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ABSTRACT 

Synthetic Aperture Radar (SAR) imaging produces high-resolution images, which are 

generated independent of any weather condition and solar illumination. These 

advantages over optical image acquisition systems make the SAR images a reliable 

source of information. One of the major applications of SAR images is automatic target 

recognition (ATR) of moving and/or stationary ground vehicles. SAR-ATR images 

can be characterised to contain background, target, and shadow. There are many 

problems associated with SAR-ATR image data. Firstly, they have noise especially in 

the background caused by the interference of returning waves at the transducer 

aperture. Background removal isolates the foreground, which generates the region of 

interest (ROI).  Other problems are the positional variations of the target, due to 

changing angles of airborne radar signals, which are generating images that are not 

scale, translation and rotation-invariant. Typically, the effective recognition is 

achieved, by utilising many templates for each target at different azimuth angle. 

Alternatively, scale, translation and rotation invariant feature extraction methods such 

as moment-based representation can be used to overcome those problems. Moments, 

which are utilised in this thesis, are scale, translation and rotational invariant and have 

orthogonal basis, which causes minimum information redundancy. Furthermore, some 

moments have discrete characteristics, which are beneficial over traditional moments 

due to having less numerical errors and computational complexity due to 

normalisation. In comparison to other feature extraction techniques, efficient target 

recognition can be achieved by adjusting the number of features depending on the 

information content based on the shape complexity. 
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In this thesis, we focus on moment based feature extraction techniques and analyse 

their effectiveness in SAR-ATR images. The main goal of the thesis is to improve the 

classification performance of the SAR-ATR for the ground vehicles. The contributions 

of the thesis can be summarised as follows: 

The first contribution is to utilise target, shadow, and combined target-shadow regions 

as  separate region of interests (ROIs) for vehicle representation. ROIs in the form of 

“area”, “boundary”, and “texture” are used to extract features using Radial Chebyshev 

Moment.  Features extracted from these ROIs are then fused to generate improved 

classification performance.  

The second contribution consists of using feature selection based on Fisher Criterion 

(FC) followed by data fusion. In this regard, twelve different moment methods are 

used, and first k moments for each feature are selected by ranking all moments based 

on FC.  The selected moments for each feature are fused using different data fusion 

approaches by utilising feature level fusion and decision fusion.  

The third contribution utilises entropy based feature selection. First twelve moment 

methods are used for feature extraction and a 3D feature matrix is created.  Each 

feature of the 3D matrix contains a row of twelve methods and columns of s samples. 

The entropy calculation of each row is performed to create an entropy vector for that 

feature. Once entropy for all features is calculated, the entropy matrix (H) is formed, 

where row of this matrix corresponds to each method and column refers to each 

feature. For each feature the ranking is performed according to entropy values in 

descending order and the best k moments on each columns are selected. 
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Finally, ensemble of classifiers is used for improved SAR Image Recognition. Five 

classifiers are adopted including support vector machine, decision tree, linear 

discriminant analysis, k-nearest neighbour and random forest. Pseudo Zernike 

Moment is used to generate the feature vector for the classifiers. The performance of 

proposed method is calculated by majority voting based on all output labels 

corresponding to each classifier. 

In proposed method of data fusion using Fisher Criterion, the recognition rate is 

95.71%, while by utilising entropy the recognition rate reaches to 96.12%. Proposed 

method of feature fusion of Radial Chebyshev Moments for different ROIs increases 

the recognition rate up to 98.69%. The highest recognition rate involves ensemble of 

classifiers by adopting Pseudo Zernike Moment and feature fusion with an accuracy 

of 99.50%. All proposed methods have either higher or comparable classification 

performance with the state-of-the-art methods. 

Keywords: classification, data fusion, dimensionality reduction, feature extraction, 

feature ranking, fisher criterion, ensembles of classifiers, entropy, majority voting, 

moments, support vector machine, synthetic aperture radar.  
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ÖZ 

Sentetik Açıklık Radar (SAR) görüntüleri yüksek çözünürlük kabiliyetine sahip 

olmaları ile bilinmekte olup her türlü hava koşulları veya güneş ışınlarından bağımsız 

olarak üretilebilmektedirler. Optik görüntü elde etme sistemleri ile 

karşılaştırıldıklarında bu avantajları, SAR görüntülerini güvenilir bir veri kaynağı 

haline getirmiştir. SAR görüntülerinin en önemli uygulamalarından biri, hareket 

halindeki ve/veya sabit yer araçlarının otomatik hedef tanıması (OHT) olmaktadır. 

SAR-OHT görüntüleri arka plan, hedef ve gölgeyi içermeleri ile tanımlanabilmektedir. 

SAR-OHT verileri ile ilgili birçok problem söz konusudur. İlk olarak, özellikle arka 

planda, dönüştürücü açıklıktan geri gelen dalgaların etkileşimi nedeniyle gürültü 

oluşmaktadır. Arka planın giderilmesi, ilgi alanı (İA) olarak kabul edilen ön planı izole 

etmektedir. Diğer problem ise sabit pozlu olmayan görüntülerin meydana gelmesine 

neden olan yansıyan radar sinyallerinden kaynaklanan hedefin konumsal 

değişimleridir. Tipik olarak, etkili tanıma, farklı azimut açılardaki her bir hedef için 

birçok şablon kullanarak başarılır. Alternatif olarak, moment tabanlı gösterim gibi 

ölçek, çevirme ve dönme değişmez öznitelik çıkarımı yöntemleri bu problemlerin 

üstesinden gelmek için kullanılabilir. Bu tez çalışmasında kullanılan moment 

yöntemleri rotasyonel olarak değişken olmamakta ve minimum düzeyde artık bilginin 

oluşmasına yol açan ortogonal yapıya sahiptir. Buna ek olarak, bazı momentler, 

normalleştirme sayesinde, sayısal hata ve hesaplama karmaşıklığına sahip 

olmadıklarından dolayı geleneksel moment yöntemlerine göre avantajları bulunan 

ayrık karakteristiklere sahiptir. Buna ilaveten, diğer öznitelik çıkarma teknikleri ile 

karşılaştırıldığında, etkili hedef tanıma, moment özelliklerinin sayısının şekil 
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karmaşıklığından kaynaklanan bilgi içeriğine bağlı olarak ayarlanabildiği moment 

bazlı özelliklerin kullanımı ile sağlanabilmektedir.    

Bu tez çalışmasında, moment bazlı öznitelik çıkarma teknikleri üzerinde 

yoğunlaşmakta ve bunların OHT-SAR görüntüleri üzerindeki etkinliği analiz 

edilmektedir. Tez çalışmasının asıl amacı, SAR-OHT’nin yer araçları konusundaki 

sınıflandırma verimlerinin geliştirilmesinden ibarettir. Bu tez çalışmasının katkıları 

aşağıdaki gibi özetlenebilmektedir:  

Tez çalışmasının birinci katkısı, araç temsili için hedef, gölge ve birleştirilmiş hedef-

gölge alanlarının ilgi alanları (İA) olarak kullanılmasıdır. İA’lar "alan", "sınır" ve 

"doku" şeklinde ayrılarak Radial Chebyshev Moment yöntemi kullanılarak özelliklerin 

çıkarılması için kullanılmıştır. Bu İA'lardan çıkarılan özellikler daha sonra 

sınıflandırma performansını geliştirmek amacıyla kaynaştırılmıştır.  

İkinci katkı, Fisher Kriterine (FC) dayalı öznitelik seçimi ve ardından veri 

kaynaşımından oluşmaktadır. Bu bağlamda, on iki farklı moment yöntemi kullanılmış 

ve her bir öznitelik için ilk k momentler, tüm momentleri FC'ye göre sıralayarak 

seçilmiştir. Her öznitelik için seçilen momentler, kaynak kaynaşımı ve karar füzyonu 

kullanılarak farklı veri kaynaşımı yaklaşımları ile kaynaştırılmıtır. 

Üçüncü katkı, entropi temelli öznitelik seçimi kullanmaktadır. Öznitelik çıkarımı için 

ilk on iki moment yöntemi kullanılır ve bir 3B öznitelik matrisi oluşturulur. 3B 

matrisin her bir özelliği on iki yöntemden oluşan ve s örneklerinin oluşturduğu 

sütunlarını içerir. Her satırın entropi hesaplaması, o öznitelik için bir entropi vektörü 

oluşturularak yapılır. Tüm öznitelikler için entropi hesaplandıktan sonra, bu matrisin 
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sırası her metoda karşılık gelen entropi matrisi (H) oluşur ve her bir sütun her bir 

özniteliğe karşılık gelir. Her bir öznitelik için sıralama, azalan düzende entropi 

değerlerine göre yapılır ve her sütunda en iyi k moment seçilir. 

Son olarak, sınıflandırıcıların birleşimi, gelişmiş SAR Görüntü Tanıma için 

kullanılmıştır. Destek Vektör Makinesi, Karar Ağacı, Doğrusal Ayırtç Analizi, k-En 

Yakın Komşu Ve Rastgele Orman da dahil olmak üzere beş sınıflandırıcı 

benimsenmiştir. Pseudo Zernike Moment, sınıflandırıcılar için öznitelik vektörü 

üretmek için kullanılmıştır. Önerilen yöntemin performansı, her sınıflandırıcıya 

karşılık gelen tüm çıktı etiketlerine dayalı olarak çoğunluk oyuyla hesaplanmaktadır. 

Fisher Kriteri kullanılarak önerilen veri kaynaşım yönteminde tanıma oranı % 95.71 

iken, entropi kullanarak tanıma oranı % 96.12'e ulaşmaktadır. Önerilen radyal 

Chebyshev Momentlerinin farklı İA'ları için kaynaşım yöntemi ile önerilen yaklaşımı, 

tanıma oranını % 98.69'a kadar arttırmaktadır. En yüksek tanıma oranı, Pseudo 

Zernike Momenti'ni benimseyerek sınıflandırıcıların toplamını ve %99.50'lik bir 

doğrulukla öznitelik kaynaşımını içermektedir. Önerilen yöntemlerin tümü, en son 

çalışmalarla karşılaştırıldığında daha yüksek veya karşılaştırılabilir sınıflandırma 

performansına sahiptir. 

 

Anahtar Kelimeler: sınıflandırma, veri kaynaşımı, boyutluluk indirgemesi, öznitelik 

çıkarma, öznitelik sıralaması, fisher kriteri, sınıflandırıcı toplulukları, entropi, oy 

çokluğu, moment yöntemleri, destek vektör makinesi, sentetik açıklık radarı.  
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  Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

Synthetic Aperture Radar (SAR) images have a very high resolution with the capability 

to work independently from any weather condition and solar illumination. These 

advantages over optical systems make the SAR images a reliable source of information 

for many applications in natural hazards and environmental monitoring, such as fire 

[1], flood [2] and earthquake detection [3] on land; and ship detection [4], wave 

forecasting and marine climatology [5] on the oceans. SAR images are also used in 

agricultural industry [6], homeland security applications [7] and military surveillance 

systems [8].  

In this thesis, the focus is on the detection, discrimination, feature extraction and 

classification of different targets in military surveillance systems. Moving stationary 

target acquisition and recognition (MSTAR) database is provided by the United States 

Air Force to the public for research purposes. It is a standard SAR-ATR database [9], 

which is widely used by many researchers in this field. Since MSTAR data-set contains 

noise and radar reflections are not scale, translation and pose-invariant, many 

algorithms are introduced in the pre-processing for finding the region of interest (ROI) 

after noise removal and segmentation, which is to be considered in the post processing. 

The post processing includes feature extraction, feature selection for dimensionality 
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reduction and increasing the class separation. The final phase is the classification stage 

with data fusion.  

1.2 Synthetic Aperture Radar 

Synthetic Aperture Radar (SAR) images refer to images that are captured by an active 

illumination system.  An antenna, attached on a platform (which is either airborne or 

spaceborne) in the direction of the flight path, transmits a radar signal towards the 

target to simulate an extremely large antenna or aperture electronically [134]. The 

signal processing uses magnitude and phase of the received signals over successive 

pulses. After a given number of cycles, the stored data is recombined to form a finer 

resolution [10]. The side-looking viewing geometry of imaging radar systems is 

illustrated in Fig1.1. Slant range refers to the distance measured along a line between 

the radar antenna and the center of illuminated target. Ground Range is the 

perpendicular distance from the ground track to a given object on the Earth's surface. 

Cross range refers to the across-track dimension perpendicular to the flight direction. 

Depression angle refers to the angle between the line of sight from the radar to the 

center of illuminated object and horizontal plane at the radar. Altitude is the straight 

line from radar to the ground track, which measures height of a target over the earth's 

surface, Azimuth direction or along range is the direction parallel to the radar flight 

path and azimuth angle refers to the angle between the heading of the vehicle and the 

azimuth direction. Figure 1.2 shows a sample MSTAR target at different azimuth 

poses.  
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Figure 1.1: Synthetic Aperture Radar glossary [11] 

 
Figure 1.2: Different azimuth angle of the same target 

Moments are estimation of population parameters used in the statistic. Moments are 

specific quantitative measure of the shape of a set of points. They can also be utilised 

for feature extraction by capturing significant information of an image. In this regard, 

moments as shape descriptors present powerful techniques for extracting shape-based 

features in SAR images. 
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Various types of moments are introduced in the literature [125] [132]. Some moments 

are defined in the Cartesian coordinate with continuous form. Legendre Moments [12], 

Chebyshev Moments, Gegenbauer Moments [13] and Jacobi Moments [14] are an 

example of this type. They are simplest orthogonal moments. Jacobi is the general 

form of this type in which other moments can be obtained from it.  

Other types of moments, which are defined in the Cartesian coordinate with discrete 

form are Krawtchouk Moments [15], Racah Moments [16], Meixner Moments [17], 

Charlier Moments [18] and Hahn Moments [19]. Racah Moments are the general form 

of this type from which other moments of this type can be obtained. Although both 

types of these moments (continuous and discrete moments in Cartesian coordinate) are 

scale and translation invariant, obtaining rotational invariance [20] from them is 

difficult. In addition, computational complexity of these types of moments is 

extremely high.  

Zernike Moments [21], Pseudo Zernike Moments [22] [129], Radial Harmonic Fourier 

Moments [23] [131], Chebyshev-Fourier Moments [24] [128], Fourier Merlin 

Moments [25] [130] and Jacobi Fourier Moments [26] are defined in the polar 

coordinate that has the property of being scale, translation [126] and rotational 

invariance [127].  The experimental results show a drastic improvement in 

performance by utilising moments in polar coordinates.  

All aforementioned moments in polar coordinate are in continuous function. Hence, 

for a digital image, approximation by discrete summation is utilised. However, this 

process leads to numerical errors in computation of moments. To reduce this problem,  
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Radial Chebyshev Moments [27] are introduced reducing both computational 

complexity and computational errors caused by approximations. More details about 

moments are offered in Chapter 4. 

Moments have been used in feature extraction for the SAR images. Amoon and Rezai 

addressed optimal selection of Zernike moments features [28]. Clemente et al. used 

Krawtchouk Moments for effective feature extraction [29]. Bolourchi et al. utilised 

Radial Chebyshev moment for extracting features [27].  In [30] they also used 

Geometric moments, Legendre moments, Zernike moment and Pseudo Zernike 

moment. Further discussion of using moments in SAR images is given in Chapter 4. 

1.3 Problem definition  

Basically, there are many problems associated with SAR images and specifically with 

images provided in MSTAR database. First, SAR images consist of high-resolution 

imagery, which means high amounts of data. Analyzing the enormous amount of data 

requires high computational cost; therefore, there is a need to adopt algorithm(s) for 

dimensionality reduction in the form of feature extraction followed by feature 

selection. 

Second, images in MSTAR data-set are contain noisy background. This causes false 

alarm and miss rate to be increased in the classification stage and poor recognition rate 

to be achieved. Thus one problem to isolate the ROIs by segmentation techniques after 

background removal. 

Third, SAR images are sensitive to the changes in scale and translation. Therefore, it 

is required to  utilize  feature  extraction technique (s) that  are  scale  and   translation    
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invariant. Furthermore, radar reflections are not pose-invariant in MSTAR images, and 

therefore for effective recognition rate many templates are required for each target at 

different azimuth angle, which in turn raises the computational complexity. Due to this 

problem, a pose invariant feature extraction process is required to provide effective 

representation of the pose varying targets.  

Fourth, the redundancy brought by the correlation of features influence the 

classification performance. To address this problem an algorithm that can represent 

the properties between the features with no redundancy or overlap of information is 

required.  

Finally, in the case of target recognition, it is vital to detect a target with the highest 

recognition rate. In this regard, for improving recognition rate we should use a form 

of data fusion. 

1.4 Thesis objectives 

The main objectives of this thesis are listed as follows:  

1- Using moment-based methods for feature extraction. This process tries to 

extract dominant features in ATR. Moments are scale, translation and rotation 

invariant [126] [127] with their robustness to noise and having a minimum 

information redundancy. Furthermore, some moments are defined in discrete 

domain, which reduce computational complexity, due to normalisation and 

computational error caused by approximations in the continuous domain.  

2- Applying feature ranking approaches as a feature selection method in SAR 

ATR. We propose novel approches based on feature ranking to choose 

dominant features. In this regard, two feature-ranking approaches based on 
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entropy, and Fisher’s criterion (FC) are proposed. It is critical to determine the 

number of top features for effective classification and dimensionality 

reduction. 

3- Applying data fusion, which involves feature level fusion, decision fusion and 

feature fusion for improvement in the recognition rate. Regarding decision 

fusion, many rules such as sum rule, max rule and median rule are used to 

improve the overall classification performance.  

4- Applying ensemble of classifiers including support vector machine (SVM), 

random forest (RF), decision tree (DT), k-nearest neighbour (k-NN) and linear 

discriminant analysis (LDA). Since the classification based on one classifier 

may be considered to be biased, majority voting (MV) among classifiers are 

used for accuracy enhancement in ATR. 

1.5 Thesis contributions 

In this thesis, several methods are proposed to improve the classification performance. 

Main contributions of this thesis can be summarised as follows: 

1- Utilising different segmented sections as informative/discriminative parts of ROI 

and combining different segmentation parts with different ROI (target, shadow, 

combined target-shadow). Extracting features of each segmented part by RCM and 

finally fusing all features. 

2- Introducing Fisher Criterion based feature selection method for feature ranking. 

Twelve moment based feature extraction methods are used for capturing 

important information of SAR images. For each method, 100 features are 

extracted. Ranking among each moment was achieved by using Fisher 

Criterion. The selected k moments are fused using different data fusion 

approaches by utilising feature level fusion or decision fusion. In the case of  
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feature level fusion, feature vectors coming from the selected moments are 

concatenated, whereas in the decision fusion, the class probabilities are 

combined by using sum, median and max rules. 

3- Introducing entropy based feature selection method for feature ranking. For each 

SAR image, first a 3D feature matrix (𝜙𝑖,𝑗,𝑠) is created where i refers to each 

method of moment for i=1,2,…,12. j represents each feature( j=1,2,…,100) and 

s is the number of samples in the training set for s=1,2,…,1622. For each 

feature, j, entropy of sub-feature matrix (𝐹𝑖,𝑘) is evaluated. Once entropy for all 

features is performed, the entropy score matrix (𝐻𝑖,𝑗 ) is created. Then the 

columns of matrix H is ranked based on its entropy values in the descending 

order. Feature selection is performed by choosing top k moments associated 

with highest ranked entropies of all methods. After feature selection, the most 

discriminant features are grouped to represent an image, which in turn increases 

the classification performance. 

4- Introducing ensemble of the classifiers. Extracted features using PZM from 

target, shadow and combined target-shadow regions are fused using feature 

fusion and are fed to different classifiers. Five classifiers are adopted including 

support vector machine, decision tree, a linear discriminant analysis, k-nearest 

neighbour and random forest. Finally, the performance of the proposed method 

is calculated by majority voting based on all output labels corresponding to each 

classifier method. 

