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ABSTRACT

Fixed point theory be one of the advanced topics in both pure and applied mathematics,
it also has seen great interest since recent decades, because it is considered an essential
tool for nonlinear analysis and many other branches of modern mathematics. In
particular, when we deal with the solvability of a certain functional equation
(differential equation, fractional differential equation, integral equation, matrix
equation, etc), we are reformulating the problem in terms of investigating the existence
and uniqueness of a fixed point of a mapping. In addition, this theory has several
applications in many different fields such as biology, chemistry, economics, game

theory, optimization theory, physics, etc.

The basic purpose of this thesis is to present some recent advances in this theory with
some applications that is an important for our life. For example, first and second order
of ordinary differential equations in Banach space and fractional differential equations

involving Riemmann-Liouville and Caputo differential operators.

Keywords: Fixed points, Banach’s contraction theorem, Contraction, Schauder’s
fixed point theorem, Brouwer’s fixed point theorem, Uniqueness, EXistence,

Fractional differential equations, Boundary value problems.



0z

Sabit nokta teorisi hem giivenli hem de uygulamali matematigin en ileri konularindan
biri olup, uzun yillardan bu yana blyUk ilgi géruyor, ¢unki dogrusal olmayan analizler
ve modern matematigin diger bir¢coklerinden dalinda 6nemli bir ara¢ olarak kabul
edilir.  Belirli, temizlenmemis bir denklemin (diferansiyel denklem, kesirli
diferansiyel denklem, integral denklem, matris denklemi vb), ¢Oziinebilirligi ele
aldigimizda, bir haritanin sabit bir noktasmnin gesitliligi arastirmak ig¢in sorun giderme
diizenliyoruz. Ek olarak, bu teorinin biyoloji, kimya, ekonomi, oyun teorisi,

optimizasyon teorisi, fizik vb, gibi c¢esitli farkli alanda uygulamalar: vardir.

Bu tezin temel hedefi, yasamimiz i¢in 6nemli olan uygulamalarla, bu teorideki bazi
yeni gelismeleri sunmaktir. Ornek olarak, Banach uzayinda srradan diferansiyel
denklemlerin birinci ve ikinci dereceden siralari, Riemmann-Liouville ve Caputo

diferansiyel  operatorlerini  iceren  fraksiyonel diferansiyel  denklemler.

Anahtar Kelimeler: Sabit noktalar, Banach'm biiziilme teoremi, Kasilma,
Schauder’in sabit nokta teoremi, Brouwer’in sabit nokta teoremi, Teklik, Varlik,

Kesirli diferansiyel denklemler, Sinir deger problemleri.
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Chapter 1

INTRODUCTION

The thesis displays a clear explanation of the FPT. After introducing some important
preliminaries and basic theorems of FP, we focused on some applications of BCP and
SFPT. The prime aim of this exposition is to offer many of the basic results and
techniques of this theory. Certainly, not all aspects of involved theory could include in

this work.

The thesis is divided into five chapters. In chapter 1, we give a brief introduction of

some basic aspects of this thesis.

The second chapter is also devoted to provide a simple summary for some important
definitions, the examples and the useful results about some of the spaces in this thesis.
For examples, metric, normed, Banach, inner product and topological spaces. In
addition, this chapter has illustrated some the basic concepts and several examples
about the FP and contraction. The last section of this chapter studies some the

relationships between FPs and convergent sequences of contraction functions.

On the other hand, the main points of this thesis are basically starting from chapter 3,
which is more theoretical, develops the main abstract theorems on the existence and
uniqueness of FPs of maps. We discuss the most significant theorems of FP in this
chapter, starting with BCP, it deals with contraction mappings in CMS and checks the
uniqueness and existence of their FPs. Moreover, we state and prove Browder-Kirk
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theory which is dedicated to finding FPs for non-expansive mappings of uniformly
convex BS. Most of the results are discussed in of NS. For instance, Brouwer’s FPT.
However, it is not just confined to study contraction or non-expansive mappings. it
studies problems solvability that deals with all the mapping that is defined on certain
subset of IR™. Furthermore, this the chapter also presents another results such as SFPT,
which applies to solve the problems of compact and CM defined on NS. It is one of

the best known classical results of FPT and it is an extension of Brouwer’s FPT.

In turn, the fourth chapter focuses on several applications of this theory, and it is
covering an enough variety of important results ranging from ordinary differential
equations in Banach spaces to fractional differential equations. Therefore, the major
interest in this chapter is to investigate existence and uniqueness of the solution of the
IVP and BVP. The last type depends on the R-L and Caputo operators. In addition, it

has given few explicit examples to illustrate and support our results.

The final chapter is consisted of a concise conclusion.



Chapter 2

PRELIMINARIES

2.1 Metric Space

Definition(2.1.1): Aset W # @ and d is real function defined on W x W is said to be

distance or metric function , if all of the following conditions are true:

(M1) d(u,w) = 0 (non-negative).

(M2) d(u,w) = 0 ifand only if u = w.

(M3) d(u,w) = d(w,u) (Symmetry).

(M4) d(u,w) < d(u,v) + d(v,w)(Triangle inequality),

for all u,v,w € W. A nonempty set (W, d) is called metric space.

Definition(2.1.2): A sequence (w,) in MS (W,d) is called a convergent if there

exists w € W such that lim d(w,, w) = 0. This means that
n—oo

Ve>0, 3N €INsuchthatd(w,,w) <e,vn>N.

Remark(2.1.1): The sequence (w,) in MS (W, d) is said to be a divergent, if it is not

convergent.

Definition(2.1.3): A sequence (w,) in MS (W, d) is said to be a Cauchy sequence if
for all € > 0 there exists N € IN such that

d(wy,wp) <g Vnm>N.



Definition(2.1.4): A MS (W, d) is said to be complete if every Cauchy sequence in W

converges in W.

Definition(2.1.5): A non-empty subset D of MS W is called bounded if its diameter

8(D) = sup{d(u,w):u,w € D } is a finite.

Definition(2.1.6): Let W is MS, U € W is called compact if every sequence in U has

a convergent subsequence and also its limit in U. Also U is said to be relatively

compact if its closure U € W be compact.

Definition(2.1.7): Suppose (U,d) and (W,d) are MSs and let Y:U — W be an
operator. W is said to be compact if every bounded subset of U is mapped into a RC
subset of W. Equivalently, Y is compact if and only if {Y(w,)} contains a convergent

subsequence in W for every bounded sequence {w,} in U.

Definition(2.1.8): The mapping Y: (W,d) — (W’,d) is said to be a continuous at
wy € Wif for Ve > 0 there exists § > 0 such that

d(Y(w),Y(wg)) < gasd(w,wy) <8.
If the function Y is continuous at every point of W, it is said to be continuous on W.

Also it is said to be uniformly continuous if for all € > 0 there exists 6 > 0 such that

VuwéeW,d(uw) < 9§ yields

d(Y(u),Y(w)) <e.

Definition(2.1.9): A sub-collection J < C(W) is said to be uniformly bounded if

there exists 6 > 0 such that |Y(w)| < & forevery w e W and Y € J.



Definition(2.1.10): A sub-collection J € C(W, W') is said to be equi-continuous if for

all wy, € A and for each € > 0 there exists 6 = §(wy, €) > 0 such that d(w,w,) < 6

yields d(Y(w),Y(wy)) < eforall Y € J.

Remark(2.1.2): The collection of all CM from W into W’ be denoted by C(W, W’).

If W' =W, then C(W,W) = C(W).

Theorem(2.1.1)(Arzela-Ascoli theorem): A sub-collection J € C(W) be relatively
compact if and only if,
(i) J is equi-continuous, and

(ii) J is uniformly bounded.

Corollary(2.1.1): A sub-collection J € C(W) be compact if and only if it be closed,

equi-continuous and uniformly bounded.

Theorem(2.1.2): A mapping Y: W — U is continuous if for every convergent

sequence (wy,) of W,

lim Y(w,) = Y(lim wn).
n—oo n—oo
Proof

Let’s assume that w,, converges to w, € W such that lim w,, = w. By the continuity
X-n
of YonW,

lim Y(wy) = Y(wg) = ¥ ( lim W ). n
2.2 Normed Space

Definition(2.2.1): Assume W be a LS, the function ||. |: W — IR is said to be a norm

function on W if satisfies,



(N1) [lw]l =0, vweW.

(N2) |lwl|| = 0 ifand only if w = 0.

(N3) lIBwll = Bl llwll, v B € IR.

(N4) llwy + woll < llwyll + [[well, V wy, w, € W.

The non-empty set (W, ||. ||) is called a normed space.

Definition(2.2.2): Every complete normed space is called a Banach space.

Definition(2.2.3): Suppose W , W' are LSs over the same field , the mapping
Y: D(Y) € W — W' is said to be a linear operator if

(a) The domain D(Y) of Y is LS and the range R(Y) € W' lies in a LS over the same
field .

(b) Vu,w € D(Y) and B € IR,

DYu+w)= YY)+ Y(w).

(i) Y(Bw) = BY(w).

Definition(2.2.4): Let W, W’ be NSs and Y: D(Y) € W — W’ be a linear operator.
The operator Y is called bounded if there exists a real number 3 > 0 such that for all
w € D(Y)
YO < B llwll.

2.3 Inner Product Space

Definition(2.3.1): Let u, v and w be vectorsina LS W over field C, and let o,  be any
scalars. The function (., .) : WX W — C is said to be an inner product on W if
satisfies the following axioms:

(IP1) (w,w) > 0,



(IP2) (w,w) = 0 ifand only if w = 0,

(IP3) (u, w) = (w, u),

(IP4) (au + Bv, w) = afu, w) + B(v,w).

The ordered pair (W,{.,.)) is called an inner product space. We call (u, w)

the inner product of two elements u,w € W.

Characterizations of Inner Product Spaces
1. Let (W, (.,.)) be an inner product space. Then, the function || .|| : W — C defined
by
Iwll = /{w, w).
2. The standard inner product is

(uw)=u.w=YL uyw;,VuweC"

Theorem(2.3.1)(Cauchy-Schwarz inequality): Let W be an inner product space.
Then,

lw, wl < [Jull. Iwli
forallu,w e W.

2.4 Topological Space

Definition(2.4.1): Consider t is a collection of subsets of non-empty set W. t is said
to be a topology on W if the following conditions are satisfied:

(T) @, Wer,

(T2) T be closed by arbitrary unions,

(T3) T be closed by finite intersections.

The filed (W, 1) is called topological space.




Some simple examples to illustrate this space
1) Let Z =1{0,5,10} and T = {@,{0},{5,10},Z }. Then (Z,T) is TS.
2) Consider W is any set and T = {A: A € W}. Then t is called the discrete topology

on W, and (W, t) is also called the discrete space.

Definition(2.4.2): Asubset U of TS W is said to be a neighborhood of w € W if there
exists an open set M € t such that

weMcU.

Definition(2.4.3): A subset M of a LS W is said to be convex if for all u,ve M
implies that set
{z=au+(1—-a)v,0< a<1}

is a subset of M.

convex non-convex

Remark(2.4.1): Let C be a subset of a LS W. Then, C is convex if and only if
oW+ 0,wW, ++a,w, €C

for any finite set {w,...,w,} € C and any scalars o; = 0 with a; ++-- +a, = 1.



Definition(2.4.4): Let W be a LS and C be an arbitrary subset of W. The intersection
of all convex subsets of W containing C is called convex hull of C in W and is denoted
by co(C). Symbolically, we have

co(C) =Nn{Kc W:Cc K,Kis convex}.
In other words, co(C) is the set of all finite convex combination of elements of C, that
is,

CO(C) = {Z?zl Wi i wj € C0< o < 1:2{;1 o = 1}

Example(2.4.1): Let W be a LS. The interval joining between two points u,w € W is
the set
[uw]={tu+ (1 —-thw:0<t < 1}

Then co({u, w}) = [u,w] is convex hull of {u, w}.

Remark(2.4.2): The closure of convex hull of C is

co(C) =L, 5w :w; ECO0<o; <1: XL, o =1}
The closed convex hull of C in W is the intersection of all closed convex subsets of W
containing C and is denoted by co(C), as follows
co(C) =N {K c W:C € K, Kis closed and convex}.
It is easy to observe that closure of convex hull of C is closed convex hull of C such

that

co(C) =co(0).

Definition(2.4.5): A linear topology on a TS W is said to be a locally convex topology

if every neighborhood of 0 (the zero vector of W) contains a convex neighborhood of

0. Then, W is called a locally convex topological vector space.




Definition(2.4.6): A NS (W, ||]) is called uniformly convex if there exists an

increasing positive function &: (0,2] - (0,1] such that for u,w € W,||uf|, ||lw|| <r

and |lu — w]|| = er imply that

u_W” <(1-8())r.

2

2.5 Fixed Point and Contraction

Definition(2.5.1): A pointw € W is called a fixed point of the mapping Y: W — W

ifand only if Y(w) =w.

Example(2.5.1): The map Y: IR — IR defined by Y(w) = w? has two FPs (0 and 1).

On the other hand, the mapping Y(w) = w — 1 has no FP.

Definition(2.5.2): Suppose (W, d) is MS. Amap Y: W — W is said to be

i) A Lipschitz mapping if there exists a scalar k € [0, o) such that

d(Y(wy),Y(w)) < kd(w,,wy), Vwy,w, €W.
ii) A contraction if there exists a scalar k € [0, 1) such that

d(Y(wy), Y(w)) < kd(wy,wp), ¥V wy,w, €W,
iii) A non-expansive if there exists a scalar k € [0, 1] such that

d(Y(wy),Y(w5)) < kd(wy, wy), Vwy,w, €W.

Remark(2.5.1): Because if w, W= Y(wy,) IH—OO>Y(W), a Lipschitzian map is

necessarily continuous.

Definition(2.5.3): A mapping Y of a MS W into itself and n € IN, we denote by
Y™ the n®™- iterate of Y. Namely, Y.Y.Y..........Y n-times such that

Yo (W) = Y(Y" 1 (W), e e ,Y2(W) = YY(w), YE(w) = Y(u),

10



Y’(u) = u( Y’is the identity map).

Remark(2.5.2): If the mapping Y is a contraction on a MS W with contraction
constant k for some n, hence Y™ is also a contraction on W with contraction constant
k™ for some n. But the converse does not hold in general.

2.6 Sequences of Contractions and Fixed Points

In this section, we will study two types of the convergence for the FPs, such as:

(i) Uniform convergence.

(ii) Pointwise convergence.

Definition(2.6.1): Let W is a MS and (Y,,) be a sequence of set valued functions
defined on W. The sequence (Y,) is said to

i) converge uniformly to Y if given any € > 0, there exists L = L(g) € IN such that

d(Yn(w) ,Y(w)) <g Vn=>LandVweEW.

ii) converge pointwise to Y if given any w € W and for every € > 0, there exists

L = L(w, €) € IN such that

d(Yn(w) ,Y(w)) <& Vn>L

The following two main theorems will show these convergences:

Theorem(2.6.1): Let (W,d) be a MS and Y: W — W be a contraction map with a FP
uy. Let Y,: W — W has at least one FP u,,. If Y, — Y uniformly, then u, — u,.
Proof

Firstly, let’s consider that Y is a contraction with Lipschitz constant k < 1.

d(Y(wy),Y(wy)) < kd(wy, wy),V wy,wy EW.

11



Since Y, converges uniformly to Y , then for any € > 0 there exists L = L(¢) € IN
such that
d(Y,(w),Y(w)) <e(1-k),Yn=LVweW.
Hence for all n> L,
d(wy, w) = d(Ya (Wn), Y(W)) < d(Yn(wn), Y(Wn)) + d(Y(wa), Y(wo))
< e(1—-Kk) + kd(wpy,wy).

