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ABSTRACT 

This thesis consists of four chapters. In the first chapter, the introduction is offered. In 

the second chapter, we give the definitions, concepts and important theorems related 

with linear positive operators. We mention about the q-integers which are used to 

introduce q-analogue of the positive linear operators that have been intensive of 

research on approximation theory. After that, we mention about the definition of the 

operators which are introduced by Balázs and Szabados together.  As well as, we shed 

light on various definitions of q-Balázs-Szabados operators, but we especially work 

on the new q-Balázs-Szabados operators which are defined by N. I. Mahmudov and 

denoted by ( )xfqn ,, . We calculate the formulas of ( )xt m

qn ,,  for 1, 2, 3, 4m =  and 

we obtain the 1st, 2nd, 3rd and the 4th order moments of the new q-Balázs-Szabados 

operators. We also derive the recurrence formula of ( )xt m

qn ,,  in terms of 


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qn  that represents a close connection between the new q-Balázs-

Szabados operators and the q-Bernstein operators. As well as, we estimate the 2nd order 

and the 4th order central moments of the operators ( )xfqn ,, ,  which have a great deal 

of importance of getting the results in approximation theory. Besides, we mention 

about the  Kantorovich type q-analogue of the Balázs-Szabados operators (q-BSK 

operators) that have a nondecreasing restriction on )(xf to maintain the positivity 

property. In the third chapter, we construct a new Kantorovich type q-analogue of the 

Balázs-Szabados operators, ( ), ,n q f x . These new operators have an advantage 

compared to the previous ones,  they maintain the positivity property without any 

restriction on ( )xf . We give the recurrence formula for ( )  , , ,  0m

n q t x m   and 
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we calculate the formulas of ( )xt m

qn ,,

  for 0,...,4m = . Then, we give some 

significant auxiliary findings for the convergence properties of these operators 

( )xfqn ;,
 .  In terms of the usual modulus of continuous functions, we investigate the 

local approximation properties and we give Korovkin type approximation theorem for 

the operators ( ).;, xfqn
  We prove Voronoskaja type theorem and we present the 

convergence rate in terms of the usual Lipschitz functions, ( )MLip . In the fourth 

chapter, the conclusion is given. 

Keywords: q-calculus; q-Bernstein basis function; q-Bernstein operators; q-analogue 

of the Balázs-Szabados operators; moments; Voronovskaja theorem. 
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ÖZ 

Bu tez dört bölümden oluşmaktadır. Birinci bölüm giriş bölümüdür. Bu bölümde teze 

ilişkin önbilgiler, daha önce yapılan benzer çalışmalar ve daha önce yapılan 

çalışmaların zayıf yönlerinden bahsedilmiştir. Yine bu bölümde tezin amacı ve 

ilerleyen bölümlerde neler yapıldığından bahsedilmiştir. . İkinci bölümde lineer pozitif 

operatörler ve q-tamsayıları ile ilgili tanımlar, kavramlar, bağıntılar ve teoremlerden 

bahsedilmiştir. Yine bu bölümde Balázs-Szabados operatörlerinin tanımı verilip bu 

operatörlerin farklı q-analoglarından sözedilmiştir.  Bu analoglar arasından özellikle 

N. Mahmudov tarafından önerilen q-Balázs-Szabados operatörü ele alınmış ve bu  

operatörün birinci, ikinci, üçüncü ve dördüncü mertebeden momentleri hesaplanmıştır. 

Ayrıca ikinci ve dördüncü mertebeden merkezi momentleri hesaplanmış ve bu 

operatörlerin çok popüler olan q-Bernstein operatörlerine bağlı  rekürans formülü 

bulunmuştur. Bunun yanında E. Özkan tarafından önerilen Balázs-Szabados 

operatörlerinin Kantorovich tipli q-analoğundan ve bu analoğun zayıf yönlerinden  

bahsedilmiştir.  Üçüncü bölümde Balázs-Szabados operatörlerinin yeni bir 

Kantorovich tipli q-analoğu önerilmiştir. Bu yeni operatörler daha önce önerilenlerle 

karşılaştırılıp, yeni operatörlerin avantajlarından bahsedilmiştir. Yine bu bölümde yeni 

önerilen operatörlere ilişkin rekürans formülü verilmiş ve bu formül yardımıyla  

birinci, ikinci, üçüncü ve dördüncü mertebeden momentleri ve birinci, ikinci ve 

dördüncü mertebeden merkezi momentleri hesaplanmıştır. Süreklilik modülü 

cinsinden yerel yaklaşım özellikleri incelenmiştir. Ayrıca bu bölümde yeni 

operatörlere ilişkin Korovkin tipli teorem ve Voronovskaya tipli teorem verilmiştir. 

Bunun yanında klasik Lipschitz fonksiyonu kullanılarak yakınsama oranı verilmiştir. 

Dördüncü bölümde ise sonuç ve ileride yapılması planlanan çalışmalar verilmiştir. 
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Anahtar Kelimeler: q-kalkülüs; q-Bernstein taban fonksiyonu; q-Bernstein 
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Chapter 1 

1 INTRODUCTION 

Positive linear operators have a crucial effect on the theory of approximation and this 

theory has been stated as an essential subject of studies in the last three decades. Due 

to this, the solution of some issue in complex analysis, numerical analysis, solutions 

of some mathematical and physical equations and differential equations are affected 

particularly. The general approximation techniques for linear positive operators are 

intended to handle convergence conduct. The accuracy can be ascertained by applying 

various processes for a required degree. The approximation of sequences with the help 

of linear and positive operators of functions work on variable spaces such as normed 

space, complex space and other spaces. In the year 1885, Karl Weierstrass firstly 

proved his (fundamental) theorem on approximation by using techniques of linear 

algebra and trigonometric functions for polynomials, this method became very 

important in the improvement of approximation theory. The proof which he gave took 

a very long time and provoked by many well-known mathematicians to find simpler 

and more didactic proofs. As well as, the moments of linear positive operators have a 

great deal of importance on approximation theory. In [1], very important and effective 

results obtained on the convergence of sets of positive linear operators and linear 

contractions have motivated the development of Korovkin-type approximation theory. 

