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ABSTRACT

Data Envelopment Analysis (DEA) was introduced under the name of a deterministic
model assuming all the deviations from the estimated production frontier were one-
sided indicating technical inefficiency. Biased estimations of inefficiency and
production are provided by the model when deviations do not originate only from
inefficiency but also from measurement errors. In 1988, Banker developed Data
Envelopment Analysis as a stochastic model to reflect inefficiency and statistical noise
simultaneously. However, from deterministic to stochastic, the problem with weak

efficient frontiers and related biased results stayed the same.

This dissertation proposes a modification over Banker’s stochastic DEA (SDEA)
model by applying a limitation on the coefficients of inputs in the original model in
order to change weak efficient hyperplane(s) while keeps general assumptions behind
production function unaffected. This can change the production possibility set (PPS)
while the frontier has the potential to give a better representation of the true production
frontier. Comparing the results from the stochastic model and suggested modified
model shows that the achieved model is providing a new benchmark for relative

efficiency evaluation and production frontier estimation.

Keywords: Data Envelopment Analysis (DEA), Stochastic Data Envelopment

Analysis (SDEA), Modified Model, Weak Efficient Frontier



0z

Veri Zarflama Analizi (VZA), tahmin edilen iiretim sinirindan tiim sapmalarin teknik
verimsizligi gosteren tek tarafli oldugu varsayilarak deterministik bir model ad1 altinda
tanitildi. Sapmalarin yalnizca verimsizlikten degil ayn1 zamanda 6l¢iim hatalarindan
da kaynaklandiginda, model tarafindan sapmalarin verimsizlik ve {iretim tahminleri
saglanir. 1988'de Banker, verimsizligi ve istatistiksel giiriiltiiyli es zamanli yansitmak
icin stokastik bir model olarak Veri Zarflama Analizini gelistirdi. Bununla birlikte,
deterministikten stokastiklere Zayif verimli sinirlar ve ilgili onyargili sonuglar ile ilgili

sorun ayni kaldi.

Bu tez, Banker'in stokastik DEA (SDEA) modeli iizerinde, zayif etkin hiper diizlem
(ler) 1 degistirmek i¢in orijinal modeldeki girdi katsayilarina bir sinirlama uygulayarak,
tretim fonksiyonunun arkasindaki genel varsayimlar1 etkilenmeden koruyarak bir
degisiklik 6nermektedir. Bu, tiretim olasilik kiimesini (PPS) degistirebilirken, sinir,
gercek Uretim siirinin daha 1y1 bir temsilini verme potansiyeline sahiptir. Stokastik
model ve Onerilen modifiye modelden elde edilen sonuclarin karsilastirilmasi, elde
edilen modelin goreceli verimlilik degerlendirmesi ve iiretim sinir1 tahmini i¢in yeni

bir kriter sagladigin1 géstermektedir.

Anahtar Kelimeler: Veri Zarflama Analizi (VZA), Stokastik Veri Zarflama Analizi

(SDEA), Degistirilmis Model, Zayif Verimli sinir
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Chapter 1

INTRODUCTION

1.1 Problem Description

Since Farrell (1957) presented the terminology of inefficiency and its basic structure
of measuring, a race for developing mathematical methods and econometric
approaches to estimate inefficiency and optimal frontier started. Following Farrell’s
intentions, Charnes et al. (1978) introduced the initial DEA model (CCR) and years
later, Banker et al. (1984) provided the BCC model under variable returns to scale
assumption. From there on, DEA has been used in a broad range of applications and

played a significant role in operation research studies.

Data envelopment analysis (DEA) is an effective technique for evaluating the relative
efficiency of similar decision-making units (DMUs) with multiple inputs and outputs.
according to observed data and a set of assumptions, DEA creates a reference
technology set named as production possibility set (PPS), in which frontier,
distinguishes the comparatively most efficient DMUs. A DMU is categorized as

efficient or inefficient dependent on its location relative to the mentioned frontier.

The PPS frontier is constructed of two distinct kinds of facets:
1- FDEFs (Full Dimensional Efficient Facets)

2- FDWFs (Full Dimensional Weak Facets)



Ever since the DEA method was introduced, many researches have been carried out
on identifying efficient frontiers and DMUs under their assessment. However, less
attention has been paid to the weak efficient frontier and the corresponding DMUs.
The weak efficient frontier which is created to satisfy convexity constraint could be
counted as a drawback in basic DEA models since in sensitivity analysis, eliminating
weak efficient DMUs and efficient DMUs on the intersection of efficient and weak
efficient facets has no effect on the stability region. In addition to this, as in many
production functions such as translog or logarithmic production functions like Cobb-
Douglas, it is more realistic not to have a PPS in which by changing Inputs, Output

doesn’t change or vice versa.

Daneshvar et al. (2014) introduced a modified BCC model obtained by facet analysis,
resulting in a developed stability region and a new benchmark for scoring formerly
weak efficient DMUs and inefficient DMUs which were compared to the weak

efficient frontier.

Daneshvar et al. (2014)’s paper became a motivation to examine the possibility of
enhancing the PPS region in the stochastic DEA area. Certainly, Banker’s stochastic
DEA model (Banker (1988)) as a fundamental model for estimating production

function in the stochastic field, could be an excellent choice.

In this thesis, Banker’s SDEA model has been considered to be modified by adding a
new constraint in order to push the frontier to get close to the true underlying
production function. This adjustment has been applied to two SDEA models
introduced by Banker and numerical examples have been presented to have a better

illustration.



1.2 Thesis Structure

This work is divided into four chapters. In the first chapter, a general idea about the
goal of this paper is given. The second chapter is devoted to the history of the related
researches and the review of proposed methods. The methodology of the suggested
modification and also corresponding numerical examples are discussed in chapter 3.

Lastly, the conclusion and possible future studies are given in chapter 4.



Chapter 2

REVIEW OF THE LITERATURE

2.1 Frontier Estimation

In decades, the effort for estimating production functions stating the highest amount
of output given a set of inputs with determined technology has been progressed by
econometricians and engineers. However, still, the gap between the theoretical
approaches and empirical reality exists. Farrell (1957), started debating about the
possibility of approximating production function. Since then, a variety of approaches
toward the true efficient frontier were presented which can be grouped into two basic
categories: parametric and nonparametric methods. The parametric method needs a
functional mathematical frame for the frontier. This can be considered not only as its
feature but also as a drawback (Seiford & Thrall (1990)) since predicting the behavior
of production to specify its form is not easy. On the other hand, a nonparametric
method needs no prior information about the production frontier (Bauer (1990)). As
DEA has no need for assumptions to indicate functional form, it is categorized as a

nonparametric approach.

Efficient frontier analysis was classified by Lovell & Schmidt (1988) into four main
classes:

1. Pure programming method

2. Modified programming method

3. Deterministic statistical frontier method



4. Stochastic frontier method.

These methods differ from one another in the use of statistical methods or
mathematical programming to approximate the frontier, whether the frontier is
imposed to be parametric or nonparametric, and the assumption on the stochastic or

deterministic frontier.

Farrell (1957) proposed pure programming method for the first time. In this method,
mathematical programming is used to create a frontier out of the reference set to
examine the efficiency relative to the mentioned frontier. This method was offered by
Charnes et al. (1978) in the shape of data envelopment analysis and also Fére et al.
(1985). More efforts have been done by Varian (1984) and Banker & Maindiratta

(1988) on production possibility set.

Pure programming method has a nonparametric characteristic allowing it to adapt
without considering the inherent format of the actual efficient frontier. This approach
envelops the data by constructing facets only by utilizing observations in the reference
set. Lovell & Schmidt (1988) know this characteristic as the most reason to prefer pure
programming over the rest approaches:
Perhaps the most appealing characteristic of the pure programming approach
is that the input set it constructs is the smallest well-behaved set containing all
the data. Such a set is piecewise linear and the construction process achieves

considerable flexibility because the breaks among the pieces are determined
endogenously so as to fit the data as closely as possible.

Lovell & Schmidt (1988), however, denotes the disadvantage of pure programming to

be the fact that the frontier which envelopes the data is deterministic.



Modified programming method, the second type of efficient frontier analysis, was
proposed by Farrell (1957). It also utilizes a series of arithmetical programs to build
an efficient frontier. But the difference from pure programming is that in this method
the purpose of using the programs is to estimate parameters of an anticipated functional

form of the frontier. Therefore, it is considered as a parametric technique.

Lovell & Schmidt (1988) express three drawbacks of the modified programming as
follows: firstly, the modified programming method, similar to the pure programming,
presents a deterministic frontier that only reflects deviations due to technical
inefficiency. Secondly, this method has its complexity working with multiple outputs
situation. Lastly, being parametric, forces the need for a correctly chosen functional

form to obtain suitable parameters.

Lovell and Schmidt's third category of efficient frontier analysis is the deterministic
method which Afriat (1972) proposed and authors like Richmond (1974) and Greene
(1980a), (1980b) developed the idea. This approach, as Lovell & Schmidt (1988)
explain, envelops the data by a deterministic frontier, however, rather than
mathematical programming, statistical techniques are used to estimate the frontier.
Methods such as maximum likelihood and corrected ordinary least squares (COLYS)
are applied for frontier estimation as well as inefficiency density parameters associated
with a supposed functional form. To confirm one sided deviations from the frontier,
corrections are applied to the COLS method. Hypothesis tests about the frontier

parameters are allowed when using statistical estimation.

Similar to previously discussed methods, being deterministic is a disadvantage to
deterministic method. Moreover, although Kopp & Diewert (1982) and Zieschang
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(1983) adapted the modified programming method to deal with multiple outputs, but
still handling this situation is a difficulty in deterministic method. In addition,
hypothesis tests and parameter estimations are variant based on the frontier’s
functional form and the distribution of the inefficiency terms. Also, increase in the

requirements of sample size could be another burden.

Last class in Lovell & Schmidt (1988)’s classification of frontier estimation methods
is the stochastic approach. It was first suggested by Aigner et al. (1977) and Meeusen
et al. (1977) where the frontier is allowed to be literally stochastic. There are other

contributions in this area such as Schmidt & Lovell (1979) and Jondrow et al. (1982).

In the stochastic frontier method, the error is constructed of two parts: inefficiency and
random deviation. Like deterministic statistical and modified programming frontiers,
Inefficiency variation is taken into account as a one-sided deviation term. Deviations
from this nature are assumed to be caused by technical inefficiency in operations. On
the other hand, random error is a two-sided deviation triggered from measurement
errors, random perturbations and other stochastic sources of the system. Basically,
stochastic frontier method can be considered as the extended deterministic statistical

frontier method combined with a two-sided random deviation term.

Since stochastic frontier method uses statistical devices such as corrected ordinary
least squares or maximum likelihood, is counted as a parametric approach. Jondrow et
al. (1982), under particular distribution assumptions, for the two error components
obtained separate estimations based on conditional distributions. Although, the
estimations don’t succeed to be statistically consistent, but using a distinct deviation
for random factors allows DMUs to be inefficient due to reasons except system’s

7



inefficiency. This combination of random deviations into the model could be

considered as the main contribution of this method over the rest three methods.

As Lovell & Schmidt (1988) mention, the stochastic frontier method has weak points.
The frontier and also error terms must be correctly assigned by related functional
forms. In addition, sample sizes need to be increased in order to use statistical
estimation techniques. Lastly, the multiple output inclusion in the model has been

problematic.

In more recent years, DEA has been compared with parametric methods in many
researches. Three distinct deterministic methods were used by Bjurek et al. (1990) to
examine the insurance offices’ efficiency. The observed efficiency scores obtained by
using DEA, a quadratic production function, and a Cobb-Douglas function were
slightly different. Banker et al. (1986) studied data envelopment analysis and translog
estimation, to analyze hospital production. This research was continued by Banker et
al. (1988) through simulated data analysis from a known parametric function. In terms
of efficient or inefficient classification, they realized that DEA surpass translog
estimation. Another result was that for larger samples, DEA efficiency estimates
improved. Using Monte Carlo simulation, the performance of DEA and corrected
ordinary least squares under the existence of measurement errors were investigated by
Banker et al. (1993). By means of Cobb-Douglas frontiers, even in the presence of
considerable measurement errors, DEA worked better than corrected ordinary least
square (COLS) when nonclassical inefficiency distributions were presented. COLS
acted better in classical distributions only if the sample size was fairly large while with
relatively small sample sizes, DEA worked well in all considered cases. Like other

studies, a single output case was considered.

8



2.2 Data Envelopment Analysis Models

Data envelopment analysis evaluates the efficiency of separate DMUs by comparing
them to a frontier or boundary made from the reference set. The most important benefit
of utilizing DEA is that there is no need to assume a functional form for the efficient
frontier. Hence, the efficiency scores as well as their reference points are conditional
since they are dependent on the organizations that are included in the sample. As
Cooper & Tone (1997) declare:

The performance of a decision-making unit is considered to be fully DEA

efficient if and only if the performance of other decision-making units does not

provide evidence that some of its inputs or outputs could be improved without
worsening some of its other inputs or outputs.

considering this essential structure as a basis, the initial model originated from Charnes
et al. (1978) (CCR) and soon extended into many other forms. The BCC model was
created by Banker et al. (1984) (BCC) as an alternative model to isolate the scale
efficiency concept. Charnes et al. (1985) suggested the additive model and
multiplicative model was created by Charnes et al. (1982). More extensions of the
mentioned models, their applications, and capability evaluation of DEA have directed

to thousands of articles regarding its application.

