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ABSTRACT 

Data Envelopment Analysis (DEA) was introduced under the name of a deterministic 

model assuming all the deviations from the estimated production frontier were one-

sided indicating technical inefficiency. Biased estimations of inefficiency and 

production are provided by the model when deviations do not originate only from 

inefficiency but also from measurement errors. In 1988, Banker developed Data 

Envelopment Analysis as a stochastic model to reflect inefficiency and statistical noise 

simultaneously. However, from deterministic to stochastic, the problem with weak 

efficient frontiers and related biased results stayed the same. 

This dissertation proposes a modification over Banker’s stochastic DEA (SDEA) 

model by applying a limitation on the coefficients of inputs in the original model in 

order to change weak efficient hyperplane(s) while keeps general assumptions behind 

production function unaffected. This can change the production possibility set (PPS) 

while the frontier has the potential to give a better representation of the true production 

frontier. Comparing the results from the stochastic model and suggested modified 

model shows that the achieved model is providing a new benchmark for relative 

efficiency evaluation and production frontier estimation. 

Keywords: Data Envelopment Analysis (DEA), Stochastic Data Envelopment 

Analysis (SDEA), Modified Model, Weak Efficient Frontier 
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ӦZ 

Veri Zarflama Analizi (VZA), tahmin edilen üretim sınırından tüm sapmaların teknik 

verimsizliği gösteren tek taraflı olduğu varsayılarak deterministik bir model adı altında 

tanıtıldı. Sapmaların yalnızca verimsizlikten değil aynı zamanda ölçüm hatalarından 

da kaynaklandığında, model tarafından sapmaların verimsizlik ve üretim tahminleri 

sağlanır. 1988'de Banker, verimsizliği ve istatistiksel gürültüyü eş zamanlı yansıtmak 

için stokastik bir model olarak Veri Zarflama Analizini geliştirdi. Bununla birlikte, 

deterministikten stokastiklere Zayıf verimli sınırlar ve ilgili önyargılı sonuçlar ile ilgili 

sorun aynı kaldı. 

Bu tez, Banker'in stokastik DEA (SDEA) modeli üzerinde, zayıf etkin hiper düzlem 

(ler) i değiştirmek için orijinal modeldeki girdi katsayılarına bir sınırlama uygulayarak, 

üretim fonksiyonunun arkasındaki genel varsayımları etkilenmeden koruyarak bir 

değişiklik önermektedir. Bu, üretim olasılık kümesini (PPS) değiştirebilirken, sınır, 

gerçek üretim sınırının daha iyi bir temsilini verme potansiyeline sahiptir. Stokastik 

model ve önerilen modifiye modelden elde edilen sonuçların karşılaştırılması, elde 

edilen modelin göreceli verimlilik değerlendirmesi ve üretim sınırı tahmini için yeni 

bir kriter sağladığını göstermektedir. 

Anahtar Kelimeler: Veri Zarflama Analizi (VZA), Stokastik Veri Zarflama Analizi 

(SDEA), Değiştirilmiş Model, Zayıf Verimli sınır   
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Chapter 1 

1 INTRODUCTION 

1.1 Problem Description 

Since Farrell (1957) presented the terminology of inefficiency and its basic structure 

of measuring, a race for developing mathematical methods and econometric 

approaches to estimate inefficiency and optimal frontier started. Following Farrell’s 

intentions, Charnes et al. (1978) introduced the initial DEA model (CCR) and years 

later, Banker et al. (1984) provided the BCC model under variable returns to scale 

assumption. From there on, DEA has been used in a broad range of applications and 

played a significant role in operation research studies. 

Data envelopment analysis (DEA) is an effective technique for evaluating the relative 

efficiency of similar decision-making units (DMUs) with multiple inputs and outputs. 

according to observed data and a set of assumptions, DEA creates a reference 

technology set named as production possibility set (PPS), in which frontier, 

distinguishes the comparatively most efficient DMUs. A DMU is categorized as 

efficient or inefficient dependent on its location relative to the mentioned frontier. 

The PPS frontier is constructed of two distinct kinds of facets: 

1- FDEFs (Full Dimensional Efficient Facets) 

2- FDWFs (Full Dimensional Weak Facets) 
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Ever since the DEA method was introduced, many researches have been carried out 

on identifying efficient frontiers and DMUs under their assessment. However, less 

attention has been paid to the weak efficient frontier and the corresponding DMUs. 

The weak efficient frontier which is created to satisfy convexity constraint could be 

counted as a drawback in basic DEA models since in sensitivity analysis, eliminating 

weak efficient DMUs and efficient DMUs on the intersection of efficient and weak 

efficient facets has no effect on the stability region. In addition to this, as in many 

production functions such as translog or logarithmic production functions like Cobb-

Douglas, it is more realistic not to have a PPS in which by changing Inputs, Output 

doesn’t change or vice versa.  

Daneshvar et al. (2014) introduced a modified BCC model obtained by facet analysis, 

resulting in a developed stability region and a new benchmark for scoring formerly 

weak efficient DMUs and inefficient DMUs which were compared to the weak 

efficient frontier.  

Daneshvar et al. (2014)’s paper became a motivation to examine the possibility of 

enhancing the PPS region in the stochastic DEA area. Certainly, Banker’s stochastic 

DEA model (Banker (1988)) as a fundamental model for estimating production 

function in the stochastic field, could be an excellent choice.  

In this thesis, Banker’s SDEA model has been considered to be modified by adding a 

new constraint in order to push the frontier to get close to the true underlying 

production function. This adjustment has been applied to two SDEA models 

introduced by Banker and numerical examples have been presented to have a better 

illustration. 
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1.2 Thesis Structure 

This work is divided into four chapters. In the first chapter, a general idea about the 

goal of this paper is given. The second chapter is devoted to the history of the related 

researches and the review of proposed methods. The methodology of the suggested 

modification and also corresponding numerical examples are discussed in chapter 3. 

Lastly, the conclusion and possible future studies are given in chapter 4.  
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Chapter 2 

2 REVIEW OF THE LITERATURE 

2.1 Frontier Estimation 

In decades, the effort for estimating production functions stating the highest amount 

of output given a set of inputs with determined technology has been progressed by 

econometricians and engineers. However, still, the gap between the theoretical 

approaches and empirical reality exists. Farrell (1957), started debating about the 

possibility of approximating production function. Since then, a variety of approaches 

toward the true efficient frontier were presented which can be grouped into two basic 

categories: parametric and nonparametric methods. The parametric method needs a 

functional mathematical frame for the frontier. This can be considered not only as its 

feature but also as a drawback (Seiford & Thrall (1990)) since predicting the behavior 

of production to specify its form is not easy. On the other hand, a nonparametric 

method needs no prior information about the production frontier (Bauer (1990)). As 

DEA has no need for assumptions to indicate functional form, it is categorized as a 

nonparametric approach. 

Efficient frontier analysis was classified by Lovell & Schmidt (1988) into four main 

classes: 

1. Pure programming method 

2. Modified programming method 

3. Deterministic statistical frontier method 
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4. Stochastic frontier method. 

These methods differ from one another in the use of statistical methods or 

mathematical programming to approximate the frontier, whether the frontier is 

imposed to be parametric or nonparametric, and the assumption on the stochastic or 

deterministic frontier. 

Farrell (1957) proposed pure programming method for the first time. In this method, 

mathematical programming is used to create a frontier out of the reference set to 

examine the efficiency relative to the mentioned frontier. This method was offered by 

Charnes et al. (1978) in the shape of data envelopment analysis and also Färe et al. 

(1985). More efforts have been done by Varian (1984) and Banker & Maindiratta 

(1988) on production possibility set. 