So, d(w,,wy) < €, which decides that (w,) converges to the FP wy, . ]

Theorem(2.6.2): Let (U, d) be a locally compact MS and Y: U — U be a contraction
mapping with FP u,. In addition, Y,: U — U be an equi-continuous mapping with FP
u, foreach n = 1. Then convergence of the sequence (Y,) pointwise to Y guarantees
convergence (u,) to u,.
Proof
Set € > 0 and let € is enough small so that

K(ug,€) = {u € U:d(u,uy) <e}cU
Then, by Corollary ® K(u,, ) is acompact. From the fact that (Y,,) is equi-continuous

sequence of converging pointwise functions to Y, compactness of K(ug,€) and by

uniformly

Theorem(2.1.1)(A-AT), the sequence Y, —— Y on K(u,, €). Indeed,
since Y, — Y pointwise, then this implies Y, is pointwise bounded ( all convergent
sequences are bounded ). Define

a, =d(Y,,Y).

(1) Shirali, S., & Vasudeva, H. L. (2005). Metric spaces. Springer Science & Business Media. p180.
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We wish to show that a, — 0. To see this let (a,, ) be any subsequence of (a,). The
equi-continuity and pointwise boundedness of (Y,) and ( A-AT ) guarantee existence
a further subsequence (Ynk) that converges uniformly to some function. Since this
sequence is known to converge pointwise to Y already, the uniform limit must be Y
(because the uniform limit is also a pointwise limit, and pointwise limits are unique)

such that , 3 L = L(¢g) € IN such that,

nk—>CX)
ap, =d(Yy, ,Y)— 0, foralln, > L.

k'’

Exactly, this means that (a,,) as well has a further subsequence (ank), that approaches

to 0. Thus, by Theorem®, a, — 0, which implies

d(Y,,Y) —5 0, forall n > L.
By definition of uniform convergence, this is the same thing as saying Y, — Y
uniformly, as desired. Choose L such that if n > L, then
d(Yn(u) ,Y(u)) <e1-k),¥vn=LVueK(uye)
where k < 1 is a Lipschitz constant for Y. Therefore, if n > L and u € K(uy, €),
d(Y,(u), up) <d (Yn(u),Y(u)) + d(Y(u),Y(uo))
< g(1—-Kk)+kd(u,uy) <e—cek+ek<e.
This implies Y, (u) € K(uy, €) for each u € K(uy, €). This proves thatif n > L, hence
Y, maps K(uy, €) into itself. Thereafter, for alln > L,
d(un, up) = d(Yn (un), Y(ug)) < d(Yn(un), Y(un)) + d(Y(uy), Y(uo))

<e(1—-Kk)+ kd(uy,ugy) <e.

(2) Laczkovich, M., & Sos, V. T. (2015). Real Analysis: Foundations and Functions of One Variable.

Springer. p 64.
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Thus, u, € K(uy, €), that means: the sequence (u,,) converges to u,. ]

The next result refers to the general case of Theorem (2.6.1)
Theorem(2.6.3): Define T: U — U isan uniformly CM such that T”* be a contraction
for some . > 1. Suppose T, has at least one FP u, = T, (u,). Then (u,) converges
tou, = T(ug), if (T,) converges uniformly to T.
Proof
Firstly, since T™ is a contraction for some m > 1,

d(T™ (uy), T™(uy)) < k™d(uy,u,) for some k < 1,

Now it is sufficiently to define a new metric P on U equivalent to d by considering

P(up uz) = 0 KT d(Tr(u1) Tr (uz))
Moreover, note that

1. T is a contraction with respect to P. To claim this, let u; ,u, be arbitrary elements

of X.
P(T(uy), T(up)) = Tg = d(Tr1(uy), T (uz)) = kE271 5 d (T (up), T (up))

rlkr

< kEPT S d(TT (), TM(up)) + sy d(T™ (uy), T (uy))

< kX% d(Tr(u1) Tr(uz)) +kd(u;,uy)

=t KT
= k725! 2 d(T"(uy), T (up)) = kP(uy , up).

2. T is a uniformly continuous with respect to P. To show this let for any € > 0, there
exists § > 0 (8 = —) such that P(x,y) < 6.

P(T(uy), T(uy)) < kP(uy,up) < kxiz e,Vu;,u, €U.

3. T, is a uniformly convergent to T respect to P. To display this let for any € > 0,

there exists N = N(&) € IN such that for eachn > N,

14



P(Ty(w), T(W) = 25 < d (T7(Ty(w), T (T(w)))

= ¥yt = d (T7(Ty), T(T(W))) + d(T, (w), T(w)

< Tt d(Ta (), T(W) + d(Ty (w), T(W)

= (m — 1)d(T,(w), T(w)) + d(T, (W), T(w)) = m d(T,(w), T(w)).
Now, we know that T, o T with respect to d, hence there exists L = L (i) €N,
such that

d(Ty(W), TW) <, Vn=L.
Now, let N > L,
P(T,(u), T(w))<e ,¥vn=NandVueU.

Finally, by applying the same argument Theorem(2.6.1), we get P(u, ,u,) < &, for all

n = N. Therefore, u, = T, (u,) converges to u, = T(uy). |
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Chapter 3

FIXED POINT THEOREMS

3.1 Banach Contraction Principle

This theory is one of the important theorems and the most used in the applications of
nonlinear analysis.

Theorem(3.1.1): Assume (U, d) is a CMS, then all contraction maps Y: U — U with
contraction constant k has a unique FP u, € U. In addition, for every u € U we have

lim Y"(u) = u, with
n—oo

d(Y"(u), ug) < == d(u, Y(w)).
Proof
Firstly, we will claim the uniqueness. Let that Y has two FPs u,v € U with Y(u) = u
and Y(v) = v. Then
d(u,v) = d(Y(u),Y(v)) <kd(uv)=1-k)d(u,v) <0
= d(u,v) <0. (3.1.1)

since K is a contraction constant. Also, if d be a metric function, we conclude

d(u,v) =0 (3.1.2)
From (3.1.1) and (3.1.2), we get

d(u,v) =0
which follows u = v.
Secondly, to show the existence we will take any u € U and consider the sequence

(Yn (u)) in U. Now we need to illustrate that Y™(u) is a convergent by using the fact
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that (U, d) is a complete, so it is enough to show that the sequence is Cauchy. For all

d(Y"(, Y™ () = d (Y(r" ), Y(Y ) < kd(Y"(w), Y (w))

=kd (Y(Y"2(W), Y(Y"~* (W)
< K2 d(Y"2(w),Y" (W) < e <k"d(u,Y()).
Therefore, for m >n
d(Y"(w), Y™ (W) < d(Y"(w), Y™ (w)) + d(Y"* (w) , Y**2(u))
T + d(Ym‘l(u) ym (u))
< (K" 4+ KM 4 + k™ 1) d(u, Y(w)
=k"(1+k+Kk%+ + k™D d(u, Y(w)
=K1+ Kk+K2 4o ) d(u, Y(w).
We know that 1 + k + k? + -+ is a geometric series, which is a convergent since

0<k<1land 1+Kk+Kk?+--eee-ee =ﬁ{.Theref0re,
kn
d(Y" (), Y™ (W) < 7 d(u,YW) (3.1.3)

Hence, d(Yn x),ym (X)) 20 , it follows (Y“(u)) is Cauchy sequence, that
converges to uy € U since U is a CMS. That is

lim d(u,,Y" (W) =0.

n—-oo
Thus, uy, = lim Y™ (u) = lim Y(Y“‘1 () = Y(lim yn-1 (u)) =Y(up)

n-oo n—oo n-oo
since Y is contraction that guarantees the continuity. Therefore, u is a FP.
Finally, putting m — oo in (3.1.3) yields
kn
n =
d(Y™(u) ,uy) < - d(u,Y(u)).

The proof of Theorem (3.1.1) is complete. ]
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This is the best example to clear that, contractions mapping on incomplete MS might

miss FPs.

Example(3.1.1): Consider Y:(0,1] - (0,1], Y(x) =§ such that (0,1] is an

incomplete MS. Because (i) is Cauchy sequence in MS (0,1] but lim % =0¢

n—»oo

(0, 1]. Therefore, (0, 1] is not complete. Now, it is a clear that Y is a contraction on

(0, 1]. Because, for any u,v € (0,1]

d(Y(W),Y™) = [Y(w) - Y(W)| =

u v
2 2

1 1
_E |u—v|—5d(u—v).

However, for any u € (0,1], Y(u) # u. So, Y need no have a FP.

Theorem(3.1.2)(Local Banach’s FPT): Consider (U, d) is a CMS and let
B.(uy) = {u e U:d(u,uy) <r},
where uy € U and ugr > 0. Assume Y : B.(uy) » U be a contraction map with
contraction constant k € [0,1). As well, assume that
d(Y(ug) ,up) < r(1—kK).
Then, Y has a unique FP in B.(u,).

Proof

We have d(Y(uy) ,uy) <r(1-k) = % < r. By using archemidian property

of real line IR, there exists 0 < ry < r such that

d(Y(up), up)
—_— <
-k - To

Now, to show that Y : B, (up) — By, (u), take any u € B, (u,),

d(Y(u) ,up) < d(Y(U);Y(Uo)) + d(Y(uy), up)

S kd(u, uO ) + (1 - k)ro S kro + 1"0 - kro == ro.

Subsequently, Y(u) € B, (uo) for all u € B, (up). Now notice that

18



Y (Bro(up)) € By, (ug) < B (uo) < U.

Since By, (up) is a close subset of CMS U, then by using complete subset Theorem, is

a CMS. Therefore, by BCP, Y has a unique FPu € B, (u,), thus u € B,(up). So'Y

has a unique FP in B,(u,). |

Corollary(3.1.1): Suppose Y: U — U be mapping of CMS. If YNis a contraction for

some positive integer N, whereupon Y has a unique FP u, € U and for each u € U,

lim Y™ (u) = u,.

n—»oo

Proof

Consider that u, be the unique FP of YN, given by BCP such that YN(u,) = u,. Then
YN(Y (1)) = Y(YN(uo)) = Y(uo).
This implies Y(u,) is a FP of YN which has a unique FP, then Y(uy) = uy. So Y has

a FP. Since any FP of Y is obviously a FP of YN, we have uniqueness as well.

Now, to show lim Y"(u) = u, by using Theorem(3.1.1)(BCP), to get

n—-oo

lim (YN*"(u) =u,Vue U, N> 1.
n—->oo
Since n be any integer and n = mN + rsuchthat 0 <r <N, m > 0. Forany u € U,
Y2 (u) = (YN)™(Y" ().

Therefore, d(Y*(u), uy ) = d((YN)m(Yr(u)), uo). By using Theorem (3.1.1) (BCP),
d(Y" (W), uo) < 25 d (YW, Y(yrW)) <= max {d (YW, yNw)).

0<hsN-1

Now, clearly that m — oo asn — oo.Therefore, lim d(Y™(u), uy ) = 0. So
n—-oo

lim Y?(u) = u,. [

n—»oo
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3.2 Browder-Kirk’s Fixed Point Theorem of Non-expansive Maps

We before present this result, will present a result known as Schauder’s theorem for
non-expansive maps. It is a special case of SFPT which will be presented in this
chapter.

Theorem(3.2.1)(Schauder’s theorem for non-expansive maps): Let C# @ be a
closed, convex subset of a NS W with {s : C — C is non-expansive and {s(C) a subset
of'a compact set of C. Then Y has a FP.

Proof

Take any point X, € C and define
1 1
Yo=(1-3)W+ix, n=2
It is a clear that

(i) y,: C > C, because for all x € C,
Un() = (1-2) PG +3x0.
Thus y,(x) € C since C is a convex and J(x), X, € C.
(ii) Y, is a contraction. To show this let’s assume any x,y € C, hence
9 () = YW = (1= 2) 9GO =yl < (1-3) lIx—yll, vn>2.
Theorem(3.1.1)(BCP) says that for all n > 2, {, has a unique FP x,, € C such that
1 1
Xy = Pp(x,) = (1 - ;) U(x,) + ~Xo.
In addition, by our assumption Y(C) lies in a compact subset say B subset of C such

that {y(C) < B c C. It follows that a sequence (L|J(Xn)) c y(C) c B has a convergent

subsequence (lIJ(Xnk)) such that

nk—>00 _

P(xy, ) —X€C (3.2.1)

Therefore,
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1 Ng—0o0 _

Xy = l'pnk(xnk) = (1 - n_lk) lIJ(Xnk) + _kXO — X

n

In turn, || W(xp, ) — P3| < [|xn, — X|| 272 0. Then this automatically yields

np—0oo

U(xp,) = W(X) (3.2.2)

From (3.2.1), (3.2.2) and the fact the uniqueness of the limit, ¢(X) = X. ]

The main theorem of this section is a result proved independently by Browder, Gohde
and Kirk. We state it as follows:
Theorem(3.2.2)(Browder-Kirk): Let W be a UCBS and C be non-empty, closed,
bounded and convex subset of W . If {): C = C is a non-expansive map, then s has a
FP in C.
Proof
Let x, € C be fixed, and consider a sequence r,, € (0, 1) converging to one. For each
n € IN, define the map y,,: C = C as
Up(x) =rv(x) + (1 — ryx,.

Notice that s, is a contractions on C. To make sure let’s take x,y € C,

In () = YWl = ral W) = YW < rpllx = yll.
Then there is a unique X, € C such that y,,(x,) = x,. Since C is weakly compact, x,
has a subsequence weakly converges to some X € C. We shall prove that X is a FP of

. Notice initial that
Jim ([P (X)) = xn I# = X = xnl1?) = 10 (X) = XII°.
Since Y is non-expansive we have
(X)) = Xall < IW(X) = W&+ W (Kn) = Xal
< X = xpll + Iy (xn) — xall

= ”i - Xn” + “llj(xn) - lI-Jn(xn)”
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= Ix—xpll + 1 = r) P xn) — x.]I.
But r, = 1 asn — oo and C is bounded, so we conclude that
lim (I () = x, 17 = % = %,I) < 0.
Thus ||YU(X) — X|| = 0, which yields the equality Y(X) = X. ]
3.3 The Brouwer’s Fixed Point Theorem
Brouwer’s FPT is considered the bases for some FPTs. We start this section by
reminding you that IR"is endowed with its standard inner product. Ifu,v € IR", hence
(wv) =u.v=23L, uv,
and norm

llull = v/{u, u).

Also, B™ and S"~1 will denote respectively, the closed unit ball and unit sphere in IR:

B" = {u € IR™ |lul]| < 1}, S" 1 = {u € IR™: ||u]| = 1}.

Before we introduce the theorems, we provide the following definitions

Definition(3.3.1): A TS U has the FP property if every CM Y: U — U has a FP.

Definition(3.3.2): A CM Y:U € IR® — IR" is said to be of class C!, if it has a
continuous extension to an open neighbourhood of U on which is continuously

differentiable.

Definition(3.3.3): A mapping Y: U € IR® — IR"is called a
1. Non-vanishing if it satisfies forall u € U, Y(u) # 0.
2. Normed if it satisfies forallu € U, ||[Y(uw)|| = 1.

3. Tangent to S"! if the mapping Y:S" ! — IR"satisfies (u,Y(u)) = 0 for all

u e sn-1,
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Theorem(3.3.1): Assume U € IR™ be a compact. Let Y: U — IR is of class C! on U.
Then we have the following: there exists k > 0 such that

IY(w) - YWl < kllu—v],vuveU.