The goal of designing BCC was to particularly solve the problems concerning scale
and technical efficiency as in CCR model they were aggregated. By adding a convexity
constraint involving summation of the weightings of the under evaluation DMUs to
equal one, the virtual DMUs with comparable scales to the real DMUs were created.
Thus, by taking the CCR aggregate efficiency ratio to the merely technical efficiency
of the BCC model, the scale efficiency could be defined. The only case that the

aggregate efficiency of the CCR and BCC technical efficiency scores for a specific



DMU become equal is when DMU is of the optimal size. It should be noted that like
all the DEA models, inputs and outputs in BCC and CCR are assumed positive in

value.

Seiford & Thrall (1990) modified the scale derivations of the CCR model by grouping
weight limitations based on the allowed returns to scale. They precisely suggested four
models by adding a constraint on the summation of the weights according to the
measurement of a specific returns to scale (constant returns to scale (original CCR
model), increasing returns to scale, decreasing returns to scale, variable returns to scale

(original BCC model)).

The multiplicative form of DEA was proposed by Charnes et al. (1982) in which a
more classical Cobb-Douglas form was given to the efficient frontier. In this model, a
log-linear envelopment is provided by utilizing the proportion of multiplication of
exponentially weighted outputs over inputs while that of CCR model is a fraction of
linear combinations. The multiplicative formulation can be altered to a linear
programming using a logarithmic transformation. This model creates a piecewise log-
linear frontier which is different from traditional linear frontiers. Charnes et al. (1985)
introduced a unique additive programming model by entering a convexity constraint

for the weights into the dual form of the multiplicative model.

Several other forms of DEA have been introduced during the years. Some of them are
numerated here: Assurance Region approach by Thompson et al. (1990) and the Cone
Ratio model by Charnes et al. (1989) and also Charnes et al. (1990), in which the effort
was on restricting the efficient DMUs by controlling the possible multipliers.
Concerning restrictions of weight flexibility, Dyson & Thanassoulis (1988) as well as

10



Wong & Beasley (1990)contributed by their researches. Banker & Morey (1986b),
Kamakura (1988), and Rousseau & Semple (1993) have integrated DEA with
categorical variables. Another integration was done by Banker & Morey (1986a) with
nondiscretionary variables. Ordinal variables were included in DEA by Golany (1988),
Cook & Kress (1991), and Cook et al. (1993), (1996). Data envelopment analysis with
ordinal relationships was applied by Ali et al. (1991) to model time lag effects.

2.3 Stochastic Aspects of DEA

Generally, in most studies related to efficiency evaluation using DEA, the collected
data is considered to be deterministic. Consequently, efficiency measurements are not
assumed stochastic. What separates efficient DMUs from inefficient DMUs in a
standard data envelopment analysis, is whether the efficiency value is one or not. In
this way, any difference from an efficient score is only due to technical inefficiency.
Huang & Li (1996) state that there is no place for stochastic variations in the data when
using DEA. Deterministic approaches to random errors, like sensitivity analysis, still
consider observations non-stochastic. Nonetheless, there are strong discussions in

support of considering the data and in a result the frontier to be stochastic.

The set of analyzed organizations by DEA mostly represent a sample of population
Sengupta (1995). Alone, the sample data gives only limited knowledge about the
frontier. Efficiency score derived from sample understandings may or may not reveal
the true concealed efficiency of the comparable DMUs rather than just those in the
analyzed set. Likewise, statistics computed from the sample, for instance ratio of
efficient DMUs, are fundamentally sample statistics and accordingly obey some

unidentified sampling distribution.
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Sengupta (1995) was not the only one who mentioned that the frontier is sensitive to
the sample size. If the number of observations in the sample increase, the technical
efficiency of the DMUs often decrease because there is a possibility that the DMUs
which are placed close to the frontier increase. Banker (1993) claimed that under
certain circumstances, the estimated frontier by DEA can reach the true frontier
asymptotically. With inserting observations into the sample, efficiency scores either
decrease or stay constant. Therefore, while many other statistical methods are affected
by sample size, frontier estimation methods that work only based on extremal points

are affected even more severely.

Another factor that can highly affect the efficiency scores in DEA is the choice of
inputs and outputs. Epstein & Henderson (1989), along with others, have remarked
that data envelopment analysis is sensitive to the selecting of variable. The fact that
excluding critical factors can affect the outcomes of a DEA analysis was suggested in
a research by Ahn & Seiford (1993). This conclusion not only holds for DEA but also

is true about all the frontier analysis forms.

Epstein & Henderson (1989), Huang & Li (1996), among others, implied that
measurement error could have major impact on the efficiency score of a DMU. As
previously described, frontier estimation methods are in general, based on just
extremal points. Outliers as a result of measurement error can influence the frontier
estimates. A method was suggested by Sengupta (1995) in which outliers could be
recognized and removed from data. His suggestion for frontier estimation, however, is
centered on central location measures and emphasizes that almost all of the deviation

is because of measurement errors.
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The DEA selected model can also alter the results of efficiency scores. The ratio,
additive, and multiplicative models and their alternatives each measure dissimilar
aspects of efficiency. Ahn et al. (1988) and Ahn & Seiford (1993) performed
researches to study the sensitivity of efficiency values based on model specifications.
To study the sensitivity of the efficiency to the model selection, some researchers like
Alshare (1998), have assessed efficiency scores of certain organizations using various
DEA models. Model specification as well as selecting proper factors are probably best

determined in study-by-study basis and there is no general research to solve it.

The notion of a severely deterministic frontier in which efficiency scores are fixed, is
only logical under specific conditions. Effects of sampling, the observations quantity,
the number of variables, choice of variable, and other error forms make the
interpretation of deterministic efficiency scores extremely challenging. Nevertheless,
many methods to stochastic DEA are proposed to deal with this problem.

2.4 Proposed Solutions to Stochastic DEA

Generally, for frontier analysis, two formations of error models are considered
(Sengupta (1995)). For single output situation, the model with one error term is
y=f(x1, ., Xp) — €
e=0
here ¢ is a stochastic term with one-sided error. In this state, all observations vary
randomly and in the same direction from the frontier. This model was suggested by
Schmidt (1976) to bring statistical properties into frontier estimation employing
mathematical programming methods. Later, Aigner et al. (1977) presented the
composed error model containing two error elements: a one-sided error w and a

symmetric error ¢.
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y=f(xp)—¢
e=w+¢
w=0and ¢ free
w 1s defined as the deviation from the frontier created by factors that are controllable
by the organization. On the other hand, component ¢ denotes incontrollable factors
related to things like, as they call them, luck, machine performance, climate,
measurement and observation errors, plus other kinds of random disturbance.

Researches on DEA stochastic methods mostly tend to consider composed error.

Some of the stochastic DEA approaches are pointed out here in this literature including
Banker’s stochastic model, chance-constrained programming method and the
"efficiency distribution approach™ along with others. Moreover, statistical basics for

DEA have been covered.

The first stochastic data envelopment analysis (SDEA) model was offered by Banker
(1988) presenting a linear programming model in which a piecewise linear frontier
similar to DEA shape passes within the middle of the data. By restricting production
to meet the famous Afriat constraints Afriat (1972), The SDEA model minimized
absolute deviations from observations to a nonparametric frontier. Banker et al. (1991)
used the model to analyze the significance of contextual variables and to compare the
outcome with the stochastic frontier model. Banker & Maindiratta (1992) realized how
to estimate the model by employing maximum likelihood with presumed functional

form.

In addition, the connections of stochastic DEA to quantile regression were discussed

by Banker (1988). Specifically, a person can produce any practical quantile of the
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inherent probability distribution by selecting the proper weights on the negative and
positive residuals. In the event of equal weights, the median regression model is
estimated by stochastic DEA without any required assumption on the production
function. In another case when the underlying error distribution is normal distribution,
then it is possible to use least squares rather than least absolute deviation to find
maximum likelihood estimates. This extension was presented by Kuosmanen (2008)
and continued by Kuosmanen & Johnson (2010). Wang et al. (2014) investigated the
stochastic DEA and its connections to the nonparametric quantile regression.
Moreover, in order to prevent crossing quantiles, the authors established an associated
quantile function estimator and also studied estimation in a stochastic frontier

framework.

Although Banker (1988) linked stochastic DEA model with quantile regression, the
article did not attempt to investigate the decision on the optimal quantile. According
to Kuosmanen & Kortelainen (2012), the median regression could be applied and be
corrected for the intercept like in COLS. Following the effort of Azzalini & Capitanio
(2013), Jradi & Ruggiero (2019) provided comparisons between SDEA, quantile
regression with correct and incorrect functional form and true production function.
Then they discussed corresponding optimal weight considering specific known

distribution for deviations.

Banker et al. (2015) studied the sensitivity and stability of Banker’s SDEA. Three
cases regarding to perturbations of all inputs, perturbations of output and simultaneous

perturbations of inputs and output was studied.
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Charnes & Cooper (1959) introduced chance-constrained programming and the
concept was developed by Kall (1976) and other researchers. Applications to the
model were examined by Sengupta (1987), Land et al. (1993), and Olesen & Petersen
(1995). The approach was expanded by Huang & Li (1996) applying joint chance

constraints.

Fundamentally, in chance constrained programming, it is supposed that the linear
constraints take place with some probability less than one. This method considered
nonparametric since it does not require enforcing a functional form to the efficient
frontier. As Olesen & Petersen (1995) stated, because there is a statistical basis in this

model, random disturbances including measurement error are allowed.

According to Land et al. (1993), chance constraint programming approach generates a
frontier enveloping the sample observations of DMUs “most of the time”. This model
is in consistent with composed error method, specially integrates the random error into

the calculation of the frontier (Olesen & Petersen (1995)).

Some questions were raised by Land et al. (1993) regarding using of chance constraint
programming in DEA. The formulation of chance constrained give the permission to
DMUs to go above the frontier with efficiency scores more than one. Land, Lovell,
and Thore named these observations chance constrained hyper-efficient DMUSs.
Moreover, about setting the value of ¢, which is an essential component of the standard
deviation in the probability constraints, they mentioned:
.. . the greater the stochastic variability of outputs (the greater the coefficient
c), the greater is the band of output territory that is permitted outside the
envelope. The envelope then moves successively closer to any given
observation and the efficiency ratio approaches 1.0. For data with large

amounts of uncertainty, the efficiency scores will automatically be close to
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unity. The empirical usefulness of the chance constrained DEA calculation
may then be questioned.

In continue, it is noted that the efficiency scores will increase as well, for given
flexibility, under the condition that the tolerance level of the chance constraints is

reduced.

Land et al. (1993), however, acknowledged the advantages of merging a stochastic
frontier with data envelopment analysis model. By creating buffers, deterministically
inefficient observations turn to chance constrained efficient DMUSs. In this way, the
frontier is allowed to give permission to some random errors without supposing that
the DMU is technically inefficient. They stated that this addition of random error

allows DMUs to be ranked as efficient while there is slack in some outputs.

An extended form of chance constrained approach was suggested by Olesen &
Petersen (1995). Their model allows to evaluate DMUs in the existence of random
multiple inputs and multiple outputs. Another stochastic DEA model exercising joint
chance constraints was introduced by Huang & Li (1996). They showed required and

enough conditions for a DMU in order to be stochastically non-dominant efficient.

The efficiency distribution method introduced by Sengupta (1996b) is based upon
comparing of the output distributions of efficient and inefficient observations. Two
approaches are considered regarding this method. The first is developed to estimate a
single efficient frontier function considering only the efficient DMUs. A provable
distribution of error components is produced from the deviation between real and DEA

efficient output amounts for all DMUs. Methods like simple or generalized form of
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moments as well as maximum likelihood could be employed to determine an

estimation of the error probability density function.

The second approach introduced by Sengupta (1996b) is constructed on making “peer
group” of efficient DMUs and comparing them with inefficient DMUs utilizing
dummy regression. The mentioned “peer group” is derived from the notion of modal
efficiency. Dummy variable regression works using a Boolean variable for

classification to determine if a DMU is a member of the modal efficiency group.

Banker (1993) provided an imperative statistical foundation for single output case in
DEA. He presented that the DEA estimators are equivalent to maximum likelihood
estimators if the deviation of real output from the corresponding efficient output is
counted as a stochastic variable with a probability density function that is
monotonically decreasing. DEA is hence robust compared with parametric frontier
estimation methods presented by Aigner & Chu (1968). These parametric methods
have been indicated to be maximum likelihood estimators just when the inefficiency

obeys exponential or half-normal distributions.

Several other approaches have been proposed for the application of statistical
approaches to DEA. Canonical correlation was used by Sengupta (1990) to specify
statistically significant elements of the input-output mixture that characterized an
individual facet of the efficient frontier. Also, the integration of time varying efficiency

results has been tackled by Sengupta (1996a), (1996b) and Charnes et al. (1984).
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Chapter 3

METHODOLOGY

The methodology used in this research is based on linear algebra and modifications
applied to the models are examined by the GAMS software package. To simulate real
production observations, random values are generated by Office Excel. The goal in
this dissertation is to manipulate Banker’s stochastic DEA model to replace the weak
efficient frontier by a better estimation of production function.

3.1 Traditional DEA Models

When DEA was proposed the idea was to determine weights for each input and output
of a DMU in order to form virtual input and output as following:

Virtual input = vy x10 + ... + U Xmo

Virtual output = uq y10 + ... + Ug Yo
Hence, the goal is to maximize the undermentioned ratio by using linear programming:

Virtual output

Virtual input
In m inputs and s outputs case, the general efficiency structure of n DMUs are defined

as below:
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Therefore, one of the most basic DEA models, the CCR model, was introduced by

Charnes et al. (1978) to show the efficient DMU(s) as well as the relative efficiency

of the other DMUs.

