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ABSTRACT

This thesis consists of four chapters. In the first chapter, the introduction is offered. In
the second chapter, we give the definitions, concepts and important theorems related
with linear positive operators. We mention about the g-integers which are used to
introduce g-analogue of the positive linear operators that have been intensive of
research on approximation theory. After that, we mention about the definition of the
operators which are introduced by Balazs and Szabados together. As well as, we shed
light on various definitions of g-Balazs-Szabados operators, but we especially work

on the new g-Balazs-Szabados operators which are defined by N. I. Mahmudov and

denoted by Q, (). We calculate the formulas of Q, _(t",x) for m=1,2, 3, 4 and

we obtain the 1%, 2" 3" and the 4™ order moments of the new g-Balazs-Szabados

operators. We also derive the recurrence formula of Qnyq(tm,x) in terms of

a, X . .
Bnq(tm,ﬁj that represents a close connection between the new q-Balazs-
’ a X+

Szabados operators and the g-Bernstein operators. As well as, we estimate the 2" order

and the 4™ order central moments of the operators Q, (f,x), which have a great deal

of importance of getting the results in approximation theory. Besides, we mention
about the Kantorovich type g-analogue of the Balazs-Szabados operators (g-BSK

operators) that have a nondecreasing restriction on f (x) to maintain the positivity
property. In the third chapter, we construct a new Kantorovich type g-analogue of the
Balazs-Szabados operators, Qj‘]’q(f,x). These new operators have an advantage
compared to the previous ones, they maintain the positivity property without any

restriction on f (x). We give the recurrence formula for ©; ,(t",x), meNu{0} and



we calculate the formulas of Q:Yq(tm,x) for m=0,..,4. Then, we give some
significant auxiliary findings for the convergence properties of these operators
Q7nq(f;x). Interms of the usual modulus of continuous functions, we investigate the
local approximation properties and we give Korovkin type approximation theorem for
the operators Q*n,q(f;x). We prove Voronoskaja type theorem and we present the
convergence rate in terms of the usual Lipschitz functions, Lip,,(«). In the fourth

chapter, the conclusion is given.

Keywords: g-calculus; g-Bernstein basis function; g-Bernstein operators; g-analogue

of the Balazs-Szabados operators; moments; VVoronovskaja theorem.



Oz

Bu tez dort boliimden olusmaktadir. Birinci boliim girig bolumadir. Bu bélimde teze
iligkin Onbilgiler, daha Once yapilan benzer calismalar ve daha Once yapilan
caligmalarin zayif yoOnlerinden bahsedilmistir. Yine bu bolimde tezin amaci ve
ilerleyen boliimlerde neler yapildigindan bahsedilmistir. . Ikinci béliimde lineer pozitif
operatorler ve g-tamsayilari ile ilgili tanimlar, kavramlar, bagintilar ve teoremlerden
bahsedilmistir. Yine bu boliimde Balazs-Szabados operatorlerinin tanimi verilip bu
operatdrlerin farkli g-analoglarindan s6zedilmistir. Bu analoglar arasindan 6zellikle
N. Mahmudov tarafindan Onerilen q-Baldzs-Szabados operatorii ele alinmis ve bu
operatdrin birinci, ikinci, t¢unci ve dordinci mertebeden momentleri hesaplanmustir.
Ayrica ikinci ve dordiincii mertebeden merkezi momentleri hesaplanmis ve bu
operatorlerin ¢ok popller olan g-Bernstein operatorlerine bagli rekiirans formiilii
bulunmugtur. Bunun yaninda E. Ozkan tarafindan ©6nerilen Balazs-Szabados
operatorlerinin Kantorovich tipli g-analogundan ve bu analogun zayif yonlerinden
bahsedilmistir. ~ Ugiincii boliimde Balazs-Szabados operatorlerinin  yeni  bir
Kantorovich tipli g-analogu 6nerilmistir. Bu yeni operatorler daha dnce onerilenlerle
karsilastirilip, yeni operatorlerin avantajlarindan bahsedilmistir. Yine bu boliimde yeni
Onerilen operatorlere iligskin rekiirans formiilii verilmis ve bu formiil yardimiyla
birinci, ikinci, Gcunct ve doérdincu mertebeden momentleri ve birinci, ikinci ve
dorduncti  mertebeden merkezi momentleri hesaplanmustir.  Streklilik modilu
cinsinden yerel yaklagim ozellikleri incelenmistir. Ayrica bu bolimde yeni
operatorlere iliskin Korovkin tipli teorem ve VVoronovskaya tipli teorem verilmistir.
Bunun yaninda klasik Lipschitz fonksiyonu kullanilarak yakinsama orani verilmistir.

Dorduncit bolumde ise sonug ve ileride yapilmasi planlanan ¢aligmalar verilmistir.



Anahtar Kelimeler: g-kalkills; g-Bernstein taban fonksiyonu; g-Bernstein
operatorleri; Balazs-Szabados operatorlerinin g-analogu; momentler; VVoronovskaja

tipli teorem.
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LIST OF SYMBOLS AND ABBREVIATIONS

N The set of natural numbers

N, The set of natural numbers including zero

R The set of real numbers

(a,b) An open interval

[a,b] A closed interval

Cla,b] The space of all real-valued and continuous functions defined on the

compact interval [a,b], for f e C[a,b]

[0,00) The nonnegative real line

€]l Norm of ¢

e Denotes the r -th monomial with e, :[a,b]et >t" eR, reN,
C-S-l Cauchy-Schwarz inequality

RHS Right hand side

LHS Left hand side

B-S Balazs-Szabados Operators



Chapter 1

INTRODUCTION

Positive linear operators have a crucial effect on the theory of approximation and this
theory has been stated as an essential subject of studies in the last three decades. Due
to this, the solution of some issue in complex analysis, numerical analysis, solutions
of some mathematical and physical equations and differential equations are affected
particularly. The general approximation techniques for linear positive operators are
intended to handle convergence conduct. The accuracy can be ascertained by applying
various processes for a required degree. The approximation of sequences with the help
of linear and positive operators of functions work on variable spaces such as normed
space, complex space and other spaces. In the year 1885, Karl Weierstrass firstly
proved his (fundamental) theorem on approximation by using techniques of linear
algebra and trigonometric functions for polynomials, this method became very
important in the improvement of approximation theory. The proof which he gave took
a very long time and provoked by many well-known mathematicians to find simpler
and more didactic proofs. As well as, the moments of linear positive operators have a
great deal of importance on approximation theory. In [1], very important and effective
results obtained on the convergence of sets of positive linear operators and linear
contractions have motivated the development of Korovkin-type approximation theory.
The famous Korovkin theorem considers that the convergence of operators can be
studied by lots of researches. So lots of new operators were suggested and built by

many studies after the famous Korovkin theorem due to Weierstrass and substantial



Korovkin type theorem. “A little while back, V. Gupta calculated the moments of some
discrete and Kantorovich type operators by using the notion of moment generating
functions in [2], also, in [3] the central moments of certain operators were estimated
by using this approach”. In [4], the well-known sequence of operators for any

neN, f(x) defined on an interval 0<x <1 was introduced by S. N. Bernstein as

follows:

Bn(f,x)=§pn'j(x)f[ij, 0<x<l,

n

where the basis function of these polynomials is defined as

Py, (X) = (Tj x (1~ X)nij :

limB, (f,x) = f(x) uniformly when f(x) is continuous for 0<x <1, thus supply

n—o0

with a deductive proof of Weierstrass's Theorem given in [5]. These polynomials are
very important in the theory of approximation and also in some other fields of
mathematics see [6-12]. In [13], Bernstein type rational functions were defined by

Balazs as follows:

R,(Fix)=— f[i][r_j(anx)j neN (1.0.1)

(1+ anx)n j=0 n
where f is a real and single-valued function defined on the half open interval [O,oo) :

a, and b, are real numbers which are suitably chosen and do not depend on x. He

studied the approximation properties of these operators. In [14], Balazs and Szabados
studied together and they improved the estimation which is presented in [13]. They did

this improvement by selecting convenient a_ and b, under some conditions for f(x).