With the result above, we can prove Theorem (3.3.2).
Theorem(3.3.2): Suppose that Y: S — IR" is a normed vector field of class C!

which is tangent to S"~1. Then for t > 0 sufficiently small,

1
Y (S™1) = (1 +t2)2S" 1 here Yy : u— u+ tY(u).
Proof

Define Y*:IR"\{0} — IR", U < IR™ by

Y*(u) = |[ullY (”3—”) and U = {u €IR™: 2 < Jlul < %}

Note that Y*is well defined. Furthermore, we know that Y*is of class C! in S™~1 since

[Ix]|, Y and ”XT” are all of class C! in U. U is also compact since it is bounded and

closed. By Theorem(3.3.1) applied to Y*on U,

AL =0,VuveU: |[Y*(w) - YW < kl|lu—v]l.
Let |t| < min {ii} where k is the Lipschitz constant of Y*onU. Fixz € S™ ! and
define Y: U —» IR™ by

P(u) =z — tY*(u).

We aim to apply Theorem(3.1.1)(BCP) to G. To do so, we must show {: U — U and
G is a contraction. By the triangle inequality, our choice of |t| < § , and the fact that

Y is normed, we have in fact that

1) ¢ : U — U. To see this let that u € U, hence

I = llz - v @Il = ||z - thully () |
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> flzll = Ielllull [ Y ()| = 1= telllul = 1= (5) G) =3 (3.3.1)

3 2 2

Similarly, we also have

Il = llz = tv* Il = ||z + =llullY (7) |

< llzll + I=tliall | Y ()| = 1+ Il < 14+ (5) G) = 2 (33.2)

2

Then (3.3.1) and (3.3.2) imply
1 3
< @I <= eU.
2) |y is a contraction on U. It is easy to verify (using the Lipschitz constant k of Y*on

Aand |t] < i) that y: U — U is a contraction. Indeed, let u,v € U

Iy =yl = llz = tY* (W) —z + tY* (V)|

= [elllY*(v) = Y* (Il < ltlkllv — ull = klt||lu = vl|.

Clearly that U is a closed subset of CMS IR". Therefore, U is directly complete, by
Theorem (3.1.1) that r subsequently has a FP, say u € U, such that u = {r(u). Hence
u + tY*(u) = z. Therefore,
(u+tY*(wW,u+tYy* (W) =(zz) = |zl> = 1
= (u,u) + 2t{u, Y*(0)) + t3(Y*(u), Y*(w)) = 1

= [lull® + 2t(w, Y*(w) + [lY*(WI* = 1

Iully ()

= flul + 2tfhull2 G2 ¥ () + el [y ()| =1

llull’

2

= 2 + 2t (u, lullY (:5)) + €2 =1

Since Y is tangent to S®~tand normed by the assumption and ﬂ IS unit vector, we

have
lull? + 2t[[ull?2(0) + 2[lul?(D?=1= (1 + tD)|[ull? =1 = |jull = (1 + t?)~V/2

Now we can assume vV = ”—z” = (14 t?>)Y2u e s 1,
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Y, (v) = v+ tY(v) = 1+ tDY2u+ —Y* () = (1 + )V ?u+ L(Z_u)

lHull TTAES
=1 +t)Y2u+ 1 +)Y2z-w) =1 +t)Y2(u+z—-u) = (1 +t3)?g,
where z € S?~1 is an arbitrary. We have shown that for any z € S®™1 there exists
v € "1 with
Y, (v) = (1 +t3)V/?z,
Consequently,
(1 + £2)787"1 € Y, (SP1), (3.3.3)
To show the reverse inclusion, fix u € S"~1. Because Y is tangent to S" *and normed
by the assumption, we have
[lu+ tY(W]|? = (u + tY(u),u + tY(w)) = (u,u) + t{u, Y(u)) + t3(Y(u), Y(u))
= [[ull® + t{u, Y(u)) + t*[IlY(WI* = (1)? + t(0) + t2(1)? = 1 + t%.
Fixv= (1 + t?)72(u + tY(u)). By using above equality
VIZ = ]|(1 + )72+ tY@)|* = (1 + &)+ Y@I? = 1
Since ||[v||? = 1, we have ||v|]| = 1, that is v € S*~ . Furthermore, by the definition of
Y, and our choice of w, we know
1+ ) 2u+tY() =ve u+tY(w) = (1 + t3)V2y
s Y.(v) =1 + t)V2y.

We have shown that for any u € S®~1, we have v € S~ with Y,(u) = (1 + t?)/2y.
Therefore,

Y(S"1) € (1 4 t2)25n-1 (3.3.4)

1
From (3.3.3) and (3.3.4), we get Y,(S"1) = (1 +t2)2S""1, as required. |

Although we omit the proof, the following theorems are needed in order to induce a

contradiction in the proof of Theorem (3.3.5).
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Theorem(3.3.3): Ifh € IN, then there are no NSs of class C* tangent to S2.

Theorem(3.3.4)(Weierstrass Approximation): Assume Y is a CM defined on [b, c].
Then V € > 0, there exists a polynomial P such that for all u in [b, c], we have

[Y(u)— P(w)|[<eor||Y—P| < e

Theorem(3.3.5): If h € IN be fixed. Then there are no non-vanishing, continuous
vector fields tangent to S2P.
Proof
We aim to prove the above statement by contradiction. Suppose such a field
Y:S2h — [R2h*1 exists and that

r = min{[lY(W)[l:u € $?"} > 0.
Since Y is CM and maps to R?PM*+1 by the assumption, we can apply Theorem (3.3.4)
to each of the 2h + 1 coordinate components of Y. Recombining the resulting
polynomial components, we obtain: V € > 0 there exists P: S?* — R?P+1 gych that
Vu e S?h,

IP(w) —Y(WIl <e.

Letr = min{llY(u)ll: ue S'Zh}. Observe that r > 0 since Y is non-vanishing. Thus %

1s a valid choice for ¢,

3 P:S2M — [R?P*+1 such that Vu € S21, || P(u) — Y(w)|| < %

Now P is of class C*since polynomials are infinitely differentiable. By the triangle

inequality and the fact that r is a minimum, we get
IPIl > IVl = IP(w) = YWl = r=£=1>0.

Thus P is non-vanishing by Definition(3.3.3). Define the vector field 1 : S?X — IR™ by

26



n(u) = P(u) — (P(w), w)u.
Because 1 is also a polynomial, it is also of class C*and is easily seen to be tangent to
S2h as follows
M), u) = (P(w) — (P(w), wyu,u) = (P(w), u) — {((P(w), uu,u)
= (P(u), u) — (P(w), u)(u,u) = (P(u),u) — (P(w), wlull?
= (P(u),u) — (P(u),u) = 0.
By the triangle inequality, above inequalities, the tangency of Y (by the assumption)

and Theorem(2.3.1)(Cauchy-Schwarz inequality), V u € S?" we have
Il = IP(W) = (P(w), wyu || = Pl = KPW), wlllull > >~ (P(w), u)|
=~ = [(P(w), u) = (Y(w), w)| = - — (P(W) — Y(w), u)|

>~ [IP@ = YWlllull > > - > (1) = 0.

This implies n(u) # 0 V u € S?. It is well known that ”223” be a unit vector and
” Y ” = 1. Therefore, we can consider nw) is normed by definition. It is also
Ml Il

of class C! and tangent to S?!, since n(u) was of class C® and tangent to S?P. This
contradict Theorem (3.3.3). Hence our initial assumption was false, and such that a

field Y does not exist as required. ]

IR™ can be viewed as subspace of IR"*? by identifying all point x = (X4, *+,X,) € IR"
with the point (xq,*,X,,0) € IR?™1 . Any point of IR™?! may be represented as
(X,Xp+1), with x € IR"and x,,; € IR. The unit sphere S® € IR"*! may be divided

nto

(i) The upper hemisphere
ST ={(XXn41) € S":xpyq = 0}
(ii) The lower hemisphere
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I ={(xXn+1) € S":Xpy1 < 0}
The unit sphere
gn-l =g nsn
is the equator.

Let e y; = (0, ...,0,1) is a north pole while —e,,; = (0, ...,0,—1) is a south pole.

Definition(3.3.4): The stercographic projection from e,,; toS™is the mapping

S;:IR™ — S™ defined by

S, () = (2 ”X”Z‘l), for x € IR™.

THIx)I12 " 1+1x)|2
Similarly, S_:IR™ — S" is the stereographic projection S_ from —e,,; to S™ defined

by

S_(x) = (Z—X 1_”X”2), for x € IR™.

THIx)I2 " 1+]1x)|2
Note that S, and S_ are both infinitely differentiable and thus of class C™ .

Furthermore, for any x € B™ we have

1?1 1-lx2
<0 and ->0
1+ L+ x]

Thus S,:B™ — S™ and S_: B™ — S¥. Notice also, that for any x € S~ |

.00 =5_(0 = (2 ) =(x0) =x.
Now we will be devoted to proving Theorem (3.3.6), which will be basis for the proof
of Brouwer’s FPT.
Theorem(3.3.6): The closed unit ball B" in IR" has the FP property.
Proof
We consider two parts, n even and n odd, where n is the dimension of IR". Recall that

we aim to prove B™ has the FP property.
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Stepl: We assume that n = 2r, where r € IN. We proceed by contradiction. Assume
the theorem is false. That is, there exists a CM Y: B2" — B2, which has no FPs. Define
the vector field n by
n(u) =u-—Y().

It is immediate that ) is non-vanishing on B2, and it is easy to see that at any point
u € S?1 the field is directed outwards, that is,

0 <(u,n()=(u,u—YW)=(u,u)—(u,Y))

=lull® = (uwYW)=1-(u,Y()

Therefore, (u,Y(u)) < 1, foru € S?r1,

Step 2: We can now define ¢ : B?" — B?" as follows

o) =u-— (%) Y(u).

1-(uY(w)

Note that for any u € S?'~1, we hold

o) =u-— (L) Y(u) = u.

1=(u,Y ()
We aim to prove ¢ is non-vanishing by contradiction. Let that for some u € B2",

@(u) = 0. Then we secure

— (Luuz) Y(u)=0and u= (w) Y ().

1-(u,Y(w)) 1—(u,Yu)

\ Y(u)

u
BZI‘

v
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This shows that 0, uand Y(u) are collinear since by above equalities u is some
constant times Y(u). Therefore, for some o, Y(u) = au. As a result,

(u, Y()hu = (u, aupu = [Jull?au = [lull?Y(W).
Hence (1 — (u, Y(wNu = (1 — [[ull)Y(w) = u—(u, Y()u = Y(u) — [lull?Y(w)
This in turn immediately implies u = Y(u) which is contradiction, Y has no FPs. Our
initial assumption was false and ¢ is non-vanishing.
Step 3: For any u € B?", consider the set

{fu+ te(w):t € [0,1]}.

Since the stereographic projection S, is of class C*and maps to S2'. The image of this
set under S, is a differentiable arc with initial point lying on S2'. Therefore, define

K_:S2r — [R?" 1 by

K_(v) = {% S+ (u+ to(w) }|

t=0

We will show % (Jlu + to(W)||?), from known that

lu + teWII? = (u + te(w),u + te(uw))

and the inner product is symmetric. Therefore,
d d
5 (Ul + tp1?) = 7 (u + to(u), u + to(w)
d d
= <E (u + t(p(u)),u + te(u)) + (u + t(p(u),a(u + t(p(u)))

= 2(u + to(w), 1 (u + tp(W)) = 2(u + t ), ().

dt \1+[lu+te)12 * 1+[lu+te(u)|

SoK_(v) = {% Sy (u+te()) }|t=0= {d ( o) ||u+up(u)||2-1) }|t=0

_ {2<P(U)(1+IIU+t<p(U)II2)—4(u+tcp(u))(u+ttp(u).<P(u)) 4(U+t<P(U).<P(U))}
(A+lut+te]?)? " (1+lutte))12)?

t=0

_ (2(1+IIHIIZ)@(H)—‘l(u.(P(u))u 4(u.<.0(u)))
(1+]u]1?)? " (1+]ul|®)?

= (H”ZW (1 + lull® @) — 2¢u, W)y, 2¢u, @(W)))
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K_ is CM since S, is infinitely differentiable. We also claim that K_ is non-vanishing.

To see this, consider

K- I = s 1+ Il ) = 26w, o @), 2¢u, ()|

= s (1A + @) = 2¢u, ()ull + 4w, e (w)?)

(1+|| iy (A Tl e = 2¢w, @)u, (1 + [lulle) = 2(u, @(W)u) +
4w, p(W)?)

W((l +ulDle@II? = 41 + [lull){u, eW)? + 4(u, @(W)?|lull* +
4w, e(W))?)

W((l + [l leI? = 4(1 + [ull?){u, @(u))? +

4(1 + llul>){w, @(wW)*)

(1 + 2l = s oW = (2 lowll)

(1+II 12)*

Therefore, ||[K_(V)|| =

llo(wll.

1+|| 12
We know ¢ is non-vanishing (|| (u)|| # 0), thus. K_ is non-vanshing as claimed.

Lastly, we claim that K_ is tangent to S?*. Since S, maps to S?', we have

(Sy(u+tRW),S,(u+tRW)) =1

= %<S+ (u +te()),S,(u+te(w)) = 0. (3.3.5)

We know that
LK, (u+ tp), Ky (u + to()) = (K, (u+ to)), K (u + tow)))

+ (K+(u + t(p(u)),%(lg (u + tcp(u)))).

Because the inner product is symmetric, we also have

d d
T (K (u+ (), Ky (a4 o)) = 2 (Ky (u + o)) K (u + tp (W)
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=2(K_(),v) ,Vv=S,(u+te()) e S (3.3.6)

Combining (3.3.5) and (3.3.6) we obtain
(K_(v),v) = 0 for all v € S?".

Thus K_ is tangent to S?' as claimed. We define K, : S2" — IR?'+1 by

Ko ) = {5S-(u—to) }|

In the same way, we also find
d
7 Ulu =t I = —2(u — te (), p(w)).

Thus, K, (v) = {i S-(u—toW) }ltzo

{g ( 2(u-te(w) 1—||u—t<p(u)||2) }|
t=0

dt \1+[lu-teWII? * 1+[lu-tew]?

( 2 (W) (1+[lu=teW)]|1?)+4(u—tew))(u-te(u),e(w) 4(u—t<P(u),<P(U)))}|
(1+[lu-teW]*)? T Atlu-teI)2 /)1

(4(u,@(u)>u—2(1+IIUIIZ)cp(u) 4(u,<P(u)>)
(1+(lull®)? " (1+ul?)?

2 2¢u, e)Hu— (1 + [lull® @), —2¢u, e(w)).

(1+|Iu||
By similar arguments as those above, K, is also continuous, non-vanishing and
tangent to S2°. Therefore, we consider K: S?" — IR?"*1 defined as follows

K_(v) :veS?

K(v) = { K.(v) :vES3

for all v = S_(u) € S2. It is easy to see that K, (v) = K_(v) for v € S?*~1, To prove

this let u = v € S?'~1, then

K_(v) = (1+|| arrarmz (@ ulP)e) = 2@ pw)u, 2(u, U(x))

((1 + lull®u — 2¢u, u)u, 2¢u, u))

(1+II 1%)?

(1 + Null®)u = 2{ul?u, 2[lull?)

(1+II 1%)?

((1+ (DHu - 2(1)u,2(1)?)
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2M*u -1+ 1)y, 2(1)?)

(1+(1)2)2

2lull®u = (@ + llull*)u, 2[jul?).

(1+|I 1)

2¢u, upu = (1 + [lull*)u, 2¢u, u))

(1+|I )2

27 2w, e(u— (1 + [[ull®) (W), 2¢u, @(W))) = K, (V).