The famous Korovkin theorem considers that the convergence of operators can be 

studied by lots of researches. So lots of new operators were suggested and built by 

many studies after the famous Korovkin theorem due to Weierstrass and substantial 
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Korovkin type theorem. “A little while back, V. Gupta calculated the moments of some 

discrete and Kantorovich type operators by using the notion of moment generating 

functions in [2], also, in [3] the central moments of certain operators were estimated 

by using this approach”. In [4], the well-known sequence of operators for any

( )xfn  ,  defined on an interval 10  x  was introduced by S. N. Bernstein as 

follows: 

( ) ( ) , 10,,
0

, 







=

=

x
n

j
fxpxfB

n

j

jnn
 

where the basis function of these polynomials is defined as 

( ), ( ) 1 .
n jj

n j

n
p x x x

j

− 
= − 
 

 

( ) ( )lim ,n
n

B f x f x
→

=  uniformly when ( )xf  is continuous for , 10  x  thus supply 

with a deductive proof of Weierstrass's Theorem given in [5]. These polynomials are 

very important in the theory of approximation and also in some other fields of 

mathematics see [6-12]. In [13], Bernstein type rational functions were defined by 

Balázs as follows:  

( )
( )

( ) 


















+
= 

=

nxa
j

n

b

j
f

xa
xfR

j

n

n

n

j
n

n

n ,
1

1
;

0

 (1.0.1) 

where f is a real and single-valued function defined on the half open interval  )0, , 

andn na b  are real numbers which are suitably chosen and do not depend on x . He 

studied the approximation properties of these operators. In [14], Balázs and Szabados 

studied together and they improved the estimation which is presented in [13]. They did 

this improvement by selecting convenient andn na b under some conditions for ( )xf . 
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On the other side, in the last three decades, q-calculus has obtained a considerable area 

of research on the approximation of functions by using positive linear operators. Many 

q-operators were introduced and studied by several researchers. The first q- Bernstein 

operators were defined by Lupaş [15] and examined for its approximating properties 

and shape-conserving properties. After that, the q-analogue of the very popular 

polynomials of Bernstein was introduced by George M. Phillips in [16]. The q-

Bernstein polynomials have become very popular and some other authors introduced 

and investigated many operators which are based on the q-integers, examined their 

approximation and statistical approximation properties. We may mention here some 

of them as Durrmeyer variant of q-Bernstein-Schurer operators [17], q-Bernstein-

Schurer-Kantorovich type operators [18], q-Bernstein-Durrmeyer polynomials in 

compact disks [19], q-Stancu-Beta operators [20] and Kantorovich type q-Bernstein 

operators [21].  Doğru ([22]) and Özkan ([23] and [24]) have studied on various q-

analogues of Balázs-Szabados (shortly called B-S) operators. Approximation 

properties of the q-Balázs-Szabados (shortly called q-B-S) complex operators are 

examined by N. I. Mahmudov in [25] and by İspir and Özkan in [26]. The B-S 

operators based on the q-integers defined by N. I. Mahmudov in [25] is as follows: 

( )
( )

 
( ) ( ) ( )

−−

==

−+





















+
=

1

00

, 11
1

1
,

jn

s

nq

j

n

q

n

j n

q

n

n

qn xasqxa
j

n

b

j
f

xa
xf   (1.1.1) 

 where 0,q   [ ]qn  is the q-integer which is defined in section 2.2, f is a real-valued 

function which is defined on the nonnegative real line, 

   
1 2
, ,  0 and ,

3
n nq q

a n b n n
 

 
−

= =     and 
na

x
1

− . In this thesis mainly we 

considered these operators to get a new Kantorovich type q-analogue of the B-S 

operator with its approximation properties. 
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The thesis consists of four chapters and is arranged as follows. In the second chapter 

we present some formulas and definitions about q-calculus and positive linear 

operators (more details on this topic can be found in the studies [6], [27-31]).  We also  

present mth -order moments of the q-analogue of B-S operators for  4 3, ,2 ,1 ,0=m  , 

some of them can be found in [25]. We find an estimation for the 2nd and the 4th-order 

central moments of the operators defined by (1.1.1) and these moments are used to 

prove some important theorems which are given in Chapter 3. We also  mention about 

the q-Balázs-Szabados operator (which is also called the -q BSK operator) introduced 

by Esma Yıldız Özkan in [24]. Here in the definition of the q-BSK operator, there is a 

restricted condition on the function ( )xf  such that it must be a nondecreasing function 

to provide the positivity. On the other side the operators defined by the equation (1.1.1) 

cannot approximate integrable functions. We use this operator which is given by 

(1.1.1) as a building block to construct a new Kantorovich type q-analogue of the B-S 

operators. In the third chapter,  we construct a new Kantorovich type q-analogue of the 

B-S operators, we examined the formula of these newly defined operators in the special 

case 1=q . Also, we obtain a recurrence relation for ( )xt m

qn ,,

  and we calculate the 

moments and important estimations of the 2nd and the 4th-order central moments of 

these operators ( )xfqn ,,

 . We prove the approximation property of Korovkin type in 

the special case when nqq =  as a sequence of subset of the interval (0,1)  and we study 

local approximation properties via modulus of continuity. We investigate the results 

of the rate of convergence of these new operators in items of the elements of the usual 

Lipschitz class and we give a proof of a Voronoskaja type theorem. In the fourth 

chapter, we give the conclusion part of the thesis and we mention about the future 

work. 
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Chapter 2 

2 PRELIMINARY AND AUXILIARY RESULTS  

2.1 Positive Linear Operators  

Here in this chapter, we present some important definitions, initial concepts and some 

properties related with the positive linear operators that are used as tools to state and 

prove the theories in the next chapter. More information on this topic can be found in 

[31]. 

Definition 2.1.1 ([31]) 

The mapping :Y Z → where Y  and Z  are linear spaces of functions, is called a 

linear operator if 

( ) ( ) ( )f g f g    + = +  

 ,  f g Y   and  . ,   If 0,  f f Y   implies that 0,f   then  is a positive 

linear operator. 

For emphasizing the discussion of the function ,f Z   the notation ( );f x  or in 

some cases ( )( )f x  is used. 

Proposition 2.1.1. If :Y Z →  is a positive and linear operator, then 

    1.  is  monotonic, that is, if f and g are in Y  and  is greater thang or equal to f ,  

then  is greater than or  equal to .g f   
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    2. For every  f in Y  the inequality f f   is satisfied. 

Definition 2.1.2. Suppose that Y and Z are two linear and normed spaces of real 

functions such that Z Y and let :Y Z → . For every linear operator  , one can  

appoint a norm   defined by 

   : sup    :  ,  1 sup  :  ,  0 1f f Y f f f Y f  =  = =    . 

It is not difficult to verify that .  satisfies all the norm properties and thus it is called 

as the operator norm. If  Y and Z  are selected to be both equal to the space of 

continuous and real valued functions on the closed interval  ,a b , we will be able to 

state the next  remark related to the continuity and the norm of an operator. 

Remark 2.1.1 ([1]). Let    : , ,C a b C a b →  be linear and positive. Then   is 

continuous and 0e = where ( ) .0

0 tte =  

A necessary and sufficient condition for the convergence of a positive linear operator 

towards the identity operator is provided in the next result. The current habitual finding 

of the theory of approximation is known very well as the Bohman Korovkin theorem. 