On the other side, in the last three decades, g-calculus has obtained a considerable area
of research on the approximation of functions by using positive linear operators. Many
g-operators were introduced and studied by several researchers. The first g- Bernstein
operators were defined by Lupas [15] and examined for its approximating properties
and shape-conserving properties. After that, the g-analogue of the very popular
polynomials of Bernstein was introduced by George M. Phillips in [16]. The g-
Bernstein polynomials have become very popular and some other authors introduced
and investigated many operators which are based on the g-integers, examined their
approximation and statistical approximation properties. We may mention here some
of them as Durrmeyer variant of g-Bernstein-Schurer operators [17], g-Bernstein-
Schurer-Kantorovich type operators [18], g-Bernstein-Durrmeyer polynomials in
compact disks [19], g-Stancu-Beta operators [20] and Kantorovich type g-Bernstein
operators [21]. Dogru ([22]) and Ozkan ([23] and [24]) have studied on various g-
analogues of Balazs-Szabados (shortly called B-S) operators. Approximation
properties of the g-Balazs-Szabados (shortly called g-B-S) complex operators are
examined by N. I. Mahmudov in [25] and by Ispir and Ozkan in [26]. The B-S

operators based on the g-integers defined by N. I. Mahmudov in [25] is as follows:

Q,,(f.x)=—" )néf[[tj)] JMQ Jnsjl(1+1 a)ls,a.x) (1.1.1)

(1+a'nx n =0

where g >0, [n], is the g-integer which is defined in section 2.2, f is a real-valued

function which is defined on the nonnegative real line,

a, :[n]'H,bn =[n]ﬁ, £ >0 and ,Bsg, neN and X % —— . In this thesis mainly we
q q 3 a

n

considered these operators to get a new Kantorovich type g-analogue of the B-S

operator with its approximation properties.



The thesis consists of four chapters and is arranged as follows. In the second chapter
we present some formulas and definitions about g-calculus and positive linear
operators (more details on this topic can be found in the studies [6], [27-31]). We also

present mth-order moments of the g-analogue of B-S operators for m = {O, 12,3, 4} :

some of them can be found in [25]. We find an estimation for the 2nd and the 4™-order
central moments of the operators defined by (1.1.1) and these moments are used to
prove some important theorems which are given in Chapter 3. We also mention about
the g-Bal&zs-Szabados operator (which is also called the q - BSK operator) introduced
by Esma Yildiz Ozkan in [24]. Here in the definition of the g-BSK operator, there is a
restricted condition on the function f(x) such that it must be a nondecreasing function
to provide the positivity. On the other side the operators defined by the equation (1.1.1)
cannot approximate integrable functions. We use this operator which is given by
(1.1.1) as a building block to construct a new Kantorovich type g-analogue of the B-S
operators. In the third chapter, we construct a new Kantorovich type g-analogue of the
B-S operators, we examined the formula of these newly defined operators in the special

case g =1. Also, we obtain a recurrence relation for Q_ (tm : x) and we calculate the

moments and important estimations of the 2nd and the 4th-order central moments of

these operators Q; . (f,x). We prove the approximation property of Korovkin type in

the special case when q = g, as a sequence of subset of the interval (0,1) and we study

local approximation properties via modulus of continuity. We investigate the results
of the rate of convergence of these new operators in items of the elements of the usual
Lipschitz class and we give a proof of a VVoronoskaja type theorem. In the fourth
chapter, we give the conclusion part of the thesis and we mention about the future

work.



Chapter 2

PRELIMINARY AND AUXILIARY RESULTS

2.1 Positive Linear Operators

Here in this chapter, we present some important definitions, initial concepts and some
properties related with the positive linear operators that are used as tools to state and
prove the theories in the next chapter. More information on this topic can be found in

[31].

Definition 2.1.1 ([31])

The mapping &£:Y > Zwhere Y and Z are linear spaces of functions, is called a
linear operator if

Slaf +pg)=ad(f)+p5(9)

Vf,geY and Va,BeR. If f>0,feY impliesthat £f >0, then & is a positive

linear operator.

For emphasizing the discussion of the function &f € Z, the notation é( f;x) or in

some cases (& f)(x) is used.

Proposition 2.1.1. If £:Y — Z is a positive and linear operator, then
1.£ is monotonic, thatis, if fand garein Y and g is greater than or equal to f ,

then &g is greater than or equal to &f.



2.Forevery f inY theinequality |&f|<&|f] is satisfied.

Definition 2.1.2. Suppose that Y and Z are two linear and normed spaces of real

functions such that Z oY and let £:Y — Z . For every linear operator &, one can

appoint a norm |&| defined by

Jel=sup { [ef] < £ <Y, |f]=1=sup{ F]: 1 ¥, 0<] <1},

It is not difficult to verify that ||| satisfies all the norm properties and thus it is called

as the operator norm. If Y and Z are selected to be both equal to the space of

continuous and real valued functions on the closed interval [a,b] , we will be able to

state the next remark related to the continuity and the norm of an operator.

Remark 2.1.1 ([1]). Let £:C[a,b]—>C[a,b] be linear and positive. Then & is

continuous and ||&| =||&e, | where &, (t)=t°.

A necessary and sufficient condition for the convergence of a positive linear operator
towards the identity operator is provided in the next result. The current habitual finding
of the theory of approximation is known very well as the Bohman Korovkin theorem.

More details can be found in [1] and in [5].

Theorem 2.1.1 ([1]). Suppose that & is a sequence of positive linear operators from

n

the space of real valued and continuous functions on [a,b] to the space of real valued

and continuous functions on [a,b] and let e, (t)=t". If £e,(t) converges uniformly



to t"for r=0,1,2 for t e[a,b] then & f converges uniformly to f fort e[a,b] for

every function f eCJ[a,b].

The simple functions e, (t):tr for r=0,1,2, have a significant functionality in the
approximation theory of positive linear operators on the continuous function spaces
that depend on the result given above, and these are usually called as test functions.
Lots of scientists in mathematics were charged up from this cute and basic finding,
and they started to expand the final theorem by using various methods. This, in turn,
generalizes the sequence notion and takes into consideration various spaces. One
special part of the approximation theory that came in view with this way is said to be
the Korovkin-type approximation theory. Rest of the details and wide explanation

about this topic exists in [1]. For lots of estimations the C-S-I is employed:

(&(of ))235(92)5(1‘2), where f andgarein C[a,b].

In the following theorem, an inequality of Hélder-type for positive linear operators is

given. If g = p =2 it reduces to the C-S-I.

Theorem 2.1.2. Let £:C[a,b]—>C[a,b] be a positive linear operator, &e, =e,. If

q,p>1 g+ p~ =1 f belongs to C[a,b] and x €[a,b] one has

1

et ) <& (1)

The following are important quantities of linear positive operators.

The central moment of order r for the operator &, is represented as follows



& (e —ex)1x)=4,((t-x)") (x), asxs=b,
and for r >1 also the absolute moments of odd order r, is represented as follows

Sn (Iel—GOXIr;x):= ¢, (|e1—e0x|') (x), a<x<b.

In particular, the second and the fourth-order central moments with their estimations
and the first absolute moments have great importance. Calculating the first absolute
moment is a hard task in many of the cases. Consequently, the C-S-1 is used to estimate

as below;

& (Je,—eX;X) 4/ eo,x \/5 g, — X ;x).

2.2 The g-integers

In this section, we give some definitions and essential concepts of g-calculus, which
are recently used to construct many various g-analogues of linear positive operators.

More details can be found in [7], [26-27] and [29].

Definition 2.2.1 ([27]). For any nonnegative integer n, the g-integer of the number

n is defined as

11_ g if  g=1

[n], = f where q is a positive real number. (2.2.1)
n if g=1

Let us define N, as

N, :{ [n]q, ne NO}, for any given g > 0 (2.2.2)

and we can use from the definition 2.2.1 that

N,={0,q+L ¢’ +q+1L ¢’ +° +q+1, ..} (2.2.3)



It is clear that the set of g-integers N, generalizes the set of non-negative integers N,

which we recover by putting g =1.

Definition 2.2.2 ([27]). Suppose that q is a positive number. We define the g-factorial,

denoted by [n]_ !,where ne N, as

[n]q!:{ [n],[n-1].[n-2],.-[2], [1], , n>1 | 2.24)
1 , n=0

Definition 2.2.3 ([28]). Suppose that k and n are two integers such that 0<k <n.

The g- binomial coefficient is defined by

[n],!

