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ABSTRACT

Face is one of the most common biometric modalities which is used for identification.
In this context, face recognition has gained an important role in biometric applications
based on identification systems during the last few decades. Since there is no physical
interaction required during recognition or identification, it's easy to deploy and
implement. In face recognition, a face is categorized as known or unknown by
comparing a face with all the faces in a database. Due to inherent distinct features,
human face analysis is one of the most effective methods of identifying individuals.
Nowadays, utilizing hyperspectral images in face recognition is one of the most
important research topics in biometrics, since they contain additional significant
spectral information compared to 2D images which have only information in spatial
dimensions (texture and structure). A hyperspectral image is a data cube containing
two spatial and one spectral dimension. Hyperspectral image samples are captured by
a hyperspectral camera which operates at multiple narrow bands within the visible
spectrum and neighboring near-infrared spectra. Hyperspectral imaging provides new
prospects for improving face recognition accuracy since they contain information in
both space and spectral axes. Hence significant information for each person regarding
the skin based on reflected, absorbed and released electromagnetic energy at different
wavelengths can be extracted. Additional spectral information which is not embedded
in traditional grey/color facial images provides an opportunity to improve the
recognition accuracy. Hyperspectral imaging employs spatial and spectral relationship
simultaneously, which improves segmentation and classification in the respective
applications. Difficulties encountered in visible light-based face recognition systems,

such as the variance in orientation, illumination or expressions can be minimized by



employing hyperspectral imaging. Besides these opportunities, hyperspectral images
pose some challenges such as low signal to noise ratios, high dimensionality, and data
acquisition needs expensive cameras with multiple sampling in visible and near-
infrared spectra. Despite mentioned challenges, hyperspectral images contain more
independent and significant information obtained from different sub-bands than 2D
images. Hence, hyperspectral images represented in 3D-cubes are by far more capable

in classification processes, which is also ideal for spoofing attacks.

In this thesis, we propose novel methods for feature extraction for facial hyperspectral
image recognition. The main goal of the thesis is to improve the recognition accuracy
of hyperspectral face images. In the first method, three different approaches are
proposed employing 3D discrete wavelet transform (3D-DWT) to extract features from
the subbands generated by discrete wavelet decomposition. Three approaches include
3D-subband energy (3D-SE), 3D-subband overlapping cube (3D-SOC) and 3D-global
energy (3D-GE), which extract different feature vector for each approach containing
the energy values calculated from different wavelet sub-bands at different levels of
decomposition. Feature vectors generated by three different approaches go through a
classifier to complete the face recognition task. In the second proposed method, fusion
of spectral information into a single 2D image is achieved by band-specific signal to
noise ratio (SNR) based weighting. The fusion method assigns weights based on the
calculated band-specific SNR values, weighted sum of the bands generate a single 2D
face image. Hence, each pixel along spectral axis is fused to a single pixel resulting a
2D output face image for each 3D hyperspectral face cube. In the third method, in
order to fuse spectral bands in hyperspectral face cubes, we apply discrete wavelet
transform (DWT) to each pixel along the spectral axis consecutively until the spectral

vector for each pixel is decimated to a single pixel transforming the 3D input spectral



face image cube into a 2D output image. 2D output images obtained by the second and
third methods are processed using principal component analysis method and face

recognition is performed with the help of a classifier.

The experimental results reveal that recognition accuracy of all proposed methods by
using standard hyperspectral databases outperform alternative hyperspectral face

recognition of the state-of-the-art methods.

Keywords: hyperspectral face image, face recognition, discrete wavelet transform,

feature extraction, classification, signal to noise ratio.



oz

Yuz, kimlik tanima igin kullanilan en yaygin biyometrik yontemlerden biridir. Bu
baglamda, yiliz tanima, son birkag on yilda kimlik tanima sistemlerine dayanan
biyometrik uygulamalarda dnemli bir rol oynamistir. Ylz tanima, kimlik tanimlama
sirasinda fiziksel bir etkilesim gerekmediginden, dagitimi ve uygulamasi kolaydir.
Yiiz tanimada, bir yiiz, veritabanindaki tiim yiizlerle karsilagtirilarak bilinen veya
bilinmeyen olarak kategorize edilir. Dogasinda farkli 6zellikler nedeniyle, insan yiizii
analizi bireyleri tanimlamanin en etkili yontemlerinden biridir. Gliniimiizde, yiiz
tanimada hiperspektral goriintiilerin kullanilmasi, sadece mekansal boyutlarda (doku
ve yapi) bilgi iceren 2D goriintiilere kiyasla ek onemli spektral bilgi icerdiginden,
biyometride en 6nemli arastirma konularindan biridir. Hiperspektral goriintii, iki
uzamsal ve bir spektral boyut iceren bir veri kiiptdur. Hiperspektral gortintt 6rnekleri,
gorindr spektrumda ve komsu kizilétesine yakin spektrumlarda birden ¢ok dar bantta
calisan bir hiperspektral kamera tarafindan yakalanir. Hiperspektral goriintiileme, hem
boslukta hem de spektral eksenlerde bilgi igerdiginden yiliz tanima dogrulugunu
iyilestirmek i¢in yeni beklentiler saglar. Bu nedenle, her insan icin farkli dalga
boylarinda yansitilan, emilen ve salinan elektromanyetik enerjiye dayanan cilt
hakkinda onemli bilgiler elde edilebilir. Geleneksel gri / renkli yiiz goriintiilerine
gomulmeyen ek spektral bilgiler, tanima dogrulugunu artirma firsati sunar.
Hiperspektral goriintiileme ayn1 anda mekansal ve spektral iliskiyi kullanir, bu da ilgili
uygulamalarda segmentasyonu ve siniflandirmay1 gelistirir. Yonlendirme, aydinlatma
veya ifadelerdeki varyans gibi gorlniir 1s1ik tabanli yliz tanima sistemlerinde
karsilasilan zorluklar, hiperspektral goriintiileme kullanilarak en aza indirilebilir. Bu

firsatlarin yani sira, hiperspektral goriintiiler diislik sinyal-giiriiltii oranlari, ytliksek

Vi



boyutluluk ve veri toplama gibi bazi zorluklar ortaya ¢ikarir ve goriiniir ve kizilotesine
yakin spektrumlarda ¢oklu ornekleme ile pahali kameralar gerektirir. Bahsedilen
zorluklara ragmen, hiperspektral goriintiiler 2D goriintiilerden farkli alt bantlardan
elde edilen daha bagimsiz ve anlaml bilgiler icerir. Bu nedenle, 3D kiiplerde temsil
edilen hiperspektral goriintiiler, kimlik sahtekarligi saldirilart i¢in de ideal olan

siniflandirma islemlerinde ¢ok daha yeteneklidir.

Bu tezde, yiiz hiperspektral goriintii tanima i¢in dznitelik ¢ikarimi i¢in yeni yontemler
oneriyoruz. Tezin temel amaci, hiperspektral yiiz goriintiilerinin taninma dogrulugunu
arttirmaktir. ilk yontemde, ayrik dalgacik ayrigmm ile olusturulan alt bantlardan
Oznitelikler elde etmek icin 3B ayrik dalgacik doniisiimii (3D-DWT) kullanilarak tig
farkl1 yaklasim &nerilmektedir. Onerilen li¢ yaklasim, 3B alt bant enerjisi (3D-SE), 3B
alt bant ortiisen kiip (3D-SOC) ve 3B kuresel enerji (3D-GE) olup, farkli dalgacik alt
bantlarindan hesaplanan enerji degerlerini iceren her yaklasim igin farkli 6znitelik
vektorii ¢ikarilir. Ug farkli 6znitelik vector siiflandiricidan gegirilerek yiiz tanima
islemi tamamlanmaktadir. Onerilen ikinci yontemde, spektral bilginin tek bir 2B
gorlintiiye flizyonu, banda 6zgii sinyal/giiriiltii oran1 (SNR) tabanl agirliklandirma ile
elde edilir. Fiizyon yontemi, hesaplanan banda 6zgii SNR degerlerine dayali olarak
agirliklar atanarak, bantlarin agirlikli toplami tek bir 2B yiiz goriintiisii olusturulur.
Uciincii yontemde, hiperspektral yiiz kiiplerindeki spektral bantlar1 birlestirmek icin,
her piksel icin spektral vektor 3B giris spektralini tek bir piksele doniistiiriilene kadar
spektral eksen boyunca her piksele ayr1 dalgacik doniisiimii (DWT) uygulayarak, yiiz
kiipii bir 2B ¢1kt1 goriintiisiine doniistiiriiliir. Tkinci ve iiglincii yontemlerle elde edilen
2B ¢1kt1 goriintiileri Ana bilesenler analizi yontemi ile doniistiiriilerek bir siniflandirict

yardimi ile yliz tanima islemi ger¢eklestirilmektedir.

vii



Deneysel sonuclar, standart hiperspektral veri tabanlar1 kullanilarak 6nerilen tiim
yontemlerin dogrulugunun, modern yontemlerin alternatif hiperspektral yiiz tanima

isleminden daha iyi performans gosterdigini ortaya koymaktadir.

Anahtar Kelimeler: hiperspektral yiiz gorlntiisii, yiiz tanima, ayrik dalgacik

doniisiimii, 6zellik ¢ikarimi, siniflandirma, sinyal-giiriiltii orani.
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Chapter 1

INTRODUCTION

1.1 Introduction

Face recognition has gained an important role in biometric application based
identification systems during last few decades. In face recognition task, by comparing
a face with a database that contains many faces, system can categorize a face as either
known or unknown [1]. Identifying facial features, which is divided in two categories
(global and local) is one of the most effective methods to analyze the human face. In
global category such as the whole face, while in local category such as regions of eyes,
nose, and mouth vary significantly in details across each individual [2]. Face
recognition systems in visible light have some challenges such as variance in
orientation, illumination or face expression which causes the certain variability in
embedded information [3]. As most of faces consist of two eyes, mouth and nose which
are in the same location, face expression is a difficult problem in face recognition
systems. Face recognition comparing to other biometrics such as iris, palmprint and
fingerprint recognition has an advantage of non-contacting and no interacting with the
person for identification. One way to overcome mentioned challenges is using depth
information of 3D face images. Facial hyperspectral images are a new topic in
biometrics as it improves the recognition performance according to the significant

information included in spectral dimension.



In this thesis, the focus is on the feature extraction and spectral information fusion for
recognition and classification of facial hyperspectral images. In the first proposed
method, 3D discrete wavelet transform (3D-DWT) is employed to extract features
from the subbands generated by discrete wavelet decomposition in three different
approaches. Three approaches include 3D-subband energy (3DSE), 3D-subband
overlapping cube (3D-SOC) and 3D-global energy (3D-GE), which extract different
feature vector for each approach containing the energy values calculated from different
wavelet subbands at different levels of decomposition. Feature vectors generated by
three different approaches go through a classifier to complete the face recognition task.
In the second proposed method, discrete wavelet transform (DWT) is applied to each
pixel along the spectral axis consecutively until the spectral vector for each pixel is
decimated to a single pixel transforming the 3D input spectral face image cube into a
2D output image. In the third proposed method, band-specific signal to noise ratio
(SNR) based weighting is proposed to achieve a single 2D image by fusion of spectral
information. The fusion method assigns weights based on the calculated band-specific
SNR values, weighted sum of the bands generate a single 2D face image. Hence, each
pixel along spectral axis is fused to a single pixel resulting a 2D output face image for
each 3D hyperspectral face cube. 2D output images obtained by the second and third
methods are processed using principal component analysis method and face
recognition is performed with the help of a classifier. In this manner three standard
hyperspectral face databases (HSFD) are used. PolyU-HSFD [4], CMU-HSFD [5] and
UWA-HSFD [6].