Pure programming method has a nonparametric characteristic allowing it to adapt 

without considering the inherent format of the actual efficient frontier. This approach 

envelops the data by constructing facets only by utilizing observations in the reference 

set. Lovell & Schmidt (1988) know this characteristic as the most reason to prefer pure 

programming over the rest approaches: 

Perhaps the most appealing characteristic of the pure programming approach 

is that the input set it constructs is the smallest well-behaved set containing all 

the data. Such a set is piecewise linear and the construction process achieves 

considerable flexibility because the breaks among the pieces are determined 

endogenously so as to fit the data as closely as possible. 

Lovell & Schmidt (1988), however, denotes the disadvantage of pure programming to 

be the fact that the frontier which envelopes the data is deterministic. 
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Modified programming method, the second type of efficient frontier analysis, was 

proposed by Farrell (1957). It also utilizes a series of arithmetical programs to build 

an efficient frontier. But the difference from pure programming is that in this method 

the purpose of using the programs is to estimate parameters of an anticipated functional 

form of the frontier. Therefore, it is considered as a parametric technique. 

Lovell & Schmidt (1988) express three drawbacks of the modified programming as 

follows: firstly, the modified programming method, similar to the pure programming, 

presents a deterministic frontier that only reflects deviations due to technical 

inefficiency. Secondly, this method has its complexity working with multiple outputs 

situation. Lastly, being parametric, forces the need for a correctly chosen functional 

form to obtain suitable parameters. 

Lovell and Schmidt's third category of efficient frontier analysis is the deterministic 

method which Afriat (1972) proposed and authors like Richmond (1974) and Greene 

(1980a), (1980b) developed the idea. This approach, as Lovell & Schmidt (1988) 

explain, envelops the data by a deterministic frontier, however, rather than 

mathematical programming, statistical techniques are used to estimate the frontier. 

Methods such as maximum likelihood and corrected ordinary least squares (COLS) 

are applied for frontier estimation as well as inefficiency density parameters associated 

with a supposed functional form. To confirm one sided deviations from the frontier, 

corrections are applied to the COLS method. Hypothesis tests about the frontier 

parameters are allowed when using statistical estimation. 

Similar to previously discussed methods, being deterministic is a disadvantage to 

deterministic method. Moreover, although Kopp & Diewert (1982) and Zieschang 
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(1983) adapted the modified programming method to deal with multiple outputs, but 

still handling this situation is a difficulty in deterministic method. In addition, 

hypothesis tests and parameter estimations are variant based on the frontier’s 

functional form and the distribution of the inefficiency terms. Also, increase in the 

requirements of sample size could be another burden. 

Last class in Lovell & Schmidt (1988)’s classification of frontier estimation methods 

is the stochastic approach. It was first suggested by Aigner et al. (1977) and Meeusen 

et al. (1977) where the frontier is allowed to be literally stochastic. There are other 

contributions in this area such as Schmidt & Lovell (1979) and Jondrow et al. (1982). 

In the stochastic frontier method, the error is constructed of two parts: inefficiency and 

random deviation. Like deterministic statistical and modified programming frontiers, 

Inefficiency variation is taken into account as a one-sided deviation term. Deviations 

from this nature are assumed to be caused by technical inefficiency in operations. On 

the other hand, random error is a two-sided deviation triggered from measurement 

errors, random perturbations and other stochastic sources of the system. Basically, 

stochastic frontier method can be considered as the extended deterministic statistical 

frontier method combined with a two-sided random deviation term. 

Since stochastic frontier method uses statistical devices such as corrected ordinary 

least squares or maximum likelihood, is counted as a parametric approach. Jondrow et 

al. (1982), under particular distribution assumptions, for the two error components 

obtained separate estimations based on conditional distributions. Although, the 

estimations don’t succeed to be statistically consistent, but using a distinct deviation 

for random factors allows DMUs to be inefficient due to reasons except system’s 
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inefficiency. This combination of random deviations into the model could be 

considered as the main contribution of this method over the rest three methods. 

As Lovell & Schmidt (1988) mention, the stochastic frontier method has weak points. 

The frontier and also error terms must be correctly assigned by related functional 

forms. In addition, sample sizes need to be increased in order to use statistical 

estimation techniques. Lastly, the multiple output inclusion in the model has been 

problematic. 

In more recent years, DEA has been compared with parametric methods in many 

researches. Three distinct deterministic methods were used by Bjurek et al. (1990) to 

examine the insurance offices’ efficiency. The observed efficiency scores obtained by 

using DEA, a quadratic production function, and a Cobb-Douglas function were 

slightly different. Banker et al. (1986) studied data envelopment analysis and translog 

estimation, to analyze hospital production. This research was continued by Banker et 

al. (1988) through simulated data analysis from a known parametric function. In terms 

of efficient or inefficient classification, they realized that DEA surpass translog 

estimation. Another result was that for larger samples, DEA efficiency estimates 

improved. Using Monte Carlo simulation, the performance of DEA and corrected 

ordinary least squares under the existence of measurement errors were investigated by 

Banker et al. (1993). By means of Cobb-Douglas frontiers, even in the presence of 

considerable measurement errors, DEA worked better than corrected ordinary least 

square (COLS) when nonclassical inefficiency distributions were presented. COLS 

acted better in classical distributions only if the sample size was fairly large while with 

relatively small sample sizes, DEA worked well in all considered cases. Like other 

studies, a single output case was considered. 
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2.2 Data Envelopment Analysis Models 

Data envelopment analysis evaluates the efficiency of separate DMUs by comparing 

them to a frontier or boundary made from the reference set. The most important benefit 

of utilizing DEA is that there is no need to assume a functional form for the efficient 

frontier. Hence, the efficiency scores as well as their reference points are conditional 

since they are dependent on the organizations that are included in the sample. As 

Cooper & Tone (1997) declare: 

The performance of a decision-making unit is considered to be fully DEA 

efficient if and only if the performance of other decision-making units does not 

provide evidence that some of its inputs or outputs could be improved without 

worsening some of its other inputs or outputs. 

considering this essential structure as a basis, the initial model originated from Charnes 

et al. (1978) (CCR) and soon extended into many other forms. The BCC model was 

created by Banker et al. (1984) (BCC) as an alternative model to isolate the scale 

efficiency concept. Charnes et al. (1985) suggested the additive model and 

multiplicative model was created by Charnes et al. (1982). More extensions of the 

mentioned models, their applications, and capability evaluation of DEA have directed 

to thousands of articles regarding its application. 

The goal of designing BCC was to particularly solve the problems concerning scale 

and technical efficiency as in CCR model they were aggregated. By adding a convexity 

constraint involving summation of the weightings of the under evaluation DMUs to 

equal one, the virtual DMUs with comparable scales to the real DMUs were created. 

Thus, by taking the CCR aggregate efficiency ratio to the merely technical efficiency 

of the BCC model, the scale efficiency could be defined. The only case that the 

aggregate efficiency of the CCR and BCC technical efficiency scores for a specific 
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DMU become equal is when DMU is of the optimal size. It should be noted that like 

all the DEA models, inputs and outputs in BCC and CCR are assumed positive in 

value. 

Seiford & Thrall (1990) modified the scale derivations of the CCR model by grouping 

weight limitations based on the allowed returns to scale. They precisely suggested four 

models by adding a constraint on the summation of the weights according to the 

measurement of a specific returns to scale (constant returns to scale (original CCR 

model), increasing returns to scale, decreasing returns to scale, variable returns to scale 

(original BCC model)). 

The multiplicative form of DEA was proposed by Charnes et al. (1982) in which a 

more classical Cobb-Douglas form was given to the efficient frontier. In this model, a 

log-linear envelopment is provided by utilizing the proportion of multiplication of 

exponentially weighted outputs over inputs while that of CCR model is a fraction of 

linear combinations. The multiplicative formulation can be altered to a linear 

programming using a logarithmic transformation. This model creates a piecewise log-

linear frontier which is different from traditional linear frontiers. Charnes et al. (1985) 

introduced a unique additive programming model by entering a convexity constraint 

for the weights into the dual form of the multiplicative model. 