W
By above equality and the continuity of K_ and K, we conclude that Kis CM on
S2'. Also since non-vanishing and tangency to S?*of K_ and K., K is directly non-
vanishing and tangent to S?¥. This is a contradiction, by Theorem(3.3.5) , such a vector
field K should not exist. Our initial assumption was false and Y has a FP for n even as
required.
Step 4: Let n = 2r — 1 where r € IN. We proceed by contradiction. Suppose there
exists a CM Y: B~ — B2'~1 with no FP. Define {i: B — B?2' by
P(u, uy) = (Y(w), 0).
We know (s is continuous since Y is CM. By our proof of the FP for n even, { has a
FP. Therefore for some u € B2" we have
(u,uzp) = Yy, up) = (Y(W),0),
that is u = Y(u). This contradicts the first part of the proof, Y has no FPs. Our initial

assumption was false and Y has a FP for n odd as required. ]

This section of the third chapter focuses on proving Brouwer’s FPT. In addition, the
proof of Brouwer’s FPT relies on the main result of the previous Theorem (3.3.6), as
well as three additional theorems that we present below.

Definition(3.3.5): A mapping Y: U — W between two TSs is called a homeomorphism

if it has the following properties:

1. Y is a bijection (one-to-one and onto).
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2.Y is a continuous.
3. The inverse function Y~1 is a continuous ('Y is an open mapping).

Also U and W are called homeomorphic.

Theorem(3.3.7): Suppose U has the FP property and U is homeomorphic to W . Then
W has the FP property.

Proof

Leth : U— W be a homeomorphism and p: W — W is CM. To prove W has the

FP property, it suffices to show that p has a FP. Define ¢: U — U by

o) =h7!(uth(w)).
We know ¢ is a CM since p, h and h™! are all CMs by the assumption. Because U

has the FP property, ¢ has a FP, that is
3 u, € U such that h™?! (u(h(uo))) = u,.

Applying h to both sides, we obtain

b (h (u(h(u0))) ) = hug) = w (hCup)) = h(up).

where h(u,) € W. Subsequently, u hasa FP h(u,) as required. ]

Definition(3.3.6): Suppose a subset U € B" is said to be a retract of B™ if there exists

a CM W¥: B" — D (called retraction) such that ¥(u) = ufor allu € U.

Theorem(3.3.8): Every non-empty, closed and convex subset C of IR" is a retract.
Proof
Define Q¢ : IR" — C by the following: for all u € IR"

Qc(u) = w € Csuch that |[lu — w|| = inf {|lu — v||: v € C}.

We aim to show Q is a non-expansive, that is
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Vu,w € IR, [IQc(u) = QW) < [lu — wll.
Letu’ = Q¢(u) and w' = Q¢ (w). Because u’,w’ € C and C is convex, we know
Vte (0,1),(1-tu' +tw' €C.
By definition ||u’ — u || is the minimum distance between u and any point in C. Thus
I[(1 = 0)u’ + (O)w'] —ull® = |lu’ — ull®> < I[(1 — u’ + tw'] — ull.

Note that ||[(1 — t)u’ + tw’] — u ||? increases at t = 0, because

d
E”(l —tu’ + tw’' — u||2|
t=0

=2(1—-tu’ + tw' — u,i((l —tu’ + tw' — u))|t_0

= 2(u —uw —u')=>0. (3.3.7)
Similarly, because |[[w’ — w||? < ||[[tu’ + (1 — t)w'] — w]|? by the definition, we also

have
%Il[tu’ +@A-w]—-w|?=2(w —w,u’ —w') >0 (3.3.8)

Consider the function d: (0,1) — IR defined by
d®) =lu'—=w' + tflu—u’ — (w—w)]|I?.
It is clear that d(t) is a quadratic polynomial with a non-negative coefficient for t2.

Its graph is thus an upwards-opening parabola. By (3.3.7) and (3.3.8) we have
% lu"—w’" + tfu—u' — (w—w")]|I?

= %(u’ —w +tlu—u —(w-—w)u —w + tflu—u' — (w—w")])

= (% W —-—w +tlu—u —(w=—w)HDu' —w' + tflu—u — (w—w")])
+Uu —-w +tlu—u —(w-— w’)],%(u’ —w +tlu—u —(w-—w")])
=(u—u —-(w—-w)u—w)+{U —-—w,u—u —(w-w"))

=(u—u+W-w)u—-w)+{U —-—w,u—u + w —w))

=(u—u,u—-w)+w-wu —-w)+U -—-w,u—u)+ (u-—-—w,w —w).
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From symmetric of inner product, we find
% lu—=w+ tflu—u —(w—w)][?=2(u—u,u' —w' )+ 2w —w,u’ —w')
=2(u —uw —u)+ 2w —w,u —w')=>0.
This means that d(t) is non-decreasing at 0. Because d(t) is an upwards sloping
parabola d(t) must also be non-decreasing on the interval [0, 00). In particular,
lu" = w'|I* = d(0) < d(1) = [lu—wll*.

This leads immediately

lu" = w'll < [lu—wll
Hence Q( is non-expansive, because

Vu,w € IR [[Qc(u) = QcWIl = llu" = w'[| < [Ju —wl|.

Theorem (3.2.2) (Browder-Kirk) decides that

VueC(C Qc(u) = u.

Thus Q is a retraction. Hence C is a retract as required. ]

Theorem(3.3.9): Suppose W has the FP property and U € W is a retract. Then U has
the FP property.
Proof
Consider @: W — U be a retraction and Y: U — U be a CM. We need to show Y has a
FP. Define n: W — U by

N = Y(Px).
We know that retraction of ® and continuity of Y by the assumption imply that 1 is
continuous. Moreover, we have n: W — W since U € W. By the FP property of W,

1N has a FP, that is there exists x, € W such that

N(xg) = X,. (3.3.9)
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But n(x,) € U since n: W — U by the definition, therefore x, € U. Because ® is a
retraction and X, € U such that
D(xy) = Xo- (3.3.10)
Combining (3.3.9) and (3.3.10) we have
Y(xo) = Y(CD(XO)) = 1n(xp) = Xo.

Hence Y has a FP x; as required. ]

Theorem(3.3.10)(Brouwer’s FPT): Every non-empty, bounded, closed and convex
subset C of IR"™ has the FP property.

Proof

Step1: Since C is bounded, then by Definition (2.1.5), there exists M > 0 such that for
all ¢ € C, ||c|| < M. Therefore, C is contained within the closed ball of radius M in IR™,
denoted by B*.

Step 2: By Theorem(3.3.6), we know B™ has the FP property. By Theorem(3.3.7) and

the fact B*and B™ are homeomorphic (consider the map Y : B* — B™defined by
Y(c) = ﬁc ), B* has the FP property.

Step 3: Since C is non-empty, closed and convex subset of IR" by the assumption, then
by using Theorem (3.3.8), C is a retract.

Step 4: Since C € B*, C is a retract and B* has the FP property. Then by applying
Theorem (3.3.9), C has the FP property as required. ]
3.4 Schauder’s Fixed Point Theorem

Definition(3.4.1): Consider U and W be NSs. A map Y: U — W is called compact if

Y(U) is contained in a compact subset of W. A compact map Yis called finite

dimensional, if Y(U) is contained in a finite dimensional linear subspace of W.
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Definition(3.4.2): If w,,w,, -+, w, are vectors of a LS W. An expression
i=13{W;

is called a linear combination of vectors w,,w,, -, w, ,where the coefficients

a;,a, ..., a, are any scalars.

Definition(3.4.3): The linear combination is called convex combination, if w; = 0 for
alli={1,2,...,n } and

2wy =1
lies in C. The convex hull of a set W consists of all convex combinations of W, it is
denoted by co(W) .That is,

coW) ={x:3xEW,w; 20(1 <i<n)XL,w;=1 and XL, w;X; = X}.

Remark(3.4.1): The convex hull co(W) be the smallest convex set is containing W

and i1s the intersection of all convex sets that include W.

Definition(3.4.4): Let C is a convex subset ofa NS W, U = {uy,...,u,} € C and for
fixed € > 0, let
Ue = Uiz; B(u;, ),
where B(u;, €): = {x : ||[x — u;|]| < €}. For eachi =1, ...,n, suppose p;: U, — IR be
the map given by
1 (x) = max{0, & — ||x — u;|}.
Let co(U) denote the smallest convex set containing U. The map P;: U, — co(U)

given by

_ Zima ki
P.(x) = S for x € U,.

is called the Schauder projection.
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Remark(3.4.2):
(i) P.(x) is well defined since x € U, such that x € B(u;, €) for some i€ {1,2,...}.
This implies
W) =¢e—[lx —ull
forvie {1,2,...}. Therefore
2 mx) # 0.

(ii) P.(Ug) € co(U). To see this let that p(x): = XL, (%), such that

pi(x)

Notice that

for all i={1,2,...,n}. Since P,(x), u; € C and the convexity of C, Zi“ﬂ% =
Therefore, P, (x) is a convex combination of the points uy, ..., u,. Therefore, P, (x) lies

in co(U) since co(U) is convex hull of U.

Theorem(3.4.1): Let C be a convex subset of a NS X, and U = {u4,...,u,} € Cbe a
finite. Then

(i) P.: Uy — co(U) € C is a continuous, compact mapping.

(i) [lx = P.(x)|| < € for V x € U,.

Proof

(i) The continuity of P, is immediate, because for all x € Ug, XL, pi(x) # 0 and
2 mi(x)uy, XL, pi(x) are CMs since they are linear. Now to show compactness of
P., we know that from properties of the compact that if U is finite, then it is instantly
compact. Of course, the compactness of U guarantees the compactness of co(U),

which contains P, (U). By Definition(3.4.1), P.(U,) be compact.
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(ii) Notice that for V x € U,
1 1
I = B.COIl = 25 InCx = Ty GOl = 150y 1,6 x = Ty (|

1 1
T ® IX O (x—upll < e L) [Ix —ull

1
" Lipxe=¢

since p;(x) = 0 unless ||x — u;|| < &. ]

Definition(3.4.5): A subset V ofa MS W is said to be totally bounded if for all € > 0

there exists a finite subset {uy, ... ,u, } © U such that
V g U{lzl Bs(ul).

Any MS itself is totally bounded is said to be a totally bounded metric.

Remark(3.4.3): If U is a totally bounded, then
(i) Its closure is also

(ii) Any subset of U is also totally bounded.

The next result describes the relationships between total boundedness and
compactness:

Theorem(3.4.2)®: For a MS the following are equivalent:

1. The space is compact.

2. The space is complete and totally bounded.

3. The space is sequentially compact (every sequence has a convergent subsequence).

(3) Aliprantis, C. D., & Border, K. C. (1994). Infinite-dimensional analysis, volume 4 of Studies in
Economic Theory. p 84.
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Our next result is known as Schauder’s approximation theorem.
Theorem(3.4.3): Consider C be a convex subset of a NS Wand Y:W — C be a
compact and CM. Then for V € > 0, there is a finite set U = {uy, ..., u,} in Y(W) and
a finite dimensional CM Y;,: W — C with the following properties:
@) lYew) —Y(w)|l <&, VvweW.
(i) Ye(w) € co(U) € C, VweW.
Proof
Y(W) is contained in a compact M C C, that is
Y(W)SMcC (3.4.1)
This obviously implies M is totally bounded by Theorem(3.4.2). Therefore, since K is
totally bounded, there exists a finite set {uy,...,u,} € Y(W) such that
M c UL, B:(u;) =Ug, (3.4.2)
Thus, we obtain from (3.4.1) and (3.4.2),
Y(W) € U, (3.4.3)
Let P.: Uy — co(U) be the Schauder projection and define the map Y.: W — C by
Y. (w) = P.,(Y(W)), YWEW.
Theorem (3.4.1) now guarantees the result, as follow
IYe(W) =YWl = [[P:(Y(W)) —Y(W)[| <evVweW.
Since w € W. Then by using (3.4.3), Y(w) € Ug, which leads
P.(Y(w)) € P.(Uy) S co(U).
This straight away is that

Y. (w) € co(U), Vw € W. (]
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Before we state and prove SFPT we first introduce the notion of an € —FP. Let C be
a subset of a NS W and Y:C — W is a map. Given € > 0, a point ¢ € C with

llc = Y(c)|l < ¢ is called an € —FP for Y.

Theorem(3.4.4): Let C be a closed subset ofa NS W and Y: C — W a compact, CM.
ThenY has a FP, if Y has a € —FP.

Proof
In the first, let Y hasan e —=FP. Now Vn € { 1,2,...}, let ¢, bea % — FP for Y, that s,
Il = YCupll < - (3.4.4)
Since Y is compact, Y(C) is contained in a compact subset U € W. Therefore, there
exists a convergent subsequence Y(up, ) of Y(uy,) such that
Y(u,, ) @ u€Uas ng - oo.

Now by using (3.4.4), we find

nk—)OO

1
lun = ull < fluny = ¥Cun )| + ¥ (un) = ulf < -+ [[¥(un,) = ul =0
We have that u € C, since C is closed, also the continuity of Y implies that
Y(u,, ) — Y(u) as ny - oo,

The uniqueness of the limit of Y(cy, ) yields, u = Y(u). ]

Now we ripe to state and prove SFPT.

Theorem(3.4.5)(SFPT): Let K # @ be a closed and convex subset of a NS W. Then
every compact and CM Y: K — K has at least one FP.

Proof

By Theorem(3.4.4) with C = K, it enough to show that Y has an € —FP for all € > 0.

Fix € > 0. Theorem (3.4.3) guarantees the existence of finite set

42



A={ay,...,a,}
in Y(K) and finite dimensional, CM Y,: K — K with
|Y.(x) — Y(x)|| < € for all x € K, (3.4.5)
and Y¢(K) € co(A) € K for some finite set A € K. Since co(A) is closed and bounded
and Yg(co(A)) € co(A), we may apply Theorem(3.3.10) (Brouwer’s FPT) to deduce
that there exists x, € co(A) with X, = Y.(x.). Also, (3.4.5) yields
lIxe = YxI = [[Ye(xe) = Y < &

This implies x, = Y(x,) as required. |

Theorem|Krasnoselskii](3.4.6): Consider C be non-empty, closed and convex subset
ofa BS W. Let f, g: C — W be such that
() f(x) +g(y) € C, vx,ye€C.
(1) f is continuous and compact.
(111) g is a contraction with k is the Lipschitz constant.
Then there is X € C such that f(X) + g(x) =X.
Proof
Notice first that I — g maps homeomorphically C onto (I — g)(C). Because it
1. A bijection, indeed
Clearly that I —g:C — (I — g)(C) is onto and also it is one to one, because if there
exist x,y € C, x # y with (I —g)(x) = (I — g)(y). Then
0=0-8) - 0=l = llx =yl - llg&x) —gWIl = (1 -K)lx -yl
This implies 1 — k < 0 = k > 1, which contradicts k is the Lipschitz constant of g.
2.1 — gis continuous because I, g are CMs.
3. (I — g)~1is continuous. Indeed, first one to one of 1 — g guarantees the existence

of (I — g)~1. Second, the continuity of (I — g)~! will be proved if we can show that

43



if (x,) converges to x whenever (x,) is a sequence in C and x is an element in C such
that,

(0= g) Y (xy) converges to (I — g)~1(x).
Assume y, = ((I—g) ™) (xy) and y = (I - )™ (), hence (I - g)(yn) = X, and
(I — g)(y) = x. Suppose that y,, » y. Then there exists an €, > 0 and a subsequence

(Yn,) Of (yn) such that

lim ||y, —y|| >0 (3.4.6)

nig—oo

Observe,
%0, =l = |0 = &)(yn) = Q= DD = Iy, = yll = llg(¥n,) — 8O
> [|yn, = ¥l = Kllyn, = yll = (0 = ®)[lyn, — vl
Take limit on both sides,
(1 =19 lim [lys, -yl < 0.
Since k is a contraction constant,nlkiinoo||yrlk — y|| < 0, which contradicts (3.4.6). Now

for any y € C, the map
x — f(y) +g(x)
be a contraction. To see this let x;,x, € C,
If(y) + g(x1) — £(y) — g(x Dl = llg(x1) — g < k% — %2l
Hence by Theorem(3.1.1)(BCP) there is a unique z = z(y) € C such that
z=1(y) +8(z) = z - g(z) = f(y) = 1(z) — g(2) = f(y) = (1 -g)(2) = f(y).