1.2 Facial Hyperspectral Images

In spectral imaging, information is collected and processed through electromagnetic

spectrum. In hyperspectral imaging, the spectrum of each pixel is obtained for the



purpose of detection and recognition of objects [7]. In facial hyperspectral images,
samples are captured at multiple narrow bands within the neighborhood of visible light
in the electromagnetic spectrum, which reveals significant information that is not
evident in traditional grey/color images. A hyperspectral image is a data cube with
two spatial and one spectral dimension. Hyperspectral camera operates at multiple
narrow bands of the visible spectrum and beyond hence hyperspectral imaging cover
a wide range of wavelengths. Hyperspectral imaging measures contiguous spectral
bands which include spectral details in the visible, near-infrared or ultraviolet bands,
hence it imports more information comparing to traditional grey/color images. As the
spectrum is divided into many bands, significant information for each person regarding
the skin based on reflected, absorbed and released electromagnetic energy at different
wavelengths can be achieved [8]. Having many bands, hyperspectral images contains
extra significant information in spectral bands, compared to traditional grey/color
facial image data [8-9]. Although, the acquisition of hyperspectral images is more
sophisticated which involves more expensive cameras with multiple sampling in near-
infrared and ultraviolet spectra, the recent improvements in camera technologies and
optics made it more economical and plausible. Despite of relatively higher acquisition
cost, the amount of independent information coming from different sub-bands is much
more than a standard 2D camera. Hence, hyperspectral images represented in 3D-
cubes are by far more capable in classification processes, which is also ideal for
spoofing attacks. In order to further improve segmentation, recognition and
classification of the images, hyperspectral imaging employ spatial and spectral
relationship simultaneously. By employing the application of hyperspectral imaging,
difficulties encountered in visible light-based face recognition systems, such as the

variance in orientation, illumination or expressions can be minimized [3].



1.3 Problem Definition

There are several difficulties and limitations encountered in face recognition such as
variations in skin color under different illumination, different face angles and variance
in orientation, clarity of the face image according to the distance of subject from
camera and face expression [49]. To overcome some of mentioned difficulties and
limitations, spectral information of hyperspectral face images can be employed in face
recognition systems. In addition to opportunities, hyperspectral images pose some
challenges such as low signal to noise ratios in some spectral bands, high
dimensionality and data acquisition needs expensive cameras with multiple sampling
in visible and near-infrared spectra. Regarding high dimensionality of hyperspectral
face images, in almost all existing hyperspectral face recognition techniques there are
algorithms which are adopted for dimensionality reduction in the form of feature

extraction.
1.4 Thesis Objectives

This thesis work is about overcoming the challenges in face recognition by using
spectral information of hyperspectral face images for feature extraction and
classification. The main objectives of this research work are listed below:

1. Using 3D Discrete Wavelet Transform (DWT) to isolate 3D data into
frequency sub-bands. 3D-DWT decompose volumetric data in horizontal,
vertical and depth directions. Hence it is an appropriate decomposition
procedure for feature extraction in 3D data.

2. Applying Discrete Wavelet Transform (DWT) for dimensionality reduction
and feature extraction. DWT analyze signals in time and frequency domains
simultaneously. Hence it is an appropriate procedure to analyze spectral

information in facial hyperspectral images



3.

Using band-specific signal to noise ratio (SNR) based weighting to fuse
spectral information acquired through different spectral bands into a single 2D

image.

1.5 Thesis Contributions

In this research work, several methods are proposed to improve the recognition

performance. Major contributions of this thesis are listed below:

1.

Extracting the wavelet coefficients of whole hyperspectral image cube by 3D-
DWT as a feature vector. The texture property is calculated by energy value
from different wavelet sub-bands at different levels of decomposition.

To avoid edge-blurring effects and spatial information loss, each hyperspectral
face image is divided to adjacent cubes and an overlapping cube. To fuse
spatio-spectral information in overlapping cubes in each hyperspectral face
image, 3D wavelet features are extracted globally.

In the n-level 3D-DWT at each level, a filtered signal is represented by detail
coefficients, which only span half of the frequency band. The original signal
has frequency of /2 instead of w according to the Nyquist’s rule, after filtering
the original signal by a highpass filter H and a lowpass filter L. In addition to
the first level of 3D-DWT decomposition, by using LLL sub-band for another
level of 3D-DWT, we can extract additional information from second level of
3D-DWT.

Introducing spectral band fusion by developing a single 2D image from a
hyperspectral image cube by applying discrete wavelet transform (DWT) to
each pixel along the spectral axis consecutively.

Introducing a new method to generate a 2D face image instead of 3D face cube

by fusing spectral band after multiplying each band with a weight based on a



band-specific signal to noise ratio (SNR). Signal is assumed to dominate the
noise resulting a high SNR in the middle band (visible band). Hence the
middle band is used for the segmentation of the region of interest for SNR
calculation. A mask with zero and one value is created in this band where one
is given to each pixel in the homogeneous region and zero to all pixels in other
clusters. Multiplying each spatial coordinate in each band with this mask help

segment the homogeneous region in the specific band.
1.6 Thesis Overview

In Chapter 2 feature extraction, selection, dimensionality reduction and classification in
state-of- the-art are discussed in detail for hyperspectral face recognition. Chapter 3
presents proposed method using 3D discrete wavelet transform for hyperspectral face
recognition. It contains feature extraction, feature selection and classification for proposed
method. Results are compared with several state-of-the-art facial hyperspectral images
methods. In Chapter 4, we introduce a novel approach to improve hyperspectral face
recognition using band-specific signal to noise ratio (SNR) based weighting to fuse
spectral information acquired through different spectral bands into a single 2D image.
Chapter 5 describes a new method to generate 2D face image instead of 3D face cube by
utilizing DWT based fusion along spectral axis. Chapter 6 concludes this thesis and

proposes future work based on this thesis work.



Chapter 2

LITERATURE REVIEW ON FACIAL

HYPERSPECTRAL IMAGES

2.1 Introduction

Face recognition has a special role in biometrics in the past several years since it is
non-contact process comparing to other biometrics systems such as fingerprint,
palmprint and iris. This advantage helps capturing face images from a distance to
identify the person without interacting [1]. Hence it has gotten special attention due to

security difficulties by law enforcement.

Face recognition due to the variance in orientation, illumination and expressions is a
challenging subject [3]. 2D face recognition has achieved significant development
however still there are difficulties to overcome the mentioned challenges. One way to
overcome mentioned challenges is the use of 3D face images which contain depth
information [3]. However, 3D images also have limitations, but comparing to 2D face

images they contain more information.
2.2 Hyperspectral Imagery

The human eye is able to recognize only a narrow interval of the light spectrum which
is known as visible light (380nm-750nm). By considering spectrum beyond the visible
light, the information that can be collected increase. Hence hyperspectral images (HSI)
by collecting dozens of images in the narrow interval of energy wavelength (10-20

nm) are formed. Hyperspectral images mostly cover visible to near infrared



electromagnetic spectrum which has wavelengths between 400 nm to 1400 nm.
Hyperspectral cameras capture images by using special techniques which combine
spectral and spatial information. Hyperspectral image is a form of 3D images with two

spatial and one spectral dimensions [30].

Hyperspectral imagery is a popular topic in remote sensing applications and due to the
high cost of devices it was not popular topic in biometrics applications [58]. The recent
improvements in technologies and optics made hyperspectral cameras more
economical and accessible, hence methods utilized for remote sensing problems have

been applied to biometrics applications.
2.3 Hyperspectral Face Recognition

Hyperspectral cameras operate in multiple narrow bands of visible spectrum and
beyond to sample a face which resulting in more biometric information. This operation
samples a face in spatial and spectral domain, resulting more information compared to
traditional 2D grey/color images. This significant information can be related to distinct
personal patterns originating from skin tissues, blood and organ structure [3]. There is
another advantage regarding to spectral information which is distinguishing the real
human face from mask or a photograph. In order to improve segmentation,
classification and recognition of the images, hyperspectral face images based
approaches employ spatial and spectral relationship simultaneously. Spectral
dimension contains spectral information of faces which is related to inherent
characteristics of subject. Since spectral dimension is captured across wide range of
spectrum, it provides abundant information regarding to spectral response of each face

which is different for each person [10].



By employing the application of facial hyperspectral image, difficulties encountered
in visible light based face recognition systems, such as the variance in orientation,
illumination or expressions can be minimized which helps to improve face recognition
accuracy [3]. Besides these opportunities, hyperspectral images pose some challenges
such as low signal to noise ratios, inter-band misalignment, high data dimensionality
and data acquisition needs expensive cameras with multiple sampling in visible and
near-infrared spectra. Despite of mentioned challenges, hyperspectral images
represented in 3D-cubes are by far more capable in classification processes, which is
also ideal for spoofing attacks. Bands near blue wavelength caused by high photon
energy are usually the reason of low signal to noise ratio (SNR) [11]. Due to subject
movements during hyperspectral face image acquisition inter-band misalignment
occurs [11]. Fig 2.1 illustrates a hyperspectral face image that contains 33 bands from

the PolyU hyperspectral face database (HSFD).
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Figure 2.1: A sample of hyperspectral face cube of 33 bands from the Poly U-
HSFD [4].



2.4 Feature Extraction

Due to high data dimensionality of hyperspectral face images feature extraction is a
challenging task comparing to traditional grey/color images. This challenge is the main
reason that there are not plenty of researches regarding to hyperspectral face
recognition. Most researchers have extracted the features by sampling the
hyperspectral face image [8-12-13] while some of them have just applied Principal
Component Analysis (PCA) for feature extraction and dimensionality reduction [9].
2.4.1 2D Features Extraction Algorithms

In [12] Pan et al. used spectral features of hyperspectral face images in the near
infrared range (NIR) (700 nm to 1000 nm). The spectral features from hair, forehead,
cheeks, lips and chin for each subject are sampled manually for 31 bands. Mahalanobis

distance is used to compare spectral features to perform face recognition accuracy rate.

Robila in [14] extracted spectral features of six regions (chin, nose, ear, eye, forehead
and top lip) for eight subjects in the range of 400 nm to 900 nm. To comprehend the
spectral power and spectral angle between each subject, means for each spectra
location of six regions are computed. This process is applied to 120 bands of each

hyperspectral face image.

Due to different physical absorption of face skin, Di et al. [9] used feature band
selection to identify two feature band subsets and proposed three different methods for
hyperspectral face recognition. These two feature band subsets are corresponded to
hemoglobin compound which are located at 540 nm and 580 nm. They applied single
band (2D)?PCA, whole bands (2D)?PCA with decision fusion and band subset fusion-

based (2D)?PCA for hyperspectral face recognition.
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Chen et al. [15] first perform denoising since hyperspectral face images contain
significant amount of noise. Denoised face cube is cropped by eye coordinate, then
log-polar transform is applied to each band of cropped face. To obtain invariant
features to rotation and scale, 2D FFT is applied to log-polar face images to extract 2D

Fourier Spectrum (FS).