3.1.1 CCR Model

The mathematical representation of the input-oriented and output-oriented primal CCR

model for evaluating DMU “0” as well as the corresponding dual forms are given in

the following table:
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Table 1: Different forms of the CCR model

Input-Oriented Output-Oriented
Primary (LR,) maxy, uy, (LPO,) min,, px,
subject to subject to
vx, =1 qy, =1
—vX+uY <0 —-pX+qY <0
v=20u=0 p=>0,q=0
Dual (DLP,) ming,; 6 (DLPO,) maxy,, n
subject to subject to
Oxyg—X1=>0 Xo—Xu =0
YA=y, Yo =Y <0
A=0 u=0

The Production Possibility Set (PPS) of the CCR model is stated over five
assumptions:

1. Input and output vectors (x;,y;) (G = 1,...,n) of n DMUs are semipositive (x; >
0,x;#0andy; 20,y; # 0forj=1,...,n).

2. The observed activities (x;,y;) (j = 1,...,n) belongs to PPS.

3. Constant returns-to-scale (CRS) assumption: If an activity (x,y) belongs to PPS,
the activity (tx, ty) belongs to PPS for any positive scalar t.

4. For an activity (x,y) in PPS, any semipositive activity (X ,y) with x > x and y <
y is included in PPS.

5. All the semipositive linear combinations of activities in PPS, falls within PPS

boundaries.

To sum up, what is said in the five assumptions above, we can define PPS as following
considering A as a semipositive vector in R™:

PPS ={(x,y) |x = X\, y < YA, A >0},
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Figure 2: Estimated production frontier of CCR model

3.1.2 BCC Model

The well-known BCC model presented by Banker et al. (1984) is different from the
CCR model in the sense that the production frontier is shaped by the convex hull of
the studied DMUs. The Frontier has piecewise linear and concave features which leads
to the variable returns-to-scale (VRS) assumption which differs from CCR in the

convexity condition 2’]:1/1]- =1,4; = 0,Vj inits constraints.

The production possibility set of a BCC model is denoted by:
PPS ={(x,y) |x =X\, y<YA eA=1, A >0},
Where 1 € R™, X = (x;) € R™™and Y = (y;) € RS*™ are given as data set, and e is

a row vector with all elements equal to 1.

The mathematical representation of the input-oriented and output-oriented primal BCC
model for evaluating DMU “o0” as well as the corresponding dual forms are given in

the following table:
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Table 2: Different forms of the BCC model

Input-Oriented

Output-Oriented

Primary MaxXypyu, Z=UYo — U MiNyyp, Z= VX, — Vg
subject to subject to
vx, =1 uy, =1
—vX+uY —ue<o0 vX —uY —vge =0
v=0,u=0,u, freeinsign. v=0,u=>0,v, freeinsign
Dual ming,; 6 max,, 1
subject to subject to
0xg— X1 >0 XA < xg
YA>y, Ny, —YA<0
el=1 el=1
A=0 u=0

The under evaluation DMU, (o € (1, ...,n)) which can be shown as a point (X,,Y,) in
an input-output coordinate system, is considered efficient DMU if the optimal value
of the objective function of the dual model is equal to one. Considering figure 3, as a

result of the formation of the BCC model, efficient points could be divided into three

groups:

1. The strong efficient points like F,E & G

2. The Efficient points like all the points on the line FE and also EG

3. The weak efficient points like the points located on the vertical frontier connected
to the point F (efficient in input-oriented and inefficient in output-oriented) plus

horizontal frontier connected to the point G (efficient in output-oriented and inefficient

in input-oriented)
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Figure 3: Estimated production frontier of BCC model

3.2 Stochastic DEA

Data envelopment analysis (DEA) is a suitable non-parametric method to assess the
relative efficiency of multi-input and multi-output units based on practical data.
Overall, observed data have inherent uncertainty, however, it is not easy to treat the
stochastic data in the traditional DEA model. Therefore, the development of stochastic

DEA is inevitable, where the uncertainty like measurement error should be integrated.

There are different notions of stochastic DEA comprising a variety of proposed
methodologies that expands the idea or framework of conventional DEA in several
directions. Generally, these directions could be grouped into three concepts or a
combination of them:

1. The first direction develops DEA to be able to handle estimated deviations from
frontier practice as random deviations.

2. The second direction develops DEA to be able to handle random noise in the form

of either measurement errors or specification errors.
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3. The third direction develops DEA to be able to regard or conceive the PPS as a

random PPS, based on the random variation in data.

In this research, the first and second directions are evaluated and proposed
modification has been applied to them to get a more realistic frontier that has less
deviation from the production function.

3.3 Banker’s Stochastic DEA (SDEA) Model

Banker (1988) introduced a basic model of SDEA. In this model, a symmetric two-
sided deviation term peculiar to random factors (such as model specification and
measurement errors) in company with the one-sided deviation term related to DMU’s
inefficiency is developed. As a result, only the single output case is considered because

the multiple output case can be handled via nonlinear programming.

To express the relationship between this model and conventional DEA, consider the
assumptions of BCC for estimating the PPS from observed data on output vectors y;
and input vectors x;,j =1,..,n. For the single output case the postulates for
estimating the production frontier correspondence y = f(x) relating the single output
y to the input vector x, f: X — R where X is the convex hull of x;, may be specified
as:
Postulate 1: Monotonicity of Production Frontier
ify=f(),y =f(x)and x = x',theny =y’
Postulate 2: Concavity of Production Frontier
ify=f),y =fx)and0<A1<1,
then (1 -y + Ay’ < f((l —AMx + lx’)

Postulate 3: Envelopment of Observed Data
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for each observationj =1, ...,n, y; < f(xj)
Postulate 4: Minimum Extrapolation
if g:X - R satisfies postulates 1,2 and 3 then g(x) = f(x) forall x € X
By considering these four postulates, the state of monotone increasing and concave
production frontier is satisfied. Now for estimating this production frontier by
stochastic DEA, the possible effect of uncontrolled random factors must be
incorporated. Hence, such deviations caused by random factors and their stochasticity

impact in the specification of the model is represented by the term w; which may be

expressed as:
=uf —u-wi tour
U = U — Uy with u U = 0

The random deviations w; are supposed to be symmetric. Therefore, it is captured in

the constraint below:

+_ —
5=

1 j=1

n n

]:

Along with deviations due to random factors, as in traditional DEA, the inefficiency
of the DMU may cause a shortfall in output compared to the predicted output level.

Such deviations due to DMU inefficiency are shown by a nonnegative term v;. To sum
up, the actual output level could be represented as follows:

vi =f(x) —uf +ui — v
Then, the production frontier values are approximated by minimizing a weighted sum

of the two deviations subject to the following constraints:

n
Minimize (u-+ +u; + cv-)
j j j
j=1

subject to

foreachj=1,..,nand forallk =1,..,nand k # j
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(xx — x)w; + (v; — vg) + (uj+ — U —up +up) 2 Y — Y,

n
Z(ujf —u;7)=0
=1

w; = 0, vj,u;“,uj_ >0

This model was first introduced by Banker in 1988. The SDEA model with m inputs
and n observations, has (m + 3)n variables and n? — n + 1 constraints and obviously
is not infeasible since a feasible solution can be obtained from basic DEA when u;’ =
u =0.

The weight ¢ > 0 in the objective function is a pre-specified constant which by giving
different values, different estimates of the production function may be obtained.
Therefore, the model represents a combination of the minimum absolute deviation
(MAD) model (due to random factors) and the basic DEA model (due to

inefficiencies).

Based on the next theorem, the correlation between the constant ¢ and the contributions

of the MAD and the DEA models are formalized.

Theorem: for any given data set {(x;,y;) | j = 1, ..., n}, there exist ¢™ and c? with

1/n < c™ < ¢P < 2 such that the model reduces to a minimum absolute deviation

model (i.e. v/ = 0 for all j) for all ¢ > cP, and to the basic DEA formulation (i.e.
ut =u"*=0forallj) forall c < cM.

Lemmal:ifc>2 - vj‘ =0forallj=1,..,n

Lemmaz2:ifc<1/n - u+;f =u"j=0forallj=1,..,n
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3.4 Modification for Better Estimation

the integrated model explained above consists of two different tools for estimating
production function (MAD & DEA). While each of them has their own disadvantages
when they are used separately, they can cover up each other’s weak points by their
advantages. For instance, MAD is a deterministic method that estimates only the
average performance but DEA evaluates efficiency relative to a production frontier
that measures the best obtainable performance. Furthermore, the problem with the
regression-based parametric methods is that by specifying a particular parametric
form, a considerable arbitrary and restrictive structure is imposed on the input-output
correspondence. In contrast, DEA imposes a minimal structure of monotonicity and
convexity on the PPS. On the other hand, DEA method only allows for one-sided
inefficiency deviations whereas regression gives the possibility of having two-sided
deviations component due to random errors. With that being said, there is another
shortcoming with DEA that regression can’t compensate in the explained stochastic
model and in this paper, it is tried to be addressed.

3.4.1 Weak Efficient Frontier

In Banker’s stochastic model, since all the deviations are measured vertically
(direction of the deviations’ vector due to MAD and DEA has to be the same so they
can be summed for total deviation), starting from each DMU to the frontier line, the

combined DEA model should be considered as output-oriented BCC.
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Figure 4: Stochastic DEA frontier

In output-oriented BCC, as it is shown in figure 4, the weak efficient frontier is the
horizontal line continued from the efficient DMU with the greatest amount of input.
The problem with the weak efficient frontier is that all the DMUs within the PPS below
this line will be relatively compared to a frontier with constant value of output. This
means that no matter what is the observed input, as long as the DMU is in this area,
the relative efficiency will be evaluated only by its output rather than the ratio of output
over input. In this paper, it has tried to suggest a modification on the constraints of the
stochastic model to eliminate the weak efficient frontier in order to obtain a better
estimation of production function. In the presented method, one output and multiple
inputs case is considered. The reason is that although the presented stochastic model
by Banker was suggested to be extended to multiple outputs in a similar way, the first
set of constraints includes nonlinear terms. Hence, the calculations will be less

controllable than for the single output.

what's more, initially the model is studied for one input and one output. Later, the

extended multiple inputs is discussed.
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To start with, it is worth to take a precise look at the Banker’s stochastic Model. There
are four variables in the following model:
n
Minimize Z(uf +u + cvp)
j=1
subject to
foreachj=1,...,nand forallk =1,..,nand k #j

(xx — x)w; + (v — vg) + (ujr — U —ug +up) 2 Y — Y,

n
z:(uj+ —u;7)=0
j=1

w; 20, v,u,u7 20
uf: the deviation of DM U; from the frontier due to error (negative residual)
u; : the deviation of DMU; from the frontier due to error (positive residual)
v;: the deviation of DM U; from the frontier due to technical inefficiency (negative

residual)

w;: the slope of the estimated monotone increasing concave frontier at the point of the

efficient output-oriented DM U;

Most studies formerly done regarding this topic, have had the least attention to the
variable w;, which shows the slope of the frontier in an one input and one output
stochastic model (2D space) or the normal vector of the frontier hyperplane in a
multiple dimensional space. Nevertheless, in this paper, the effort is to concentrate on

this variable and its potential to improve the model.
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The suggested method for enhancing the weak efficient frontier toward the best
practice frontier as a piecewise linear monotonically increasing and concave
production function, could be applied in steps as given below:

Step 1: Solving the model as it is given above with observed inputs and outputs in
GAMS software to obtain values for variables.

Note: the constant ¢ could be defined by the examiner considering the importance of
the type of deviations as well as its limits given before (stochastic possibility:% <

¢ < 2,Definitely MAD:c > 2, Definitely Classic DEA < 1/n). In this research,
a sensitivity analysis has been done using GAMS, to examine different amounts of this
constant so that the possible effects could be investigated. The report can be found in

appendix E.

Step 2: searching and finding the smallest non-zero value for w; and naming it .
Note: if there are any w; with value zero, it shows that the corresponding DM U; is

placed on or compared with the weak efficient frontier.

Step 3: Adding a constraint stating that w; have to be greater than or equal to £.

Note: for changing the weak efficient frontier in an output-oriented approach,
corresponding w; which is zero should be manipulated in a way that does not violate
the assumptions and constraints made beforehand. Moreover, it should be able to
resemble characteristics of a new efficient frontier as close as possible to the
production function. In figure 5, possible outcomes are shown. However, only one of
them is feasible to be applied. As it is illustrated in the figure, line OT is the weak
efficient frontier with w" = wypr = 0. To modify the slope, different options are

available:
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Figure 5: Possible manipulations of weak efficient frontier

By applying this condition, it will be guaranteed that the frontier line will not be
horizontal. Also, since the monotonically increasing concave frontier is already
satisfied by other constraints, it is definite that the so-called weak efficient frontier will
be modified to continue with the same slope as the closest efficient frontier with

minimum slope.