Thus

z = (I-g)7'(fy) e C.
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On the other hand, the map (I — g)~% o f: C — C is CM and also by using Theorem®
is compact, being the composition of a continuous map with a continuous and compact

map. Then Theorem (3.4.5)(SFPT) entails the existence of x € C such that

I-g) (f®))=x=f(x)+g(X) =% O

(4) Shirali, S., & Vasudeva, H. L. (2005). Metric spaces. Springer Science & Business Media. p 182.
45



Chapter 4

APPLICATIONS OF FIXED POINT THEOREMS

4.1 The First and Second Order of Ordinary Differential Equations
in BS
4.1.1 The First Order of Ordinary Differential Equations in Banach Space

It is natural to begin the applications of FP methods with existence and uniqueness of

solutions of first order initial value problems as:

{z’(s) = u(s,z(s)),s € [0,q] (4.1.1.1)

z(0) = z,

where p : [0,a] X IR — IR is CM,
C[0,a] = {q: [0,a] — IR™:qisCMon [0,al, |ql, = t{EIE(:)A'{)(]Iq(S)I } and
C'[0,a] = {q € C[0,a]:q’ exists and q' € C[0,a], |ql; = max{|qlo, |q'l}} are BSs.
Then, z € C*[0, a] solves (4.1.1.1) if and only if z € C[0, b] solves
z(s) = zo + fos u(r, z(r) )dr. (4.1.1.2)
The operator Y: C[0, a] — C[0, a] is defined by
Y(z(s)) =z + fos u(r,z(r))dr.

The classical solutions to (4.1.1.1) are FPs of Y, that is: Y(z) = z.

Theorem ( Picard-Lindel )(4.1.1.1): Assume that

(i) p:[0,a] X IR® — IR™ be a CM.
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(ii) p subscribes Lipschitz condition with respect to z, that is, there exists k > 0 such
that
lu(s,z) — u(s,w)| < klz —wl|, vz, w e IR
Then z € IR™ be unique solution of (4.1.1.1).
Proof
At first glance we define a new norm in C[0, o] as follows:

— —ks
zll, = max e *8|z(s)|.
Izl = max e™12()]
It seems natural that ||. || = ||. ||l . To see that to tread the following, since 0 < s < a
= ek < e7ks < 1 = ek z(5)| < e7KS|z(s)| < |z(9)]

= e~k max |z(s)| < max e ¥5|z(s)| < max |z(s)]
s€[0,a] se[0,a] se[0,a]

= e Izlle < llzllk < llzlle.
Now define
Y(z(s)) = zo + [ u(r,z(r))dr.
We now apply BCP to show Y has a unique FP in BS (C[0, al, ||z|lx). Therefore, we

will illustrate that Y is a contraction on (C[0, ], ||z]|y). To see this take u,v € C[0, a],
[¥(u(®) = YVO)] < [ u) - u(rve)dr
= e|Y(u() — Y(v(&)| < e [{]n(r,u®) = u(r,v(o)|dr

< ke [Tly(s) — z(s)lds

= ke™*s [ ekSe *s|u(s) — v(s)|ds

< ke ™ [ ekrdr [lu — vl

= e7ks(eks — 1)[lu = vl = (1 — ) lu — ]|y
Take maximum on both sides

IY(W) — YO Il < (1 — %) [lu = vl
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Since 0 < 1 — e X < 1, Y is contraction on CMS (C[0, ], [|ull,). BCP guarantees
the existence and uniqueness solution u € C[0, a] of Y, equivalently u € C1[0,a] is a

unique solution of (4.1.1.1). ]

Our first result concerns continuous and compact maps.
Lemma(Urysohn)(4.1.1.1): If Vand W are disjoint (VN W = @) closed subsets of a
NS U, then there existsaCM 1n: U — [0,1] suchthat Vv e V,n(v) =0and Vw € W,

nw) = 1.

Theorem(4.1.1.2)(Nonlinear Alternatives of Leray-Schauder Typy): Suppose V is
a closed, convex subset of BS U, W an open subset of V and p € W. Consider that
Y:W — Vis a continuous, compact (that is, Y(U) is a RC subset of V) map. Then
either
(i) Y hasa FP in W, or
(ii) 3 w € W (the boundary of W in V) and B € [0,1] with w = BY(w) + (1 — B)p.
Proof
Let (ii) cannot be realized. Thus w # BY(w) + (1 — )p for w € dW and B € [0,1]
and also Y has no FPs on dW. Define
H={heW:h=ty(h)+ (1—t)p for some t € [0,1]}.
Clearly, that H # @ since p € W. In addition, the continuity of Y insure the closeness
of H. To check this, let h, € H and h, — h and take the limit on both sides of
h, = tY(h,) + (1 - Op,
hence
h =tY(h) + (1 — t)p.

Therefore, h € H.
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Notice that H N W = @. Therefore, by Lemma(4.1.1.1) there isa CM n: W — [0,1]

withn(H) = 1 and n(0W) = 0. Let

M(h) = {n(h)Y(h) +(1—n)phe W
p ,hev/w

Now it is immediate that M: V. — V is a continuous, compact map. To see compactness
use Mazur’s theorem together with M(V) € co(Y(W) U {p}). SFPT proves the
existence of h € V with h = M(h). Notice that h € W since p € W. Hence

h =n(h)Y(h) + (1 —n(h))p.

This means that h € H. Therefore, h = Y(h) since n(h) = 1. ]

Definition(4.1.1.1): Let 1 < o < oo and a constant {3 are satisfy §+ % = 1. Assume

the following hold:
(i) h € C[0,1].
(ii) p: [0,1] X IR — IR is an LB-Caratheodory function, by this we mean

(a) The map t — u(t,z) is measurable for all z € IR, such that follp(t)lf3 dt < oo,

1

lullg = (J; 1n(1Pde)".

(b) The map z — (s, z) is CM for nearly all s € [0,1].
(c) VA > 0, there exists ¢, € LB[0,1] suchthat |z| < A implies that |u(s,z)| < @,(s)
for nearly all s € [0,1].
(iii) Py(r) = P(s,r) € L*[0,1] ,V' s € [0,1].
(iv) The map s — Py is CM from [0,1] to L*[0,1].
The equation

z(s) = h(s) + fol P(s, r)p(r, z(r))ds, vs € [0,1] (4.1.1.3)

is called the Fredholm integral equation.
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Theorem(4.1.1.3): Suppose there is a constant a > 0 is an independent of 3, with

|z|, = sup |z(s)| # « for any solution z € C[0,1] of
s€E[0,1]

2(s) = B (h(s) + J k(s Du(r,y()dr), (4.1.1.4)
s € [0,1] and for each 3 € (0,1). Then the Fredholm integral equation has at least one
solution z € C[0,1].
Proof
Step 1: Define the operator T by

T(z(s)):= h(s) + f01 Ps(r)u(r,z(r))dr Vs € [0,1]

Notice that T:C[0,1] — C[0,1]. To realize this take any z € C[0,1], then this
guarantees continuity of y. There is A > 0 such that |z|, <A and since p is L8 -
Caratheodory, there exists ¢, € LB[0,1] with |u(r,z)| < ¢, (r) for almost every

r € [0,1]. Therefore, for any s;, s, € [0,1], we see that
|T(Z(Sl)) — T(Z(SZ))l < | h(s;) = h(sp)| + f01|P51(r) —ks, (r)||u(r,z(r))|dr

< |h(sy) = h(sp)| + [P, (@) = P, ()| 2 (1)dr

< IhGsy) = h(s)l + ([7[B, 0) — P, @ “ar) & (17 (02, 0)) ar)?
= | h(sy) — h(s))| + (f01|(PSl - PSZ)(r)|°‘dr) . (fol((p;\(r))ﬁdr) g

= | h(s) = h(sp)| + [P, = Py, ||_ll@allg. Therefore,

IT(2(s) — T(z(s,))| =530 . (4.1.1.5)
Consequently, this means that T(z) € C[0,1]. Now we will apply Theorem (4.1.1.2)
with W := {z € C[0,1] : |z|, < a}and V = U = C[0,1].
First we show that T: W — C[0,1] is CM. Let z, — z in C[0,1] with {z,}%, € W.

We are required to show that T(z,) — T(z) in C[0,1]. There exists ¢, € LE[0,1]
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with |zp|o < a, [z]p < a and |u(r, 2, ()] < @ (1), [1(r, z(r))| < @q(r) for every
rel0,1],n=1,2,..

By an argument similar to the one used to obtain (4.1.1.5),

IT(2()) - T(2())]| < f 1, ()1 |1t 20 (0)) = u(r, 2(0)) | dr
0

= (5 IP ()] dr) s (5 In(r, 20 @) = u(r, 20)[dr) 5
= ||Psllq (f01|u(r, Zn(r)) - u(r,z(r))lﬁdr) %

< ( sup ]npsna) (R (e 2 @) = (r, 29)| ) &

So |T(Zn(s)) — T(Z(s))| — 0 asn—ooo . Thus T(z,) —» T(z) as n— o .

Therefore, T: W — C[0,1] is CM.

Step 2: We will illustrate T: W — C[0,1] is compact. There is ¢, € L#[0,1] such that
[u(r, z(0)| < @q(r)

for almost every r € [0,1] and z € W.

Since we are working in C[0,1], we can use A-AT to prove compactness. Clearly
T(W) is a uniformly bounded since

T(z(s)) = h(s) + fol P,(0u(r,z(r)) dr,vz € W,
Subsequently,

ITC(s)] < h@)|+ [ 1B [u(rz@)|dr
< Ih)+ (f 1B@1=dr)* (f7 [u(r,2())| dr)®

< W+ (f; 1B@1%dr)* ([} (9ar))Pdr)® < [0 + 1Pl loall.

Take sup on both sides where 0 < s < 1.

IT() < Inlo + ( sup ||Ps||a) loalls, vz EW.

0ss<1
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Using the similar argument to the one used to obtain (4.1.1.5), one can see that T(W)
is equi-continuous since uniform continuity of T in stepl. It follows from A-AT that
T(W) be RC. Therefore, T: W — C[0,1] is a compact mapping.

Step 3: We may now apply Theorem(4.1.1.2) (notice that possibility (ii) cannot occur)
to deduce that T has a FP in W, or equivalently, (4.1.1.3) has a solution in W. ]
4.1.2 The Second Order of Ordinary Differential Equations in Banach Space

To illustrate how Theorem (4.1.1.3) can be applied in practice we turn our attention to
the second order homogeneous Dirichlet problem,

{Z" = f(s,z,2"),Vs € [a,b] (4.1.2.1)

z(a) =z(b) =0
where f:[a,b] x IRZ — IR is a CM. Associated with (4.1.1.6), we consider the

following related family of problems:

{z = Af(s, zz,(zag,zvzs(s) [i, l(;], A€ (0,1) (4.1.2.2)
Now the integration on both sides of (4.1.2.1) respect to s on [a,A] implies
zZ7(A) —z'(d) = f:\ f(s)ds.
Since r € [a,A] we can change s by r,
2/ - 2'(a) = [ f()dr.
After that the integration respect to A on [a, s]
72(s) —z(@) —z'(@)(s—a) = f: f:\ f(r) dr dA
= 2(s) = 2’(a)(s — a) + [ [ f(r) dr dA (4.1.2.3)
Since s = b,
2'(a) = — = [ [} f(r)drdA (4.1.2.4)

Substitute the (4.1.2.4) to (4.1.2.3), to see
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2(s) = J; [ f()drdd — =2 [ [7f(r)drdA
= [, [T f()dadr — =2 f f f(r)dadr
= [7(s = Df(r)dr — =2 fab(b — Df(r)dr

_f ( —(b S)(x a)) f(r)dr + [ ( —(b_l?_(:_a)) f(r)dr.

Consider the operator Y: C*[a,b] — C![a, b] is defined as follows

b
Y(z(s)):= f Y(s, n)f(r,z(r),z'(r))dr

where the Green’s function Y (s, r) is given by
GG

. b-a !
W(sr) = ECECE

b-a !

Lemma(4.1.2.1): Assume Z S IR? such that f: [a,b] X Z — IR is Lipschitz function.
Let that f satisfies the following local Lipschitz condition, there exist k;, k, € IR*
such that

If(s, z1,21) — f(t,25,25)| < Kqlzq — z,| + Kylz1 — 751, (4.1.2.5)
for all (z4,21), (z,,23) € Z, hence

(b—a)? b—

a
22 llzy = z,l,

I¥(zy) = Yzl < (ks 22+,

where ||z]| = k¢ |Iz]lo + K, ||Zz'[| such that

Izl o = max |z(s)| and [|z'|l, = max |z'(s)].
s€[a,b] s€[a,b]

Proof

Take z,,z, € C1[a,b], hence
Y(2:(9) = Y(22 ()] < [P1W(s, 0)I|E(r, 2, (0), 2 (1) — £(r, 2, (1), 23, (0))|dr

< [T 0 (ky 21 (1) = 2o (1) + K24 (1) — zp (1) Ddr
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b 1 -
< LG 01 (K max (2 = 2201 + k; max [24() = 2501 ar
b , , b
= [ (s, 0ldr (kyllzg =zl + Ko llzi — 23lle0) = [ W (s, D)Idr llzg — 2z, 1.
Take max on both sides where s € [a, b],
b
1Y(z1) — Y(z)loo < Inax J, (s, D)ldr |z, = z,ll.
Now we find,
b b
L (s, 0ldr = C1p(s,Dldr+ [ 1(s,0ldr
- —a) (b
= —(E_z) f:(r —a)dr + —(;_2) J; (b —r1)dr,

(b S) 2 (S a) 2 2
= 0o (s 2as+a)+2(b (b? — 2bs + s?)

_ (b=9)(s=a)? | (s=a)(b=s)? _ (b=s)(s=a) o (b=s)(s—a)
T 2(b-a) + 2(b—-a) 2(b-a) (s—a+b-s)= 2 '

Thus,
b -1 _ _
Jnax J, (s, )ldr = . Srer%;e]\‘)é]((b s)(s — a)).
Let h(s) = (b—s)(s—a). Using the second derivative test to determine the

maximum value of h(s), as follows:

(1 h'(s) =b—2s+a.

(2) Leth'(s) =0 = t =2
(3 h"(s) = —2.
@h"(22) = -2,

Since h"” (b+a) < 0, h(s) has maximum value at T .Hence

g 06 Dlar =1 (o 2) (222) =3 () (59 = a2

Thus [1Y(z,) = Y(z5) lloe < &2

l|z; — z5]le. On the other hand,
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Y'(2() = [ = [§(s,0)lu(r, z(), 2/ ())dr

= [Y'(2:(9)) = ¥(z(9)] <

2 (s, 1) drllzy — 2l
b
J,
1 S
=1

= b—ia(f:(r —a)dr + fsb(b - r)dr)

RICDICEIN PTG r>| dr+ 7[5 wes | dr

%(b—s)(r—a)| %(b—r)(5—3)|dr)

(s —2as + a% + b? — 2bs +s?) =

((s—a)2 + (b —s)?).