In [16] Chen et al. extracted features for each cropped hyperspectral face cube with
five different methods named local binary pattern (LBP), histogram of oriented
gradients (HOG), log-polar transform, Gabor filter bank and Zernike moments. Then
classifies each face into one of the existing classes. LBP [17] is the method which
divide an image into local regions and label every pixel of an image by thresholding
the local neighborhood pixels of each pixel with the center pixel and considers the
result as a binary number. Histogram of oriented gradients (HOG) [18] describes
object appearance and shape by the distribution of intensity gradients. HOG is
computed for the pixels within small connected regions of the facial image then all
these histograms will be concatenated. To implement HOG five steps, exist which are
gradient computation, orientation binning, descriptor blocks, block normalization and
a classifier [16]. Log-polar transform [19] has significant property which converts
scaling factor in (x, y) coordinates to spatial shift in log-polar coordinates (p, ). Fast
Fourier transform (FFT) is applied to log-polar image to obtain Fourier spectrum
which is scale/rotation invariant features along p. To convert Cartesian coordinates (X,

y) to log-polar coordinates (p, ) is formulated as,

p=logJx?+y%2and 0 = tan‘l% if x>0. (2.1)
Gabor filter bank [20-21] by filtering a facial image with a bank of complex Gabor

filter calculates the magnitude responses of an image. After downsampling magnitude
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responses of an image will be normalized by using zero-mean and unit variance. After
normalization process these magnitude responses are added to the output filtered
image. The 2D Gabor filters in the spatial domain can be defined as a Gaussian kernel

function by the following formula in the complex plane wave,

Yo, (x,y) = %e_((%)xz"L(%)Yz)ejZﬂqu (2.2)

where X = xcos@,, + ysinf,, and Y = —xsin6,, + ycos6,. The pixel coordinates are
denoted by x and y, the frequency of the complex sinusoid and the orientation of the
wavelet are denoted by fu and 6, respectively. The ratio between frequency of the
complex sinusoid (center frequency) and the size of the Gaussian envelope is
determined by x and n. Zernike moments [22] are orthogonal moments which has the
property of rotation invariant. It means the magnitudes of Zernike moments for any
image after rotating does not change. Hence the features which are extracted from
Zernike moments can easily be constructed to an arbitrary high order. The order which
the reconstructed image is close to the original one is defined as the maximum order.
Zernike moments features are only rotation invariant. Hence to obtain an image with
scale/translation invariance, a normalization process using its regular moments is
applied to the image. Then rotation invariant Zernike features can be extracted from
normalized image. Zernike is defined as a set of complex polynomials which form a
complete orthogonal set over the interior of the unit circle [23]. These polynomials are
defined as,
Vi = R (0)e/™® (2.3)

where p defines the length of vector from origin to the pixel (x,y). 8 = tan‘li is the

angle between vector p and x axis. Radial polynomial (R,,,,,(p) ) is defined as,
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The projection of the image onto orthogonal basis functions is defined by Zernike
moments. The Zernike moment for a continuous image function f (x, y) with order n

and repetition m that just exists inside the unit circle (x2 + y2 = 1) is

n

1
[ rG a1 dxdy 25)

mn =

2.4.2 3D Features Extraction Algorithms

In [13] Shen and Zheng employed 3D Gabor wavelet to extract features form facial
hyperspectral images. Gabor wavelets with different central frequencies has the
advantage of analyzing and exploring the information in spatio-spectral domain in
hyperspectral data cube simultaneously. To extract features from hyperspectral image
cube a family of MxNxZ Gabor wavelets with different frequencies is selected which
is defined as,

fmax nm km

Yhnpnbx (5,2, fn =T o= 37,0 = 7= (2.6)

The amplitude and orientations of central frequency are defined by £, and (¢, 6,)
respectively. fm is the frequency vector points with the same direction with different 8
when ¢ = 0. To simplify the representation of the wavelets, ¥. , o denotes as
Wnk- The information about local signal variances is represented by the inner
product of signal with wavelet set ¥,, , , at location (x.,y.,z.). The convolution
results are considered to explore information at all possible locations in spatio-spectral
domain (x,y,z). The magnitude of convolution reveals the strength of variations across

spatial and spectral domains.

Uzair et al. [11] employed 3D discrete cosine transform (DCT) to extract spatio-

spectral features. 2D or 3D images can be expressed as a linear combination of
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mutually uncorrelated cosine basis functions [24-25] by DCT. A compact energy
spectrum of the signal can be generated by DCT. The low frequency coefficients of a
compact energy spectrum are related to signal information. Hence the features are
selected from low frequency coefficients. In [11] they extracted features from the
whole hyperspectral face image by global 3D-DCT which has the advantage of
modeling the spatio-spectral information simultaneously. They represented each

hyperspectral facial cube by a small number of low frequencies DCT coefficients.

In [26] each hyperspectral face cube is divided into small overlapping 3D cubelets.
Each of these 3D cubelets rearranged to the 2D matrix which each column corresponds
to spectral response of all bands at a specific location. The first and second order
statistics of each cubelets are computed by the mean vector and covariance of 2D
matriX. In each cubelets the spread of information is indicated by the order statistics.
The mean vector is added to each column of covariance matrix to mix the information
of both order statistics. 3D cubelet is transformed to a singular variable by computing
the Frobenius norm of mean and covariance matrix addition. Each 3D cubelets is
replaced by its related single value resulting from Frobenius norm. Thus, by fusing

information in all bands, a single 2D matrix represents hyperspectral face cube.

In [3] Vartak and Bharadi used Hybrid Wavelet Type | (HWI1), Hybrid Wavelet Type
I (HWII) and Kekre Wavelet (KW) to generate texture feature extraction. The PolyU
Hyperspectral face database is used in this work. Hyperspectral face images contain
33 bands with front (F|), left (L) and right (R) side view for each subject. They grouped
each hyperspectral face image into eleven sub-bands (each three bands consider as one
band). In each hyperspectral face image three components (F, L and R) are considered

which each of them is divided into 4x4 non-overlapping blocks for five level
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decomposition. This process generates feature vectors by applying HWI, HWII and
KW transforms to each subject. These feature vectors are applied to intra class and
inter class testing to generate genuine and forgery classes. Multi-algorithmic and
Multi-instance fusion are used to analyze these test results. For multi-algorithmic
fusion the feature vectors of HWI, HWII and KW are fused and for multi-instance

fusion the feature vectors of front, right and left side view samples are fused.

Liang et al. [10] proposed 3D Local Derivative Pattern (LDP) to analyze hyperspectral
faces and encode each face cube into binary numbers as a 3D high order texture
descriptor. To describe the changes in multi-directions and extract detailed features in
multi-dimensional images, 3D directional derivative pattern and binarization function
are employed in this method respectively. Since the spectral responses in hyperspectral
images do not change roughly across the most wavelengths hence discriminative
information related to spectral dimension may exist in some specific wavelengths. 3D
LDP is a suitable method to extract features in hyperspectral face images as it functions
in both spatial and spectral dimensions. After calculating features to represent an

image as a vector histogram of a feature are estimated.
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Chapter 3

3D-DWT BASED FEATURE EXTRACTION IN

HYPERSPECTRAL FACIAL IMAGERY

3.1 Introduction

Recognition of humans by face, which is divided into two categories, i.e. global and
local approaches has a special role in biometrics [12, 13]. Identifying individuals is
one of the most basic examples of human face analysis [2]. Nowadays hyperspectral
face recognition provides new opportunities for improving recognition accuracy since
it contains more information compared to traditional 2D imagery which only contains
spatial information (texture and structure). In facial hyperspectral images, samples are
captured at multiple narrow bands within the neighborhood of visible light in the
electromagnetic spectrum, which reveals significant information that is not evident in

RGB images.

In hyperspectral images, the spectrum is divided into many bands, hence contains
significant information regarding the skin at different wavelengths [4]. Having many
bands, hyperspectral images contain extra significant information in spectral bands,
compared to traditional grey/color facial image data [8, 9]. Hyperspectral imaging-
based approaches employ spatial and spectral relationship simultaneously in order to
further improve segmentation and classification of the images. Furthermore, distinct
personal patterns originating from tissues, blood and organ structure can be captured

using hyperspectral imaging. By employing the application of hyperspectral imaging,
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difficulties encountered in visible light-based face recognition systems, such as the

variance in orientation, illumination or expressions can be minimized [3].

In this chapter, three new methods for improving classification on hyperspectral face
images are proposed. We employ 3D-DWT in each method to extract features from
facial hyperspectral images. These methods are called 3D-subband energy (3D-SE),
3D-subband overlapping cube (3D-SOC) and 3D-Global Energy (3D-GE). 3D-DWT
is employed to extract wavelet coefficients and, in each method, the energy vector is
calculated from the wavelet coefficients in different manner. The extracted energy
vector is regarded as the feature vector, where, the feature vectors are classified using
k nearest neighbor (k-NN) and Collaborative Representation Classifier (CRC)
classifiers. PolyU [4], CMU [5] and UWA [6] Hyperspectral Face Databases are used
in these methods. Classification accuracies are evaluated by four test scenarios which
3D-GE method performance in terms of accuracy comparing to several existing

methods improves significantly.

This chapter includes two contributions which are listed below:

1. The first contribution involves isolating the 3D data into frequency subbands
using 3D Discrete Wavelet Transform (DWT). It is an appropriate procedure
for feature extraction in 3D data since 3D-DWT decompose volumetric data in
horizontal, vertical and spectral directions.

2. The second contribution is about feature extraction by using wavelet

coefficients energy by three different approaches.
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3.2 Databases

In order to provide a benchmark database for advance research, the PolyU-HSFD was
developed by the Biometric Research Center (UGC/CRC) at Hong Kong Polytechnic
University [4]. This database acquired using the CRI’s VariSpec Liquid Crystal
Tuneable Filter (LCTF). The database contains significant appearance (hair style and
skin conditions), since it is constructed over a long period of time. The data cube
contains 33 bands in the wavelength between 400 nm and 720 nm by step size of 10
nm. The datacube size is 220x180x33. Each subject has three different types of views,
frontal (F), right (R) and left (L). There are 48 subjects in the database which contains
151, 125 and 124 datacubes for front, right and left images, respectively. Fig. 3.1
shows 33 bands of a face cube with frontal view in PolyU hyperspectral face database

(HSFD).

Figure 3.1: Frontal view of a hyperspectral face cube containing 33 bands form
PolyU-HSFD.
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The Robotics Institute of Carnegie Mellon University developed CMU hyperspectral
face database [5]. The prototype spectro-polarimetric camera is used to develop this
database. There are 48 subjects. Each datacube in this database contains 65 bands in
range of 450-1090 nm with a step size of 10 nm. The database contains different
sessions for each person according to lighting combinations and each person has 4-20
cubes according the light combinations. In our experiments the sessions with all lights
on and all subjects which have 1-5 cubes are chosen. Fig. 3.2 illustrates even bands of

a face cube in CMU hyperspectral face database (HSFD).
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Figure 3.2: A sample of hyperspectral face cube containing even bands form
CMU-HSFD.