Step 4: Solving the following model by the GAMS software.
Note: the non-negativity constraint for w; is redundant. This means that the number of

constraints stays the same.
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n

. - . + -
Minimize Z(uj +u + cvp)

j=1
subject to
foreachj=1,..,nand forallk=1,..,nand k # j

G = xpwy + (0 = vi) + (4 =17 —uf +10) = v -

n
Z(ujf —u;7)=0
j=1

w; = B foreachj=1,..,n
v, u,u; 20

3.5 Hlustrative Application
To show the application, Banker has applied his method to a production situation,
although, he didn’t consider any DMU in the weak efficient area. Hence, to illustrate
the modified method and its comparison with the classic effort, Banker’s example is
presented with some added values to the production data.
3.5.1 One Input and One Output
The monthly units produced in a company are given in the next table as the input while
the single output is the labor hours. The first twelve months were given by Banker and

the last three are added to examine the modified model.
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Table 3: One input and one output data

Month | Output Input
1 416.092 | 2089.51
2 349.785 | 1919.35
3 399.403 | 1974.43
4 455.73 | 2117.16
5 360.803 | 1792.88
6 396.241 | 1818.82
7 272.435 | 1537.66
8 312.949 | 1598.41
9 314.229 | 1701.87
10 416.09 | 1868.95
11 290.686 | 1554.14
12 260.762 | 1436.05
13 500 2117.16
14 520 2000
15 475 2050

First, the classic stochastic model is used to determine the best months in terms of
labor productivity. The weight c is selected in the range of mere DEA to mere MAD
and the corresponding graphs are presented for a better illustration of the sensitivity of

the estimates on deviations caused by inefficiency or random factors.
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Figure 6: SDEA estimated production frontier

As it can be seen, by increasing the weight c, the estimated production frontier tends
to move further down and as a result, symmetric deviation due to random factors
appears. Concavity and monotonically increasing postulates are reasonably considered
since by increasing the labor hour, the labor productivity tends to decrease due to the
traffic and confusion at upper capacity operation, but it doesn’t always mean that the
productivity level stops at a point (in this example point number 4) and from that point
by increasing the labor, production doesn’t increase (points 13 & 14 & 15 are evaluated

by weak frontier). In the presented modified model, the estimated production function
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will continue growing with the least possible slope giving a more realistic
approximation by turning the weak efficient frontier into an efficient frontier. It is
obvious that by increasing the number of DMUs and finding an appropriate
corresponding ¢ value, the possibility of having a smooth frontier similar to

logarithmic production functions rises.

By doing the explained steps toward the suggested modified model, the new frontiers

will be obtained which are shown in the following graph.

Modified Estimated Production Function
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Figure 7: Modified SDEA estimated production frontier
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Points 13, 14 and 15 are not compared to a weak frontier anymore. Moreover, the
evaluation criteria have changed in many cases. For example, in the case ¢ = 0.55,
after solving the banker’s traditional SDEA model by GAMS software, minimum

nonzero w; equals 0.7. Hence, g = 0.7 and by adding the new constraint to the model,

new values for the slope and the deviations will be obtained. As it can be seen in figures
6 and 7, and also appendix A, DMUs 12, 7 and 9 that were strong efficient points, stay
the same in the modified model. However, DMUs 1 and 4 that were strong efficient
points before, are efficient but with error deviation in modified model. Therefore, it
seems that they were located on the frontier because they had some error in their
measurement and the actual frontier passes under the points 1 and 4. Although it
implies that PPS is shrunk, yet for DMUs 14 and 15, which were compared with weak
efficient frontier, the PPS has become larger. This assigns them smaller efficiency
scores, but better opportunity to be improved. Weak efficient DMU 13 turns to a strong
efficient point and the other DMUs can be compared with the new frontier. This means
that another criterion has been obtained for comparing or improving the DMUs. The

related results for the classic and modified model are given in appendix A. The

<

I=— 2 and the efficiency estimates 1 — (%) are also
]

deviation ratio —
j yjtut+v—u

<

reported.

3.5.2 Two Input and One Output

The classic stochastic model can also work perfectly for DMUs with more than one
input. However, in the multiple output case, the behavior of the model becomes
nonlinear. Hence, here the try is only to show how classic and modified models work

with two inputs and one output as an example for the multiple input state.
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To begin with, the stochastic model presented by Banker could be developed for two
inputs case as bellow:
n
Minimize Z(uf +u + cvp)
j=1
subject to

foreachj=1,...,nand forallk =1,..,nand k #j

2

ik = Xij)Wij i~ Uk - u g ue) 2y -y

[(x X )wiil + (v —ve) + (u u Uy +Uu ) =y —y
—

L

n
z:(uj+ —u;7)=0
j=1
wi;; 20, v,u,u 20
uf: the deviation of DM U; from the frontier due to error (negative residual)
u; : the deviation of DM U; from the frontier due to error (positive residual)

v;: the deviation of DMU; from the frontier due to technical inefficiency (negative

residual)

w;;: the element of the normal vector to the estimated monotone increasing concave
frontier plane at the point of the efficient output-oriented DM U;
i: index of inputs (i = 1,2)

j: index of the DMUs (j = 1,2, ..., n)

The steps to be taken from this model towards the modified model are close to the one

with one input. However, since here we have two w for each DMU; (w; ,w;), two

constraints will be added to the base model.
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Step 1: Solving the model as it is given above with observed inputs and outputs in
GAMS software to obtain values for variables.
Step 2: searching and finding the smallest non-zero values for wy; and w,; and
naming them respectively g, and S,.
Note: if there are any DMU with wy; = w,; = 0, it shows that the corresponding
DMU; is placed on or compared with the weak efficient frontier (parallel to the Inputs
surface in the coordinate system).
Step 3: Adding two following constraints to the basic model:

Wyj 2 B1

Wy 2 B-

Step 4: Solving the following model by the GAMS software.

. . . + p—
Minimize (uj +u; + cvj)

n
=1

J

subject to

foreachj=1,..,nand forallk=1,..,nand k # j

]

n
Z:(uj+ —u;7)=0
=1

Wij = By

2
[ — xi)wij] + (0 — vi) + (W — w7 —u +ug) =y — y;
=1

Wy 2 B-
v,uf,u; 20
To demonstrate the model better, a numerical example is given below. An imagined
table of data containing two inputs and one output for thirteen DMUs. First, the classic

model is applied considering four different values for the weight c. Then, the modified
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model is used to find the variables. The related tables of results are constructed in

appendix B. The deviation ratio Y= V)

= —and the efficiency estimates 1 — (ﬁ)
9 yjrut+v-u Yj

are also reported.

Table 4: Two input and one output data
Inputl Input2 Output

DMU 1 1 7 2
DMU 2 3 4 2.5
DMU 3 3.5 4.3 3.32
DMU 4 8 1 1
DMU 5 1.5 10 3
DMU 6 4.5 6 5.75
bDmMU 7 7.5 9 6
DMU 8 12 1.5 2
DMU 9 8 10 6
DMU 10 1.6 6 1.8
DMU 11 8 7 2
DMU 12 6.4 6.7 4
DMU 13 10 11.6 5
DMU 14 4 4.5 3.21
DMU 15 1.5 8 2.12

3.6 Developing DEA and quantile regression to Stochastic Frontier
Analysis (SFA)
Banker also extended DEA with an alternative stochastic model combining the
deviations u" and v;. The model was specified as:

n

Minimize Z(T u; +(1-1)v)
j=1
subject to
foreachj=1,...,nand forallk=1,..,nand k #j
(i = x)wy = (W = v) + (e =) Z v — v

-+
Wi, U, v 2 0
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The model can be considered as a nonparametric quantile regression with convexity
and monotonicity assumptions that is able to estimate a piecewise linear production
function. Hence, there is no need for specifying a theoretical functional form for
production. Although, t needs to be specified a priori. According to quantile regression
notion, 100t is the percentage of the observations appearing beneath the estimated
production frontier. Therefore, the effectiveness of this SDEA model depends highly

on choosing the appropriate value for .

If we assume that there are N DMUs producing a single output y using M inputs x =
(x1, x5, ..., Xy ), the frontier and observed production functions can be produced as
follow:
yl = f (e, x5 00, )
and
y = f(x1,%2, ..., xy) + €

Here, ¢ is the error term demonstrating the deviation from the actual production
frontier. Various distributional assumptions on & result in different estimated
production models. Negative € represents a deterministic model in which the deviation
is only due to inefficiency. On the other hand, if ¢ is distributed two-sided with mean
zero, the model reflects only the statistical noise. As a result, any combination of these
two leads to a stochastic frontier. In the mentioned model, the composition of
inefficiency and statistical noise happens when 0.5 < 7 < 1. 7 = 1 leads to absolute
DEA with inefficiency deviations while T = 0.5 denotes nonparametric median

regression taking into account only statistical errors.
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3.6.1 Modification for a better approximation
The same steps as before are applied to the model to eliminate the weak efficiency
frontier. First, the model is examined with GAMS software to obtain values for
variables. Considering the smallest nonzero w; and assigning it to the constant g,
allows us to add a constraint to the model. The improved model will be as the
following:

n

Minimize Z(T u; +(1-1)v)
j=1
subject to
foreachj=1,...,nand forallk =1,..,nand k # j
(e — 2wy — (Vg — v + (U —u7) 2y —
w; =

u;, v =20
Now to illustrate this case, we suppose one output is produced using one input. We
generate 50 random observations with inputs x~U(1,10) and production function
y/ = x%5 (Cobb-Douglas production function with productivity and labor equal to
one, capital x and capital’s share of 0.5). Therefore, related observed DMUs could be
found by inserting e = u — v to the production function:

y = exp(e) y’

To have a stochastic frontier, we specify half normal-normal & with v~|N(0, g,,)| and
u~N(0, a,) resulting skew-normal distributional form. As it is presented in Azzalini
& Capitanio (2013) and Jradi & Ruggiero (2019) have mentioned in their paper, the

optimal value 7* can be obtained from this formula:

1
=05+ Earctan(/l)
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Where 1 = 22,

Oy
In this paper we assumed o, = 0.2 and o, = 0.1, consequently 7* = 0.8524. For
simulation, generated observation points, production function, stochastic model, and
modified model have been graphed on a diagram for two sets of data to indicate their

differences.

/ -
15 - = —
.
.

Stochastic Model ===-Medified Model Production Function * Observed Points

Figure 8: Production function, stochastic and modified model (dataset 1)
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Figure 9: Production function, stochastic and modified model (dataset 2)

To be precise, the first input is generated 50 times randomly by MS Excel. Then,

deviation components are produced under normal distribution. Accordingly,
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production function output is obtained by replacing input in y/and observed output by
y = exp(¢) y/. Then, using GAMS the model was solved and after specifying S, the
modified model was examined to get the new u; and vj+. The mean squared error
(MSE) between production function and both stochastic and modified frontiers are
calculated. In the first example by applying modification, MSE has reduced from
0.0108 to 0.0099 while in the second example, the change is even more significant.
From 0.00685 to less than half (0.00339). All the related data is attached in appendices

C&D.
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Chapter 4

CONCLUSION

4.1 Summary of Methods

In DEA methodology, an important part is SDEA in which various stochastic models
are studied according to the possibility of random deviations in observations. Among
different approaches to SDEA, Banker’s SDEA model was chosen to be the foundation
of the presented investigation. The main goal was to address the weak efficient frontier
considering the production function postulates in order to imitate the underlying true
frontier. For this purpose, firstly, Banker’s model including the integration of MAD
and DEA is considered and after applying the suggested modification, corresponding
numeric examples for one and two inputs with single output are presented. Secondly,
Banker’s model composed of quantile regression and DEA assuming optimal quantile
is examined with suggested change in the constraints and numerical examples are
provided to give a better illustration. In both cases, a new benchmark for estimating
relative efficiency is obtained that not only follows general production function
properties such as nonnegativity, monotonicity (nondecreasing), and concavity but

also seems to be able to show a smoother frontier, especially in the weak efficient area.
4.2 Future Study

In this study, the modeling is done using GAMS software. Since for applying the
suggested modification, we need to first, solve the original model, then, find the lower

bound for the new constraint, and again solve the modified model, the procedure is
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time-consuming. Hence, it can be improved using programming languages such as

MATLAB and Python to do all the steps in one iteration.

A suggested area to focus on could be the case of multiple outputs. Banker (1988)
introduced alternative models and extensions to deal with multiple outputs case which
can be examined by applying the modification method. However, the first model used
in this study becomes a nonlinear programming problem when multiple outputs are

considered. Thus, the linearization methods could be helpful to address this issue.

Another potential area of investigation is sensitivity and stability analysis. The
situation of perturbations of all inputs, output, and simultaneously all inputs and output

could be studied on the modified models.

Although in all discussed cases an illustrative example is provided, the application to

a real-world case is worthy for future research.

Moreover, finding a method for specifying the weight “c” based on the importance of
the deviations and a specific desired estimate of the frontier could be studied in the

future.

