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ABSTRACT 

Detecting and classifying cardiac arrhythmias is critical to the diagnosis of patients 

with cardiac abnormalities. Identification and classification of abnormalities are time 

consuming because it often requires analysing each heartbeat of the ECG recording. 

Moreover, computerized ECG classification can also be very useful in shortening 

hospital waiting lists and saving the life by discovering heart diseases at early stages. 

Therefore, automatic classification of the arrhythmias using machine-learning 

technologies can bring various benefits. In this thesis, novel and high-performance 

approaches based on deep learning techniques are proposed for the automatic 

classification of electrocardiogram (ECG) signals. In this research work, two fully 

automatic systems have been presented which are shown to have high efficiency and 

low computational cost. 

In one of the proposed systems, a novel decision-level fusion of features is presented 

by three different approaches; the first one uses normalized feature-level fusion of 

handcrafted global statistical and local temporal features by uniting these features 

into one set, the second one uses the morphological feature subset, and the third one 

combines features extracted from multiple layers of a Convolutional Neural Network 

(CNN) through using a score-level based refinement procedure. 

The second proposed system utilized a new architecture of deep neural networks, 

Directed Acyclic Graph Convolutional Neural Networks (DAG-CNNs). DAG-CNNs 

fuse the feature extraction and classification stages of the ECG classification into a 
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single automated learning procedure and utilize the multi-scale features and perform 

the score-level fusion of multiple classifiers automatically.  

The results over the MIT-BIH arrhythmia benchmark database exhibited that the 

proposed systems achieve superior classification accuracy compared to all of the 

state-of-the-art ECG classification methods. 

Keywords: electrocardiogram, convolutional neural networks, directed acyclic graph 

CNN, morphological feature, statistical feature, temporal features, multi-stage CNN-

based features, feature-level fusion, score-level fusion, decision-level fusion. 
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ÖZ 

Kalp ritim düzensizliklerinin tespit ve sınıflandırılması ritim bozukluğu yaşayan 

hastaların tanı ve tedavisi için kritik öneme sahiptir. Kalp ritim bozukluklarının 

tanınması ve sınıflandırılması her bir elekrokardiyografi (ECG) kaydının tek tek 

incelenmesini gerektirdiğinden zaman alan bir işlemlerdir. Dolayısıyla, ECG 

kayıtlarının bilgisayar yardımlı sınıflandırılması hastanede bekleme sıralarının 

kısaltılmasında ve kalp rahatsızlıklarının erken teşhis edilerek hayat kurtarılmasında 

çok kullanışlı olabilir.  Bu anlamda, makina öğrenme teknolojileri kalp ritim 

bozukluklarının otomatik sınıflandırılması için çeşitli yararlar sağlarlar. Bu tezde, 

ECG sinyallerinin otomatik sınıflandırılmasına yönelik olarak derin öğrenme 

tekniklerine dayalı yeni ve yükek başarımlı yaklaşımlar önerilmiştir. Araştırma 

çalışmaları sonucunda, yüksek verim ve düşük hesaplama maliyetine sahip tam 

otomatik iki sistem önerilmiştir. 

Önerilen sitemlerin birinde yenilik olarak özelliklerin karar verme düzeyinde 

birleştirilmesi üç farklı yaklaşımla gerçekleştirilmiştir. Birinci yaklaşım tümel 

istatistiksel özellikler ile zaman tabanlı yerel özelliklerin bir normallenmiş küme 

içerisinde birleştirilmesinden oluşur. İkinci yaklaşım biçimsel özelliklerin bir alt 

kümesini kullanır, üçüncü yaklaşım ise çok katmanlı evrişimli bir sinir ağından 

çıkarılan özellikleri bir  puan tabanlı işlev kullanarak arıtıp birleştirir.  

Önerilen ikinci sistem derin sinir ağları için yönlü döngüsüz çizge gösteriminde yeni 

bir evrişimli sinir ağı mimarisi (DAG-CNNs) sunar. Bu mimaride ECG sinyalleri 

için özellik çıkarımı ve sınıflandırma aşamaları tek bir otomatik öğrenme yöntemine  



vi 

 

indirgenir ve puan tabanlı birleştirme çok ölçekli özelliklerin  çoklu sınıflandırıcılar 

tarafından kullanılmasıyla elde edilir.  

MIT-BIH ritim bozukluğu veri tabanı kullanılarak yapılan deneysel çalışmaların 

sonuçları göstermiştir ki, önerilen sistemler mevcut gelişmiş ECG sınıflandırma 

yöntemlerine göre üstün sınıflandırma başarımına ulaşmışlardır.  

Anahtar Kelimeler: Electrokardiogram, evrişimli sinir ağları, yönlü döngüsüz çizge 

CNN, biçimsel özellikler, istatistiksel özellikler, zaman tabanlı özellikler, çok etaplı 

CNN tabanlı özellikler, özellik seviyeli birleştirme, puan seviyeli birleştirme, karar 

seviyeli birleştirme. 
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Chapter 1 

INTRODUCTION 

1.1 Problem Description and Motivation  

Heart’s electrical activities are captured by using some electrodes on chest’s surface 

which can record the electrical signal  that appears by cumulative heart cells action. 

Electrocardiogram (ECG) classification is one of the most challenging tasks in 

heartbeat analysis. Medical centres are using ECGs in order to detect various 

cardiovascular diseases. By monitoring a patient’s ECG tape; expert cardiologists are 

able to recognize various cardiac arrhythmias that can cause serious heart diseases. 

During the last decade, researchers have proposed different pattern recognition 

systems in order to detect such arrhythmias automatically, which have been very 

helpful for cardiologists and clinicians in hospitals. Although collecting the ECG 

data is easy, challenges on extracting the most useful information from the ECG 

signal still exists. Also, due to limited accuracy of visual and manual interpretation of 

ECGs, researchers proposed the use of computer-aided diagnosis (CAD) systems for 

the analysis and interpretation of these signals automatically.    

Electrocardiogram provides health information for patients. Cardiologists can detect 

various heart abnormalities by checking the ECG waveform. Electrocardiogram was 

invented by W. Einthoven in 20
th

 century. Since nowadays heart diseases are a 

common death reason of people in developed countries, many researchers are 

working on ECG analysis. 
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Electrical and mechanical heart actions are joining together. Electrocardiography is 

an essential device to estimate the heart’s activity and it provides the information of 

normal and abnormalities of the heart. An ECG record consists of the repeatedly 

heart beats. Each single heart beat includes many waves and inter-waves. 

Recently, the classification of heartbeat signal by using deep learning approaches is 

one of the promising techniques in detection of arrhythmias at early stages. 

Moreover, neuroscience problems, such as ECG signal classification, present a 

particular set of challenges that require cutting edge in machine learning. 

Deep Learning and especially CNN is one of the best choices in many well-known 

artificial intelligence (AI) applications such as speech recognition, signal and image 

processing and natural language processing (NLP) [1]. CNN tries to mimic human 

brain functionality by using large data. Collecting a large annotated dataset for a 

particular problem is one of the CNN main challenges. Other CNN challenges are 

hyper-parameter optimization, high-performance hardware requirement and 

overfitting problem. These CNN issues lie in ECG classification as well. The number 

of annotated heartbeats in the public datasets is limited and strongly unbalanced in 

different arrhythmia types. In consequence, comparing to deep CNN architecture in 

image classification fields, the number of CNN layers in ECG classification systems 

are limited. However, the computational complexity is lower than CNN image-based 

applications. 

Based on the demonstrated success of CNNs for biomedical signal and image 

processing, the research work presented in this thesis proposes a novel system that 

utilizes multi-stage CNN-based features that are combined with hand-crafted features 



3 

 

for the automated diagnosis of heartbeat signals. The set of handcrafted features 

consists of three subsets namely, wavelet transform based morphological features 

representing localized signal behaviour, statistical features exhibiting overall 

variational characteristics of the signal and temporal features representing the 

signal’s behaviour on the time axis.  

As illustrated in Figure 1.1, the generated waves distribute among the body and we 

record ECG motion and its wave components, such as P-wave, Q-wave, R-peak and 

S-wave. P-wave shows depolarisation of the atria, therefore the blood current moves 

from atria to ventricles. P-Q interval illustrates the generated wave from atria to 

ventricles. QRS complex indicates the depolarization of ventricles so blood is exited 

from right ventricle to arteria pulmonalis and also from left ventricle to aorta. 

Repolarization of atria cannot be observed during the recording since the QRS 

section covers it. Repolarization of ventricles is known as T-wave. 

 
Figure 1.1: An ECG Waveform with the Standard ECG Intervals [2] 
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The muscles of heart can be affected by Cardiac arrhythmias which are the reason of 

disorder rhythms. This problem can be an obstacle to pumping the blood. When the 

blood pumping is not sufficient, it will increase the risk of death. Common clinical 

arrhythmia detection is based on an expert’s decision. Since it is critical to assess and 

monitor a patient heart’s situation, various automatic methods have been proposed, 

but majority of them have heavy computational cost to extract proper features, and 

they are able to classify limited disease types. Current available systems are very 

sensitive to noise and insufficient robustness is one of their weaknesses. Therefore, it 

is obvious that the systems need to improve their classifier’s ability in order to 

classify overlapped classes and incomplete or noisy input samples. 

 In this thesis we have investigated the success of handcrafted and learned features 

for ECG classification. Additionally, various extension of deep learning architectures 

have been proposed for classifying the heartbeat signals. 

The rest of this thesis is organized as follows:  previous studies on ECG 

classification have been reviewed in Chapter 1. In Chapter 2, an introduction to ECG 

and signal processing are given. Mathematical methods are explained in Chapter 3, 

Background Materials have been stated in Chapter 4 and the data set used in this 

thesis has been introduced in Chapter 5.  Pre-processing has been presented in 

Chapter 6. Proposed methods and experimental results are demonstrated in Chapter 

7, Chapter 8, respectively. Finally, the Conclusion has been stated in Chapter 9. 
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Chapter 2 

THE STATE OF THE ART 

Recently many physicians use automated interpretation of ECGs for supporting their 

decisions. The performance and accuracy of some ECG analysers are approximately 

as well as expert physicians. There are various types of digital signal processing 

(DSP) procedures, varying from simple to complex, which are used for analysing 

heart activity and electrocardiography. These methods can be categorized into 3 

classes: time-domain approach, frequency-domain approach, and time-frequency 

domain approach. 

Time domain and frequency domain approaches are common methods and have good 

performance in QRS detection and recognition its onset-offset positions. Recent 

methods are motivated to use combination of time and frequency domain in time-

frequency approach and use the prior methods benefits. These methods use 

frequency analysis and combine its results with time domain features extraction.  

Time-domain methods don’t have efficient results due to their low sensitivity. The 

main reason is that the amplitude of the signal has small changes in time domain.  On 

the other hand, frequency domain approaches have more sensitivity to changes of the 

signal amplitude, but they can’t determine the exact location of changes. 
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Wavelet transform (WT) is a common approach due to its easy implementation. 

Since it is very similar to one of the famous frequency method, Fourier transform, 

interpretation of its results can be done in the same way. There are various models of 

wavelet transform, so that they can be used in different applications. Choosing a 

specific kind of wavelet transform depends on the problem which can be varied from 

noise removal, detecting time and frequency elements, recognizing the essential 

peaks and etc. 

For ECG classification different methods are introduced by the researchers but still 

none of them is completely successful. The most important part of classification is 

choosing proper discriminative features from raw ECG signal. Different features 

types have been used in order to recognize the abnormalities of ECG, such as 

Bayesian [3] and heuristic approaches, template matching, expert systems [4], hidden 

Markov models [5], artificial neural networks (ANNs) [6][7][8][9]. 

Most common methods are based on statistical pattern recognition approaches. They 

use different morphological features of ECG [10], such as interval length and 

amplitude of QRS complex, R-R interval, QRS component area, etc. [11]. Main 

disadvantage of these approaches is that they have limited ability when the 

morphology of ECG signal changes [12]. Despite that these methods have good 

accuracy, they have some drawbacks. They focused on finding some fiducial points 

on ECG signal which are sensible to changes of signal morphology that may occur 

among inter-class variation of different patient samples or even within intra-class 

variation of the same patient in different time. Therefore a few types of waveforms 

can completely capture these features.  
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Some researchers have used only the QRS complex features, while others added 

morphological features as well, which are extracted from the P-wave and T-wave 

[10][13]. The main limitation of this method is its accuracy directly depends on the 

correct detection of P and T-wave and also QRS complex component. These kinds of 

features are not suitable for analysing special types of arrhythmias, such as 

ventricular fibrillation [12]. 

Other approaches used Hermite functions [6], cumulate features [14], wavelets 

[15][16] correction waveform analysis [17], complexity measures [18], a total least 

squares-based Prony modelling algorithm [19], autoregressive modelling, non-linear 

measures and cluster analysis, etc. There are different approaches which use ANN 

and their combination with other approaches in order to classify ECG signal such as 

Fourier transform NNs [19], re-current NNs [20] and back propagation (BP) NNs 

[21] and etc.  

In [22], the authors proposed a methodology for the classification of single-

lead  (ECG) signals. They exhibit the application of the Restricted Boltzmann 

Machine (RBM) and deep belief networks (DBN) for ECG classification of 

ventricular and supraventricular heartbeats. The effectiveness of this proposed 

algorithm is evaluated on the MIT-BIH database heartbeat signals. Simulation results 

showed that with a suitable selection of parameters, RBM and DBN can achieve high 

average recognition accuracies of ventricular ectopic beats (93.63%) and of 

supraventricular ectopic beats (95.57%). 

A recent methodology is investigated by Yazhao et al. to classify patient-

specific ECG heartbeats. The Generic Convolutional Neural Network (GCNN) is 

https://www.sciencedirect.com/topics/medicine-and-dentistry/premature-ventricular-contraction
https://www.sciencedirect.com/topics/neuroscience/artificial-neural-network
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trained first by using a large number of heartbeats without distinguishing patients. 

Based on the GCNN, fine-tuning technique is applied to modify the GCNN to a 

Tuned Dedicated CNN (TDCNN) for the corresponding individual. In order to 

accelerate the ECG classification, only the original ECG heartbeat is input to the 

CNN without other extended information from the neighbour heartbeats or FFT 

representation. A deeper CNN architecture with small-scale convolutional kernels is 

adopted to improve the speed and accuracy for classification. Accuracy of the 

proposed method is evaluated over MIT-BIH dataset.  