More details can be found in [1] and in [5]. 

Theorem 2.1.1 ([1]). Suppose that n  is a sequence of positive linear operators from 

the space of real valued and continuous functions on [ , ]a b  to the space of real valued 

and  continuous functions on [ , ]a b  and let ( ) r

r tte = . If ( )n re t  converges uniformly 
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to rt for 2 1, ,0=r  for [ , ]t a b  then n f  converges uniformly to f  for [ , ]t a b  for 

every function  ,f C a b .  

The simple functions ( ) r

r tte = for 2, 1, ,0=r  have a  significant functionality in the 

approximation theory of positive linear operators on the continuous function spaces 

that depend on the result given above, and these are usually called as test functions. 

Lots of scientists in mathematics were charged up from this cute and basic finding, 

and they started to expand the final theorem by using various methods. This, in turn, 

generalizes the sequence notion and takes into consideration various spaces. One 

special part of the approximation theory that came in view with this way is said to be 

the Korovkin-type approximation theory. Rest of the details and wide explanation 

about this topic exists in [1].  For lots of estimations the C-S-I is employed: 

( )( ) ( ) ( )
2 2 2 ,gf g f    where f  and g are in  ,C a b . 

In the following theorem, an inequality of Hőlder-type for positive linear operators is 

given. If 2== pq  it reduces to the C-S-I. 

Theorem 2.1.2. Let    : , ,C a b C a b →  be a positive linear operator, 0 0.e e =  If 

   1 1, 1,  1,   belongs to ,  and ,q p q p f C a b x a b− − + =   one has 

( ) ( )( ) ( )( )
1 1

; .
p qp q

gf x g f    

The following are important quantities of linear positive operators. 

The central moment of  order r  for the operator n  is represented as follows 
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( )( ) ( )( ) ( )1 0 ; :  ,   
r r

n ne e x x t x x a x b − = −   , 

and for 1r  also the absolute moments of  odd order r , is represented as follows 

( ) ( ) ( )1 0 1 0; :  ,   
r r

n ne e x x e e x x a x b − = −   . 

In particular, the second and the fourth-order central moments with their estimations 

and the first absolute moments have great importance. Calculating the first absolute 

moment is a hard task in many of the cases. Consequently, the C-S-I is used to estimate 

as below; 

( ) ( ) ( )( )22

1 0 1 0; ; ; .n n o ne e x x e x e e x x  −  −  

2.2 The q-integers  

In this section, we give some definitions and essential concepts of q-calculus, which 

are recently used to construct many various q-analogues of linear positive operators.  

More details can be found in [7], [26-27] and [29]. 

Definition 2.2.1 ([27]).  For any nonnegative integer ,n  the q-integer of the number 

n  is defined as 

     

1          if                  

      1        if           
1

1













=


−

−

=

qn

q
q

q

n

n

q  where q is a positive real number. (2.2.1) 

Let us define q  as 

  0 ,  q q
n n=  ,  for any given 0q  (2.2.2) 

and we can use from the definition 2.2.1 that  

 2 3 2 0,  1,  1,  1,  ...q q q q q q q= + + + + + +  (2.2.3) 



 

 9 

It is clear that the set of q-integers q  generalizes the set of non-negative integers 0,

which we recover by putting .1=q   

Definition 2.2.2 ([27]).  Suppose that q is a positive number. We define the q-factorial, 

denoted by   !,
q

n where 0 ,n as 

 
         1 2 ... 2 1         ,   1

!
 1                                                     ,  0 

q q q q q

q

n n n n
n

n

 − − 
= 

=

. (2.2.4) 

Definition 2.2.3 ([28]).  Suppose that  and k n  are two integers such that 0 k n  . 

  

The q- binomial coefficient is defined by 

 

   














=









−

=








  1    if                            

  1     if                
!!

!

q
k

n

q
knk

n

k

n qq

q

q

 (2.2.5) 

 

The q-binomial coefficient satisfies the following recurrence relations  

 
q

k

qq
k

n
q

k

n

k

n







 −
+









−

−
=







 1

1

1
 

and                                                                                                                           

qq

kn

q
k

n

k

n
q

k

n







 −
+









−

−
=







 −
1

1

1
. 

Definition 2.2.4 ([27]). The q-analogue of ( )
n

x a−  is denoted by ( )n

qax −  and is 

defined by the polynomial 

( )

( ) ( )( ) ( )2 1 ...          if        1 2 3,...

1                                                        if        0.    

n

n

q

x a x qa x q a x q a n , , 

x a

n

− − − − − =


− = 
 =

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The q-analogue of the common Pochhammer symbol which is also called the q-shifted 

factorial is defined in [27] as follows: 

       ( ) ( ) ( ) ( ) ( )
1

0
0 0

; 1  ,    ; 1    ,     ; 1
n

j j

n
j j

x q x q q x x q q x
− 


= =

= = − = −  .   

Definition 2.2.5 ([27]). For 0 ,  n the Gauss’s binomial formula is  

 ( )
( )1

2

0

    

j jn
n j n j

q
j q

n
x a q a x

j

−

−

=

 
+ =  

 
 , (2.2.6) 

and the Euler identity is given by 

( )
( )

.   1
0

2

1

j

q

n

j

jj
n

q x
j

n
qx 








=+ 

=

−

 

Definition 2.2.6 ([27]). For 0 ,n  the binomial formula found by Heine is 

( )
j

n

j
n

q

x
j

jn

x
  

1

1

1

0


=








 −+
=

−
. (2.2.7) 

We also present the following useful result: 

( )
0

1
n

jn

q
j q

n
x x

j=

 
= − 

 
 . 

Maybe a reader asks about the above formulas given in (2.2.6) and in (2.2.7),  what 

could be the change in these formulas when n  approaches to infinity. In the case 1=q  

which is the ordinary calculus, the change is not very interesting. Depending on ,x  it 

is either infinitely large or infinitely small. On the other hand, it is different in quantum 

calculus, because, for instance, the polynomial ( ) ( )( ) ( )...11 11 2 xq qxxx q +++=+

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converges to a finite limit, for .1q  Likewise,  as it is observed  in [28],  if we 

suppose ,1q  then we can see that 

  1 1lim  lim(1 )(1 ) (1 ) .n

qn n
n q q q− −

→ →
= − − = −  (2.2.8) 

and 

( )( ) ( )
( ) ( )( ) ( )

.
1...1 1 1

1 ...1 1
 lim lim

32

11

j

jnnn

n
q

n qqqq

qqq

j

n

−−−−

−−−
=







 +−−

→→
               

Thus 

( ) ( )( ) ( )
.