Several other forms of DEA have been introduced during the years. Some of them are 

numerated here: Assurance Region approach by Thompson et al. (1990) and the Cone 

Ratio model by Charnes et al. (1989) and also Charnes et al. (1990), in which the effort 

was on restricting the efficient DMUs by controlling the possible multipliers. 

Concerning restrictions of weight flexibility, Dyson & Thanassoulis (1988) as well as 



11 

 

Wong & Beasley (1990)contributed by their researches. Banker & Morey (1986b), 

Kamakura (1988), and Rousseau & Semple (1993) have integrated DEA with 

categorical variables. Another integration was done by Banker & Morey (1986a) with 

nondiscretionary variables. Ordinal variables were included in DEA by Golany (1988), 

Cook & Kress (1991), and Cook et al. (1993), (1996). Data envelopment analysis with 

ordinal relationships was applied by Ali et al. (1991) to model time lag effects. 

2.3 Stochastic Aspects of DEA 

Generally, in most studies related to efficiency evaluation using DEA, the collected 

data is considered to be deterministic. Consequently, efficiency measurements are not 

assumed stochastic. What separates efficient DMUs from inefficient DMUs in a 

standard data envelopment analysis, is whether the efficiency value is one or not. In 

this way, any difference from an efficient score is only due to technical inefficiency. 

Huang & Li (1996) state that there is no place for stochastic variations in the data when 

using DEA. Deterministic approaches to random errors, like sensitivity analysis, still 

consider observations non-stochastic. Nonetheless, there are strong discussions in 

support of considering the data and in a result the frontier to be stochastic. 

The set of analyzed organizations by DEA mostly represent a sample of population 

Sengupta (1995). Alone, the sample data gives only limited knowledge about the 

frontier. Efficiency score derived from sample understandings may or may not reveal 

the true concealed efficiency of the comparable DMUs rather than just those in the 

analyzed set. Likewise, statistics computed from the sample, for instance ratio of 

efficient DMUs, are fundamentally sample statistics and accordingly obey some 

unidentified sampling distribution. 
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Sengupta (1995) was not the only one who mentioned that the frontier is sensitive to 

the sample size. If the number of observations in the sample increase, the technical 

efficiency of the DMUs often decrease because there is a possibility that the DMUs 

which are placed close to the frontier increase. Banker (1993) claimed that under 

certain circumstances, the estimated frontier by DEA can reach the true frontier 

asymptotically. With inserting observations into the sample, efficiency scores either 

decrease or stay constant. Therefore, while many other statistical methods are affected 

by sample size, frontier estimation methods that work only based on extremal points 

are affected even more severely. 

Another factor that can highly affect the efficiency scores in DEA is the choice of 

inputs and outputs. Epstein & Henderson (1989), along with others, have remarked 

that data envelopment analysis is sensitive to the selecting of variable. The fact that 

excluding critical factors can affect the outcomes of a DEA analysis was suggested in 

a research by Ahn & Seiford (1993). This conclusion not only holds for DEA but also 

is true about all the frontier analysis forms. 

Epstein & Henderson (1989), Huang & Li (1996), among others, implied that 

measurement error could have major impact on the efficiency score of a DMU. As 

previously described, frontier estimation methods are in general, based on just 

extremal points. Outliers as a result of measurement error can influence the frontier 

estimates. A method was suggested by Sengupta (1995) in which outliers could be 

recognized and removed from data. His suggestion for frontier estimation, however, is 

centered on central location measures and emphasizes that almost all of the deviation 

is because of measurement errors. 
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The DEA selected model can also alter the results of efficiency scores. The ratio, 

additive, and multiplicative models and their alternatives each measure dissimilar 

aspects of efficiency. Ahn et al. (1988) and Ahn & Seiford (1993) performed 

researches to study the sensitivity of efficiency values based on model specifications. 

To study the sensitivity of the efficiency to the model selection, some researchers like 

Alshare (1998), have assessed efficiency scores of certain organizations using various 

DEA models. Model specification as well as selecting proper factors are probably best 

determined in study-by-study basis and there is no general research to solve it. 

The notion of a severely deterministic frontier in which efficiency scores are fixed, is 

only logical under specific conditions. Effects of sampling, the observations quantity, 

the number of variables, choice of variable, and other error forms make the 

interpretation of deterministic efficiency scores extremely challenging. Nevertheless, 

many methods to stochastic DEA are proposed to deal with this problem. 

2.4 Proposed Solutions to Stochastic DEA 

Generally, for frontier analysis, two formations of error models are considered 

(Sengupta (1995)). For single output situation, the model with one error term is 

𝑦 = 𝑓(𝑥1, … , 𝑥𝑚) − ε 

𝜀 ≥ 0 

here 𝜀 is a stochastic term with one-sided error. In this state, all observations vary 

randomly and in the same direction from the frontier. This model was suggested by 

Schmidt (1976) to bring statistical properties into frontier estimation employing 

mathematical programming methods. Later, Aigner et al. (1977) presented the 

composed error model containing two error elements: a one-sided error 𝜔 and a 

symmetric error 𝜉. 
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𝑦 = 𝑓(𝑥, β) − ε 

𝜀 = 𝜔 + 𝜉 

𝜔 ≥ 0 𝑎𝑛𝑑 𝜉 𝑓𝑟𝑒𝑒 

𝜔 is defined as the deviation from the frontier created by factors that are controllable 

by the organization. On the other hand, component 𝜉 denotes incontrollable factors 

related to things like, as they call them, luck, machine performance, climate, 

measurement and observation errors, plus other kinds of random disturbance. 

Researches on DEA stochastic methods mostly tend to consider composed error. 

Some of the stochastic DEA approaches are pointed out here in this literature including 

Banker’s stochastic model, chance-constrained programming method and the 

"efficiency distribution approach" along with others. Moreover, statistical basics for 

DEA have been covered. 

The first stochastic data envelopment analysis (SDEA) model was offered by Banker 

(1988) presenting a linear programming model in which a piecewise linear frontier 

similar to DEA shape passes within the middle of the data. By restricting production 

to meet the famous Afriat constraints Afriat (1972), The SDEA model minimized 

absolute deviations from observations to a nonparametric frontier. Banker et al. (1991) 

used the model to analyze the significance of contextual variables and to compare the 

outcome with the stochastic frontier model. Banker & Maindiratta (1992) realized how 

to estimate the model by employing maximum likelihood with presumed functional 

form. 

In addition, the connections of stochastic DEA to quantile regression were discussed 

by Banker (1988). Specifically, a person can produce any practical quantile of the 
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inherent probability distribution by selecting the proper weights on the negative and 

positive residuals. In the event of equal weights, the median regression model is 

estimated by stochastic DEA without any required assumption on the production 

function. In another case when the underlying error distribution is normal distribution, 

then it is possible to use least squares rather than least absolute deviation to find 

maximum likelihood estimates. This extension was presented by Kuosmanen (2008) 

and continued by Kuosmanen & Johnson (2010). Wang et al. (2014) investigated the 

stochastic DEA and its connections to the nonparametric quantile regression. 

Moreover, in order to prevent crossing quantiles, the authors established an associated 

quantile function estimator and also studied estimation in a stochastic frontier 

framework. 

Although Banker (1988) linked stochastic DEA model with quantile regression, the 

article did not attempt to investigate the decision on the optimal quantile. According 

to Kuosmanen & Kortelainen (2012), the median regression could be applied and be 

corrected for the intercept like in COLS. Following the effort of Azzalini & Capitanio 

(2013), Jradi & Ruggiero (2019) provided comparisons between SDEA, quantile 

regression with correct and incorrect functional form and true production function. 

Then they discussed corresponding optimal weight considering specific known 

distribution for deviations. 