A high performance CNN based arrhythmia classification system is presented in 

[24]. This research work proposed an automated ECG Classification by using dual 

heartbeat coupling based on convolutional neural network. In this study, the single 

channel ECG signal was segmented into heartbeats in accordance with the changing 

heartbeat rate. The beats were transformed into dual beat coupling matrix as 2-D 

inputs to the CNN classifier, which captured both beat morphology and beat-to-beat 

correlation in ECG. A systematic training beat selection procedure was also proposed 

which automatically include the most representative beats into the training set to 

improve classification performance. The classification system was evaluated for the 

detection of supraventricular ectopic beats (SVEB or S beats) and VEB using the 

MIT-BIH arrhythmia database. The classifier is also a personalized one by 

combining training set from a common pool and a subject-specific set of ECG data. 

Linpeng et al. [25], present a new method based on lead convolutional neural 

network (LCNN) and rule inference for classification of normal and abnormal ECG 

records with short duration of normal and abnormal ECG records. First, two different 

LCNN models are obtained through different filtering methods and different training 
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methods, and then the multipoint-prediction technology and the Bayesian fusion 

method are successively applied to them. Finally, the utilization of the bias-average 

method is performed. The experiments are done over the Chinese Cardiovascular 

Disease Database with more than 150,000 ECG and achieved the accuracy of 

86.22% and 0.9322 AUC (Area under ROC curve). 

The authors in [26], proposed a 16-layer ECG classification problem skip 

connections were used to improve the rate of information transfer through the 

network. Skip connections led to a significant increase in the feature learning 

capabilities of the CNN as well as speeding up the training time. , this CNN based 

method identified normal rhythm, AF and other rhythms with an accuracy of 90%, 

82% and 75%, respectively.  

In [27], the authors proposed a deep learning approach for the classification ECG 

signals. In this paper, feature representation is performed in an unsupervised way by 

using stacked denoising auto-encoders (SDAEs) with sparsity constraint and adding 

a softmax regression layer on the top of the resulting hidden layer yielding the so-

called deep neural network (DNN). Their method relies on the DNN posterior 

probabilities to associate confidence measures such as entropy and Breaking-Ties 

(BT) to each test sample. 

Considering the fusion of features extracted by different approaches, several authors 

tried to integrate features from different descriptors to improve their system 

performance. Ye et al. [28] proposed a system for heartbeat classification based on a 

feature-level fusion of morphological and dynamic features. In their proposed study, 

the authors used wavelet transform (WT) and independent component analysis (ICA) 
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to extract the morphological features, while, RR interval information is computed to 

obtain the dynamic features. In [29], the authors employed a fast feature-fusion 

method for ECG heartbeat classification based on multi-linear subspace learning. 

They used wavelet-packet decomposition for feature extraction and generalized N 

dimensional ICA (GND-ICA) for feature fusion [30]. They proposed a sequential 

forward floating search (SFFS) algorithm in order to analyse a comprehensive feature 

set and find the most suitable feature subset. Sambhu et al. [31] showed that 

combination of the temporal, statistical and wavelet features is an effective method in 

the classification of cardiac abnormalities. Das and Ari [32] constructed two different 

systems that utilized feature-level fusion for ECG classification. The first system 

uses S-transform (ST) based features along with temporal features and the second 

one applies mixture of ST and WT based features along with the temporal ones. In 

all of the aforementioned studies, the information feature fusion is performed by 

integrating features from different hand-crafted descriptors. In this respect, the novel 

approach presented in this article takes the advantages of both automatically learned 

CNN features and hand-crafted features and applies fusion of features in a multi-

level manner. Details of the presented method are illustrated in the following 

sections. 

2.1 Pattern Recognition 

Pattern Recognition is the task of classifying objects into predefined categories or 

classes. Pattern recognition systems can perform pattern identification and classify 

the objects. They perform it either by using some forms of prior information about 

the object distributions or some statistical knowledge which are embedded in the 

data. The objects could be assumed as sets of features or a series of experimental 

results which define the points in features space [33]. 
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Pattern recognition systems consist of several subsystems:  

 Data acquisition section which is responsible to measure or record the raw 

intended data. 

 Feature extraction section which is responsible to extract distinctive 

information from the raw data. 

 Feature selection section which selects the optimal subset of extracted 

features. 

 Classification section which is the main part of the system and by using 

the features information classifies the input data into predefined classes. 

The pattern recognition systems can be applied either supervised or unsupervised. 

In the supervised method, the system will be trained by using the data which has 

already been classified by an expert. On the other hand, unsupervised learning is 

referred to an algorithm which tries to find the distinctive patterns of the data by 

learning [34]. 

Various methods of supervised and unsupervised models have been implemented in 

literature, such as statistical pattern recognition, syntactic pattern recognition and AI 

approaches. Selection of these models is crucially depends on the characteristics of 

the problem [35]. 

In statistical pattern recognition approach which is based on statistical modelling of 

the data, we assume that patterns are produced by a stochastic system with some 

distribution probability.  There are different type of methods such as Bayes linear 

classifier, the k-nearest neighbour and the polynomial classifier. Other important 

issues in these methods are the procedure for selecting discriminative features, 
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number of necessary features, and adjusting the model parameters. All of this setting 

is done by the classifier designer [35]. 

Syntactic or structural pattern recognition is an approach in which each pattern can 

be represented by a set of symbolic features. In this method, instead of dealing with 

numeric features, more complex multiple relationships between particular features 

are present. It is possible to use a sort of formal language in order to describe these 

features and uses some grammar syntax codes for discriminant [35] [36]. 

Artificial neural network (ANN) is one of the famous examples of artificial 

intelligence (AI) methods. ANN has been used in analysing non-linear signal, 

classification and clustering, and optimization problem. Selecting the type of 

topology, size of the network and number of neurons are completely problem 

dependent.  
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Chapter 3 

ELECTROCARDIOGRAPHY AND SIGNAL 

PROCESSING 

In this chapter, the anatomy of the heart and its functionality and the configuration of 

the ECG signal have been reviewed. The figures used in this chapter are reproduced 

from [37], which are freely available for public use. General descriptions of anatomy 

and condition system of human heart are presented in Appendix A. 

3.1 Generation and recording of ECG 

Human body is a good electrical conductor; hence electrical activity of the heart can 

be measured using surface electrodes. Electrodes record the projection of resultant 

vectors, which describe the main direction of electrical impulses in the heart. The 

overall projection is named as electrocardiogram. Different placement of electrodes 

provides spatiotemporal variations of the cardiac electrical field. The difference 

between a pair of electrodes is referred to as a lead. A large amount of possible lead 

systems has been invented; depending on a diagnostic purpose, a lead system is 

chosen and electrodes placed on accurate positions. The most commonly used system 

is standard 12-lead ECG system defined by Einthoven [38]: Three bipolar limb leads 

(I, II, III) - electrodes are placed to the triangle (left arm, right arm and left leg) with 

heart in the center (Figure 3.2). This placement is called the Einthoven’s triangle. 

The augmented unipolar limb leads (aVF, aVL, aVF) - electrodes are placed on same 

positions as in case of leads I, II and III. The difference is in the definition of leads. 
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Leads are calculated as the difference between potential of one edge of the triangle 

and the average of remaining two electrodes (Figure 3.3). 

Unipolar precordial leads (V1-6) - leads are defined as the difference between 

potential of electrode on chest and central Wilson terminal (constant during cardiac 

cycle and is computed as average of limb leads). For details see Figure 3.4. 

 
Figure 3.1: Schematic Representation of ECG Waveform Generation by Summing of 

Different Action Potentials [37] 
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Figure 3.2: Schematic Representation of Einthoven Triangle Electrode 

Placement[37] 

Figure 3.3: Schematic Representation of Augmented Limb Leads Calculation [37] 

 



16 

 

 
Figure 3.4: Precordial Leads Electrodes Positions [37] 

3.1.1 ECG Waveform Description 

As mentioned earlier, ECG wave is formed as a projection of summarized potential 

vectors of the heart. ECG wave has several peaks and "formations", which is useful 

for its diagnosis (Figure 3.5). These are: 

 P-wave - indicates the depolarized wave that distributes from the SA 

node to the atria, and its duration is between 80 to 100 milliseconds. 

 P-R interval - indicates the amount of time that the electrical impulse 

passing from the sinus node to the AV node and entering the 

ventricles and is between 120 to 200 milliseconds. 

 P-R segment - Corresponds to the time between the ends of atrial 

depolarization to the onset of ventricular depolarization. Last about 

100ms. 
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 QRS complex - Represents ventricular depolarization. The duration 

of the QRS complex is normally 0.06 to 0.1 seconds. 

 Q-wave - Represents the normal left-to-right depolarization of the 

inter ventricular septum. 

 R-wave - Represents early depolarization of the ventricles. 

 S-wave - Represents late depolarization of the ventricles. 

 S-T segment – it appears after QRS and indicates that the entire 

ventricle is depolarized.  

 Q-T interval - indicates the total time that need for both repolarization 

and ventricular depolarization to happen, so it is the estimation for 

the duration of the average ventricular action. This time can vary 

from 0.2 to 0.4 seconds corresponding to heart rate. 

 T-wave - indicates ventricular repolarization and its time is larger 

than depolarization. 

 
Figure 3.5: Normal ECG Waveform [37] 
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Chapter 4 

BACKGROUND MATERIALS 

4.1 Introduction 

In the following sections, the mathematical background of used methods, namely, 

wavelet transform, neural networks, convolutional neural networks and support 

vector machine have been reviewed. The wavelet transform is a remarkable 

mathematical method with the ability to examine the signal simultaneously in time 

and frequency domains, in a different way from Fourier transform method. 

4.2 Wavelets 

Fundamental of Wavelet transform (WT) is on the use of a series of computational 

analysing elements called "wavelets". By applying the WT to a specific signal, its 

features are store in the wavelet coefficients. Each resulting wavelet coefficient 

corresponds to measurement in the signal in a given time instant and a given 

frequency band.  Most of the following sections are based on the Illustrated Wavelet 

Transform Handbook [39]. All given information refers to this source, unless stated 

otherwise.  

Wavelet analysis has been applied in a wide range of applications, from climate 

analysis to signal compression and medical signal analysis. The application of 

wavelet transform analysis in science and engineering began to increase in the 

beginning of the 1990s, directly reflecting the interest of the scientific community 

[31]. 
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Some of the more commonly used wavelets are depicted in Figure 4.1. We can notice 

that they have the shape of a small wave, localized on the time axis. Depending both 

on the signal we need to analyse and what characteristic we are analysing, one 

wavelet can be better suited than others. 

There are some important constraints for wavelet function 𝜓(𝑡): 

 Limited finite energy: 

𝐸 = ∫ |𝜓(𝑡)| 2
∞

−∞
𝑑𝑡 < ∞                                  (4.1) 

 It shouldn’t have any zero frequency components (�̂�(𝑡)(0) = 0), or if �̂�is 

the Fourier transform of  𝜓(𝑡) : 

�̂�(f) = ∫ 𝜓(𝑡)
∞

−∞
𝑒−𝑖(2𝜋𝑓𝑡)𝑑𝑡 = ∞                            (4.2) 

 It must hold the following constraint: 

𝐶𝑔 = ∫
|�̂� (𝑓)|

2

𝑓

∞

0
𝑑𝑓 < ∞                            (4.3)    

The above equation is known as admissibility condition and Cg is known 

as admissibility constant and is dependent on the chosen wavelet. 

 An extra criterion, on complex wavelets, is that the Fourier transform 

must vanish for negative frequencies and also must be real.                   

4.2.1 Wavelet Transform 

The wavelet can be used as the location or the scale. If the wavelet and the signal’s 

appearance are close, then the convolution has a high value; otherwise, the transform 

results in a low value. The wavelet transform is performed at various locations and 

scales of the signal: this transformation can be applied as the continuous wavelet 

transforms (CWT) or the discrete wavelet transforms (DWT). In this thesis, DWT 

has been used as one part of feature extraction. 
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The wavelet can be manipulated in two ways: it can change its location or its scale 

(Figure 4.2). If, at a point, the wavelet matches the shape of the signal, then the 

convolution has a high value. Similarly, if the wavelet and the signal do not correlate 

well, the transform results in a low value. The wavelet transform is computed at 

various locations of the signal and for various scales of the wavelet: this is done in a 

continuous way for the continuous wavelet transform (CWT) or in discrete steps for 

the discrete wavelet transforms (DWT). 

The operations over the wavelet are defined by the parameters a (for dilation) and b 

(for translation). The shifted and dilated versions of the wavelet are denoted as 

follows: 

     𝜓[[𝑡 − 𝑏]/𝑎]                                                    (4.4) 

For sake of simplicity, let us take the Mexican hat wavelet: 

𝜓(𝑡) = (1 − 𝑡2)𝑒−𝑡2/2                                  (4.5) 

The shifted and dilated equation for this type of the wavelet function would be: 

𝜓 (
𝑡−𝑏

𝑎
) = [1 − (

𝑡−𝑏

𝑎
)

2

]𝑒−
1

2
[(𝑡−𝑏)/𝑎2]                     (4.6) 

 

 
Figure 4.1: Example of wavelets: a) Gaussian Wave (first derivative of a Gaussian), 

b) Mexican Hat (second derivative of a Gaussian). c) Real part of Morlet [30] 
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Figure 4.2: Two Possible Manipulations with Wavelets: a) Translation, b) Scale [31] 

4.2.2 Discrete Wavelet Transform 

Discrete Wavelet Transform (DWT) is a popular approach for representing the signal 

by a linear combination of its basis functions (Teolis and Benedetto 1988). DWT 

decomposes the signal into various frequency bands by different resolutions called 

detail (D) and approximation (A) components. The main advantage of DWT is its 

ability to provide representational information in time and frequency domains. In 

order to compute the time-frequency components of an ECG signal, a wavelet basis 

function, called the mother wavelet, is defined as follows: 

ψa,b(t) =  
1

√a
ψ (

t − b

a
)                                                   (4.7) 

where the parameters  𝑎 and 𝑏 represent the scale and the shift, respectively. The 

DWT of an ECG signal 𝑥(𝑡), can be defined as follows: 

𝑇𝑎,𝑏 = ∫ 𝑥(𝑡)
∞

−∞

𝜓𝑎,𝑏(𝑡)𝑑𝑡                                                         (4.8) 
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In order to reconstruct the input signal from its wavelet coefficients, the inverse 

DWT is computed as, 

𝑥(𝑡) = ∑ ∑ 𝑇𝑎,𝑏𝜓𝑎,𝑏(𝑡)

∞

𝑏=−∞

∞

𝑎=−∞

                                         (4.9) 

Figure 4.3, shows the DWT decomposition tree of an input signal and its 

approximation (A) and detail (D) coefficients up to fourth level. The input signal is 

represented by its corresponding wavelet coefficients as (𝐴4 +  𝐷4 + 𝐷3 + 𝐷2 +

𝐷1) . 