Finally, for the second model which was an integration of DEA and quantile
regression, assigning other distributions rather than normal distribution to the error
term could be a potential research. Also, trying different sets of data obtained from

different production functions could be discussed elsewhere.
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Appendix A: 1 input 1 output illustrated application of Banker’s SDEA and suggested modified model for different

values of the weight “c”

Observations Classic Model Modified Model
Deviation | Efficiency Deviation | Efficiency
DMU X Y w u+ u- v C z . ) B | w u+ u- v z ) .
Ratio Estimates Ratio Estimates
1 416.09(2089.51|0.70| 0.00 | 0.00 | 0.00 1.000 1.000 2.57| 0.00 | 0.00 | 0.00 1.000 1.000
2 349.79(1919.35|2.57| 0.00 | 0.00 | 0.00 1.000 1.000 2.57| 0.00 | 0.00 | 0.00 1.000 1.000
3 399.40(1974.43|2.57| 0.00 | 0.00 | 72.25 0.965 0.963 2.57| 0.00 | 0.00 | 72.25 0.965 0.963
4 455.73|2117.16|0.00| 0.00 | 0.00 | 0.00 1.000 1.000 0.70| 0.00 | 0.00 | 0.00 1.000 1.000
5 360.80(1792.88|2.57| 0.00 | 0.00 |154.75 0.921 0.914 2.57| 0.00 | 0.00 (154.75 0.921 0.914
6 396.24(1818.82|2.57| 0.00 | 0.00 |219.75 0.892 0.879 2.57| 0.00 | 0.00 |219.75 0.892 0.879
7 272.4411537.66(4.94| 0.00 | 0.00 | 0.00 1.000 1.000 4.94] 0.00 | 0.00 | 0.00 1.000 1.000
8 312.95|1598.41(4.94| 0.00 | 0.00 |139.17| 0.00 | 0.00 0.920 0.913 |0.70(4.94| 0.00 | 0.00 (139.17| 0.00 0.920 0.913
9 314.23|1701.87(4.94| 0.00 | 0.00 | 42.03 0.976 0.975 4.94| 0.00 | 0.00 | 42.03 0.976 0.975
10 |416.09(1868.95|2.57| 0.00 | 0.00 |220.56 0.894 0.882 2.57| 0.00 | 0.00 (220.56 0.894 0.882
11 [290.69|1554.14|4.94| 0.00 | 0.00 | 73.58 0.955 0.953 4.94| 0.00 | 0.00 | 73.58 0.955 0.953
12 |260.76(1436.05|8.71| 0.00 | 0.00 | 0.00 1.000 1.000 8.71| 0.00 [ 0.00 | 0.00 1.000 1.000
13 |500.00(2117.16|0.00| 0.00 | 0.00 | 0.00 1.000 1.000 0.70| 0.00 | 0.00 | 30.92 0.986 0.985
14 |520.00|2000.00|{0.00| 0.00 | 0.00 [117.16 0.945 0.941 0.70| 0.00 | 0.00 |162.04 0.925 0.919
15 |475.00/2050.00{0.00| 0.00 | 0.00 | 67.16 0.968 0.967 0.70| 0.00 | 0.00 | 80.63 0.962 0.961




Observations

Classic Model

Modified Model

Deviation | Efficiency Deviation | Efficiency
DMU X Y w u+ u- v c z . . B w u+ u- v z . .

Ratio Estimates Ratio Estimates
1 416.09|2089.51(0.70( 0.00 | 0.00 | 0.00 1.000 1.000 0.70| 0.00 | 30.92 | 0.00 1.015 1.000
2 349.79|1919.35(3.74| 0.00 | 77.78 | 0.00 1.042 1.000 3.27| 0.00 | 77.78 | 0.00 1.042 1.000
3 399.40|1974.43(3.74| 0.00 | 0.00 | 52.68 0.974 0.973 3.27| 0.00 | 0.00 | 29.54 0.985 0.985
4 455.73|2117.16(0.00( 0.00 | 0.00 | 0.00 1.000 1.000 0.70| 0.00 | 30.90 | 0.00 1.015 1.000
5 360.80/1792.88(3.74| 0.00 | 0.00 | 89.89 0.952 0.950 3.27| 0.00 | 0.00 | 84.75 0.955 0.953
6 396.24|1818.82(3.74| 77.78 | 0.00 |118.68 0.903 0.935 3.27| 0.00 | 0.00 (174.80 0.912 0.904
7 272.4411537.66(3.93| 0.00 | 0.00 | 0.00 1.000 1.000 3.93| 0.00 [ 0.00 | 0.00 1.000 1.000
8 312.95|1598.41(3.93| 0.00 | 0.00 | 98.43 | 0.55 |606.44| 0.942 0.938 |0.70(3.93| 0.00 | 0.00 | 98.43 | 649.69 0.942 0.938
9 314.23|1701.87(3.93| 0.00 | 0.00 | 0.00 1.000 1.000 3.93| 0.00 [ 0.00 | 0.00 1.000 1.000
10 |[416.09/1868.95|3.74| 0.00 | 0.00 [220.55 0.894 0.882 3.27(139.60( 0.00 | 50.04 0.908 0.973
11 290.69|1554.14(3.93| 0.00 | 0.00 | 55.23 0.966 0.964 3.93| 0.00 | 0.00 | 55.23 0.966 0.964
12 260.76|1436.05(8.71| 0.00 | 0.00 | 0.00 1.000 1.000 8.71| 0.00 [ 0.00 | 0.00 1.000 1.000
13 500.00|2117.16(0.00| 0.00 | 0.00 | 0.00 1.000 1.000 0.70| 0.00 | 0.00 | 0.00 1.000 1.000
14 |520.00(2000.00|0.00| 0.00 | 0.00 |117.16 0.945 0.941 0.70| 0.00 | 0.00 |131.12 0.938 0.934
15 |475.00(2050.00|0.00| 0.00 | 0.00 | 67.16 0.968 0.967 0.70| 0.00 | 0.00 | 49.71 0.976 0.976




Observations

Classic Model

Modified Model

Deviation | Efficiency Deviation | Efficiency
DMU X Y w u+ u- v c z . . B w u+ u- v z . .

Ratio Estimates Ratio Estimates
1 416.09|2089.51(2.47| 0.00 | 70.39 | 0.00 1.035 1.000 2.47| 0.00 [156.71( 0.00 1.081 1.000
2 349.79|1919.35(2.68| 0.00 | 77.78 | 0.00 1.042 1.000 2.47| 0.00 [150.53( 0.00 1.085 1.000
3 399.40|1974.43(2.68| 0.00 | 0.00 | 0.00 1.000 1.000 2.47| 0.00 | 82.90 ( 0.00 1.044 1.000
4 455.73|2117.16(0.00( 0.00 | 0.00 | 0.00 1.000 1.000 2.47| 0.00 | 86.34 | 0.00 1.043 1.000
5 360.80/1792.88(2.68| 0.00 | 0.00 | 78.19 0.958 0.956 2.47| 3.19 | 0.00 | 0.00 0.998 1.000
6 396.24|1818.82(2.68(147.14| 0.00 | 0.00 0.925 1.000 2.47| 64.89 [ 0.00 | 0.00 0.966 1.000
7 272.4411537.66(3.93| 0.00 | 0.00 | 0.00 1.000 1.000 3.43| 0.00 [ 0.00 | 0.00 1.000 1.000
8 312.95|1598.41(3.93| 0.00 | 0.00 | 98.43 [0.875|790.99| 0.942 0.938 |2.47(3.43| 78.09 | 0.00 | 0.00 | 994.92 0.953 1.000
9 314.23|1701.87(3.93| 0.00 | 0.00 | 0.00 1.000 1.000 3.43| 0.00 | 20.98 | 0.00 1.012 1.000
10 |[416.09/1868.95|2.68| 1.03 | 0.00 [149.13 0.926 0.920 2.47| 63.84 | 0.00 | 0.00 0.967 1.000
11 290.69|1554.14(3.93| 0.00 | 0.00 | 55.23 0.966 0.964 3.43| 46.07 | 0.00 | 0.00 0.971 1.000
12 260.76|1436.05(8.71| 0.00 | 0.00 | 0.00 1.000 1.000 8.71| 0.00 [ 0.00 | 0.00 1.000 1.000
13 500.00|2117.16(0.00| 0.00 | 0.00 | 0.00 1.000 1.000 2.47| 23.14 | 0.00 | 0.00 0.989 1.000
14 |520.00(2000.00|0.00| 0.00 | 0.00 |117.16 0.945 0.941 2.47(189.76( 0.00 | 0.00 0.913 1.000
15 |475.00(2050.00|0.00| 0.00 | 0.00 | 67.16 0.968 0.967 2.47| 28.48 | 0.00 | 0.00 0.986 1.000




Observations

Classic Model

Modified Model

Deviation | Efficiency Deviation | Efficiency
DMU X Y w u+ u- v c z . . B w u+ u- v z . .

Ratio Estimates Ratio Estimates
1 416.09|2089.51(3.00( 0.00 [120.84| 0.00 1.061 1.000 3.00( 0.00 (148.23( 0.00 1.076 1.000
2 349.79|1919.35(3.00( 0.00 [149.62| 0.00 1.085 1.000 3.00( 0.00 [176.99( 0.00 1.102 1.000
3 399.40|1974.43(3.00( 0.00 | 55.83 | 0.00 1.029 1.000 3.00( 0.00 | 83.22 | 0.00 1.044 1.000
4 455.73|2117.16(0.00( 0.00 | 29.56 | 0.00 1.014 1.000 3.00( 0.00 [ 56.70 | 0.00 1.028 1.000
5 360.80|1792.88(3.00( 9.91 | 0.00 | 0.00 0.995 1.000 3.00( 0.00 | 17.47 | 0.00 1.010 1.000
6 396.24|1818.82(3.00( 90.30 | 0.00 | 0.00 0.953 1.000 3.00( 62.90 [ 0.00 | 0.00 0.967 1.000
7 272.4411537.66(3.00| 0.00 | 0.00 | 0.00 1.000 1.000 3.00( 0.00 | 27.35( 0.00 1.018 1.000
8 312.95(1598.41|3.00| 60.80 | 0.00 | 0.00 | 1.00 |848.42| 0.963 1.000 |3.00|3.00| 33.44 | 0.00 | 0.00 |1152.85| 0.980 1.000
9 314.23|1701.87|3.00| 0.00 | 38.82 | 0.00 1.023 1.000 3.00( 0.00 | 66.18 | 0.00 1.040 1.000
10 |[416.09(1868.95|3.00| 99.72 | 0.00 | 0.00 0.949 1.000 3.00( 72.32 | 0.00 | 0.00 0.963 1.000
11 290.69|1554.14(3.00| 38.28 | 0.00 | 0.00 0.976 1.000 3.00( 10.92 | 0.00 | 0.00 0.993 1.000
12 260.76|1436.05(8.71| 0.00 | 0.00 | 0.00 1.000 1.000 6.36( 0.00 [ 0.00 | 0.00 1.000 1.000
13 500.00|{2117.16(0.00| 0.00 | 29.56 | 0.00 1.014 1.000 3.00( 75.84 | 0.00 | 0.00 0.965 1.000
14 |520.00(2000.00|0.00| 87.60 | 0.00 | 0.00 0.958 1.000 3.00(253.00( 0.00 | 0.00 0.888 1.000
15 |475.00(2050.00|0.00| 37.60 | 0.00 | 0.00 0.982 1.000 3.00( 68.00 [ 0.00 | 0.00 0.968 1.000




Appendix B: 2 inputs 1 output illustrated application of Banker’s SDEA and suggested modified model for different

values of the weight “c”

Observations Classical Model Modified Model
. . Deviation | Efficiency . . Deviation | Efficiency
DMU X1 X2 Y [wlj|w2j| u+t | u-| v c z . ) B1 B2 |wlj|w2j| u+t | u-| v z . )
Ratio Estimates Ratio Estimates
1 1.00 | 7.00 |2.00|2.00|0.00(0.00|0.00|0.00 1.000 1.000 1.50{0.080.00{0.00|0.00 1.000 1.000
2 3.00 | 4.00 {2.50|0.67(1.62(0.00|0.00(0.00 1.000 1.000 0.67(1.62|0.00|0.00{0.00 1.000 1.000
3 3.50 | 4.30 {3.32]|0.40(1.25(0.00|0.00(0.00 1.000 1.000 0.40(1.19|0.00|0.00(0.00 1.000 1.000
4 8.00 | 1.00 {1.00|0.00(2.00|0.00|0.00(0.00 1.000 1.000 0.40(1.25|0.00|0.00{0.00 1.000 1.000
5 1.50 (10.00|3.00|2.00|0.00(0.00|0.00|0.00 1.000 1.000 1.50{0.08/0.00{0.00|0.00 1.000 1.000
6 4.50 | 6.00 |5.75|0.00(0.08|0.00|0.00(0.00 1.000 1.000 0.40(0.08|0.00|0.00{0.00 1.000 1.000
7 7.50 | 9.00 {6.00]/0.00(0.00(0.00|0.00(0.00 1.000 1.000 0.40(0.08|0.00|0.00(1.20 0.833 0.800
8 12.00| 1.50 {2.00{0.00|2.00{0.00|0.00{0.00({0.000{0.000( 1.000 1.000 |0.400|0.083(0.40|1.25(0.00|0.00|1.22(0.000( 0.620 0.388
9 8.00 {10.00{6.00|0.00(0.00|0.00|0.00{0.00 1.000 1.000 0.40(0.08|0.00|0.00(1.48 0.802 0.753
10 1.60 | 6.00 |1.80|5.50|3.50(0.00|0.00|0.00 1.000 1.000 5.50|3.50(0.00{0.00|0.00 1.000 1.000
11 8.00 | 7.00 |{4.60/0.00(0.08/0.00(0.00{1.23 0.789 0.732 0.40(0.08|0.00|0.00(2.63 0.636 0.428
12 6.40 | 6.70 {4.00/0.00(0.08(0.00|0.00(1.38 0.743 0.654 0.40(1.19|0.00|0.00(1.34 0.750 0.666
13 |10.00|11.60(5.00|0.00(0.00|0.00|0.00(1.00 0.833 0.800 0.40/0.08|0.00|0.00(3.42 0.594 0.317
14 4.00 | 4.50 |3.21]|0.40(1.25|0.00|0.00(0.56 0.851 0.826 0.40(1.19|0.00|0.00(0.55 0.854 0.829
15 1.50 | 8.00 |2.12|2.00|0.00|0.00|0.00|0.88 0.707 0.585 1.50{0.08|0.00{0.00|0.71 0.748 0.663




Observations

Classical Model

Modified Model

. . Deviation | Efficiency . . Deviation | Efficiency
DMU X1 X2 Y |wlj|w2j| ut [ u- \ c z . . B1 B2 | wlj|w2j| u+ | u- % z . .