1...1 1 1

1
 lim lim

32 jn
q

n qqqqj

n

−−−−
=









→→
  (2.2.9) 

So, the behavior of the q-analogue of integers and binomial coefficients is changing  

variously when n  is  so large if we compare with their ordinary counterparts. 

If we apply the equations (2.2.8) and (2.2.9) to the binomial formulas given by Gauss 

and Heine, we get the two Euler’s identities, whenever ,→n  which are power series 

in x  for  1 1q−   : 

( ) ( )
( )

( ) ( )( ) ( )
,

1...1 1 1
 11

32
0

2

1

0
j

j

j

jj

q

j

j

qqqq

x
qxxq

−−−−
=+=+ 



=

−




=

 (2.2.10) 

( ) ( ) ( ) ( )( ) ( )


=




= −−−−
=

−
=

− 0
32

0

.
1...1 1 11

1

1

1

j
j

j

qj q

j qqqq

x

xxq
  (2.2.11)                      

Definition 2.2.7 ([28]). For  1,q   the ( )xeq  is in the following form 

( )
 

.
!0




=

=
j q

j

q
j

x
xe  (2.2.12) 

which is similar to the Taylor’s expansion of the normal exponential function. 
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Using (2.2.11) we see that   

( ) ( ) ( )( ) ( )
,

1...1 1 11

1

0
32



=
 −−−−
=

− j
j

j

q
qqqq

x

x
                                        




=










−

−









−

−









−

−










−
=

0
32

,

1

1
...

1

1
 

1

1
 

1

j
j

j

q

q

q

q

q

q

q

x

 

=
( )( )
 

.
!

1̀

0




=

−

j q

j

j

qx
 (2.2.13) 

Therefore, from (2.2.11) and (2.2.13), we directly have 

( )

1
,

1 1
q

q

x
e

q x


 
= 

− − 
 

( )( )

1
( ) .

1 1
q

q

e x
q x


=

− −
 

Now we consider a different -q analogue of the exponential function, which is in the 

following form              

( )
( )

  !
2

1

0 q

jjjn

j

q
j

x
qxE

−

=

= . (2.2.14) 

Now, by using (2.2.10) we see that   

( )
( )

( )( )( ) ( )

1

2

2 3
0

1 ,
1 1 1 ... 1

j j j

jq
j

x
x q

q q q q

−


=

+ =
− − − −

  

( )1

2

2 3
0

1
,

1 1 1
...

1 1 1

j

j j

j
j

x

q
q

q q q

q q q

−

=

 
 
− =

    − − −
    

− − −    

              
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( ) ( )
 

.
!

1
 

0

2

1

q

jn

j

jj

j

qx
q

−
=

=

−

 (2.2.15)    

Then, as it is mentioned in [28], from (2.2.14) and (2.2.15) we directly get         

( ) ( )1 1q q
E x q x


− = +  and  ( ) ( )( ) .11


−+=

qq xqxE  

Definition 2.2.8 ([28]). The q-integral (the Jackson integral) of the function f is 

defined by 

( ) ( ) ( )
0

0

1 ,    0 1,   0
b

j j

q

j

f t d t b q f bq q q b


=

= −     

and 

( ) ( ) ( ) .0    ,
00

batdtftdtftdtf q

a

q

b

q

b

a

−=   

As an example the q-integral of the function ( ) cf t t= on the interval [0,1] is 

 

1

0

1
.

1

c

q

q

t d t
c

=
+  

2.3 Balázs-Szabados Operators (B-S Operators) 

As it is mentioned before, for  1,0Cf  , Bernstein polynomials are introduced as 

follows (see [4]) 

( ) ( )  1,0       ,   ,
0

, 







=

=

x
n

k
fxpxfB

n

k

knn  (2.3.1) 

where , ( )n kp x  is the Bernstein basis function and is given by 

( ) ( ) knk

kn xx
k

n
xp

−
−








= 1, .  (2.3.2) 
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It is a recognized fact that when ( )xf  is continuous on the interval [0,1] then the 

above polynomials given in (2.3.1) converges uniformly to ( )xf . 

Obviously it can be seen that the sum of the values of 
, ( )n kp x  for 0,...,k n=  is 1, i.e. 

( ) ( )
1 2 1

, 1, 2, 1,

0 0 0 0

( ) ( ) ... ( ) 1 1.
n n n

n k n k n k k

k k k k

p x p x p x p x x x
− −

− −

= = = =

= = = = + − =     (2.3.3) 

In [6], it is mentioned about an important and efficient property of the Bernstein basis 

function, which is obtained by taking the derivative of (2.3.2) as it is given in the 

following: 

( ) ( ), 1
n kk

n k

nd
p x x x

kdx

−  
 = −  

  
. 

Then, we can obtain 

( ) ( ) ( ) ( ), ,1 n k n kx x p x k nx p x− = − , (2.3.4) 

which helps in deducing the recurrence relation of ( )xtB m

n ;1+ ,  0m .  

The following lemma is given in [6]. 

Lemma 2.3.1 ([6]). Let  ,   [0,1],  n x  then  

( )
( )

( ) ( )1 1
; ; ;m m m

n n n

x x
B t x B t x xB t x

n

+ −
= + . 

Proof.  The proof is done by writing explicitly 

( ) ( )
1

1

1
0

;     1
mn

n km k

n m
k

n k
B t x x x

k n

+
−+

+
=

 
= − 

 
        , 

since 
1

1

m m

m m

k k k

n n n

+

+
= , we write 
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( ) ( )
1

1

, ,1
0 0

( ; )  
m mn n

m

n n k n km m
k k

k k k
B t x p x p x

n n n

+
+

+
= =

   
= =    

  
  . 

Then, by using property (2.3.3) one get 

( )
( ) ( )( )1

, ,

0 0

1
( ; )  

m mn n
m

n n k n km m
k k

x xk k
B t x p x xp x

n n n

+

= =

−    
= +    

    
   

= 
( )

( ) ( )
1

; ;m m

n n

x x
B t x xB t x

n

−
 + , (2.3.5) 

which is the required result. 

Lemma 2.3.2. ([6]).  For  ,  0,1n x  , we have 

( ) ( ) ,;  ,1;1 xxtBxB nn ==  

( ) ( )
,

1
; 22 x

n

xx
xtBn +

−
=  

( )xtBn ;3 =
( )

.3
211 3xx

n

x

n

xx
+









+
−−

 

Proof. By using (2.3.3) it is obvious that ( )1, 1nB x =  and ( ) xxtBn =; . 