 
Figure 4.3: DWT Decomposition Tree [40] 

4.3 Neural Networks 

Artificial Neural Networks (ANNs) or short Neural Networks (NNs) have been 

modelled to handle complex tasks by following patterns that work like the human 

brain. NNs contain interconnected units with very simple functions. When these 

simple units combined together, it can build a complex classification function. 

The first known structure was built in 1958 by Rosenblatt [41]. As illustrated in 

Figure 4.4,  his network was very simple. The network consisted of one neuron that 
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𝑖
=1 

had multiple inputs and one output. The output is the sum of all the weighted input 𝑥𝑖 

and the bias 𝑏 as described in Equation (4.8), 

𝑓(𝑥) =  𝜑(𝑏 + ∑ 𝑥𝑖=1. 𝑤𝑖)
𝑛
𝑖                                                (4.8) 

where 𝜑 the Heavyside step function is defined as, 

𝜑(𝑥) =  𝑓(𝑥) = {
1                𝑖𝑓 𝑥 ≥ 0
0                        𝑒𝑙𝑠𝑒

                                        (4.9) 

This network was used to classify two classes: if the result of the summation is greater 

than or equal to zero, than the network votes for the first class. Otherwise, if the result 

is less than zero, then the network votes for the other class. 

 

Figure 4.4: The Neural Network was Proposed by Rosenblatt [41] 

When the data are not linearly separable, this simple architecture cannot handle the 

tasks. This weakness motivates the using of Multi-Layer Perceptron. Multi-Layer 

Perceptron (MLP) is a feed forward artificial neural network architecture that has one 

or more than one hidden layer. Figure 4.5, illustrates a MLP with one hidden layer 

containing neurons where each neuron in each hidden layer represents one 

perceptron. 
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Figure 4.5: Multi-Layer Perceptron with a Single Hidden Layer 

The hidden layer receives data from the input layer and then maps it to the output 

layer. The weights in the MLP layers are generated from the training data.  

4.4 Convolutional Neural Network 

Deep learning is a subfield of machine learning that is inspired by artificial neural 

networks, which in turn are inspired by biological neural networks. A specific kind of 

such a deep neural network is the convolutional network, which is commonly 

referred to as CNN or ConvNet. It's a deep, feed-forward artificial neural 

network.  The models are called "feed-forward" because there are no feedback 

connections in which outputs of the model are fed back into itself. 

CNNs specifically are inspired by the biological visual cortex. The cortex has small 

regions of cells that are sensitive to the specific areas of the visual field. This idea 

was expanded by a captivating experiment done by Hubel and Wiesel in 1962 [42]. 

In this experiment, the researchers showed that some individual neurons in the brain 

activated or fired only in the presence of edges of a particular orientation like vertical 
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or horizontal edges. For example, some neurons fired when exposed to vertical sides 

and some when shown a horizontal edge. Hubel and Wiesel found that all of these 

neurons were well ordered in a columnar fashion and that together they were able to 

produce visual perception. This idea of specialized components inside of a system 

having specific tasks is one that machines use as well and one that you can also find 

back in CNNs. 

Convolutional neural networks have been one of the most influential innovations in 

the field of computer vision. They have performed a lot better than traditional 

computer vision and have produced state-of-the-art results. These neural networks 

have proven to be successful in many different real-life case studies and applications, 

such as: Image and signal classification, object detection, segmentation, face 

recognition; Self-driving cars that leverage CNN based vision systems, Classification 

of crystal structure using a convolutional neural network; and many more. Alex 

Krizhevsky in 2012 [43] used convolutional neural networks to win that year's 

ImageNet Competition, reducing the classification error from 26% to 15%. 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) which began in the 

year 2010 is an annual competition where research teams assess their algorithms on 

the given data set and compete to achieve higher accuracy on several visual 

recognition tasks. This was the time when neural networks regained prominence after 

quite some time. This is often called the "third wave of neural networks". The other 

two waves were in the 1940s until the 1960s and in the 1970s to 1980s. 

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Figure 4.6: Convolutional Neural Network [44] 

ConvNets contain one or more of each of the following layers: 

 convolution layer 

 ReLU (rectified linear units) layer 

 pooling layer 

 fully connected layer 

 loss layer (during the training process) 

Figure 4.6, shows that the input image is fed as an input to the network, which goes 

through multiple convolutions, subsampling, a fully connected layer and finally 

outputs something. 

4.4.1 Convolution Layer 

The convolution layer computes the output of neurons that are connected to local 

regions or receptive fields in the input, each computing a dot product between their 

weights and a small receptive field to which they are connected to in the input 

volume. Each computation leads to extraction of a feature map from the input image. 

4.4.2 ReLU Layer 

The rectified linear units (ReLU) layer commonly follows the convolution layer. The 

addition of the ReLU layer allows the neural network to account for non-linear 

relationships, i.e. the ReLU layer allows the ConvNet to account for situations in 
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which the relationship between the pixel value inputs and the ConvNet output is not 

linear. Note that the convolution operation is a linear one. The output in the feature 

map is just the result of multiplying the weights of a given filter by the pixel values 

of the input and adding them up: 

𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯                             (4.10) 

where w is a weight value and x is a pixel value. 

The ReLU function takes a value x and returns 0 if x is negative and x, if x is 

positive. 

Figure 4.7: ReLU , f(x) = max(0,x) 

 
Figure 4.8: Applying ReLU on a Feature Map [45] 

4.4.3 Pooling Layer 

The pooling layer also contributes towards the ability of the ConvNet to locate 

features regardless of where they are in the image. In particular, the pooling layer 
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makes the ConvNet less sensitive to small changes in the location of a feature, i.e. it 

gives the ConvNet the property of translational invariance in that the output of the 

pooling layer remains the same even when a feature is moved a little. Pooling also 

reduces the size of the feature map, thus simplifying computation in later layers. 

One of the techniques of subsampling is max pooling that takes the largest value 

from the window of the image currently covered by the kernel. For example in Figure 

4.9, a max-pooling layer of size 2 x 2 is applied on a 4x4l image.  

 
Figure 4.9: Max-Pooling [45] 

The objective of the fully connected layer is to flatten the high-level features that are 

learned by convolutional layers and combining all the features. It passes the flattened 

output to the output layer where you use a softmax classifier or a sigmoid to predict 

the input class label. 

4.4.4 The Fully-Connected and Loss Layers 

The fully-connected layer is where the final "decision" is made. At this layer, the 

ConvNet returns the probability that an object in a photo is of a certain type. The 

fully-connected layer has at least 3 parts - an input layer, a hidden layer, and an 
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output layer. The input layer is the output of the preceding layer, which is just an 

array of values. 

 
Figure 4.10: Fully-Connected and Loss Layers [45] 

Figure 4.10, shows a fully-connected network for classifying the input image into 

two classes, dog or cat. In this example, the fully-connected layer might return an 

output like "0.92 dog, 0.08 cat" for a specific image, indicating that the image likely 

contains a dog. 

Following the fully-connected layer is the loss layer, which manages the adjustments 

of weights across the network. Before the training of the network begins, the weights 

in the convolution and fully-connected layers are given random values. Then during 

training, the loss layer continually checks the fully-connected layer's guesses against 

the actual values with the goal of minimizing the difference between the guess and 

the real value as much as possible. The loss layer does this by adjusting the weights 

in both the convolution and fully-connected layers. 
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4.5 Support Vector Machine (SVM)  

Support Vector Machine (SVM) developed by Boser, Guyon, and Vapnik in 1992. 

SVM is a supervised learning algorithm which can be used for different applications, 

from pattern classification to regression analysis [46]. In other words, SVM is a tool 

which uses a training dataset in order to create maximum prediction accuracy 

classifier while it avoids over-fitting to training data. The first application which 

made SVM so popular was a task for classification of handwriting. The SVM results 

are comparable to large NNs with complicated features [47]. Nowadays SVM is used 

in various areas like face recognition, text classification, signal classification and etc. 

[48]. Generalization is defined as the ability of a classifier to correctly classify an 

unseen data [50]. One fundamental objective of the machine learning algorithms is to 

learn the behaviours of the target functions. In other words, machine learning 

algorithms aim to generate a hypothesis that correctly classify the training data 

without over fitting to the data; however in the early algorithms they didn’t pay 

attention to this important point [49].   

Neural networks (NNs) show a good performance in both unsupervised and 

supervised classification task. One of the famous architecture for such learning task 

is Multilayer perceptron (MLP) which can be used for general function 

approximation. In MLP we can design multiple inputs and outputs neuron. The 

learning process and finding the proper weight connection can be done with input-

output patterns [51]. 



31 

 

 
Figure 4.11:  left) Simple Neural Network, right) Multilayer Perceptron [52] 

But NNs have some drawbacks: they may convergence to local minima. Another 

disadvantage of NNs is that there are many tuning parameters such as number of   

neurons, learning rate and etc. which is need to correctly selected for a specific task.  

In order to understand the necessity of SVM, in figure 4.12, we plot some sample 

data and try to find a linear classifier for them. Figure4.12 shows multiple hyper 

planes that can correctly classify the data. 

 
Figure 4.12: Multiple Possible Linear Classifiers for a Certain Data Set [47] 

According to prior explanation, different linear classifier can be found to classify 

these data although some of them have better separation. It is important to have 

maximum margin separator since if we select a hyper plane for classification, it is 
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probable to be quite close to some of the samples in respect to the others. Then when 

an unseen test data entered to the system it is more likely to classify correctly. Figure 

4.13, shows an example of maximum margin classifier and how it solves this 

problem [53]. 

 
Figure 4.13: Example of Linear SVM [49] 

The equation for obtaining Maximum margins is [49] [53]: 

𝑚𝑎𝑟𝑔𝑖𝑛 ≡ 𝑎𝑟𝑔𝑥∈𝐷 min 𝑑(𝑥) = 𝑎𝑟𝑔𝑥∈𝐷
|𝑥.𝑤+𝑏|

√∑ 𝑤𝑖
2𝑑

𝑖−1

                            (4.11) 

In the previous example maximum distance is achieved by linear classifier.  One of 

the reason is that the maximum margin classifier provide better result than the other 

classifiers since if a little error occurred in estimating the location and direction of 

classifier hyperplane, we still have chance to classify test data accurately.  

The aim of SVM is to find a decision boundary to separate different classes of the 

training data. If it is not possible to do it by a linear hyperplane then SVM map the 

training data into a higher dimensional feature space by using some predefined 

kernel functions [53].  This fundamental can be written as the following formulas: 
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a) If Yi= +1 or xi  belongs to class 1 then w.xi + b ≥ 1                         (4.12) 

b) If Yi= -1 or  xi  belongs to class 2 then  w.xi + b ≤ -1                     (4.13) 

or we can combine this equations in the following one: 

∀xi  :Yi* (w.xi + b) ≥ 1     (4.14) 

In these equations xi  is a pattern vector and w is learned weight vectors.  There may 

be multiple hyperplane in feature space that satisfy this constraint, support vector 

machine chooses the hyper plane where its distances to the closest sample of each 

classes are as far as possible.   

 
Figure 4.14: SVM hyper planes [54] 

4.5.1 Kernel Trick 

If the classes can be separated linearly, data can be discriminated by a linear decision 

boundary. But in practical situation, classes cannot separate linearly and the decision 

boundary is a curve with the degree higher than 1. For solving this problem we can 

uses kernels which are functions that map the input data feature vector to a higher 

dimensional space. The mapped data in new space can be separate linearly [46]. As 

an example we can define a simple mapping kernel as shown in figure 4.15, [54].  

wx+b=

wx+b=

wx’+b



34 

 

The Kernel formula is: 

𝐾(𝑥, 𝑦) = 𝜑(𝑥). 𝜑(𝑦)                                       (4.15) 

 
Figure 4.15: Kernels approach [54] 

4.5.2 Expanding Feature Space 

Increasing the dimension of feature space give us a higher chance to classify the data 

which is not linearly separable [46]. 

< 𝑥1. 𝑥2 > ← 𝑘(𝑥1, 𝑥2) =< ∅(𝑥1). ∅(𝑥2) >       (4.16) 

 
Figure 4.16: Changing the feature space dimensions from 2 into 3 [54] 

4.5.3 Popular Kernel Functions    

 Polynomial:  

𝐾(𝑥, 𝑥′) =< 𝑥, 𝑥′ >𝑑            (4.17) 

𝐾(𝑥, 𝑥′) = (< 𝑥, 𝑥′ > +1)𝑑      (4.18) 
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 Gaussian Radial Basis Function:  

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
‖𝑥−𝑥′‖2

2𝜎2 )   (4.19) 

 Exponential Radial Basis Function: 

𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
‖𝑥−𝑥′‖

2𝜎2
)               (4.20) 
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Chapter 5 

 MIT-BIH ARRHYTHMIA DATABASE 

The Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) 

arrhythmia database [55] is a well-known source which provides various biomedical 

datasets, such as multiple ECG datasets, EEG datasets and etc. the ECG dataset 

which has been used in this study, contains the ECG signals which had been 

collected from patients in the Arrhythmia hospital laboratory at the Beth Israel 

Hospital between 1975 and 1979.  

From 4000 Holter tape records, 48 records have been annotated by experts and 

divided into two partitions. The first partition (labelled 1xx) includes 23 records 

which are more common and routine arrhythmia types. The second partition consists 

of 25 records (labelled 2xx) which are more complex and uncommon arrhythmias 

that ends to more difficulty to detect. 

The samples were collected from 25 male in age ranges of 32 to 89 years old, and 22 

female with age ranges of 22 to 89 years old. Each record is about 30 minutes in 

length. The signals were sampled at a frequency of 360 Hertz, but not necessarily at 

the same gain due to different capturing equipment with variant electrical gains for 

digitization of the records. Moreover, the digital amplitude values range between [0, 

2047], where 1024 represents 0 volts. Hence, the normalization process must be done 

before the signals being used. 
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Annotation file of each record contains useful information such as the occurrence 

time of R-peak locations or class of the corresponding heartbeat classes. In MIT-BIH 

database, there are 15 different heartbeat categories as summarized in Table 1. The 

patient’s age diversity and the standard physical conditions make the MIT-BIH 

database, the best choice for ECG analysis. 