{n} [k]![n k]!
q

if g=#1
= (2.2.5)

) e

The g-binomial coefficient satisfies the following recurrence relations

HEEC iy

and
n axln=1 n-1
=q + :
k k-1 k
a a q

Definition 2.2.4 ([27]). The g-analogue of (x—a)" is denoted by (x—a); and is

defined by the polynomial

(x-a) (x-ga)(x-g’a)..(x—q""a) if n=123..



The g-analogue of the common Pochhammer symbol which is also called the g-shifted

factorial is defined in [27] as follows:

n-1

(xa), =1, (xq),=]1(-a'x) , (x;q)w:ﬁ(l—q"x).

i=0 j=0

Definition 2.2.5 ([27]). For ne N, the Gauss’s binomial formula is

Loln a0
(x+a)q:2{1 q 2 a'x"!, (2.2.6)
q

i—0| J

and the Euler identity is given by

G0
(L+x); Zq 2 {J X,
q

Definition 2.2.6 ([27]). For ne N, the binomial formula found by Heine is

( - Zn:{n”_ } j (2.2.7)

j=0

We also present the following useful result:

n

o]

n

l(x—l)é-

J

Maybe a reader asks about the above formulas given in (2.2.6) and in (2.2.7), what

could be the change in these formulas when n approaches to infinity. In the case q =1
which is the ordinary calculus, the change is not very interesting. Depending on x, it
is either infinitely large or infinitely small. On the other hand, it is different in quantum

calculus, because, for instance, the polynomial (1+X)] = (1+x)(L+x) (L+gx)..

10



converges to a finite limit, for |q| <1. Likewise, as it is observed in [28], if we

suppose g <1, then we can see that

lim [n]q = !imo(l—q")(l—q)‘l =(1-q)™ (2.2.8)

n—o0

and

(t-q")a-q"). g™ )

i =lim a oy
!‘LTOLL R e ey Wy

Thus

. n ) 1
Mﬂu R N 229)

So, the behavior of the g-analogue of integers and binomial coefficients is changing

variously when n is so large if we compare with their ordinary counterparts.

If we apply the equations (2.2.8) and (2.2.9) to the binomial formulas given by Gauss

and Heine, we get the two Euler’s identities, whenever n — oo, which are power series

in x for -1<qg<1:

L+ aix)=(+x); =i q ° s . (2.2.10)

T 8
o
T
o
H
|
o]
N—"
H
|
o]
N
N —1
™
|
o]
w
N—1
=N
|
o]
N —1

= 1 1 o i
T R e () e N ) 221

Definition 2.2.7 ([28]). For |q|<1, the e,(x) is in the following form
0 Xj

e, (x)= Z-_r (2.2.12)
j=0 [J]q -

which is similar to the Taylor’s expansion of the normal exponential function.

11



Using (2.2.11) we see that

(2.2.13)
Therefore, from (2.2.11) and (2.2.13), we directly have
X 1
(3w
a) (1-x);

1

(1-(1-q)x);

e, (x) =

Now we consider a different g-analogue of the exponential function, which is in the

following form

i(j-1) X

Eq(x)=z q 2 A (2.2.14)

j=0 J]ql

Now, by using (2.2.10) we see that

12



Zn:q i (x1-a)’ : (2.2.15)

j=0 [J]q!

Then, as it is mentioned in [28], from (2.2.14) and (2.2.15) we directly get

E,(x/1-9)=(1+x); and E,(x)=(+{-q)x);.

Definition 2.2.8 ([28]). The g-integral (the Jackson integral) of the function f is

defined by

[ f()dt=b(-a)> f(ba')a’, 0<q<L b>0

i=0

i ft)d t = i f(t)dqt—i f(t)dt, 0<a<b.

As an example the g-integral of the function f (t) =t°on the interval [0,1] is

1
1
td,t= :
! T [e+1],

2.3 Balazs-Szabados Operators (B-S Operators)
As it is mentioned before, for f e C[01], Bernstein polynomials are introduced as

follows (see [4])

=3 p.(x) f(%) x e [01] (2.3.1)
k=0
where p,,(X) is the Bernstein basis function and is given by
n k n-k
b 0= a-0™ (232)

13



It is a recognized fact that when f(x) is continuous on the interval [0,1] then the

above polynomials given in (2.3.1) converges uniformly to f(x).

Obviously it can be seen that the sum of the values of p,,(x) for k=0,...,n is 1, i.e.

n—:

Zn: Pn .k (X) = Z Py (X) = ”Z:: P (X) = Z P (X) = (X+1_ X) =1 (2.3.3)

In [6], it is mentioned about an important and efficient property of the Bernstein basis
function, which is obtained by taking the derivative of (2.3.2) as it is given in the

following:

s ()= | [F e

Then, we can obtain
X(1=x) pr (X)=(k—nx ) p, (X)), (2.3.4)
which helps in deducing the recurrence relation of B, (t™*;x), me{0}UN.

The following lemma is given in [6].

Lemma 2.3.1 ([6]). Let neN, xe[0,1], then

B, (™ x) = X(1-x) By (t";x)+XB, (t";x).

Proof. The proof is done by writing explicitly

n

e ()-5(0) v 0o

km+l km k
since —=——, we write
n n™ n

14



m
k=0 k=o\ N

8,0 =3 K0 (-3 (K0

Then, by using property (2.3.3) one get

Bn(t”‘”;X)=kZi;[E—:j [@j L (0)+3 (E—:J(Xpmk(x))

k=0

= By (t"; )+ xB, (t"; x),

which is the required result.

Lemma 2.3.2. ([6]). For neN, x&[0,1], we have

B,(Lx)=1 B,(t;x)=x,

B, (t%x)= X(ln_ X) 45

Proof. By using (2.3.3) it is obvious that B, (1,x)=1 and B, (t; x) = x.

(2.3.5)

For the evaluation of B, (tz;x) and B, (t3;x),we use the recurrence relation that is

given in (2.3.5). We can see that

B, (t*;x)= X(ln_ x) B! (t;x)+ xB, (t;x) = X(ln_ x) + X2

15



B (tg;x)z x(ln— x)[l— 2x 2xj+ x?(1- X)+ .

B, (t3; X)Z X(lr: X)(l—nZX + 3xj + x5,

In [13], Balazs defined and studied approximation properties of Bernstein type
rational functions as in the following:

n

R, (f;x)= ;Z f(bﬁj@j(anx)k, n=12,3,. (2.3.6)

(@+ax) = b,
where f(x) is a real and single-valued function defined on the interval [0,), a,and
b, are real numbers which are suitably chosen and don’t depend on X. In the particular
case where a =n”*, b =n”, neN, 0< <1, the operators (2.3.6) are denoted by

R,Eﬁ]. In [13], Baldzs stated and proved Voronoskaja type theorem under the

"

. b . .
assumption that a, = — — Oand b_n — 0 as n — oo. Also, in the same paper Balazs
n

n

2
gave the convergence theorems for the operators RH and the convergence of their

derivatives to the derivatives of the function. Later in [14] Balazs and Szabados

together improved the estimate in [13] by choosing suitable sequences a,and b, under

some restrictions for f(x). Besides, Balazs and Szabados together presented the

weighted estimates of R’ where 0<ﬂ£§ and developed certain questions of

uniform convergence of Rr[f*] where 0< < % As well as in [31], Gal introduced the

rational complex B-S operators, he investigated and studied the approximation

properties on complex disks.

16



2.4 g-Balazs-Szabados Operators

Recently, the studies on the g-operators have been one of the very attractive and
effective subjects of research in approximation theory. Many researchers defined lots
of different g-operators and examined their approximation properties. In [16], firstly,
Philips defined and presented g-Bernstein operators in the rational form as in the

following

B, ,(:x)= z 0. (a,%) 1 {%} 2.4.)

where f is contained in the space of all continuous functions defined on the interval

0<x<1, 0<qg<1 and the g-Bernstein basis function is defined as follows
n—k-1

b0 || x Tl xepoa

s=0

Ostrovska in [33-34] and Mahmudov in [35-36] accomplished praiseworthy and
appreciable work on these operators defined by (2.4.1) and they provided many
valuable and interesting results. Besides, in [37], Mahmudov and Sabancigil proposed

Voronovskaja type theorem for the Lupas g-analogue of the Bernstein operators.