2(b 2(b

By an argument similar to the one used to derive (4.1.2.6), we obtain

ax [ |2

b—

LIJ(S r)| dr = T'

sE[a b]

Therefore,
12 12 b—
1Y'(z1) = Y'(2)|lo < Ta |2y — Z3 ] .
Now since

1Y(z1) = Y@ =k [1Y(z1) = Y(@) o + kY (Z1) = Y'(Z) |l oo

b—
< (k= D 4k, 2 22 Iz, — g loo- (412.7)m

Theorem(4.1.2.1): Consider f: [a,b] X Z — IR isa CM and satisfies (4.1.2.2) in a set

U with constants k; and k, such that

2
k, (b- a)

+ k2 P (4.1.2.8)

is holds. There exists a bounded open set of functions W € C[a, b] with 0 € W such

that z € W implies (z(s),z'(s)) € Z for all s € [a,b] and z solves (4.1.2.2) for some

A € (0,1) leads z & & W. Thereafter, (4.1.2.1) has a unique solution in W.

Proof
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Obviously, Y: W — C[a, b] is contraction by (4.1.2.7) and (4.1.2.8). Note that (ii)
in Theorem(4.1.1.2) cannot occur because of z solves (4.1.2.2) for some A € (0,1)
implies z ¢ dW. Hence by apply Theorems(3.1.1)(BCP) and (4.1.1.2) Y has just one

FP in W, which is a unique solution of (4.1.2.1) in W. n

Remark(4.1.2.1): In many important applications, the function f is independent of z’,
that is f = f(s,z). In this case, a straightforward review of the reasoning given above
shows that we can regard Y as

Y:C[a,b] — C[a,b] .
This leads to a useful variant of Theorem (4.1.2.1) in which A € IR, all reference to y

and z is dropped in (4.1.2.2) and U € C[a, b].

Example(4.1.2.1): The BVP

{Z”(S) — _ez(s),S € [0,1] (4129)

z(0)=z(1)=0
possesses a unique solution with maximum norm at most 1.
To show that apply Theorem(4.1.2.1) and Remark(4.1.2.1) with f = f(s, z) = —e*®),
By the mean value theorem we get that |z|] < 1 and |z'| < 1 imply there exists w, that
lies between z,z’ such that
|f(s,z) — f(s,z")| = |eZ - eZ’| =eV|z—7'| < em*22}|z — 7| < elz —7'|.

This means that k; = e. We take U = [—1,1] and
W= {Z € C[0,1]: |z], = Inax |z(s)| < 1}

in Theorem (4.1.1.2). Then
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Consider that u solves

{Z”(s) = —2e?®),s € [0,1] (4.1.2.10)

z(0)=z(1)=0
for some A € (0,1).

Now integrating on both sides of (4.1.2.10) respect to s on [0, p] implies that
z'(p) —z'(0) = —?\fop ez(s)(s.
Since t € [0, p] we can change s by t,
z'(p) —z'(0) = —?\fop ez,
After that integrating with respect to p on [0, r] yields that
z(r) —z(0) — rz'(0) = —A for fop e*(Vdtdp
= z(r) =12'(0) — A, [T e dtdp (4.1.2.11)
since r =1, z/(0) = [ J; *©dtdp. (4.1.2.12)
From (4.1.2.11) and (4.1.2.12), we see
Z(r) =rA fol fop e?dtdp — Afor fop e*(Ddtdp
=1f, [} eOdpdt— 2 f; [ e*Odpdt
=rA fol(l — t)ez®dt — Afor(r — t)ez2(dt
= -2 for —(1—r)te?®dt — ?\frl —(1 — tre*®qt.
Then
2(r) = =1 [ Wt 1) eOdt, (4.1.2.13)

where

(-1 -9Yr ,0<r<t<1
‘“(t"")‘{—u—r)t O0<tsrs<1

Now take the norm on both sides of (4.1.2.13),
|2(0)] < A [ [W(tr)[e*Odt < el [F[y(t,r)|dt
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<efllYn)ldt=e ((1 —0) [frdr+tf1(1 - r)dr) =2t(1- 0.
= |z], = r21[3>1(]|z(r)| < Errg[(z)i,)f] r(1—r).

Let h(r) = r(1 — r). Using the second derivative test to determine the maximum value
of h(r), as follows:

(Oh'(r)=1-2r.

(2)r=-ash'(r) = 0.

B)h'(r) = -2.

(4) h" G) -2

Since h”’ G) < 0, h(r) has maximum value at % . Therefore,

|zl << max r(1—r) =E(l(1—l)) =2

2 relo0,1] 2\2 2
Consequently |z|, < 1. Therefore, z ¢ 9W, Hence Theorem (4.1.2.1) implies that
(4.1.2.9) has only one solution with norm at most 1.

4.2 Global Solution of Fractional Differential Equations

Definition(4.2.1): The function I'(y) is defined by

[ee)

I'(y) =f s?7le~Sds
0

is said to be gamma function where z € C (Re(y) > 0).

Remark(4.2.1): If T'(y) is gamma function then

() 'y +1) =yI'(y), (Re(y) > 0).

(ii)) T(n + 1) = n! where n € IN U {0}, with 0! = 1.

Definition(4.2.2): The fractional integral RLIPf(t) of order p € R*(n = [p] + 1, [p]

means the integer part of order p) defined by
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RLIPE(Y) = f (t —r)P"f(r)dr,t > aand p > 0.

I'(p) "«

is called Riemann-Liouville fractional integral.

Definition(4.2.3): The fractional derivative RLDPf(t) of order p € R* defined by,

RLDPf(r) = = RLpp-af(r) =

den 2

L ([l =91 f(s)ds).

F(n o) dt?

is called Riemann-Liouville fractional derivative.

Definition(4.2.4): The fractional derivative SDf(t) of order a € IR*is defined by

CDPf(t) = RLDY (f(t) -1 1 {9 (q)( )k)’
is said to be Caputo fractional derivative, where n = [p]+ 1forp € NU{0},n=1p
for p € N U {0}. In particular, p € (0,1), then

SDYF(t) = REDP(F(0) — f(a)).

Properties(4.2.1):

(1) If p>0andf € L([qw],IR") (1 <r < ), then the following equality
REDP (RUIPE(Y)) = (1) .

(2)Letp>0and n=[p]+1forp g NU{0},n=pforp € NuU{0}. If

y € AC"([a,b],IR™) or y € C"([a, b],IR™), then

RLIP (CDpy(t)) y(t) — ¥nol 1y¢ !(a) (t — a)k.
In particular, if 0 < p <1 andy € AC([a,b],R™") ory € C([a, b],IR") then
RUP (SDPyY(D) = y(© - y(a).
Consider

{CDE‘x(t) = Bx(t)

%(0) = x, (4.2.1)
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such that « € (0,1),W is BS and B € L(W) is a linear bounded operators from W to

itself.

Definition(4.2.5): Assume that T € (0, ) such that
c*([0,t],W) = {x € C([0, ], W): “Dix € C([0,T], W)},
x € C([0,t], W) is called a global solution of (4.2.1), if x € C*([0,t], W) forvt > 0

and satisfies (4.2.1).

Lemma(4.2.1): Assume x:[0,0) — W be a CM, then x is a global solution of

(4.2.1) if and only if x satisfies:

x(t) = xo + ﬁf (t—s)*Bx(s) ds, t >0, (4.2.2)

Proof

Let’s prove recessily that x satisfies (4.2.2). Therefore, let that x is a global solution
of (4.2.1). By Definition (4.2.5), x € C*([0, t], W) for all T > 0 and satisfies (4.2.1).
This means that x € C([0,t], W) and °D{x € C([0,t], W). Since 0 < a < 1, property
(4.2.1-2) and x € C([0, T], W),

x(t) — x(0) = RLE(°DZx(t))

= x(t) — xo = RI&(Bx(D))

= x(t) = xo + $f (t — s)* 1Bx(s)ds.

Now let’s prove sufficient that x is a global solution of (4.2.1) since x satisfies

(4.2.2). For thiswe let t = 0,

x(0) = f (—s)* 1Bx(s)ds = x(0) = x,. (4.2.3)

F()

Since x(t) = x, + a )f (t—s)* 1Bx(s)ds
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= x(t) —xo = ﬁj:(t — )% 1x(s) ds = x(t) —x(0) = RLZ(Bx(1))

= RLDE(x(t) —x(0)) = REDERLE(Bx(L))
= Dix(t) = Bx(1), (4.2.4)
by using property (4.2.1-1) since Bx(t) € L([0, t],X) and the fact that
‘DEx(t) = RLDE(x(t) — x(0)).

From (4.2.3) and (4.2.4), x satisfies (4.2.1).
Now we will show x € C*([0, t], W), vt > 0. Since x: [0,0) — W be CM,

x € C([0,0],W) = x € C([0, 1], W), VTt > 0. (4.2.5)
Since B € L(W) linear bounded operator on W.
= B isCMon ([0,T], W) = B € C([0,T], W) = Bx(t) € C([0, ], W)
= ‘D¥x(t) € C([0,T],W), Vvt > 0. (4.2.6)
From (4.2.5) and (4.2.6), x € C*([0, t], W). Therefore,

x is a global solution of (4.2.1). ]

Theorem(4.2.1): Let 0 < a < 1, B € L(W)and x, € W. Then (4.2.1) has a unique
global solution.

Proof

Assume T > 0 and k, = {x € C([0,1],X):x(0) = x,}. Consider K: k, — k. by

x(t) — K(x(t)) = xo + ﬁfot(t — )% 1Bx(s) ds.

We will show that a power of K is contraction to use BCP
1 t
[K(x(®) - K(y®)| < —f (t—$)*71BlIx(s) — y(s)|ds
I'(a) Jy

1B rter — aya-1gsiix — vl < LB g — vl = B 1 —
Sl"(Oi)fo(t ) ds||x y”SaF(a)”X y” _F(a+1)”X Y|I

Take maximum on both sides since 0 <t < T,
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BT
I(a+1)

IKx) —KWIl < lIx = yll.

Notice also that

K260 — K2l < 2 kG — K@l < (225 -y

[(a+1) I'(a+1)
|B|2T2a |B|2.L.201 |B|212a IBIZTZO(
<——|x—-yl| = —y|l < EB—"—|Ix — =T Jx—=vl.
= Gy XY= " Ik =yl = T ik =yl = soams Ix = v
By the repetition, we discover that
1 no
n n |gIPne ('B'ET>
KGO = KW < pory I =31l === lIx—yll
1 no
<|BIET> . .

such that T < 1 for n large enough. Therefore, K" is a contraction for some
n=>1.

By Corollary (3.1.1), K has a unique FP x € K, such that
(D) = K(R(D) = %0 + = [t — )% B(X(s)) ds.

I'(a)

Then Lemma (4.2.1) guarantees singularity of global solution of (4.2.1). |

Definition(4.2.6): The function E(z) defined by

K
E (z) = Zﬁozom, R(a) > 0.

is called the basic Mittag-Leffler function. Note that when a = 1 it is

Zk Zk
N =N, = e
k=0r(14Kk) ~ k=0 '

One generalization of E(z) is denoted and defined as follows:
k
Eqp(z) = Zif:om, R(a) > 0,R(B) > 0.

r(y+k)
T (y)

where (V) =yy+ 1y +k—-1),)o =1y #0,and (y)x = ,(y) > 0.
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Theorem(4.2.2): Consider the same assumption of Theorem(4.2.1). In addition,
assume {u,(t)};=, be a sequence of CMs uy: [0,0) — W given by u,(t) = x, and
t -
up(t) =xo + ﬁfo (t = $)**Buy_1(s)ds.
Then there exists a CM u: [0,0) — W such that u, — u in C([0,T], W), Tt > 0, u s
a solution of (4.2.1) that is unique and

u(t) = E,(Bt)Xx,.
Proof

Let u, € C([0,T],W), T > 0 such that u,(t) = x,.

u, (1) = xo + %fot(t — )% 1Buy(s)ds

Bxg rt _ Bt
= Xp +T0?)f0(t—s)a 1dS=X0-|'mX0.
— L t _ a—1
uy(t) =xo + - Jy (t=s)* " Buy(s)ds
= Xo + ==X [L(t — )% 1ds +——b——x, [(t — s)*"Ls%ds
0 " re™0Jo T(r(a+1) 0 Jo

_ pt B? tr _ a-lca
=X+ e X0 + FeorieaD X0 fo (t —s)* 1s%ds.

Now integrating by parts to find fot(t —5)%"1s%(s,

Let u = s® du = as* 1ds
dv = (t—1s)*"1ds v = %1 (t—s)®

[3(t—s)*1sds = [3(t—s)*s*ds.

Integrating by parts again to find fot(t —5)%s% s,

Let u=s*1 du = (a — 1)s*2ds
— (+ _ _ =1 +1
dv = (t —s)%ds v=— (t—s)?

tr  Na-l.a a1ty Na+1 oa-2
Jy(t=s)*"1s%ds = — Jy (£ =s)**1 s*%ds..
After use integration by parts o- times to obtain
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o Neeleade _ @D(@=2)(a—a+D) to a0 g
fo(t S) s%ds = (a+1)(a+2)--(a+a—1) fo(t S) ds.

(a—1)(a—2)---3.2.1 200 _ I'(o)t2®
T (a+1)(a+2)(20-1)(20) T (a+1)(a+2)-(20-1)(20)
Therefore,
_ Bta thza
uz(t) = xp + ['(a+1) Xo + (20)(2a—1)(a+2) (a+1)T(a+1) o
_ pt™ (Bt®? Btk
=X+ TarD) X0 T Tzar1) X0 = Zk- 0 T(ka+1) 20

(BtHK
un (1) = Xi=o I'(ko+1) Xo-

We now illustrate that u, (t) is Cauchy sequence in BS C([0, t], W).

|B|n+1ta(n+1)

|un+1(t) - un(t)l = F((n+1)a+1) Xp-

Take maximum on both sides, to drive

1\ (m+Da
(IBI&T>

ltnss = unll < s

X

Let m > n,

lum = unll < flum = um—ll + -+ llupeg —uyll

1 \ma 1 \(0+3)a 1\ (n+2)a 1\ (@+Da
(1 (™ ()" ()
<y /0 N/

= T X0t t S Xo T T X0 T Tarnayr X0
< 1\ (@+3)a 1\ (n+2)a 1 \(@+Da
IBI“T> <|B|ET> <|G|ET> <|3|3T>
n+1)a)! (n+1)a)! (n+1)a)! (n+1)a)!
= o 0 T T T rnar X0 T Tmnar X0 e X0

(n+1)a
|Blat
%Xo(l + BlT™ + (IBT®)2 4 -+ + (|B|t)m—n-1)

(n+1)a (n+1)a
<|B|Ot1:> et . (|3|&T> )
= o Yo Zkse (BIT)* < Sy Zizo(IBIT)
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1 (n+1)a
<|B|°‘T> ( Xo )n—woo.

((n+Da)t \1-[B |t*
Therefore, {u,(t)}5=, be Cauchy sequence in BS C([0,t], W), this indicates there
exists u(t) € C([0,t],W) such that u,(t) = u(t). To show that u is solution for
(4.2.1), it is enough prove u satisfies (4.2.2).

u(t) = lim u,(t) = — [[(t—s)* 'Blimuy,_; (s)ds

F( ) 0
=X, + a )f (t—s)* 1Bu(s)ds.

Hence, Lemma(4.2.1) say that u is a global solution for (4.2.1). Since 0 < o < 1,

B € L(W) and x, = u(0) € W, then by Theorem(4.2.1), u is a unique solution for

(4.2.1). Now let t € [0, ] such that T > 0,

L Y n _(BtHK (BtHE K
u(®) = &Lr?o un(t) = rlllr?o Lic= 0 r(ka+1) Xo = k= 0 T(ka+1) Xo = Eq(t*B)*x

The proof is done. |

4.3 Boundary Value Problems for Two-Point Fractional Differential

Equations

Define the following BVP

{CDg‘m(t) =~f(tn(®),te[ablae (1,2] (4.3.1)

n@ =An() =B, ABEIR

where f:[a,b] X IR — IR is a CM.