Various ECG types in the MIT-BIH database are as follows: 

1- Normal Sinus Rhythm (N): this is the term for the normal condition (Figure 5.1). 

2- Left Bundle Branch Block Beat (L): this arrhythmia is caused by a problem in 

conduction in the His bundle in the left side ventricle. This is seen as a widening of 

the QRS complex. This ECG type is invariably an indication of heart disease [56]. 

Figure 5.2, indicates that the QRS complex is notably wider than that shown in 

Figure 5.1, this is due to the extra time taken for depolarization caused by poor 

electrical conduction (block). 

3- Right Bundle Branch Block Beat (R): the cause of this arrhythmia is similar to 

(L). However, the conduction problem now occurs on the right side of the His bundle 

branch and the ECG indicates a problem in the heart but also can be seen in a healthy 

heart. This type of arrhythmia is identified by a wide bimodal QRS complex ( Figure 

5.3). 

4- Paced Beat (P): this problem arises in patients that have been fitted with an 

artificial pacemaker. Pacemakers are used when a person has bradycardia (a very 

slow heart rhythm), which causes poor circulation and cannot be corrected by 

treatment with drugs. Pacemakers stimulate the heart muscle. This type of arrhythmia 
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is indicated by the occasional missing of the P-wave and the presence of a spike 

representing the stimulus from the pacemaker, followed by a wide QRS complex 

(Figure 5.4). 

 
Figure 5.1: Normal Sinus Rhythm (N) Type (MIT-BIH Database, Record 100) 
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Figure 5.2: Left Bundle Branch Block (L) type (MIT-BIH Database, Record 109) 

 
Figure 5.3: Right Bundle Branch Block (R) type (MIT-BIH Database, Record 118) 

5- Premature Ventricular Contraction (V): this arrhythmia occurs when the 

heartbeats earlier than it should. This is because of the abnormal electrical activity of 

the ventricles which causes premature contraction of the lower chambers of heart, the 

ventricles. The premature contraction is followed by a pause as the heart’s electrical 
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system “resets” itself. The contraction following the pause is usually more forceful 

than normal. With this type, the QRS complex is misshapen and prolonged 

representing ventricular contraction without earlier atrial stimulation (Figure 5.5). 

6- Atrial Premature Beat (A): this arrhythmia is associated with early 

depolarization of atrium this type can be identified by a premature, small and 

distorted P-wave (Figure 5.6). 

7- Aberrated Atrial Premature Beat (a): early depolarization of atria. These 

manifest itself as an abnormal P-wave (wide prolonged), narrow R-wave, and 

distorted QRS complex (Figure 5.7). 

8- Nodal (junctional) Escape Beat (j): the cause of this arrhythmia is that the region 

around the AV node takes over as the focus of the depolarization; the rhythm is 

called “nodal” or ‘junctional’ escape. Figure 5.8 shows one beat cycle of this 

arrhythmia which has no Q- and S-waves. Also, the P-wave has an inverse polarity 

compared to that of the normal sinus rhythm (Figure 5.8). 
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Figure 5.4: Beat Stimulated by an Artificial Pacemaker (‘Pace’) type (MIT-BEH 

Database, Record 104) 

 
Figure 5.5: Premature Ventricular Contraction (V) type (MIT-BEH Database, Record 

105) 
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Figure 5.6: Atrial Premature Beat (A) type (MIT-BIH Database, Record 100) 

 
Figure 5.7: Aberrated Atrial Premature Beat (a) type (MIT-BIH Database, Record 

105) 
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Figure 5.8: Nodal (junctional) Escape Beat (j) type (MIT-BIH Database, Record 201) 

9- Ventricular Escape Beat (E): this most commonly occurs when the ventricle 

contracts without nodal stimulation. This is classically associated with complete 

heart blockage. The QRS complexes are wide whereas the P-waves are occasionally 

absent as demonstrated in Figure 5.9. 

10- Fusion of paced and normal beats (f): this type of arrhythmia is a mixture of 

paced and normal beats. The P-waves have large amplitudes and are wide, and the 

QRS complexes are distorted, especially in the S-waves portion (Figure 5.10).  
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Figure 5.9: Ventricular Escape Beat (E) type (MIT-BIH Database, Record 207) 

 
Figure 5.10: Fusion of Paced and Normal Beats (f) (MIT-BIH Database, record 113) 
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Table 5.1: Statistical overview of different beat types in the MIT−BIH Arrhythmia 

Database [46] 
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100  2239  -  -  33  -  -  -  1  -  -  -  -  -  -  -  -  -  

101  1860  -  -  3  -  -  -  -  -  -  -  -  -  -  -  -  2  

102  99  -  -  -  -  -  -  4  -  -  -  -  -  2028  56  -  -  

103  2082  -  -  2  -  -  -  -  -  -  -  -  -  -  -  -  -  

104  163  -  -  -  -  -  -  2  -  -  -  -  -  1380  666  -  18  

105  2526  -  -  -  -  -  -  41  -  -  -  -  -  -  -  -  5  

106  1507  -  -  -  -  -  -  520  -  -  -  -  -  -  -  -  -  

107  -  -  -  -  -  -  -  59  -  -  -  -  -  2078  -  -  -  

108  1739  -  -  4  -  -  -  17  2  -  -  1  -  -  -  11  -  

109  -  2492  -  -  -  -  -  38  2  -  -  -  -  -  -  -  -  

111  -  2123  -  -  -  -  -  1  -  -  -  -  -  -  -  -  -  

112  2537  -  -  2  -  -  -  -  -  -  -  -  -  -  -  -  -  

113  1789  -  -  -  6  -  -  -  -  -  -  -  -  -  -  -  -  

114  1820  -  -  10  -  2  -  43  4  -  -  -  -  -  -  -  -  

115  1953  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

116  2302  -  -  1  -  -  -  109  -  -  -  -  -  -  -  -  -  

117  1534  -  -  1  -  -  -  -  -  -  -  -  -  -  -  -  -  

118  -  -  2166  96  -  -  -  16  -  -  -  -  -  -  -  10  -  

119  1543  -  -  -  -  -  -  444  -  -  -  -  -  -  -  -  -  

121  1861  -  -  1  -  -  -  1  -  -  -  -  -  -  -  -  -  

122  2476  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

123  1515  -  -  -  -  -  -  3  -  -  -  -  -  -  -  -  -  

124  -  -  1531  2  -  29  -  47  5  -  -  5  -  -  -  -  -  

200  1743  -  -  30  -  -  -  826  2  -  -  -  -  -  -  -  -  

201  1625  -  -  30  97  1  -  198  2  -  -  10  -  -  -  37  -  

202  2061  -  -  36  19  -  -  19  1  -  -  -  -  -  -  -  -  

203  2529  -  -  -  2  -  -  444  1  -  -  -  -  -  -  -  4  

205  2571  -  -  3  -  -  -  71  11  -  -  -  -  -  -  -  -  

207  -  1457  86  107  -  -  -  105  -  472  -  -  105  -  -  -  -  

208  1586  -  -  -  -  -  2  992  373  -  -  -  -  -  -  -  2  

209  2621  -  -  383  -  -  -  1  -  -  -  -  -  -  -  -  -  

210  2423  -  -  -  22  -  -  194  10  -  -  -  1  -  -  -  -  

212  923  -  1825  -  -  -  -  -  -  -  -  -  -  -  -  -  -  

213  2641  -  -  25  3  -  -  220  362  -  -  -  -  -  -  -  -  

214  -  2003  -  -  -  -  -  256  1  -  -  -  -  -  -  -  2  

215  3195  -  -  3  -  -  -  164  1  -  -  -  -  -  -  -  -  

217  244  -  -  -  -  -  -  162  -  -  -  -  -  1542  260  -  -  

219  2082  -  -  7  -  -  -  64  1  -  -  -  -  -  -  133  -  

220  1954  -  -  94  -  -  -  -  -  -  -  -  -  -  -  -  -  

221  2031  -  -  -  -  -  -  396  -  -  -  -  -  -  -  -  -  

222  2062  -  -  208  -  1  -  -  -  -  -  212  -  -  -  -  -  

223  2029  -  -  72  1  -  -  473  14  -  16  -  -  -  -  -  -  

228  1688  -  -  3  -  -  -  362  -  -  -  -  -  -  -  -  -  

230  2255  -  -  -  -  -  -  1  -  -  -  -  -  -  -  -  -  

231  314  -  1254  1  -  -  -  2  -  -  -  -  -  -  -  2  -  

232  -  -  397  1382  -  -  -  -  -  -  -  1  -  -  -  -  -  

233  2230  -  -  7  -  -  -  831  11  -  -  -  -  -  -  -  -  

234  2700  -  -  -  -  50  -  3  -  -  -  -  -  -  -  -  -  
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Examples of the above arrhythmias and normal ECGs were extracted from 

records100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 

116, 117,118, 119, 121, 122, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210, 

212, 213,214, 215, 217, 219, 220, 221, 222, 223, 228, 230, 231, 232, 233, 234. Table 

5.1 provides an overview of the different beat types in the MIT−BIH database.  

There are mainly two different approaches to assess the performance of a machine 

learning algorithm in ECG domain: class based and subject-based. Class-based 

methods are applied based on the selection of various heartbeats and their class labels 

associated with the disease categories. The subject based methods, that are more 

widely studied in literature, are based on the use of AAMI standard (AAMI 1987) 

which breaks down the 15 heartbeat classes into 5 sub-classes, namely, non-ectopic 

(N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown 

(Q) [57][58][59][60][61][62]. Table 5.2 illustrates the 15 heartbeat classes and the 5 

aforementioned AAMI classes together with the association between MIT-BIH 

arrhythmia annotation and AAMI standard. 
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Table 5.2: Different heartbeat classes provided by the MIT-BIH database and 

corresponding regrouping by AAMI standard 

MIT-BIH class Annotation AAMI groups 

Normal beat N 

N:beats not found in 

the classes S, V, F, 

and Q 

Left bundle branch block beat L 

Right bundle branch block beat R 

Atrial escape beats e 

Nodal (junctional) escape beat j 

Atrial premature beats A 

S: supraventricular 

ectopic beats 

Aberrated atrial premature beats a 

Nodal (junctional) premature beats J 

Non-conducted P-wave (blocked APB) x 

Premature ventricular contraction V 

V: ventricular 

ectopic beats 
Ventricular escape beat E 

Ventricular flutter wave ! 

Fusion of ventricular and normal beat F 

F: Fusion of 

ventricular and 

normal beat 

Fusion of paced and normal beat f Q:paced beats or 

unclassified beats Unclassified beat Q 
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Chapter 6 

PREPROCESSING 

6.1 Introduction 

In order to classify the ECG signal, we need to process the raw signal. This process 

can be generally divided into three main parts: preprocessing, feature extraction and 

classification. The preprocessing stage eliminates the noise and baseline drift from 

the raw ECG signal. The goal of feature extraction is to form distinctive properties 

and diagnostic information for each subject. For this purpose, selection of the best 

distinctive and relevant features is crucial. 

6.2 Preprocessing of ECG Signals 

ECG signal inherently contains various types of unwanted noise and artefact effects, 

such as baseline drift, noise of electrode contact, polarization noise, the internal 

amplifier noise, noise due to muscle movement, and motor artefacts.  The 

movements of electrodes induced artefacts noise. Therefore, in order to make the 

ECG signal ready for feature extraction step, we must remove baseline wander and 

eliminate above noise.  

We used the wavelet filtering to filter the ECG signal, since this technique is suitable 

for computing the R-peak locations without change of the shape or position of the 

original signal. According to the previous experimental knowledge, in order to 

optimize the signal filtering, we must consider these two criteria: the signal sampling 

frequency and the knowledge that most of the noises are located outside of the 
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frequency interval between 1.5 Hz to 50 Hz [63]. For this purpose, we use a band 

pass filter which is constructed by a high pass filter with cut-off frequency 1.5 Hz. 

This filter eliminates baseline variations.  The output of this filter is cascade with a 

low pass filter with cut-off frequency 50 Hz. This filter removes high frequency 

noise.  

The scale and type of the mother function parameters are specific to each filter. Thus, 

the automatic compute of optimal scale for high pass filtering when the sampling 

frequency is 256 is equal to order 6. The optimal scale order for the low pass filtering 

is equal to order 2. 

Finally, Z-score normalization is applied on all sampled values in order to convert 

them to a common scale with an average of zero and standard deviation of one by 

using the Equation (6.1). 

𝑍 =
𝑋 − 𝜇

𝜎
                                                                        (6.1) 

where 𝑋, 𝜇 and 𝜎 are signal, signal’s mean and signal’s standard deviation  

respectively.The results of above steps are shown in the figure 6.1. 
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(a) 

 
(b) 

 
(c) 

Figure 6.1: Implementation Results of Preprocessing on Record [100] from MIT-BIH 

Arrhythmia Database: (a) Original Wave, (b) Eliminated Baseline (c) Noise Removal 
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6.3 QRS Detection 

Each ECG cycle is consists of a P-wave which is corresponding to the atrial 

depolarization, a QRS complex which is corresponding to the ventricular 

depolarization and a T wave which is point to the rapid repolarization of the 

ventricles. A normal ECG signal and its time intervals are shown in Figure 6.2. 

 
Figure 6.2: Standard Waves of a Normal Electrocardiogram [74] 

Most of the clinically features which are useful for diagnostic the disease can be 

found in the time interval between components of ECG and the value of the signal 

amplitude. For example, the Q-T feature is used to recognition one dangerous 

disease, the Long Q-T Syndrome (LQTS), which is responsible of thousand deaths 

each year [64]. The shape of T wave is a critical factor and it is essential to identify it 

correctly since inverted T waves can be caused as an effect of a serious disease 

named coronary ischemia [65].   

Designing an algorithm in order to extract the ECG features automatically is very 

hard since ECG signal has a time-variant behaviour. As a result of these signal 

properties, we face with multiple physiological constraints and the existence of noise. 
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In recent years, several algorithms have been proposed for detection those features. 

In [65] they introduced a method to extract wavelet features and used SVM for 

classification. In their purposed method, the classification is done without completely 

identify ECG components. Castro et al. introduced a method that used wavelet based 

features and classify various form of abnormal heartbeats [66]. Tadejko and 

Rakowski proposed an algorithm which is based on computational morphology [67]. 