19



..

Figure 3.3: A sample 33 bands of hyperspectral face cube form UWA-HSFD.

The UWA [6] hyperspectral face database which is developed by an indoor imaging
system using a CRI’s VariSpec LCTF integrated with a photon focus camera. There
are 70 subjects in the database which contains 120 hyperspectral cubes. Each data cube
contains 33 bands in the wavelength between 400 nm and 720 nm by step size of 10
nm. The datacube size is 1024x1024x33. In Fig. 3.3 a sample of face cube containing
33 bands is shown from UWA hyperspectral face database (HSFD).

3.3 Three Dimensional Discrete Wavelet Transform

In 3D discrete wavelet transform (DWT), the 1D analysis filter bank is applied to each
of the three dimensions. Hence the procedure can be considered as a combination of
three 1D-DWT in the X, Y (spatial) and Z (depth) dimensions [27-28]. The 3D-DWT
which isolates the data into frequency sub-bands can be regarded as a more advanced

preprocessing method for 3D coding compared with 2D methods [29]. It considers the
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correlation of 3D data cubes, which helps to improve the compression. The basic idea
is to represent a signal as a superposition of wavelets. 3D-DWT has an advantage by
decomposing volumetric data in horizontal, vertical and depth directions unlike 2D-
DWT which decomposes only in horizontal and vertical dimensions [30]. For the
hyperspectral images, 3D-DWT is performed by applying one dimensional DWT filter
banks on three spatio-spectral dimensions [31]. Data cube of size B; x B, X B after

applying 1D-DWT to the first, second and third directions, result two, four and eight

sub-bands, each of size (% X B, X B),( % X % X B3),( % X % X %) respectively.
Fig. 3.4 demonstrates 3D data decomposition into eight sub-bands after applying

single level decomposition.

The 3-D DWT centered by a tensor product [32],
1&Y8) = (L*@H*) @ (LVOHY) @ (L*@H?)
= *LYLI*@OL*LYH*@®L*HY L?@L*HYH*@H*LY L?@H*LYH*@®H*HYL? (3.1)
@H*HYH*
where the direct sum and tensor product are expressed by @ and &, respectively. The
spatial (horizontal and vertical) domains and the spectral dimension of an image are
represented by X, Y and Z directions respectively. Along three dimensions, the

parameters L and H represent the low-pass and high-pass filters respectively.

The subband that passed through the low pass filter in horizontal, vertical and depth
directions is called LLL. This band refers to the approximation of data cube. Marginal
plane in each direction is shown by subbands which are passed through high-pass
filters in only one direction. The boundary lines are defined by subbands which are

passed through high-pass filters in two directions. Vertexes angle of the data cube is
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Figure 3.4: One level 3D-DWT procedure [33].




shown by HHH band which passed through high pass filter in horizontal, vertical and

spectral directions [30].
3.4 The State-Of-The-Art Hyperspectral Feature Extraction

3D-DWT has been used efficiently in video coding [32], 3D medical analysis [34] and
multi band remotely sensed images. Xian Guo et al. [35] employed 3D-DWT to extract
features by applying it to the series of local cubes around the central pixel. By
implementing 3D-DWT along spatio-spectral dimensions, wavelet coefficients from
eight subbands capture the variations in the respective dimensions. The local 3D-DWT
texture is represented by the energy values of the wavelet coefficients which are
defined in three ways: pixel-based shift (PDWT), non-overlapping (WDWT), and
overlapping cube (OWDWT), respectively.

3.4.1 Pixel-Based Shift

In this method, a local cube around each voxel (3D pixel) is used to process 3D texture
and then the local texture measure is calculated by the quadratic sum of the wavelet
coefficients in respective subbands. E (W) is the subband energy where W is a local
cube with B as horizontal, vertical and N as spectral dimensions respectively. P(i, j, k)
represents the wavelet coefficient in the local cube centered by the voxel (i, j, k).

B/2L B/2L N/2L

EW) = Z z Z P(i,j, k)? 3.2)
i=1 j=1 k=1

Each pixel in the given image is used as the center of a local moving cube in PDWT

which is subject to a large computational cost.
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Figure 3.5: 3D- DWT framework for hyperspectral feature extraction followed by
classification [35].

3.4.2 Overlapping Cube

In this section, there exist four adjacent cubes, i.e., surrounding W1, W2, W3, and W4
cubes and the overlapping central cube. To avoid edge-blurring effects and spatial
information loss, Guo et al. [35] consider the spatial relationship of these adjacent
cubes. Weighted feature representation is introduced to deal with the pixels in the
overlapping area. At each local cube the 3D wavelet features are extracted to fuse
spatio-spectral information in overlapping cubes, where the overlapping 3D texture is
defined as a weighted linear combination of the neighboring texture energy values.

wE(W,) + w, E(W,) + -4+ w,  E(W,
OWDWT = 1 ( 1) 2 ( 2) n ( n) (33)
0)1+(U2+"'+(Un

The weight and texture measurement of local cube W, are defined by w,, and E (W},),
respectively. The weight is defined by the Euclidean distance between a local cube and
the overlapping central cube. Fig. 3.5 demonstrates the 3D-DWT feature extraction
framework for hyperspectral image classification [35].

3.5 Proposed Hyperspectral Face Feature Extraction Methods
Considering, PDWT and OWDWT locally extracting the 3D texture [35] for
classification in hyperspectral satellite imagery, three alternative global methods are

proposed in hyperspectral face recognition for improved performance. The proposed
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methods are 3D-subband energy (3D-SE), 3D-subband overlapping cube (3D-SOC)
and 3D-Global Energy (3D-GE).

3.5.1 3D-Subband Energy (3D-SE)

In this section, 3D-DWT feature extraction based on extracting the wavelet
coefficients of the whole cube is proposed. The texture property is defined by the

subband cube around each wavelet coefficient.

M/2N/2 Q/2
EW) =) > > Rk (34)
i=1 j=1k=1
e = [E;(LLL) ,E;(LLH), .....,E;(HHL) ,E;(HHH)] (35)

The energy of the whole cube is defined by E, (W), where W represents the 3D-DWT

subband cube with M, N and Q in horizontal, vertical and spectral dimensions
respectively. The wavelet coefficient in the subband cube centered by the voxel
(i,j, k) is defined as P;(i,j, k). The ¢ is the energy vector of all 8 subbands. The

framework for 3D-SE is shown in Fig. 3.6.
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Figure 3.6: 3D-DWT framework for hyperspectral feature extraction using 3D-SE.

3.5.2 3D-Subband Overlapping Cube (3D-SOC)
In this section, there exist four adjacent cubes, i.e., surrounding W1, W2, W3, and W4
cubes and the overlapping central cube. To avoid edge-blurring effects and spatial

information loss, the spatial relationship of these adjacent cubes is considered.
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Weighted feature representation is introduced to deal with the pixels in the overlapping
area. At each local cube, the 3D wavelet features are computed globally to fuse spatio-
spectral information in overlapping cubes, where the overlapping 3D texture is defined
as a weighted linear combination of the neighboring texture energy values.

Q _ leg(Wl) + (l)zEg(Wz) + -+ (U4_Eg(W4)
g =

(3.6)
W1+ wy + w3 + Wy

@ =[Q,(LLL), Q,(LLH),...., Q;(HHL), Q (HHH)] (3.7)
In (3.6), the weighted linear combination of the neighboring global texture measures
is defined by Q4. The weighted linear combination of all eight subbands is represented
as vector ®. Fig. 3.7 illustrates the 3D-DWT framework using 3D-SOC for

hyperspectral feature extraction.

Ky
1 I gLLL
0 gLLH
Hyperspecral 3D_DW’I: of Calculate energy of each ) k-NN/
Imagery overlapping overlapping subband . » O CRC
subcubes . P

QyunL
Qgnunn

Figure 3.7: 3D-DWT framework for hyperspectral feature extraction using 3D-SOC.

3.5.3 3D-Global Energy (3D-GE)

In this section, the 3D wavelet coefficients of the whole cube after the first and second
level of 3D-DWT are extracted. The second level 3D-DWT is extracted from LLL
subband of considered and the observation was that the performance saturates beyond
two levels of 3D-DWT transform. The wavelet coefficients characterize the texture

feature vectors given in equations (3.9) and (3.11).
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M/2N/2 Q/2

EP@ =) Y N BP0 (38)

i=1 j=1k=1

(1) [E(l)(l)LLL E(l) (Q)UH 'Eél)(7)HHL ,E((;l)(S)HHH] (3.9)
M/4N/4 Q/4

Egp, () = 2 z Z P (i,j, k) (3.10)
i=1 j=1k=1

@ =[ED (LLL) EZ),,(LLH),..., ED), (HHL) ED), (HHH)]  (3.11)
Eél) (Z) and EézL)LL (Z)are the first and second level energy of global cube, respectively.
In equation 3.10, Z represents the global cube with M, N and Q dimensions, which
correspond horizontal, vertical and spectral dimensions respectively. Pc(l) (i,j, k) and
PG(sz(i, j, k) are the first and second level wavelet coefficients corresponding to the

voxel (i, j, k) in the global cube respectively. s ) and EGLLL are the energy vectors of

the first and second level of all eight subbands. s(l) and E(GZL)LL are concatenated to make

a vector, e Zwith 16 coefficients. The 3D-DWT based 3D-GE method is demonstrated
in Fig. 3.8. First and second level 3D-DWT of LLL subband for a hyperspectral face
cube for Poly-U, CMU and UWA hyperspectral face databases are demonstrated in

Fig. 3.9, Fig. 3.10 and Fig. 3.11 respectively.
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Figure 3.8: 3D-DWT framework for hyperspectral feature extraction using 3D-GE.
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(b)
Figure 3.9: First and second level 3D-DWT of LLL subband for a hyperspectral
face cube from PolyU-HSFD. (a) first level, (b) second level.
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Figure 3.10: First and second level 3D-DWT of LLL subband for a hyperspectral
face cube from CMU-HSFD. (a) first level, (b) second level.



(b)
Figure 3.11: First and second level 3D-DWT of LLL subband for a hyperspectral
face cube from UWA-HSFD. (a) first level, (b) second level.

3.6 Classifiers

The k-NN classifier is used for evaluating the recognition rate in terms of accuracies
in this thesis. Additionally, in this chapter, CRC (collaborative representation
classifier) is employed for recognition rate comparison with k-NN classifier. In the

following subsection, k-NN and CRC classifiers and their techniques are described.
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3.6.1 k- Nearest Neighbor Classifier (k-NN)

k-Nearest Neighbor (k-NN) is one of the common classifiers that is used in face
recognition. Image is classified by a majority vote that is given by the k neighbours of
it [38]. A distance matrix which is the Euclidean distance between the testing image
feature and each training image feature is calculated. The first k elements in summation
value of distance matrix which are ordered in ascending manner are selected to choose
the majority class value for image classification. Each sample belongs to a known class
(Cn) and the test image is categorized to the class which has the majority value
according to the first k elements [30-40].