 For the evaluation of ( ) ( )2 3 ;  and ; ,n nB t x B t x we use the recurrence relation that is 

given in (2.3.5). We can see that  

( ) ( )
( ) ( )

( )
,

1
;;

1
; 22 x

n

xx
xtxBxtB

n

xx
xtB nnn +

−
=+

−
=  

( ) ( ) ( ) ( ),;;
1

; 223 xtxBxtB
n

xx
xtB nnn +

−
=  
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( ) ( ) ( )
,

1
2

211
; 3

2
3 x

n

xx
x

n

x

n

xx
xtBn +

−
+








+

−−
=    

( ) ( )
.3

211
; 33 xx

n

x

n

xx
xtBn +








+

−−
=  

In [13], Balázs defined and studied approximation properties of  Bernstein type 

rational functions as in the following: 

( )
( )

( ) 3,... 2, ,1        , 
1

1
;

0

=


















+
= 

=

 nxa
k

n

b

k
f

xa
xfR

k

n

n

k n

n

n

n  (2.3.6) 

where ( )xf   is a real and single-valued function defined on the interval  ),0 , na and 

nb  are real numbers which are suitably chosen and don’t depend on .x  In the particular 

case where 1,   , ,  0 1,n na n b n n  −= =     the operators (2.3.6) are denoted by 

 .

nR  In [13], Balázs stated and proved Voronoskaja type theorem under the 

assumption that 0→=
n

b
a n

n and 0→
nb

n
 as .→n  Also, in the same paper Balázs 

gave the convergence theorems for the operators 









3

2

nR   and the convergence of their 

derivatives to the derivatives of the function. Later in [14] Balázs and Szabados 

together improved the estimate in [13] by choosing suitable sequences na and nb  under 

some restrictions for ( ).xf  Besides, Balázs and Szabados together presented the 

weighted estimates of   2
 where 0

3
nR


   and developed certain questions of 

uniform convergence of   2
 where 0 .

3
nR


   As well as in [31], Gal introduced the 

rational complex B-S operators, he investigated and studied the approximation 

properties on complex disks.   
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2.4 q-Balázs-Szabados Operators  

Recently, the studies on the q-operators have been one of the very attractive and 

effective subjects of research in approximation theory. Many researchers defined lots 

of different q-operators and examined their approximation properties. In [16], firstly, 

Philips defined and presented q-Bernstein operators in the rational form as in the 

following  

( ) ( )
 

  












=

= q

q
n

k

knqn
n

k
fxqpxfB ,;

0

,,
 (2.4.1) 

where f  is contained in the space of all continuous functions defined on the interval 

0 1x  , 10  q  and the q-Bernstein basis function is defined as  follows

( ) ( )  1,0  ,1,
1

0

, −







= 

−−

=

xxqx
k

n
xqp

kn

s

sk

q

kn . 

Ostrovska in [33-34] and Mahmudov in [35-36] accomplished praiseworthy and 

appreciable work on these operators defined by (2.4.1) and they provided many 

valuable and interesting results. Besides, in [37], Mahmudov and Sabancigil proposed 

Voronovskaja type theorem for the Lupaş q-analogue of the Bernstein operators. 

Different q-analogue of the Balázs-Szabados operators have recently been studied by 

several researchers. In [22], the q-analogue of B-S operators introduced by Doğru as 

in the following: 

( )
( )

( )
 

( ),
1

1
;

0

21

1

0

, xa
j

n

b

j
fq

xaq

xfR n

qn

q
n

j

jj

n

s

n

s

qn 





















+

= 
 =

−

−

=

 (2.4.2) 

where  )    

qnqn nbnax ==
−

 , ,,0
1

 for all ( , 0,1n q   and .320    
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In [23], Özkan introduced the q-B-S Stancu operators as follows 

( ) ( )
   

 
( )qxp

b

j
fxqfR jn

n

j qn

qq

qn ;,; ,

0

,

, 
=















+

+
=




 ,                                        (2.4.3) 

where f is a real-valued function defined on  ),0 ,    

qnqn nbna ==
−

 ,
1

, for all 

( ,  0,1 ,  0 2 3n q      and ,0           

( )
( )

( ) ( )1 2

,

1
; .

1

jj j

n j nn

qn q

n
p x q q a x

ja x

−  
=  

+  
 

She investigated and studied the statistical approximation properties of these operators 

that are given in (2.4.3). On the other hand, the newly defined q-B-S operators are 

given by N.I. Mahmudov as follows  

( )
( )

 
( ) ( ) ( )

−−

==

−+


















+
=

1

00

, 11 
1

1
,

kn

s

nq

k

n

q

n

k n

q

n

n

qn xasqxa
k

n

b

k
f

xa
xf  (2.4.4) 

where 0q   and f is a real-valued function defined on  )     ,, ,,0
1 

qnqn nbna ==
−

,  n 









3

2
,0  and .

1

na
x  These operators can be called new q-analogue of     B-

S operators. They have an important role in the construction of the main operator of 

this thesis. Now for these new operators qn , , we will evaluate the 1st, 2nd, 3rd and the 

4th order moments in the following lemma. 

Lemma 2.4.1. For  ) ,0 ,10 xq  and for all n  we have

( ) ( ) ,
1

;    ,1;1 ,,
xa

x
xtx

n

qnqn
+

==  
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( )
( ) ( )

,
11

;
2

2
2

,
xa

x

xab

x
xt

nnn

qn
+

+
+

=

( )
      ( )3 23

3

, 2 2

2

1 2 1 2
;

1 1

1
,

1

q q qn n
n q

n n n n n n

n

n n n

q n n q n qa x a x
t x

a b a x a b a x

a x

a b a x

− − − +   
 = +   

+ +   

+
+

 

( )
      4

4

6

4

,
1

321
; 











+

−−−
=

xa

xa

b

nnnq
xt

n

n

n

qqq

qn
 

( )      3

4

345

1

2132












+

−−++
+

xa

xa

b

nnnqqq

n

n

n

qqq
 

( )     
.