All proposed methods have either higher or comparable classification performance 

in comparison with the state-of-the-art. 
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1.6 Thesis overview  

The remainder of this thesis is as follows. Chapter 2 presents state-of- the-art including 

feature extraction, dimensionality reduction and classification in SAR images. Chapter 

3 provides the methodology, which is used in this thesis: MSTAR data type, 

segmentation, feature extraction, ranking, feature selection, data fusion, and 

classifiers. Chapter 4 describes the different types of moments in Cartesian and polar 

coordinates. In Chapter 5, we introduce a new approach for target recognition based 

on the fusion of different segmentation parts and region using RCM. In Chapter 6 and 

7, we introduce a novel feature selection method based on FC and entropy respectively 

to determine the optimal number of top features by feature ranking. Furthermore, data 

fusion techniques are introduced to improve the recognition rate. In Chapter 8, we 

present a novel approach by calculating the PZM feature vectors for different 

segmented parts and regions of SAR images. The PZM feature vectors are fed to 

ensemble of classifiers and the performance of the proposed method is calculated by 

majority voting based on all output labels corresponding to each classifier.  Finally, 

Chapter 9 presents thesis conclusions and future work.  
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Chapter 2 

2 STATE-OF-THE-ART IN SAR TARGET 

RECOGNITION 

2.1 Introduction 

Several methods have been proposed for Automatic Target Recognition (ATR) in 

Synthetic Aperture Radar (SAR) Images. Moving Stationary Target Acquisition and 

Recognition (MSTAR) database [9] is most widely used database in the literature. In 

a standard SAR-ATR method; feature extraction, dimensional reduction, feature 

selection, and classification are used as the standard phases. In this chapter, we have 

an overview on the available methods of state-of-the-art for SAR-ATR. 

2.2 Feature extraction 

Feature extraction of SAR images is the main step in SAR ATR. Recently various 

types of features have been adopted in the literature. Roughly, feature extraction 

techniques can be categorised into four distinct types, namely transformed images 

techniques, template-matching techniques, pixel based techniques and feature based 

techniques. 

2.2.1 Transform domain approaches 

In [31] Zhao and Principe used the whole image vector as the feature vector. In [32] 

Radon Transform (RT) is successfully adopted for feature extraction and 

classification, where RT for a SAR image f(x,y) can be defined as: 
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𝑇𝑅(𝑟, 𝜃) = ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 − 𝑟)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

 (2.1) 

where 𝛿(. ) is the Dirac delta-function defined as:  

𝛿(𝑥) = {
1             𝑖𝑓 𝑥 = 0
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.2) 

and r and θ in the polar coordinates which are defined as: 

𝑟 = (𝑥2 + 𝑦2)
1
2, 𝑎𝑛𝑑   𝜃 = 𝑡𝑎𝑛−1(

𝑦

𝑥
) (2.3) 

For a SAR image with size 128×128, 16384 features should be considered for both 

methods. Different wavelet transforms [33] such as Haar wavelet transform (HWT) 

[32] are also used for feature extraction. The monogenic signal is used in [34] for 

capturing the characteristics of the SAR images. Due to the extraction of many 

features, the computational complexity of all techniques mentioned above is very high 

which implies an extremely large requirement of memory and computational cost.  

2.2.2 Template matching approaches 

Templates refer to any reference images, which are constructed from the geometrical 

characteristics of the samples in the training set. Due to the variation of MSTAR 

images in pose and illumination for a successful target recognition, a large database of 

template for each sample is required. The accuracy depends on how well features are 

matched to the template. There are two disadvantages associated with template 

matching. First, many template models are required which would increase the 

computation complexity. Another drawback is backgrounds of MSTAR images, which 

include no useful information and increase the computational complexity of the 

system, therefore it is necessary to design a filter template to reduce huge number of 

features to be used for feature extraction. Maximum average correlation height 

(MACH)  [35],  distance   correlation   classifier   filter   (DCCF)  [35],  a    combined  



 12 

MACH/DCCF [35], extended maximum average correlation height (EMACH) [36], 

polynomial distance correlation classifier filter (PDCCF) and minimum noise and 

correlation energy (MINACE) [37] are applied to SAR images. Mahalanobis, et al, 

[35] are deployed the combined MACH/DCCF, by averaging all training samples, 

which belongs to each class to create a class template. DCCF, which maximises the 

interclass distance, is applied to all templates. MACH/DCCF are applied on the test. 

Mean squared error (MSE) of MACH/DCCF filtered and templates are calculated. Test 

image belongs to the class in which the MSE is minimised. MSTAR data-set is 

commonly used as 3-class and 10-class recognition problems. MACH, DCCF or 

combination of them successfully applied on 3-class recognition problems. However, 

it fails for a 10-class recognition problem. EMACH and PDCCF are the improved 

versions of MACH and DCCF respectively which is used for 10-class problem cases.   

MINACE filters have the different mechanism in which the number of training set 

involved to construct the filter depends on the correlation scores of each image in the 

training set. In the first iteration, only one image is utilised to form a filter. All 

correlation scores are calculated by created filter. If all scores are above the 

predetermined threshold, the algorithm is terminated. Otherwise, the filter is updated 

by a combination of previous images used to create the filter with the lowest 

correlation score. The filter is updated, score is calculated, and the process is continued 

for the next iterations till all training images satisfy the threshold conditions.  

 

Quarter power, log magnitude and conditionally Gaussian classification models are 

techniques using distance metrics that are based on minimum squared error or 

maximum likelihood scores and are studied in [38].  
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The conditionally Gaussian uses maximum likelihood estimator with complex normal 

distribution while quarter power and log magnitude uses MSE estimator with gamma 

and log normal model distribution respectively. Quarter power has high performance 

[39-40] while log magnitude has poor performance since background noise is not well 

presented in log magnitude technique.  

2.2.3 Texture based approaches 

Some feature extraction techniques are applied to all pixels of SAR images. Local 

Binary Pattern (LBP), local gradient ratio pattern histogram (LGRPH) and Multiscale 

local gradient ratio pattern histogram (MLGRPH) are surveyed in [41]. LBP is used 

for extracting the most useful information of an image. The original LBP with 3-pixel 

block operator is defined as: 

𝐿𝐵𝑃𝑍,𝑅 =∑𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑝

𝑧−1

𝑝=0

 (2.4) 

where Z is the number of neighbour pixels, and R is the neighbour radius. A most 

common choice for Z and R is 8 and 1 respectively. gc is centre pixel’s intensity, and 

gp is the neighbour pixel’s intensity, and term s should satisfy the following condition: 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 (2.5) 

In LBP the area is divided into k small non-overlapping regions. The LBP histograms 

are extracted for each sub-region and are concatenated to form a single vector. LGPRH 

and MLGPRH are the improved versions of LBP. Histogram of oriented gradients 

(HOG) is studied in [42].  

2.2.4 Geometry based approaches 

Geometry based approaches refer to the approaches that captures important 

information about a target class and therefore significantly  decreases  the number  of  
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features to be extracted. These approaches are preferred by many researchers because 

of reducing the computational complexity. Some approaches such as elliptical Fourier 

series (EFS) [43] and Hu moments [44] are studied for target recognition in SAR 

images. Some feature such as edges and corners have been studied in [45]. In [46] the 

approximate length and width of the target, the average radar cross section (RCS) and 

log standard deviation have been surveyed. Having prior knowledge about target pose 

in [46], only few features are used to evaluate recognition rate. Moments are an 

alternative method that are successfully adopted in many SAR image applications such 

as Zernike moment [28] and Krawtchouk [29] moment. Moments are rotation, scale 

and translate invariant [126] [127], which cope with the MSTAR images due to 

variation in target pose, also fewer features are needed for target recognition. More 

details about moments are provided in chapter 4. 

2.3 Dimensionality reduction 

The number of raw features extracted from MSTAR images data-set is extremely high 

(16384 features) compared with the number of sample sets. Data reduction is required 

either directly after preprocessing or after feature extraction (especially for the 

methods in section 2.2.1 and 2.2.2). Feature selection is made to produce new feature 

vectors to be used for generating a low-dimensional representation of the original 

MSTAR data-set. Many  previous  research have proposed feature selection and 

dimensionality reduction (linearly and nonlinearly) such as linear discriminant 

analysis (LDA) [47], principal component analysis (PCA) [47], independent 

component analysis (ICA) [48] and nonnegative matrix factorization (NMF) [49] for 

linear approaches and kernel linear discriminant analysis (KLDA) [50], kernel 

principal component analysis (KPCA) [51], Locality Preserving Projections (LPP) 

[52] and Maximum Interclass Distance (MID) [53] for nonlinear dimensionally 
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reduction in MSTAR. In the following subsection a brief explanation of PCA, which 

is used for dimensionality reduction. 

 

2.3.1 Dimensionality reduction based on PCA 

PCA is a method of dimensionality reduction, which is utilised to extract a set of 

orthogonal basis from the MSTAR data-set [54]. Linear combinations of basis are used 

to show high-dimensional original data. Suppose X be a matrix of original data with a 

size of n×m with n number of sample and m number of features as: 

𝑋𝑛,𝑚 = [

𝑥1,1 ⋯ 𝑥1,𝑚
⋮ ⋱ ⋮
𝑥1,𝑛 ⋯ 𝑥𝑛,𝑚

] (2.6) 

Basically, the following steps are required for dimensionality reduction using PCA. 

First, we compute the mean, 𝜇𝑗, of the training set as: 

𝜇𝑗 =
1

𝑚
∑𝑥𝑘,𝑗

𝑚

𝑘=1

 (2.7) 

and then we evaluate covariance matrix, 𝐶𝑜𝑣𝑖,𝑗, of the training set as: 

𝐶𝑜𝑣𝑖,𝑗 =∑
(𝑥𝑘,𝑖 − 𝜇𝑖)(𝑥𝑘,𝑗 − 𝜇𝑗)

𝑇

𝑚 − 1

𝑚

𝑘=1

 (2.8) 

𝜆1 > 𝜆2 > ⋯𝜆𝑛 > 0  are ordered eigenvalues of covariance matrix. All eigenvalues 

and eigenvectors (v) of covariance matrix are defined as follows:  

∑𝐶𝑜𝑣 𝑣 = 𝜆𝑣 (2.9) 

 Next, we choose V eigenvectors of corresponding to the k largest positive eigenvalues 

(𝜆1 > 𝜆2 > ⋯𝜆𝑘 > 0). Finally, the reduction can be made by evaluating y=V.X. 

2.4 Classification methods 

The final step in SAR-ATR is classification. Classification in MSTAR data refers to  
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supervised classification. Several classifiers are introduced in MSTAR classifications 

such as SVM, neural network (NN), decision tree (DT), a linear discriminant analysis, 

(LDA) k-nearest neighbour (k-NN) and random forest (RF). In [55] sparse 

representation classifier (SRC) has adopted to MSTAR images. However it is not 

optimal for solving classification problems as mentioned in [56].  

Numerous dictionary-learning algorithms also have been proposed for classification 

techniques such as K-SVD [57] and online dictionary learning [58]. A survey of 

supervised dictionary learning and sparse representation can be found in [59]. 

In this thesis, SVM classifier for target recognition in SAR images based on supervised 

learning is deployed. More details associated with SVM classifiers are given in section 

3.7.1. In addition to SVM, an ensemble of classifiers is applied by majority voting 

among many classifiers, which will be seen in chapter 8. Table 2.1 shows a summary 

of some studies in SAR automatic target recognition focusing into feature extraction, 

feature selection and classification methods. Yuan et al [36] used MLGRPH as a 

feature extraction followed by SVM classifier using 3-class MSTAR data and has the 

highest performance in the literature. For 10-class problem, the best approach is 

achieved by DeVore, & O’Sullivan, [38] that extracts 2304 features by utilising 

normalized image feature extraction followed by k-NN classifier. 
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Table 2.1: Review of state-of-the art studies in MSTAR images 

Author(s) 
Feature 

Extraction 

Feature 

Selection 
Classifier Class 

Number 

of 

Features 

ACC 

(%) 

Zhao, Q., et al 

(2001). [31] 

Template 

Matching 
- SVM 3 - 90.40 

Srinivas, U., et al 

(2014). [33] 
Wavelet - SVM 3 - 86.33 

Liu, M., et al. 

(2013). [52] 
- LLP k-NN 3 48 83.52 

Liu, M., et al 

(2013). [52] 
- PCA k-NN 3 49 72.31 

Liu, M., et al 

(2013). [52] 

Gaussian 

Distribution 
LLP k-NN 3 48 91.06 

Anagnostopoulos, 

G. C. (2009). [43] 

Region 

Descriptor 
- SVM 10 2304 94.10 

Song, S., et al 

(2016). [42] 
SAR-HOG - SVM 10 - 93.87 

Song, S., Xu, B., & 

Yang, J. (2016). 

[42] 

SAR-HOG - k-NN 10 - 94.27 

Patnaik, R., & 

Casasent, D. 

(2005). [37] 

MINACE - 
Max 

Value 
3 4096 90.6 

Bryant, M. L., & 

Garber, F. D. 

(1999). [60] 

80x80 

Normalized 

Image 

- SVM 3 6400 90.99 

DeVore, M. D., & 

O’Sullivan, J. A. 

(2002). [38] 

Normalized 

Image 
- k-NN 10 2304 95.50 

Yang, Y., Qiu, Y., 

& Lu, C. (2005). 

[44] 

Hu - k-NN 7* - 76.85 

Yang, Y., Qiu, Y., 

& Lu, C. (2005). 

[44] 

Hu - SVM 7* - 73.69 

Yuan, X., et al 

(2014). [36] 
MLGRPH - SVM 3 - 93.88 

Yuan, X., et al 

(2014). [41] 
- 

PCA 

+LDA 

+ICA 

SVM 3 - 90.57 

Yuan, X., et al 

(2014). [41] 
- MID SVM 3 - 93.49 

* In this paper they did not consider BMP2, T72 and BRT70 
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Chapter 3 

3 METHODOLOGY  

3.1 Introduction 

We present the methodology that is used in this thesis, which includes segmentation 

methods, feature extraction, ranking, data fusion, and classifiers. However before we 

start with methodology, we briefly introduce the MSTAR databases which are used in 

the whole thesis.   

3.2 Database 

Two types of MSTAR database used throughout this thesis, for feature extraction and 

classification namely, three-class database and ten-class database.  

3.2.1 Three-class database 

Three-class database type is widely used in many research areas. In this thesis, all 

proposed methods are tested by utilising three-class database. In Chapter 5 and 8we 

also include comparisons of ten-class database with some of the state-of-the-art 

MSTAR images.   

In three-class database, each image has a target vehicle from three different types of 

ground vehicles with 7 serial numbers. The first type of ground vehicle is an armoured 

personnel carrier (BTR70) with only one serial number (SN_C71). The second type of 

vehicle belongs to the infantry-fighting vehicle (BMP2) with 3 different serial numbers 

as SN_5663, SN_9566 and SN_C21. The last vehicle type is a tank  (T72) with  three  
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different serial numbers as SN_132, SN_812 and SN-S7. All MSTAR images have 

128 × 128-pixel size. X-band SAR sensor is used for data collection by Sandia 

National Laboratory (SNL). The samples are collected either at 15° or 17° depression 

angle. Totally 429, 1285 and 1274 samples are gathered for classes BTR70, BMP2 and 

T72 respectively with consideration of depression angle and serial numbers. Total 

samples of MSTAR data are 2987. The summary of data utilised for classification is 

shown in Table 3.1.  

Table 3.1: SAR database (three-class database) 

 

3.2.2 Ten-class database 

This type of vehicle contains the previous three types (BTR70, BMP2, and T72) and 

the other seven types of vehicles includes: D7 a bulldozer, BDRM2, ZIL131 two types 

of trucks, 2s1, ZSU-23-4 two types of cannon, BTR60 an armoured car and T62 a tank. 

A summary of data type of 10-class recognition is given in Table 3.2. Also the Optical 

images of all 10 types of vehicles and their corresponding SAR representation are 

illustrated in Fig.3.1. 

 For each serial For each class  

Type/ 

Class 

Serial 

Number 

Samples 

17°Angle 

Samples 

15°Angle 

Samples 

17°Angle 

Samples 

15°Angle 

Number of 

Samples 

BTR70 SN_C71 233 196 233 196 429 

BMP2 
SN_9563 233 195 

698 587 1285 SN_9566 232 196 

SN_C21 233 196 

T72 
SN_132 232 196 

691 582 1274 SN_812 231 195 

SN_S7 228 191 

Total 1622 1365 2987 
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BMP2 BTR70 T72 BTR60 2S1 

     

     
BRDM2 D7 T62 ZIL ZSU 

Figure 3.1: Optical images and SAR images of different vehicles 

Table 3.2: SAR database (ten-class database) 

Vehicle Class 
Number of sample at 17° of 

depression Angle 

Number of samples at 15° of 

depression angle 

BMP2 698 587 

BTR70 233 582 

T72 691 196 

BTR60 256 195 

2S1 299 274 

BRDM2 298 274 

D7 299 274 

T62 299 273 

ZIL131 299 274 

ZSU-23-4 299 274 

 

3.3 ROI segmentation 

MSTAR images consist of background, shadow and target regions. For effective 

classification, it is essential to remove noises associated with each image. However, 
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since the intensity level of shadow and background from one SAR image to another 

one is changing drastically concerning the angle as it is shown in Fig. 3.2, it requires 

more advanced methods for thresholding rather than traditional methods. Many 

approaches for preprocessing introduced in the literature. Soh and Tsatsoulis [61] 

suggest calculation of optimal thresholds. Schumacher and Schiller [62] used 

clustering for effective segmentation. The Bayesian approach could also be used to 

obtain results on the MSTAR database images [63].  

Our aim is to define an algorithm for extracting target, shadow, and combined target-

shadow regions as ROIs. For each region further, we define ROIs as an area, boundary 

and texture. It means for each input of SAR images we produce nine regions of 

interests (ROIs) as Target-Area (TA), Target-Boundary (TB), and Target- Texture 

(TT) for the target region, Shadow-Area (SA), Shadow-Boundary (SB) and Shadow-

Texture (ST) for shadow region and combined Target-Shadow-Area (TSA), combined 

Target-Shadow-Boundary (TSB) and combined Target-Shadow-Texture (TST) for 

combined target-shadow regions. 

  

Figure 3.2: SAR images of BMP2 illustrating different intensity 
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To do so, effective preprocessing consists of five stages as histogram equalisation, 

average filtering, thresholding, Sobel filtering and dilation. In the following 

subsection, we use an image (hb03787.004) captured at 17° depression angle form 

BRT70 group (armoured personnel carrier) with serial number SN-C71 to find all nine 

ROIs mentioned above.  

3.3.1 Histogram equalisation 

Histogram equalisation is applied to the original input SAR image (hb03787.004). The 

aim of using histogram equalisation is to produce the output that has pixel values 

distributed equally on the interval [0, 1]. The output is defined as:  

𝐼ℎ𝑖𝑠𝑡 =∑
𝑛𝑗

𝑛

𝑘

𝑗=0

, 𝑘 = 0,1,2, … , 𝐿 − 1 (3.1) 

where nj be the number of occurrences of grey level j, n is being the total number of 

pixels in the image and L is the number of possible intensity value which is 256 in this 

study. The mapping from original SAR image to histogram equalisation is shown in 

Fig. 3.3.  

 
(a) (b) 

Figure 3.3: a. Original SAR image, b. Histogram equalised image 
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3.3.2 Averaging filtering 

Since the variance of noise in the average is smaller than the variance of the pixel 

noise, averaging filters are a good choice to reduce noise artefacts. Equalised image is 

smoothened by the averaging filter as it is illustrated in Fig. 3.4. The filter mask size 

of the average filter was chosen to be 11×11. 