Ratio Estimates Ratio Estimates
1 1.00 | 7.00 {2.00|2.00{0.00|0.00{0.00|0.00 1.000 1.000 0.90(0.18|0.00(0.00|0.00 1.000 1.000
2 3.00 | 4.00 |2.50|0.67(1.62(0.00{0.00|0.00 1.000 1.000 0.67|1.62]0.00(0.00{0.00 1.000 1.000
3 3.50 | 4.30|3.32(0.14]0.89(0.00|0.00(0.00 1.000 1.000 0.14|0.78|0.00(0.00|0.00 1.000 1.000
4 8.00 | 1.00 |1.00{0.00(2.00{0.00(0.00|0.00 1.000 1.000 0.14|0.89|0.00(0.00|0.00 1.000 1.000
5 1.50 {10.00(3.00|2.00{0.00|0.00{0.00|0.00 1.000 1.000 0.90(0.18|0.00(0.00|0.00 1.000 1.000
6 4.50 | 6.00 |5.75]0.00{0.34|0.00(0.78|0.00 1.156 1.000 0.14|0.18|0.00(0.97|0.00 1.202 1.000
7 7.50 | 9.00 |6.00(0.00/0.00({0.00|0.00(0.00 1.000 1.000 0.14|0.18|0.00(0.25|0.00 1.044 1.000
8 12.00| 1.50 |{2.00|{0.00|2.00{0.00|0.00{0.00({0.750{3.393| 1.000 1.000 |0.139|0.183|0.14|0.89|0.00(0.00({0.00({4.375| 0.999 0.999
9 8.00 (10.00|6.00|0.00|0.00{0.00|0.00(0.00 1.000 1.000 0.14|0.18|0.00(0.00|0.00 1.000 1.000
10 1.60 | 6.00 [1.80|5.50(3.50|0.00{0.00|0.00 1.000 1.000 5.50|3.50(0.00|0.00{0.00 1.000 1.000
11 8.00 | 7.00 |4.60|0.00|0.34{0.13|0.00|0.59 0.865 0.873 0.14|0.18|0.85(0.00|0.00 0.844 1.000
12 6.40 | 6.70 |4.00(0.14]0.89(0.64|0.00(0.00 0.861 1.000 0.14|0.78]0.37(0.00{0.17 0.880 0.957
13 |10.00|11.60(5.00|0.00(0.00|0.00{0.00|1.00 0.833 0.800 0.14|0.18|0.00(0.00|1.57 0.761 0.686
14 4.00 | 4.50(3.21]0.14/0.89|0.00(0.00|0.36 0.900 0.888 0.14(0.78|0.00({0.00|0.34 0.906 0.896
15 1.50 | 8.00 {2.12{0.90(0.18|0.00(0.00|0.51 0.805 0.758 0.85|0.19]0.00(0.00{0.50 0.810 0.766




Observations

Classical Model

Modified Model

. . Deviation | Efficiency . . Deviation | Efficiency
DMU X1 X2 Y |wlj|w2j| ut [ u- \ c z . . B1 B2 | wlj|w2j| u+ | u- % z . .

Ratio Estimates Ratio Estimates
1 1.00 | 7.00 {2.00|2.00{0.00|0.00{0.00|0.00 1.000 1.000 0.75(0.21]0.00(0.00|0.00 1.000 1.000
2 3.00 | 4.00 |2.50|0.67(1.62(0.00{0.00|0.00 1.000 1.000 0.49(1.32]0.00(0.00|0.00 1.000 1.000
3 3.50 | 4.30 |3.32(0.05]|0.61(0.00|0.00{0.00 1.000 1.000 0.05/0.5410.00(0.18|0.00 1.058 1.000
4 8.00 | 1.00 |1.00{0.00(2.00{0.00(0.00|0.00 1.000 1.000 0.05(1.64]0.00(0.00|0.00 1.000 1.000
5 1.50 {10.00(3.00|2.00{0.00|0.00{0.00|0.00 1.000 1.000 0.75|0.21]0.00(0.00{0.00 1.000 1.000
6 4.50 | 6.00 |5.75]0.00{0.53{0.00(1.35|0.00 1.307 1.000 0.05(0.51|0.00(1.64|0.00 1.400 1.000
7 7.50 | 9.00 |6.00(0.00/0.00({0.00|0.00(0.00 1.000 1.000 0.05(0.21]0.00(0.23|0.00 1.040 1.000
8 12.00| 1.50 |{2.00{0.00|2.00({0.00|0.00{0.00({0.875|3.524| 1.000 1.000 {0.045|0.208|0.05|1.64|0.00({0.00({0.00(4.149| 1.000 1.000
9 8.00 (10.00|6.00|0.00|0.00{0.00|0.00(0.00 1.000 1.000 0.05(0.21]0.00(0.00|0.00 1.000 1.000
10 1.60 | 6.00 [1.80|5.50(3.50|0.00{0.00|0.00 1.000 1.000 5.50|3.50(0.00|0.00{0.00 1.000 1.000
11 8.00 | 7.00 |4.60|0.00|0.53|0.00|0.00{0.33 0.932 0.928 0.05(0.51|0.17(0.00{0.00 0.964 1.000
12 6.40 | 6.70 |4.00(0.05]|0.61(0.24]0.00(0.00 0.943 1.000 0.05(0.54]0.00(0.00|0.00 1.000 1.000
13 ]10.00|11.60(5.00|0.00{0.00|0.86(0.00|0.15 0.833 0.971 0.05(0.21|1.42(0.00|0.00 0.778 1.000
14 4.00 | 4.50 |3.21]0.05(0.61{0.25|0.00|0.00 0.927 1.000 0.05(0.5410.01(0.00{0.05 0.982 0.985
15 1.50 | 8.00 (2.12(0.75|0.21|0.00|0.00|0.46 0.820 0.781 0.69(0.22]0.44(0.00|0.00 0.827 1.000




Observations

Classical Model

Modified Model

. . Deviation | Efficiency . . Deviation | Efficiency
DMU X1 X2 Y |wlj|w2j| ut [ u- \ c z . . B1 B2 | wlj|w2j| u+ | u- % z . .

Ratio Estimates Ratio Estimates
1 1.00 | 7.00 {2.00|2.00{0.00|0.00{0.00|0.00 1.000 1.000 0.68(0.22]0.00(0.00|0.00 1.000 1.000
2 3.00 | 4.00 |2.50|0.45(1.26(0.00{0.00|0.00 1.000 1.000 0.46|1.26|0.00(0.00|0.00 1.000 1.000
3 3.50 | 4.30 |3.32(0.06/0.58(0.00|0.22(0.00 1.070 1.000 0.06(0.56|0.00(0.21|0.00 1.069 1.000
4 8.00 | 1.00 |1.00{0.00(2.00{0.00(0.00|0.00 1.000 1.000 0.05(1.60|0.00(0.00|0.00 1.000 1.000
5 1.50 {10.00(3.00|2.00{0.00|0.00{0.00|0.00 1.000 1.000 0.68(0.22]0.00(0.00{0.00 1.000 1.000
6 4.50 | 6.00 |5.75]0.05(0.56{0.00(1.59|0.00 1.383 1.000 0.05(0.50|0.00(1.66|0.00 1.407 1.000
7 7.50 | 9.00 |6.00(0.00/0.00({0.00|0.00(0.00 1.000 1.000 0.05(0.22]0.00(0.25|0.00 1.043 1.000
8 12.00| 1.50 |{2.00{0.00|0.00({0.00|0.00{0.00(1.000|3.616( 1.000 1.000 {0.050|0.220|0.05|1.60|0.00{0.00{0.00(4.208| 1.000 1.000
9 8.00 (10.00|6.00|0.00{2.00{0.00|0.00(0.00 1.000 1.000 0.05(0.22]0.00(0.00|0.00 1.000 1.000
10 1.60 | 6.00 [1.80|5.50(3.50|0.00{0.00|0.00 1.000 1.000 5.50|3.50(0.00|0.00{0.00 1.000 1.000
11 8.00 | 7.00 |4.60|0.05/0.56|0.30(0.00|0.00 0.939 1.000 0.05(0.50|0.19(0.00|0.00 0.961 1.000
12 6.40 | 6.70 |4.00(0.06/0.58(0.03|0.00(0.00 0.993 1.000 0.06(0.56|0.00(0.00{0.00 1.000 1.000
13 |10.00|11.60(5.00|0.00(0.00|1.00|0.00|0.00 0.833 1.000 0.05(0.22]1.43|0.00{0.02 0.775 0.995
14 4.00 | 4.50 |3.21]0.06(0.58|0.04|0.00|0.00 0.987 1.000 0.06(0.56|0.04(0.00|0.00 0.989 1.000
15 1.50 | 8.00 (2.12|0.68|0.22|0.44|0.00|0.00 0.828 1.000 0.68(0.22]0.44(0.00|0.00 0.828 1.000




Appendix C: Combined DEA and quantile regression model

compared with the suggested modified model (dataset 1)