Their main goal is the assessment of various automatic classifiers for detection of 

disorder in the ECG. In [68], authors proposed a method to extract feature from ECG 

based on a multi resolution wavelet transform. First, they remove noise from ECG 

signal by discarding the coefficient which caused noise. In next step, they detect 

QRS complexes and by using them the start and end of each wave part is determined. 

They assess proposed method on some records from MIT-BIH Arrhythmia Database. 

In this thesis, we propose a method for recognition of time interval and amplitude of 

various wave parts of ECG. In the first stage of our approach, the R-peak is detected 

accurately. For this purpose we used wavelet. In the second stage, the other ECG 

components are identified by using a local search around the detected R-peak. We 

can summarize this approach: 

 The location of the R-wave has been identified by using wavelet 

transform. 

 Each R-R interval  from ECG signal is segmented as follow: 

o Within an interval, finding the maximum and minimum of the 

wave which are corresponding to the Q and S waves 

o Since P-wave and T-wave are dependent to other factors; we must 

provide some deterministic points in order to find their location. 
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These points are including the end point of the S-wave or Soff, the 

start point of T-wave or Ton, and the start point of Q-wave or 

Qon.  

6.4 R-Peaks Detection 

The detection of R-peak is the first step of feature extraction. For this purpose, we 

used DWT due to its ability to recognize different locations of the waves accurately.  

Similarly to the preprocessing, we apply the same steps in order to compute the scale 

and choose the mother function. We have the QRS complex signal as an input which 

has the frequencies between 5Hz and 15Hz, so we select scale of order 4 and choose 

the Db4 mother wavelet. The Db4 wavelet is very popular for the detection and 

location of R peaks due to the strong similarity of its shape to the ECG signal.  

By performing wavelet decomposition the input has been down sampled. Therefore, 

the amounts of unnecessary information are reduced but the components of QRS are 

not changed. In order to find the location of R-peak, first we choose the locations 

which their amplitudes are greater than 60% of the max value of the whole input 

signal. Since we remove the noise from the signal in the previous step, it is useful for 

R-peak detection.  

Since we decompose the signal into 4
th

 level, the R-peak location in this modified 

signal is at least 0.25 of the R-peak location in the original signal. So in order to find 

the actual location of R-peal we must convert the founded positions by multiplying 

them with 4.   

Another important point is that R-peak location in modified signal is not exactly on 

the original signal at a scale of 4. Position of the signal changes during the down 
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sampling, so we applied local search around the R-peaks which calculated in 

previous part. The interval of this search can be limited to a window of ± 20 samples. 

6.5 P, Q and S Detection Algorithms 

The accuracy of detecting R-peak completely affected on P, Q and S detection parts, 

since their location is determined relatively to R-peak. In the other hand, detect the 

location of R-peaks are corresponding to recognize the heart beat interval.  

One of the most popular features in ECG signal processing is the R-R interval which 

can be computed by the following formula: 

𝑅_𝑅(𝑖) = 𝑅(𝑖 + 1) − 𝑅(𝑖)                            (6.2) 

where R(i)  and R(i + 1) are  the indexes of the current and  next R wave peak 

respectively. 

6.5.1 S-wave Detection 

The S-wave is located on the end of the QRS complex so in order to find its location 

we started from R-peak location plus 6 units because range of the shortest length of it 

is between 0.016 and 0.036 seconds. This range is corresponding to 6 and 13 

samples. The stop point of search interval is related to the value of R-R interval. 

However the maximum length of the RS intervals is recorded is around 0.27 seconds 

where its R-R interval was 1.41 seconds [69].  

6.5.2 Q-wave Detection 

The Q-wave indicates the start point of the QRS complex section. It is reported that 

Q-wave peak location can be found in the range between 0.02 to 0.06 seconds from 

R-peak. In the other hand, this interval is equal to 8 and 22 samples. But this interval 

must be relevant to the value heart beat length. Therefore  Q-R interval varies from 

one patient to another, for example a patient with a R-R equal to 235 can have a Q-R 
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interval equal to 19 and another one can have Q-R equal to 8 while has a  R-R equal 

to 292. As a result, the range for search becomes larger for longer R-R interval. The 

process of Q-wave detection is illustrated in Figure 6.3. 

 
Figure 6.3: Q-wave Identification (150 samples in this case) 

6.5.2.1 Q-wave Onset Detection 

The start point of Q and Qon can be indicated as the points with the maximum 

amplitude near the negative peak location of the Q-wave. Therefore the search 

interval for finding the Qon started from Q-12 and continues till Q-5. Since some 

points before Qon may have larger amplitude, its index may need some corrections. 

For this purpose, it is necessary to: 

 Compute the amplitude difference between Qon and Q by the following 

equation 

𝑙𝑒𝑣𝑒𝑙 =  𝑦𝑄𝑜𝑛(𝑖) − 𝑦𝑄(𝑖)                                       (6.3) 

 if amplitude(P)-level>0.25 then threshold=0.90 else it sets to 0.87. 

 Start searching from 𝑄𝑜𝑛 in order to find the first value which  

                        Point_ amplitude < thanlevel(i)  ∗ threshold.  
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6.5.3 P-wave detection 

Since P-wave can be located far or near from Q-wave, it is necessary for its interval 

to be relative to the R-R interval value. It is reported that duration of the P-R interval 

is between 0.09 and 0.19 seconds and this interval also depends on the R-R interval. 

This interval is equal to 19 and 38 samples. From the point of view of proportional, 

the limits are 14% to 22% of the respective RR range. One of the benefits of this 

approach is that we can detect P-waves with low amplitude, therefore according to 

the search area interval, we have two cases: 

 Case 1: search_interval set to 0.81 ∗ R_R(i) − 7 to Q(i) − 18. This 

interval works for most of the patients but have some problem with 

records numbers 111,215 and 218. 

 Case 2: search_interval=0.71 ∗ R_R(i)  − 7 to Q(i)  − 18. This search 

interval solves the above problem but now when we can’t find P-wave and 

the S-T segment is depressed, we must start searching the P-wave from the 

start point in its equation.  

6.6 T-wave Detection 

Finding T-wave in ECG signal is the most complicated task. Designing a procedure 

for detecting T-wave is difficult since it has a time variant behaviour. By checking 

the ECG waveform someone can see that the T- wave is located at the interval which 

has largest amplitude between S and the middle of the R-R interval. Therefore, the 

search interval for T, starts from S-wave and finishes at the middle point of the R-R 

interval. 

6.6.1 T-wave Onset Detection 

Another important point in analysing the ECG signal is the start point of T-wave or 

Ton, because it is used as a support point for determining the polarity of T which can 
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be positive, negative or flat. Existence of negative or flat T waves in ECG shows a 

serious disease, the cardiac ischemia. The searching area is start from the S-wave 

plus small offset till T-wave and Ton is a point with minimum value in this interval. 

6.6.2 T-wave End Detection  

Detection of the end point of T-wave, Toff, is another difficulty in this domain since 

there is still discussion between specialists about it. The best properties for detect 

Toff is finding the point which has the lowest amplitude after T within a limited 

range. For this purpose, it is necessary to make the signal smooth. We can do it by 

adding previous values of the signal to it. If point’s amplitude be larger than the 

amplitude’s of all the previous 3 samples, it can be consider as a Toff point. Table 

6.1 summarized the search intervals used to find ECG components. It shows the 

indexes of the start and the end ranges of the search. The output of this local search 

algorithm is the index which satisfies corresponding constraint type [69]. 

Table 6.1: Search Intervals [69] 

Wave Beginning End Type 

P 0.71 ∗ R_R(i) − 7 Qon(i) − 12 max 

Q R_R(i) − 25 R_R(i) − 7 min 

Qon Q(i) − 12 Q(i) − 5 max 

S R(i)  +  6 R_R(i)/5 − 10 min 

Ton 0.7 ∗ ((T(i) − S(i)) T(i) − 10 min 

T S(i)  +  15 R_R(i)/2 max 

The results of implementation of PQRS detection algorithm for some ECG records 

from MIT-BIH database are shown in the Figure 6.4. 
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Figure 6.4: PQRST detected in (a) record [100], (b) record [111], (c) record [118], 

(d) record [201], (e) record [210], (f) record [220] from ECG MIT-BIH arrhythmia 

database 

The results of implementation of 𝑂𝑛𝑠𝑒𝑡 𝑎𝑛𝑑 𝑂𝑓𝑓𝑠𝑒𝑡  detection algorithm for 

previous ECG records are shown in Figure 6.5. 
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(f) 

Figure 6.5: Onset-Offset of waves detected in (a) record [100], (b) record [111], (c) 

record [118], (d) record [201], (e) record [210], (f) record [220] from ECG MIT-BIH 

arrhythmia database  
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Chapter 7 

PROPOSED METHODS 

7.1 Introduction 

Automatic classification of the arrhythmias using machine-learning technologies can 

bring various benefits. In this thesis, novel and high-performance approaches based 

on deep learning techniques are proposed for the automatic classification of 

electrocardiogram (ECG) signals. In this thesis, two fully automatic systems have 

been presented which shown to have high efficiency and low computational cost 

which achieve superior classification accuracy compared to the other methods. 

7.2 Proposed 3-Level Feature Fusion Approach 

In this section, we propose a new ECG classification system consisting of three 

subsystems for the classification of a heartbeat into five different AAMI class types 

by exploiting multi-stage learned features from a trained CNN and hand-crafted 

features extracted using well-known algorithms [70]. Hand-crafted feature sets 

constitute the P-QRS-T temporal features, morphological wavelet features and 

various statistical features. The overall schematic of the proposed method is 

illustrated in Figure 7.1. 

This is motivated by our observation that the distributions of the measures of the 

diseased group are often skewed, heavy-tailed, or multimodal, whose features cannot 

be well captured by using a single feature extractor. It turns out that the performance 

of utilizing several feature descriptors is better than the single one. Secondly, we 
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combine commonly used hand-crafted feature descriptors on ECGs with learned 

features and use decision-level fusion method to identify the heartbeat type. 

Previous studies in multimodal classification systems have shown that information 

fusion in both feature-level and score-level can improve the classification 

performance [71]. Considering the  large intra-class similarity as well as many inter-

class variability between different ECG signal class types, the feature-level fusion is 

performed over the hand-crafted local descriptors while score-level fusion is applied 

on the global learned features. Finally, the decisions obtained from three subsystems 

are consolidated by a decision-level fusion approach to predict the heartbeat classes. 

In the first subsystem, the temporal features and statistical features extracted for each 

ECG beat signal are combined by the feature-level fusion method. The resulting 

feature vector is fed into a SVM-based classifier to predict the input heartbeat’s 

class-label. As explained in the previous section, signal characteristics such as heart 

rate, ST-Interval, duration of QRS complex, TT-Interval,  PR-Interval, QT-interval,  

PP-Interval and RR-Interval between consecutive and RR interval averaged over the 

last ten beats are considered as the  temporal features, while features such as  mean, 

variance, sum, root mean square, mean absolute deviation, skewness (𝛾3), kurtosis 

(𝛾4) and the  5-th moment of the input ECG signal are constituting the statistical 

features. These features are first normalized by the z-score method and then 

concatenated in order to perform feature-level fusion of P-QRS-T-based and 

statistical features. 

The second subsystem uses DWT in order to extract morphological features. For this 

purpose, the Mayer’s wavelet is selected and decomposed the ECG signal up to 
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fourth-level. Afterwards, morphological features include the maximum and 

minimum values of detail coefficients and approximation coefficients of the 

decomposed signal are extracted. Also, the amplitude values of P-wave, QRS-wave 

and T-wave considered as part of the morphological features. Consequently, the size 

of morphological features is reduced by using PCA for both computational efficiency 

and improved classification performance. The first 10% of the principal components 

associated with the morphological features is selected and submitted to a SVM-based 

classifier with RBF kernel to predict the class label of the input heartbeat. 

In order to employ the strength of CNNs as automatic feature extractor, the proposed 

system adds a third subsystem, that is not used in other CNN-based classifier 

architectures published so far, which utilizes cross-layer heterogeneity features 

within the decision making process. In this approach, the cost-free mid-level features 

extracted from intermediate layers of a CNN are combined to the output layer 

features by score-level fusion method. Resultantly, it enhances the discriminative 

power of the proposed classifier system in classifying different patterns of varying 

complexities. This score-level fusion process is explained in detail by Algorithm 1. 

This algorithm can be expanded for more than two feature sets. In order to find the 

optimal subset, different combinations of layers’ features are investigated by using a 

greedy approach.  The early layers are ignored by this greedy heuristic since their 

learned features are too simple and general, while the intermediate layers are chosen 

for fusion with the last layer. At the final stage of the proposed system, decision-

level fusion is performed on the outputs of the three individual classifiers to 

determine the input heartbeat sample’s class-label. This decision-level fusion is 

implemented by the majority-voting technique. In case of a tie, one of the 

subsystem’s results will randomly be selected and considered as the final decision. 
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7.2.1 Handcrafted Feature Descriptors 

The choice of features to classify the ECG signal is crucial. Existing features can be 

roughly divided into 2 categories: the hand-crafted and the learned ones. By hand-

crafted features we understand those which are extracted from separate signals 

according to a certain manually predefined algorithm based on the expert knowledge. 

Contrary to hand-crafted features, the learned ones are derived from a signal dataset 

by a training procedure in order to full fill a certain task (e.g. ECG classification). 

Convolutional Neural Networks (CNNs) [43] are examples of deep neural networks 

which can be used to extract learned features. 

7.2.1.1 Temporal Features 

 Temporal features are among the most relevant features that have already been used 

in many applications. They include heart rate and interval-type features such as ST-

Interval, the duration of QRS-complex, TT-Interval, PR-Interval, QT-Interval and 

PP- Interval. Figure 7.2 shows a typical ECG cycle and its temporal features where 

the RR-Interval is also a temporal feature between consecutive heartbeats. Its 

discrete and mean values averaged over a number of heartbeats are included within 

the extracted temporal features.  
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Figure 7.1: The overall schematic of the proposed method [70] 

Morphological features: The shape-based characteristics, called the morphological 

features, of ECG signals can be computed through using the detail and 

approximation coefficients from a wavelet transformation. For this purpose, the finite 

impulse response (FIR) approximation of Mayer’s wavelet is selected and performed 

on input ECG signals to decompose it, up to the fourth-level. Consequently, 

maximum and minimum values of detail and approximation coefficients of the 

decomposed signal together with the amplitudes of P-wave, QRS-wave and T-wave 

constitute the vector of morphological features.    
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Figure 7.2: A Normal ECG Signal and It’s Temporal Features 

Statistical features: Statistical features which exhibit the overall variational 

characteristics of the signal. Statistical features complement the hand-crafted ones. 