Lemma(4.3.1): Let a > 0, then the FDE
“D*n() = 0
has solution

n) =cy + it +cpt? +- +cpt" 1, ¢ €IR,i=0,1,2,--,n,n = [a] + 1.
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Lemma(4.3.2): A function n € C?[a, b] is a solution of problem (4.3.1) if and only if

it satisfies the integral equation

n® =A+—(B- A+ﬁf (b — )% f(s,n(s)) ds)

e )f (t—s)* (s, n(s)) ds. (4.3.2)
Proof

RLI% CD%m (1) = —RUSf(tn(D)

) —_a)k
=0 ~ Zhoo = - e J =9 (s, n(s)) ds

=11 —n@ - n@t—a) = —ﬁf (t—s)*f(s,n(s)) ds

=1 =n) +n' (@t -2) —ﬁf (t— )% (s,n(s)) ds

=) =7n'(@)(t-a) —r)f (t —s)* f(s,n(s)) ds. (4.3.3)

From (4.3.3), t = b and n(b) = B, we obtain

W@ =(B-A +ﬁ [ (b = )% f(s,n(s)) ds) (4.3.4)

Substitute the value of (4.3.4) to equations (4.3.3), to get (4.3.2).

The converse follows by direct computation. Indeed,

N =Aa+—=(B- A+mf (b — )% f(s,1(s)) ds) =R (e, (D).

=A-— (B A+ mf (b —s)*f(s,n(s)) ds)

(B A+ mf (b —s)* f(s,n(s)) ds) t —RUS (e, (D).

Hence by Lemma(4.3.1),
D% (t) = = DL RULf( (D) = —f(t, (D).

Also since (4.3.2), t=aand t = b,thenn(a) = A, n(b) = B, respectively. (]

Remark(4.3.1): We can express the solution (4.3.2) in terms of Green’s function as
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. (B-A)(t-a) | 1 t(t-a)(b-s)*"'-(b-a)(t-s)*!
N =A+—="—+55 N — f(s,n(s)) ds.

1 b (t-a)(b-5)*"1
+ r(ooft ———f(sn(s)ds

(B-A)(t-a) A)(t a)

=A+—" +f W(s, Df(s,n(s)) ds,

where

_ _ya—1
M—(t—s)“*aﬁs<t<b

__ b-a
VD =55 cap-9e

b-a ’
Let’s start to define a function

(t-a)(b—s)*"* (

— ) lag<s<t<
- t—s)*lLa<s<t<b.

g(ts) =
The goal is to determine the field where g(t,s) < 0,

(t—a)(b—s)*?
=

_ _ a—1
T (t—-5s) <0

1 1

t-a _ (t=s\*! t-a\a—1 _ t-s t-a\a-1
=<6 =) <m= )T e-9<e-s

= (=) b-t<s((2)7 1)

1
Since (E)‘H —1 < 0, we clearly get

< o
(2
If we define the function h by
(t‘_a)ﬁ —t (t a) 11b ¢
h(t) =°2=2—— t € [a,b) and h(b) = lim>=2—~—=2b —a —a(b —a).
(=) (=)

We now wish to show that a < h(t) < ton (a, b). We have

1

(lt)_—a)a_lb—t t-a\ari et t—aat
a<‘z"—1<:>(g) —a>(ba) b—t @t—a>(g) (b—a)
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1 2—a

o2 s (t_—a)“*(:)(t_—a)“_1< 1o 2clioth,
b-a b-a b-a

which is true. In addition,

1

([t)__a)a_lb_t t-a ail t-a ail -
a—1<t<=>(—) b>(—) te b >t itisalso true.
(t_a)ﬁ_l b-a b-a

b-a

Therefore, a < h(t) < ton (a,b). Furthermore, it is easy to view that,

{g(t, s) <0, a<s<h()
g(t,s) >0, h(t)<s<t

[Pl s)lds = 2 7O (e - g)et - DD g

') “a b-a

1t (t—a)(b—s)*~1 (a1 1 b (t=a)(b-s)*7*
+ I'(a) fh(t) ( b-a (t—s) ) ds + I'(a) ft b-a ds.

__ 1 t-ab-9* -  ~«)|h®
T I(a+1) ( b-a (t—s) ) a

1 _a Eb-9)*N e 1 (t-a)(b-5)*\ | b
+ T(a+1) ((t S) b-a ) | h(t) [(a+1) ( b-a ) | t

= F(0(1-"-1) ((t—a)(bb_—ah(t)) _ (t _ h(t))a _ (t _ a)(b _ S)a—l + (t _ a)a _

t-a)(b-* «  (t-a)(b-h®)* | (t-a)(b-n*
b-a (t h(t)) + b-a + b-a )

1 (Z“‘a)(b‘h“))a —2(t=h(®)* = (t—a)(b—a)* ! + (t— a)“)-

- I(a+1) b-a
It is clear that the right side of the previous equality has a maximum on (a, b), though
we couldn’t find it analytically. We define,

M(a, a,b)

_ 2(t-a)(b-h(t)" _ a o _ a-1 _ )«
e (2 2 h ) - - -+ - ),
Finally, we get

1w 9)lds <M(a,a, b). (43.4)
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Theorem(4.3.1): Assume that n: [a,b] X IR — IR is a CM and satisfies a uniform
Lipschitz condition with respect to the second variable on [a, b] X IR with Lipschitz
constant L > 0 that is

In(t,x) —n(ty)l < Lix—yl,
for all (t,x), (t,y) € [a,b] X IR. If

M(a,a,b) < %,

then the BVP (4.3.1) has a unique solution.
Proof

Define an operator K: C[a, b] — C[a, b] by

(B-A)(t-a) A)(t a)

(K1) = A+ 22D 4 [Py(s, (s, x(s)) ds.

Letx,y € C[a, b],
b
() — Ky) (O < f W(Gs, 01N (s, x(s)) = n(s,y(s))| ds

< L[ 1W(s, 0l1x(s) — y(s)l ds < L [19(s, Ol dslix - yll.
From (4.3.4), we obtain
|(Kx)(t) — (Ky)(©)| < L M(a,a,b)[Ix —yl|.
Take maximum on both sides where a <t < b,
IKx) — K@l < LM(a,a,b)[Ix —yll

Notice that L M(«, a,b) < 1 since M(q,a,b) < % . Therefore, K is a contraction on

C[a, b]. It is following by an application of the BCP (3.1.1) that K has only FP

(B- A) (t a)

x() = A+——+ f W(s, On(s,x(s)) ds.

Lemma(4.3.2) says that x(t) is a one solution for (4.3.1). (]

Corollary(4.3.1): Assume that n: [a,b] X IR — IR isa CM and admits
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In(t,x) —n(ty)l < Llx—yl,
for all (t,x),(t,y) € [a,b] x IRand L > 0. If

V2

b—a<ﬁ,

then the BVP

{Xll(t) — _n(t}X(t)),a <t<bl<acs<?y, (435)

x(@) = A x(b) =B,A,BEIR
has a unique solution.
Proof

Initially, we suppose that o = 2. Then, it is not diffecult to show that

_ ()bt _aeby _
hO =TEyT =" =2

Moreover,
_1 _ ) (f—a)2) =1 _ _
M(2,a,b) = 2;2&){)(& a)(b—a)—(t—a) ) Zgrslteg((t a)(b t)).
Now we will let K(t) = (t—a)(b — t), subsequently, K'(t) = b + a — 2t. Hence
_ atb
t==—,

since K'(t) = 0. Also K" (t) = —2 < 0. So, K(t) taken its maximum at t = a;—b. Thus

Mz = HE2 ) (- 22) =) () -2 <3 -2

Theorem(4.3.1) and the BVP decide that (4.3.5) has a unique solution. |

4.4 Boundary Value Problems of Order a € (0, 1] for FDEs

Consider the given fractional BVP

{CD“B(k) = ¢(k,9(k)),t € [0,K],a € (0,1] (4.4.1)

ad9(0) + b9(1) =c

where ¢:[0,K] X IR — IRisaCM,a+b # 0and a,b,c € IR.
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Definition(4.4.1): A function 9 € C*([0, K], IR) is said to be a solution of (4.4.1) if 9
satisfies the equation “D*9(k) = ¢(k, 9(k)) on [0, K] and the condition

ad(0) +b9(1) =c.

For the existence of solution for (4.4.1), we need the following auxiliary lemmas:
Lemma(4.4.1): Assume 0 < a < 1, h € C([0,K],IR). The solution of the fractional

integral equation is given as follows,

9(K) = 99 + 7o Jy (k= 9)“ 'h(s)ds. (4.4.2)

if and only if 9 be a solution of the fractional I'\VP

{CDgs(k) =h(k), 0<k<K (4.4.3)

9(0) = 9,

Lemma(4.4.2): Assume 0 < a < 1, h € C([0,K],IR). The solution of the fractional

integral equation is given as follows,

(k) = [y (= $)* 'h(s)ds — = (%) [y (K = $)*'h(s)ds — c). (4.4.4)

if and only if 9 is a solution of the fractional BVP

{CDE‘S(k) =h(k), 0<k<K 445)
ad9(0) + b9(K) =c

Proof

Let 9 be a solution of D*9(k) = h(k)

= RljaCpag(k) = Ri[ah(k) = 9(k) = RlI*h(k) + L,L € IR. (4.4.6)

We need to find L by using the condition ad9(0) + b9(K) = c. Let’s determine
9(0),9(K) by (4.4.4), a simple calculation gives

{ 9(0) =L
9(K) = RL*h(K) + L’

Now, we have a9(0) + b9(K) =c = aL +bR*h(K) + L) =c
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— (a+b)L = ¢ — bRUh(K) = L = = — 2 RLjap(K), (4.4.7)

a+b a+b

Substitute the value of L to equations (4.4.6) and (4.4.7), to get

9(K) = —— [(k — )% 1h(s)ds——(r(a)f(K $)*'h(s)ds — c).

I'(e)

Conversely, it is clear that if 9 is satisfied equation (4.4.2), then equation (4.4.3)

holds. Indeed,

9(0) = ‘—(r(a)f (K= ) h(s)ds — c).

a+b

From (4.4.4), we get

9(k) =9(0) + ﬁf (k = s)* th(s)ds.

Lemma (4.4.1) guarantees that 9 is a solution for *D9(k) = h(k). (4.4.8)

Now, to prove the condition let (4.4.4) is hold for all k € [0,K]. Then

29(0) + b9(K) —ﬁ(c—r)f (K= ) h(s)ds)

+(1-=) m)f (K — )% th(s)ds + =

a+b

_ a _ a—-1
" a+b (a+b)F(ot)f (K=5)*""h(s)ds

(a+b)c _
atb

— 2 [F(K— )" Th(s)ds + —— = (4.4.9)

(a+b)F(ot)

From (4.4.8) and (4.4.9) we drive 9 is solution for (4.4.5). []

The BCP is a main base for first consequence.
Theorem(4.4.1): Assume that

(H;) 3k > 0 such that |f(k,u) — f(k,u)|] < Llu—1ul,t € [0,K] and all u, u € IR. If

« 1 bl
LK (F(a+1) + |a+b|l"(a—1)) <1 (4.4.10)

then the BVP (4.4.1) has a unique solution on [0, K].

Proof
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To begin to prove the theorem we transform the problem (4.4.1) into a FP problem.
To this end we introduce the following operator
Y: C([0,K],IR) — C(]0,K],IR)

where Y is defined by
b
(Yw) (k) = Ri1f(k, u(k)) — — RLI*£(K, u(K)) + ﬁ (4.4.11)

Clearly, if u € C[0,K] then Y(u) € C[0, K], this means Y: C[0,K] — C[0,K] is CMS.
Therefore, we need to show that Y is a contraction mapping. To show this suppose

u,w € C([0,K],IR), then for every k € [0,K] we have

[Yu(k) — YwW(k)| < %fok(k — s)“‘1|f(s, u(s)) — f(s,w(s))|ds.

B - 9 ) ~ (s w o)l

|a+b|F(a)

L[k — )% u(s) — w(s)lds + —2— [£(K — 5)Ju(s) — w(s)|ds

F(a) la+b|T(a) 70

bl
[a+b|T'(a)

= L=+ =2 lu — il

al(a) la+blal(a)

< (r()f (k—s)*ds + —— f(K s)“‘lds) lu — wlle.

Take maximum on both sides where 0 < k < K,

LK bl
Y@ = YWlleo < rys (14 255 lu = Wl

Consequently, by assumption (4.4.10), Y is directly contraction on CMS C([0, K], IR).
Application of the theorem(3.1.1)(BCP) shows the existence and uniqueness of FP of

Y, which is a solution of (4.4.1). (]

The SFPT is a base for secondary consequence.
Theorem(4.4.2): Assume that
(H;) 3L > 0 such that for all t € [0,K] , u, U € IR, |f(k,u) — f(k,u)| < L|u—1u.

(H,) The function f: [0, K] x IR — IR is continuous.
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(H3) There is a constant M > 0 such that |f(k,u)| < M for vVt € [0,K] and V u € IR.
Under these assumptions, the BVP (4.4.1) has at least one FP in C[0, K].

Proof

The proof is created on SFPT to prove that Y has a FP. The proof will be given in
several steps:

Step 1: Y is a continuous.

Let {u,}o-; © C([0,K],IR) be a sequence such that u, — u in C([0,K],IR). Then

for each t € [0, K]

1Y (up,(®) = Y(u@®)| < f (k — )% 1|f(s,un(s)) — f(s, u(s))|ds.

I'(a)

bl fOK(K — )% f(s,uy(s)) — f(s, u(s))|ds.

|a+b|T'(a)

f (k—s)e? Sup (s, uy(s)) — f(s,u(s))| ds

F(a)

bl f (K — )% sup |f(s, un(s)) — f(s,u(s))|ds
0sssK

|a+b|F(a)

L[k = )% s, up()) = (., uO)|

F(cx)

Ibl f (K — s)"“lds||f(.,un(.))—f(.,u(.))”Oo

|a+b|I‘(oc)

- (F(zil) B |a+Lk|)l|“]ZZ+1)) ”f(.,un(_)) - f(- ) u())”w

Take maximum on both sides where 0 < k < K,

Y () = YWl < o (1= 22 6 ua () = £(,uO),

T(a+1) la+b|
Since f is a continuous, we obtain
Y (up) = YWl —0.
Hence Y: C([0,K],IR) — C([0,K],IR), is a CM.
Step 2: Y maps the bounded sets into the bounded sets in C([0,K],IR). Indeed, it is

enough to show that for V n > 0 there exists a positive constant [ such that for V u in
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B,, = {u € C([0,K], IR): [lull <n},
we have
[IYull, <M.

By (H3) we have for each k € [0, K]

Yw )] <

f(k $)*1|f(s, u(s))| ds + —= fOK(K—s)“‘1|f(s,u(s))|ds

I'(a) la+b|T' (o)

I 1 Mib| 1 I
Farn = r()f(k s) ds+|+b|r()f (K—s)*ds + 200

M o M|b| o Ic|
— I'(ax+1) |a+b|T'(a+1) la+b]|

Take maximum on both sides where 0 < k < K,

¥ulle, < MKS (e — L) 4 o

F'(a+1)  |a+b|[(a+1) la+b|

a |b| lc]
Since MK (F(a+1) + |a+b|F(a+1)) + P [, then [[Y(W)]l < 1.

Step 3: Y maps the bounded sets into the equi-continuous sets of C([0, K], IR). To see
this let ki, k, € (0,K], k; <k, and u € B,; such that
B, = {u € C([0,K], IR): [lull¢ <n}.