11

133
4

2

4

23












+
+











+

−++
+

xa

xa

b

n

xa

xa

b

nnqqq

n

n

n

q

n

n

n

qq
 

Proof. The formulas for ( ) ( ), ,1; ,   ;n q n qx t x   and ( )xtqn ; 2

,  can be found in [24] 

without proofs. The proofs are as follows: 

 

 

( )
( ) ( ) ( )

−−

==
+−

−+








+
=

1

00

11
1

1 kn

s

nq

k

n

n

k q

kkn

n

xasqxa
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Similarly, ( )xtqn ;4

,  is calculated in the following way: 
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Notice. From the definition of the new q-analogue of B-S operators qn , , we can 

observe that they have  a close relationship with the q-Bernstein polynomials as it is  

given in (2.4.1). 
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Besides, this relationship (2.4.5) is very important and effective for deducing the 

recurrence relation of ( ),;, xt m

qn  which is given in the next lemma. 
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Therefore, by the above calculations and by  (2.4.5) we get the explicit formula for 
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In the next lemma, we present the evaluation of the 2nd and 4th order central moments 

of the new q-analogue of B-S operators ,n q , which are needed to evaluate 2nd and 4th 

order central moments of  
 qn,  that will be given in the next chapter.  
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, ; ,n q t x x −  we write the formula explicitly as follows: 

( )( )4

, ;n q t x x −  

( ) ( ) ( ) ( ) ( )xxxtxxtxxtxxt qnqnqnqnqn ;1;4;6;4; ,

4

,

32

,

23

,

4

, +−+−=  

    

  ( )

   

  ( ) ( ) ( )
4
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3
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6 1
1

4

1

6

1
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1
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x
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
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

+
+

−
+

+
+

−−
−

+

−−−
=  

( )
   

  ( )

( ) 

  ( )   ( )
3

2233
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1
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1
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nn
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
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
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


+
+

+

−+
−

+

−−
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( )
 

  ( )   ( )
2

22232

23

1

4

1

1
33 x

xanaxana

n
qqq

nqnnqn

q













+
−

+

−
+++  

  ( )
33

1

1n nq

x
a n a x

+
+

. 

Now if we consider the following facts given below 

          qqqqq nnqnnq 22 , 11 2 −=−−=−  and      qqq nnq 333 −=− , we may 

reorganize the last equality by assigning some variables to the terms in the numerators 

as it is shown below 

( )( )
  ( )   ( )

4 21 2
, 3 3 23 2

;
1 1

                 

n q

n n n nq q

t x x x x
a n a x a n a x

 − = +
+ +

 
 

                   
  ( )   ( )

4

33

43

33

3

11
x

xan
x

xana nqnqn +
+

+
+


                   

where 

( )  ( )   ( ),14133   ,1 23

21
xannqqq nqq +−−++==   

( )  ( )  ( )  ( )   ( )( )   ( )xanxannqnnqqq nqnqqqqq +++−+−−−++= 16112142132
2

3

345  

and 

 ( )    ( )    ( )    ( )    ( )( )xannnqnnn nqqqqqqqqq +−−−−−−= 1214321 3

4
 

          ( )   ( )   ( ) 433323
11416 xanxanxan nqnqnq +++−++ , 

and now if we consider the powers of  qn in    4 1 2 3
 , , , and the facts that 

( )
1

1

1


+ xan

 and ,1
1


+ xa

xa

n

n  we see that for  ),0  

( )( )
( )3 2

4 2

, 2 2

3 3 41
;n q

n n

q q q
t x x x x

b b

+ + −
 −  + , 
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( )( ) ( )( )
4 2

, 2

1
;  n q

n

t x x C q x x
b

 −  + . For the restricted interval [0, ]a , we have 

( )( ) ( )
4

, 2

1
; ,n q

n

t x x C q a
b

 −  . 

In the following lemma we give a formula for the m-th order central moments of the 

q-Balázs-Szabados operators ( )xfqn ;, . 

 

Lemma 2.4.4 ([27]).  For all  ),  0,n x    we have 

( )( ) ( ), ,

0

1
; ,

1

m
m m j j n

n q n n qm
jn n

m a x
t x x a x B t

ja a x

−

==

  
 − = −   

+   
  

where 1
1

0 
+


xa

xa

n

n . 

Proof. By writing ( )( ), ;
m

n q t x x −  explicitly, we obtain  

( )( )
( )

 
( ) ( ) ( )

1

,

0 0

1
; 1 1  

1

m
n kn

m kq

n q n nn q
k snqn

kn
t x x x a x q s a x

k ba x

− −

= =

  
 − = − + −    +    

  . 

By using the facts that  

  nqn bna =        and             
   

( ) ,
k

 
0

jm

j

n

q
m

j

m

n

q
x

bj

m
x

b

k −

=

−

















=










−   

we have,  

( )( ) ( )
 

 

1

,

0 0 0

1
; 1  

1 1

j k
n km n

m m j q sn n
n q nm

j k sn n nqq

km n a x a x
t x x a x q

j ka n a x a x

− −
−

= = =

        
  − = − −        + +        

    

 

If we use (2.4.1) we get 
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( )( ) ( ), ,

0

1
; ;  .

1

m
m m j j n

n q n n qm
jn n

m a x
t x x a x B t

ja a x

−

=

  
 − = −   

+   
  

On the other hand, Kantorovich type q-analogue of B-S operators (q-BSK operators) 

introduced by E. Özkan in [22] is as follows: 

( )
( )

( ) ( ) ( )
 

 

,

1

,;
~

1

0

21

1

0

tdtfxa
j

n
q

xaq

b
xqfR q

b

jq

b

jq

j

n

q

n

j

jj

n

s

n

n

n

n

n

q

n

q




+

=

−

−

=










+

=  (2.4.8)  

where f  is a nondecreasing and continuous function on  ),,0    1−
=



qn na and 

  ,


qn nb = for all ,  0 1n q    and .
3

2
,0 







  Since f is nondecreasing and from 

the definition of q-integral , q-BSK operator given in (2.4.8) is a positive operator. The 

operator, which is given in (2.4.4) is a summation type operator, which is not capable 

to approximate integrable functions. So to maintain  the positivity of the q-BSK 

operators defined by (2.4.8), f must be a nondecreasing function. The main 

motivation of this thesis is to construct a new Kantorovich type q-analogue of the B-S 

operators that approximate also the integrable functions on the interval  ),0  and 

maintain the positivity of the operators without nondecreasing restriction on .f  

In the next chapter we define these new operators and give the recurrence formula that 

helps us to evaluate the moments for these new operators. We obtain the local 

approximation property and establish a Voronoskaja type theorem.   
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Chapter 3 

 NEW KANTOROVICH TYPE q-ANALOGUE OF 

BALÁZS-SZABADOS OPERATORS 

In this section, we give the definition of a new Kantorovich type q-analogue of B-S 

operators. We construct a recurrence formula and we calculate the moments up to the 

fourth order with the help of the recurrence formula for these new operators. As well 

as, we calculate the first, second and the fourth-order central moments of these new 

operators and at the same time we give their estimations. Estimations of these central 

moments play an important role in obtaining quantitative results for convergence rate 

in various cases. In addition, we study Korovkin's type approximation property and 

the local approximation theorem of these new operators. Also, we investigate the 

convergence rate in terms of the elements of the usual Lipschitz class and we prove 

Voronoskaja type theorem.   