Different g-analogue of the Balazs-Szabados operators have recently been studied by
several researchers. In [22], the g-analogue of B-S operators introduced by Dogru as
in the following:

R, (fix)= mgqj“‘wz f[[%JHq(a"x)' (2.4.2)

s=0

where x €[0,0),a, =[n]; ", b, =[n]] forall neN,qe(0,1] and 0< 5 <2/3.

17



In [23], Ozkan introduced the g-B-S Stancu operators as follows

)(50,x) Zf([] +al, Jpnj(x a), (2.4.3)

i=0 b"‘[]

where f is a real-valued function defined on [0,0), &, =[n}/™,b, =[n], for all

neN, qe(O,l], 0<pB<2/3and 0<a<y,

: 1 J(il)/2|:n} j
(x0)=—F— | (a,x)".
pn,J( q) (1+anx): q J q( )

She investigated and studied the statistical approximation properties of these operators
that are given in (2.4.3). On the other hand, the newly defined g-B-S operators are

given by N.I. Mahmudov as follows

Q,.(f,x)= ! 7 kzl;f([l;] M } knskl(1+ (1-q)[s], a,x) (2.4.4)

(1+a,x \ 0

where q>0 and f is a real-valued function defined on [0,0),a, =[n}",b, =[n/,

neN, fe [Oﬂ and x # ai.These operators can be called new g-analogue of B-

S operators. They have an important role in the construction of the main operator of

this thesis. Now for these new operators Q_ _, we will evaluate the 1%, 2", 3@ and the

ng?

4™ order moments in the following lemma.

Lemma 2.4.1. For 0<q<1,x €[0,0) and for all neN we have

X
1+ax’

Q,,Lx)=1 Q,tx)=

18



X x2

fzmq(t2 : x)=

b, (1+ anx)Jr (1+a,x)

[n-1] [n-2 * qfn-1] (2+ 2
an(t3;x)=q[ ]qg ]q[ a,X JJFq[ ]q(2 Q)( a,X ]
’ a,b; 1+a, X a,b; 1+a,x

1 ax

ab’l+ax’

Q,, (t“; x)=

q6[n—1]q[n—2]q[n—3]q( a,x ]“

b! 1+a,X

(q +2q* +3q° Jn], [n-1],[n - 2], ( a,x T

b? 1+a,X

b4

(q +39° +3q)[n],[n-1], ( a x j2+[n]q( a x J

Proof. The formulas for Q (L x), Q, (t;x) and @, (tz; x) can be found in [24]

without proofs. The proofs are as follows:

n

Qn,qa;x):;nz[k} a,%) 1(1+ ax)

@1+a,x)" =

n—k-1

—(1+axnk+kiH ) TT+@-alsla,x)

s=0

k
n n a x n-k-1
= n X 1+ 1 q
k—0|:kl(l+anx] (1+a x)° H( )
nin ax ) ax )
= L 1-—= =1.
=l k| {1+a, x l1+a X
q n n"/q

Q.4 (t;x)= 1 no {E} [E]q (a,x)" n__k_1(1+ @- q)[s]q anx),




1

jx(l +ax)" =

a,X
1+a x

X
1+ax

{n ]} knk2
q s=0

Now to evaluate Q, (tz;x), we write

Q, . [t?x)= L 3fn] (a,x)" n1__kf(1+(1— a,x)
nq ! (1+a X)n — k . bnz n L qg=n
Q. (x)=—1 } kl, a ) TT+@—q)s
na ’ (1—|— anx)n k=1 _k 1 a b s=0
Using the fact that [k], = qlk —1], +1, we get
1 1 n _n_l kn—k—l
Q, (t*x)= k-1], +1)fa,x
n,CI( ) anbn (1+anx)n ;_k _1j|q(q[ ]q + X ) 2
g[n—1] x ) < Z{n 2} kn
Q, . (t%x)= .
"'q( ) [n], (l+ a, X (1+a x)"? 2, q s
o " e Tl ala)
bn(l—i- anx) (1+a X ” s S0 I
2
an(tz;x): -1k [ x P
' [nl, (1+a,x) b(@+ax)
Q)= X 4 X
" Avax) (1+ax)
Now, Q, . (t%;x) is calculated as follows:
( . ) n kn k l( )
Q 1 1
" 1+ax”kz[} o0 +-als
] n n-1
since [k]{k} = [n]{k_J and b, = a,[n],, we have
q q

20

1+ @-q)s]

k—

=0

(1+ (1-q [s] ax)

a,x)

3

(L+@-q)s

)

a,x)



0.0 S ] e T okl

a+ax) k=1

Now by using the simple facts that
n-1 n-2
[k, =alk-1), +1 and | ]{k_ll n ]{k_zl,

we get

n—-k-1

O (a1 1F Tl 6 als)

b2

q s=0

n—k-1

Qnyq(ﬁ;x):Mi{n_z} (alk — 2], +1)a,x) T+@-q)s],a

a b2(1+a X)n k=2 k-2 q s=0
nn=2 kn k-1

- 1+(1-q)[

r el 1 FTT (e -a)sl,

—k-1

(1+1 a)[ )

n ['n
_I_
ab2(1+ax"kz-1:_k— -

1
|
I—I
o
z—
:

o, ()= ‘ﬂ”‘l]q[“—zlq[ TQ“-“(” 9

a,b? 1+a,x

L d@+an-1) ( ax

" szn_zvq(l; X)

a b’ 1+a,X

n

1 a X
L Q 1
+anbnz (1+ a_x v 5X)

By the above calculation, we obtain

*In-1] [n-2 3 ~1] (2+ 2
an(t3;x):q[ ]qE ]q( a, X j+q[ ](2 q)[ a,X j
’ a,b; 1+a, x ab 1+a, x

n—n

1 ax

n

ab’l+ax

Similarly, Q. (t“; x) is calculated in the following way:

21
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Using the fact that  [k], = qlk —1], +1 we get

nin-1 k
Q (thx)= k— l 1 1 1
”'q( X) ab3(1+a X nkz-l:_k—ll(q[ ’ ) 50 ( +-al
(tx) 71, fn- } (a[k-2]+1) (a knkl(1+ 1-
" ab3(1+anx)” 2 K—2 q | 5=0 q

39° [n—l]q
e
a,bl (1+a,x) iz

ab’(l+a,x) =

+Mim (2,9 TTb+-a)sa,)

_l_—
a,b?(1+a,x)" ia
By simple calculations we get

qﬁ[n—llq[n—Z]q[n—?’]q( a,x

e (t4; X) B a,b? (1+a,x)"

5 4 In— - 3
+ (q +2q" +3q ln 1]q [n Z]q X Q4 (1; X)
anbr?(l"i_anx)n 1+ra,x |

it ST N

a,b? (1+a,x)" 1+a,X

1 ( a,x ]inyq(l;x).

+
a,b’(1+ax) \1+ax
After that, we get

qs[n—llq[n—Z]q[n—3]q[ a,x j“

Q"’Q(t4;x): b 1+a x

(q +2q* +3q ln -1, [n-2],( ax Y
b 1+a,X

22



(q +39° +3q)n],[n-1], ( a x j2+[n]q( a x j

b4

Notice. From the definition of the new g-analogue of B-S operators Q,,, we can

n,Qq'?
observe that they have a close relationship with the g-Bernstein polynomials as it is

givenin (2.4.1).

Forall neN, xe[0,0) and g e(0,1) we have

a, X
Q f. — B F . n 2-4-5
na((F3%) ( n,1+anX] (245)
where  F (x)= f(%] and 0< 0% 1. (2.4.6)
b, 1+a,x

Besides, this relationship (2.4.5) is very important and effective for deducing the

recurrence relation of Qn'q(tm ; x), which is given in the next lemma.

Lemma 2.4.2 ([25]). For all neN, xe[0,%), qe(0,1) we have

a,X
1+ax

where 0< <1.

Proof. With the help of the simple calculations, we obtain immediately

0.0 i ] e Tl 0=l

(1+a,x 50

23



(1+a,x) a"[n L]
1 &[n] [k];n ax ) 1 n—k-1

Tan ; 1+(1-q)s],a,x
ay Lk, [n]y (1+ anXJ (1+a,x)"" : EOR +L-a)ska, )

Therefore, by the above calculations and by (2.4.5) we get the explicit formula for

x [0,:0),qe(01)

In the next lemma, we present the evaluation of the 2" and 4™ order central moments

of the new g-analogue of B-S operators Q__ , which are needed to evaluate 2" and 4%

ng'’

order central moments of Q_ . that will be given in the next chapter.