  
(a) (b) 

 Figure 3.4: a. Histogram equalised image, b. Averaging filter 

3.3.3 Thresholding  

Next step of preprocessing is to detect target, shadow and combined target-shadow. 

The detected regions are called area of target (TA), shadow (SA) and combined target-

shadow (TSA). For detecting both target and shadow regions, it is necessary to apply 

different threshold levels for obtaining both parts. The grey level threshold is defined 

as a constant between 0 and 1: 

𝐼𝑇ℎ𝑟𝑒𝑠ℎ(𝑖, 𝑗) = {
0    𝐼𝑎𝑣𝑔(𝑖, 𝑗) ≤ 𝜏 

1    𝐼𝑎𝑣𝑔(𝑖, 𝑗) > 𝜏 
 (3.2) 

where  𝜏 is the threshold value for target and 𝐼𝑎𝑣𝑔 is the processed SAR image after 

using averaging filter. In order to detect the target, which is brighter in the image as 

illustrated in Fig. 3.5-a, it is required to choose the constant nearest to 1. In [64], it was 
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suggested to have 0.8 to be a threshold pixel value for target regions. The experimental 

results validate the effectiveness of 𝜏 at 0.8 for efficient segmentation. 

Shadow regions are areas on the ground that are not scanned by the radar signals due 

to reflections. The natural result of this process is that no returned signal is received 

and these areas appear dark in the SAR images. Therefore, for detecting shadow 

regions, which cover darker area in the image, a constant, ξ, is defined as the threshold 

for shadow region that is closer to zero should be chosen. In this context, ξ is chosen 

to be 0.2 for effective shadow segmentation. The thresholded images at this stage can 

be considered to be an area (TA) (or mask) of target, shadow (SA) and combined 

target-shadow (TSA) as it is shown in Fig. 3.5.b, 3.5.c and 3.5.d respectively. Besides 

area, another ROI is called texture. 

  
(a) (b) 

  
(c) (d) 

Figure 3.5: a. Averaging filter, b. area of target (TA), c. area of shadow (SA), d. area 

of combined target-shadow (TSA) 
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(a) (b) (c) 

Figure 3.6: The procedure to produce texture for target region a. Original SAR 

image, b. TA C. Texture of target (TT -by multiplying Fig. 3.6-a by Fig. 3.6.b)  

   
(a) (b) (c) 

Figure 3.7: The procedure to produce texture for shadow region a. Original SAR 

image, b. SA, C. Texture of shadow (ST-by multiplying Fig. 3.7-a by Fig. 3.7.b) 

  
 

(a) (b) (c) 

Figure 3.8: The procedure to produce texture for combined target-shadow region a. 

Original SAR image, b. TSA, C. Texture of combined target-shadow (TST by 

multiplying Fig. 3.8.a by Fig. 3.8.b) 
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Taking the area (or mask), it is multiplied with the input image to generate the texture 

containing texture of the target (TT), shadow (ST) and combined target shadow (TST) 

as it is illustrated in Fig. 3.6, Fig. 3.7 and Fig. 3.8 respectively.  

3.3.4 Sobel filter followed by dilation 

Sobel filter [64] is employed to perform edge detection on the mask image to detect 

the boundaries. In this regard, the edge boundaries of the target, shadow, and combined 

target-shadow regions are extracted. Dilation by 2×2 structuring element is used to 

connect the disconnected edges and emphasise the boundaries. The product image at 

this stage is called boundary. (The procedure to produce boundary from area for target 

(TB), shadow (SB), and combined target-shadow (TSB) are illustrated in fig 3.9, fig 

3.10 and fig 3.11 respectively.  

   
(a) (b) (c) 

Figure 3.9: The procedure to produce boundary from area for Target region a. TA, b. 

Sobel filter, c. TB  
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(a) (b) 

Figure 3.10: The procedure of produce boundary from area for shadow region a. SA, 

b. SB  

  
(a) (b) 

Figure 3.11: The procedure of produce boundary from area for combined target-

shadow region a. TSA, b. TSB  

In order to justify that preprocessing approach is good enough that not affect the 

overall performance significantly, we randomly selected few samples of different 

vehicles at different azimuth and depression angles. Manually we extracted region of 

interest of those samples. Then we compared the accuracy (ACC), True Positive Rate 

(TPR) /sensitivity, True Negative Rate (TNR)/specificity, and False Negative Rate 

(FNR)/miss of proposed preprocessing approach with alternative preprocessing in the 

literature respect to the manual segmentation.   
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Original Image Threshold 

Manually 

Threshold 

Automatically 

Red color indicates 

false negative and 

green color 

indicated false 

positive  

Figure 3.12: Comparison of Manual and Automatic thresholding 

 

Figure 3.12 shows the manual and automatic theresholding. By comparing two 

methods we evaluated the false negative (FN) and false positive (FP) of automatic 

thresholding.  FN and FP are shown in red and green respectively. Then ACC, TPR, 

TNR and FNR are evaluated as shown in Table 3.3: 

Table 3.3:  ACC, TPR, TNR and FNR of one sample 

Sample Name ACC (%) TPR (%) TNR (%) FNR (%) 

hb03799.000 99.14 89.53 99.27 14.47 

 

We also considered more samples randomly and we evaluated ACC, TPR, TNR and 

FNR of each sample. Finally, we took the average as it shown in Table 3.4.  

Table 3.4:  Average of ACC, TPR, TNR and FNR of 20 samples 

Method 
Number of 

samples 
ACC (%) TPR (%) TNR (%) FNR (%) 

Method 

introduced 
20 98.88 92.51 99.44 21.26 

Alternative 

Method [139] 
20 98.01 93.11 97.30 24.42 

 

 



 29 

As we observe the accuracy of automatic thresholding, which plays a critical role in 

this thesis, is high and it is close to the manual segmentation.  Also in Table 3.4, we 

compared our method with alternative method [138] in which they adopt Logarithmic 

transformation followed by Morphological filter and geometric clustering operation. 

The comparison shows that preprocessing approach is comparable to alternative 

method. 

3.4 Moment based feature extraction 

Feature extraction algorithms extract unique target information from each image. 

Identifiability, translation, rotation and scale invariance [126] [127], affine invariance 

[133] and noise resistance [65] must be considered for the adopted algorithm. For those 

items, moment-based descriptors can be utilised as an effective region-based shape 

descriptor. In this thesis, twelve moment-based methods introduced both in Cartesian 

and polar coordinates as a robust feature extraction method. The details of the moment-

based method are given in chapter 4. In chapter 5 two feature extraction techniques as 

Zernike Moment and Radical Chebyshev Moment are used, and their results are 

compared with respect to different ROIs as we studied in the previous subsection. In 

chapter 6 and 7, twelve moment-based methods are utilised as Legendre Moments, 

Chebyshev moment of first and second kind, Gegenbauer Moments, Jacobi Moments, 

Krawtchouk Moments, Zernike Moments, Pseudo Zernike Moments, Fourier Merlin 

Moments, Chebyshev Fourier Moments, Radial Harmonic Fourier Moment, and 

Radial Chebyshev Moments for feature extraction. Then different ranking methods 

used for selection of best features, which in turns improve the recognition rate. In 

chapter 8, Pseudo Zernike Moments are used by applying different ROIs. The 

improvement is made by an ensemble of classifiers.  
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3.5 Ranking 

Twelve-moments are used for evaluating the accuracy of classification. These methods 

are then ranked according to 2 different approaches as Fisher criterion and entropy. 

The aim of ranking features is to measure the relevance of features to select the most 

discriminative features which reduce the dimensionally of data-set, speeding up the 

learning process, and improving classification performance. Many approaches for 

feature ranking are introduced in the literature [66-70]. 

Let D represents a n×m matrix, where 𝐷 = [𝑋1, 𝑋2,… ,𝑋𝑛]
𝑇 is the data-set containing 

of n samples, and 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑚) is a vector of m features. Let f be a vector of 

values of a feature defined as: 

𝑓𝑗 = (𝑥1𝑗, 𝑥2𝑗 , … , 𝑥𝑛𝑗)
𝑇 (3.3) 

Let F be feature ranking applied on the database D as: 

𝐹 = [𝑓𝑟
1, 𝑓𝑟

2, … , 𝑓𝑟
𝑛] (3.4) 

where the superscript denotes the position in the ranked list of a feature𝑓𝑟
  and this list 

is ranked in descending order. Top k ranked features is selected; where k can be tuned 

experimentally [71]. 

3.6 Data fusion 

Data fusion of SAR images used for the improvement of recognition rate by increasing 

the feature information of the images and for reducing the complexity of training by 

integrating various features.  Three types of fusion are utilised in this thesis, feature 

level fusion, decision fusion and fusion among classifiers which is called ensemble of 

classifiers. 
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3.6.1 Feature level fusion 

Fusion divided into different kinds [72]. One, which is used in this thesis, is called 

feature level fusion, which is a method of combining all features [73] or selected 

features [74] in series for obtaining a new feature vector.  

In this study, all features introduced in chapter 5 are concatenated into a single feature 

vector. In chapter 5, features coming from different ROIs are fused. Feature fusion 

(FF) is defined as: 

𝐹𝐹 = [𝐹𝑉1 𝑈 𝐹𝑉2 𝑈 …𝑈 𝐹𝑉𝑛 ] (3.5) 

where FV refers to the feature vector of each ROI (for example all features for texture 

in target regions form a feature vector) or feature vector of each method. 

In chapter 6 and 7, the features are coming from 12 different moments. The first top k 

highest ranked methods are chosen and fused to form a data with k×100 features.  

In this thesis, avoiding the ambiguity among concatenated features, feature 

concatenation in chapter 5 (coming from different ROIs) is called feature fusion and 

feature concatenation in chapter 6 and 7 (coming from different moments) is called 

feature level fusion. Suppose that 𝑓𝑟𝑣1, 𝑓𝑟𝑣2, … , 𝑓𝑟𝑣𝑛  are feature ranked vectors 

(FRV) then feature level fusion is defined as: 

𝑆𝐹 = [𝐹𝑅𝑉1 𝑈  𝐹𝑅𝑉2 𝑈 …𝑈 𝐹𝑅𝑉𝑛]1×𝑠 (3.6) 

where s is the length of the vector for SF, n is the number of ranked methods such that 

𝑠 ≤ 𝑛.  
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3.6.2  Decision fusion 

The second type of fusion refers to decision fusion. The aim of decision fusion is to 

find the output label of each sample after different methods of moments are applied. 

In this regard, for any sample, first top k highest ranked methods are chosen and the 

class probability for each selected moment is evaluated.  Four rules are associated with 

decision fusion as a max rule, sum rule, mean rule and median rule. The following 

example shows how decision fusion works with each rule. In this example one sample 

(sample number 10 belongs to BTR70) is chosen. The top 3 moment-based methods 

are applied and the class probability of each moment is calculated, summarised in 

Table 3.5.  

Table 3.5: Class probability of top 3 moments of given sample 

First Moment Second Moment Third Moment 

Rules C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3 

Sample 

10 
0.899 0.097 0.004 0.969 0.030 0.001 0.629 0.356 0.015 

 

3.6.2.1 Max rule 

For each sample the class probability (Pi,j) is evaluated, where i = 1, 2, 3 refer to each 

class and j = 1, 2, …,12 refer to each selected moment. In max rule first, the maximum 

probability of each class for all of the selected moments is evaluated. Then for each 

sample (s), the label of the class with the highest probability is selected as follows: 

𝜂(𝑠) = {𝑖|𝑎𝑟𝑔𝑖max (max𝑗  (𝑃𝑖,𝑗))} (3.7) 

The summary of an evaluation of max rule is given in Table3.6. 
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Table 3.6: Evaluation of max rule 

Class 1 Class 2 Class 3 

Rules M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3 

Probability 0.899 0.969 0.629 0.097 0.030 0.356 0.004 0.001 0.015 

Maximum 

of 

Each class 

0.969 0.356 0.015 

Maximum 

of Max 
0.969 - - 

Correspond-

ing label 
1 - - 

 

3.6.2.2 Sum rule 

In sum rule, the accumulated probability of the selected method of moments for each 

class is calculated. For each sample, the label corresponding to the maximum 

accumulated probability, 𝜇(𝑠) is reported to be the selected label for this technique, 

which is defined as: 

𝛿(𝑠) = {𝑖|𝑎𝑟𝑔𝑖max(∑𝑃𝑖,𝑗)

𝑘

𝑗=1

} (3.8) 

The summary of an evaluation of max rule is given in Table 3.7. 

Table 3.7: Evaluation of sum rule 

Class 1 Class 2 Class 3 

Rules M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3 

Probability 0.899 0.969 0.629 0.097 0.030 0.356 0.004 0.001 0.015 

Summation 

Each class 
2.497 0.4830 0.02 

Max of 

Summation 
2.497 - - 

Correspond-

ing label 
1 - - 
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3.6.2.3 Mean rule 

An alternative method is the mean rule, which can be considered as the normalised 

sum rule, defined as: 

𝜇(𝑠) = {𝑖|𝑎𝑟𝑔𝑖max(
1

𝑘
∑𝑃𝑖,𝑗)}

𝑘

𝑗=1

 (3.9) 

Table 3.8 shows the calculation procedure of mean rule. 

Table 3.8: Evaluation of mean rule 

Class 1 Class 2 Class 3 

Rules M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3 

Probability 0.899 0.969 0.629 0.097 0.030 0.356 0.004 0.001 0.015 

Mean 

Each class 
0.832 0.161 0.007 

Max of 

Mean 
0.832 - - 

Correspond-

ing label 
1 - - 

 

3.6.2.4 Median rule 

Median probability of the selected method of moments for each class can be presented 

as: 

𝜛(𝑠) = {𝑖|𝑎𝑟𝑔𝑖max(𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑖,𝑗))} (3.10) 

Table 3.9 indicates the procedure for evaluation of the Median rule. 

Table 3.9: Evaluation of median rule 

Class 1 Class 2 Class 3 

Rules M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3 

Probability 0.899 0.969 0.629 0.097 0.030 0.356 0.004 0.001 0.015 

Median 

Each class 
0.899 0.097 0.015 

Max of 

Median 
0.899 - - 

Correspond-

ing label 
1 - - 
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3.6.3 Ensemble of classifiers 

In this thesis, the majority voting approach is utilised for determining the output label 

amongst different classifiers namely as SVM, k-NN, decision tree, random forest and 

LDA. Due to simplicity and acceptable performance, majority voting is one of the most 

useful combination methods [75]. In majority voting [76], the ensemble chooses a label 

of a class when either all classifiers agree on the specific class or one label receives 

the highest number of votes. If two labels have the same vote, the selection is made 

randomly between this two specific classes.  

3.7 Classifiers 

In this thesis, support vector machine is used for evaluating the accuracies of many 

algorithms. Additionally, in chapter 8, we deployed another four classifiers as a k-

nearest neighbour, decision tree, random forest and LDA for improvement in accuracy 

by fusion among them. In the following subsection, we briefly represent each classifier 

and validation techniques, which are used in this study.  

3.7.1 SVM classifier  

The SVM is the most powerful classifier based on statistical learning principles. The 

SVM algorithm has been successfully adapted to various types of applications in 

MSTAR studies [77-81]. In the training stage, SVM tries to find the optimal class-

separation hyperplane in the maximal margin, which is the distance between the 

support vectors on the boundary. Support vectors are located on the two parallel 

hyperplanes as shown in the Fig. 3.13 and the distance between them is 
2

‖𝑤‖
.  

SVM was first adopted for pattern recognition in [82]. SVM Considers a set of samples 

which contains X (train set vector) and Y (corresponding labelled set vector) and the 

decision surface is defined as: 
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𝑓(𝑥) =∑𝑎𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥𝑖
′) + 𝑏

𝑖

 (3.11) 

 

Figure 3.13: Illustration of the linear separation of the SVM hyper plane [83] 

where ai is weight constant which is optimised during the training process., K(.,.) is 

kernel function, xi are support vectors, and b is bias and yi = ±1 is the label of sample 

xi . K(.,.) describes the behaviour of support vectors as the kernel function. Various 

kernels can be used during SVM training, such as linear, polynomial (cubic, quadratic) 

and radial basis function (RBF). In this thesis, we wildly used SVM classifier with a 

linear kernel. The Linear kernel is a good approximation and fast in comparison to 

nonlinear kernels (RBF, Cubic, etc.). Since solving the optimisation problem for a 

linear kernel is much faster it is often suggested to start with a linear kernel. The kernel 

function used in this thesis are listed in Table 3.10. 
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Table 3.10: Different kernel functions used in SVM 
Method Kernel Function 

Linear 𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′ 

Polynomial 𝑘(𝑥, 𝑥′) = (1 + 𝑥𝑇𝑥′)𝑑,   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑑 > 0 

RBF 𝑘(𝑥, 𝑥′) = 𝑒
−‖𝑥𝑇 𝑥′‖

2𝜎 2  𝑓𝑜𝑟 𝜎 > 0 

 

3.7.2 k-NN classifier 

k-Nearest Neighbour (k-NN) classification is the simplest classifier and is deployed in 

many MSTAR images applications [84-87]. Data split into a training set and a test set. 

The k nearest (usually k=3, k=5) training set objects are found, and then the distance 

between the test object and all the training objects are evaluated using a normalised 

Euclidean metric that is generated by: 

𝐷(𝐴, 𝐵) = √
∑ (𝑥𝑖 − 𝑦𝑖) 2
𝑔
𝑖=1

𝑔
                               (3.12) 

where g is the dimension of feature space and 𝐴 = (𝑥1, 𝑥2, … , 𝑥𝑚)  and 𝐵 =

(𝑦1,𝑦2, … , 𝑦𝑚) are the features of train and test respectively. 

 
Figure 3.14: Illustration of the separation of the k-NN with different k value [83] 
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The classification is determined by majority vote of the k nearest neighbours. A simple 

example provided in Fig. 3.14. Different k value can affect the assigned class of the 

star. When k = 3 the star corresponds to class 2 because the three closest neighbours 

involve two polygons (class 2) and a rectangle (class 1). However, by choosing k= 5, 

star corresponds to class 1, because the five closest neighbours include three rectangles 

(class 1) and two polygons (class 2). 

3.7.3 Decision tree classifier 

A decision tree is another classifier that used in some SAR images application [88-89]. 

Some few terms are used to design the decision tree algorithm are as follows [90]: 

- Root node: It characterises whole sample, and gets further divided into two or 

more homogeneous sets. 

- Splitting: This is a process of dividing a node into two or more sub-nodes. 

- Decision node: When a sub-node splits into further sub-nodes, then it is called 

decision node. 

- Leaf (Terminal node): Nodes do not split is called Leaf or Terminal node. 

In the decision tree, firstly we choose the best feature of the data-set at the root of the 

tree. Then we divide the training set into subsets. Subset must contain data with the 

same value for a feature. The procedure above continues until we find terminal nodes 

in all the branches of the tree [89] as it is illustrated in Fig. 3.15. 

For finding the best feature, many algorithms exist such as entropy, Chi-Square, and 

Gini Index (GI). In this study, GI is used for finding the best feature. GI measure 

frequency of detecting a random element incorrectly, it means a feature with lower GI, 

should be preferred. The GI for each feature is calculated as: 
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𝐺𝐼 = 1 −∑[𝑝(𝑖|𝐶)]2
𝑀

𝑖=1

 (3.13) 

  

Root Node

Decision Node Decision Node

Decision NodeTerminate Node

Terminate Node Terminate Node

Terminate Node Terminate Node

Splitting

Figure 3.15: Decision tree algorithm 

In each node, a feature with a lower value than other should position, as root and a 

branch with GI one should be converted to a terminal node. A branch with GI less than 

one needs further splitting.  