Banker et al. (2015) studied the sensitivity and stability of Banker’s SDEA. Three 

cases regarding to perturbations of all inputs, perturbations of output and simultaneous 

perturbations of inputs and output was studied.  
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Charnes & Cooper (1959) introduced chance-constrained programming and the 

concept was developed by Kall (1976) and other researchers. Applications to the 

model were examined by Sengupta (1987), Land et al. (1993), and Olesen & Petersen 

(1995). The approach was expanded by Huang & Li (1996) applying joint chance 

constraints. 

Fundamentally, in chance constrained programming, it is supposed that the linear 

constraints take place with some probability less than one. This method considered 

nonparametric since it does not require enforcing a functional form to the efficient 

frontier. As Olesen & Petersen (1995) stated, because there is a statistical basis in this 

model, random disturbances including measurement error are allowed. 

According to Land et al. (1993), chance constraint programming approach generates a 

frontier enveloping the sample observations of DMUs “most of the time”. This model 

is in consistent with composed error method, specially integrates the random error into 

the calculation of the frontier (Olesen & Petersen (1995)). 

Some questions were raised by Land et al. (1993) regarding using of chance constraint 

programming in DEA. The formulation of chance constrained give the permission to 

DMUs to go above the frontier with efficiency scores more than one. Land, Lovell, 

and Thore named these observations chance constrained hyper-efficient DMUs. 

Moreover, about setting the value of 𝑐, which is an essential component of the standard 

deviation in the probability constraints, they mentioned: 

. . . the greater the stochastic variability of outputs (the greater the coefficient 

c), the greater is the band of output territory that is permitted outside the 

envelope. The envelope then moves successively closer to any given 

observation and the efficiency ratio approaches 1.0. For data with large 

amounts of uncertainty, the efficiency scores will automatically be close to 
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unity. The empirical usefulness of the chance constrained DEA calculation 

may then be questioned. 

In continue, it is noted that the efficiency scores will increase as well, for given 

flexibility, under the condition that the tolerance level of the chance constraints is 

reduced. 

Land et al. (1993), however, acknowledged the advantages of merging a stochastic 

frontier with data envelopment analysis model. By creating buffers, deterministically 

inefficient observations turn to chance constrained efficient DMUs. In this way, the 

frontier is allowed to give permission to some random errors without supposing that 

the DMU is technically inefficient. They stated that this addition of random error 

allows DMUs to be ranked as efficient while there is slack in some outputs. 

An extended form of chance constrained approach was suggested by Olesen & 

Petersen (1995). Their model allows to evaluate DMUs in the existence of random 

multiple inputs and multiple outputs. Another stochastic DEA model exercising joint 

chance constraints was introduced by Huang & Li (1996). They showed required and 

enough conditions for a DMU in order to be stochastically non-dominant efficient. 

The efficiency distribution method introduced by Sengupta (1996b) is based upon 

comparing of the output distributions of efficient and inefficient observations. Two 

approaches are considered regarding this method. The first is developed to estimate a 

single efficient frontier function considering only the efficient DMUs. A provable 

distribution of error components is produced from the deviation between real and DEA 

efficient output amounts for all DMUs. Methods like simple or generalized form of 
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moments as well as maximum likelihood could be employed to determine an 

estimation of the error probability density function. 

The second approach introduced by Sengupta (1996b) is constructed on making “peer 

group” of efficient DMUs and comparing them with inefficient DMUs utilizing 

dummy regression. The mentioned “peer group” is derived from the notion of modal 

efficiency. Dummy variable regression works using a Boolean variable for 

classification to determine if a DMU is a member of the modal efficiency group. 

Banker (1993) provided an imperative statistical foundation for single output case in 

DEA. He presented that the DEA estimators are equivalent to maximum likelihood 

estimators if the deviation of real output from the corresponding efficient output is 

counted as a stochastic variable with a probability density function that is 

monotonically decreasing. DEA is hence robust compared with parametric frontier 

estimation methods presented by Aigner & Chu (1968). These parametric methods 

have been indicated to be maximum likelihood estimators just when the inefficiency 

obeys exponential or half-normal distributions. 

Several other approaches have been proposed for the application of statistical 

approaches to DEA. Canonical correlation was used by Sengupta (1990) to specify 

statistically significant elements of the input-output mixture that characterized an 

individual facet of the efficient frontier. Also, the integration of time varying efficiency 

results has been tackled by Sengupta (1996a), (1996b) and Charnes et al. (1984). 
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Chapter 3 

3 METHODOLOGY 

The methodology used in this research is based on linear algebra and modifications 

applied to the models are examined by the GAMS software package. To simulate real 

production observations, random values are generated by Office Excel. The goal in 

this dissertation is to manipulate Banker’s stochastic DEA model to replace the weak 

efficient frontier by a better estimation of production function. 

3.1 Traditional DEA Models 

When DEA was proposed the idea was to determine weights for each input and output 

of a DMU in order to form virtual input and output as following: 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 =  𝑣1 𝑥1𝑜 +  … +  𝑣𝑚 𝑥𝑚𝑜  

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑢1 𝑦1𝑜 +  … + 𝑢𝑠 𝑦𝑠𝑜  

Hence, the goal is to maximize the undermentioned ratio by using linear programming: 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡
 

In m inputs and s outputs case, the general efficiency structure of n DMUs are defined 

as below: 
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Figure 1: The efficiency structure of a production process 

Therefore, one of the most basic DEA models, the CCR model, was introduced by 

Charnes et al. (1978) to show the efficient DMU(s) as well as the relative efficiency 

of the other DMUs. 

3.1.1 CCR Model 

The mathematical representation of the input-oriented and output-oriented primal CCR 

model for evaluating DMU “o” as well as the corresponding dual forms are given in 

the following table: 
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Table 1: Different forms of the CCR model 

 Input-Oriented Output-Oriented 

Primary (𝐿𝑃𝑜)    𝑚𝑎𝑥𝑢,𝑣       𝑢𝑦𝑜 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑣𝑥𝑜 = 1 

−𝑣𝑋 + 𝑢𝑌 ≤ 0 

𝑣 ≥ 0, 𝑢 ≥ 0 

(𝐿𝑃𝑂𝑜)    𝑚𝑖𝑛𝑝,𝑞        𝑝𝑥𝑜 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑞𝑦𝑜 = 1 

−𝑝𝑋 + 𝑞𝑌 ≤ 0 

𝑝 ≥ 0, 𝑞 ≥ 0 

Dual (𝐷𝐿𝑃𝑜)    𝑚𝑖𝑛𝜃,𝜆      𝜃 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝜃𝑥0 − 𝑋𝜆 ≥ 0 

𝑌𝜆 ≥ 𝑦𝑜 

𝜆 ≥ 0 

(𝐷𝐿𝑃𝑂𝑜)    𝑚𝑎𝑥𝜂,𝜇     𝜂 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑥0 − 𝑋𝜇 ≥ 0 

𝜂𝑦𝑜 − 𝑌𝜇 ≤ 0 

𝜇 ≥ 0 

 

The Production Possibility Set (PPS) of the CCR model is stated over five 

assumptions: 

1. Input and output vectors (𝑥𝑗  , 𝑦𝑗) (𝑗 =  1, … , 𝑛) of n DMUs are semipositive (𝑥𝑗 ≥

0, 𝑥𝑗 ≠ 0 and 𝑦𝑗 ≥ 0, 𝑦𝑗 ≠ 0 for j = 1,…, n). 

2. The observed activities (𝑥𝑗  , 𝑦𝑗) (𝑗 =  1, … , 𝑛) belongs to PPS. 

3. Constant returns-to-scale (CRS) assumption: If an activity (𝑥 , 𝑦) belongs to PPS, 

the activity (𝑡𝑥, 𝑡𝑦) belongs to PPS for any positive scalar t. 

4. For an activity (𝑥 , 𝑦) in PPS, any semipositive activity (𝑥̅ , 𝑦̅) with 𝑥̅ ≥ 𝑥 and 𝑦̅ ≤

𝑦 is included in PPS. 

5. All the semipositive linear combinations of activities in PPS, falls within PPS 

boundaries. 