Lemma 2.4.3. VneN, xe[0,00) and g e (0,1)we have

Q. ((t—x)z;x)s ﬂn(Q)(X+X2) . A, (d)=max{1,b,}

Proof. By using Lemma 2.4.1 and the linearity property of the operator Q . directly,

we have

24



Q,, ((t - x)2 : x) =Q (tz; x) -2xQ, (6 X)+X°Q, (LX) ,

2 2X2
Q. ((t-x)";x)= X R S— +x°
" (( ) ) b, (1+a,x)’ (1+anx)2 (1+a,x)’

3

2 3 2 2 4
_bx"+x+abx’ b x"+a'h x"—ab x
2
b, (1+a,x)

Q.. ((t —x)’; x)

2b X4
(@) t—X Z;X :u
" (( ) ) b, (1+a,x)’

By using the facts that,

2
(a”X) <1 and

<1, for x |0, 2.4.7
(1+a,x)’ (1+a,x) <[o.=) (24.7)

2 4 2.,2 2
Qn,q((t—x)z;x): x+anbnx2: X 4 a; X anXZ’
b,(1+a,x)" b,(1+a,x)” b,(1+a,x)
now by substituting the inequalities given in (2.4.7) into the above equation we

obtain

2
Q. ((t—x)z;x)sé+ b”bx sé(x+bnx)

n

N

Q. ((t— x)*; x) < ”b(q) (x+x*), A, (a)=max{Lb,}.

n

For the estimation of Q,_ ((t - x)4 ; x), we write the formula explicitly as follows:
Q.. ((t - x)4 ; x)
=Q,, (t“; x)— 4xQ, (tg; x)+ 6x°Q, (t2 ; x)— 43°Q, (6 x)+x'Q, 4 (L x)

={q6[n—1][n—z]q[n—s]q_4q3[n—1]q[n—z]q o 4 )+1}X4

) (@+a,x)* nE@+a,x® (@+raxf @+ax
s ogt 4 3ge) Nt =2k 49@+an-1, 6 }Xg
{(q 20" +34 /an nl@+a,x)’ a,[n],@+a,x)’ a,[n],@+a,x)’
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_1] 4
3 3 2 3 \ [n a - 2
+{(q T A ax) aﬁ[n]§(1+anx)}x

1
+ X

aﬁ[n]z (1+ax)

Now if we consider the following facts given below

q[n _l]q = [n]q -1, qz[n _2]q - [n]q _[Z]Q and q3[n_3]q = [n]q _[S]q

, Wwe may

reorganize the last equality by assigning some variables to the terms in the numerators

as it is shown below

Qn’q ((t — X)4 : X) = ;1 X+ 32:2 2

a n

where
=13 (q +302 +3qX —1) 4ln], (L +a,x)
3= (0 +2q" +30°)n], ~2)[n], —2)-4a(t+[2], Jn],

n], —~1)1+a,x)+6[nf:(L+a,x)
and

> =), ~2)(n], - 21, Xin], - 3], )- 40°[n], (n], ~2)[n], - [2], Ja+a,)
+6[n): (L+a,x)* - 4[] L +a,x)’ +[n]: L +a,x)’ }

and now if we consider the powers of [n],in >, > ,> > = and the facts that

<1and —% <1, we see that for [0,o0)
(1+a,x) 1+a,x

Qn,q((t—x)“;x)<b—12x (a° +3qb2+3q e
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Q.. ((t -x)"; x) < bizc (a)(x+x*). For the restricted interval [0,a], we have

Q4 ((t—x)4;x)§éc(q,a).

In the following lemma we give a formula for the m-th order central moments of the

q-Balazs-Szabados operators O, (f;x).

Lemma 2.4.4 ([27]). Forall neN, x&[0,:) we have

Q4 ((t=x)":x) =$i(?}(—aﬁ)m“' B..q {tj %X j

"1+a X

a X
where 0 < —>—<1.
1+a.x

n

Proof. By writing Q, ((t -x)" ;x) explicitly, we obtain

Q. (20" x) = — ZH@J (ax) TT (1 -0, ax) -

(1+a,x) ko

By using the facts that

If we use (2.4.1) we get

27



Q,((t-x)" ):a—lmi‘;[ j Bn,q{ti;lfng.

J n

On the other hand, Kantorovich type g-analogue of B-S operators (g-BSK operators)

introduced by E. Ozkan in [22] is as follows:

n by
ﬁn(f;q,x):Hb—” q"("‘l)/{q (a,x)" | f(t)d,t, (2.4.8)
(1+ q“anx) 1=0 q

s=0

where f is a nondecreasing and continuous function on [0,0), a, =[n]’™and

b, =[n]f forall neN, 0 <q<land e (Oﬂ Since f is nondecreasing and from

the definition of g-integral , q-BSK operator given in (2.4.8) is a positive operator. The
operator, which is given in (2.4.4) is a summation type operator, which is not capable
to approximate integrable functions. So to maintain the positivity of the g-BSK
operators defined by (2.4.8), f must be a nondecreasing function. The main
motivation of this thesis is to construct a new Kantorovich type g-analogue of the B-S

operators that approximate also the integrable functions on the interval [O,oo) and

maintain the positivity of the operators without nondecreasing restriction on f.
In the next chapter we define these new operators and give the recurrence formula that

helps us to evaluate the moments for these new operators. We obtain the local

approximation property and establish a VVoronoskaja type theorem.
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Chapter 3

NEW KANTOROVICH TYPE q-ANALOGUE OF

BALAZS-SZABADOS OPERATORS

In this section, we give the definition of a new Kantorovich type g-analogue of B-S
operators. We construct a recurrence formula and we calculate the moments up to the
fourth order with the help of the recurrence formula for these new operators. As well
as, we calculate the first, second and the fourth-order central moments of these new
operators and at the same time we give their estimations. Estimations of these central
moments play an important role in obtaining quantitative results for convergence rate
in various cases. In addition, we study Korovkin's type approximation property and
the local approximation theorem of these new operators. Also, we investigate the
convergence rate in terms of the elements of the usual Lipschitz class and we prove

Voronoskaja type theorem.

3.1 Construction of The Operators
Definition 3.1.1 Let 0<q<1. For f :[0,0) > R, the new Kantorovich type g-

analogue of the B-S operators is defined as follows:

b,

Q;(f,x)= Zn:a)n’k(q,x)'f f([k]“;qkt}dqt,

where

29



SIS P

(L+a,x)" |k 50
a, :[n]ﬂ_l,bn =[n]ﬂ,0<ﬂsg,neN, x>0 and fis a real-valued continuous
q q 3

function defined on the interval [0,c0). In the case q =1 these polynomials reduce to

ank j(k;t}dt

n

) k(x):;n(nj(anx)k ,a,=n"" b :nﬂ,0<ﬂsg, neN, xe[0,%), and
(1+a,x)" \k 3

in this case the results coincide with the results for g-BSK operators defined in [24]
by E. Ozkan.
3.2 The Recurrence Formula of the Operators and their Moments

In the next lemma, we give the recurrence formula that is needed for the evaluation of

the moments of new Kantorovich type g-analogue of the B-S operators.