Common statistical features include mean, variance, sum, root mean square, mean 

absolute deviation and 5-Th moment of the original signal. These are extracted to 

delineate the ECG signal for an accurate classification. The  statistical  features  

extracted  from  the  given  input  ECG  signal  are as follows:  

Mean: It is the average of a set of values and defined as the ratio between the 

summation of these values and the number of elements in the set. 

�̅� =
∑ 𝑋

𝑁
                                                         (7.1) 

The normalized 5𝑡ℎ central moment: 

 
�̅�5

𝜎5
=

𝐸|(𝑋−�̅�)5|

𝜎5
                                                     (7.2) 

Standard Deviation: The amount of dispersion or variation of a given dataset is 

quantified by using this measure.   

                                          𝜎 = √
∑|𝑥−�̅�|2

𝑁
                                                            (7.3) 
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Variance: Let us consider a set of random numbers 𝑋 and its mean �̅�. Variance 

measures how far 𝑋 are spread out from�̅�. Also, it is computed from the squared 

deviation of 𝑋 from it’s �̅�. 

𝑉𝐴𝑅(𝑋) =
∑(𝑥 − �̅�)2

𝑁 − 1
                                                 (7.4) 

Additionally, skewness and kurtosis are two important higher order moments that 

give characteristic information on the shape of the probability distribution of a set of 

observations. In this respect, they are of the statistical features used in the proposed 

methods. Definitions of skewness (𝛾3) and kurtosis (𝛾4) are as follows: 

𝛾3 =
𝐸{[𝑥 − 𝐸(𝑥)]3}

(𝐸{[𝑥 − 𝐸(𝑥)]2})3/2
                                               (7.5) 

γ4 =
E{[x − E(x)]4}

(E{[x − E(x)]2})2
− 3                                             (7.6) 

where 𝑥 denotes the observed random variable and 𝐸 denotes its expected value.  

7.2.2 Learned Feature Descriptors 

Convolutional neural networks can be used as automatic feature extractors such that 

the learned features provided by CNNs can be fed directly to classifiers like SVMs to 

predict the output class labels. Conventional implementations that use CNNs for 

classification use only the features at the output layer. However, mid-level features at 

intermediate layers of a CNN can also be discriminative for classifying different 

patterns with varying complexities. From computational point of view, these mid-

level features are already computed when the system is trained to extract high-level 

features, and hence, their usage does not bring any extra computational burden.  

Recent studies [71][72] demonstrated the usage of learned features extracted from 

different layers of CNN is useful for the improvement of the classifier performance. 

It is also shown that the samples with lower complexity are better discriminated by 
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using features of the early layers while the complex patterns are well represented by 

features of the late layers. Therefore, as proposed in this research work, multi-stage 

fusion of features is expected to improve the accuracy of the implemented classifier 

system.  

There are two ways in using the pre-computed mid-level features of CNN: feature-

level fusion and score-level fusion. In feature-level fusion approach, features from 

different layers are concatenated to create a unified feature vector which is fed into a 

classifier for a decision associated with the test input. One of the common problems 

with feature-level fusion is the large size of the feature vectors. In CNNs, the size of 

the learned features in intermediate layers can be very large and combining these 

features simply by concatenation may cause the curse of dimensionality problem. 

Dimensionality reduction methods such as PCA or Discrete Cosine Transform 

(DCT) can be used to overcome this problem with a significant computational cost.  

Another approach for overcoming the dimensionality problem is score-level fusion. 

More precisely, as illustrated in Algorithm 1, two different layers’ feature sets FSm 

and  𝐹𝑆𝑛 are considered for the score-level fusion. These feature sets are extracted 

for all the training set samples and stored in 𝐹𝑚
𝑋𝑡𝑟 and 𝐹𝑛

𝑋𝑡𝑟, respectively. Afterwards, 

in each FSm and  𝐹𝑆𝑛 feature space, the distance between a test sample and all of the 

training set samples are computed and stored in the test sample’s score-vectors, 

namely, 𝒔𝒄𝒐𝒓𝒆𝒎 and 𝒔𝒄𝒐𝒓𝒆𝒏. These score vectors should be normalized before 

being used in score-level fusion. For this purpose, Min-Max normalization method 

[71] is used as follows: 

Si
′ =

Si − Min(S)

Max(S) − Min(S)
                                                  (7.7) 
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where 𝑆𝑖 stands for i
th

 entry in the original score vector,  𝑀𝑎𝑥(𝑺)   and 𝑀𝑖𝑛(𝑺) are 

the maximum and minimum values of the original score vector 𝑺 respectively and 𝑆𝑖
′  

indicates the i
th

 entry of the normalized score. Finally, the normalized score vectors 

are used by one of the different fusion methods such as Sum-rule or Product-rule 

[71]. This fused score vector is used to make the final classification decision through 

using a minimum distance-based classifier algorithm. 

 

Algorithm-1 Score-level fusion of two feature sets for ECG 

classification 

Input: 

Trainset samples 𝑋𝑡𝑟𝑎𝑖𝑛 = {(𝑋𝑡𝑟
𝑖 , 𝐿𝑡𝑟

𝑖 ) | 𝑋𝑡𝑟
𝑖 : 𝑏𝑒𝑎𝑡𝑖 ′𝑠 𝑠𝑖𝑔𝑛𝑎𝑙, 𝐿𝑡𝑟

𝑖 : 𝑏𝑒𝑎𝑡𝑖′
𝑠 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙, 𝑖 =

1, … , 𝑁𝑡𝑟𝑎𝑖𝑛} 

Testset samples 𝑋𝑡𝑒𝑠𝑡 = {(𝑋𝑡𝑒
𝑖 , 𝐿𝑡𝑒

𝑖 ) | 𝑋𝑡𝑒
𝑖 : 𝑏𝑒𝑎𝑡𝑖′𝑠 𝑠𝑖𝑔𝑛𝑎𝑙, 𝐿𝑡𝑒

𝑖 : 𝑏𝑒𝑎𝑡𝑖′
𝑠 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙, 𝑖 =

1, … , 𝑁𝑡𝑒𝑠𝑡} 
Output: 

Beat_Class_Labels 
1:      For i= 1 To 𝑁𝑡𝑟𝑎𝑖𝑛 

2: Compute 𝐹𝑆𝑚 and 𝐹𝑆𝑛 

3: 𝐹𝑚
𝑋𝑡𝑟

𝑖
=  〈𝑓𝑒𝑎𝑡_𝑚1

𝑖 , … , 𝑓𝑒𝑎𝑡_𝑚𝑆𝑚
𝑖 〉, 𝑆𝑚: 𝑠𝑖𝑧𝑒(𝐹𝑒𝑎𝑡𝑚) 

4: 𝐹𝑛
𝑋𝑡𝑟

𝑖
= 〈𝑓𝑒𝑎𝑡_𝑛1

𝑖 , … , 𝑓𝑒𝑎𝑡_𝑛𝑆𝑛
𝑖 〉, 𝑆𝑛: 𝑠𝑖𝑧𝑒(𝐹𝑒𝑎𝑡𝑛) 

5:      End For 
6:     For j= 1 To 𝑁𝑡𝑒𝑠𝑡 

7: 𝐹𝑚
𝑋_𝑡𝑒𝑗

= 〈𝑓𝑒𝑎𝑡_𝑚1
𝑗
, … , 𝑓𝑒𝑎𝑡_𝑚𝑆𝑚

𝑗 〉 

8: 𝐹𝑛
𝑋_𝑡𝑒𝑗

= 〈𝑓𝑒𝑎𝑡_𝑛1
𝑗
, … , 𝑓𝑒𝑎𝑡_𝑛𝑆𝑛

𝑗 〉 
9: For i = 1 To 𝑁𝑡𝑟𝑎𝑖𝑛 

10:   𝑠𝑐𝑜𝑟𝑒𝑖
𝑚= Compute_Distance (𝐹𝑚

𝑋𝑡𝑟
𝑖
, 𝐹𝑚

𝑋𝑡𝑒
𝑗
) 

11:          𝑠𝑐𝑜𝑟𝑒𝑖
𝑛= Compute_Distance (𝐹𝑛

𝑋𝑡𝑟
𝑖
, 𝐹𝑛

𝑋𝑡𝑒
𝑗
) 

12:        End For 
13: For i = 1 To 𝑁𝑡𝑟𝑎𝑖𝑛 

14:   𝑠𝑐𝑜𝑟𝑒𝑖
𝑚   is normalized according to Eq. (7.7) 

15:          𝑠𝑐𝑜𝑟𝑒𝑖
𝑛  is normalized according to Eq. (7.7) 

16:        End For 

17:        𝒇𝒖𝒔𝒊𝒐𝒏 = Score_Level_Fusion(𝒔𝒄𝒐𝒓𝒆𝒎, 𝒔𝒄𝒐𝒓𝒆𝒏) 
18: 𝑚𝑖𝑛𝐼𝑛𝑑𝑒𝑥=Find_Min_Index(𝒇𝒖𝒔𝒊𝒐𝒏) 

19: 𝐵𝑒𝑎𝑡_𝐶𝑙𝑎𝑠𝑠_𝐿𝑎𝑏𝑒𝑙𝑠i = 𝐿𝑡𝑟
𝑚𝑖𝑛𝑖𝑛𝑑𝑒𝑥 

20:  End For 
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7.3 Proposed DAG-CNN Model  

In this section, DAG-CNN architecture is proposed to improve the discrimination 

capability of a deep neural network by allowing its layers to share their learned 

features and work collaboratively for classification [73]. The proposed multi-scale 

CNN topology applies learned features with different level of complexity in order to 

predict the output label with high precision. 

This is motivated by the fact that hand-crafted features need a lot of domain 

expertise, human intervention only capable of what they’re designed for, are 

computationally intensive due to high dimensions. On the other hand, the DAG-CNN 

tries to learn high-level features from data in an incremental manner. This eliminates 

the need of domain expertise and hard core feature extraction. 

CNNs can be used as automatic feature extractors and the learned features can be fed 

to classifiers such as, SVMs or NNs to predict the output labels. Mid-level features at 

intermediate layers of a CNN can be discriminative for classifying different patterns 

with varying complexities. However, in CNN architectures used in literature so far, 

these cross-layer heterogeneity features are ignored. It is obvious that these mid-level 

features are already computed when the system is trained to extract high-level 

features, and hence, their usage does not bring any extra computational burden 

within our proposed model. Instead of performing feature level fusion and feeding 

the results to a classifier, we propose a multi-scale system by using a CNN with 

directed acyclic graph topology. Our proposed model can automatically learn 

different level of features, combine them and predict the output label. 
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One of the common problems with feature level fusion is the size of the feature 

vectors. In CNNs, the size of the learned features in intermediate layers can be very 

large and combining these features may cause the curse of dimensionality problem. 

To overcome this problem, we compute marginal activations by performing average 

pooling on the learned features of some layers which are used for feature level 

fusion. 

The directed acyclic graph (DAG) networks can represent more complex network 

architectures compared to ones consisting of a linear chain of layers. The main 

advantage of DAG-structured networks is that their forward layers can have multiple 

input parameters from several backward layers. This way, they can achieve different 

levels of signal representations.  

 Very deep CNNs which are proposed by the researchers in the recently published 

work can be found in [74][75][76]. A fundamental feature of this deep architecture is 

the use of connections between their layers, called “skip connection”, that is similar 

to DAG-CNNs main idea, and it is shown that these skip connections can improve 

the accuracy of the classification tasks significantly.  

DAG-CNN was proposed by Yang and Ramanan [77] to learn a set of multi-scale 

image features that are successfully used for classification of three standard scene 

benchmarks. They showed that the multi-scale model can be implemented as a DAG-

structured feed forward CNN. By this approach, it is possible to use an end–to-end 

gradient-based learning for automatically extracting multi-scale features using 

generalized back propagation algorithm over the layers that have more than one 

input. In fact, all the required equations for training the network are standard CNN 
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equations except for the Add and ReLU layers since they have multiple inputs or 

outputs. Let us consider the i
th

 ReLU layer in Figure 7.3, Let α𝑖 be its input, β𝑖
(𝑗)

 be 

the output for its j
th

 output branch (its j
th

 child in the DAG), and assume that z is the 

final output of the softmax layer. The gradient of z with respect to the input of the i
th

 

ReLU layer can be computed as Equation (7.8): 

𝜕𝑧

𝜕𝛼𝑖

= ∑
𝜕𝑧

𝛼𝛽
𝑖
(𝑗)

𝐶
𝑗=1

𝛼𝛽𝑖
(𝑗)

𝜕𝛼𝑖
         (7.8) 

where C is the number of output edge of the i
th

 ReLU. 

 
Figure 7.3: Visualization of the Parameter Setup at 𝑖𝑡ℎ ReLU and 𝑘𝑡ℎADD [77] 

For the Add layer, let βk = 𝑔(α𝑘
(1)

, · · ·, α𝑘
(𝑁)

) represents the output of an Add layer 

with multiple inputs. We can compute the gradient along the layer by applying the 

chain rule as Equation (7.9): 

𝜕𝑧

𝜕𝛼𝑖
=

𝜕𝑧

𝜕𝛽𝑘

𝜕𝛽𝑘

𝜕𝛼𝑖
=

𝜕𝑧

𝜕𝛽𝑘
∑

𝜕𝛽𝑘

𝜕𝛼𝑘
(𝑗)

𝐶
𝑗=1

𝜕𝛼𝑘
(𝑗)

𝜕𝛼𝑖
                           (7.9) 

In the convolutional layers (layer L1, L4, L7 and L10 in Figure 7.4), the convolution 

operation is computed by the Equation (7.10): 

𝑋𝑛 = ∑ 𝑦𝑘𝑓𝑛−𝑘
𝑁−1
𝑘=0                            (7.10) 

where y and f are the ECG signal and the applied filter, respectively, and N is the 

number of elements in the ECG signal y. The convolution layer’s output is 

represented by vector𝑋. For all layers of the DAG-CNN architecture, except ReLU 
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and ADD layers, the Equations (7.11) and (7.12) are used to update biases and 

weights as follows: 

∆𝑊𝑡(𝑡 + 1) = −
𝑥𝜆

𝑟
𝑊𝑙 −

𝑥

𝑛

𝜕𝐶

𝜕𝑊𝑙
+ 𝑚∆𝑊𝑙(𝑡)                  (7.11) 

∆𝐵𝑙(𝑡 + 1) = −
𝑥

𝑛

𝜕𝐶

𝜕𝐵𝑙
+ 𝑚∆𝐵𝑙(𝑡)                                        (7.12) 

where 𝑊, 𝐵, 𝑙, λ, 𝑥, 𝑛, 𝑚, 𝑡, and 𝐶 denote the weight, bias, layer number, 

regularization parameter, learning rate, total number of training samples, momentum, 

updating step, and cost function respectively. 