To sum up, what is said in the five assumptions above, we can define PPS as following 

considering 𝜆 as a semipositive vector in 𝑅𝑛: 

𝑃𝑃𝑆 = {(𝑥, 𝑦) | 𝑥 ≥ 𝑋λ , y ≤ Yλ , λ ≥ 0},   
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Figure 2: Estimated production frontier of CCR model 

3.1.2 BCC Model 

The well-known BCC model presented by Banker et al. (1984) is different from the 

CCR model in the sense that the production frontier is shaped by the convex hull of 

the studied DMUs. The Frontier has piecewise linear and concave features which leads 

to the variable returns-to-scale (VRS) assumption which differs from CCR in the 

convexity condition ∑ 𝜆𝑗
𝑛
𝑗=1 = 1 , 𝜆𝑗 ≥ 0, ∀𝑗 in its constraints. 

The production possibility set of a BCC model is denoted by: 

𝑃𝑃𝑆 = {(𝑥, 𝑦) | 𝑥 ≥ 𝑋λ , y ≤ Yλ, eλ = 1, λ ≥ 0},  

Where 𝜆 ∈ 𝑅𝑛, 𝑋 = (𝑥𝑗) ∈ 𝑅𝑚×𝑛 and 𝑌 = (𝑦𝑗) ∈ 𝑅𝑠×𝑛 are given as data set, and e is 

a row vector with all elements equal to 1. 

The mathematical representation of the input-oriented and output-oriented primal BCC 

model for evaluating DMU “o” as well as the corresponding dual forms are given in 

the following table: 
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Table 2: Different forms of the BCC model 

 Input-Oriented Output-Oriented 

Primary 𝑚𝑎𝑥𝑢,𝑣,𝑢0
      𝑧 = 𝑢𝑦𝑜 − 𝑢0 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                  
𝑣𝑥𝑜 = 1 

−𝑣𝑋 + 𝑢𝑌 − 𝑢0𝑒 ≤ 0 

𝑣 ≥ 0, 𝑢 ≥ 0, 𝑢0 𝑓𝑟𝑒𝑒 𝑖𝑛 𝑠𝑖𝑔𝑛. 
 

 𝑚𝑖𝑛𝑣,𝑢,𝑣0
     𝑧 = 𝑣𝑥𝑜 − 𝑣0 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                  
 𝑢𝑦𝑜 = 1 

𝑣𝑋 − 𝑢𝑌 − 𝑣0𝑒 ≥ 0 

𝑣 ≥ 0, 𝑢 ≥ 0, 𝑣0 𝑓𝑟𝑒𝑒 𝑖𝑛 𝑠𝑖𝑔𝑛 

 

Dual 𝑚𝑖𝑛𝜃,𝜆      𝜃 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                  
𝜃𝑥0 − 𝑋𝜆 ≥ 0 

𝑌𝜆 ≥ 𝑦𝑜 

𝑒𝜆 = 1 

 𝜆 ≥ 0 

𝑚𝑎𝑥𝜂,𝜆     𝜂 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                  
𝑋𝜆 ≤ 𝑥0 

𝜂𝑦𝑜 − 𝑌𝜆 ≤ 0 

𝑒𝜆 = 1 

 𝜇 ≥ 0 

 

The under evaluation 𝐷𝑀𝑈𝑜(𝑜 ∈ (1, … , 𝑛)) which can be shown as a point (𝑋𝑜, 𝑌𝑜) in 

an input-output coordinate system, is considered efficient DMU if the optimal value 

of the objective function of the dual model is equal to one. Considering figure 3, as a 

result of the formation of the BCC model, efficient points could be divided into three 

groups: 

1. The strong efficient points like 𝐹, 𝐸 & 𝐺 

2. The Efficient points like all the points on the line 𝐹𝐸 and also 𝐸𝐺 

3. The weak efficient points like the points located on the vertical frontier connected 

to the point 𝐹 (efficient in input-oriented and inefficient in output-oriented) plus 

horizontal frontier connected to the point 𝐺 (efficient in output-oriented and inefficient 

in input-oriented) 
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Figure 3: Estimated production frontier of BCC model 

3.2 Stochastic DEA 

Data envelopment analysis (DEA) is a suitable non-parametric method to assess the 

relative efficiency of multi-input and multi-output units based on practical data. 

Overall, observed data have inherent uncertainty, however, it is not easy to treat the 

stochastic data in the traditional DEA model. Therefore, the development of stochastic 

DEA is inevitable, where the uncertainty like measurement error should be integrated. 

There are different notions of stochastic DEA comprising a variety of proposed 

methodologies that expands the idea or framework of conventional DEA in several 

directions. Generally, these directions could be grouped into three concepts or a 

combination of them: 

1. The first direction develops DEA to be able to handle estimated deviations from 

frontier practice as random deviations. 

2. The second direction develops DEA to be able to handle random noise in the form 

of either measurement errors or specification errors. 
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3. The third direction develops DEA to be able to regard or conceive the PPS as a 

random PPS, based on the random variation in data. 

In this research, the first and second directions are evaluated and proposed 

modification has been applied to them to get a more realistic frontier that has less 

deviation from the production function. 

3.3 Banker’s Stochastic DEA (SDEA) Model 

Banker (1988) introduced a basic model of SDEA. In this model, a symmetric two-

sided deviation term peculiar to random factors (such as model specification and 

measurement errors) in company with the one-sided deviation term related to DMU’s 

inefficiency is developed. As a result, only the single output case is considered because 

the multiple output case can be handled via nonlinear programming. 

To express the relationship between this model and conventional DEA, consider the 

assumptions of BCC for estimating the PPS from observed data on output vectors 𝑦𝑗 

and input vectors 𝑥𝑗 , 𝑗 = 1, … , 𝑛. For the single output case the postulates for 

estimating the production frontier correspondence 𝑦 = 𝑓(𝑥) relating the single output 

𝑦 to the input vector 𝑥, 𝑓: 𝑋 → 𝑅 where 𝑋 is the convex hull of 𝑥𝑗, may be specified 

as: 

Postulate 1: Monotonicity of Production Frontier 

𝑖𝑓 𝑦 = 𝑓(𝑥), 𝑦′ = 𝑓(𝑥′) 𝑎𝑛𝑑 𝑥 ≥ 𝑥′, 𝑡ℎ𝑒𝑛 𝑦 ≥ 𝑦′ 

Postulate 2: Concavity of Production Frontier 

𝑖𝑓 𝑦 = 𝑓(𝑥), 𝑦′ = 𝑓(𝑥′) 𝑎𝑛𝑑 0 ≤ 𝜆 ≤ 1, 

𝑡ℎ𝑒𝑛 (1 − 𝜆)𝑦 + 𝜆𝑦′ ≤ 𝑓((1 − 𝜆)𝑥 + 𝜆𝑥′) 

Postulate 3: Envelopment of Observed Data 



26 

 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑗 = 1, … , 𝑛, 𝑦𝑗 ≤ 𝑓(𝑥𝑗) 

Postulate 4: Minimum Extrapolation 

𝑖𝑓 𝑔: 𝑋 → 𝑅 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑝𝑜𝑠𝑡𝑢𝑙𝑎𝑡𝑒𝑠 1, 2 𝑎𝑛𝑑 3 𝑡ℎ𝑒𝑛 𝑔(𝑥) ≥ 𝑓(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 

By considering these four postulates, the state of monotone increasing and concave 

production frontier is satisfied. Now for estimating this production frontier by 

stochastic DEA, the possible effect of uncontrolled random factors must be 

incorporated. Hence, such deviations caused by random factors and their stochasticity 

impact in the specification of the model is represented by the term 𝑢𝑗  which may be 

expressed as: 

𝑢𝑗 = 𝑢𝑗
+ − 𝑢𝑗

− 𝑤𝑖𝑡ℎ 𝑢𝑗
+, 𝑢𝑗

− ≥ 0 

The random deviations 𝑢𝑗  are supposed to be symmetric. Therefore, it is captured in 

the constraint below: 

∑ 𝑢𝑗
+

𝑛

𝑗=1

= ∑ 𝑢𝑗
−

𝑛

𝑗=1

 

Along with deviations due to random factors, as in traditional DEA, the inefficiency 

of the DMU may cause a shortfall in output compared to the predicted output level. 