3.7.4 Random forest classifier 

Random forest [92] is another classifier, which is used in this study. RF is an ensemble 

technique in which the final prediction is based on the majority voting among decision 

trees. A final prediction is computed based on the results of the individual predictions. 

Figure 3.16 displays n decision trees and a classification obtained from each of them. 

In this example only 3 trees are shown. Tree 1 votes for label 1, while tree 2 and tree 

n vote for 2. The final prediction is based on majority voting among trees, which 

clearly will be ‘Class 2’. 
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Tree nTree 2Tree 1

Output Class Label: 2Output Class Label: 2Output Class Label: 1

Majority 

Voting

Output Class Label: 2

Data

 

Figure 3.16: Random forest decision [93], tree 1 votes for label 1, while tree 2 and 

tree n vote for 2 

 

3.7.5 Linear discriminant analysis classifier 

Linear discriminant analysis (LDA) is also used in many MSTAR database as a 

classifier [94-96]. The aim of deploying LDA is to find a linear combination of features 

that separates two or more classes of objects. The resulting combination may be used 

as a linear classifier. Finding the linear discriminant among classes, the following 

algorithm is applied to a data matrix 𝑋 ∈ 𝑅𝑀×𝑁, 𝑥𝑖 ∈ 𝑅
𝑀×1. Calculate the mean of 

each class as: 

𝜇𝑐 =
1

𝑁𝑐
∑𝑥𝑖

𝑁𝑐

𝑖=1

 (3.14) 

where Nc is the number of sample of each class.  

Compute the global mean as: 

𝜇 =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 (3.15) 
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Compute within-class scatter: 

𝑆𝑤 =∑𝑆𝑖

𝑐

𝑖=1

 (3.16) 

where Si 

𝑆𝑖 =∑(𝑥 − 𝜇𝑐)(𝑥 − 𝜇𝑐)
𝑇 (3.17) 

Compute between class scatter  

𝑆𝐵 =∑𝑁𝑐(𝜇𝑐 − 𝜇)(𝜇𝑐 − 𝜇)
𝑇

𝐶

𝑖=1

 (3.18) 

 

Figure 3.17: Illustration of the separation of the LDA [97] 

Compute eigenvalues and eigenvectors of Sw
-1SB and sort them in descending order 

and. For C class problem, we have C-1 projection vectors. Hence optimal projection 

matrix W* is the ones whose columns are the C-1 eigenvectors corresponding to the 

C-1 largest eigenvalues of:  

𝑆𝑤
−1𝑆𝐵𝑊

∗ = 𝜆𝑊∗ (3.19) 

Figure 3.17 shows two optimal linear discriminant vectors that separate three different 

classes. 
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3.7.6 Validation approaches  

Two validation approaches are used in this thesis as leave-one-out and k-fold cross 

validation techniques. In leave-one-out class validation, technique s-1 samples are 

used as train set and remaining one is used as a test set. The algorithm is repeated s 

times and the total accuracy is the average of all accuracy in each iteration. 

In the classification stage, k-fold class validation technique is applied. In this model, 

whole dataset is divided to k equal subsets. The algorithm is then repeated k times. 

Each time k−1 subsets are chosen as a training sample set, and the remaining sample 

set is used for testing. In each fold, accuracy is calculated, and at the end of k-fold, the 

average accuracy is calculated [98]. In this thesis k is chosen to be 10. 

3.8 Performance metrics 

In this thesis, we compare the performances of the proposed methods using True 

Positive Rate (TPR) /sensitivity, True Negative Rate (TNR)/specificity, False Negative 

Rate (FNR)/miss rate and Accuracy to generate different metrics for performance 

analysis. They are defined as [99]:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.20) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.21) 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 = 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (3.22) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (3.23) 

where TP, FN, TN and FP denote true positive, false negative, true negative and false 

positive results respectively that are defined in the interval [0, 1]. 

3.9 Receiver operating characteristic curve 
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The ROC curve is generated by plotting the sensitivity against 1- specificity or the 

false positive rate (FPR) at various threshold settings. As it is illustrated in Fig. 3.18 it 

shows how well the recognition rate is. As the area under the curve is larger, then the 

recognition rate is higher.  

 
Figure 3.18: ROC curve analysis [100] 
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Chapter 4   

4 MOMENTS AS 2D SHAPE DESCRIPTORS 

4.1 Introduction 

In this chapter, we have an overview of Moment Methods. Different types of moments 

are introduced, their properties are studied, and the pros and cons of those methods are 

discussed.  

4.2 What are moments? 

Moments are scalar quantities, which are used to capture dominant features of an 

Image [20] and are widely used in many applications such as image enhancement, 

object recognition, edge detection, texture analysis and image reconstruction [101-

104]. Moments mathematically can be defined as the projection of a function onto a 

polynomial basis. For a digital SAR image f (x,y) general form of moments can be 

written as: 

𝑀𝑝,𝑞 = ∫∫𝑃𝑝 (𝑥)𝑃𝑞(𝑦)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (4.1) 

where p and q are called the order and repetition of the moment respectively with 

p,q=0,1,… . Pp and Pq are Polynomial Basis Function (PBF). The simplest moment is 

called Geometric Moment with the PBF, which is defined as the product of pixel 

coordinates (xp×yq ) [30] as: 

𝑀𝑝,𝑞 = ∫ ∫ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

∞

∞

−∞

 (4.2) 
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Geometric Moments are widely used in image analysis and pattern recognition 

techniques due to their simplicity and invariance. As Hu states in [105] moment 

sequence (Mp,q) is uniquely determined by digital SAR image f(x,y) in a limited part of 

the xy plane as: 

𝑀𝑝,𝑞 =∑∑𝑥𝑝

𝑦𝑥

𝑦𝑞𝑓(𝑥, 𝑦) (4.3) 

Each low order moment has a meaning. For the binary SAR image, M0,0 is a mass of 

image. 
𝑀1,0

𝑀0,0
, 
𝑀0,1

𝑀0,0
 describe the centroid of an image in horizontal and vertical projection 

respectively. M2,0 and M0,2 is distribution of mass in x and y axis. Furthermore, if we 

normalize the image such that M0,0 =1, then M1,0 and M0,1 are the mean value. For zero 

mean M2,0 and M0,2 are variances in x and y direction respectively and M1,1 is the 

covariance. The horizontal and vertical skewness which measure the deviation of 

projection from symmetry are 
𝑀3,0

√𝑀2,0
3

 and 
𝑀0,3

√𝑀0,2
3

 respectively. The horizontal and vertical 

Kurtosis which measure the peak of the pdf are 
𝑀4,0

𝑀2,0
2  and 

𝑀0,4

𝑀0,2
2 . However, unfortunately, 

the basis set {xp, yq} is not orthogonal and it suffers from a high degree of information 

redundancy; therefore, orthogonal moments are introduced in the literature [11-25]. 

4.3 Orthogonal moments 

Orthogonal Moments (OM) are introduced due to their stability, fast numerical 

implementation, avoiding a high degree of information redundancy, which in turn 

leads to a high classification rate and a greater robustness to random noise. Two groups 

of moments are defined in Cartesian and polar coordinates. In the following 

subsection, we have an overview about each group of OM and their properties. 
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4.3.1 Moments in Cartesian coordinates 

This group of OM are further divided into two types namely continuous or discrete 

moment.  The main motivation to define Moments in Cartesian is that they preserve 

orthogonality even on the sampled image [106]. The general form of moments in 

Cartesian form is given in Equation 4.1. 

Some moments like Legendre moments are continuous while others such as 

Krawtchouck moments are discrete. However, for a digital SAR image, all moments 

can be approximated and viewed in the discrete domain as: 

𝑀𝑝,𝑞 =∑∑𝑃𝑝 (𝑥)𝑃𝑞(𝑦)𝑓(𝑥, 𝑦) (4.4) 

To extract features, polynomial basis 𝑃𝑝(𝑥) and 𝑃𝑞(𝑦) should be evaluated for each 

method. Table 4.1 shows polynomial basis function of different method of moments 

in Cartesian coordinates. Using Equation 4.4, the first 100 features for each moment 

are extracted for any p = 0,1, ..., 9 and q = 0, 1, ..., 9. For a digital SAR image with 

size N×N, variables x and y are normalized by mapping their values between -1 and 1 

as follows: 

𝑥 = −1 + 2
𝑥

𝑁 − 1
            , 𝑦 = −1 + 2

𝑦

𝑁 − 1
 (4.5) 

4.3.1.1 Continuous moments in Cartesian 

Legendre moments, Chebyshev moments, Gegenbauer moments and Jacobi moments 

are continuous moments which are defined on the Cartesian coordinate. Generalized 

Hyper-geometric series should be determined first before any further processing as: 

𝐹𝑞𝑝
 (𝑎1, 𝑎2, … , 𝑎𝑝; 𝑏1, 𝑏2, … , 𝑏𝑞; 𝑧) = ∑

(𝑎1)𝑘(𝑎2)𝑘…(𝑎𝑝)𝑘

(𝑏1)𝑘(𝑏2)𝑘…(𝑏𝑞)𝑘

∞

𝑘=0

𝑧𝑘

𝑘!
 (4.6) 

where  (𝑎 )𝑘 is called pochhammer symbol and it is defined as: 
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(𝑎)𝑘 = 𝑎(𝑎 + 1)… (𝑎 + 𝑘 − 1) =
(𝑎 + 𝑘 − 1)!

(𝑎 − 1)!
=
Γ(𝑎 + 𝑘)

Γ(𝑎)
 (4.7) 

In Equation. 4.6, (i) terms are defined in the numerator for any indexes up to p and (ii) 

terms in the denominator for any indexes up to q.  

Table 4.1: Polynomial basis functions of different moments on Cartesian coordinate 

Method Polynomial Basis Function 

LM 𝑃𝑝(𝑥) = 𝐹2
 
1(−𝑝, 𝑝 + 1; 1;

1 − 𝑥

2
) 

CM #1 𝑃𝑝(x) = 𝐹12
 (−p, p;

1

2
;
1 − 𝑥

2
) 

CM #2 𝑃𝑝(x) = (p + 1) 𝐹12
 (−p, p + 2;

3

2
;
1 − 𝑥

2
) 

GM 𝑃𝑝
(𝜆)(𝑥) =

Γ(p + 2λ)

𝑝! Γ(2𝜆)
𝐹12
 (−𝑝, 𝑝 + 2𝜆; 𝜆 +

1

2
;
1 − 𝑥

2
) 

JM 𝑃𝑝
(𝛼,𝛽)(𝑥) = (

𝑝 + 𝛼

𝑝
) 𝐹12
 (−𝑝, 𝑝 + 𝛼 + 𝛽 + 1; 𝛼 + 1;

1 − 𝑥

2
) 

 

Although the aforementioned general form is valid for evaluating different moments, 

practically for efficient calculation with minimum computational complexity, a 

recurrence formula is also suggested in [20]. In the processing section, we briefly 

introduce moments that have been used for feature extraction in Cartesian coordinates 

with their recurrence formula. 

4.3.1.1.1 Legendre Moments (LMs) 

LMs are widely applied in different applications in image processing. In comparison 

to Geometric moments [107], they have a more efficient representation of an image 

with less amount of information redundancy. LMs with a complete orthogonal basis 

set is defined over the interval [-1, 1]. The recurrence relation can be defined as: 
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𝑃0(𝑥) = 1 

𝑃1(𝑥) = 𝑥 

𝑃𝑝+1(𝑥) =
2𝑝 + 1

𝑝 + 1
𝑥𝑃𝑝(𝑥) −

𝑝

𝑝 + 1
𝑃𝑝−1(𝑥) 

(4.8) 

4.3.1.1.2 Chebyshev Moments (CMs) 

Two types of CMs are introduced in the literature [107]: CM#1 (the first kind) and CM 

#2 (the second kind). They only differ by initial value of 𝑃1(𝑥) term. This value is x 

for CM #1 while the value for CM #2 is 2x. CM #2 is more often used in image 

processing applications. The recurrence formula for the second kind (CM #2) is 

defined as: 

𝑃0(𝑥) = 1 

𝑃1(𝑥) = 2𝑥 

𝑃𝑝(𝑥) = 2𝑥𝑃𝑝−1(𝑥) − 𝑃𝑝−2(𝑥) 

(4.9) 

The graph of the CM #1 are shown Fig. 4.1. This graph shows different polynomials 

up to order 6.  The kernel functions of the 2-Dimensional CM #1 on ⟨−1, 1⟩ × ⟨−1, 1⟩ 

is illustrated in Fig. 4.2. 

4.3.1.1.3 Gegenbauer Moments (GMs) 

GMs have the extra parameter 𝜆. The recurrence formula is defined as:  

𝑃0
(𝜆)(𝑥) = 1 

𝑃1
(𝜆)(𝑥) = 2𝜆𝑥 

𝑃𝑝+1
(𝜆) (𝑥) =

2(𝑝 + 𝜆)𝑥

𝑝 + 1
𝑃𝑝
(𝜆)(𝑥) −

𝑝 + 2𝜆 − 1

𝑝 + 1
𝑃𝑝−1
(𝜆) (𝑥) 

(4.10) 
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Figure 4.1: The graphs of the CM #1 up to the sixth degree 

 
Figure 4.2: The graphs of 2D kernel functions of the CM #1 up to fourth order 

A special case occurs when 𝜆 = 0.5. By substituting 𝜆 into Equation 4.10, LM is 

obtained. Another special case is 𝜆 = 1 which gives CM of the second kind. In this 
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study we choose 𝜆 to be 0.75 to illustrate the polynomial that has properties between 

Legendre Moment and Chebyshev of the second kind.  

4.3.1.1.4 Jacobi Moments (JMs) 

A more general form of the orthogonal moment in a Cartesian form is JM with two 

parameters 𝛼 𝑎𝑛𝑑 𝛽 with  𝛼 >  −1 𝑎𝑛𝑑 𝛽 > −1 .  Setting 𝛼 = 𝛽 𝑡𝑜 𝜆 −
1

2
, 0, −

1

2
, and 

1

2
, GM, LM, CM of the first kind and CM of the second kind are generated, 

respectively. In this study 𝛼 = 𝛽 = 1 is used for extracting features in a SAR Image. 

The recurrence formula for Jacobi is: 

𝑃0
(𝛼,𝛽)

(𝑥) = 1 

𝑃1
(𝛼,𝛽)

(𝑥) =
1

2
(𝛼 − 𝛽 + 𝛼𝑥 + 𝛽𝑥 + 2𝑥) 

𝑃𝑝+1
(𝛼,𝛽)(𝑥) =

((2𝑝 + 𝛼 + 𝛽 + 1)(𝛼2 − 𝛽2) + (2𝑝 + 𝛼 + 𝛽)3𝑥

𝐶
𝑃𝑝
(𝛼,𝛽)(𝑥)

−
2(𝑝 + 𝛼)(𝑝 + 𝛽)(2𝑝 + 𝛼 + 𝛽 + 2)

𝐶
𝑃𝑝−1
(𝛼,𝛽)

(𝑥) 

where 𝐶 = 2(𝑝 + 1)(𝑝 + 𝛼 + 𝛽 + 1)(2𝑝 + 𝛼 + 𝛽) 

(4.11) 

4.3.1.2 Discrete moments in Cartesian coordinate 

Many moments are defined in discrete named as Krawtchouk Moments, Racah 

Moments, Meixner Moments, Charlier Moments, and Hahn Moments. However, the 

computational complexity of the methods above is too high. In the following 

subsection, we only consider Krawtchouk Moments.  

4.3.1.2.1 Krawtchouck Moments (KWs) 

The general PBF form of  KM is written as: 

𝑃𝑝
(ς)(𝑥, 𝑁) = 𝐹12

 (−𝑝, −𝑥;−𝑁;
1

ς
) (4.12) 
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and the recurrence formula of KW is as: 

𝑃0
(ς)(𝑥, 𝑁) = 1 

𝑃1
(ς)(𝑥, 𝑁) = 1 −

𝑥

𝑁ς
 

𝑃𝑝+1
(ς) (𝑥, 𝑁) =

𝑁ς − 2𝑝ς + 𝑝 − 𝑥

(𝑁 − 𝑝)
𝑃𝑝
(ς)(𝑥, 𝑁) −

𝑝(1 − ς)

(𝑁 − 𝑝)ς
𝑃𝑝−1
ς
(𝑥, 𝑁) 

 

(4.13) 

where N is the size of N × N SAR image and ς is the localization factor of moment and 

is defined between the interval 0 and 1. A common choice for selecting ς is 0.5 [20].   

4.3.2 Moments in polar form 

Radial moments form a complete orthogonal set on the unit disc (x2 + y2) ≤ 1 as: 

𝑀𝑝,𝑞 = ∫ ∫ 𝑅𝑝𝑞(𝑟)
1

0

2𝜋

0

𝑒−𝑖𝑞𝜃𝑓(𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃 (4.14) 

where 𝑓(𝑟, 𝜃) = 𝑓(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃), 𝑅𝑝𝑞(𝑟) called radial part of polynomial and 

𝑒−𝑖𝑞𝜃 indicates angular part of polynomials. 𝜌, 𝜃  refer to transformation from 

Cartesian to polar coordinates which is defined as: 

𝑟 = √𝑥2 + 𝑦2, 𝑎𝑛𝑑  𝜃 = tan−1 (
𝑦

𝑥
) (4.15) 

 

Zernike moments (ZMs), Pseudo Zernike moments (PZMs), Fourier Merlin moments 

(FMMs), Chebyshev Fourier moments (CFM), Radial Harmonic Fourier moments 

(RHFMs), and Radial Chebyshev moments (RCMs) are the methods that widely used 

in the polar coordinates. They only differ by the radial part of a polynomial as 

summarised in Table 4.2. In the following subsection, we look at the behaviour of 

some moments at a glance.  
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Table 4.2: Radial part of polynomial basis function of different moments in polar 

coordinate  

 

 

4.3.2.1 Zernike Moments (ZMs) 

Orthogonal moments in polar are introduced mainly because of their unique property 

to be rotational invariant. ZMs are the most popular methods that are used in the 

literature. p = 0,1, 2, ...,18 is the called order of ZM and q is the repetition of ZM with 

the following condition: 

Method Radial part of Polynomial Basis Function 

ZM 

 

𝑅𝑝𝑞(𝑟) = ∑
(−1)𝑠(𝑝 − 𝑠)! 𝑟𝑝−2𝑠

𝑠! (
𝑝 + |𝑞|
2 − 𝑠) ! (

𝑝 − |𝑞|
2 − 𝑠) !

(
𝑝−|𝑞|
2

)

𝑠=0

 

PZM 𝑅𝑝𝑞(𝑟) = ∑
(−1)𝑠(2𝑝 + 1 − 𝑠)! 𝑟𝑝−𝑠

𝑠! (𝑝 − |𝑞| − 𝑠)! (𝑝 + |𝑞| + 1 − 𝑠)!

𝑝−|𝑞|

𝑠=0

 

FMM 𝑅𝑝(𝑟) =∑(−1)𝑝+𝑠
𝑛

𝑠=0

(𝑝 + 𝑠 + 1)!

(𝑝 − 𝑠)! 𝑠! (𝑠 + 1)!
𝑟𝑠 

CFM 𝑅𝑝(𝑟) = √
8

𝜋
(
1−𝑟

𝑟
)
1

4∑ (−1
(𝑝+2)

2
𝑠=0 )𝑠

(𝑝−𝑠)!

𝑠!(𝑝−𝑠)!
(2(2𝑟 − 1))𝑝−2𝑠 

RHFM 𝑅𝑝(𝑟) =

{
 
 
 
 

 
 
 
 
1

𝑟
                          

√
2

𝑟
 sin ((𝑝 + 1)𝜋𝑟

√
2

𝑟
cos(𝑝𝜋𝑟)        

  

if p=0 

 

if p is odd 

 

if p is even 

RCM 

𝑅𝑝(r) =
𝑝!