3.6.2 Collaborative Representation Classifier (CRC)

Let define a matrix B = [B;, B,, ...., Byy] whose columns are the training image
feature vectors, where M is the number of subjects in the database, and the training
samples of the subject is defined by By, = [By1, Bxz, ----» Brc], Where k € [1, M], and
C is the number of bands in the hyperspectral face image. Let the column of A =

[a;, a,, ..., ac] be a testing hyperspectral face cube with C faces.

The optimization problem in Equation 3.12 corresponds to Collaborative
representation classifier (CRC) [41],

&, = argming|la, —Ball3 + Alloll3 (3.12)
where A is a regularization parameter and 63, = [G%q, Gk2, ---,» Ok ]. The solution for
Equation 3.12 can be easily derived as:

6x = (BTB + AI)"1BTq, k €[1,C] (3.13)
P = (BTB + AI)71BT and it does not depend on a, hence it can be pre-calculated as
a projection matrix just simply project a; onto P via Pay, [41]. The CRC classifies a

face ay, as:
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— B:6u:
”ak lo-kl.”Z}’ = [1,M] (3.14)

identity(ay) = argmin; { —
16; I
CRC classifies each testing image to the class with minimal regularized reconstruction

error.
3.7 Experimental Results

In this section we first clarify four different test scenarios which are utilized for a fair
comparison, then the recognition rates of proposed methods are compared with state-
of-the-art hyperspectral face image recognition methods.

3.7.1 Test Scenarios Distribution

1. First scenario: First 38 subjects with all data cubes (hyperspectral image) of
frontal hyperspectral face images with 33 and 24 bands in PolyU-HSFD are
selected. Due to the high noise, first six and the last three bands are removed
[13, 26] leaving behind 24 bands. The leave-one-out method is applied to train
and test the classifier.

2. Second scenario: In this scenario, the first 25 subjects of frontal hyperspectral
face images with 4 data cubes including 33 and 24 bands in PolyU-HSFD were
chosen. Two of four cubes for each subject were selected randomly for training.
The rest were selected as the test sets [11].

3. Third scenario: All data cubes of the first 25 subjects (frontal, right and left) of
hyperspectral face images with all the bands in PolyU-HSFD were selected.
Leave one out validation approach is adopted in the training and testing of the
classifiers.

4. Fourth scenario: In this scenario, first 25 subjects of frontal face images with
24 spectral bands in PolyU-HSFD are used in the experiment. For each subject,
2 cubes are selected randomly for training. The rest of the 63 cubes are used

for testing [1, 11]. In order to verify our results in other databases, we used
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CMU-HSFD and UWA-HSFD in this scenario. In CMU, we selected all
subjects which have 1-5 cubes and for each subject one cube is randomly used
for the training set and the rest of the cubes as a testing set [11]. In UWA, for
each subject, one cube is randomly selected for training and the rest 50 cubes
as a testing set [11].
3.7.2 Experimental Results and Comparison
The performance analysis involved using the average accuracy and standard deviation
(STD) through the process of randomly picking training and testing datasets ten times
for all scenarios. The accuracy is defined as the percentage of the ratio of the correctly
classified hyperspectral faces over the total number of hyperspectral faces in the test
set. We set the number of nearest neighbor predictor three in the k-NN classifier and

the regularization parameter A to 0.001 in CRC classifier.
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Figure 3.12: ROC curve of 3D-GE and 3D-SOC for a subject from the PolyU-
HSFD.
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Figure 3.13: ROC curve of 3D-GE and 3D-SOC for a subject from the CMU-
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Fig. 3.12, Fig. 3.13 and Fig. 3.14 show the receiver operating characteristic (ROC)
curves for 3D-GE and 3D-SOC methods under fourth scenario in PolyU-HSFD, CMU-
HSFD and UWA-HSFD, respectively. The ROC curves show the true positive rate

(TPR) against false positive rate (FPR).

TPR= ——
" TP+FN (3.15)
FPR= — o _
" FP+TN (3.16)
FP+TN
ACC = (3.17)

TP+TN+ FP +FN

where TP, FN, FP and TN denote true positive, false negative, false positive and true
negative which are between interval [0,1]. The area under the curve (AUC) indicates
the classifier performance, the larger AUC implies the higher classification
performance. Since the ROC curve in multiclass problems require
n? —n — 1 dimensional hypersurface, hence the visualization of it is impossible.
However, it is possible to extend two-class ROC curve to multiclass [42]. This
approach has two forms: one versus all and one versus one. In one-versus-all form, the
classification performance is evaluated for class ‘one’ and all of the remaining classes
are considered into a single class ‘not one’. Therefore, details of specific
misclassification errors of the class ‘not one’ are not available [16]. In this context, we

have adopted one-versus-all approach.

Table 3.1 shows that the experimental results after 3D-SOC, 3D-SE and 3D-GE are
applied to first test scenario. The proposed 3D-GE has achieved the recognition with
94.73% + 2.16 and 95.57% + 1.41 accuracies in the first scenario by using k-NN and

CRC classifiers, respectively. The experimental results of second testing scenario are
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shown in Table 3.2. The proposed 3D-GE for 33 and 24 bands by using [k-NN/CRC]

classifiers has been tested and [89.33% =+ 232 / 91.76% =+ 1.57] and
[86.71% + 1.11 / 90.36% = 1.15] accuracies have been obtained, respectively. The
results in Tables 3.1 and 3.2 show that using all bands (33) instead of 24 bands
improves the recognition rate. The results suggest that the removed noisy bands
contain useful information and 3D-DWT has an advantage of extracting them. Table
3.3 shows significant improvement of recognition over [3], after the proposed 3D-GE
is applied to third scenario for frontal, right and left 94.16% * 1.23, 78.94% + 2.19 and
83.2% + 1.67 by using k-NN classifier and 94.43% + 2.1, 83.35% + 2.3 and 87.97% +
1.6 by using CRC. The experimental results of fourth testing scenario are shown in
Table 3.4. The proposed 3D-GE has achieved the recognition 96.66% = 1.2 and 98.61
+ 1.3 and 98.28% =+ 1.05 by using CRC classifiers in PolyU-HSFD, CMU-HSFD and

UWA-HSFD, respectively.

Table 3.1: First scenario recognition accuracy (%)

Proposed Proposed
Bands | PDWT [35] OV\[/3DS\]NT 3D-SE 3D-SOC 3D-GE 3D-GE
(k-NN) (CRC)
33 94.02+1.15 | 94.13+1.84 | 94.28+2.50 | 94.35+2.06 94.73£2.16 95.57+1.41
24 83.43+2.10 | 83.95+1.67 | 89.58+2.43 | 89.91+1.32 | 90.52+2.53 92.34+1.15

37




Table 3.2: Second scenario recognition accuracy (%)

Best Proposed Proposed
Bands BS'[\Q]/ FD 'B”S'é?buoar' 3D-SE 3D-SOC 3D-GE 3D-GE
o (k-NN) (CRC)
2g) - - 87.66+1.70 | 88.67+153 | 89.33+2.32 | 91.76+1.57
24 79.00 82.00 85.33+2.00 | 85.45+250 | 86.71+1.11 | 90.36+1.15

Table 3.1 shows that the recognition accuracy for proposed method is lower if all bands
do not be used in feature extraction. Comparing Table 3.1 and Table 3.2 shows that
adopting 25 subjects instead of 38 (all subjects) subjects in feature extraction help
improving the recognition rate regarding more subjects in training set. CRC classifier
comparing to k-NN has higher recognition accuracy since CRC classifies each testing

image to the class with minimal regularized reconstruction error.

Table 3.3: Third scenario recognition accuracy (%)
Best
Typeof | HWII | Individual | 3D-SE | 3p-soc | Froposed | Proposed
views [3] | 3D Gabor SD-GE SD-GE
(k-NN) (CRC)
[13]
Front 743 | 93.3:2.42 94£1.45 | 94.16+1.23 | 94.16+1.23 | 94.43+2.1
Right 775 | 74.45+181 | 77.61£19 | 78.94+2.19 | 78.94+2.19 | 83.35+2.3
Left 743 | 79.85+2.32 | 81.62+1.16 | 83.2+1.67 | 83.2+1.67 87.97+1.6
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In Table 3.3 front view for proposed method has higher recognition accuracy
comparing o right and left views. This occur because of more features are exist in
whole face comparing to just right or left side of a face. CRC classifier comparing to
k-NN has higher recognition accuracy since CRC classifies each testing image to the

class with minimal regularized reconstruction error.

Table 3.4: Fourth scenario recognition accuracy (%

Databases | wavelet | 3D-sOC | P LDP 3D-GE
[15,26] FFT2 [10] +PLS and CRC (CRC)
' [15] [26] [16]

PolyU 91.342.1 | 93.61+2.2 | 94.6+2.5 | 95.3+1.6 | 95.2+1.6 96.4+2.3 96.66+1.2

CMU 91.6+2.9 | 95.83+1.8 | 95.6+1.7 | 94.8+2.6 | 99.1+0.6 98.0+0.7 98.61+1.3

UWA 91.5+3.07 | 96.13+2.1 - - 98.2+1.2 - 98.28+1.05

In this contribution 3D-DWT is employed for feature extraction which has a
computational complexity of O(N?3) where Nis an input’s dimension. It is same/high
comparing to mentioned state of the art methods in Table 3.4. In [13], they employed
3D-Gabor wavelet to extract features of hyperspectral face images which has the same
computational complexity of O(N3). In [15-16], features are extracted by 2D Fast
Fourier Transform (FFT) from the log-polar images hence the computational
complexity of FFT is O(NlogN). In [26], the first and second order statistics of each
cubelets (section 2.4.2) are computed by the mean vector and covariance of 2D matrix

which covariance matrix computation has a computational complexity of O(N?).
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The proposed 3D-GE improves the recognition rates since in the second-level 3D-
DWT the extracted features from LLL subband of first-level 3D-DWT contain more
information.

3.8 Conclusion

In this chapter three alternative 3D-DWT-based methods for the feature extraction for
hyperspectral face recognition and classification, namely 3D-subband energy, 3D-
subband overlapping cube and 3D-global energy are proposed. Hyperspectral faces are
represented by the energy measures calculated from the respective subbands using the
first and second level of 3D-DWT. The extracted feature vectors were used as the input
to the k-NN and CRC classifiers for performance measurement. Experimental results
on PolyU-HSFD, CMU-HSFD and UWA-HSFD using the proposed methods were
compared with several alternative methods on hyperspectral face recognition. The
results show that the 3D-GE performance in terms of accuracy outperforms several

existing methods using PolyU, CMU and UWA databases.
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Chapter 4

SNR BASED FUSION OF SPECTRAL BANDS FOR
IMPROVED HYPERSPECTRAL FACE

RECOGNITION

4.1 Introduction

In this chapter a new method is proposed to improve hyperspectral face recognition.
High dimensionality and low signal to noise ratio are the challenges which are posed
by hyperspectral images. Low signal to noise ratio appears in certain spectral bands
which are mostly located near the blue wavelength. We proposed a new method to

overcome these problems without losing information from spectral bands.