Such deviations due to DMU inefficiency are shown by a nonnegative term 𝑣𝑗 . To sum 

up, the actual output level could be represented as follows: 

𝑦𝑗 = 𝑓(𝑥𝑗) − 𝑢𝑗
+ + 𝑢𝑗

− − 𝑣𝑗  

Then, the production frontier values are approximated by minimizing a weighted sum 

of the two deviations subject to the following constraints: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑢𝑗
+ + 𝑢𝑗

− + 𝑐𝑣𝑗)

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑗 



27 

 

(𝑥𝑘 − 𝑥𝑗)𝑤𝑗 + (𝑣𝑗 − 𝑣𝑘) + (𝑢𝑗
+ − 𝑢𝑗

− − 𝑢𝑘
+ + 𝑢𝑘

−) ≥ 𝑦𝑘 − 𝑦𝑗 

∑(

𝑛

𝑗=1

𝑢𝑗
+ − 𝑢𝑗

−) = 0 

𝑤𝑗 ≥ 0,    𝑣𝑗 , 𝑢𝑗
+, 𝑢𝑗

− ≥ 0 

This model was first introduced by Banker in 1988. The SDEA model with 𝑚 inputs 

and 𝑛 observations, has (𝑚 + 3)𝑛 variables and 𝑛2 − 𝑛 + 1 constraints and obviously 

is not infeasible since a feasible solution can be obtained from basic DEA when 𝑢𝑗
+ =

𝑢𝑗
− = 0. 

The weight 𝑐 > 0 in the objective function is a pre-specified constant which by giving 

different values, different estimates of the production function may be obtained. 

Therefore, the model represents a combination of the minimum absolute deviation 

(MAD) model (due to random factors) and the basic DEA model (due to 

inefficiencies). 

Based on the next theorem, the correlation between the constant 𝑐 and the contributions 

of the MAD and the DEA models are formalized. 

Theorem: for any given data set {(𝑥𝑗 , 𝑦𝑗) | 𝑗 = 1, … , 𝑛}, there exist 𝑐𝑀 and 𝑐𝐷 with  

1/𝑛 ≤ 𝑐𝑀 ≤ 𝑐𝐷 ≤ 2 such that the model reduces to a minimum absolute deviation 

model (i.e. 𝑣𝑗
∗ = 0 for all j) for all 𝑐 > 𝑐𝐷, and to the basic DEA formulation (i.e. 

𝑢+∗
= 𝑢− ∗ = 0 for all j) for all 𝑐 < 𝑐𝑀. 

Lemma 1: if 𝑐 > 2 → 𝑣𝑗
∗ = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1, … , 𝑛 

Lemma 2: if 𝑐 < 1 𝑛⁄ →  𝑢+
𝑗
∗

= 𝑢− 
𝑗
∗ = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1, … , 𝑛 
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3.4 Modification for Better Estimation 

the integrated model explained above consists of two different tools for estimating 

production function (MAD & DEA). While each of them has their own disadvantages 

when they are used separately, they can cover up each other’s weak points by their 

advantages.  For instance, MAD is a deterministic method that estimates only the 

average performance but DEA evaluates efficiency relative to a production frontier 

that measures the best obtainable performance. Furthermore, the problem with the 

regression-based parametric methods is that by specifying a particular parametric 

form, a considerable arbitrary and restrictive structure is imposed on the input-output 

correspondence. In contrast, DEA imposes a minimal structure of monotonicity and 

convexity on the PPS. On the other hand, DEA method only allows for one-sided 

inefficiency deviations whereas regression gives the possibility of having two-sided 

deviations component due to random errors. With that being said, there is another 

shortcoming with DEA that regression can’t compensate in the explained stochastic 

model and in this paper, it is tried to be addressed. 

3.4.1 Weak Efficient Frontier  

In Banker’s stochastic model, since all the deviations are measured vertically 

(direction of the deviations’ vector  due to MAD and DEA has to be the same so they 

can be summed for total deviation), starting from each DMU to the frontier line, the 

combined DEA model should be considered as output-oriented BCC.  
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Figure 4: Stochastic DEA frontier 

In output-oriented BCC, as it is shown in figure 4, the weak efficient frontier is the 

horizontal line continued from the efficient DMU with the greatest amount of input. 

The problem with the weak efficient frontier is that all the DMUs within the PPS below 

this line will be relatively compared to a frontier with constant value of output. This 

means that no matter what is the observed input, as long as the DMU is in this area, 

the relative efficiency will be evaluated only by its output rather than the ratio of output 

over input. In this paper, it has tried to suggest a modification on the constraints of the 

stochastic model to eliminate the weak efficient frontier in order to obtain a better 

estimation of production function. In the presented method, one output and multiple 

inputs case is considered. The reason is that although the presented stochastic model 

by Banker was suggested to be extended to multiple outputs in a similar way, the first 

set of constraints includes nonlinear terms. Hence, the calculations will be less 

controllable than for the single output.  

what's more, initially the model is studied for one input and one output. Later, the 

extended multiple inputs is discussed. 
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To start with, it is worth to take a precise look at the Banker’s stochastic Model. There 

are four variables in the following model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑢𝑗
+ + 𝑢𝑗

− + 𝑐𝑣𝑗)

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑗 

(𝑥𝑘 − 𝑥𝑗)𝑤𝑗 + (𝑣𝑗 − 𝑣𝑘) + (𝑢𝑗
+ − 𝑢𝑗

− − 𝑢𝑘
+ + 𝑢𝑘

−) ≥ 𝑦𝑘 − 𝑦𝑗 

∑(

𝑛

𝑗=1

𝑢𝑗
+ − 𝑢𝑗

−) = 0 

𝑤𝑗 ≥ 0,    𝑣𝑗 , 𝑢𝑗
+, 𝑢𝑗

− ≥ 0 

𝑢𝑗
+: the deviation of 𝐷𝑀𝑈𝑗 from the frontier due to error (negative residual) 

𝑢𝑗
−: the deviation of 𝐷𝑀𝑈𝑗 from the frontier due to error (positive residual) 

𝑣𝑗: the deviation of 𝐷𝑀𝑈𝑗 from the frontier due to technical inefficiency (negative 

residual) 

𝑤𝑗: the slope of the estimated monotone increasing concave frontier at the point of the 

efficient output-oriented 𝐷𝑀𝑈𝑗  

Most studies formerly done regarding this topic, have had the least attention to the 

variable 𝑤𝑗, which shows the slope of the frontier in an one input and one output 

stochastic model (2D space) or the normal vector of the frontier hyperplane in a 

multiple dimensional space. Nevertheless, in this paper, the effort is to concentrate on 

this variable and its potential to improve the model. 



31 

 

The suggested method for enhancing the weak efficient frontier toward the best 

practice frontier as a piecewise linear monotonically increasing and concave 

production function, could be applied in steps as given below: 

Step 1: Solving the model as it is given above with observed inputs and outputs in 

GAMS software to obtain values for variables. 

Note: the constant 𝑐 could be defined by the examiner considering the importance of 

the type of deviations as well as its limits given before (𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦:
1

𝑛
<

𝑐 < 2 , 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑀𝐴𝐷: 𝑐 ≥ 2 , 𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦  𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝐷𝐸𝐴 ≤ 1/𝑛). In this research, 

a sensitivity analysis has been done using GAMS, to examine different amounts of this 

constant so that the possible effects could be investigated. The report can be found in 

appendix E. 

Step 2: searching and finding the smallest non-zero value for 𝑤𝑗 and naming it 𝛽. 