𝜌(𝑟, 𝑁)
∑(−1)𝑝−𝑠
𝑝

𝑠=0

(
𝑁 − 1 − 𝑠

𝑝 − 𝑠
) (
𝑝 + 𝑠

𝑝
) (
𝑟

𝑠
) 

where (𝑟, 𝑁) =
𝑁(1−

1

𝑁2
)(1−

22

𝑁2
)…(1−

𝑝2

𝑁2
)

2𝑝+1
 

𝑝 = 0,1, … ,𝑁 − 1 
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𝑝 − |𝑞| = 𝑒𝑣𝑒𝑛,          |𝑞| ≤ 𝑝 (4.16) 

4.3.2.2 Pseudo Zernike Moments (PZMs) 

PZMs are as an alternative to traditional ZMs with the only difference in their 

orthogonal radial polynomial. PZMs have a better feature representation capability and 

are more robust to noise than ZMs. 

0 ≤ |𝑞| ≤ 𝑝, 𝑝 = 0,1,2, …, 10  
 

(4.17) 

PZMs offer more features than ZMs of the same order because of limitation in 

Equation 4.16 for ZM. The lower order contains more dominant information. 

4.3.2.3 Radial Chebyshev Moments (RCMs) 

The RCMs are defined on the discrete domain. RCM of order p and repetition q for an 

image of size N × N with m = (N/2) + 1 is one type of the radial moment which is 

defined in the discrete domain as [106]: 

𝑅𝑝𝑞 =
1

2𝜋𝜌(𝑝,𝑚)
∑∑ 𝑡𝑝

2𝜋

𝜃=0

𝑚−1

𝑟=0

(𝑟) ∗ 𝑒−𝑗𝑞𝜃 ∗ 𝑓(𝑟, 𝜃) (4.18) 

 

where tp(r) is an orthogonal polynomial function for an image of size N × N which 

can be represented by a recurrence formula as: 

𝑡0(𝑥) = 1 

𝑡1(𝑥) =
(2𝑥 − 𝑁 + 1)

𝑁
 

𝑡𝑝(𝑥) =
(2𝑝 − 1)𝑡1(𝑥)𝑡𝑝−1(𝑥) − (𝑝 − 1) {1 −

(𝑝 − 1)2

𝑁2 } 𝑡𝑝−2(𝑥)

𝑝
 

(4.19) 

and ρ(p,N) is the squared-norm as 

𝜌(𝑝, 𝑁) =
𝑁 (1 −

1
𝑁2) (1 −

22

𝑁2)… (1 −
𝑝2

𝑁2)

2𝑝 + 1
 

𝑝 = 0,1, … ,𝑁 − 1 

(4.20) 
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Chapter 5 

5 TARGET RECOGNITION IN SAR IMAGES USING 

RADIAL CHEBYSHEV MOMENTS 

5.1 Introduction 

In this chapter, a new algorithm for classification of ground vehicles from standard 

SAR images is proposed. Radial Chebyshev moment (RCM) is a discrete orthogonal 

moment that has distinct advantages over continuous moments on polar coordinates 

for feature extraction. Unlike Hue moments, its orthogonal basis leads to having 

minimum information redundancy, and its discrete characteristics explore some 

benefits over Zernike moments (ZM) due to having less numerical errors and less 

computational cost owing to normalisation. In this context, we propose to use RCM as 

the feature extraction mechanism on the segmented image and to compare results of 

the fused images with Zernike moments. Firstly, by applying different thresholds, 

target and shadow regions of each SAR image are extracted separately. Then, 

segmented images are fused, based on the combination of the extracted area, boundary 

and texture. Experimental results verify that the accuracy of RCM improves 

significantly by using fusion of different ROIs. It improves the total accuracy of the 

classification by 8.57%. 

As mentioned earlier moving stationary target acquisition and recognition (MSTAR), 

a standard SAR-ATR database [9], is used for testing and validation of different 

algorithms. 
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Due to the background of SAR images, and to extract the useful information, various 

preprocessing techniques are introduced in the literature [64], [108-109]. Furthermore, 

studies explored that shadowing parts have a significant effect on the accuracy of 

detection in parallel to target information and hence feature fusion based on both parts 

is recommended in [110].  

Different approaches for feature extraction have been introduced for SAR image target 

recognition. Linear discriminant analysis (LDA), principal component analysis (PCA) 

and independent component analysis (ICA) techniques have been commonly used in 

pattern recognition [111–114]. The problem associated with these techniques is that 

generally they are sensitive to noise [41] and are rotation variant. To overcome these 

problems, moment-based descriptors can be utilised as an effective region-based shape 

descriptor. Hue invariant moments are the simplest method for generating shape 

descriptors [105]. Although they are rotational invariant, they suffer from a high 

degree of information redundancy since the bases are not orthogonal [107]. Also, 

higher order moments are noise sensitive. In order to avoid these problems, Zernike 

moment (ZM) was suggested as a continuous orthogonal moment, which was used in 

[28]. Zernike polynomials are rotation invariant with its robustness to noise and having 

a minimum information redundancy since the basis is orthogonal.  

However as mentioned earlier, Zernike moments are defined as a continuous function; 

hence for a digital image, approximation by discrete summation is considered which 

leads to numerical errors in computation of moments. Moreover, this approximation 

can affect some properties such as orthogonally and rotational invariance. Zernike 

moments  are   expressed   inside   the  unit  disc   x2 + y2 ≤ 1,   which   increases   the  
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computational complexity with an appropriate transformation of the image coordinate 

space [115]. To reduce all the above problems, a discrete orthogonal moment called 

radial Chebyshev moment (RCM) is introduced to reduce both computational 

complexities, due to normalisation and computational error caused by approximations 

[116]. 

In this chapter, three types of segmentation were applied to generate areas of interests: 

area, boundary and texture, to be used in the feature extraction process. This approach 

is adopted for both target and shadow regions of the input image. As feature extractors, 

ZM and RCM were employed to generate region feature descriptors. Finally, region 

descriptors are fused by concatenating the feature vectors into longer descriptors to be 

used in the support vector machine (SVM) classifier. Results showed that in both 

feature extraction methods, total accuracy of fused segmentation of target and shadow 

regions improves significantly. Further comparison between ZM and RCM reveals that 

accuracy of RCM is higher than ZM by 8%. In addition to the improvement gained by 

using RCM instead of ZM, a fusion of the feature descriptors obtained from segmented 

areas will also improve the performance by 6%.  

This chapter consists of two contributions. The first contribution involves adding the 

shadow region of the target as an extra source of features improving the SAR 

recognition. Shadow regions are areas on the ground that are not covered by the radar 

signal; as a result, no return signal is received, and these areas appear dark in the SAR 

images. This property is utilised for improving the total accuracy. 
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The second contribution is about feature fusion. An input SAR image segmented with 

different techniques can be represented by fusing the region descriptors of these 

images, which improves the overall accuracy. 

5.2 Proposed method for feature fusion using RCM of different ROIs 

The details of the proposed method are given in Fig. 5.1. Each SAR image contains a 

target, shadow and background. Our aim is to remove the background while preserving 

the target and shadow regions. Histogram equalisation and average filter are used to 

remove the background. Also, by utilising two different threshold values, target and 

shadow regions are separated. Furthermore, combining target and shadow corresponds 

to the third part to be considered. Therefore, a SAR image is categorised into three 

different parts: target, shadow and combined target-shadow.  

Each target, shadow or combined target-shadow is segmented into three different 

objects: namely, area, which refers to the binary shape region, boundary, which 

indicates boundary area and texture, which extracts whole texture of the region of 

interest. Area corresponds to the mask covering the region of interest after background 

removal as illustrated in Fig. 5.1. Boundary is the processed SAR images after 

applying Sobel filter followed by dilation to area as it can be seen in Fig. 5.2. Texture 

is the multiplication of original image by area. 
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Figure 5.1: Block diagram of the proposed method 

 

RCM is introduced in addition to ZM for feature extraction of the given SAR images. 

For each segmented object, 100 features are extracted. Feature vectors coming from 

each of the three-segmented objects are merged to form a vector of 300 features. For 

a single SAR image, target, shadow and combined target-shadow regions with a vector 

of 300 features each, is fused by concatenation resulting in a  final  feature vector  of  
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900 features to be used in classification. We choose library support vector machine 

(LIBSVM) which is a standard support vector machine (SVM) classifier with tenfold 

cross validation. 

Input Image
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Sobel Filter
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Area

Boundary

X Texture

 
Figure 5.2: Segmentation method for input SAR image 
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5.2.1 Segmentation 

SAR images have a background, which should be removed before further processing. 

All SAR images in this data-set (MSTAR) are required to have the histogram 

equalisation, averaging filter, threshold, Sobel filter and dilation to remove 

background as given in Fig. 5.2. 

Histogram equalisation is the first step of the segmentation process. By applying it, the 

output will have pixel values distributed equally on the interval [0, 1]. An equalised 

image then is followed by an average filter through which the image is smoothened to 

reduce noise artifacts. The filter mask size of the average filter was chosen to be 11 × 

11. 

The thresholding is next applied to the smoothed image. As discussed in the previous 

section, it is essential to extract the edges of both target and shadow regions; therefore, 

it is necessary to apply different threshold levels for obtaining both parts. Two 

thresholds have been adopted in this thesis, τ and ξ for the segmentation of the target 

and shadow regions, respectively. The grey level threshold is defined as a constant 

between 0 and 1. To detect the target, which is brighter in the image, it is necessary to 

choose the constant closer to 1. In [64], τ is chosen to be 0.8. The experimental results 

validate the effectiveness of τ at 0.8 for efficient segmentation. On the other hand, for 

detecting shadow regions, which cover the darker area in the image a constant, ξ , 

closer to zero should be chosen. In this context, ξ is chosen to be 0.2 for effective 

shadow segmentation. The thresholded images at this stage can be considered to be 

area/mask corresponding to target and shadow regions, respectively.  
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Using a mask image, it is multiplied with the input image to generate the texture 

containing  texture of the target as well as that of the shadow.  

In the next step, Sobel filter [64] is adopted to perform edge detection on the mask 

image. Dilation by 2 × 2 structuring element is used to connect the disconnected edges 

and emphasise the boundaries. In this regard, the edge boundaries (boundaries) of the 

target and shadow regions are extracted for further processing.  

Figure 5.3 explores all segmented parts and regions of a sample image (hb03787.004 

image) including area, boundary and texture of target (Fig. 5.3.a-c (respectively)), 

shadow (Fig. 5.3 d–f (respectively)) and both (Fig. 5.3 g–i (respectively)). For each 

segmented image, a feature extraction method was applied to extract a distinct number 

of features. In ZM method, for each segmented image 34 features were extracted; as a 

result, the total number of extracted features for a single image is 306, while for RCM 

100, features are extracted for the single segmented image, which means 900 of 

features were extracted from every given image.  

5.2.2 Feature extraction by using ZM and RCM 

Two robust shape-based feature extraction techniques are radial Chebyshev moment 

[104] and Zernike moment [117]. 

Zernike moments are orthogonal moments that consist of a set of complex 

polynomials, known as Zernike polynomials. It forms a complete orthogonal set on the 

unit disc (x2 + y.) ≤ 1. A complex Zernike moment is defined as [118]: 

𝑍𝑛𝑚 =
(𝑝 + 1)

𝜋
∫∫𝑉𝑝𝑞

∗

 

𝑦

 

𝑥

(𝑟, 𝜃)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (5.1) 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 5.3: First column: Area of target (a), shadow (d) and combined target-shadow 

(g).  Second column: Boundary of target (b), shadow (e) and combined target-shadow 

(h).  Third column: Texture of target (c), shadow (f) and combined target-shadow (i). 

For a digital image 𝑓(𝑥, 𝑦) function with the size of N× N, Equation 5.1 can be 

approximated as in [119]: 
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𝑍𝑛𝑚 =
(𝑝 + 1)

𝜋
∑∑𝑉𝑝𝑞

∗

𝑁

𝑦=1

𝑁

𝑥=1

(𝑟, 𝜃)𝑓(𝑥, 𝑦) (5.2) 

where 𝑟 𝑎𝑛𝑑 𝜃 in the polar coordinates are defined as: 

𝑟 = (𝑥2 + 𝑦2)
1
2, 𝑎𝑛𝑑          𝜃 = 𝑡𝑎𝑛−1(

𝑦

𝑥
) (5.3) 

p = 1, 2, … is the order of Zernike polynomial, and q is the repetition of Zernike 

moment that takes on positive and negative integer subject to the following conditions: 

𝑝 − |𝑞| = 𝑒𝑣𝑒𝑛,          |𝑞| ≤ 𝑝 (5.4) 

The symbol ∗ indicates the complex conjugate. An orthogonal basis function for the 

Zernike moments is defined by:  

𝑉𝑝𝑞(𝑟, 𝜃) = 𝑅𝑝𝑞(𝑟)𝑒
𝑗𝑞𝜃 (5.5) 

where  𝑅𝑝𝑞 is defined below: 

𝑅𝑝𝑞(𝑟) = ∑
(−1)𝑠(𝑝 − 𝑠)! 𝑟𝑝−2𝑠

𝑠! (
𝑝 + |𝑞|
2 − 𝑠) ! (

𝑝 − |𝑞|
2 − 𝑠) !

(
𝑝−|𝑞|
2

)

𝑠=0

 (5.6) 

In [28] 34, Zernike moments are calculated for each image based on Table 5.1. For 

each segmented image, 34 features are extracted. In this thesis, with an addition of 

segmented mask, we use the boundary and texture as well for the target images. 

Furthermore, we use the area, texture and boundary of the shadow regions. Finally, we 

use three images for combined target and shadow images. In this respect, we use nine 

images for each object with 34 features for each image, respectively, generating a 

vector of 306 features in the shape descriptor.  
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Table 5.2: List of Radial Chebyshev moments used for each segmented image 

 

The radial Chebyshev moment of order p and repetition q for an image of size N×N 

with m=(N/2)+1 is defined as [115]: 

𝑅𝑝𝑞 =
1

2𝜋𝜌(𝑝,𝑚)
∑∑ 𝑡𝑝

2𝜋

𝜃=0

𝑚−1

𝑟=0

(𝑟) ∗ 𝑒−𝑗𝑞𝜃 ∗ 𝑓(𝑟, 𝜃) (5.7) 

where tp(r) is an orthogonal basis Chebyshev polynomial function for an image of size 

N × N: 

Table 5.1: List of Zernike moments used for each segmented image 

Order Moments 
# of 

Moments 

Accumulated 

Moments 

2 Z 2,0, Z 2,2 2 2 

3 Z 3,1, Z 3,3 2 4 

⋮ ⋮ ⋮ ⋮ 
9 Z 9,1, Z 9,3, Z 9,5 Z 9,7 Z 9,9 5 28 

10 
Z 10,0, Z 10,2, Z 10,4, Z 10,6, Z 10,8, 

Z 10,10 
6 34 

Order (p) Moments 
# of 

Moments 

Accumulative 

# 

1 

R 1,1, R1, 2, R1, 3, R 1,4, 

R 1,5, R 1,6, R 1,7, 

R 1,8, R 1,9, R 1,10 

10 10 

2 

R 2,1, R2, 2, R2, 3,R 2,4, 

R 2,5, R 2,6, R 2,7, 

R 2,8, R 2,9, R 2,10 

10 20 

⋮ 
 

⋮ 
 

⋮ ⋮ 

9 

R 9,1, R9, 2, R9, 3, R 9,4, 

R 9,5, R 9,6, R 9,7, 

R 9,8, R 9,9, R 9,10 

10 90 

10 

R 10,1, R10, 2, R10, 3,R 10,4, R 10,5, R 10,6, 

R 10,7, 

R 10,8, R 10,9, R 10,10 

10 100 
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𝑡0(𝑥) = 1 

𝑡1(𝑥) =
(2𝑥 − 𝑁 + 1)

𝑁
 

𝑡𝑝(𝑥) =
(2𝑝 − 1)𝑡1(𝑥)𝑡𝑝−1(𝑥) − (𝑝 − 1) {1 −

(𝑝 − 1)2

𝑁2 } 𝑡𝑝−2(𝑥)

𝑝
 

(5.8) 

ρ(p,N) is the squared-norm: 

𝜌(𝑝, 𝑁) =
𝑁 (1 −

1
𝑁2) (1 −

22

𝑁2)… (1 −
𝑝2

𝑁2)

2𝑝 + 1
 

(5.9) 

Like ZM calculation, RCM can be calculated in different order. It is assumed that order 

p and repetition q are p, q = 1, 2, . . . , 10, which accumulates 100 moment features 

that are extracted from each segmented image as summarised in Table 5.2. Therefore, 

the total number of features extracted for a single image is 900 after considering target, 

shadow and combined target-shadow images in three different segmentation methods.  

Features for both ZM and RCM can be computed as many times as is desired. 

However, considering the dimensionality of an image in the moment space, after a 

dimension is reached, the extra information that can be gained from a feature is 

expected to approach zero.  

Figure 5.4 demonstrates two graphs. Both graphs indicate the number of features 

versus total accuracy on the training set using ten-fold cross validation. The first graph 

shows the accuracy of ZM based on the area of the target. It is clear that after first 40 

features (approximately), the accuracy is not varied significantly. Therefore, based on 
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the study on the training set it can be suggested that the dimension of the moment space 

can be limited to 40. 

Hence, around 40 features are sufficient for evaluating accuracy. Based on this 

observation and the number of features used for the data-set in [28] which is 34, it was 

decided to adopt 34 to be the number of features used in ZM approach in this chapter. 

Figure 5.4 also shows the accuracy of RCM based on the area of the target. Obviously 

after 100 features, accuracy remains constant. In this context, the decision was taken 

to use 100 features in the shape descriptor vector in the RCM-based segmented image 

representation. 

 
Figure 5.4: Accuracy of area of target in ZM and RCM 

5.2.3 Classifier 

In the classification stage, k-fold class validation technique was applied. We use multi-

library support vector machine (multi-LibSVM) [120], which is a standard library for 

support vector machine (SVM). All codes run under MATLAB pattern recognition 
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toolbox (PRTools) [121]. The linear kernel is applied in all the experiments in this 

chapter. 

 

5.3 Experimental results in three-class database  

In this section, the experimental results of the proposed method which consists of two 

contributions are discussed. A comparison based on the feature extraction techniques 

was made between ZM and RCM. At the same time, effects on feature fusion were 

examined as the first contribution. Consideration of shadowing parts is the second 

contribution to the result of this work. 

The number of images used as a sample in the whole experiment is 2987. A 10-fold 

class validation technique is applied in all the experiments.  

Table 5.3: ZM and RCM based target recognition without and with preprocessing 

Method # of Features Accuracy (%) 

ZM without Segmentation 34 57.89 

RCM without Segmentation 100 75.33 

area of  ZM 34 88.85 

area of  RCM 100 92.03 

boundary of ZM 34 89.25 

boundary of  RCM 100 92.64 

texture of ZM 34 88.85 

texture of RCM 100 90.12 

ZM with concatenating of Targets 

(area, boundary, texture) 
102 88.48 

RCM with concatenating of Targets 

(area, boundary, texture) 
300 96.35 

 

Table 5.3 shows that the accuracy is lower if segmentation is omitted before feature 

extraction in both techniques. We extract 34 and 100 features for ZM and RCM, 

respectively. The results on accuracy clearly show that with or without segmentation, 
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the proposed RCM-based approach is superior to the ZM-based method because 

Zernike moments are defined as a continuous function; approximation by discrete 

summation is considered which leads to numerical errors in computation of moments. 