This chapter is included two contributions which are listed below:

1. In the first contribution, the middle band is chosen as the reference for
determining homogeneous regions of interests for SNR calculations
throughout all bands hence it is assumed to contain a high SNR level. This is
required, due to the fact that the noise may dominate the signal in the peripheral
bands. Having the middle band as the reference band we apply K-means
clustering method for segmentation of the region of interests (RIO)
representing homogeneous regions. The cluster/region with a maximum
number of pixels (i.e. largest connected component) which may correspond to

a uniform background or skin region is selected for SNR calculation. The
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largest region is declared as the mask marking the homogeneous region which
is used to calculate the SNR for each spectral band. The SNR value is used to
calculate the band-specific weight values.

2. Inthe second contribution, all bands are fused to a single band by multiplying
each band with a weigh based on a band-specific SNR values. This method
converts 3D hyperspectral face cubes into 2D face images which contain
contributions from each spectral subbands through the method we developed.
Generated 2D images go through PCA for dimensionality reduction. The
feature vectors result from PCA are classified by using k-NN and CRC

classifiers.
4.2 Signal to Noise Ratio (SNR) Estimation

In 3D hyperspectral image cubes, both spatial and spectral correlations are included
[54]. Hyperspectral face image can be represented by a matrix of true unknown signal
combined by additive noise. High dimensionality and low signal to noise ratio are the
challenges which are posed by hyperspectral images. Low signal to noise ratio appears

in certain spectral bands which are located near the blue wavelength.

Signal to Noise ratio (SNR) is a mathematical method for quality analysis of
hyperspectral images. There is a problem to compute a metric in hyperspectral images
since they do not have reference data to be compared with [49]. Linlin Xu [55]
proposed the SNR calculation for a hyperspectral image, for a given band k. He
proposed to calculate the SNR as follow.

z(18)°

X (1 — u*)

(4.1)
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_ SNRy
SNR, =

=—— "% —|[SNR, SNR,,,....,SNR 4.2
Y7 _ SNR, ISRy : d “2

Where I{‘j denotes the pixel at spatial location i,j in an area where pixels are
homogeneous in the k™ band in spectral domain. The mean value of Il-"j is defined by

u*. The selection of homogeneous area is important since SNR estimation depends on
this area. Normalized SNR for each band is given in Equation 4.2.

4.3 K-means Clustering Algorithm

Cluster analysis (data clustering) discover the standard grouping of a set of patterns,
points, or objects. Data clustering is an unsupervised learning or classification which
means there is no predefined class or label. A collection of data in a cluster are Similar
to one another and share common characteristics and dissimilar to the data in other
clusters. Clustering algorithm group unlabeled data (object) which are considered to

be similar based on common characters or features [50].

K-means clustering which is a type of unsupervised learning is one of the easy and
well-known algorithms for grouping data/objects [51]. This algorithm based on feature
similarity, will find groups in the data, and the number of groups (initial centroids) are
represented by the variable K [53]. K-means algorithm assign each data point to the
closest centroid based on features similarity iteratively. The position of centroid for
each cluster is moved by the means of the data points assigned to center. This
procedure repeats until no centroid is shifted in an iteration which means the minimum
shift is below the threshold. The grouping is done when the distances between data
and its cluster centroid is minimized. K-means clustering algorithm because of its

simplicity and high speed has an advantage of processing on big data [52].
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4.4 Proposed Method Using K-means Clustering to Estimate SNR

Calculating SNR in a region which is constant or with low frequency signal content
which is regarded as homogeneous is important. In a homogeneous region, the additive
noise dominates the signal since the signal is of low frequency nature. In this regard,
homogeneous regions are of our region of interest for the calculation of SNR values
for each band. Determining such regions require segmentation. In this chapter, K-

means based clustering is used to segment the homogenous region of interests.

In this approach, we assume that the middle band in hyperspectral face image has
higher SNR values since they are far away from blue and infrared bands which have
lower SNR [49]. Hence the middle band is used for the segmentation of the region of
interest for SNR calculation. K-means clustering is applied with, K=3 and the cluster
with the largest number of pixels are chosen the homogeneous region of interest. A
mask with zero and one value is created in this band where one is given to each pixel
in the homogeneous region and zero to all pixels in other clusters. The mask for a
subject in PolyU, CMU and UWA databases are shown in Fig. 4.1(c), Fig. 4.2(c) and
Fig. 4.3(c) respectively. Multiplying each spatial coordinate (i, j) in each band with
this mask help to segment the homogeneous region in each band. The illustration of
each band after applying mask for a subject in PolyU, CMU and UWA databases are
shown in Fig. 4.4, Fig.4.5 and Fig. 4.6 respectively. The SNR value is calculated for

each band of hyperspectral face image using Eq. 4.1 and normalized by Eq. 4.2.
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Figure 4.1: (a) the middle band, (b) three segmented region, (c) created mask for a
subject in hyperspectral face cube from the Poly U-HSFD.
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Figure 4.2: (a) the middle band, (b) three segmented region, (c) created mask for a
subject in hyperspectral face cube from the CMU-HSFD.

Region 3 ’
‘.\
Region 2 ’ ‘
- - ; - -
Region 1 R @SB

() (b) ()
Figure 4.3: (a) the middle band, (b) three segmented region, (c) created mask for a
subject in hyperspectral face cube from the UWA-HSFD.
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Figure 4.4: The illustration of each band after applying mask for a subject in
PolyU-HSFD.
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Figure 4.5: The illustration of each band after applying mask for a subject in
CMU-HSFD.

” zth Pl
1™ band 15" band 33" pand

Figure 4.6: The illustration of each band after applying mask for a subject in
UWA-HSFD.

The normalized SNR corresponding to each band is used as a band-specific weight of
each spatial coordinate (i, j) in the respective band. According to SNR value of each

band, the bands with more information have more weight. All pixels with spatial
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coordinate (i, j) along spectral direction 8 are added and results 2D face image instead
of 3D face cube. Following the fusion of the 3D face cubes, 2D face images are
cropped according to the eye coordinates and resized to 64x64 [44]. Visualization of
the fusion process of the 2D face image for a subject in PolyU, CMU and UWA
databases are shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9 respectively. Each cropped 2D
image is applied to PCA for dimensionality reduction, then they are applied to k-NN
and CRC classifiers. Fig. 4.10, Fig. 4.11 and Fig. 4.12 illustrates the SNR value of

each band of a subject from PolyU, CMU and UWA databases.

-

Fused image

Figure 4.7: Fusion process of the 2D face image for a subject from PolyU-
HSFD.
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Fused image
Figure 4.8: Fusion process of the 2D face image for a subject from CMU-HSFD.
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Figure 4.9: Fusion process of the 2D face image for a subject from UWA-HSFD.

49



0.045

0.04

. 0.035

0.03

normalized SNVR

0.025

0.02

0.015 ! !
0 5 10 15 20 25 30 35
bands

Figure 4.10: SNR value for each band of a hyperspectral face cube from the Poly
U-HSFD.
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Figure 4.11: SNR value for each band of a hyperspectral face cube from the CMU-
HSFD.
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Figure 4.12: SNR value for each band of a hyperspectral face cube from the
UWA-HSFD.

4.5 Experimental Results and Comparison

The experiments are performed on three hyperspectral face databases (HSFD), PolyU-
HSFD [4], CMU-HSFD [5] and UWA-HSFD [6] which are explained in details in
section 3.2 to validate the performance of the proposed methods.

4.5.1 Testing Set Distribution

The experimental methodology suggested by [11, 13] is adopted for PolyU-HSFD,
where first 25 subjects of frontal face images with all 33 spectral bands are used in the
experiment. For each subject, 2 cubes are selected randomly for training. The rest of
the 63 cubes are used for testing. In CMU-HSFD, as suggested by [11], we selected
the session for each subject with all lights on which contain 1-5 cubes. One cube is
randomly chosen for training set and the rest cubes as testing set for each subject.
Following the experimental methodology of [11], in UWA, for each subject one cube

is randomly selected for training and the rest 50 cubes as testing set.
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4.5.2 Experimental Results Comparison

The proposed methods are performed ten times to create training and testing sets
randomly to generate the average accuracy and standard deviation (STD). The
accuracy of correct classification is defined as the correctly classified hyperspectral
faces over the total number of hyperspectral faces in the test set. For classification
k-NN and CRC classifiers are adopted which are explained in details in section 3.6.1
and 3.6.2.

Receiver Operating Characteristic (ROC) curve
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Figure 4.13: ROC curve of the proposed SNR fusion method, for all three standard
databases by adopting k-NN classifier.
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Figure 4.14: ROC curve of the proposed SNR fusion method, for all three standard
databases by adopting CRC classifier.

The Receiver Operating Characteristic (ROC) curves for SNR based fusion method
for all three databases for k-NN and CRC classifiers are illustrated in Fig. 5.13 and
Fig. 5.14 respectively. The ROC curves show the True Positive Rate (TPR) against
False Positive Rate (FPR). Area Under the Curve (AUC) indicated the classifier
hypersurface. However, by extending two-class ROC to multiclass the visualization
can be possible [42]. This approach has two forms; one versus all and one-versus-one.
In one-versus-all form, the classification performance is evaluated for class ‘one’ and
all the remaining classes are considered into a single class ‘not one’. Therefore, details
of specific misclassification errors of the class ‘not one’ are not available [15]. In this
paper, we have adopted one-versus-all approach. Figure 4.14 shows that CRC
classifier comparing to Figure 4.13 k-NN classifier for all three standard databases has

higher recognition accuracy since its AUC is closer to one.
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Comparisons of proposed method with several existing methods for all three databases
are shown in Table 4.1. The accuracy of proposed SNR based band fusion method by
adopting k-NN and CRC classifiers reach to 95.71%+2.3 (97.09%z+1.32), 97.7%=1.91
(98.93%=0.65) and 97.02%+1.63 (98.52%=1.24) for PolyU-HSFD, CMU-HSFD and
UWA-HSFD databases respectively. The proposed method outperforms alternative

methods of the state-of-the-art.
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Table 4.1: Recognition accuracy for proposed SNR band fusion method.

91.3%+2.1 | 94.6%+2.5 | 95.3%=*1.6 | 95.2%+1.6 | 96.4%+2.3 | 96.66%=*1.2 | 97.07%+1.78 95.71%+2.3 | 97.09%=+1.32
91.6%+2.9 | 95.6%+1.7 | 94.8%%2.6 | 99.1%+0.6 | 98.0%+0.7 | 98.61%+1.3 | 98.88%+0.42 97.7%+1.91 98.93%=0.65
91.5%=3.07 - - 98.2%=+1.2 - 98.28%+1.05 | 98.37%+1.13 | 97.02%*1.63 | 98.52%+1.24




In Table 4.1, it can be seen that the results obtained from the proposed SNR based
band fusion method using CRC classifier has higher recogniion rate comparing to same
method using k-NN classifier. CRC has an advantage of classifying each testing image
to the class with minimal regularized reconstruction error instead of classifying image
by a majority vote that is given by the k neighbors of it in k-NN classifier. Proposed
SNR based band fusion method comparing to our other two contributions has higher
recognition accuracy since SNR value is used to calculate the band-specific weight

values, higher SNR value means more information.

In this contribution SNR value is used to calculate the band-specific weight which has
a computational complexity of O(N?).where Nis an input’s dimension. In [13], they
employed 3D-Gabor wavelet to extract features of hyperspectral face images which
has the same computational complexity of O(N3). In [15-16], features are extracted
by 2D Fast Fourier Transform (FFT) from the log-polar images hence the
computational complexity of FFT is O(NlogN). In [26], the first and second order
statistics of each cubelets (section 2.4.2) are computed by the mean vector and
covariance of 2D matrix which covariance matrix computation has a computational
complexity of O(N?). Computational complexity of proposed method is same as [26],
better than [13] and higher than [15-16].