Generated Data SDEA Modified SDEA

DMU | X~ U(1,10) | u~N(0,0.1) | v~|N(0,0.2)| e =u- v | exp(e) [ X*0.5 | exp(e)*(X*0.5)| w u \ SE w u \ SE
1 4.393 -0.257 0.156 -0.413 | 0.662 | 2.096 1.387 0.154|0.000| 0.800 | 0.008 | 0.154 | 0.000 | 0.800 | 0.008
2 2.982 0.088 0.103 -0.015 | 0.985 [ 1.727 1.702 0.318|0.000| 0.098 | 0.005 | 0.318 | 0.000 | 0.098 | 0.005
3 1.472 0.031 0.285 -0.254 | 0.776 [ 1.213 0.942 0.994|0.000| 0.094 | 0.032 | 0.994 | 0.000 | 0.094 | 0.032
4 4.019 0.108 0.048 0.060 | 1.062 |2.005 2.130 0.154|0.000 0.000 | 0.016 | 0.154 | 0.000 | 0.000 | 0.016
5 9.606 -0.115 0.108 -0.224 | 0.799 | 3.099 2.478 0.000| 0.000 0.453 | 0.028 | 0.086 | 0.000 | 0.477 | 0.021
6 8.951 0.027 0.211 -0.184 | 0.832 [ 2.992 2.490 0.154|0.000| 0.398 | 0.011| 0.154 | 0.000 | 0.398 | 0.011
7 5.648 0.100 0.200 -0.101 | 0.904 | 2.377 2.149 0.154|0.000| 0.231 | 0.000 | 0.154 | 0.000 | 0.231 | 0.000
8 3.648 -0.127 0.014 -0.141 | 0.868 | 1.910 1.658 0.318]0.000 0.354 | 0.010| 0.318| 0.000 | 0.354 | 0.010
9 9.290 -0.088 0.025 -0.113 | 0.893 | 3.048 2.723 0.086 | 0.000 0.205 | 0.014 | 0.086 | 0.000 | 0.205 | 0.014
10 1.645 0.002 0.255 -0.253 | 0.777 [ 1.282 0.996 0.944|0.000| 0.202 | 0.007 | 0.944 | 0.000 | 0.202 | 0.007
11 2.900 -0.052 0.180 -0.232 | 0.793 [ 1.703 1.350 0.318|0.000| 0.424 | 0.005 | 0.318 | 0.000 | 0.424 | 0.005
12 6.892 0.140 0.261 -0.120 | 0.887 | 2.625 2.327 0.154|0.000 0.244 | 0.003 | 0.154 | 0.000 | 0.244 | 0.003
13 9.112 0.060 0.287 -0.227 | 0.797 [ 3.019 2.405 0.154|0.000 0.507 [ 0.011|0.154 | 0.000 | 0.507 | 0.011
14 9.371 -0.019 0.036 -0.054 | 0.947 | 3.061 2.899 0.000|0.000|0.031|0.017|0.086 | 0.000 | 0.035| 0.016
15 2.384 0.083 0.042 0.041 |1.042 [1.544 1.609 0.318|0.000| 0.000 | 0.004 | 0.318 | 0.000 | 0.000 | 0.004
16 9.116 0.047 0.060 -0.013 | 0.987 | 3.019 2.980 0.154|0.067| 0.000 | 0.011|0.154 | 0.067 | 0.000| 0.011
17 7.533 -0.016 0.179 -0.195 | 0.823 [ 2.745 2.258 0.154|0.000| 0.412 | 0.006 | 0.154 | 0.000 | 0.412 | 0.006
18 8.026 -0.071 0.292 -0.363 | 0.695 | 2.833 1.970 0.154|0.000) 0.776 | 0.008 | 0.154 | 0.000 | 0.776 | 0.008
19 1.993 -0.023 0.460 -0.483 | 0.617 [ 1.412 0.871 0.318|0.000| 0.614 | 0.005 | 0.318 | 0.000 | 0.614 | 0.005
20 5.464 -0.041 0.470 -0.512 | 0.599 | 2.338 1.401 0.154|0.000 | 0.950 | 0.000 | 0.154 | 0.000 | 0.950 | 0.000
21 7.593 0.066 0.015 0.050 |1.052 [2.756 2.898 0.154]0.219 0.000 | 0.006 | 0.154 | 0.219 | 0.000 | 0.006
22 4.439 0.066 0.189 -0.123 | 0.884 | 2.107 1.862 0.154|0.000) 0.332{0.008 | 0.154| 0.000 | 0.332 | 0.008
23 4.259 0.089 0.004 0.085 | 1.089 | 2.064 2.247 0.154|0.081|0.000 | 0.011|0.154 | 0.081 | 0.000| 0.011
24 8.304 -0.074 0.081 -0.155 | 0.857 | 2.882 2.468 0.154|0.000| 0.320 | 0.009 | 0.154 | 0.000 | 0.320 | 0.009
25 5.841 -0.022 0.064 -0.087 | 0.917 | 2.417 2.216 0.154|0.000| 0.194 | 0.000 | 0.154 | 0.000 | 0.194 | 0.000
26 4.060 -0.128 0.080 -0.207 | 0.813 | 2.015 1.638 0.154|0.000 0.498 | 0.015| 0.154 | 0.000 | 0.498 | 0.015
27 3.211 -0.003 0.203 -0.206 | 0.814 [ 1.792 1.459 0.318]0.000) 0.414 | 0.007 | 0.318 0.000 | 0.414 | 0.007
28 9.658 0.029 0.231 -0.202 | 0.817 | 3.108 2.540 0.000|0.000|0.390 | 0.031| 0.086 | 0.000 | 0.419 | 0.022
29 5.075 -0.077 0.128 -0.206 | 0.814 | 2.253 1.834 0.154|0.000 | 0.458 | 0.002 | 0.154 | 0.000 | 0.458 | 0.002
30 1.926 0.138 0.026 0.112 | 1.118 [1.388 1.552 0.318]0.088| 0.000 | 0.006 | 0.318 | 0.088 | 0.000 | 0.006
31 6.825 -0.023 0.035 -0.058 | 0.943 [ 2.612 2.464 0.154|0.000 0.096 | 0.003 | 0.154 | 0.000 | 0.096 | 0.003
32 9.591 -0.042 0.013 -0.055 | 0.946 | 3.097 2.930 0.000| 0.000| 0.000 | 0.028 | 0.086 | 0.000 | 0.023 | 0.021
33 8.381 0.055 0.132 -0.077 | 0.926 | 2.895 2.680 0.154|0.000| 0.120 | 0.009 | 0.154 | 0.000 | 0.120 | 0.009
34 7.155 -0.213 0.005 -0.218 | 0.804 | 2.675 2.151 0.154|0.000| 0.461 | 0.004 | 0.154 | 0.000 | 0.461 | 0.004
35 7.050 -0.049 0.227 -0.275 | 0.759 | 2.655 2.016 0.154|0.000| 0.579 | 0.004 | 0.154 | 0.000 | 0.579 | 0.004
36 2.998 0.068 0.068 0.000 |1.000[1.732 1.732 0.318]0.000 0.073 | 0.005 | 0.318 0.000 | 0.073 | 0.005
37 6.420 0.058 0.152 -0.094 | 0.910 | 2.534 2.306 0.154|0.000| 0.192 | 0.001 | 0.154 | 0.000 | 0.192 | 0.001
38 6.897 0.062 0.136 -0.074 | 0.929 | 2.626 2.439 0.154|0.000| 0.133 | 0.003 | 0.154 | 0.000 | 0.133 | 0.003
39 9.319 0.121 0.044 0.077 | 1.080 | 3.053 3.296 0.0000.366 | 0.000 | 0.015| 0.086 | 0.366 | 0.000 | 0.015
40 4.926 -0.046 0.048 -0.094 | 0.910 | 2.219 2.021 0.154|0.000 0.248 | 0.002 | 0.154 | 0.000 | 0.248 | 0.002
41 2.352 -0.128 0.087 -0.215 | 0.807 | 1.534 1.237 0.318|0.000| 0.362 | 0.004 | 0.318| 0.000 | 0.362 | 0.004
42 6.820 0.118 0.260 -0.142 | 0.868 | 2.612 2.266 0.154|0.000| 0.294 | 0.003 | 0.154 | 0.000 | 0.294 | 0.003
43 2.526 0.055 0.123 -0.068 | 0.934 | 1.589 1.485 0.318|0.000| 0.170 | 0.004 | 0.318| 0.000 | 0.170 | 0.004
44 8.840 -0.113 0.144 -0.256 | 0.774 [ 2.973 2.301 0.154|0.000| 0.570 | 0.010| 0.154| 0.000 | 0.570| 0.010
45 6.756 0.079 0.043 0.036 |1.036[2.599 2.693 0.154]0.143) 0.000 | 0.002 | 0.154 | 0.143 | 0.000 | 0.002
46 9.997 -0.007 0.106 -0.113 | 0.893 | 3.162 2.825 0.000| 0.000| 0.106 | 0.053 | 0.086 | 0.000 | 0.164 | 0.030
47 8.749 0.082 0.152 -0.069 | 0.933 [ 2.958 2.759 0.154|0.000| 0.097 | 0.010| 0.154 | 0.000 | 0.097 | 0.010
48 6.540 0.132 0.148 -0.016 | 0.984 | 2.557 2.517 0.154|0.000 0.000 | 0.002 | 0.154 | 0.000 | 0.000 | 0.002
49 1.268 -0.053 0.237 -0.290 | 0.748 [ 1.126 0.843 0.944|0.000 | 0.000 | 0.080 | 0.944 | 0.000 | 0.000 | 0.080
50 6.879 -0.096 0.221 -0.317 | 0.728 | 2.623 1.910 0.154|0.000| 0.659 | 0.003 | 0.154 | 0.000 | 0.659 | 0.003
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Appendix D: Combined DEA and quantile regression model

compared with the suggested modified model (dataset 2)

Generated Data SDEA Modified SDEA
DMU | X~ U(1,10) | u~N(0,0.1) | v~|N(0,0.2)| | €=u-v|exp(e) | X*0.5 | exp(e)*(X*0.5) | w u Y SE w u v SE
1 2.283 0.112 0.398 -0.286 | 0.751 [ 1.511 1.135 0.406 | 0.000 | 0.257 | 0.014 | 0.406 | 0.000 | 0.257 [ 0.014
2 6.690 0.108 0.109 -0.001 | 0.999 | 2.586 2.583 0.1710.000 | 0.002 | 0.000 | 0.171 | 0.000 | 0.002 | 0.000
3 2.223 -0.045 0.045 -0.090 | 0.914 | 1.491 1.362 0.406 | 0.000 | 0.005 | 0.015 | 0.406 | 0.000 | 0.005 | 0.015
4 5.716 -0.061 0.094 -0.155 | 0.856 [ 2.391 2.048 0.237(0.000 | 0.336 | 0.000 | 0.237 | 0.000 | 0.336 | 0.000
5 6.737 -0.121 0.522 -0.643 | 0.526 | 2.596 1.365 0.1710.000|1.229 | 0.000 | 0.171] 0.000 | 1.229 | 0.000
6 7.085 -0.018 0.026 -0.045 | 0.956 | 2.662 2.545 0.171]0.000 | 0.108 | 0.000 | 0.171 | 0.000 | 0.108 | 0.000
7 8.036 0.199 0.259 -0.059 | 0.942 | 2.835 2.671 0.1710.000 | 0.145 | 0.000 | 0.171 | 0.000 | 0.145 | 0.000
8 4.727 0.020 0.154 -0.134 | 0.875|2.174 1.902 0.237]0.000 | 0.248 | 0.001 | 0.237 ] 0.000 | 0.248 | 0.001
9 6.422 0.009 0.062 -0.052 | 0.949 [ 2.534 2.405 0.171{0.000 | 0.135 | 0.000 | 0.171 | 0.000 | 0.135 | 0.000
10 6.493 -0.276 0.046 -0.322 | 0.725 | 2.548 1.847 0.171]0.000 | 0.705 | 0.000 | 0.171 | 0.000 | 0.705 | 0.000
11 8.572 0.005 0.015 -0.010 | 0.990 | 2.928 2.898 0.000 | 0.000 | 0.000 | 0.001 | 0.171 | 0.000 | 0.010 | 0.000
12 9.695 -0.165 0.008 -0.173 | 0.841 | 3.114 2.618 0.000 | 0.000 | 0.280 | 0.047 | 0.171 | 0.000 | 0.482 | 0.000
13 8.457 0.155 0.222 -0.067 | 0.935 [ 2.908 2.720 0.171]0.000 | 0.168 | 0.000 [ 0.171 | 0.000 | 0.168 | 0.000
14 5.601 -0.011 0.000 -0.011 | 0.989 | 2.367 2.340 0.237]0.000 | 0.016 | 0.000 | 0.237 | 0.000 | 0.016 | 0.000
15 1.404 0.055 0.205 -0.150 | 0.861 | 1.185 1.020 0.463 0.000 | 0.000 | 0.027 | 0.463 | 0.000 | 0.000 | 0.027
16 4.080 0.027 0.246 -0.219 | 0.803 | 2.020 1.623 0.2370.000 | 0.374 [ 0.001 | 0.237 | 0.000 | 0.374 | 0.001
17 2.095 0.086 0.269 -0.183 | 0.833 | 1.447 1.206 0.406 | 0.000 | 0.109 | 0.018 | 0.406 | 0.000 | 0.109 | 0.018
18 1.653 -0.050 0.074 -0.124 | 0.883 [ 1.286 1.136 0.406 | 0.000 | 0.000 | 0.023 | 0.406 | 0.000 | 0.000 | 0.023
19 4.982 -0.186 0.113 -0.299 | 0.742 | 2.232 1.656 0.2370.000 | 0.554 | 0.000 | 0.237 | 0.000 | 0.554 | 0.000
20 5.799 0.008 0.048 -0.040 | 0.961 | 2.408 2.314 0.237]0.000 | 0.090 | 0.000 | 0.237 | 0.000 | 0.090 | 0.000
21 7.413 -0.074 0.007 -0.081 | 0.922 | 2.723 2.511 0.1710.000 | 0.198 | 0.000 | 0.171 | 0.000 | 0.198 | 0.000
22 6.256 0.251 0.099 0.152 | 1.164 | 2.501 2.913 0.237]0.401 | 0.000 | 0.000 | 0.237 | 0.401 | 0.000 | 0.000
23 4.033 0.017 0.293 -0.275 | 0.759 | 2.008 1.525 0.237(0.000 | 0.460 | 0.001 | 0.237 | 0.000 | 0.460 | 0.001
24 7.437 0.000 0.090 -0.090 | 0.914 | 2.727 2.492 0.171]0.000 | 0.222 [ 0.000 | 0.171 ] 0.000 | 0.222 | 0.000
25 8.988 0.097 0.184 -0.086 | 0.917 | 2.998 2.751 0.000 | 0.000 | 0.147 | 0.010 [ 0.171 | 0.000 | 0.228 | 0.000
26 5.206 0.204 0.212 -0.008 | 0.992 | 2.282 2.263 0.2370.000 | 0.000 | 0.000 | 0.237 | 0.000 | 0.000 | 0.000
27 6.872 0.038 0.056 -0.018 | 0.982 | 2.621 2.575 0.171]0.000 | 0.041 | 0.000 | 0.171 | 0.000 | 0.041 | 0.000
28 4.651 -0.038 0.121 -0.159 | 0.853 | 2.157 1.840 0.237]0.000 | 0.292 | 0.001 | 0.237 | 0.000 | 0.292 | 0.001
29 4.330 0.160 0.111 0.049 | 1.050 | 2.081 2.186 0.237]0.130|0.000 | 0.001 | 0.237] 0.130 | 0.000 | 0.001
30 2.535 -0.073 0.139 -0.213 | 0.808 [ 1.592 1.287 0.406 | 0.000 | 0.207 | 0.010 | 0.406 | 0.000 | 0.207 | 0.010
31 2.343 0.033 0.111 -0.078 | 0.925 | 1.531 1.416 0.406 | 0.000 | 0.000 | 0.013 | 0.406 | 0.000 | 0.000 | 0.013
32 4.089 0.003 0.293 -0.290 | 0.748 | 2.022 1.513 0.237]0.000 | 0.485 | 0.001 | 0.237 [ 0.000 | 0.485 | 0.001
33 2.537 -0.066 0.112 -0.177 | 0.838 | 1.593 1.334 0.406 | 0.000 | 0.161 | 0.010 | 0.406 | 0.000 | 0.161 | 0.010
34 5.445 -0.081 0.032 -0.113 | 0.893 [ 2.333 2.083 0.237]0.000 | 0.236 | 0.000 | 0.237 | 0.000 | 0.236 | 0.000
35 9.137 0.146 0.242 -0.096 | 0.908 | 3.023 2.745 0.000| 0.000 | 0.153 | 0.016 | 0.171 | 0.000 | 0.260 | 0.000
36 5.080 0.075 0.271 -0.197 | 0.822 | 2.254 1.852 0.237]0.000 | 0.382 | 0.000 | 0.237 | 0.000 | 0.382 | 0.000
37 2.632 0.035 0.120 -0.084 | 0.919 [ 1.622 1.491 0.406 | 0.000 | 0.042 | 0.008 | 0.406 | 0.000 | 0.042 | 0.008
38 8.543 0.013 0.012 0.001 | 1.001 | 2.923 2.927 0.000| 0.029 | 0.000 | 0.001 | 0.171 ] 0.024 | 0.000 | 0.000
39 4.493 0.005 0.387 -0.382 | 0.683 [ 2.120 1.447 0.237]0.000 | 0.647 | 0.001 | 0.237 [ 0.000 | 0.647 | 0.001
40 8.513 0.169 0.079 0.090 | 1.094 |2.918 3.192 0.171]0.295|0.000 | 0.000 | 0.171 ] 0.295 | 0.000 | 0.000
41 3.339 0.163 0.040 0.124 |1.132]1.827 2.068 0.237]0.247 | 0.000 | 0.000 | 0.237 | 0.247 | 0.000 | 0.000
42 6.385 0.081 0.060 0.021 | 1.021|2.527 2.579 0.1710.046 | 0.000 | 0.000 | 0.171 | 0.046 | 0.000 | 0.000
43 3.550 0.026 0.178 -0.152 | 0.859 | 1.884 1.619 0.237]0.000 | 0.252 | 0.000 | 0.237 | 0.000 | 0.252 | 0.000
44 8.715 -0.059 0.333 -0.393 | 0.675 [ 2.952 1.994 0.000 | 0.000 | 0.904 | 0.003 [ 0.171 | 0.000 | 0.938 | 0.000
45 9.739 -0.162 0.099 -0.261 | 0.771|3.121 2.405 0.000 | 0.000 | 0.493 [ 0.050 | 0.171 ] 0.000 | 0.703 | 0.000
46 9.531 0.057 0.144 -0.088 | 0.916 | 3.087 2.828 0.000 | 0.000 | 0.069 | 0.036 | 0.171 | 0.000 | 0.243 | 0.000
47 6.101 -0.092 0.108 -0.200 | 0.819 | 2.470 2.022 0.237]0.000 | 0.453 [ 0.000 | 0.237 | 0.000 | 0.453 | 0.000
48 3.208 0.015 0.150 -0.136 | 0.873 [1.791 1.564 0.406 | 0.000 | 0.203 | 0.001 | 0.406 | 0.000 | 0.203 | 0.001
49 1.856 -0.085 0.311 -0.396 | 0.673 [ 1.362 0.917 0.406 | 0.000 | 0.301 | 0.021 | 0.406 | 0.000 | 0.301 | 0.021
50 9.082 -0.113 0.041 -0.154 | 0.857 | 3.014 2.584 0.000| 0.000|0.314 (0.013 | 0.171] 0.000 | 0.411 | 0.000
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Appendix E: Sensitivity analysis report for the weight “c” using the