Note:  if there are any 𝑤𝑗 with value zero, it shows that the corresponding 𝐷𝑀𝑈𝑗 is 

placed on or compared with the weak efficient frontier. 

 Step 3: Adding a constraint stating that 𝑤𝑗 have to be greater than or equal to 𝛽. 

Note: for changing the weak efficient frontier in an output-oriented approach, 

corresponding 𝑤𝑗 which is zero should be manipulated in a way that does not violate 

the assumptions and constraints made beforehand. Moreover, it should be able to 

resemble characteristics of a new efficient frontier as close as possible to the 

production function. In figure 5, possible outcomes are shown. However, only one of 

them is feasible to be applied. As it is illustrated in the figure, line 𝑂𝑇 is the weak 

efficient frontier with 𝑤𝑗
∗ = 𝑤𝑂𝑇

∗ = 0. To modify the slope, different options are 

available: 
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1. 𝑂𝐶̅̅ ̅̅  : it violates the assumption of monotonically increasing function. 

2. 𝑂𝐴̅̅ ̅̅  : it violates the assumption of concavity. 

3. 𝑂𝐵̅̅ ̅̅  : it doesn’t violate any assumption but it’s subjective to decide which value 

between zero and 𝑤𝑗
∗. 

4. 𝑂𝑂′̅̅ ̅̅ ̅ : It doesn’t violate any assumption. Also, it’s vital to the consistency of the 

method. 

 
Figure 5: Possible manipulations of weak efficient frontier 

By applying this condition, it will be guaranteed that the frontier line will not be 

horizontal. Also, since the monotonically increasing concave frontier is already 

satisfied by other constraints, it is definite that the so-called weak efficient frontier will 

be modified to continue with the same slope as the closest efficient frontier with 

minimum slope. 

Step 4: Solving the following model by the GAMS software. 

Note: the non-negativity constraint for 𝑤𝑗 is redundant. This means that the number of 

constraints stays the same. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑢𝑗
+ + 𝑢𝑗

− + 𝑐𝑣𝑗)

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑗 

(𝑥𝑘 − 𝑥𝑗)𝑤𝑗 + (𝑣𝑗 − 𝑣𝑘) + (𝑢𝑗
+ − 𝑢𝑗

− − 𝑢𝑘
+ + 𝑢𝑘

−) ≥ 𝑦𝑘 − 𝑦𝑗 

∑(

𝑛

𝑗=1

𝑢𝑗
+ − 𝑢𝑗

−) = 0 

𝑤𝑗 ≥ 𝛽 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 

 𝑣𝑗 , 𝑢𝑗
+, 𝑢𝑗

− ≥ 0 

3.5 Illustrative Application 

To show the application, Banker has applied his method to a production situation, 

although, he didn’t consider any DMU in the weak efficient area. Hence, to illustrate 

the modified method and its comparison with the classic effort, Banker’s example is 

presented with some added values to the production data. 

3.5.1 One Input and One Output 

The monthly units produced in a company are given in the next table as the input while 

the single output is the labor hours. The first twelve months were given by Banker and 

the last three are added to examine the modified model. 
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Table 3: One input and one output data 

Month Output Input

1 416.092 2089.51

2 349.785 1919.35

3 399.403 1974.43

4 455.73 2117.16

5 360.803 1792.88

6 396.241 1818.82

7 272.435 1537.66

8 312.949 1598.41

9 314.229 1701.87

10 416.09 1868.95

11 290.686 1554.14

12 260.762 1436.05

13 500 2117.16

14 520 2000

15 475 2050  

First, the classic stochastic model is used to determine the best months in terms of 

labor productivity. The weight 𝑐 is selected in the range of mere DEA to mere MAD 

and the corresponding graphs are presented for a better illustration of the sensitivity of 

the estimates on deviations caused by inefficiency or random factors. 
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Figure 6: SDEA estimated production frontier 

As it can be seen, by increasing the weight 𝑐, the estimated production frontier tends 

to move further down and as a result, symmetric deviation due to random factors 

appears. Concavity and monotonically increasing postulates are reasonably considered 

since by increasing the labor hour, the labor productivity tends to decrease due to the 

traffic and confusion at upper capacity operation, but it doesn’t always mean that the 

productivity level stops at a point (in this example point number 4) and from that point 

by increasing the labor, production doesn’t increase (points 13 & 14 & 15 are evaluated 

by weak frontier). In the presented modified model, the estimated production function 
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will continue growing with the least possible slope giving a more realistic 

approximation by turning the weak efficient frontier into an efficient frontier. It is 

obvious that by increasing the number of DMUs and finding an appropriate 

corresponding 𝑐 value, the possibility of having a smooth frontier similar to 

logarithmic production functions rises. 

By doing the explained steps toward the suggested modified model, the new frontiers 

will be obtained which are shown in the following graph. 

 
Figure 7: Modified SDEA estimated production frontier 
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Points 13, 14 and 15 are not compared to a weak frontier anymore. Moreover, the 

evaluation criteria have changed in many cases. For example, in the case 𝑐 = 0.55, 

after solving the banker’s traditional SDEA model by GAMS software, minimum 

nonzero 𝑤𝑗 equals 0.7. Hence, 𝛽 = 0.7 and by adding the new constraint to the model, 

new values for the slope and the deviations will be obtained. As it can be seen in figures 

6 and 7, and also appendix A, DMUs 12, 7 and 9 that were strong efficient points, stay 

the same in the modified model. However, DMUs 1 and 4 that were strong efficient 

points before, are efficient but with error deviation in modified model. Therefore, it 

seems that they were located on the frontier because they had some error in their 

measurement and the actual frontier passes under the points 1 and 4. Although it 

implies that PPS is shrunk, yet for DMUs 14 and 15, which were compared with weak 

efficient frontier, the PPS has become larger. This assigns them smaller efficiency 

scores, but better opportunity to be improved. Weak efficient DMU 13 turns to a strong 

efficient point and the other DMUs can be compared with the new frontier. This means 

that another criterion has been obtained for comparing or improving the DMUs. The 

related results for the classic and modified model are given in appendix A. The 

deviation ratio  
𝑦𝑗

𝑦̂𝑗
=

𝑦𝑗

𝑦𝑗+𝑢++𝑣−𝑢−
 and the efficiency estimates 1 − (

𝑣𝑗

𝑦𝑗
) are also 

reported. 

3.5.2 Two Input and One Output 

The classic stochastic model can also work perfectly for DMUs with more than one 

input. However, in the multiple output case, the behavior of the model becomes 

nonlinear. Hence, here the try is only to show how classic and modified models work 

with two inputs and one output as an example for the multiple input state. 
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To begin with, the stochastic model presented by Banker could be developed for two 

inputs case as bellow: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑢𝑗
+ + 𝑢𝑗

− + 𝑐𝑣𝑗)

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑗 

∑[(𝑥𝑖𝑘 − 𝑥𝑖𝑗)𝑤𝑖𝑗] + (𝑣𝑗 − 𝑣𝑘) + (𝑢𝑗
+ − 𝑢𝑗

− − 𝑢𝑘
+ + 𝑢𝑘

−)

2

𝑖=1

≥ 𝑦𝑘 − 𝑦𝑗 

∑(

𝑛

𝑗=1

𝑢𝑗
+ − 𝑢𝑗

−) = 0 

𝑤𝑖𝑗 ≥ 0,    𝑣𝑗 , 𝑢𝑗
+, 𝑢𝑗

− ≥ 0 

𝑢𝑗
+: the deviation of 𝐷𝑀𝑈𝑗 from the frontier due to error (negative residual) 

𝑢𝑗
−: the deviation of 𝐷𝑀𝑈𝑗 from the frontier due to error (positive residual) 

𝑣𝑗: the deviation of 𝐷𝑀𝑈𝑗 from the frontier due to technical inefficiency (negative 

residual) 

𝑤𝑖𝑗: the element of the normal vector to the estimated monotone increasing concave 

frontier plane at the point of the efficient output-oriented 𝐷𝑀𝑈𝑗 

𝑖: index of inputs (𝑖 = 1,2) 

𝑗: index of the DMUs (𝑗 = 1,2, … , 𝑛) 

The steps to be taken from this model towards the modified model are close to the one 

with one input. However, since here we have two 𝑤 for each 𝐷𝑀𝑈𝑗  (𝑤1𝑗 , 𝑤2𝑗), two 

constraints will be added to the base model. 
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Step 1: Solving the model as it is given above with observed inputs and outputs in 

GAMS software to obtain values for variables. 