Moreover, this approximation can affect some properties such as orthogonally and 

rotational invariance, which in turns decrease the accuracy.  However, RCM is a 

discrete orthogonal moment that reduce numerical errors and computational 

complexity due to normalisation in ZM, and as a result, we achieve improvement in 

accuracy.  The results also show that area, boundary and texture of RCM based 

approaches have the higher accuracy than those in ZM. Also boundary has the highest 

accuracy among each individual ROIs in target regions with 92.64% accuracy. This 

accuracy is improved to 96.35% when the fusion of the three segmentation methods is 

performed by concatenating the feature vectors of each method into a single vector. 

Table 5.4: Accuracy (%) of segmentation with target and/or shadow based on RCM 

RCM Accuracy (%) 

Area (Target) 90.12 

Boundary  (Target) 92.03 

Texture (Target) 92.63 

Area (Shadow) 76.03 

Boundary (Shadow) 78.67 

Texture (Shadow) 77.53 

Area(combined target-shadow) 92.43 

Boundary (combined target-shadow) 93.74 

Texture (combined target-shadow) 91.23 

 

Having RCM superior over the ZM-based target recognition, it was decided to adopt 

RCM-based feature representation of the targets to SAR images. The dimensionality 

of the feature vector for each representation is chosen to be 100. One of the major 

contributions of this study is to include the information extracted from the shadow of 

the vehicle to be recognised. It should be remembered that this shadowing effect is 
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based on electromagnetic waves, which is caused by the depression angle of the aerial 

vehicle acquiring the images rather than the sunlight. In this context, the results 

obtained from the shape descriptor vectors are given in Table 5.4. 

It can be seen that the results obtained from the boundary approach for target and 

shadow regions are higher than those of area and texture. Furthermore, improvement 

is provided by fusing the vectors coming from target and shadows, respectively. The 

highest performance, 93.74%, is obtained from combining boundary shape descriptors 

of both target and shadow regions. 

Table 5.5: Effect on fused data using target shadowing and/or both regions 

Method # of Features Accuracy (%) 

Targets [Area (TA), Boundary 

(TB), Texture (TT)] 
300 96.34 

Shadows [Area (SA), Boundary 

(SB), Texture (ST)] 
300 87.78 

combined target-shadow [Area 

(TSA), Boundary (TSB), Texture 

(TST)] 

300 98.15 

Concatenating of Targets and 

Shadows 
600 98.25 

Concatenating of Target, Shadows 

and combined target-shadow 
900 98.69 

 

In the final setup, the investigation was on the concatenation of feature vectors 

extracted from target, shadow and combined target-shadow images for area, boundary 

and texture cases. In other words, feature vectors for targets, shadows and combined 

target-shadow are extracted for area (100 features), boundary (100 features), and 

texture (100 features), respectively. After concatenation of the vectors from area, 

boundary and texture for targets 300 features are generated. Same operation is 

employed for shadow images; hence, 300 features are used to describe shadow regions. 
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Finally, 900 features are used to represent target (300), (TA, TB, and TT), shadow 

(300) (SA, SB, and ST)  and combined target-shadow (300) (TSA, TSB, and TST)  in 

a single vector. 

Table 5.5 shows the improvement provided by combining area, boundary and texture 

objects into a single vector. 300 features extracted from combined target-shadow 

images reached the accuracy to 98.15%. Concatenation of shadows part to targets 

slightly increased the accuracy, and it reached to 98.25%. However, in comparison 

with combined target-shadow, more features are extracted (600 features), and accuracy 

is improved by only 0.1%. The last experiment shows that concatenating of target, 

shadows and combined target-shadow further improved the accuracy, and it reached 

its highest value of 98.69%. This result justifies that the feature fusion technique 

improves the total accuracy. A comparison between Table 5.4 and Table 5.5 indicates 

that, generally, segmentation based on area, boundary and texture for both target and 

shadow followed by feature fusion drastically improves the accuracy for RCM. Table 

5.6 verifies that the proposed method has the highest performance among the 

alternative methods in the literature. 

Table 5.6: Accuracy of the proposed method versus alternative methods in the 

literature. 

Method Accuracy (%) 

PCA [53] 93.33 

LDA [53] 87.33 

PCA + LDA + ICA [41] 90.57 

Proposed method 98.69 
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5.4 Experimental results in ten-class database 

In this section, we consider ten-class database in SAR images. Target, shadow and 

combined target-shadow of texture are used as ROIs. RCM is applied to each ROI and 

then the extracted features are fed to various types of classifiers.  SVM with  different  

kernels (linear, cubic, quadratic and RBF), k-NN, LDA, DT and RF are used for 

classification. Furthermore, feature fusion is used for improvement in the 

classification.  Table 5.7 summarises all the results. Generally by utilising SVM 

classifier, the recognition rate of SAR images has the highest performance among all 

classifiers. Furthermore it is shown that quadratic kernel SVM has the best 

performance among all SVM classifiers with different kernel functions.  

However, regardless of the classifier, which is used for classification, experimental 

results approve that by concatenating all three ROIs, recognition rate is improved 

significantly. The highest performance is achieved when cubic kernel SVM followed 

by feature fusion is used and the accuracy reached to 98.6%. Comparing the 10-class 

recognition rate with other state-of-the art approaches, the accuracy of proposed 

method is higher than other methods as it is shown in Table 2.1 in Chapter 2. The 

comparison shows that proposed method is improved by 3.1%. 

Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 5.8 show the confusion matrix of target, shadow, 

combined target-shadow and fusion method, respectively. The elements on the main 

diagonals indicate the correct recognition rate. The fusion method has the highest 

number of elements on its diagonal in comparison to other ROIs. ROC also is another 

metric that shows how well the recognition rate is. It generated by plotting the 

sensitivity against 1- specificity. Fig. 5.10.a, Fig. 5.10.b, Fig. 5.10.c and Fig. 5.10.d 
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show the ROC of target, shadow, combined target-shadow and fusion method, 

respectively. As the area under the curve (AUC) is larger, then the recognition rate is 

higher. As it is clear again by comparing ROCs, fusion method has the largest AUC 

and therefore it has the highest recognition rate. ROC  is generally  designed  for  two  

class problems. For multi-class problems first sensitivity and specificity of each class 

versus others are evaluated. Then, the average sensitivity and specificity are reported 

as the overall sensitivity and specificity. The ROC can be plotted by using the overall 

sensitivity and specificity. All ROCs and Confusion matrixes in this subsection are 

achieved by utilizing MATLAB Classifier Application Toolbox. 

Table 5.7: Summary of recognition rate of different ROI using RCM among different 

classifiers using ten-class database  (%) 

Classifier  Target Shadow Combined Target-Shadow Fusion 

SVM (linear) 87.0 82.5 81.9 96.6 

SVM (Cubic) 90.5 83.5 90.1 98.6 

SVM (Quadratic) 91.9 88.0 90.2 98.5 

SVM (RBF) 88.1 83.4 85.9 97.3 

KNN (k=5) 84.7 82.9 87.4 96.5 

DT 79.6 72.9 76.7 90.2 

RF 80.9 77.2 80.9 93.8 

LDA 82.4 77.1 73.7 93.8 

 

 

 

 

 



 73 

T
ru

e 
la

b
el

 

1 380 

88.57% 

39 5 2 3 0 0 0 0 0 

2 12 1169 
90.97% 

83 3 18 0 0 0 0 0 

3 4 61 1199 
94.18% 

5 3 0 0 0 0 1 

4 16 15 1 333 
73.83% 

78 1 0 0 0 7 

5 1 22 0 37 510 
89.00% 

0 0 0 0 3 

6 0 0 0 0 0 530 
92.65% 

5 12 25 0 

7 0 0 0 0 0 1 551 

96.16% 

7 14 0 

8 0 0 0 0 0 3 15 548 

95.80% 

6 0 

9 0 0 0 0 0 13 17 14 529 

92.32% 

0 

10 0 0 0 2 3 0 0 0 0 568 

99.12% 

  1 2 3 4 5 6 7 8 9 10 

Predicted class 

Figure 5.5: Confusion matrix of proposed method for texture of target regions 
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Figure 5.6: Confusion matrix of the proposed method for texture of shadow part 
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Figure 5.8: Confusion matrix of the proposed method for texture of fusion methods 
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Figure 5.9: ROC of the proposed method. Texture of a. target, b. shadow, c. 

combined target-shadow, d. feature fusion 

5.5 Conclusion 

In this chapter, we developed a feature extraction algorithm using radial Chebyshev 

moments and compared it with a commonly used method called Zernike moments. 

RCM is a discrete orthogonal moment that reduce numerical errors and computational 

complexity due to normalisation in ZM, and as a result, we achieve improvement in 
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accuracy. Experimental results verify that RCM gives a higher performance in 

accuracy as compared to ZM. Accuracy of RCM without using any segmentation is 

75.33%, while the accuracy is 57.89% for ZM. 

Additionally, we considered shadow regions as part of feature extraction parallel to 

target information, and then, we applied feature fusion technique based on different 

image segmentation process: area, boundary and texture for target and shadow part. 

Experimental results show that overall accuracy of fused images is improved by both 

techniques used for feature extraction. The accuracy of fused data for target region is 

96.35%, which is around 4% up to 6% improvement over area, boundary and texture. 

Furthermore, with the addition of shadow effects to fused data, accuracy reached to 

98.69%. 

We also applied feature fusion based on different ROIs by utilising many classification 

techniques into the ten-class problem. The aim of using many classification techniques 

was to verify that regardless of which method is utilised, by including the shadow 

regions and concatenating different ROIs to the single vector the accuracy will increase 

significantly.  
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Chapter 6 

6 IMPROVED SAR TARGET RECOGNITION USING 

FISHER CRITERION AND DATA FUSION 

6.1 Introduction 

SAR generates images with high resolution of objects. The principal advantage of SAR 

images over optical images is, the capability to work independently from any weather 

condition and solar illumination; however, this enormous amount of information is 

difficult to handle in making fast decisions. In this chapter we propose a methodology 

that fuse different information of features to improve the target recognition 

performance of SAR. To reduce the dimensionality of the images we evaluate 12 

traditional moments with 100 features extracted from each one, and select the k 

moments based on the Fisher Criterion. To fuse the k moments, we propose to use data 

fusion techniques: feature level fusion and decision fusion. In the feature level fusion, 

the k more informative moments are concatenated. In the decision fusion, the class 

probabilities are combined by using sum, median and max rules. The performance of 

the proposed techniques improve over the individual performances of the moments 

considered. Furthermore, results support the superiority of these techniques (feature 

level fusion and decision fusion) over the state-of-the art methods in the literature. 

The main contribution of this chapter is feature selection based on Fisher Criterion 

(FC) followed by two data fusion techniques namely as a feature level fusion and 

decision fusion. In both techniques, firstly features are extracted from each SAR image  
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by utilising 12 different moments (for each method 100 features are extracted). Then 

FC is used to rank all moments by calculating the level of interclass separation of the 

extracted feature sets, generated by different moments.  Moments with Higher FC 

scores are selected. k methods then used for data fusion. The variable k is chosen such 

that it maximises the overall accuracy in the training set. After we determine the value 

of k using the training set, we use it in the test set, which is explained in section 6.4.  

In the feature level fusion technique, fusion is established by concatenating the feature 

vectors coming from the top k highest ranked moments, where each method feeds in a 

vector of 100 features, resulting in a final vector of k × 100. The accuracy in the 

training set is evaluated by using SVM classifier with the linear kernel function. The 

overall performance of the feature level fusion has been compared against the 

performances of the moments without fusion. The highest performance among the 12-

moments  in the test set was 93.21% for the pseudo-Zernike method whereas the 

proposed feature level fusion using Fisher Criterion was superior with an overall 

accuracy of 95.71%. 

In the decision fusion technique, similar to the feature level fusion, the top k highest 

ranked moments are selected. Then for each moment, we calculated and assigned class 

probabilities for each sample. Max rule, sum rule, and median rule are used for making 

a decision over an ensemble of k moments. Experimental results verify that the 

accuracy of the highest performance among the 12-moments (which is PZM) has 

increased by 1.9% reaching to 95.11% for some rule-based decision fusion. The results 

validate the improvement gained by the fusion techniques.  
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The highest performance is reported by using feature level fusion with Fisher Criterion 

where the top 6 moments are selected with 95.71% in accuracy. Performance 

evaluation involved accuracy, sensitivity, specificity and ROC analysis, where the 10-

fold cross validation technique was adopted using the Support Vector Machine with 

linear kernel (SVM). 

6.2 Background 

In this section, first we briefly explain about the preprocessing. Then we introduce 

Fisher Criterion, which is applied to rank all moments. Finally, feature level fusion 

and decision fusion are introduced to improve the accuracy of the target recognition 

performance of SAR images.   

6.2.1 Preprocessing 

To get an area, we apply histogram equalisation, smoothing filter and thresholding. 

Histogram equalisation is applied to an input SAR image. A smoothing filter which 

uses an 11×11 averaging filter mask is used to reduce the noise artefacts. Then, a 

segmentation mask, which corresponds to the binary image of ROI is generated by 

using a threshold value of 𝜏. Experimental analysis verifies the effectiveness of 𝜏 to be 

0.8 for preserving target. Texture can be achieved by multiplying the original image 

with its binary mask. Figure 6.1 illustrates the summary of aforementioned technique. 

This is a visual example of a SAR image (hb03787.004), which belongs to BRT70 

class (Armoured Personnel Carrier) with serial number SN-C71. 
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Figure 6.1: Segmentation process of an armoured personnel carrier with serial 

number SN-C71. 

6.2.2 Fisher Criterion  

Fisher Criterion (FC) is introduced for ranking, which is free from the role of the 

classifier. The idea behind it is to determine a scalar feature value that maximises 

separability of the classes by having a small within-class scatter, and large between-

class scatter. For multi-classes pattern, the following feature selection criteria, based 

on interclass separation, is defined as [122]: 
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𝐽 = 𝑡𝑟𝑎𝑐𝑒(𝑆𝑊
−1𝑆𝐵) (6.1) 

where  𝑆𝐵 is between-class scatter and is defined as: 

𝑆𝐵 =∑(𝜇𝑐 − �̅�) (𝜇𝑐 − �̅�)
𝑇

𝑐

 (6.2) 

where 𝜇𝑐 is the mean of class c and �̅� is the global mean. 𝑆𝑊 is within-class scatter and 

defined as: 

𝑆𝑊 =∑∑(𝑥𝑖 − 𝜇𝑐)(𝑥𝑖
𝑖𝜖𝑐𝑐

−𝜇𝑐)
𝑇 (6.3) 

6.2.3 Feature level fusion 

For each feature extraction technique that we mentioned in the previous session, 100 

features are extracted and then by applying Support Vector Machine (SVM) classifier, 

the accuracy on the training set is evaluated.  All of the methods of moments are sorted 

according to Fisher criterion. Table 6.1 shows the ranks of the respective moments 

after sorting. Top k highest ranked moments are chosen, where k is selected such that 

it maximizes the accuracy in the training set. This value of k is then applied to the test 

set (i.e in test set k first moments are selected) and fused to form a data with k*100 

features. Then the accuracy of fused techniques is calculated. The evaluated accuracy 

shows an improvement in classification. 
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Table 6.1: Sorting based on FC of each moment for 100 features 

 

6.2.4 Decision fusion 

In this method, the top k highest ranked based-moment feature extractions are selected. 

Then for each moment, we evaluate class probability for each sample in the test set. 

Max rule, sum rule, and median rule are used for the decision fusion. More details 

about decision fusion are provided in section 3.6.2. 

6.3 Proposed method of data fusion after ranking features based on FC by 

utilising different moments 

Each SAR image contains a background that should be removed before further 

processing.  Preprocessing provides different stages for segmentation including 

histogram equalisation, smoothing filtering and thresholding. Numerous moment-

based methods are adopted as feature extractors: Legendre Moments (LM), Chebyshev 

Moments (CM), Gegenbauer Moments (GM), Jacobi Moments (JM), Krawtchouk 

Moments (KM), Zernike Moments (ZM), Pseudo Zernike Moments (PZM), Fourier 

Merlin Moments (FMM), Chebyshev-Fourier Moments (CFM), Radial Harmonic 

Fourier Moments (RHF) and Radial Chebyshev Moments (RCM).  

 Method Name FC Rank FC 

C
a
rt

es
ia

n
 

1 Legendre Moments 2.56E+03 7 

2 Chebyshev Moments (First Kind) 2.52E+03 11 

3 Chebyshev Moments (Second Kind) 2.53E+03 10 

4 Gegenbauer Moments (λ = 0.75) 2.55E+03 8 

5 Jacobi Moments (𝛼 = 𝛽 = 1) 2.54E+03 9 

6 Krawtchouck Moments (p=0.5) 3.06E+03 6 

P
o
la

r 
 

7 Zernike Moments 3.22E+03 5 

8 Pseudo Zernike Moments 5.07E+03 2 

9 Fourier Merlin Moments 2.31E+03 12 

10 Chebyshev Fourier Moments 5.37E+03 1 

11 Radial Harmonic Fourier Moments 4.61E+03 3 

12 Radial Chebyshev Moments 3.90E+03 4 
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Figure 6.2: Proposed (a) feature level fusion and (b) decision fusion based 

frameworks. 

 

Moments are sorted using FC. Top k highest ranked moments are selected and used in 

the proposed fusion frameworks. Two fusion techniques are incorporated. First is the 

feature level fusion, which concatenates all features of k selected moments. Second 

fusion is the decision fusion framework in which the top k highest ranked moments 
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are chosen, and then class probabilities are evaluated according to different fusion 

approaches such as, median rule, max rule and sum rule. This process includes the 

calculation of the median, maximum and total probability of each class respectively 

and then selecting the class label with the maximum probability. The performance 

analysis of the proposed frameworks was achieved using the 10-fold cross validation 

with Support Vector Machine using linear kernel. The proposed data fusion 

frameworks are illustrated in Fig. 6.2. 

6.4 Results and discussions 

For each proposed method (feature level and decision fusion), we define a threshold k, 

which is the number of methods used for fusion.  