data in section 3.5.2

VV.L:MQj
Up.L:u/
Un.L: U

\/J.:lG

-——- 54 PARAMETER result

Value of C Z
1 0.000 0.000
2 0.050 0.233
3 0.100 0.465
4 0.150 0.698
5 0.200 0.930
6 0.250 1.163
7 0.300 1.395
8 0.350 1.628
9 0.400 1.860
10 0.450 2.093
11 0.500 2.325
12 0.550 2.558
13 0.600 2.791
14 0.650 3.023
15 0.700 3.256
16 0.750 3.393
17 0.800 3.454
18 0.850 3.501
19 0.900 3.548
20 0.950 3.595
21 1.000 3.616
22 1.050 3.616
23 1.100 3.616
24 1.150 3.616
25 1.200 3.616
26 1.250 3.616
-———- 52 PARAMETER C = 0.000
-———- 52 VARIABLE W.L

1 2 3 4 5 6

1 2.000 0.670 0.400 2.000
2 1.617 1.248 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.400 2.000
2 2.000 3.500 0.083 0.833 1.248

—-——— 52 VARIABLE Up.L

( ALL 0.000 )

-——= 52 VARIABLE Un.L
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( ALL 0.0

00

)

=== 52 VARIABLE V.L
11 1.233, 12 1.383, 13 1.000, 14 0.560, 15 0.880
-——= 52 PARAMETER C = 0.050
-———- 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L
( ALL 0.000 )
-—== 52 VARIABLE Un.L
( ALL 0.000 )
-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-—== 52 PARAMETER C = 0.100
-——- 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L
( ALL 0.000 )
-——- 52 VARIABLE Un.L
( ALL 0.000 )
-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-——= 52 PARAMETER C = 0.150
-———- 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
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2 2.000 3.500 0.083 1.034 1.211 0.148
-———- 52 VARIABLE Up.L

( ALL 0.000 )
-———- 52 VARIABLE Un.L

( ALL 0.000 )
-———- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-——= 52 PARAMETER C = 0.200
-——- 52 VARIABLE W.L

1 2 3 4 5 6

1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L

( ALL 0.000 )
-—== 52 VARIABLE Un.L

( ALL 0.000 )
-——= 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
———= 52 PARAMETER C = 0.250
-——- 52 VARIABLE W.L

1 2 3 4 5 6

1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L

( ALL 0.000 )
-———- 52 VARIABLE Un.L

( ALL 0.000 )
-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-——= 52 PARAMETER C = 0.300
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-—— 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
=== 52 VARIABLE Up.L
( ALL 0.000 )
-———- 52 VARIABLE Un.L
( ALL 0.000 )
-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-—== 52 PARAMETER C = 0.350
-—== 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——= 52 VARIABLE Up.L
( ALL 0.000 )
-——- 52 VARIABLE Un.L
( ALL 0.000 )
-——= 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
———= 52 PARAMETER C = 0.400
-——- 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L
( ALL 0.000 )

-——= 52 VARIABLE Un.L
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( ALL 0.0

00

)

=== 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-——= 52 PARAMETER C = 0.450
-———- 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L
( ALL 0.000 )
-—== 52 VARIABLE Un.L
( ALL 0.000 )
-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-—== 52 PARAMETER C = 0.500
-——- 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L
( ALL 0.000 )
-——- 52 VARIABLE Un.L
( ALL 0.000 )
-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-——= 52 PARAMETER C = 0.550
-———- 52 VARIABLE W.L
1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
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2 2.000 3.500 0.083 1.034 1.211 0.148
-———- 52 VARIABLE Up.L

( ALL 0.000 )
-———- 52 VARIABLE Un.L

( ALL 0.000 )
-———- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-——= 52 PARAMETER C = 0.600
-——- 52 VARIABLE W.L

1 2 3 4 5 6

1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L

( ALL 0.000 )
-—== 52 VARIABLE Un.L

( ALL 0.000 )
-——= 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
———= 52 PARAMETER C = 0.650
-——- 52 VARIABLE W.L

1 2 3 4 5 6

1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
-——- 52 VARIABLE Up.L

( ALL 0.000 )
-———- 52 VARIABLE Un.L

( ALL 0.000 )
-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-——= 52 PARAMETER C = 0.700
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52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.670 0.372 2.000
2 1.617 1.211 2.000 0.083
+ 8 10 11 12 14 15
1 5.500 0.121 0.372 1.114
2 2.000 3.500 0.083 1.034 1.211 0.148
=== 52 VARIABLE Up.L

( ALL 0.000 )
-———- 52 VARIABLE Un.L
( ALL 0.000 )

-——- 52 VARIABLE V.L
11 1.233, 12 1.295, 13 1.000, 14 0.538, 15 0.585
-—== 52 PARAMETER C = 0.750
-—== 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.670 0.139 2.000
2 1.617 0.892 2.000 0.342
+ 8 10 11 12 14 15
1 5.500 0.139 0.139 0.902
2 2.000 3.500 0.342 0.892 0.892 0.183
-——= 52 VARIABLE Up.L
11 0.131, 12 0.644
-——- 52 VARIABLE Un.L
6 0.775
-——= 52 VARIABLE V.L
11 0.586, 13 1.000, 14 0.358, 15 0.514
-——- 52 PARAMETER C = 0.800
-——- 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.670 0.045 2.000
2 1.617 0.609 2.000 0.533
+ 8 10 11 12 14 15
1 5.500 0.045 0.045 0.753
2 2.000 3.500 0.533 0.609 0.609 0.208
-——- 52 VARIABLE Up.L
12 0.240, 13 0.646, 15 0.464

52 VARIABLE Un.L
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6 1.350

———- 52 VARIABLE V.L
11 0.333, 13 0.354, 14 0.254
-——= 52 PARAMETER C 0.850
-———- 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.670 0.045 2.000
2 1.617 0.609 2.000 0.533
+ 8 10 11 12 14 15
1 5.500 0.045 0.045 0.753
2 2.000 3.500 0.533 0.609 0.609 0.208
-——- 52 VARIABLE Up.L
12 0.240, 13 0.646, 15 0.464
-—== 52 VARIABLE Un.L
6 1.350
-——- 52 VARIABLE V.L
11 0.333, 13 0.354, 14 0.254
-—== 52 PARAMETER C 0.900
-——- 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.670 0.045 2.000
2 1.617 0.609 2.000 0.533
+ 8 10 11 12 14 15
1 5.500 0.045 0.045 0.753
2 2.000 3.500 0.533 0.609 0.609 0.208
-——- 52 VARIABLE Up.L
12 0.240, 13 0.855, 14 0.254
-——- 52 VARIABLE Un.L
6 1.350
-——- 52 VARIABLE V.L
11 0.333, 13 0.145, 15 0.464
-——= 52 PARAMETER C 0.950
-———- 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.670 0.045 2.000
2 1.617 0.609 2.000 0.533
+ 8 10 11 12 14 15
1 5.500 0.045 0.045 0.753
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2 2.000 3.500 0.533 0.609 0.609 0.208
———- 52 VARIABLE Up.L
12 0.240, 13 0.855, 14 0.254
-———- 52 VARIABLE Un.L
6 1.350
———- 52 VARIABLE V.L
11 0.333, 13 0.145, 15 0.464
-——= 52 PARAMETER C = 1.000
-——- 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.454 0.062 2.000 0.050
2 1.257 0.583 2.000 0.564
+ 8 10 11 12 14 15
1 5.500 0.050 0.062 0.062 0.679
2 2.000 3.500 0.564 0.583 0.583 0.220
-——- 52 VARIABLE Up.L
11 0.298, 12 0.028, 13 1.000, 14 0.042, 15 0.440
-—== 52 VARIABLE Un.L
3 0.216, 6 1.592
-——- 52 VARIABLE V.L

( ALL 0.000 )

———= 52 PARAMETER C = 1.050
-——- 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.454 0.062 2.000 0.050
2 1.257 0.583 2.000 0.564
+ 8 10 11 12 14 15
1 5.500 0.050 0.062 0.062 0.679
2 2.000 3.500 0.564 0.583 0.583 0.220
-——- 52 VARIABLE Up.L
11 0.298, 12 0.028, 13 1.000, 14 0.042, 15 0.440
-———- 52 VARIABLE Un.L
3 0.216, 6 1.592
-——- 52 VARIABLE V.L

( ALL 0.000 )

-——= 52 PARAMETER C = 1.100



52

VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.454 0.062 2.000 0.050
2 1.257 0.583 2.000 0.564
+ 8 10 11 12 14 15
1 5.500 0.050 0.062 0.062 0.679
2 2.000 3.500 0.564 0.583 0.583 0.220
-———- 52 VARIABLE Up.L
11 0.298, 12 0.028, 13 1.000, 14 0.042, 15 0.440
-———- 52 VARIABLE Un.L
3 0.216 6 1.592
-——- 52 VARIABLE V.L

( ALL 0.000 )

-—== 52 PARAMETER C = 1.150
-—== 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.454 0.062 2.000 0.050
2 1.257 0.583 2.000 0.564
+ 8 10 11 12 14 15
1 5.500 0.050 0.062 0.062 0.679
2 2.000 3.500 0.564 0.583 0.583 0.220
-——= 52 VARIABLE Up.L
11 0.298, 12 0.028, 13 1.000, 14 0.042, 15 0.440
-——- 52 VARIABLE Un.L
3 0.216 6 1.592
-——= 52 VARIABLE V.L

( ALL 0.000 )

———= 52 PARAMETER C = 1.200
-——- 52 VARIABLE W.L

1 2 3 4 5 6
1 2.000 0.454 0.062 2.000 0.050
2 1.257 0.583 2.000 0.564
+ 8 10 11 12 14 15
1 5.500 0.050 0.062 0.062 0.679
2 2.000 3.500 0.564 0.583 0.583 0.220
-——- 52 VARIABLE Up.L
11 0.298, 12 0.028, 13 1.000, 14 0.042, 15 0.440

52

VARIABLE Un.L
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3 0.216, 6 1.592

-———- 52 VARIABLE V.L

( ALL

0.0

00

)

-——= 52 PARAMETER C

-———= 52 VARIABLE W.L

1

1 2.000

2 2.000

2

0.454
1.257

10

5.500
3.500

-———= 52 VARIABLE Up.L

11 0.298,

12 0.028,

-——- 52 VARIABLE Un.L

3 0.216, 6 1.592

———= 52 VARIABLE V.L

[N}

[oNe)

.062
.583

11

.050
.564

13 1.000,

( ALL

0.0

00

14

)

2.000
12

0.062
0.583

.042,

1.250

2.000

14

0.062
0.583

15 0.440

0.050
0.564

15

0.679
0.220

the coding in GAMS software for sensitivity analysis of the weight “c”

Sets

1 index of input /1,2/

r index of output

/1/

j index of DMUs /1*11/

Iteration /1*30/;
Alias (k,3J);
Scalar C /0.95/;

Parameter

result (Iteration, *);

table

X(1i,3) Inputs
1

1 1

2 7

=W N

table
Y(r,j) Output
1

1 2 2.5

Variables

Z

Positive variable
Positive Variable
Positive Variable
Positive Variable

Equations
ObjectiveFunction
Col(j,k)

Co2;

*Co3(3);

ObjectiveFunction

= o

w U

O 33
U1

Z =e= sum((3J),Up(J)+Un(J)+C*V(J)) ;
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Col(j,k) ..o Sum( (1), (X(1,k)-X(1,
V(k)+Up(j)-Un(3j)-Up(k)+Un(k) =g= Sum((r),
Co2 .. sum((J),Up(Jj)-Un(3))
*Co3(3) ..o W("1",3) =g= 0.333;

Model StochasticDEA /all/;

Loop (Iteration,
CcC =C + 0.05
Solve StochasticDEA using LP Minimizing Z;

result (Iteration, "Value of C")= C;
result (Iteration, "Z") = Z.1;
*result (Iteration, "W") = W.1;
*result (Iteration, "Up") = Up.1l;
*result (Iteration, "Un") = Un.l;
*result (Iteration, "V") = V.1;

) ;
Display result;
execute_unload 'FirstResult.gdx';
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