Subsequently,

[Y(u(ky)) — Y(w(ky))| = (fkl((kz —8)% 1t — (ky — 8)* V)|f(s,u(s))| ds

(@)
ky _
+ 2k = 9)971f(5, y())| ds)

= o (o (g = )% = (ky = ) ds + [ 7k, — )% ds)

M (04
I‘((x+ 1) ( k )
Therefore, the right hand side of the above inequality tends to zero as k; — k,. Hence

Y(u) is equi-continuous. By steps 2 and 3 and Theorem (2.1.1)(A-AT), we conclude

that Y: C([0,K],IR) — C([0,K],IR) is a relatively compact. Definition (2.1.7) says
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that Y(C([O, K], IR)) is compact. Therefore, Y:C([0,T],R) — C([0,T],R) is a
continuous and compact.
Step 4: A priori bounds, it remains to show that the set
M ={ueC(0,K],IR):u=2Y(u),0 <A< 1}
is bounded.

Letu € M, then u = AY(u) for some 0 < A < 1. Thus for each k € [0, K] we have

lu(k)| = Al (Yw) (K|

< (F()f (k — )7 1|f(s,u(s))| ds + [b] fOK(K—s)“‘1|f(s,u(s))|ds

la+b|T'(a)

C

+ a+b

<A f(k—s)“ld + bl f(K ) tds + |—
r(@

la+b|T'(a)

)

Take maximum on both sides where 0 < k < K,

Mb|

(2 Mg | <
F(a+1) la+b|T(a+1)

a+b

(04

C

a+b

o bl
llulle, < }‘(MK (F(a+1) + |a+b|F(a+1)) *

)

) then |Jull, < AL

Sincelz(MK“( +— 1ol )+

I(a+1) [a+b|T'(a+1)

a+b
This shows that the set M'is bounded. As a consequence of Theorem(3.4.5)(SFPT), we

deduce that Y has at least one FP, which is a solution of the problem (4.4.1). [

In this section we give an example to illustrate the usefulness of our main results.

Example(4.4.1): Consider the following fractional BVP

(9+eX)(1+[u(k))
u(0) =0,u’'(0) =1,u"(0)=0

Cpey(l) — Ml -
{ Du(k) ke[01],2<a<3 (4.412)

“Kuk)|
Set f(k,u(k)) = m ,(k,u(k)) € [0,1] x [0,), let u,w € [0,%0) and

k € [0,1]. Then we have

eXuml e TKw)
(9+ed)+lu®D  (9+eK)1+Iw K]

I (k,u(®) — £ (k w(k)| =
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_ R Jum) lw(K)|

T ootek A+ u®D  (1+w (D)

@@+ w ) D—-w k) [(1+uk)]]
(9ek+1)(1+[u(RDA+IwEK)])

_ [lu(k)|-wX)|] [u(k)-w(k)|
(9ek+1) (1 +[u@DA+wD ~ (9ek+1)(1+[u®D(1+[wk)])

1

<
— 9ek41

) = wk)| < = Juk) — w(k).
Hence the condition (H;) holds with L = %. We shall check that condition (4.4.11) is

satisfied with K = 1. Indeed,

o 1 1 1 1
LK (F(oc+1) + ZF(oc—l)) <1l= I(a+1) + 2l (a—1) <10.

1 1 1 1
I'(a+1) < 2 and 2 = 2T (a—1) <¢ (4.4.13)

Notice that % <

The previous inequalities decide that

1 1
I(a+1) 2N (a—1)

<%+c£10=>%+c§10=>c§?.

From (4.4.13), we get

1 1 19 1 1
ESZF(a—1)<?:>E<F(a_1)S1:>B<(a_z)!gl’ (4.4.14)

which is satisfied for some a € (2,3]. Then by Theorem (4.4.1) the problem (4.4.12)

has a unique solution on [0,1] for the values of a satisfying (4.4.14).

4.5 Nonlocal BVPs for Nonlinear FDEs of Higher — Order
Consider the following nonlinear FDEs of higher q with nonlocal boundary conditions

cDay(t) =n(ty(®),t€ (0,1),q € (m — 1, m],m > 2,
y(0) = y'(0) = y"(0) = oo - = y(m=-2)(0) = 0, (4.5.1)
y(1) =ay(M),0 <A< 1,aA™ 1 = 1, a € IR

where n:[0,1] X X — X isa CM and (X, ||]|) is a BS.

Lemma(4.5.1)( Auxiliary Lemmas): Let q > 0, then

77



19€Dy(t) = y(t) + ¢ + Cyt + cot% 4+ + ¢y "7,

for some ¢; €IR,i=0,1,2,--,n,n = [q] + 1.

Lemma(4.5.2): For o € C[0,1], the unique solution of the BVP

CDay(t) = o(t),t € (0,1),g€ (m—1,m],m > 2,

y(0) = y'(0) = y"(0) = - er - = ym-2(0) = 0, (4.5.2)
y(1) =ay(Q),0 <A< 1,aA™ 1 # 1,a € IR

is given by
r r)a-1 nNad-
y(© = [, S o)dr— s [ [ = o (0dr — a ) O o).
Proof

Let “Dly(t) = o(t) = RLI*CDYy(t) = RLI%G(t). The Lemma (4.5.1) says that

y(t) = mf (t—1)9to(r)dr — ¢y — ¢yt — cpt% — ++- — cpp_ ¢ t™7 L. (4.5.3)
= e )f (t—r)926(r)dr — ¢; — 2c,t — -+ — (m — 1)cyy_ t™2.
= l"(ql—l) fot(t —1)920(r)dr— ¢; — 2¢c,t — - — (m — 1)y tM72.
y"(©) = s [yt = D)9 e ()dr — 2¢, —(m — 1)(m — 2)epgt™ .
= T [, = 1)9736(0)dr - 2¢; — =+~ (m — 1)(m — 2)cg_1t™.

y™ A () = rfq;_zl) f (t=nTo()dr —2¢; —(m—1(m—2)cyqt

- - — r)a-(m-1)
= s m+2)f (t—r) o(r)dr.

—(m-2)(m-3) - (Dep-p —(m—D(m—2) - (et
Applying the boundary conditions for assumption ¢; = ¢, = *** = Ccp_3 = Cp_p = 0

and thus,
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1 q
y() = [, (1;)) o(s)ds — -1,

/00 = f}‘ . r)q o()dr Cm_1}\m_1. (4.5.4)
Substitute the equations of (4.5.4) to equation y(1) = ay(2), to get
Coq = 1_m1]m_1 (fo1 (1;23 o(r)dr — afn (n- r) o(r)dr)
Substitute again the values ¢; =c, =+ =cyp_3=cy-» =0 and c,_, to the

equation (4.5.3), to obtain

r m-1 _nd
y(t) = fot(t )T G(r)dr— tomm—l (f01 (lkr‘()q) o(r)dr — afn (n G(r)dr)

as required. ]

The first basic technique is dependable on BCP.
Theorem(4.5.1): Assume 1: [0,1] X X — X is jointly CM and support the condition
In(t,x) —nt Il <Llx—yll, vte[0,1], xy € X.

Then the BVP (4.5.1) has a unique solution as long as y < 1 and 9 is given by

L(1+]alA9)

- r(q+1) Ty Y= r(q+1)|1-aAm-1]| (455)
Proof
K: C — C is defined by
t m-1 1 q
(Ky)(®) = |, i r) n(r y(r))dr — - tm . [ ) (1FE)) (5, y(0)dr
A (A—r)d-1
—al; ( FZZD n(r, Y(r))dr],t € [0,1].
Locate sup [In(t,0)|| = M, and choose
tef0,1]
M 1+|a|Ad
B= (l—A)F(q+1)( |1—axm-1|) =A< (4.5.6)

Now we let Ug = {y € C:|ly|| < B} and show that K(UB) c Ug. Forall y € Ug,

(KO < fy = In(ry())]dr
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tm—l

b [ S Iy )l + e 9225 yo) ]

< 22 (In(r,y(®) = 1, 0] + InGr, 00 )dr

tm-1 [ 1(1-r)a-1
[1—oAm 1| I'(q)

(In(r,y(®) =n(s,0)| + In(r,0)])dr

+lal [ 2= (In(r y@) = n(r, 0] + InGr, 0)1)ar].

< (LB-]—M) (ft(l r)a-1 dr fm-1 [fl (1-r)a- 1d n |a|f0)\()\;r('21()1—1 dr])

r(q) |1 aAm—1| r'(q)
_ LB+M (. q tm-t q
= P (1 4 e 1+ [al9])

Take maximum on both sides where 0 < t < 1.

LB+M 1+|ajAd
RGN < 220 (1 4 )

_ L L(1+]|a|A9) ) M ( 1+|a|Ad )
a B(F(q+1) + F(gq+1)|1—aam—1| + r(q+1) 1+ [1—oAm=1]

M ( 1+]aAd
r(q+1) |1—aAm—1]|

= B9+ ), (Using (4.5.5))
From (4.5.6), we get
IKMI<BI+BL1-A)=BE+1-AN=PE-A+1D <BA-A+1)=8.

Therefore, K(y) € Ug,V y € Ug. Now, for x,y € C and for each t € [0,1], we obtain

|(KO® - kO] < ;555 " n(r,x() = n(r, y@)|dr

In(r,x(@) =n(r,y(@)|dr

tm-1 [ 1(1-n)a-1
[1-aAm—1| r'(q)

+ |af fo}\ (}‘;23_1 In(r, x(®) —n(r, y(r))|dr]

t(1-r)a-?t tm-1 1(1 r) ;\(;\ r)

L
T I'(g+1)

q e q _
(t9+ omg (1 + lada]) lix = 1l
Take maximum on both sides where 0 <t < 1,

1+|ajAd ) .
F(q+1)( +|1—axm-1| ”X y”

IK(x) —KWIl <
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_ (L L(1-+lal9) o Al
- (F(q+1) + F(q+1)|1—a[3m_1|) ”X y” - SHX y”

Since 9 < 1 = K is a contraction. Thus, the conclusion of the theorem follows by the

BCP. ]

Krasnoselskii’s FPT is used to prove following result.

Theorem(4.5.2): 1:[0,1] X X — X be a CM maps bounded subsets of [0,1] X X into
RC subsets of X. If

(A)) In(tx) —nty)l < Llx—ylvte [0,1], x,y €X,

(Az2) In(t )| < u®), v(ty) € [0,1] X X, p € L*([0,1], RY),

are acceptable with y < 1(y is given by (4.5.5)). Then the BVP (4.5.1) has at least
one solution on [0,1].

Proof

. el 2 1+|ajAd1
Consider p > —=% ( lod

) |1—axm—1|) and Ug = {y € C:|ly|l < B}. Also define two

t(t— r)

n(r y(r))dr and

operators ® and W on Ug as (Py)(t) = [

— mto[ra-ndtt - r)q
DO = — 2w o o n(ny®)dr —af; n(r,y(@))dr|.
Forx,y € UB’
o) +¥YMI < e + [P (4.5.7)
q- q-
(@O < [y G n(rx()|dr < ;5525 u()dr < 5= [ u(dr.
Since 0 <SB<t=>0<t—B<t=(t—p)9I 1 <t
el
[(@x)(D] < - )f u(r)dr = =T
Take maximum on both sides where 0 <t < 1,
([
el < . (4.5.8)

r'(q)
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PO < o [ S (e y@)ds + lal f; 4225 [n(r,y()|dr |

tm—l

[ (1 (1-D97t A(A- r)
S |1—(X?\m_1| _fo F(q) (r)dr + |a|f (r)dr]
tm—l

< —
~ [1-aA™~1 LT(g) 70

— [ u(@)dr + &

r() f u(r)dr]

~ |1—aam=1| Ir(q) 70

— [ u@)dr + &

m-1 A9-1

l"( ) 1-oaA™~1 L T(q) I'(q)

Take maximum on both sides where 0 <t < 1,

1 Il 1 |a|lq_1||H||L1] (4.5.9)

g <
| (Y)” = l1—aam-1| [ r(q) I'(a)

It follows from (4.5.7), (4.5.8) and (4.5.9),

llull 1 1 [ Ialkq‘lllullg]

P Yl =
PG+ YWl < T+ mam Lo r@

_ ||u||L1( 1+|a|7\q_1)
G 1+|1—axm—1| =B

Therefore, ®(x) + W(y) € Us.

It follows from the assumption (A;) that W is a contraction mapping for y < 1. To see

that let’s assume x,y € C([0,1],X),

(P9 — O < o [y S5 [ x()) = (s, y()) ds

+lal [ 252 In(r,x(9) = n(ry()dr]

Lem-1 1 (1-r)d-1 A(A )q
< e [ S5 k() — y@ldr —La f; 852 1x() - y(0) ]

Ltm-1 1(1-r)9-1 A(A-r)a-1
Ii dr— laf f; &2 ar| llx -y

= |1—aam-1| r'(q)
Ltm-1 (1—|a|7\q) lx — vl
= [1—aAm=1| \ T(q+1) yil-

Take maximum on both sides where 0 <t < 1,

L(1—-|a|A9) B B B
r(q+1)|1—aAm=1| Ix —yll = yllx =yll.

YY) =YWl <
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The continuity of n implies that the operator @ is a CM. Also, ® is a uniformly
bounded on Ug as

oGl <

fllp 1
o VX E Uy, (4.5.10)
To show that the operator @ is compact, we use AAT. In view of (A;) and (A,), we

define

sup Nt x)| = fax
(t,x)€[0,1] XUB

Consequently, since t, > t;, we have

|(x)(t) — (Px)(t2)]

—)9-1_(t, —r)a-1 -nat
< f;l ((tz-1) F(q()tl r) )|]’](I‘,X(r))|dr+ftt12%|n(r'x(r))|dr

Y ((tz—r)q_l—(tl—r)q_l) ty (t;-r)d71
< frax (fo ) dr + ftl S dr)

_ G-(t-t)I-tT+ (-t _ fmax (g _ q) 1%
- fmax ( F(q+1) - F(q+1) (tz tl) 0’

Thus, @ is equi-continuous. (4.5.11)

It is following from (4.5.10),(4.5.12) and A-AT (2.1.1) that ® is RC on Ug. This
means that & maps BS Ug of X into a RC subset (Ug). By definition (2.1.7), ® is a
compact on Ug . Theorem [Krasnoselskii] is satisfied and the conclusion of

Theorem(3.4.6)[Krasnoselskii] implies that the BVP (4.5.1) has at least one solution

on [0,1]. ]

Example(4.5.1): Consider the following BVP

DIy(V) = 5 () -4 € 2,31t e [0,1]

(t+7)% \1+|y(D)]

y(0) =y'(0) = 0,y(1) =y (3)

2

(4.5.12)

_ 1 (ol PR 1
Here, n(t,y(t)) =G (1+|y(t)|), m=3, a=1land A = S Since
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x®I _ _y®l | _ _1 |Ix(®=ly®)]
1+x(®O]  1+|y®] (t+7)? (1+x(OD(A+]y(D])

In(t.x(®) =n(ty®)| <

+7)2

1 X0 -y(©)] 1
< —
< T @by @D = @z X0 —y©l

< G (O = y©1 = 5 k() — y(©).

Therefore, (A,) is satisfied with L = i. Further,

0=k (1) - (142 (4 ()Y)
< 49;(3) <1 +§(1 + G)Z)>, since 2<q<3.

1 (8 4
= 49(21) (5) 147 <1

Thus, by Theorem(4.5.1), the BVP (4.5.12) has just one solution on [0,1].
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Chapter 5

CONCLUSION

In this thesis, we presented some basic techniques and results of FPT with some

applications.

Namely, we studied the existence and uniqueness of some ordinary and fractional
differential equations by using Banach, Brouwer’s and Schauder’s fixed point

theorems under certain conditions.
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