In DAG-CNNs, since lower layers are directly connected to the output layer through 

multi-scale connections, it is guaranteed that these layers’ neurons receive a strong 

gradient signal during learning and do not suffer from the problem of vanishing 

gradients.  

In this thesis, DAG-CNNs are used for automatically extracting and combining 

discriminative features and classifying the ECG data into different heartbeat classes. 

We assumed that the output of each component (convolution, ReLU, pooling, 

normalization, fully connected and ADD) of the proposed model is treated as a 

separate layer. Therefore our model has 22 layers. Our proposed model consists of a 

typical CNN as its base structure and some links from the intermediate and last 

ReLU layers. These links are connected to an average pooling layer to reduce their 

dimensionality, then are normalized and given to a separate fully connected MLP 

layers. Each of these fully connected layers have the same number of neurons in their 

last layer and is equal to number of class labels (five different AAMI classes) and 

generate a score vector for each samples. These score-vectors are added with each 
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other, element by element and fed into the final decision layer with softmax 

activation function to predict the class label. 

In this study, we have shown that combining different level features can improve the 

classification accuracy significantly. Particularly, the classification accuracy is 

improved when we add features learned by intermediate layers, with the exception of 

the low-level features of early layers that cause a decrease in classification accuracy. 

For the purpose of testing different combinations of feature layers and finding the 

best one experimentally, features of the last layer are considered as of necessary and 

intermediate layer features are added layer-by-layer, one at a time, in a backward 

fashion until no improvement observed in classification accuracy. This greedy 

approach ignores the features of layers closer to the input layer. Experimental 

evaluations as illustrated within the next section exhibited that the proposed system’s 

capability of fusion of multi-scale features improves the accuracy of classification 

tasks. 

The details of the DAG-CNN model have been summarized in Table 7.1. S-shaped 

rectified linear unit (SReLU) [78] has been used in our networks. Compared to other 

activation functions, SReLU is able to learn both convex and non-convex functions. 

SReLU is defined with the following formulation:  

 ℎ(𝑥𝑖) = {

𝑡𝑖
𝑟 + 𝑎𝑖

𝑟(𝑥𝑖 − 𝑡𝑖
𝑟),                  𝑥𝑖 ≥ 𝑡𝑖

𝑟

𝑥𝑖 ,                                    𝑡𝑖
𝑟 > 𝑥𝑖 > 𝑡𝑖

𝑙

𝑡𝑖
𝑙 + 𝑎𝑖

𝑙(𝑥𝑖 − 𝑡𝑖
𝑙),                  𝑥𝑖 ≤ 𝑡𝑖

𝑙

                          (7.13) 
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where are four learnable parameters used to model an individual SReLU activation 

unit. 𝑎𝑖
𝑟 is the slope of the right line when the inputs exceed the threshold 𝑡𝑖

𝑟, 𝑡𝑖
𝑙  is 

used to represent threshold in the negative direction.  

All of the max-pooling and average-pooling layers kernel size and stride are set to 2. 

All of the 3 fully-connected layers (FC) in Figure 7.7, are multi-layer perceptron 

(MLP) with 3 layers consist of 25, 15 and 5 neurons respectively. 

In the last layer, the softmax function is used to generate the final decision of the 

system which can be one of the output classes namely N, S, V, F, and Q. The overall 

schematic of the proposed method is illustrated in Figure 7.4. 

Table 7.1: The details of back-bone CNN architecture of DAG-CNN model 

Layers Type No. of Neurons Kernel size Stride 

1 Convolution 276 × 5 5 1 

3 Max-pooling 138 × 5 2 2 

4 Convolution 135 × 10 4 1 

6 Max-pooling 67 × 10 2 2 

7 Convolution 65 × 15 3 1 

9 Max-pooling 32 × 10 2 2 

10 Convolution 30 × 20 3 1 

12 Max-pooling 15 × 20 2 2 

13 Average-pooling 15 × 10 2 2 

14 

18-19-20 

Average-pooling 

Fully Connected 

15 × 10 

25 × 15 × 5 

2 

- 

2 

- 
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Figure 7.4: Overview of Proposed DAG-CNN Method [73] 
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Chapter 8 

EXPERIMENTAL RESULTS 

8.1 Introduction 

In our experiments, following the AAMI standard as illustrated in Table 8.1, four 

records labelled with (102,104,107 and 217) containing paced beats with low signal 

quality were removed. Moreover, in order to follow AAMI recommendations, the 

remaining 44 records are divided into two disjoint sets, namely DS1 and DS2. 

Training set (DS1) contains records labelled with 101, 106, 108, 109, 112, 114, 115, 

116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, and 230; and 

the test set (DS2) contains records labelled with 100, 103, 105, 111, 113, 117, 121, 

123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, and 234.  In all 

of the experiments, the patient-specific assessment strategy has been followed. 

Therefore, DS1 and the first 300 heartbeat samples of DS2 records are included 

within the training set while the remaining heartbeat samples of DS2 are used for 

testing. 

Table 8.1: Summary of the training and testing heartbeat samples 
AAMI heartbeat type Total # 

Samples 

Training set Testing set 

N 89695 45653 44042 

S 2946 983 1963 

V 7459 4252 3207 

F 811 423 388 

Q 15 8 7 
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We implemented the proposed system on a Pc with 2 Intel Xeon E5 processors-2.00 

GHz with 8-GB of memory,  running  MATLAB  2017b without GPU. The total 

time taken by a single beat during all sub-systems propagation was 0.67 msec which 

shows the significantly low computational cost of the proposed model.  

Many experiments are conducted to evaluate the performance of the proposed 

method over the MIT-BIH data set. The data set, metrics, parameters and 

experimental setup details are given in the following subsections.  

8.1.1 Metrics 

In order to evaluate different methods compared to each other, the following standard 

metrics are computed: classification accuracy (Acc), sensitivity (Sen), specificity 

(Spe), and positive predictive ratio (Ppr). The equations associated with these 

popular metrics are as follows: Accuracy is the ratio of the number of correctly 

classified patterns to the total number of patterns classified: 

𝐴𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                (8.1) 

Sensitivity is the proportion of correctly classified events among all events: 

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                         (8.2) 

and Positive predictive ratio is the proportion of correctly classified events in all 

detected events: 

𝑃𝑝𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                        (8.3) 

where TP,TN,FP and FN stand for true positives, true negatives, false positives and 

false negatives, respectively. 
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8.2 Experimental results of proposed 3-Level Feature Fusion 

8.2.1 Handcrafted Feature Results 

For each heartbeat signal in the training and test sets, the above described temporal 

features are extracted. In this respect, the RR interval between the current beat and 

the next one, RR interval between the current beat and the previous one and RR 

interval averaged over the last ten beats are considered as the additional temporal 

features. Consequently, statistical features that are explained in Section 4.1 are 

computed for each ECG beat signal. These features are normalized by Z-score 

normalization method and then concatenated one after the other to implement their 

feature-level fusion. The fused feature vector is fed to a SVM classifier with RBF 

kernel to predict the class label for an input heartbeat. Table 8.2 shows the confusion 

matrix of this sub-classifier system. 

 

 

Table 8.2: Confusion matrix of statistical and temporal feature fusion subsystem 
  Predicted Label 

T
ru

e 
L

ab
el

 

 
N S V F 

N 36978 218 398 390 

S 427 1168 4 2 

V 152 6 2554 123 

F 96 4 16 237 

 

 

For the extraction of morphological features, each beat segment is passed through the 

FIR approximation of Mayer’s wavelet and the corresponding wavelet 4-th level 

approximation and details coefficients are computed. In [78], the  FIR  

approximation  of Mayer’s  wavelet is claimed to achieve the highest  classification  

accuracy after a detailed evaluation  several different  wavelet  basis  functions 

independently  for the decomposition  the  ECG  signals. After reducing the 

dimensionality of the extracted wavelet features with PCA, the first 10% of the 

principal components were selected and applied to a SVM classifier with RBF kernel 
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to predict the class label of the input heartbeat. Table 8.3, illustrates the confusion 

matrix associated with the evaluations using this sub-classifier system.  

In training and testing procedures of these sub-classifier systems, a five-fold cross 

validation approach is followed. Accordingly, heartbeat samples are divided into five 

separate subsets such that uniform distributions of different heartbeat classes exist in 

each subset. Each experiment is repeated five times and the average values of the 

computed scores are considered as the subsystem’s performance accuracy.  

Table 8.3: Confusion matrix of morphological feature based subsystem 
  Predicted Label 

T
ru

e 
L

ab
el

 

 
N S V F 

N 36428 356 691 509 

S 469 1110 15 7 

V 61 0 2720 54 

F 58 2 11 282 

 

8.2.2 CNN-based Learned Features 

Architectural properties of the proposed CNN for ECG classification are summarized 

in Table 5. This architecture contains five convolutional layers and three fully-

connected layers. For all the five subsequent convolutional layers, the kernel sizes 

changed from large to small as mentioned as illustrated in Table 8.4.  Each 

convolutional layer followed by a S-shaped rectified linear unit (SReLU) [77] and a 

max pooling layer with kernel size equal to 2, strides equal 2 and a local response 

normalization layer. Following the 5 convolutional layers, there are 3 fully connected 

layers containing 40, 30 and 5 neurons, respectively. In the last layer, the softmax 

function is used to generate the final decision of the system which can be one of the 

output classes namely N, S, V, F, and Q. 



84 

 

Table 8.4: The details of proposed CNN architecture 

Layers Type No. of Neurons Kernel size Stride 

L1 Convolution 274 × 10 7 1 

L2 Max-pooling 137 × 10 2 2 

L3 Convolution 133 × 15 5 1 

L4 Max-pooling 66 × 15 2 2 

L5 Convolution 62 × 20 5 1 

L6 Max-pooling 31 × 20 2 2 

L7 Convolution 29 × 25 3 1 

L8 Max-pooling 14 × 25 2 2 

L9 Convolution 12 × 30 3 1 

L10 Max-pooling 6 × 30 2 2 

L11 Fully connected 40 - - 

L12 Fully connected 30 - - 

L13 Fully connected 5 - - 

     

The proposed CNN architecture was trained through the standard backpropagation 

technique with a batch size of 32.  In order to obtain the optimum performance, the 

other learning parameters are set as follows:  to prevent overfitting of training data, 

the regularization parameter (λ) is set to 0.1, momentum parameter which adjusts the 

speed of learning during training is set to 0.9 and learning rate that controls the speed 

of convergence is set to 0.001 and linearly changed according to the mean-square 

error values in each ten iterations.  The training was performed over 50 epoch 

rounds. 

8.2.2.1 Score-level Fusion of Multi-stage CNN Learned Features 

For the purpose of testing different combinations of feature layers and finding the 

best one experimentally, features of the last layer are considered as necessary and 

intermediate layer features are added, one at a time, in a backward fashion until no 

improvement is observed in classification accuracy. This greedy approach ignores 

the features of layers close to the input layer. After a number of experimental 

evaluations, selection of features from layers L5, L7 and L9 resulted in the best 

classification performance.  The selected layers’ features are input to Algorithm 1 to 

carry out the score-level fusion. 
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In order to investigate the effect of score-level fusion on the performance of ECG 

classification system, learned features from different layers of a trained CNN are 

combined together using the score-level fusion approach. Experimental evaluations 

exhibited that score-level fusion of multilayer CNN features together with the last 

layer features achieved significant improvement in classification performance. Table 

8.5 presents the confusion matrix of the score-level fusion of multi-stage CNN 

features.  

Table 8.5: Confusion matrix of multi-stage CNN features fusion subsystem 

 

 

8.2.3 Decision-level Fusion 

In order to utilize both handcrafted and learned features, the classification results of 

the above described three sub-classifier systems are fused together to predict the final 

class label by the proposed system. This decision-level fusion is performed by the 

simple majority-voting technique. In case of tie, one of the subsystem’s results is 

randomly selected and considered as the final decision. Table 8.6 presents the 

confusion matrix of the decision-level fusion and Table 8.7 illustrates the 

classification accuracy of all the three subsystems and the proposed method. 

Table 8.6:  Proposed method confusion matrix 
  Predicted Label 

T
ru

e 
L

ab
el

 

 
N S V F 

N 37743 40 124 77 

S 384 1210 5 2 

V 97 0 2659 79 

F 42 0 8 303 

 

 

  Predicted Label 

T
ru

e 
L

ab
el

 

 
N S V F 

N 37517 94 215 158 

S 499 1079 16 7 

V 147 1 2572 115 

F 82 1 18 252 



86 

 

The achieved improvement in the classification accuracy shows that hand-crafted 

features play a complementary role when used together with the learned features. 

Table 8.7: Classification metrics of the proposed method and its subsystems (%) 

System Accuracy 
N S V F 

Sen Ppr
 

Sen Ppr
 

Sen Ppr
 

Sen Ppr
 

Morphological-based  94.8 95.9 98.4 69.3 75.6 95.9 79.1 79.9 33.1 

Fusion of Statistical and 

Temporal  

95.7 97.4 98.2 72.9 83.6 90.0 86.0 67.1 31.5 

Multi-stage CNN 96.8 98.8 98.1 64.4 91.8 90.7 91.2 71.4 47.4 

Proposed 3-Level 

Feature Fusion 

98.00 99.4 98.6 75.6 96.8 93.8 95.1 85.8 65.7 

 

8.2.4 Statistical Analysis of Experimental Results 

The last step of experimental evaluations is the Friedman aligned ranks test that is 

implemented over all average sensitivity (Sen) scores achieved by the 7 algorithms 

and the proposed algorithm. The objective of this test is to check the statistical 

similarity of our results to those of others listed in Table 8.8.  