Lemma 3.2.1 Forall neN, xe[0,00), meZ" U{0} and 0 < q <1we have

oS s 6 o)

o\ J

Proof. By direct calculation, the recurrence formula is obtained as follows:

Q. (tm; x) =kZ:(; @,y (G %) j([k]qb—Jqut} d,t,

0 n

using the binomial formula for ([k]q + qkt)m and evaluating the g-integral as below
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Since the last summation is Q, . (t"7;x) then we obtain

T3 (N e e W O LG W

(b,)" " [m—j+1], =\ i

In the following lemma, we calculate Q’;’q(f;x) for the monomials f(t)=t" for

m=1{0,1,2,3,4}
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Lemma 3.2.2. For all neN,0<x<ow and 0<qg<1, we have the following

equalities:
Qz,q (1; X) =1,
Q}:,q(t; x): 20 X 1

2], 1+ax [2Lb,’

o (tz_x)=Q[n_1]q4q3+q2+q( X j2+4q3+5q2+3q( X j
" ],  [2],[38], (1+ax [2],[3], b, (1+ax
L1

[3], b7

Q:’q(t3;x)((ql)3 3(CI—1)2 3(q1)+1Jq3[n—1]q[n_2]q[ X T

[4]q " [3]q ’ [2]q [n]f1 1+a X

+¥q—02m2+q+ﬂ 3a(a”-1)

(416, [3b

+3(q2+q—1)+2+q}Q[n—1]q[ X ]Z+{[q3—1 3q2

2] b, b, | [n], \l+ax 4]qu+[3]qu
N 3q +i X 1
[4],br by |l+ax [4] b

_°[n-1], [n-2] [n-3], {(ql)“ 4(q-1)  6(q-1)

] 5L, [, [l

e e
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'[n-1], [-2] (141, -3)  6(a-1)([4,-2)
+{ [n]j " {([3]q+[2]q+l)+ [2]q + [3]q

+{q[”1lq<3+3q+q2) aq[n-1], (¢° + 24" +q+1)
|

T PN S

60011, (a1 +20-2)+0°) _49°[n-1],(a" 1)

[8], [n],b; T AL, b?
aln-1], (a-2)"([8], ") 2
[ 1 [n], b2 (1+a J

q*+49°-49-1_ 49® 69° 49 1 |[ «x 1
{ B> b Bl [2lbe bf [\1+ax) BlLb

q

Proof. The proof is done by using the recurrence formula given in Lemma 3.2.1,

It can be easily seen that thq(l; x)=1.

Now, by using the recurrence formula we have

(6= Zl:ﬁb“z il, lzj(l Jj 1) i)

2], (Qn’q (LX) +2, (0" ~1)Q (& X)) 00, (6%)

= 2, +(3—:+1]Q ng (LX)
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1,

[2],b, [2],

Q,,(tx),

now by using the equality for Q, , (t; ) which is given in Lemma 2.4.1 we get

1 20 X

Q (t,x)= .
rat%) 2Lb, 2], 1+ a.x

In a similar way,
* 2.
Qn’q(t ,x)
2-j

St S e e

io\ |

= [3]%2(“ 2a,(0" -1)Q, ,(t;)+a2(@" ~1f 2, ,(t*; X))

[ (Qn’q (t;x)+a, (q" —1)anq(t2;x))+ Q. (tz;x)

2(q n1)+ an]g“”(t;x) +[(q[;]:)2+2([C;]—ql)+1JQnyq(t2;x)

gor: *{éf[gf ) jQ « )(WJQ )

1 4q9° +2q X 49° + 9% +q X
+ +
[2],[8],b, ) 1+a,x [2],8, b,@+a,x)

A )

__1 +4q3+5q2+3q( X j+q[n—1]q 4q3+q2+q£ X JZ
[3],b? [2],[8],b, (1+a,x [n], [2],[8], \1+ax
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0 (50
D, il S e -

_ ! {1+3an(q”—1)Qn’q(t;x)+3a§(q”—1)2Qnyq(t2;x)

[4], 5

+a, (qn —1)3 Q4 (ts; x)}
+[3]Lbr$ {Q”’q(t; x)+2a, (0" 1), (1% x)+ a2 (0" -1f @, (¢ x)}

N [Z]Lbn {Qn,q (tz; X)+ a, (qn _1)Qn,q (ts; X)}+ Q”’q (ts; X)

+{3a§(qn _1)2 + 6a, (q” _1)+ 3 }Qn.q(tz; X)

[8lor  [2Lb,

+{ag(qn _1)3 3a§(qn _1)2 & (q" _1)+1}Qn,q(t3;X)

+ +
[4], b7 [3], by [2],b,
by substituting the formulas of Q,  (t;x), @, . (t?;x) and Q, (t*;x) we obtain

_@l-1kln-2] {<q—1>3 s<q—1>2+s<q—1>+1}[ x ]

[n: [4], " [3], [2], 1+a x
L 1)*(q +q+1)+3q(q2—1)+3(q2+q—1)L1+[2]q x Y
[n] { [4],b, 3], b, [2].b, b, }(Ha xj
q -1, 39° 3g 1 X 1
{[4] 07 " [alb? 2L} b_}l o

Q. (t“; x)
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:i[ Jb“[s i, 2[4 jj(a”)i(qn_l)i a5

j-0

= L{l_k 4a_ <qn _1)Qn,q (t; X)+ 68.5 (qn _1)2 Qn,q (tz;x)

5,7

+4a’ (q" —1)3 Qg (ta; x)+ al (q” —1)4 Qg (t4;x)}+

+3a, (0" ~1)2, ,(t%:x)+ 322 (a" -1f @, (*1x)+ 22 (0" -1 @, (t*:x)]

6

[3]—an{Qn,q (’[2;X>-|r2<’:1n (q“ —1)Qn’q (ts;x)+ a2 (qn _1)2 Q,, (t4; x)}

+

. {anq(t3;x)+ an(q"— )anq(t4;x)}+§2n’q(t4;x)

1 N 4an(q”—1)Jr 4 'x
Bl,o? { 1,07 HbB}Q o)

6a’(q"-1f 12a(q"-1) 6 )
+{ [éib: L [4§?bs )+[3]qbn2}Q”'q(t »

L 4a 12ai(an-1f 12a(0"-1) 4 } -
{[] Qn,0|(t’ )

slor (e BN [2p

g ~n

Sl el ol
[5Lb; [4),b2 [3kbr kb, |

now by substituting the formulas of Q, , (t;x), Qn’q(t2 X), Qn,q(ts;x) and Q, (t;x),

as are calculated in Lemma 2.4.1 we obtain

e €L 2 L (0 4e-yea-yf
a(t') o) {M CRE
LR

2], 1}(1+axj
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qs[n _1]q [n - Z]q " +1)+ 4([4]q - 3) " G(q _1)([4]q - 2)
{ e (OB oRRR 2

+

[nJ3b [4], [5], 1+a,x

q=n

qs[n—l]q[n—Z]q(4[3]qq(q—1)2+[4]q(q—1)3}}( X ]"’

+{q[n -1], (3+3q + qz)+ 4q[n-1], (q3 +29%+q +1)
[n], b2 2],[n],b:

N 69°[n-1], ((q -1 +2(q-1)+ q3) 49°[n-1], (q3 —1)

8L, [nL,b? R A
+q[ﬂ—l]q(OI—l)Z([fS]q+q2)[ X j
[5]q [n]q b? 1+a X
q*+49°-49-1 49  6g° 49 1| x 1
{ BLb: LD BLb 2D b_}i a,x [Blb:’

3.3 Auxiliary Results for Convergence Properties

Lemma 3.3.1. Forall neN and 0 < g <1, we have the following estimations

n n l+q 1_q

(Q:q((tx);x))2<b£{(lbqn) ( LI anxj +bl},X€[O,oo)

1 x(1+alhxX’)

q n

Q, ((t—x)4 ; x) < b—lzcl(q,a) for xe[0,a],

where Cl(q,a) IS a positive constant which dependson g and a.

. . . . . 2
Proof. First of all, we will give the estimation of (€}, ((t—x);x)) . For x[0,%0),
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e {8
_ (1—q)X anX2 2 1 2
) 2[[2]q (1+a,X) +1+anXJ ’ 2[%]

@l-g)x b, ax i 1)
2[—[z]q<1f )b_l—] *{[z]qbn}

n

IA

n n 2 ’
S% 1ma, ax 170 (a,x) ax_| ol 1
bl 1+q 1+ax 1-q 1+a,x [2], b,

|
o)

n\2 2
_2 (1_q) ! 12X +i.
b,| b, \l1+g 1-q) b,

Now for the estimation of, Q; ((t —x)’; x) we use the formula of Q, ((t -x)’; X)

which is calculated in Lemma 2.4.3. For x € [0,),

k] +qg*t ’
[]q—qu dt

q
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<2> o, (a,x 22 2 k], 2
< k:own' [3 ——+ L (0 X)+ Za)nk g, %) . —X

. 2. 2 x+a’b x*
Qr, ((t —X) ,x) < 3], +2[bn (1+anx)2]1

if we reorganize the quantity on the right side of the inequality we can write

. o 1 x(1+a’hx
Q"'q((tx)z;x)ﬁb_[[:a] b, ( 2)}
n q n

(1+a,x)
Now if we take x e[0,a] we can estimate the 4"-order central moment by using

similar calculations.

o oo St [ B o
Souten (3] 0

<43 0,00 j(q tj g t+4§wn,k(q,x)j([';3q —Xqut

0 k=0 0

4k 1 [k] 4
<4Za)nkqx 4 It4dt+42a)nkqx(b xj

n n

4k

:4kzn0“’n,k (a.%) [5(} e + ¥ ((t=x)"5x]
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4 4
< +-C(q,
Bl b2 (a:2)

1
qu(q,a).