4.6 Conclusion

In this chapter, we propose a novel method to fuse spectral bands in hyperspectral face
image cubes to improve hyperspectral face recognition. The proposed method is able
to overcome some of the challenges which are posed by hyperspectral face images
such as high dimensionality and low signal to noise ratio. Proposed methods overcome

these problems without losing information from spectral bands. In this method, each
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3D face cube is fused along different spectral bands into a 2D image by using band-
specific SNR based weighting. Weights based on the estimated SNR values scale the
pixels intensities in each band, hence each pixel along spectral axis is fused to a single
pixel. Each 2D face image go through PCA for dimensionality reduction and feature
vector creation before k-NN and CRC based classifications. The experimental results
using the SNR based weighting method show that, the performance in terms of
classification accuracy outperforms several state-of-the-art methods using standard

hyperspectral face databases, PolyU- HSFD, CMU-HSFD and UWA-HSFD.
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Chapter 5

DWT BASED FUSION ALONG SPECTRAL AXISTO

IMPROVE HYPERSPECTRAL FACE RECOGNITION

5.1 Introduction

As mentioned in previous chapters, facial hyperspectral images samples are captured
at multiple narrow bands within the neighborhood of visible light in the
electromagnetic spectrum, which reveals significant information that is not evident in
RGB/grey images. This work is specially intended to benefit from the available rich
3D-cube information to create more competitive results than 2D methods. RGB images
are special version of hyperspectral images where the visible band is only quantized
into three subbands (Red-Green-Blue). In other words, hyperspectral images not only
include finer spectral details of the image in the visible band but also extends into near-
infrared or ultraviolet bands importing more information than RGB images. Therefore,
from the information theory perspective hyperspectral images in the form of 3D-cubes

definitely contain more information.

In this chapter, we propose a new hyperspectral face recognition method using spectral
band fusion. The proposed method extracts a single 2D image from a given
hyperspectral image cube containing multiple spectral bands. The method effectively
fuses spectral information by applying discrete wavelet transform (DWT) to each pixel
along the spectral axis on each hyperspectral image cube. The DWT is applied

consecutively to each vector of pixels extracted from the low-frequency component

58



from the previous decomposition. This process is iteratively repeated until the spectral
vector for each pixel is decimated to a single pixel. Once all the pixels go through the
same operation, the 3D input spectral image cube is transformed into a 2D output
image. This operation can be regarded as a fusion since it transforms a hyperspectral
image cube into a single 2D image. Generated 2D images go through Principle
Component Analysis (PCA) for dimensionality reduction. The feature vectors result
from PCA are classified by using k-NN and CRC classifiers. The results are compared
with alternative methods in the literature. The performance of the proposed method in
terms of accuracy outperforms existing methods using PolyU [4], CMU [5] and UWA

[6] Hyperspectral Face Databases.

This chapter includes two contributions which are listed below:

1. The first contribution involves fusing spatio-spectral information by applying
discrete wavelet transform (DWT) to each pixel along the spectral axis on each
hyperspectral image cube. The DWT is applied consecutively to each spectral
vector of pixels extracted from the low-frequency component from the
previous decomposition. This process is iteratively repeated until the spectral
vector for each pixel is decimated to a single-pixel transforming the 3D input
spectral image cube into a 2D output image.

2. The second contribution is about generating the feature vectors by applying

principal component analysis (PCA) to transformed 2D images.
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Figure 5.1: n level DWT procedure through lowpass filter bank.

5.2 One Dimensional Discrete Wavelet Transform (DWT)

Wavelet Transform provides a possibility of analyzing signals in time (spatial) and
frequency domains simultaneously. Hence every frequency component is not resolved
equally [43]. To analyze signal at different resolutions and scales, filtering and
sampling operations are used respectively. DWT employs scaling and wavelet
functions to analyze the signal at different frequency bands with different resolutions.
Signals can be decomposed into different frequency bands by low and high pass
filtering of the time domain signal. The original signal is first passed through a
highpass filter H and a lowpass filter L. After filtering, the signal has a frequency of
n/2 instead of m hence half of the samples according to the Nyquist’s rule can be

removed [43].

DWT operates on signals which can be considered as a vector of real values, with the
size of length 2™, n € {2, 3...}. The resulting vector has the same length as the original
signal. This vector has two filtered parts, the first filtered part which has the length

2™ /2 includes the coefficients resulting from low-pass filtering (LPF) of the original
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signal and the second filtered part which has the length 2™ /2 includes the coefficients
resulting from high-pass filtering (HPF) the original signal. The DWT is regarded as a
multiresolution analysis which can analyze resolutions and scales in 1D discrete-time
signal. For further decomposition, the procedure can be repeated n level. Fig. 5.1
shows n level DWT filter bank showing the consecutive process through lowpass

filtering.

The first and simplest orthonormal wavelet basis is Haar wavelet. The Haar transform
calculates pair wise averages and differences since it uses just two scaling and wavelet
function coefficients. As in this transform there are no overlapping windows, only

changes between adjacent pixels pairs can be reflected.

The most popular wavelet family which is used for texture feature analysis is
Daubechies wavelet family. Unlike Haar wavelet, Daubechies wavelet uses
overlapping windows hence high frequency coefficient spectrum reflects all high
frequency changes. Therefore, Daubechies wavelets are useful in noise removal [56].

5.3 Principle Component Analysis

The aim of principle component analysis (PCA) is to explain the variation in the set of
the training set by a few variables. The most famous method based on PCA is an
eigenface method [45]. In this method instead of analyzing the whole face image,

analyzing the difference between individual face will be enough.

Let the face image be the size of M x M. To calculate eigenfaces, it is necessary to
find a basis which is meaningful enough to re-express an ensemble face image [46].

Let training set be y = [y4, V5 ..., ¥n]. TO produce a training set whose mean is zero,
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each face differs from a mean face of training set [47]. Mean face and the vector of

each face differs from the mean face are defined respectively as,

1 N
u=—2yi (5.1)

Yi=vi—n (5.2)
The aim of analyzing covariance is to find out how much the dimensions vary from
the mean with respect to each other. The sign of covariance is more important than its
exact value. Positive value indicates that both dimensions increase together. Negative
value means as one dimension increases, the other decreases and zero covariance
shows that the two dimensions are independent of each other [47]. After calculating
all the possible covariance values between all the different dimensions, they are placed
in a matrix which is in general presented by equation (5.3) [13]. In this case, it is better

defined it as an equation (5.4)

CnXTl — (Ci,j' Ci,j = COU(Dimi,Dimj)) (53)
1 N

C= NZ Ypi = AAT 64
i=1

where A = [P, ¢, ..., Pyl

Next step is finding the eigenvectors and eigenvalues of the covariance matrix which
can differentiate the face images. Hence the eigenvectors and eigenvalues of the
covariance matrix are the principal component of the training set. In general, the
number of eigenfaces is equal to the number of face images in the training set. In large
databases it means a lot of processing. To overcome this problem, it is possible to
represent face images by using the best eigenfaces which are the ones with the largest

eigenvalue. The highest eigenvalue with respective eigenvector which has the best
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description of the data distribution is going to be used. Hence the kt" eigenvector ux

with maximum A is chosen [48].
1 N
A = NZ(u};‘l’i)z (5.9)
i=1

M? eigenvectors and eigenvalues are determined by the covariance matrix of
dimensions M? x MZ2. It can be considered N—/ meaningful eigenvectors instead of
M2 significant eigenvectors if the dimension of image space is greater than the number
of data points N« M? [45]. The remaining eigenvectors are associated to the
eigenvalues which have the value close or equal to zero. N eigenvectors (V1) from the
(NxN) matrix L = T where L,,,, = YT, can be constructed by this analysis. The
N training set of face images in the form of eigenfaces is determined by linear

combinations these vectors [48],

N
u, = z Vlkll)k l = 1, w, N (56)
k=1

A face image (y) is transformed into its eigenfaces components which means it is
projected into face space by the following operation:

wy = ub(y — ) (57)
5.4 Proposed Method for Fusion of Hyperspectral Face Cube along

Spectral Axis by DWT

Nowadays hyperspectral face recognition is a new topic in biometrics applications.
Facial hyperspectral images have more information comparing to traditional 2D
images according to different response of face in each spectrum. In this chapter, we
propose a new approach in which, for each hyperspectral face cube, 1D-DWT is
applied to vectors that are generated by each pixel along spectral axis. By considering

the low frequency part after DWT downsampling, in each level the number of pixels
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Figure 5.2: Frequency progress for n-level decomposition.

which characterize the entire image decrease to half. Consecutive analysis of the low
frequency part of the signal in the spectral axis of a hyperspectral image cube spans
the half of previous level. Fig. 5.2 illustrate n level frequency spanning in DWT
decomposition. By applying the same decomposition consecutively to lowpass
component of each level, the last level results a single coefficient for each spectral
vector for every spatial coordinate generating a 2D image instead of 3D cube. The
number of levels is calculated by n = log N where N is the length of spectral bands in

the hyperspectral face cube.

In addition, we propose to adopt Maximum Pooling (Max Pooling) method, which is
used in Convolutional Neural Networks [64] providing an approach to down sample
feature maps by summarizing with the most activated presence of a feature [65]. This

down sampling approach is shown in Fig. 5.3.
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Figure 5.3: Max Pooling operation on feature map (2x2 window).

After applying the approach, where n level DWT is applied to each vector that is
generated by each pixel along spectral axis up to the level of decomposition that
decimated the vector length to 4, we have adopted Max Pooling method to the
generated 4 wavelet coefficients. This 1x4 vector can be considered similar to a matrix
of 2x2 and the maximum valued pixels is chosen as the most activated presence of a
feature. Generated final coefficient is a summarized version of the features detected in
the vector resulting a 2D image instead of 3D cube for each spectral vector for every
spatial coordinate. These 2D images are cropped according to the eye coordinates and
resized to 64x64 [44]. Each cropped 2D image is applied to PCA for dimensionality
reduction and k-NN and CRC use for classification. The proposed method is illustrated

in Fig. 5.4.
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Figure 5.4: Proposed DWT based fusion along spectral axis.



The proposes DWT based fusion which transforms a given 3D Hyperspectral image
cube into a 2D image can be regarded as a smoothing operation in the spectral axis.
Having a signal low-pass filtered n times using DWT based filter bank effectively
removes the inherent noise added through the acquisition process of the hyperspectral
imaging systems. Noise removal by DWT along spectral axis is the key for enhanced
fusion framework proposed in this chapter. The operation is repeated n (n = log N)
times to fuse N coefficients of each spectral vector into a single coefficient for each

pixel spatial coordinate. The method can be formulated as,

Siow(,9) = ) C(x,,)h(2n = 2) (58)
Suign(x,9) = ) Cx,y,2)g(2n —2) (59)

Where &, (x,y) and 8p,;4,(x, y) are the outputs of decomposed hyperspectral face
cube after passing through highpass and lowpass filters for one level respectively.
C(x,y,z) is the hyperspectral cube with x and y as spatial and z as a spectral
dimensions. h(z) and g(z) are lowpass and highpass filters kernel respectively. As
illustrated in Fig. 4.1, only low pass filter is used in a consecutive manner
downsampling the signal by 2 which halves the signal (spectral vector) size after each

iteration. This operation is repeated n (n=log N) times until a single sample is obtained.