To evaluate the value of k, first, we sort the values in Table 6.1, according to the value 

of Fisher criterion. k is progressively increased from 1 to 12 and its value is determined 

where the accuracy in the training set is maximised. In Table 6.2, k for the fusion 

techniques is 6. The bold figure in Table 6.2 indicates the highest performance in the 

training set and reveals how many methods should be fused in the test set. Similarly, 

we can find the value of k for each rule (max rule, sum rule and median rule) in the 

decision fusion techniques, as shown in Table 6.3.  k is chosen to be 3 for sum and 

max rule, while the highest accuracy based on the median rule is when k is 5. 
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Table 6.2: Finding the value of k for feature level fusion 

Method Sorted 

 

Accuracy  (%) in training set 

Based on FC 

Top 1 method (k=1) 90.80 

Top 2 methods (k=2) 95.21 

Top 3 methods (k=3) 95.28 

Top 4 methods (k=4) 95.66 

Top 5 methods (k=5) 95.89 

Top 6 methods (k=6) 96.02 

Top 7 methods (k=7) 95.61 

Top 8 methods (k=8) 95.38 

Top 9 methods (k=9) 95.21 

Top 10 methods (k=10) 94.91 

Top 11 methods (k=11) 95.04 

Top 12 methods (k=12) 95.11 

 

Table 6.4 shows the results of classification using accuracy, sensitivity, specificity and 

miss rate. The methods of moments are sorted according to the accuracy (%) over the 

test set. Generally, methods in polar coordinates have higher accuracies, and lower 

miss rate than those methods of methods in Cartesian coordinates. The main reason 

for these is that generating rotational invariance in polar form is easier which gives a 

better performance. Pseudo Zernike Moments have the best performance among all 

the method of moments. 
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Table 6.3: Finding the value of k for decision fusion (%) 

Number of selected methods (k) 
Sum Rule 

(Training set) 

Median Rule 
(Training set) 

Max Rule 
(Training set) 

Top 1 methods (k=1) 93.37 93.37 93.37 

Top 2 methods (k=2) 94.48 94.48 94.51 

Top 3 methods (k=3) 95.38 94.21 94.94 

Top 4 methods (k=4) 94.61 94.41 94.48 

Top 5 methods (k=5) 95.00 94.74 94.81 

Top 6 methods (k=6) 94.61 94.24 94.54 

Top 7 methods (k=7) 94.48 92.96 94.61 

Top 8 methods (k=8) 93.87 92.66 94.61 

Top 9 methods (k=9) 93.61 91.76 94.64 

Top 10 methods (k=10) 93.37 91.06 94.58 

Top 11 methods (k=11) 92.73 88.52 94.54 

Top 12 methods (k=12) 92.27 88.52 94.44 

 

Table 6.4: Evaluation of successful classification using accuracy, TPR, TNR and 

FNR 

Method ACC (%) TPR TNR FNR 

PZM 93.21 0.93 0.97 0.07 

RHFM 92.79 0.92 0.96 0.07 

CFM 90.86 0.91 0.96 0.09 

RCM 90.12 0.90 0.95 0.10 

ZM 90.3 0.90 0.95 0.10 

LM 85.42 0.85 0.92 0.15 

GM 85.42 0.85 0.92 0.15 

JM 85.00 0.85 0.92 0.15 

KM 84.97 0.85 0.93 0.14 

CM #1 84.25 0.83 0.91 0.16 

CM #2 84.37 0.82 0.91 0.17 

FMM 76.53 0.79 0.89 0.21 

 

Table 6.5 summarises all the proposed methods. As we can see, the overall accuracy 

is improved for each individual fusion technique in comparison to the best method of 

moment, which is the Pseudo Zernike moment with an accuracy of 93.21%. The 

highest result is obtained from the feature level fusion based on Fisher Criterion, which 

increased by 2.5% in accuracy. 
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Table 6.5: The Accuracy of proposed method by different fusion techniques 

Method # of features Accuracy (%) 

Fusion Based on Fisher Criterion 600 95.71 

Sum Rule 100 95.11 

Median Rule 100 94.33 

Max Rule 100 94.08 

 

A plot of sensitivity against 1-specificity is called Receiver Operating Characteristic 

(ROC), which illustrates how successful the classification is [97]. From Fig 6.3 it is 

clear that the ROC of the proposed methods is superior to the highest moment-based 

method.  

 
Figure 6.3: ROC Characteristic. 

6.4.1 Comparison with other methods 

In this section, we compare the proposed method with previous studies on MSTAR. 

Template matching, perceptron, Optimal Hyperplane [31], LDA, Locality Preserving 

Projections (LPP) [53], Local Discriminate Embedding (LDE) [52], ICA and PCA [41] 

are some classical methods considered. As it is summarised in Table 6.6, the 
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recognition rate of the proposed method is superior to all of the aforementioned 

classical techniques. Additionally, the proposed method has higher accuracy than a 

fused classical method such as fusion of PCA, LDA and ICA [41]. Furthermore, state-

of-the-art approaches that have been introduced more recently are also considered, 

which include methods such as Multiscale Local Gradient Ratio Pattern Histogram 

(MLGRPH) [41], Maximum Interclass Distance (MID) [41], Nonnegative Matrix 

Factorization (NMF) [49], 2D-slice Zernike moments (2DS-ZMS)[123] and Auto 

Encoder (AE)[78]. The proposed method has the highest performance among all those 

algorithms. Even another moment called Zernike Moment used in the literature. An 

alternative ZM based method [123] which uses SVM classifier is also included in the 

comparisons. 

Table 6.6: Recognition rate of different algorithm 

Method Accuracy (%) 

Template matching [31] 89.3 

Perceptron [31] 92.5 

Optimal Hyperplane [31] 93.9 

LDA [53] 87.3 

LPP [53] 40.1 

LDE [52] 92.4 

Original image + LSVM [78] 88.64 

Original AE + LSVM [78] 88.81 

NMF [49] 95.16 

ZMS + SVM [123] 82.34 

2DS-ZMS + SVM [123] 86.92 

MLGRPH  [41] 93.88 

PCA+SVM [41] 91.61 

PCA+LDA+ICA+SVM [41] 90.57 

MID+SVM [41] 93.49 

Proposed Method 95.71 
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6.5 Conclusions 

Previous studies have shown that moments in polar coordinates have better feature 

representation capabilities with rotation [115], scale and translational invariance. The 

experimental results also show that accuracies of moments in polar form are much 

higher than those in Cartesian. In this chapter, we used different method of moments 

in Cartesian and polar coordinates to extract features to be used for classification. 

Furthermore, we defined two fusion techniques as feature level fusion and decision 

fusion. The aim of introducing fusion methods is to help the classifier to improve the 

classification performance and decrease the false alarm. Fisher Criterion is used to 

rank the features. The top k highest ranked-based moment feature extractions are 

selected and fused by the aforementioned techniques. The experimental results verify 

that both fusion techniques improve the overall accuracy.  
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Chapter 7 

7 ENTROPY SCORE BASED FEATURE SELECTION FOR 

MOMENT BASED SAR IMAGE CLASSIFICATION 

7.1 Introduction 

In this chapter, entropy score based feature selection is utilised to improve the moment 

based classification performance of Synthetic Aperture Radar Images. To benefit from 

the diversities introduced by different moments, twelve distinct moments are 

employed for feature extraction as  Legendre Moments (LM), Chebyshev Moments of 

first (CM #1) and second kind (CM #2), Gegenbauer Moments (GM), Jacobi Moments 

(JM), Krawchouck Moments (KM), Zernike Moments (ZM), Pseudo Zernike 

Moments (PZM), Fourier Merlin Moments (FMM), Chebyshev Fourier Moments 

(CFM), Radial Harmonic Fourier Moments (RHFM) and Radial Chebyshev Moments 

(RCM). A unique approach is proposed for entropy based feature selection. For all 

SAR images in the training set, a 3D feature matrix (𝛷𝑖,𝑗,𝑙), whose elements are: i, j, l 

(refer to ith moment, jth feature and lth sample)  is created.  For each feature, an entropy 

score for each element of feature is calculated and entropy score matrix 𝐻𝑖,𝑗 is created. 

After calculating the entropy score based on each aforementioned approach, the 

moments in each feature (column of the matrix (H)) are ranked in the descending order. 

Finally, feature selection is performed by choosing top k moments of feature matrix 

associated with highest ranked entropies of all methods. Experimental result shows up 

to 2.91% improvement in accuracy with the proposed approach. 
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7.2 Proposed entropy score for feature selection 

We propose the new approach for improvement of automatic target recognition in SAR 

images by applying 12 moments to increase the feature information of SAR images. 

Although adding more features, improves the recognition rate, it causes redundancy of 

information brought by the correlation of features and arousal of computational 

complexity. Therefore, it is a need for selecting specific features and hence feature 

selection should be applied to minimize the classification error [135]. In previous 

studies the focus was to find of subset form given input data D with M features. 

Regarding to those problems, a feature vector of M features are created and the best 

subsets (S) of M (where S≤M) was chosen for effective dimensionality reduction. 

However, in this study, a 3D matrix Φ with size i×j× 𝑙 is created where i refers to each 

moment, j refers to each feature and l refer to each sample. For each feature, j, entropy 

of sub-feature matrix (𝐹𝑖,𝑙) is evaluated. Once entropy for all features is performed, the 

entropy score matrix (𝐻𝑖,𝑗) is created. Entropy score is defined to be the measure to 

evaluate the class separability by the ratio of total sample population and average 

within-class population. Entropy score matrix H is ranked according to the entropy on 

each column. The top k corresponding moments for each feature is used to evaluate 

the recognition rate of SAR images. The summary of the proposed approach is 

illustrated in Fig.7.1.  
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Figure 7.1: Frameworks of the proposed approach. Selection by k highest entropy 

associated features by feature level fusion  

 

Input SAR images go through preprocessing for noise removal. A preprocessing is 

required to remove the background of SAR images before any feature extraction 

techniques. Preprocessing consists of different stages of histogram equalisation, 

smoothing filter and thresholding.  Next, two types of moments are used to extract 

features. The first type of moments are defined by Cartesian coordinates: Legendre 

Moments, Chebyshev Moments of a first and second kind, Gegenbauer Moments, 

Jacobi Moments and Krawtchouk Moments. The second type of moments are defined 

in polar coordinates: Zernike Moments, Pseudo Zernike Moments, Fourier Merlin 

Moments, Chebyshev Fourier Moments, Radial Harmonic Fourier Moments and 

Radial Chebyshev Moments. For each moment, 100 features are extracted. Entropy 

calculation is performed and entropy score matrix H is created, elements of each 

column of matrix H are ranked in the descending order and top k moments of each 

feature are selected. Finally, support vector machine (SVM) classifier with a linear 

kernel function is used for classification. 
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7.2.1 Preprocessing 

An example of preprocessing stage for an MSTAR image of an armoured personnel 

carrier (BTR70) is shown in Fig 7.2. Details of preprocessing stage are provided in 

section 3.3.  

x

Input Image Histogram Equalization Averaging Filter Mask

Texture

  

Figure 7.2: Preprocessing of an MSTAR image. 

 

7.2.2 Feature extraction 

Moments are projections of a function to the polynomial basis that are used to capture 

significant features and are widely used in many applications. In this study, two types 

of moments are used to extract features: moments in Cartesian and moments in polar. 

With different polynomial basis, different moments are generated for both types. 

Further details of feature extraction are given in Chapter 4. 

 

 

 



 94 

7.2.3 Entropy calculation  

The higher entropy for a feature is an indicator of higher information content and the 

corresponding feature should be selected. Arguing that higher entropies include the 

features with more scattered data, we propose a novel approach to maximize the ratio 

of total and within-class entropies to generate the entropy score. 

Feature 1    (𝜙𝑖,1,𝑙) 
𝜙1,1,1 𝜙1,1,2 ⋯ 𝜙1,1,1622 ℎ1,1

𝑎𝑙𝑙 

𝜙2,1,1 𝜙2,1,2 ⋯ 𝜙2,1,1622 ℎ2,1
𝑎𝑙𝑙 

⋮ ⋮ ⋮ ⋮ ⋮ 
𝜙12,1,1 𝜙12,1,2 ⋯ 𝜙12,1,1622 ℎ12,1

𝑎𝑙𝑙  

Feature 2    (𝜙𝑖,2,𝑙) 
𝜙1,2,1 𝜙1,2,2 ⋯ 𝜙1,2,1622 ℎ1,2

𝑎𝑙𝑙 

𝜙2,2,1 𝜙2,2,2 ⋯ 𝜙2,2,1622 ℎ2,2
𝑎𝑙𝑙 

⋮ ⋮ ⋮ ⋮ ⋮ 
𝜙12,2,1 𝜙12,2,2 ⋯ 𝜙12,2,1622 ℎ12,2

𝑎𝑙𝑙  

⋮ 
Feature 100    (𝜙𝑖,100,𝑙) 

𝜙1,100,1 𝜙1,100,2 ⋯ 𝜙1,100,1622 ℎ1,100
𝑎𝑙𝑙  

𝜙2,100,1 𝜙2,100,2 ⋯ 𝜙2,100,1622 ℎ2,100
𝑎𝑙𝑙  

⋮ ⋮ ⋮ ⋮ ⋮ 
𝜙12,100,1 𝜙12,100,2 ⋯ 𝜙12,100,1622 ℎ12,100

𝑎𝑙𝑙  

Figure 7.3: 3D feature matrix Φ and Entropy evaluation 

As it is shown in Fig 7.3 a 3D feature matrix (Φi,j,l), is created after extracting 100 

features of 1622 training samples for 12 moments. where i=1,2,3,…,12 refer to Pseudo 

Zernike moment, radial harmonic Fourier moment, Chebyseshv Fourier moment, 

radial Chebyshev moment, Zernike moment, Legendre moment, Gegenbauer moment, 

Jacobi moment, Krawchouk moment, Chebyshev moment of first kind, Chebyshev 

moment of second kind and Fourier merlin moment respectively. j=1,2,…,100 refer to 

jth feature of moment i.   For each feature j, entropy of all samples l in the training set 

(ℎ𝑖,𝑗
𝑎𝑙𝑙) of moment i is calculated as: 
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ℎ𝑖,𝑗
𝑎𝑙𝑙 = − ∑ 𝑝𝑖,𝑗,𝑙(𝑙𝑜𝑔2𝑝𝑖,𝑗,𝑙)

1622

𝑙=1

 (7.1) 

where pi,j,l corresponds to the probabilities extracted from the distribution of the 

respective samples in the training set. 

Entropy score tries to maximize the ratio of total sample population to within-class 

population by calculating respective entropies. For C class problem the within-class 

entropy is calculated as: 

ℎ𝑖,𝑗
𝑤 =

1

𝐶
∑ ℎ𝑖,𝑗

𝑐

𝐶

𝑚=1

 (7.2) 

where ℎ𝑖,𝑗
𝑐  is the entropy of each class. Then the entropy score is calculated as: 

ℎ𝑖,𝑗
𝑠 =

ℎ𝑖,𝑗
𝑎𝑙𝑙

ℎ𝑖,𝑗
𝑤  (7.3) 

After evaluation the entropy of each feature the entropy score matrix H (12×100), is 

formed for further processing as: 

𝐻𝑖,𝑗 = [

ℎ1,1
𝑠 ⋯ ℎ1,100

𝑠

⋮ ⋱ ⋮
ℎ12,1
𝑠 ⋯ ℎ12,100

𝑠
] (7.4) 

where each element of the matrix refer to the entropy score of moment i and feature j. 

Then for each feature j the matrix H is ranked in the descending order. The top k rows 

of the ranked H matrix is selected representing top k moments. 

7.2.4 Selection by k highest entropy associated features by feature level fusion 

The data-set is divided into training set and the test set.  In this study, all samples 

captured at 17° depression angle considered as training set and all samples which are 

collected at 15 ° depression angle considered to be a test set. An entropy score matrix 

(H) of size 12× 100 is created where ℎ𝑖,𝑗
𝑠  refers to the entropy of method i and feature 
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j as shown in Table 7.1. The columns on matrix H is ranked and the corresponding 

moment for each feature is selected. Hrank is the column ranked of the matrix H as it is 

shown in Table 7.2.  The corresponding moments for each feature are shown in Table 

7.3.  

Table 7.1: Entropy score matrix, (H) for the first five features 

Feature1 Feature2 Feature3 Feature4 Feature5 

1 PZM 0.007 0.022 0.134 1.004 4.743 

2 RHFM 5.369 5.923 6.490 6.865 7.074 

3 CFM 6.815 6.601 6.671 6.637 6.645 

4 RCM 5.948 5.652 5.660 6.069 6.287 

5 ZM 4.021 0.744 0.127 0.013 0.014 

6 LM 0.764 2.016 0.583 0.438 1.977 

7 GM 0.307 0.618 0.435 0.337 0.822 

8 JM 0.665 1.122 0.704 0.462 1.469 

9 KM 4.815 6.087 3.972 1.551 3.696 

10 CM #1 0.275 0.343 0.475 0.313 0.694 

11 CM #2 0.079 0.302 0.249 0.223 0.519 

12 FMM 3.865 3.829 3.230 3.025 2.925 
 

 

 

For each column of Hrank the corresponding top k moments are selected. k is 

progressively increased from 1 to 12 making a total of 100 to 1200 features. The 

selection for k is such that the overall accuracy (ACC) in the training set is maximised 

as follows: 

𝑘𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑎𝑟𝑔𝑘max  (𝐴𝐶𝐶(1: 𝑘)) (7.6) 
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Table 7.2: Column ranked of the matrix H  

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 

6.815 6.601 6.671 6.865 7.074 

5.948 6.087 6.490 6.637 6.645 

5.369 5.923 5.660 6.069 6.287 

4.815 5.652 3.972 3.025 4.743 

4.021 3.829 3.230 1.551 3.696 

3.865 2.016 0.704 1.004 2.925 

0.764 1.122 0.583 0.462 1.977 

0.665 0.744 0.475 0.438 1.469 

0.307 0.618 0.435 0.337 0.822 

0.275 0.343 0.249 0.313 0.694 

0.079 0.302 0.134 0.223 0.519 

0.007 0.022 0.127 0.013 0.014 

 

Table 7.3: Corresponding Moment of ranked entropies Hrank 

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 

3      3 3 2 2 

4      9 2 3 3 

2      2 4 4 4 

9      4 9 12 1 

5     12 12 9 9 

12      6 8 1 12 

6      8 6 8 6 

8      5 10 6 8 

7      7 7 7 7 

10     10 11 10 10 

11     11 1 11 11 

1      1 5 5 5 

 

Fig. 7.4 indicates that the number of k to be selected in the training  is 5. We use k to 

be 5 in the test set, where the first k moments of each feature should be selected. For 

example, in feature 1 the moment 3, 4, 2, 9 and 5 should be selected. 
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Figure 7.4: Number of fused methods 

7.3 Results and discussions 

As we discussed earlier we defined stopping criteria to determine the value of k. This 

parameter is chosen to maximise the accuracy by using 10-fold cross validation over 

the training set. The highest-ranking k methods are determined which maximises the 

accuracy.  We independently employ 12 different moments, which are ranked 

according to their associated entropy levels. The addition of the moments is according 

to the respective entropies. Hence, in iteration k, kth highest methods are combined by 

including the highest performing k× 100 features. The results show that the accuracy 

is maximised at k as 5, with 96.28%. Further increase of k decreases the accuracy. This 

is due to the possible inclusion of redundancies and the features that are not as 

discriminative as those associated with the higher entropies. Note that when k is 5 we 

include 500 features in the feature vector to be classified.  

Table 7.4 shows the accuracy of each individual moment, and 100 features are 

extracted for each moment. Generally, moments on the polar form have a better 
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performance in comparison to those in Cartesian. This is because the moments in polar 

coordinates feature representation have capabilities with rotation, scale and 

translational invariance. Pseudo Zernike Moment has the highest accuracy among all 

moments. 

Table 7.4: Accuracy of each individual Moment with 100 features 

 Method Accuracy (%) 

C
a
rt

es
ia

n
 

1 Legendre Moments 85.42 

2 Chebyshev Moments (First Kind) 84.25 

3 Chebyshev Moments (Second Kind) 84.37 

4 Gegenbauer Moments (λ = 0.75) 85.42 

5 Jacobi Moments (𝛼 = 𝛽 = 1) 85.00 

6 Krawtchouck Moments (p=0.5) 85.97 

P
o
la

r 

7 Zernike Moments 90.30 

8 Pseudo Zernike Moments 93.21 

9 Fourier Merlin Moments 76.53 

10 Chebyshev Fourier Moments 90.86 

11 Radial Harmonic Fourier Moments 92.79 

12 Radial Chebyshev Moments 90.12 

 

Table 7.5 compares proposed approach with the Pseudo Zernike Moments (which has 

the highest accuracy among each individual moment). Proposed method requires 

selection of 500 features and the accuracy is improved by 2.91%.  

Table 7.5: Accuracies of proposed methods 

Method Number of features Accuracy (%) 

Highest Performance Among 

Moments 
100 93.21 

Proposed Method  500 96.12 

 

The proposed method is also compared with previous studies on MSTAR. Linear 

discriminant analysis (LDA), locality preserving projections (LPP) [53], local 

discriminate embedding (LDE) [52], independent component analysis (ICA), principle 
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component analysis (PCA) local binary pattern (LBP) and Multiscale local gradient 

ratio pattern histogram (MLGRPH) [41] are some classical methods considered. As it 

is summarized in Table 7.6, the recognition rate of proposed method is superior to all 

of the aforementioned classical techniques. Additionally, the proposed method has 

higher accuracy than fused classical methods such as fusion of PCA, LDA and ICA. 