The next lemma is very important to state and prove the VVoronoskaja-type theorem for

the new Kantorovich type g-analogue of B-S operators, but before that, we make an

. - : 2 .
observation for the limit of the quantity a’ [n]q when 0< g < 3 We can easily reach

that a’ [n]q approaches to infinity on the interval 1/2 < #<2/3 when n — o0, and
!\Lrgaﬁ [n]q :LT; [n]iﬂ_l exists on the interval 0< <1/2. This observation shows
that the convergence behavior of the new Kantorovich type g-analogue of the B-S
operators can only be defined when 0< g < % otherwise can not be defined.

1
Lemma 3.3.2. Assume that 0<q, <1, q,—>1, g >u as n—o and 0< <§'

Then we have the following limits

i)limb, Q. ((t—x); x) :%,

n—oo

i) limb, , Q7 ((t —x)’; x) =X,

nN—oo

Proof.

limb, . Q. ((t—x);X)

N—o0

=limb, . (Q:,qn (t; x)- xQ (\k x))

n—o0
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. 1 2q X

=limb n —

o O 2|l b " 2| 1+a  x X
q~n,q, (o] n,q,

~limb 2 X &
noe o (1+qn)bn,qn (1+qn)1+an’qnx

_ a  x°
~limb, | Lo x %X 1
N> gy, +11+a,, X 1+a,, X (1+q, )bn‘qn

For the second statement we write

limb, , Q. ((t - x)2 ; x)

n—owo

=limb, {Q:,qn (t%%)—x* —2x, , ((t—x); x)}

n—o0

{ 1 +4q§+5q§+3qn X o
" lBLbE,  [2LBlb., 1+ax

N d.[n-1, 4¢3+ +q, [ X

2
—2x€2,  (Dy;x),
[n]qn [Z]qn [3]qn 1+ {:I.mqn XJ X NGy ( 1 X)

. . 402 +50° +3q X
=limb ———+Ilimb n n n
o 3l bz, eor e 2] [Blby,  L+a, X

qNn.0n

2
Llimb [1- L J“qs*qf*q”( X J—Iimb NG
o T ] ) 2] BL (Leaggx) e

—2xlimb, , Q; . (D;;x),

n—oo

3 2
_lim—t oy gim A%t £3% X
e [3lb,, e [2][3], >=l+a,, X

3 2
Alimb, . 2+ ¥

2
X
L VR R
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2
: X :
x lim| ————| —limb, . x* —x,
n—ow 1+an,qnx N N

=2x—1limb m—l x? =X
e 0| [2] [3],

= x+lima,, (1_q:)3q§—t1§—qn—1_

n—oo ! 4 3 1_X
Gn 0y +0,

which proves the lemma.

3.4 Convergence Properties

In this section, we will present the approximation property of Korovkin type for the
new Kantorovich type g-analogue of B-S operators. We establish and investigate the
local approximation theorem for the new Kantorovich type g-analogue of B-S
operators.

1
1q - 9e(1)
Remark 3.4.1. We can see that lim[n], =

n—o q

, q=q,<(01)

For example, if we choose (q, = n-t such that 0 <q, <1, then it is obvious that
n

: . n- . : " . . 1-q;
limg, = Ilmn—lzl, limq" = Ilm(l—lj —e?, then limln], =lim>— 0" =
n—oo n—oo n

n—w n n—o0 n—o Gn n—w ] — qn

The study of the convergence rate of the operators Q’;’q(f : x) in a particular case by

considering q =g, (0,1) as a sequence is the main idea in the next theorem for

investigation approximation property of Korovkin type of the new Kantorovich type

g-analogue of B-S operators.
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Theorem 3.4.2. Let 0<q, <1 . The sequence {Q;]qn (f x)} converges to f uniformly
ontheinterval 0<x<a,a>0 ifandonlyif g, —>1as n— . Foreach f e C[O, oo),

with the norm || || =sup, .., | f (x) .

Proof. Assume that g, —>1,as n—o. Now we need to show that{Q;]qn(f,x)}

converges to f uniformly on the interval 0<x<a,a>0. we consider the lattice

homomorphism S, : C[0,c0) — C[0,a] defined by

S.(f)= floa)

according to the well —known property of Korovkin type theorem in [1] and [6], it is

sufficient to prove the following:

IimHQ’qu(tm;x)— x"‘H =0,m=0,1,2, uniformly on the interval 0<x<a,a>0.

n—oo

For m=0 itis obvious since Q;, (L x)=1. Using the formula of Q; ,(t, x) in Lemma

3.1.2 we get

HQ;% (t; x) - x‘ =sup|Q;, (t;x)— x‘

n.q,
0<x<a

0<x<a

24, X ‘i 1 |
[2];, b,

B ()Ssljga [2]% 1+ a,Xx -

su 2qn -1 |{X++—
OSXEa [2]qn l+a,, X [Z]qn by g,

which implies that lim|Q; . (t;x)— x| = 0. By similar calculations, we can check that
n—o0 n

Therefore, with respect to the interval

for m=2, IimHQ’,qun(tz;x)—xz‘

n—ow

=0.
[0.a]

0<x<a, we have

43



IimHQ:an (f,x)- f(x)ﬂ =0, Vf e[0,0), which is the required result.

n—oo

Now, we prove the converse result by contradiction. Assume that the sequence {qn}
does not converge to 1. Then the sequence {qn} must contain a subsequence {an}
which is contained in the interval (01) such that g, —>ce[01) as k —>o.

Consequently,

limn, ] =lim—" =~
n~>oo[ k]an naOol_qn 1-c
k

then we can see that

1 29, X

Q [ X)—x= - 0, si 1— -5
(t;x)-x BN bnk+[2]an o x x = 0,sincea, — (1-c)and

NGy

b, —(1-c)’ as k — oo, which implies that Q; . (f;x) does not converge to f (x)

, it is a contradiction. Then {g, } must converge to 1.

Let C,[0,0) be the space of all real-valued continuous bounded functions f on the

interval [0,c0), the norm of each function f denoted by| f| = sup |f (x). We consider
0<x<o0

‘g eCé[O,oo)}, o =0.

Peetre's K-functional: K, (f,5):=inf{/f — g|+5]g”

where
Cé[O,oo) = {g € CB[O’OO): 9',9"eCy [01 OO)}

Then from the known result in [41], there exists an absolute constant C, > 0 such

that

K, (f,8)< Com, (F,75) (3.4.1)
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where

a)z(f,\/g):: sup sup |f(x—h—2f(x)+ f(x+h))

0<h<5 xxhe[0,%)

is the 2" modulus of smoothness of f eC,[0,0). Also, the usual modulus of

continuity is defined as @(f,5)=sup sup |f(x+h)— f(x).

0<h<§ xe[0,00)

The first main result for the local approximation property of Q’;,q(f;x) Is stated in

the following theorem.

Theorem 3.4.3. 3 C > 0 where C is an absolute constant such that

|

,0<x<w,0<q<1, and

Q’;’qn(f;x)— f(XX SCa)2<f,,/5niXi)+a{f,‘0 X +7,

1+a,Xx

where f belongs to space C,[0,x), 6 =

1
.7 Ele,

2 1 x(1+a§bnx3) 1-g"f( 1 ax) 1
5H(X)E{[[3]qbn+ i H( ¢ ) [1+q+1_qj +E}

Proof. Let

) . _ * . _ X
Q“'q(f’x)_Qﬂ,q(f’X)”L f(x) f(01+anx+77nJ

where f e CB[O,oo), 0= 29 = ! . By linearity of ﬁ;q and Lemma 3.2.2,

2], ™ " [2lb,

we obtain

fz;,q((t—x);X)=QZ,q((t—x)ix)”‘(‘g : +77“j
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* . * . X
=, (t;x)— (O (Lx)+ X_(01+ ax +77n] =0.