This test is carried out using the corresponding function in RTools and Table 8.8 

presents the pairwise p values obtained through the Benjaminyi-Hochberg post-hoc 

procedure. The computed p values indicate the significant difference between the 

compared pairs of algorithms. It is well that the smaller the p value, the more 

statistically different is the corresponding methods. As illustrated in Table 8.8, due to 

a small number of test cases for each data sample, namely, N, S, V and F, a great 

number of pairs of methods seem statistically similar to each other as illustrated with 

the corresponding p values larger than or equal 0.5. However, considering our 

proposed method, it seems statistically similar to only Luo et al. [59] and Chazal et 

al.[10], hence it is statistically different from 5 of its 7 competitors. Particularly, 

except Martis et al. [78], the proposed method’s statistical similarity to its 
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competitors is comparably very low as illustrated by the corresponding p values. As 

such, it is one of the best algorithms that are statistically different from their 

competitors. 

Table 8.8: Friedman aligned ranks test results 

 Proposed Luo 

et al. 

Chazal 

et al. 

Jiang 

et al. 

Ince 

et al. 

Martis 

et al. 

Ye et al. 

Luo et al.[59] 0.684       

Chazal et al.[10] 0.714 0.917      

Jiang et al.[58] 0.185 0.268 0.268     

Ince et al.[62] 0.185 0.268 0.268 0.942    

Martis et al.[78] 0.429 0.657 0.602 0.575 0.550   

Ye et al.[28] 0.183 0.185 0.185 0.657 0.684 0.268  

Zhang et al.[61] 0.268 0.470 0.429 0.713 0.684 0.714 0.449 

 

8.3 Experimental Results of the Proposed DAG-CNN Model 

The proposed DAG-CNN architecture is trained through the standard 

backpropagation technique with a batch size of 8.  In order to obtain optimum 

performance, the other learning parameters are set as follows: in order to prevent 

overfitting of training data, the regularization (λ) is set to 0.2, momentum parameters 

which adjust the speed of learning during training is set to 0.8, and learning rate that 

control the convergence of the training data are set to 0.0002 and linearly changed 

according to the mean-squared error values in each five iteration.  The training was 

performed 40 epochs rounds. The goal of our DAG-CNN model is to classify 

heartbeats into AAMI five classes. Table 8.9 summarizes beat-by-beat classification 

results of ECG heartbeat patterns for all test records. 

For each of the four classes N, S, V and F, we compare the classification 

performance of our system with the state-of-the-art approaches in Table 8.11. For 

this comparison we compute the four standard metrics: classification accuracy (Acc), 

sensitivity (Sen), specificity (Spe), and positive predictive ratio (Ppr).  
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For clinical application, the sensitivity, specificity, and positive predictively 

measurement are more relevant performance criteria because there is a large 

difference in the number of beats from different classes in the training/testing data. 

Clinically, supraventricular ectopic beats (SVEB) and ventricular ectopic beats 

(VEB) are two critically abnormal and serious heartbeats.  So for performance 

evaluation, we also present the results in terms of VEB (V class versus [N, S, and F]) 

and SVEB (S class versus [N, V, and F]). The VEB and SVEB classification results 

of the proposed technique over all DS2 records are summarized in Table 8.12. It is 

observed that overall, the performance of the proposed method in VEB and SVEB 

detection is significantly better than most of the state-of-the-art methods and 

comparable with the best method [59]. 

Table 8.9: The details of back-bone CNN architecture of DAG-CNN model 

Layers Type No. of Neurons Kernel size Stride 

1 Convolution 276 × 5 5 1 

3 Max-pooling 138 × 5 2 2 

4 Convolution 135 × 10 4 1 

6 Max-pooling 67 × 10 2 2 

7 Convolution 65 × 15 3 1 

9 Max-pooling 32 × 10 2 2 

10 Convolution 30 × 20 3 1 

12 Max-pooling 15 × 20 2 2 

13 Average-pooling 15 × 10 2 2 

14 

18-19-20 

Average-pooling 

Fully Connected 

15 × 10 

25 × 15 × 5 

2 

- 

2 

- 
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Table 8.10: Different heartbeat types classification result 

Grand 

truth 

 
N S V F Q 

N 37571 80 192 133 8 

S 427 1156 11 5 2 

V 88 2 2671 74 0 

F 60 1 2 281 0 

Q 6 0 0 1 0 

 

8.4 Comparison with the State-of-the-art Methods 

As illustrated in Table 8.11, classification performance of the proposed system is 

compared with the state-of-the-art approaches for each of the four AAMI classes N, 

S, V and F. The same experimental settings are used for all algorithms. Clinically, 

supraventricular ectopic beats (SVEB) and ventricular ectopic beats (VEB) are two 

critically abnormal and serious heartbeats.  Accordingly, experimental results 

associated with VEB (V class versus [N, S, and F]) and SVEB (S class versus [N, V, 

and F]) heartbeats are used for comparative performance evaluations. Different 

evaluation metrics of the proposed methods for VEB and SVEB classification are 

mentioned in Table 8.12. The robustness and effectiveness of the proposed method 

are studied in terms of accuracy, sensitivity and positive predictive ratio in Table 

8.11 and Table 8.12. Consequently, the experimental results show that our proposed 

method outperforms all of the state-of-the-art methods. Also, it is observed that the 

proposed system recognizes VEB and SVEB more accurate than all of the state-of-

the-art methods. The results demonstrate that combining different features in 

different fusion levels (feature-level and score-level) enhances the performance of 

the ECG classification system. 
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Table 8.11: Classification metrics compared to the state-of-the-art (percentage) 

Reference Accuracy 
N S V F 

Sen Ppr
 

Sen Ppr
 

Sen Ppr
 

Sen Ppr
 

Luo [59] 97.5 99.0 98.4 71.4 94.4 93.3 93.3 82.7 58.5 

Chazal[10] 93.9 94.3 99.4 87.7 47.0 94.3 96.2 74.0 29.1 

Jiang [58] 94.5 98.7 96.2 50.6 68.0 86.6 89.4 35.8 84.2 

Ince [62] 93.6 97.0 97.0 62.1 56.7 83.4 86.5 61.4 73.4 

Martis[78] 89.0 94.2 99.2 86.2 56.7 92.4 93.4 66.4 17.7 

Ye [28] 88.2 90.0 98.2 56.4 55.1 84.7 59.5 35.8 5.8 

Zhang[61] 88.3 88.9 99.0 79.1 36.0 85.5 92.8 93.8 13.7 

Proposed 3-Level 

Feature Fusion 
98.00 99.4 98.6 75.6 96.8 93.8 95.1 85.8 65.7 

Proposed DAG-

CNN model 
97.15 98.8 98.3 72.3 93.0 92.0 92.8 81.7 57.00 

 

Table 8.12: Comparison of SVEB-VEB classification with the state-of-the-art 

Reference 
SVEB VEB 

Acc Sen Ppr Spe Acc Sen Ppr Spe 

Luo [59] 98.8 71.4 94.4 99.8 99.1 93.3 93.3 99.5 

Kiranyaz [60] 96.4 64.6 62.1 98.6 98.6 95 89.5 98.1 

Chazal [10] 95.9 87.7 47.0 96.2 99.4 94.3 96.2 99.7 

Jiang [58] 96.6 50.6 68.0 98.8 97.7 86.6 89.4 98.9 

Ince [62] 97.3 63.5 53.7 98.3 98.0 84.6 86.7 99.0 

Martis [78] 93.3 83.2 33.5 93.7 97.4 86.8 75.9 98.1 

Ye [28] 97.4 56.4 55.1 98.6 94.6 84.7 59.5 95.4 

Zhang [61] 93.3 79.1 36.0 93.9 98.6 85.5 92.7 99.5 

Proposed 3-level 

multistage CNN 
99.0 75.6 96.8 99.9 99.3 93.8 95.1 99.7 

Proposed DAG-

CNN model 
98.8 72.2 93.3 99.8 99.1 94.2 92.8 99.5 
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Chapter 9 

CONCLUSION 

Two novel ECG classification methods based on deep learning approaches have 

proposed in this thesis. The proposed methods are fully automatic, non-invasive and 

require minimal interaction with the clinician and can be applied to other heartbeat 

abnormalities as well. The only limitation of this extension is collecting a large 

annotated database including other types of abnormal cardiac rhythms, such as 

idioventricular rhythms and asystole.  

By comprehensive experiments on MIT-BIH dataset, the following conclusions are 

proposed:  

• multi-stage deep feature based method can archive better classification 

accuracy than methods based on the  hand-crafted feature fusion. 

• methods based on multi-stage CNN feature fusion such as DAG-CNN, can 

achieve better performance than CNN based method. 

• shallow features from early layers of CNN can be complementary to deep 

features of the last layer of CNN and  fusion of these features  improve the 

discriminative capability of the feature set.  

Fusion of feature descriptors extracted from a signal through different methods is an 

important issue for the exploitation of representational power of each descriptor. As a 

part of this research work, a novel system which exploits multi-stage features from a 
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trained convolutional neural network (CNN) and precisely combines these features 

with a selection of handcrafted features is proposed. The set of handcrafted features 

consists of three subsets namely, wavelet transform based morphological features 

representing localized signal behaviour, statistical features exhibiting overall 

variational characteristics of the signal and temporal features representing the 

signal’s behaviour on the time axis. Different levels of information fusion are 

proposed in this thesis.  

Various hand-crafted features such as temporal features and statistical features are 

combined during the first level of information fusion (feature-level) procedures. 

Additionally, morphological features are extracted by using DWT method and used 

to classify ECG signals separately. Multi-stage learned features from different layers 

of a trained CNN for ECG classification are combined together by the score-level 

fusion method. Finally, the obtained results of these three approaches are aggregated 

by using a decision-level fusion method. The aggregation result shows that generic 

features extracted from CNN are enhanced by combining them with domain-specific 

features.  

The proposed DAG-CNN architecture, presents a multi-scale system that can 

automatically learn different level of features, combine them and predict the output 

label. The proposed system is very efficient and instead of performing feature level 

fusion manually and feeding the results into a classifier, the system works in fully 

automatic manner.  

Compared with the state-of-the-art methods, our proposed approaches obtained 

significant improvement in classification accuracy on MIT-BIH database. The 
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proposed system results showed that the information fusion of handcrafted features 

in feature-level and fusion of global learned features in score-level provide a higher 

accuracy than the other algorithms. 

Based on the obtained experimental results, it is evident that the proposed systems 

have the potential to be used in real clinical environments and can be implemented 

on portable device for the long-term monitoring of cardiac arrhythmia. 

As the future works we intend to conduct studies on the employing modern deep 

CNN architectures such as GoogLeNet and ResNet for the other biomedical signal 

classification problems to further verify the multi-stage feature fusion idea according 

to their characteristics. 
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Appendix A: Anatomy and Function of Human Heart 

The human heart is located within the thoracic cavity, medially between the lungs in 

the space known as the mediastinum. The heart pumps blood through a closed 

system of blood vessels.  Blood vessels allow blood to circulate to all parts of the 

body. Arteries usually colored red because oxygen rich, carry blood away from the 

heart to capillaries within the tissues.  Veins usually colored blue because oxygen 

poor, carry blood to the heart from the capillaries.  Capillaries are the smallest 

vessels within the tissues where gas exchange takes place.  The function of the 

cardiovascular system is to deliver oxygen and nutrients to the body tissues and 

remove carbon dioxide and wastes products. 

As illustrated in Figure A.1, the heart has 4 chambers, two champers in each left and 

right sides. The upper chambers are called the left and right atria, and the lower 

chambers are called the left and right ventricles. The muscles namely septum, divide 

the left and right atria and ventricles. Tricuspid, pulmonary, mitral and aortic valves 

are controlling the blood flow through all parts of the body.  Atrium and ventricle are 

two heart chambers which are located at the left and right sides of the heart 

respectively. There are 4 valves in the charge of the blood flow namely, tricuspid, 

pulmonary, mitral and aortic.  

The tricuspid and the mitral valves divide the right atriums and ventricles and left 

atriums and ventricles, respectively. The pulmonary valve controls the blood flow 

from heart to lungs. Finally, the aortic valve directs blood to the body circulation 

system. Walls of the heart are formed by cardiac muscle (myocardium). This muscle 
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is responsible for the mechanical work done by the heart. For controlling the 

pumping process specialized muscle cells that conduct electrical impulses evolved. 

These impulses are called action potential and they are responsible for forming the 

ECG waveform on the body surface. 

In order to distribute oxygen to whole body, human’s heart never stops. It works in 

periodic cycles. A cycle works as follows: Deoxygenated blood flows through 

superior vena cava to the right atrium. When the atrium is contracted, blood is 

pumped to the right ventricle. From the right ventricle the blood flows through 

pulmonary artery to the lungs. Lungs remove carbon dioxide from blood cells and 

replace it with oxygen. 

Oxygenated blood returns to the left atrium and after another contraction it is 

pumped to the left ventricle. Finally the blood is forced out of the heart through aorta 

to the systemic circulation. The contraction period is called systole, during which the 

heart fills with blood. The relaxation period is called diastole. From electrical point 

of view the cycle has two stages - depolarization (activation) and repolarization 

(recovery). 

A.1 The Conduction System of the Heart 

To maintain the cardiac cycle the heart developed a special cell system for generating 

electrical impulses and by these impulses mechanical contraction of the heart muscle 

is ensured. This system is called conduction system (Figure A.2). 
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Figure A.1: Basic Heart Anatomy Schema - There are four chambers, two on the left 

(right heart) side responsible for pumping the blood to lungs and two on the right 

(left heart) responsible for pumping the blood to body[37] 

It conveys impulses rapidly through the heart. Normal rhythmical impulse, which is 

responsible for contractions, is generated in the sinoatrial (SA) node. Then, it 

propagates to the right and left atrium and to the atrioventricular node (AV). The 

impulse is delayed in the AV node in order to allow proper contraction of the atria. 

Thus all blood volume in the atria is forced out to the ventricles before its 

contraction. Atrium and ventricles are electrically connected by bundle of His. From 

here, the impulse is conducted to the right and left ventricle. The pathway to the 

ventricles is divided to the left bundle branch and right bundle branch. Further, the 

bundles ramify into the Purkinje fibres that diverge to the inner sides of the 

ventricular walls. 
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The primary pacemaker of the heart is the sinoatrial node. However, other 

specialized cells in the heart (AV node, etc.) can also generate impulses but with 

lower frequency. If the connection from the atria to the atrioventricular node is 

broken, the AV node is considered as the main pacemaker. If the conduction system 

fails at the bundle of His, the ventricles will beat at the rate determined by their own 

region. All cardiac cell types have also different waveform of their action potentials 

(Figure A.2). 

 

Figure A.2: Conduction System of the Heart Consists of Sinus Node, 

Atrioventricular node, Bundle of His, Bundle Branches and Purkinje Fibres [37] 