 

Table 7.6: Recognition rate of different algorithms 

Method Accuracy (%) 

LDA [53] 87.3 

LPP [53] 40.1 

LDE [52] 92.4 

Original image + LSVM [78] 88.64 

Original AE + LSVM [78] 88.81 

NMF [49] 95.16 

MLGRPH  [41] 93.88 

PCA+SVM [41] 91.61 

PCA+LDA+ICA+SVM [41] 90.57 

MID+SVM [41] 93.49 

LBP+SVM [32] 72.1 

Proposed Method  96.12 

 

 

7.4 Conclusions 

In this chapter, we applied entropy score based feature selection for improvement of 

classification performance in target recognition for SAR images. Different moments 

including LM, CM #1, CM #2, GM, JM, KM, ZM, PZM, CFM, FMM, RHFM and 

RCM are used to benefit from the diversities introduced by different moments. Twelve 

feature vectors are extracted using 12 different moments. Entropy score are used for 

ranking the moments of each feature. Feature selection is performed by choosing  the  
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top k moments. The results obtained by the proposed approach outperforms the state-

of-the-art alternative techniques in the literature. The results generated by the proposed 

approach reaches an improvement of level up to 2.91% in accuracy.  
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Chapter 8 

8 ENSEMBLE OF CLASSIFIERS FOR IMPROVED SAR 

IMAGE RECOGNITION  

8.1 Introduction  

In this section, a new approach for classification of three and ten kinds of ground 

vehicles from Moving Stationary Target Acquisition and Recognition images is 

proposed. Each SAR image includes background, target and shadow regions. First, 

backgrounds are removed by pre-processing. Then Pseudo Zernike moment features 

are extracted from target and shadow regions. Extracted features from target, shadow 

and combined target-shadow regions are then fused using feature fusion and are fed to 

different classifiers. Five classifiers are adopted including support vector machine, 

decision tree, linear discriminant analysis, k- nearest neighbour and random forest. 

Finally, the performance of the proposed method is calculated by majority voting 

based on all output labels corresponding to each classifier. The experimental results 

justify the combining features coming from the target, shadow and target-shadow 

improve the performance. Additional improvement in the overall accuracy is also 

obtained by using an ensemble of classifiers through majority voting (MV). 

Experimental results show that feature fusion followed by majority voting increases 

the recognition rate up to 99.5%.  
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8.2 Proposed method on ensemble of classifiers  

A summary of the proposed method is illustrated in Fig. 8.1. First, preprocessing is 

applied to each input SAR image extracting three different regions of interests as 

target, shadow and combined target-shadow region. These regions go through 

extraction of three different parts, which includes area, boundary and texture. For each 

region and parts, 100 features are extracted using Pseudo Zernike Moments. A feature 

vector then is created by concatenation of all extracted feature vectors of each region 

and part to form a feature fusion of 900 features. 

Different classifiers such as support vector machine, decision tree, a linear 

discriminant analysis, k-nearest neighbour and random forest are adopted as part of 

the feature fusion process generating the overall performance of each classifier. 

Finally, by utilising majority voting among five classifiers, class label of each sample 

is evaluated, and overall performance is calculated. Experimental results indicate an 

improvement using both feature fusion and majority voting, with the recognition rate 

increasing to 99.5%.   
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Figure 8.1: Ensembles of classifiers for improved SAR 

8.2.1 Preprocessing 

SAR images consist of background that should be first removed before any further 

processing. The proposed preprocessing employs, histogram equalisation followed by 

averaging filtering through which the image is smoothened to reduce noise artefacts. 

The well-explained procedure is given in section 3.3. 

Fig. 8.2 shows the summary of preprocessing of a SAR image in the target region only.  

For each region, three segmented parts are generated as area, boundary and texture. 

Therefore, for each sample SAR image, a total of nine regions are generated as it is 

illustrated in Fig. 5.3. 



 105 

Input Image
Histogram 

Equalization
Averaging Filter Theresholding Sobel Filter Dialation

Area Boundary

Texture

x

  
 

Figure 8.2: Preprocessing of target region 

8.2.2 Feature extraction 

Moments used to extract significant features from nine-regions (area, boundary and 

texture of the target, shadow and combined target-shadow) of SAR images. More 

details of Moments methods are provided in Chapter 4. 

8.2.3 Feature fusion 

As mentioned earlier, for each segmented image (area, boundary and texture for the 

target, shadow, and combined target-shadow) 100 features are extracted by utilising 

PZMs. By concatenating each segmentation technique, a feature fusion vector with 

900 features is generated for each sample. This fused vector then is fed to different 

classifiers. 
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8.2.4 Ensemble of classifiers and majority voting 

Five different classifiers are introduced for target recognition of SAR images. Support 

vector machine (SVM) with the Quadratic kernel, decision tree (DT), linear 

discriminant analysis (LDA), k- nearest neighbour (KNN) with k=3 and random forest 

(RF) are used for evaluating accuracy. A 10-fold cross validation technique is applied 

in all experiments.  

Finally, voting is applied among all five classifiers above for finding the output class 

label of each sample. Five different classifications rules c1(x), c2(x), c3(x), c4(x) and 

c5(x) are combined to produce a classifier that is superior to any individual classifier. 

Majority voting among five classifiers can be evaluated as:  

𝐶(𝑋) = 𝑎𝑟𝑔𝑖𝑚𝑎𝑥 ∑  ( 𝑐𝑗(𝑋) = 𝑖)

5

𝑗=1

 (8.1) 

where X is the test set, and i is the class label. In the case of having the same vote for 

two classes, a random selection is performed between these classes. 

8.3 Experimental results and discussions 

Each region (target, shadow, and combined target-shadow) includes three different 

segmentation parts as area, boundary and texture. Table 8.1 shows the accuracy of 

different segmented parts in the target regions only. For each segmented part, 100 

features are extracted and the accuracy is calculated by five different classifiers.  The 

texture of target region followed by SVM classifier has the highest accuracy. 

The same approach is adopted for the shadow regions. Shadow regions are areas on 

the ground that are not covered by the radar signal; as a result, no return signal is 
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received, and these areas appear dark in the SAR images. As shown in Table 8.2, 

accuracies of shadow regions are less than those in the target region. However due to 

having high accuracies they can be considered as one part of target recognition. 

Table 8.1: Accuracy (%) by different classifier (target region) 

Classifier Texture Boundary Area 

SVM 96.2 95.7 95.5 

LDA 91.9 90.8 92.1 

KNN 95.6 94.0 95.0 

DT 86.9 89.2 87.5 

RF 92.1 93.4 93.4 

 

In Table 8.3, we evaluate the recognition rate of combined target-shadow regions of 

different segmented parts. The results show improvements drastically on each 

classifier and each individual segmented part. Further improvements are achieved by 

applying majority voting for each part. In the final consideration, we fused all features 

by concatenation of target (area, boundary and texture), shadow (area, boundary and 

texture) and combined target-shadow (area, boundary and texture) regions to form a 

vector with 900 features. Experimental results indicate that fusion slightly improves 

the recognition rate. As it is shown in Table 8.4, after applying majority voting on the 

classifiers using fused feature vectors, the performance reflected by the accuracy hits 

to the highest level of 99.5%. 

Table 8.2: Accuracy (%) by different classifier (shadow region) 

Classifier Texture Boundary Area 

SVM 85.5 91.7 90.4 

LDA 78.3 78.9 76.2 

KNN 83.6 88.3 86.0 

DT 72.5 72.2 74.3 

RF 79.5 85.5 85.2 
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Table 8.3: Accuracy (%) by different classifiers (combined target-shadow region) 

Classifier Texture Boundary Area 

SVM 97.8 97.9 97.9 

LDA 94.1 95.1 94.2 

KNN 96.5 96.8 97.1 

DT 86.0 89.0 86.6 

RF 93.8 96.3 95.2 

MV 98.2 98.4 98.1 

 

Table 8.4: Accuracy (%) -Ensembles of classifiers 

Method All (900 Features) 

SVM 99.2 

LDA 96.7 

KNN 95.0 

DT 86.8 

RF 96.2 

MV (Ensemble of five classifiers) 99.5 

 

 

In the final setup, we used 10-class database. We only used texture of target, shadow 

and combined target shadow. In this regard, for each region 100 features are extracted. 

The features of each individual ROI are fed to different classifiers as it is shown in 

Table 8.5. Experimental result shows that the highest performance achieved by feature 

fusion followed by SVM classifier and the recognition rate reaches to 98.52%. Further 

improvement is achieved by feature fusion followed by majority voting among 

classifiers and is reached to 99.25% in the accuracy. 
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Table 8.5: Accuracy (%) by different classifiers in 10-class problem 

Region KNN DT SVM RF LDA 

Target 84.65 79.71 91.85 74.11 82.31 

Target-

Shadow 
82.96 74.05 87.69 70.15 76.99 

Shadow 87.27 78.51 90.22 72.69 74.09 

Feature 

level fusion 
96.33 89.47 98.52 89.29 93.86 

Feature 

level 

fusion+ 

MV 

99.25 

 

Table 8.6 shows the comparison of the performance of the proposed technique with 

other techniques in the literature.  Linear discriminant analysis (LDA), principle 

component analysis (PCA) and independent component analysis (ICA) are a rotational 

variant, and therefore the recognition rate is poor, even though all methods are fused. 

Temple matching requires huge amounts of data to be analysed.  A better choice of 

feature extraction technique is the moment enforced by fusion. In [32] radial harmonic 

Fourier moment (RHFM) followed by local binary pattern (LBP), Haar wavelet 

transform (HWT), radon transform (RT), PCA and SVM and in [27] radial Chebyshev 

moment (RCM) followed by fusion techniques are successfully applied. However, the 

proposed method outperforms all other techniques in the literature. 
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Table 8.6: Comparison of proposed method with other techniques 

Method Accuracy (%) 

LDA [53] 87.4 

ZM [30] 89.4 

Template Matching [31] 90.4 

PCA+LDA+ICA  [41] 90.6 

MINACE [124] 90.6 

PCA [53] 93.3 

Seven EFS Coefficient [41] 93.5 

QP normalized Image [28] 94.1 

RHFM+LBP+HWT+RT+PCA+SVM [32] 98.1 

RCM + Feature Fusion [27] 98.7 

Proposed Method (in 3-class) 99.5 

Proposed Method (in 10-class) 99.25 

 

8.4 Comparison of all proposed methods 

In this section, we compare all four proposed methods. Table 8.7 shows the accuracy 

of each proposed method. In the first proposed method, in 3-class problem and 10-

class problem, for each SAR image, 9 region of interests are extracted as: area of target 

(TA), boundary of target (TB), texture of target (TT), area of shadow (SA), boundary 

of shadow (SB), texture of shadow (ST), area of target-shadow (TSA), boundary of 

target-shadow (TSB) and texture of target-shadow (TST). For each ROI, 100 features 

are extracted using RCM to form a feature vector with 900. The same approach is 

performed for proposed method # 4, except that instead of using RCM we applied 

PZM. In addition, we evaluate the output class label of each sample by majority voting 

among five different classifiers as SVM, DT, RF, LDA and k-NN. Both proposed 

methods are superior to other two proposed methods because of two reasons. Firstly, 

shadow regions are involved for the feature extraction that increase the useful 

information of each SAR image. Secondary different ROIs are introduced. Each ROI 

carries specific information. For example TB emphasize on the boundary of target. 

Extracting features form each ROI and combining them side by side, form a single 
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feature vector, that has the most informative and useful information that is superior to 

proposed method #2 and proposed method #3 in which only a single ROI is used.  Also 

propose method # 4 is superior to proposed method #1 mainly because we adopted 5 

different classifiers. Arguing that the accuracy of each method may considered to be 

biased depending on one classifier, we consider the majority voting among classifiers, 

in which the class label of each sample is the one with highest vote among these 5 

classifiers. Majority voting helps to improve the accuracy while avoiding 

redundancies. It is also reduced the dependency from one classifier which in turns may 

lead to a biased decision.  Experimentally we also see that the accuracy of proposed 

method # 4 is superior to others both in 3-class and 10-class problems. However, in 

proposed method #2 and propose method #3, although the accuracy is less than other 

proposed methods, we only considered one ROI which is TT. For this ROI, 12 moment 

methods are used to extract the features as Legendre Moments (LM), Chebyshev 

Moments of first kind (CM #1), Chebyshev Moments of second kind (CM #2),Jacobi 

Moments (JM), Gegenbauer Moments (GM),  Krawtchouk Moments (KM), Zernike 

Moments (ZM), Pseudo Zernike Moments (PZM), Fourier Merlin Moments (FMM), 

Chebyshev Fourier Moments (CFM), Radial Harmonic Fourier Moments (RHFM) and 

Radial Chebyshev Moments (RCM). The aim of introducing many moment methods 

was to improve the target recognition performance. For each moment, 100 features is 

then extracted. If we fuse all methods, then we would have a single feature vectors 

with 1200 features. However having many features arise the redundancy between 

correlated features. In order to overcome this problem we introduce 2 unique 

techniques to increase the recognition performance and class separability and 

decreases the dimensionality of features by ranking. In proposed method #2 we 

calculate the class separability of each moment method based on Fisher Criterion (FC), 
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and moments with highest class separability are selected. We found that if we select 

the first 6 moments with highest class separability, the accuracy would be maximised 

in the training set. Therefore selection is perform by choosing 600 features (100 feature 

for each selected moment). The accuracy is improved over a single ROI. Consider only 

TT of RCM and TT of PZM, the accuracy over test set was 93.21% and 90.12% 

respectively in 3-class problem as shown in Table 6.4. Selection and fusion of most 

separable moments based on FC increases the accuracy up to 95.71%. Further 

improvement was achieved by introducing the novel approach based on Entropy Score. 

In this proposed method, instead of limit ourselves with selecting the most separable 

moments and the fusing all features associated with selected moments, for each feature 

we select more informative moment based on entropy score. Since each feature has a 

specific characteristic, then for each feature the moments with highest-class separation 

would be selected and in this regard, we expected the accuracy to be improved. 

Experimentally we justify that the accuracy is improved since we selected more 

dominant features rather than selecting all features associated with a specific moment. 

In addition, we observe that only 500 features are used to improve the accuracy up to 

96.12% in 3-class problem. The same approach is done for 10- class problem. 
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Table 8.7: Summary of all proposed methods 

Method 

Number 

of 

features 

Number 

of classes 

Accuracy 

(%) 

Target Recognition In SAR Images Using 

Radial Chebyshev Moments 

(proposed method #1) 

900 

 

3 98.69 

10 96.63 

Improved SAR Target Recognition Using 

Fisher Criterion And Data Fusion 

(proposed method #2) 

 

600 

 

3 95.71 

10 91.08 

Entropy Score Based Feature Selection For 

Moment Based SAR Image Classification 

(proposed method #3) 

 

500 

3 96.12 

10 92.88 

Ensemble Of Classifiers For Improved 

SAR Image Recognition 

(proposed method #4) 

 

 

900 

3 99.50 

10 99.4 

 

8.5 Computational complexities of proposed methods 

One aim of adopting moments is to decrease the computational complexity. We 

observed that by extracting only few moments, we achieved an acceptable accuracy. 

In Chapter 5 for example, by extracting only 34 features using ZM, the accuracy 

reaches to 89.25%. However, there is tradeoff between accuracy and computational 

cost. Since in SAR-ATR high recognition rate is the most important factor, in all 

proposed methods we had to increase the computational cost to improve the 

recognition rate. In Chapter 5 and Chapter 8, extracting 9 ROIs caused the 

computational cost to be increased, but the accuracy of extracted regions improved up 

to 98.69%. Ensemble of classifiers after feature level fusion in Chapter 8 further are 

increased the complexity, however the accuracy improved to 99.55%.  In Chapter 6 

and Chapter 7 complexity increased by applying 12 different moment methods to 

improve the target recognition performance, further increasing of computational 

complexity is due to introduce two ranking methods for reducing dimensionality as FC 



 114 

and Entropy Score. While the cost of computation arises, the accuracies of 

aforementioned proposed method also improved to 95.71% and 96.12% respectively. 

In summary at some stage for improving the performance, we increase the 

computational cost, but still the computational cost of all proposed methods are 

comparable with those mentioned in Table 2.1. 

8.6 Conclusion 

In this chapter, first, we segmented both target and shadow regions of SAR images by 

using preprocessing approaches. For each region, we defined different segmentation 

parts. Then we extracted all segmented parts in the target, shadow and combined 

target-shadow regions by utilising Pseudo Zernike Moments. All segmented parts are 

combined with each other to form a fusion vector. Experimental results show an 

improvement in accuracy by using fusion techniques in respect of different classifiers. 

Furthermore, even higher accuracy is achieved using majority voting after obtaining 

the class labels from five classifiers on each sample. Experimentally it is proved that 

the ensemble of classifiers using majority voting increases the accuracy. Finally, 

overall accuracy has the highest performance when feature fusion followed by 

majority voting is applied and it reaches to 99.5%.  This result means a 3.3% 

improvement over the standard approach with texture segmentation only, which is 

96.2% for three-class problem. In addition, we used ten-class problem in which the 

accuracy improved up to 99.25%.  
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Chapter 9 

9 CONCLUSIONS AND FUTURE WORK 

The aim of this thesis is to introduce novel approaches for feature extraction and 

features selection to improve the recognition rate while utilising fewer numbers of 

features. 

9.1 Conclusion 

We developed a feature extraction algorithm using RCM and compared with the 

commonly used method in the literature as ZM. RCM is a discrete orthogonal moment 

that reduces numerical errors and computational complexity due to normalisation in 

ZM. Additionally, we considered shadow regions as part of feature extraction parallel 

to target information, and then we applied feature fusion technique based on a different 

image segmentation process: area, boundary and texture. These approaches together 

improved the total accuracy by 8%. 

We used different method of moments in Cartesian and polar coordinates to extract 

features to be used for classification. Fisher Criterion is used to rank the performances 

of each moment. Moments in polar coordinates have better feature representation 

capabilities with rotation scale and translational invariance. Then we defined two 

fusion techniques as feature level fusion and decision fusion. Fusion technique used to 

help the classifier to improve the classification performance and decrease the false 

alarm. 
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We applied entropy based feature selection for improvement of classification 

performance in target recognition for SAR images. Different moments including LM, 

CM #1, CM #2, GM, JM, KM, ZM, PZM, CFM, FMM, RHFM and RCM are used to 

benefit from the diversities introduced by different moments. The results obtained by 

entropy score feature selection approach outperforms the state-of-the-art alternative 

techniques in the literature.  

We also segmented both target and shadow regions of SAR images by using  

preprocessing approaches. For each region, we defined different segmentation parts. 

Then we extracted all segmented parts in the target, shadow and combined target-

shadow regions by utilising PZM. All extracted parts are combined with each other 

to form a fusion vector. Higher accuracy is achieved using majority voting after 

obtaining the class labels from five classifiers on each sample. Experimentally it is 

approved that the ensemble of classifiers using majority voting increases the 

accuracy. Finally, the overall accuracy has the highest performance when feature 

fusion followed by majority voting is applied and reaching to 99.5%.   

9.2  Future work 

Recently, application of SAR images that involved three-dimensional images of 

objects are increased drastically and the feature extraction is the challenging problem. 

One technique is to adopt and develop the moments for extracting features from three-

dimensional SAR images.  

Many techniques such as genetic algorithms [136] and random forest [137] are 

successfully adopted in many applications such as Alzheimer or cancer detection for 

feature selection . As a future work, these algorithms can be used for effective selection 
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of features in SAR images. Finally, in the classification stage, deep learning algorithms 

[139] achieve high performance in classification in many applications and many 

researchers address to use deep learning as a classifier in higher dimensional space 

rather than traditional classifiers such as SVM. 
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