Now by the formula of Taylor, we write

t
h(t) = h(x)+h'(x)t = x)+ [(t—sh"(s)ds, heCZ[0,0)
applying the operator ﬁ;q to each side of the last equation we get

Q; , (hx)=h(x)+h(x)Q, ((t—x);x)+ ;5 @(t —s)h"(s)ds; XJ

=h(x)+ Q:’q(

X e
~+
[
w
N—
=,
=
w
N—
o
w
>

N

X
4 +
X77n

l+a,
- J' (9 X +77n—SJh”(S)dS.

1+a,x

Now by (3.4.2), we have

0 () ()2 -l

X
0——+
1+a,x I

_ j {9 X +77n—th"(s)ds.

1+a,x

On the other side, since

jts” ds| <

X

'[|t s/|h"(x) ds

t
g”h”(s)”j|t—s| ds

<[ (s)] (t-x)’.

Also
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6X+77n
n

l+a,x
j (9 X +77n—s] h"(s)ds

1+a,x

X
0 +
1+a,x In

)|

X

X
1+a,x

< o ds

+17,—$

<

1+a,x

h(s)| (9 — —sjz

Hence, we may write

h"(s)

Q:(hx)- h(x)( < ﬁ:,{

t
Ih—s
X

g

+7,—S

h"(s) ds

1+a,x

<

h 14

2
Q:,q(<t—x>2;x)+||h"||[e x nJ

1+a,x

<0712 ((£=%)" %)+ [ (€20 (2= x); %))
2( 1 x{t+a’b x*
43

b, ]q bn (1 +a, X)2

b

n 2 2
+”h””b£{(l_bq ) (1 iq+1a_n’;) +bi} (3.4.3)

n

n

— h”

5, (x). (3.4.4)

Using (3.4.4) and the uniform boundedness of Ez;,q we get
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Q: (f—h), x‘+

Q: (hx)- h(x)(

Q; (f;x)- f(x)‘s

+|f (x)—h(x)|+

f[e X +77nJ—f(x)

1+a x

h 14

<4|f -h|+

+1, — X
+a,X

n

].

On the right side, if we take the infimum overall h e C2[0,0), we obtain

5n(x)+a{f,‘6?1 X

. X
Q;,(fix)- f(x)‘ <4K, (f;5,)+ a)(f"01+anx +17, —XJ
which together with (3.4.1) we obtain
Q;,(fix)- f(x)‘ <Caw,(f;5,)+ a)(f"91+);nx +7, —xj,

and this completes the proof of the theorem.

Now in the below theorem we investigate and present the convergence rate of the

*

" o in terms of items of the usual Lipschitz function Lip,, («).

operators Q

Theorem 3.4.4. Let & € (0,1] and E < [0,c0). Then, if f e C,[0,0) is locally
Lip, («); i.e the condition
[T (y)-f(x)|<<|y-x",yeEandxe[0,00) (3.4.5)

holds, then, for each x [0,0), we have

Q (f,x)—f (x)‘sg{i;+2(d(x,E))a},

where ¢ is a constant depending on « and f; and d(x, E) is the distance between

x and E defined as

d(x,E)=inf{t—x:t < E}.
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Proof. Let E be the closure of E in [0,c0). Then, there exists a point X, € E such
that [x — X,| = d(x, E). By the triangle inequality

[F0)= 1O <[ F)= £ 06 ) +[F ()= Fxo )

and by (3.4.5) we get

Q;,(f,x)- f(x] <0 (F0)— F (%) %)+ ( ()= F (%) %)
< g’{Q;q (|t—x0|a ;x)+|x—x0|a}
S{{Q:’q (|t—x|a+|x—xo|“;x)+|x—x0|“}

s;{Q:’q (|t—x0|“ ;x)+2|x—x0|“}.

2
Now if we use the Holder inequality with the values p=— and q =
a

Qo (F,%)= (%)< g{[g:,q (|t— x|ap);x}: [Q:’q (1q;x)}; +2(d(x, E))zx}
_ L{[Q;qqt_xr) K +2(d(x E))“}

) H . +x(1+agbnxs)ﬂ°5+2(d(X,E»g

b, \ [B8l,b,  (1+a,x)

n

_ L{zn (x)2 +2(d(x, E))“},

and the proof is completed.
3.5 Voronovskaja Type Result

In the following theorem, we give a Voronovskaja type result for the new Kantorovich

type g-analogue of the B-S operators.
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1
Theorem3.5.1. Assume that g, —»1 and g, —» #as n—wand let 0< g <—. For

any f eC} [O,oo) the following equality holds

lim, , (€2 (f,%)- f (x)):% f’(x)+%x £(x)

uniformly on [0,a].

Proof. Suppose the function f belongs to the space C} [O,oo) and 0 < x < oois fixed.

By using the formula of Taylor we can write
f(t)=f(x)+f ’(x)(t—x)+% f"(x) (t—x)2 +p(t, x)(t—x)2 : (3.5.1)

where the function p(t, x) is the remainder in the Peano form, p(t,x)e C,[0,) and

limp(t, x)=0. Applying Q; , to (3.5.1) we obtain

t—>x

n,q

Q) (Fix)—f(x)=f'(x)Q, ((t—x);x)+% f7(x)Q, ((t—x)z;x)
+Q; , (p(t, X)D,; x).

Now multiplying the left side and the right side of the above equation by b, , we get

bog, (Q;qn (f:%)- £(x))
= £(x)b, o Qo ((t—x); x)+% f7(X)bq Qns ((t —x)2 : x)

+b,o Qg (p(t, X)(t-x)’; x).

Then by using C.S.1 we can write the following inequality

0, (p(tX)(t=x) x)< 2, (27 (t.%).%) XJQ;,% ((t=x)"x). (35.2)

We observe that p°(x,x)=0and p*(.,x) e C,[0,0). Now from theorem (3.4.2) it

follows that
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Li_r)EQ:,qn (pz (z‘,)c),x)=p2 (x.x)=0 (3.5.3)

uniformly w.r.t x e [O, a]. Finally, from the inequality (3.5.2), from (3.5.3) and from

Lemma 3.3.1, we immediately obtain

limb, ., Q;. (p(t,X)(t —x)? ,x)

n—o0

<lim Q:‘q (pz(z‘,x),x)xIimbnqn Q:,qn ((t—x)A,x)

N—o0 " n—owo '

<0xlimb,, x —C(a,q)=0.
N0y

which completes the proof.
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Chapter 4

CONCLUSION AND FUTURE WORK

In this thesis, we constructed a new Kantorovich type g-analogue of the Balazs-
Szabados operators by using the concepts of the g-integers. These newly defined
operators have some advantages when they are compared with the other g-analogues
given in the other studies. First advantage is that they are positive for all continuous

and real valued functions on the half open interval [0,«) . Second advantage is that

they can be used to approximate also the integrable functions. If we choose the special

case =1, the operators coincide with the g-BSK operators which are defined in [24]

by E. Ozkan. For these new operators we gave a recurrence relation and then by using
this recurrence relation we established the moments up to the fourth order and we
estimated also the central moments. We studied a Korovkin type theorem, we
investigated the local approximation properties of these operators in terms of modulus

of continuity and we proved a VVoronovskaja type theorem.

The prospective methodology will be in the next research points:

1- New Kantorovich type (p,q)- Balazs-Szabados operators will be presented by
using the concepts of (p,q)-calculus for qe(0,1), pe(q,1) and they will be

denoted by Q; . (f;x). These operators Q; _ . ( f;x) will be examined in several

£

cases. For example in the case p =1, the operators €,

(f;x) turn out to be
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those operators Q’,‘Lq(f;x) which is defined in [47]. In another case where

p=1 qg=1 the operators coincide with the ones defined in [24].

A recurrence relation formula for Q. (t"‘; x), meNU{0} will be derived and

by using this formula moments of the operators up to the 4" order will be
calculated. Besides this 2" order and 4™ order central moments will be calculated

and estimated.

*

Convergence properties of the operators Q.

(f;x) will be examined. In terms

of the usual modulus of continuous functions, local approximation properties will

be investigated. Korovkin type approximation theorem for the operators

Qo ( f; x) will be given and a VVoronoskaja type theorem will be proved. Also,

a theorem of approximation error in terms of the weighted modulus of continuity

will be given.

Finally, an example for these new Kantorovich type (p,q)-analogue of the

*

Balazs-Szabados-Operators €

(f;x) of certain functions and for different

values of g will be presented.
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