposed fusion method comparing 

to alternative smoothing techniques (averaging and energy). Proposed band fusion 

method using Max Pooling has higher recognition accuracy comparing to average 

(mean) of pixels and energy (mean squared value) of pixels along spectral axis since 

it keeps the maximum valued pixels which is called as most activated presence of a 

feature. 

In this contribution DWT is employed for feature extraction along spectral dimension 

iteratively which after n level decomposition asymptotically has a computational 

complexity of 𝒪(𝑁𝑙𝑜𝑔𝑁) where 𝑁is an input’s dimension. It is same/less comparing 

to mentioned state of the art methods in Table 5.1. In [13], they employed 3D-Gabor 

wavelet to extract features of hyperspectral face images which has the same 

computational complexity of 𝒪(𝑁3). In [15-16], features are extracted by 2D Fast 

Fourier Transform (FFT) from the log-polar images hence the computational 

complexity of FFT is 𝒪(𝑁𝑙𝑜𝑔𝑁). In [26], the first and second order statistics of each 

cubelets (section 2.4.2) are computed by the mean vector and covariance of 2D matrix 

which covariance matrix computation has a computational complexity of 𝒪(𝑁2). 

5.6 Conclusion 

In this chapter, we propose DWT based method to fuse spectral information by 

applying over each pixel along the spectral axis on hyperspectral image cubes. The 

DWT is applied consecutively to each vector of pixels extracted from the low 

frequency component from the previous decomposition. This process is iteratively 

repeated until the spectral vector for each pixel is decimated to a single pixel 

transforming the 3D input spectral image cube into a 2D output image. Transformed 

2D images go through principal component analysis (PCA) for dimensionality 
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reduction generating the feature vectors to be classified by using k-NN and CRC 

classifiers. Experimental results using the proposed method show that, the 

performance in terms of accuracy outperforms state-of-the art methods using PolyU- 

HSFD, CMU-HSFD and UWA-HSFD databases. 
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Chapter 6 

6 CONCLUSION AND FUTURE WORK 

In this thesis, we have introduced novel methods for feature extraction of facial 

hyperspectral image classification to improve the recognition rate while using spatio-

spectral information simultaneously.   

6.1 Conclusion 

3D-DWT is applied to whole hyperspectral image cube to extract features from the 

subbands generated by discrete wavelet decomposition in three different approaches. 

Three approaches included 3D-subband energy (3D-SE), 3D-subband overlapping 

cube (3D-SOC) and 3D-global energy (3D-GE). Each approach extracted different 

feature vector which contains the energy values calculated from different wavelet 

subbands at different levels of decomposition. Generated feature vectors by three 

different approaches went through a classifier to complete the face recognition task. 

Furthermore, we proposed a novel method to fuse spectral information into a single 

2D image by applying band-specific signal to noise ratio (SNR) weight. These weights 

are calculated based on band-specific SNR values to be assigned to each specific band 

for generating a single 2D face image. Hence, each pixel along spectral axis is fused 

to a single pixel resulting a 2D output face image for each 3D hyperspectral face cube. 

For dimensionality reduction, 2D output images went through principal component 

analysis (PCA) and face recognition was performed with the help of a classifier. 
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Finally, we employed discrete wavelet transform (DWT) to fuse spectral information 

by applying it to each pixel along the spectral axis on each hyperspectral image cube. 

The DWT was applied consecutively to each spectral vector of pixels extracted from 

the low frequency component from the previous decomposition. This process was 

iteratively repeated until the spectral vector for each pixel is decimated to a single pixel 

transforming the 3D input spectral image cube into a 2D output image. PCA was 

applied to 2D output images for dimensionality reduction and went through a classifier 

to perform a face recognition. 

Some limitations should be noted. First, the methods are not robust for pose estimation, 

variance in orientation and face expression since all three standard hyperspectral 

databases are captured without considering mentioned limitations. Second, facial 

occlusion, such as sunglasses, scarf, mask etc., is one critical factor that affects the 

performance of face recognition and the proposed methods in this study are not robust 

to it. 

The first contribution has a high computational complexity of 𝒪(𝑁3) , second 

contribution’s computational complexity is 𝒪(𝑁𝑙𝑜𝑔𝑁)  which is low and the last 

contribution has a moderate  computational complexity of 𝒪(𝑁2) comparing to some 

of the state of the art. 

The experimental results revealed that recognition accuracy of all proposed methods 

by using standard hyperspectral databases outperform alternative hyperspectral face 

recognition of the state-of-the-art methods. 

 

 



78 

6.2 Future Work 

Recently, deep Convolutional Neural Network (CNN) architectures have been 

introduced for the classification of images including faces. Many specialized CNN 

frameworks including AlexNet [59], GoogLeNet [60] and ResNet [61] have been 

introduced as pre-trained CNNSs with millions of samples for object classification. 

There are three major prospects involving CNNs. The first future work involves 

transfer learning, where pre-trained network is utilized to adapt to a new network by 

adjusting the parameters of the network to perform classification on Hyperspectral 

images.  Second work can involve separate CNN pipelines for each/selected 

hyperspectral band is to be fused [62] for final classification. Third work can be 3D 

CNN [63] due to the 3D nature of Hyperspectral images. 3D Hyperspectral image 

cubes can be used to train dedicated 3D  
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