3.1 Construction of The Operators 

Definition 3.1.1 Let   .10  q For  ): 0, ,f  →  the new Kantorovich type q-

analogue of the B-S operators is defined as follows: 

( ) ( )
 

,,,
0

,, td
b

tqk
fxqxf q

n

k

q
n

k

knqn  











 +
=

=

   

where 
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( )

( ) ( ) ( ),11
1

1
,

1
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, 
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=

−+





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nq
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q
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kn xasqxa
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xq

   
1 2
, ,0 , , 0

3
n nq q

a n b n n x
 


−

= =     and f is a real-valued continuous 

function  defined on the interval  ).,0   In the case 1=q  these polynomials reduce to 

( ) ( ) dt
b

tk
fxxf

n

n

k

knqn  








 +
=

=


1

0
0

,, ,  , 

where 

( )
( )

( )  )1

,

1 2
, , ,0 , , 0, ,

31

k

n k n n nn

n

n
x a x a n b n n x

ka x

  − 
= = =      

+  
and 

in this case the results coincide with the results for q-BSK operators defined in [24] 

by E. Özkan.  

3.2 The Recurrence Formula of the Operators and their Moments 

In the next lemma, we give the recurrence formula that is needed for the evaluation of 

the moments of new Kantorovich type q-analogue of the B-S operators. 

Lemma 3.2.1  For all  )  , 0, , 0n x m +     and 10  q we have 

( )
 

( ) ( ) ( )xtqa
i
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jmbj

m
xt ji
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jm

iq
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j
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+
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=
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 −






 −

+−







=   

Proof. By direct calculation, the recurrence formula is obtained as follows: 

( ) ( )
 1

, ,

0 0

; ; ,

m
k

n
qm

n q n k q

k n

k q t
t x q x d t

b


=

 +
  =
 
 

   

using the binomial formula for  ( )mk

q tqk + and evaluating the q-integral as below 
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Since the last summation is ( )xt ji
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 In the following lemma, we calculate ( )xfqn ;,

  for the monomials ( ) mttf =  for 

 .4 3, 2, 1, ,0=m  
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Lemma 3.2.2. For all , 0  n x    and 10  q , we have the following 

equalities: 

   ( ) , 1;1, = xqn  
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3.3 Auxiliary Results for Convergence Properties 

Lemma 3.3.1. For all n  and 10  q , we have the following estimations 
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 is a positive constant which depends on q  and a . 

Proof. First of all, we will give the estimation of ( )( )( )
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The next lemma is very important to state and prove the Voronoskaja-type theorem for 

the new Kantorovich type q-analogue of B-S operators, but before that, we make an 

observation for the limit  of the quantity  qn na 2
 when 

2
0

3
  . We can easily reach 

that  qn na 2
 approaches to infinity on the interval 3221    when ,→n  and 

 qn
n

na2lim
→

 
2 1

lim  
qn

n
−

→
=  exists  on the interval 210   . This observation shows 

that the convergence behavior of the new Kantorovich type q-analogue of the B-S 

operators can only be defined  when ,
2

1
0    otherwise can not be defined. 

Lemma 3.3.2. Assume that 0 1,  1,   as n

n n nq q q n  → → →  and .
2

1
0    

Then we have the following limits 
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For the second statement we write 
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which proves the lemma. 

3.4 Convergence Properties 

In this section, we will present the approximation property of Korovkin type for the 

new Kantorovich type q-analogue of B-S operators. We establish and investigate the 

local approximation theorem for the new Kantorovich type q-analogue of B-S 

operators. 

Remark 3.4.1. We can see that  
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The study of the convergence rate of the operators ( )xfqn ,,

  in a particular case by 

considering ( )1,0= nqq  as a sequence is the main idea in the next theorem for 

investigation approximation property of Korovkin type of the new Kantorovich type 

q-analogue of B-S operators. 
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Theorem 3.4.2. Let 0 1nq  . The sequence ( ) , ,
nn q f x  converges to f uniformly 

on the interval 0 , 0x a a    if and only if 1nq →  as n → . For each  ),,0 Cf  

with the norm  ) ( )xff x = ,0sup . 

Proof. Assume that ,1→nq as →n . Now we need to show that ( ) , ,
nn q f x  

converges to f uniformly on the interval .0,0  aax  we consider  the lattice 

homomorphism  )  aCCSa ,0,0: →  defined by 

( )  aa ffS
,0

=  

according to the well –known property of Korovkin type theorem in [1] and [6], it is 
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which implies that ( ) 0;lim , =−

→
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. By similar calculations, we can check that 

for =m 2, ( )
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.0;lim
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Therefore, with respect to the interval 
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( ) ( )  )=−

→
,0,0,lim , fxfxf

nqn
n

, which is the required result. 

Now, we prove the converse result by contradiction. Assume that the sequence  nq  

does not converge to 1. Then the sequence nq  must contain a subsequence  
knq  

which is contained in the interval ( )1,0  such that  )1,0→ cq
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 ( )cb
kn −→ 1 as k → , which implies that ( )xf

knqn ;,

  does not converge to )(xf

, it is a contradiction. Then  nq  must converge to 1. 

Let  ),0BC  be the space of all real-valued continuous bounded functions f on the 

interval  ),0 , the norm of each function f denoted by ( )xff
x 

=
0

sup . We consider 

Peetre's K-functional: ( )  )  .0,,0:inf:, 2

2 +−=  BCgggffK  

where  

 )  )  ) .,0,:,0:,02 = BBB CggCgC  

Then from the known result in [41], there exists an absolute constant 00 C such 

that 

( ) ( ) ,, 202 fCfK   (3.4.1) 
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where 
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The first main result for the local approximation property of ( )xfqn ;,

   is stated in 

the following theorem. 
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Hence, we may write   
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
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
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 (3.4.3) 

( ).xh n=  (3.4.4) 

Using (3.4.4) and the uniform boundedness of 
 qn ,

~
 we get 
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( ) ( ) ( ) ( ) ( )xhxhxhfxfxf qnqnqn −+−−  ;
~

;
~

; ,,,

( ) ( ) ( )
1

n

n

x
f x h x f f x

a x
 
 

+ − + + − 
+ 

( )4 ,
1

n n

n

x
f h h x f x

a x
   

 
 − + + + −  + 

. 

On the right side, if we take the infimum overall  ),,02  BCh we obtain  

( ) ( ) ( )













−+

+
+− x

xa

x
ffKxfxf n

n

nqn 
1

,;4; 2,
 

which together with (3.4.1) we obtain 

( ) ( ) ( )













−+

+
+− x

xa

x
ffCxfxf n

n

nqn 
1

,;; 2,
, 

and this completes the proof of the theorem. 