Alternative smoothing techniques can be proposed to transform the 3D Hyperspectral
image cube into a 2D image. Simple averaging operation,a(x, y), for each pixel over

the coefficients along the spectral axis would also generate a 2D image as follows:

N
1
a(x,y) =3 ) Cxy,2) (5.10)
z=1
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Similarly, energy along the spectral axis is another form of smoothing which can be
used to fuse the 3D image cubes into 2D image. The energy value, e(x, y), for each

pixel can be calculated by,

N
s(x,y) = ) C(x,y,2)? (5.11)
(a) (b) (c)
Figure 5.5: (a) average/dbl, (b) energy, (c) proposed method for a subject from
PolyU-HSFD.

(@) (b)
Figure 5.6: (a) average/dbl, (b) energy, (c) proposed method for a subject from
CMU-HSFD.
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.

(a) (b) (c)
Figure 5.7: (a) average/dbl, (b) energy, (c) proposed method for a subject from
UWA-HSFD.

Visualizations of the proposed DWT based fusion, fusion by averaging and fusion by
energy along spectral axis for PolyU-HSFD, CMU-HSFD and UWA-HSFD are shown
in Fig. 5.5, Fig. 5.6 and Fig. 54.7 respectively. In part (a)’s all images are blurred which
are the average of an image along spectral axis, part (b)’s images are dark which are
energy of an image (globally best value) along spectral axis and in part (c)’s all images
are sharper since Max Pooling keeps the maximum valued pixels which is called as
most activated presence of a feature.

5.5 Experimental Results

In order to validate the performance of the proposed method, we perform experiments
on three hyperspectral face databases (HSFD): PolyU-HSFD [4], CMU-HSFD [5] and
UWA-HSFD [6] which are explained in details in section 3.2.

5.5.1 Testing Set Distribution

The experimental methodology suggested by [11, 13] is adopted for PolyU-HSFD,
where the first 25 subjects of frontal face images with all 33 spectral bands are used in
the experiment. For each subject, 2 cubes are selected randomly for training. The rest
of the 63 cubes are used for testing. In CMU-HSFD, as suggested by [11], we selected
the session for each subject with all lights on which contain 1-5 cubes. One cube is

randomly chosen for training set and the rest cubes as testing set for each subject.
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Following the experimental methodology of [11], in UWA, for each subject one cube
is randomly selected for training and the rest 50 cubes as testing set.

5.5.2 Experimental Results and Comparison

The proposed method is performed ten times to generate the average accuracy and
standard deviation (STD) by randomly creating training and testing datasets. The
accuracy of correct classification is defined as the correctly classified hyperspectral
faces over the total number of hyperspectral faces in the test set. For classification
k-NN and CRC classifiers are adopted which are explained in details in section 3.6.1

and 3.6.2.

Receiver Operating Characteristic (ROC) curve
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Figure 5.8: ROC curve of the proposed band fusion method, fused by energy and
average for a subject from the PolyU-HSFD by adopting CRC classifier.
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Figure 5.9: ROC curve of the proposed band fusion method, fused by energy and
average for a subject from the CMU-HSFD by adopting CRC classifier.
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Figure 5.10: ROC curve of the proposed band fusion method, fused by energy and
average for a subject from the UWA-HSFD by adopting CRC classifier.
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The Receiver Operating Characteristic (ROC) curves for fused by energy, fused by
average and fused by DWT methods for all three databases are illustrated in Fig. 5.8,
Fig. 5.9 and Fig. 5.10 respectively. The ROC curves show the True Positive Rate
(TPR) against False Positive Rate (FPR) which are explained in section 3.7.2. Area
Under the Curve (AUC) indicated the classifier performance, where larger AUC
implies the higher performance. The visualization of the ROC curve in multiclass
problems is impossible. However, by extending two-class ROC to multiclass the
visualization can be possible which are explained in section 3.7.2 [42]. In this chapter,

we have adopted one-versus-all approach.

Comparisons of proposed method with several existing methods for all three databases
are shown in Table 5.1. The accuracy of the proposed method reaches to 97.07%z=1.78,
98.88%+0.42 and 98.37%=1.13 for PolyU-HSFD, CMU-HSFD and UWA-HSFD
databases by adopting CRC classifiers respectively. The proposed method outperforms
the work by Uzair et al. [26], which also use the concept of fusion. Additionally, the
proposed method outperforms the rest five of the state-of-the-art methods tested in all
three standard hyperspectral databases. The proposed method improves the
recognition rates due to the repeated low-pass filtering along the spectral axis, by using
DWT based filter bank, which removes the inherent noise added through the
acquisition process of the hyperspectral imaging systems. Noise removal by DWT
along spectral axis and fusing pixels along spectral axis by applying Max Pooling to
the vector of 4 wavelet coefficients and choosing the most activated presence of feature

are a key factor for the proposed fusion framework introduced in this chapter
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Table 5.1: Recognition accuracy for proposed DWT based band fusion method.

Proposed

Feature :
Gabor Log-polar Band : Average band fusion

b 3D LDP : extraction | Proposed | Energy fused

Databases | avelet FFT2 fusion fused/dbl | method (Max

[10] and CRC 3D-GE (k-NN/CRC) :

[15,26] [15] +PLS [26] [16] (k-NN/CRC) Pooling)
(k-NN/CRC)
87.76%%2.16 | 93.35%+2.10 | 96.26%+1.83

PolyU 91.3%+2.1 | 94.6%+2.5 | 95.3%+1.6 | 95.2%+1.6 | 96.4%+2.3 | 96.66%x1.2 / / /
89.02%=2.16 | 94.89%+1.28 | 97.07%x1.78
90.24%+3.13 | 94.31%+2.27 | 97.89%=2.03

CMU 91.6%+2.9 | 95.6%+1.7 | 94.8%+2.6 | 99.1%+0.6 | 98.0%+0.7 | 98.61%+1.3 / / /
91.70%x2.86 | 95.14%x2.92 | 98.88%+0.42
89.57%+2.87 | 91.20%+2.09 | 97.11%z+1.16

UWA 91.5%+3.07 - - 98.2%+1.2 - 98.28%+1.05 / / /
90.96%x1.74 | 92.32%+2.54 | 98.37%1.13




Table 5.1 shows the improvement provided by the proposed fusion method comparing
to alternative smoothing techniques (averaging and energy). Proposed band fusion
method using Max Pooling has higher recognition accuracy comparing to average
(mean) of pixels and energy (mean squared value) of pixels along spectral axis since
it keeps the maximum valued pixels which is called as most activated presence of a

feature.

In this contribution DWT is employed for feature extraction along spectral dimension
iteratively which after n level decomposition asymptotically has a computational
complexity of O(NlogN) where Nis an input’s dimension. It is same/less comparing
to mentioned state of the art methods in Table 5.1. In [13], they employed 3D-Gabor
wavelet to extract features of hyperspectral face images which has the same
computational complexity of O(N3). In [15-16], features are extracted by 2D Fast
Fourier Transform (FFT) from the log-polar images hence the computational
complexity of FFT is O(NlogN). In [26], the first and second order statistics of each
cubelets (section 2.4.2) are computed by the mean vector and covariance of 2D matrix
which covariance matrix computation has a computational complexity of O(N?2).

5.6 Conclusion

In this chapter, we propose DWT based method to fuse spectral information by
applying over each pixel along the spectral axis on hyperspectral image cubes. The
DWT is applied consecutively to each vector of pixels extracted from the low
frequency component from the previous decomposition. This process is iteratively
repeated until the spectral vector for each pixel is decimated to a single pixel
transforming the 3D input spectral image cube into a 2D output image. Transformed

2D images go through principal component analysis (PCA) for dimensionality
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reduction generating the feature vectors to be classified by using k-NN and CRC
classifiers. Experimental results using the proposed method show that, the
performance in terms of accuracy outperforms state-of-the art methods using PolyU-

HSFD, CMU-HSFD and UWA-HSFD databases.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, we have introduced novel methods for feature extraction of facial
hyperspectral image classification to improve the recognition rate while using spatio-
spectral information simultaneously.

6.1 Conclusion

3D-DWT is applied to whole hyperspectral image cube to extract features from the
subbands generated by discrete wavelet decomposition in three different approaches.
Three approaches included 3D-subband energy (3D-SE), 3D-subband overlapping
cube (3D-SOC) and 3D-global energy (3D-GE). Each approach extracted different
feature vector which contains the energy values calculated from different wavelet
subbands at different levels of decomposition. Generated feature vectors by three

different approaches went through a classifier to complete the face recognition task.

Furthermore, we proposed a novel method to fuse spectral information into a single
2D image by applying band-specific signal to noise ratio (SNR) weight. These weights
are calculated based on band-specific SNR values to be assigned to each specific band
for generating a single 2D face image. Hence, each pixel along spectral axis is fused
to a single pixel resulting a 2D output face image for each 3D hyperspectral face cube.
For dimensionality reduction, 2D output images went through principal component

analysis (PCA) and face recognition was performed with the help of a classifier.
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Finally, we employed discrete wavelet transform (DWT) to fuse spectral information
by applying it to each pixel along the spectral axis on each hyperspectral image cube.
The DWT was applied consecutively to each spectral vector of pixels extracted from
the low frequency component from the previous decomposition. This process was
iteratively repeated until the spectral vector for each pixel is decimated to a single pixel
transforming the 3D input spectral image cube into a 2D output image. PCA was
applied to 2D output images for dimensionality reduction and went through a classifier

to perform a face recognition.

Some limitations should be noted. First, the methods are not robust for pose estimation,
variance in orientation and face expression since all three standard hyperspectral
databases are captured without considering mentioned limitations. Second, facial
occlusion, such as sunglasses, scarf, mask etc., is one critical factor that affects the
performance of face recognition and the proposed methods in this study are not robust

to it.

The first contribution has a high computational complexity of O(N3), second
contribution’s computational complexity is O(NlogN) which is low and the last
contribution has a moderate computational complexity of O(N?) comparing to some

of the state of the art.

The experimental results revealed that recognition accuracy of all proposed methods
by using standard hyperspectral databases outperform alternative hyperspectral face

recognition of the state-of-the-art methods.
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6.2 Future Work

Recently, deep Convolutional Neural Network (CNN) architectures have been
introduced for the classification of images including faces. Many specialized CNN
frameworks including AlexNet [59], GooglLeNet [60] and ResNet [61] have been
introduced as pre-trained CNNSs with millions of samples for object classification.
There are three major prospects involving CNNs. The first future work involves
transfer learning, where pre-trained network is utilized to adapt to a new network by
adjusting the parameters of the network to perform classification on Hyperspectral
images. Second work can involve separate CNN pipelines for each/selected
hyperspectral band is to be fused [62] for final classification. Third work can be 3D
CNN [63] due to the 3D nature of Hyperspectral images. 3D Hyperspectral image

cubes can be used to train dedicated 3D
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