Now in the below theorem we investigate and present the convergence rate of the 

operators 
 qn,  in terms of items of the usual Lipschitz function ( ).MLip  

Theorem 3.4.4. Let ( 1,0  and  ).,0 E Then, if  ) ,0BCf  is locally  

( );  i.e MLip   the condition  

( ) ( )  ), and 0,f y f x y x y E x


−  −     (3.4.5) 

holds,  then, for each  ) ,0x , we have 

( ) ( ) ( )( )2
, , 2 ,n q nf x f x d x E




 
 

 −  + 
 

, 

where   is a constant depending on and ;f  and ( )Exd ,  is the distance between 

andx E defined as  

( )  EtxtExd −= :inf, . 
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Proof. Let E  be the closure of E  in  ),0 . Then, there exists a point Ex 0  such 

that ( ).,0 Exdxx =−  By the triangle inequality  

( ) ( ) ( ) ( ) ( ) ( )00 xfxfxftfxftf −+−−  

and by (3.4.5) we get  

( ) ( ) ( ) ( )( ) ( ) ( )( )xxfxfxxftfxfxf qnqnqn ;;, 0,0,, −+−− 

( ) , 0 0;n q t x x x x
 

   − + −  

( ) , 0 0;n q t x x x x x x
  

   − + − + −  

 ( ) , 0 0; 2 .n q t x x x x
 

   − + −  

Now if we use the Hӧlder inequality with the values 
( )

2 2
 and

2
p q

 
= =

−
, we get

( ) ( ) ( ) ( ) ( )( )
1 1

, , ,, ; 1 ; 2 ,
p p q q

n q n q n qf x f x t x x x d x E
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      −   −  +   
  
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 ( ) ( )( )








+=




 ExdxL n ,22 , 

and the proof is completed. 

3.5 Voronovskaja Type Result 

In the following theorem, we give a Voronovskaja type result for the new Kantorovich 

type q-analogue of the B-S operators. 
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Theorem3.5.1. Assume that 1→nq  and →n

nq as →n and let .
2

1
0    For 

any  ) ,02

BCf  the following equality holds 

( ) ( )( ) ( ) ( )

 

, ,

1 1
lim ,

2 2

uniformly on 0, .

nn q n q
n

b f x f x f x x f x

a



→
  − = +

 

Proof. Suppose the function f belongs to the space  ),02

BC  and  x0 is fixed. 

By using the formula of Taylor we can write  

( ) ( ) ( )( ) ( ) ( ) ( )( )
2 21

, ,
2

f t f x f x t x f x t x t x t x = + − + − + −  (3.5.1) 

where the function ( )xt,  is the remainder in the Peano form, ( )  ) ,0, BCxt  and 

( ) 0,lim =
→

xt
xt
 . Applying 

nqn

 ,  to  (3.5.1) we obtain  

( ) ( ) ( ) ( )( ) ( ) ( )( )2

, , ,

1
; ; ;

2
n q n q n qf x f x f x t x x f x t x x    − =  − +  −  

                           ( )( ).;, 2, xDxtqn +  

Now multiplying the left side and the right side of the above equation by 
nqnb , we get 

( ) ( )( )xfxfb
nn qnqn − ;,,  

( ) ( )( ) ( ) ( )( )2

, , , ,

1
; ;

2n n n nn q n q n q n qf x b t x x f x b t x x  =  − +  −  

( )( )( )2

, , , ; .
n nn q n qb t x t x x+  −  

Then by using C.S.I we can write the following inequality 

( )( )( ) ( )( ) ( )( )2 42

, , ,, , , , ,
n n nn q n q n qt x t x x t x x t x x    −     − . (3.5.2) 

We observe that ( ) ( )  )2 2, 0 and ., 0, .Bx x x C =    Now from theorem (3.4.2) it 

follows that  
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                        ( )( ) ( )2 2

,
n
limΩ 0

nn q ρ t,x ,x ρ x,x

→
= =  (3.5.3) 

uniformly w.r.t  ax ,0 . Finally, from the inequality (3.5.2), from (3.5.3) and from 

Lemma 3.3.1, we immediately obtain  

( )( )( ),xxtt,xρΩb
nn n,qn,q

n

2
lim −

→
 

( )( ) ( )( )42lim lim
n n nn,q n,q n,q

n n
Ω ρ t,x ,x b Ω t x ,x 

→ →
  −  

( ) 0.
1

lim0
2

=
→

a,qC
b

b

n

n

n,q

n,q
n

 

which completes the proof. 
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Chapter 4 

4 CONCLUSION AND FUTURE WORK 

In this thesis, we constructed a new Kantorovich type q-analogue of the Balázs-

Szabados operators by using the concepts of the q-integers. These newly defined 

operators have some advantages when they are compared with the other q-analogues 

given in the other studies. First advantage is that they are positive for all continuous 

and real valued  functions on the half open interval [0, ) . Second advantage is that 

they can be used to approximate also the integrable functions. If we choose the special 

case 1q = , the operators coincide with the q-BSK operators which are defined in [24] 

by E. Özkan. For these new operators we gave a recurrence relation and then by using 

this recurrence relation we established the moments up to the fourth order and we 

estimated also the central moments. We studied a Korovkin type theorem, we 

investigated the local approximation properties of these operators in terms of modulus 

of continuity and we proved a Voronovskaja type theorem.   

The prospective methodology will be in the next research points: 

1- New Kantorovich type ( ), -p q Balázs-Szabados operators will be presented by 

using the concepts of ( ), -p q calculus for ( ) ( )0,1 ,  ,1q p q   and they will be 

denoted by ( ), , ;n p q f x . These operators ( ), , ;n p q f x  will be examined in several  

cases.  For example in the case 1=p , the operators ( ), , ;n p q f x  turn out to be 
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those operators ( )xfqn ;,

  which is defined in [47].  In another  case where 

1,   1p q= =  the operators coincide with the ones defined in [24]. 

2- A recurrence relation formula for ( )  , , ; ,   0m

n p q t x m   will be derived and 

by using this formula moments of the operators up to the 4th order will be 

calculated. Besides this 2nd order and 4th order central moments will be calculated 

and estimated. 

3- Convergence properties of the operators ( ), , ;n p q f x  will be examined. In terms 

of the usual modulus of continuous functions, local approximation properties will 

be investigated. Korovkin type approximation theorem for the operators 

( ), , ;n p q f x  will be given and a Voronoskaja type theorem will be proved. Also, 

a theorem of approximation error in terms of the weighted modulus of continuity 

will be given.  

4- Finally, an example for these new Kantorovich type ( ), -p q analogue of the 

Balázs-Szabados-Operators ( ), , ;n p q f x  of certain functions and for different 

values of q will be presented. 
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