Step 2: searching and finding the smallest non-zero values for 𝑤1𝑗 𝑎𝑛𝑑 𝑤2𝑗 and 

naming them respectively 𝛽1 𝑎𝑛𝑑 𝛽2. 

Note:  if there are any DMU with 𝑤1𝑗 = 𝑤2𝑗 = 0, it shows that the corresponding 

𝐷𝑀𝑈𝑗 is placed on or compared with the weak efficient frontier (parallel to the Inputs 

surface in the coordinate system). 

Step 3: Adding two following constraints to the basic model: 

𝑤1𝑗 ≥ 𝛽1 

𝑤2𝑗 ≥ 𝛽2 

Step 4: Solving the following model by the GAMS software. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝑢𝑗
+ + 𝑢𝑗

− + 𝑐𝑣𝑗)

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑗 

∑[(𝑥𝑖𝑘 − 𝑥𝑖𝑗)𝑤𝑖𝑗] + (𝑣𝑗 − 𝑣𝑘) + (𝑢𝑗
+ − 𝑢𝑗

− − 𝑢𝑘
+ + 𝑢𝑘

−)

2

𝑖=1

≥ 𝑦𝑘 − 𝑦𝑗 

∑(

𝑛

𝑗=1

𝑢𝑗
+ − 𝑢𝑗

−) = 0 

𝑤1𝑗 ≥ 𝛽1 

𝑤2𝑗 ≥ 𝛽2 

𝑣𝑗 , 𝑢𝑗
+, 𝑢𝑗

− ≥ 0 

To demonstrate the model better, a numerical example is given below. An imagined 

table of data containing two inputs and one output for thirteen DMUs. First, the classic 

model is applied considering four different values for the weight 𝑐. Then, the modified 
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model is used to find the variables. The related tables of results are constructed in 

appendix B. The deviation ratio  
𝑦𝑗

𝑦̂𝑗
=

𝑦𝑗

𝑦𝑗+𝑢++𝑣−𝑢−
 and the efficiency estimates 1 − (

𝑣𝑗

𝑦𝑗
) 

are also reported.  

Table 4: Two input and one output data 

Input 1 Input 2 Output

DMU 1 1 7 2

DMU 2 3 4 2.5

DMU 3 3.5 4.3 3.32

DMU 4 8 1 1

DMU 5 1.5 10 3

DMU 6 4.5 6 5.75

DMU 7 7.5 9 6

DMU 8 12 1.5 2

DMU 9 8 10 6

DMU 10 1.6 6 1.8

DMU 11 8 7 2

DMU 12 6.4 6.7 4

DMU 13 10 11.6 5

DMU 14 4 4.5 3.21

DMU 15 1.5 8 2.12  

3.6 Developing DEA and quantile regression to Stochastic Frontier 

Analysis (SFA) 

Banker also extended DEA with an alternative stochastic model combining the 

deviations 𝑢𝑗
+ 𝑎𝑛𝑑 𝑣𝑗. The model was specified as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝜏 𝑢𝑗
− + (1 − 𝜏)𝑣𝑗

+)

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑗 

(𝑥𝑘 − 𝑥𝑗)𝑤𝑗 − (𝑣𝑘
+ − 𝑣𝑗

+) + (𝑢𝑘
− − 𝑢𝑗

−) ≥ 𝑦𝑘 − 𝑦𝑗 

𝑤𝑗 , 𝑢𝑗
−, 𝑣𝑗

+ ≥ 0 
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The model can be considered as a nonparametric quantile regression with convexity 

and monotonicity assumptions that is able to estimate a piecewise linear production 

function. Hence, there is no need for specifying a theoretical functional form for 

production. Although, 𝜏 needs to be specified a priori. According to quantile regression 

notion, 100𝜏 is the percentage of the observations appearing beneath the estimated 

production frontier. Therefore, the effectiveness of this SDEA model depends highly 

on choosing the appropriate value for 𝜏.  

If we assume that there are N DMUs producing a single output 𝑦 using 𝑀 inputs 𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑀), the frontier and observed production functions can be produced as 

follow: 

𝑦𝑓 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑀) 

and 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑀) + 𝜀 

Here, 𝜀 is the error term demonstrating the deviation from the actual production 

frontier. Various distributional assumptions on 𝜀 result in different estimated 

production models. Negative 𝜀 represents a deterministic model in which the deviation 

is only due to inefficiency. On the other hand, if 𝜀 is distributed two-sided with mean 

zero, the model reflects only the statistical noise. As a result, any combination of these 

two leads to a stochastic frontier. In the mentioned model, the composition of 

inefficiency and statistical noise happens when 0.5 ≤ 𝜏 ≤ 1. 𝜏 = 1 leads to absolute 

DEA with inefficiency deviations while 𝜏 = 0.5 denotes nonparametric median 

regression taking into account only statistical errors. 



42 

 

3.6.1 Modification for a better approximation 

The same steps as before are applied to the model to eliminate the weak efficiency 

frontier. First, the model is examined with GAMS software to obtain values for 

variables. Considering the smallest nonzero 𝑤𝑗 and assigning it to the constant 𝛽, 

allows us to add a constraint to the model. The improved model will be as the 

following: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(𝜏 𝑢𝑗
− + (1 − 𝜏)𝑣𝑗

+)

𝑛

𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑗 

(𝑥𝑘 − 𝑥𝑗)𝑤𝑗 − (𝑣𝑘
+ − 𝑣𝑗

+) + (𝑢𝑘
− − 𝑢𝑗

−) ≥ 𝑦𝑘 − 𝑦𝑗   

𝑤𝑗 ≥ 𝛽 

𝑢𝑗
−, 𝑣𝑗

+ ≥ 0 

Now to illustrate this case, we suppose one output is produced using one input. We 

generate 50 random observations with inputs 𝑥~𝑈(1,10) and production function 

𝑦𝑓 = 𝑥0.5 (Cobb-Douglas production function with productivity and labor equal to 

one, capital 𝑥 and capital’s share of 0.5). Therefore, related observed DMUs could be 

found by inserting 𝜀 = 𝑢 − 𝑣 to the production function: 

𝑦 = exp(𝜀) 𝑦𝑓 

To have a stochastic frontier, we specify half normal-normal 𝜀 with 𝑣~|𝑁(0, 𝜎𝑣)| and 

𝑢~𝑁(0, 𝜎𝑢) resulting skew-normal distributional form. As it is presented in Azzalini 

& Capitanio (2013) and Jradi & Ruggiero (2019) have mentioned in their paper, the 

optimal value 𝜏∗ can be obtained from this formula: 

𝜏∗ = 0.5 +
1

𝜋
arctan(𝜆) 
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Where 𝜆 =
𝜎𝑣

𝜎𝑢
. 

In this paper we assumed 𝜎𝑣 = 0.2 𝑎𝑛𝑑 𝜎𝑢 = 0.1, consequently 𝜏∗ = 0.8524. For 

simulation, generated observation points, production function, stochastic model, and 

modified model have been graphed on a diagram for two sets of data to indicate their 

differences. 

 
Figure 8: Production function, stochastic and modified model (dataset 1) 

 
Figure 9: Production function, stochastic and modified model (dataset 2) 

To be precise, the first input is generated 50 times randomly by MS Excel. Then, 

deviation components are produced under normal distribution. Accordingly, 
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production function output is obtained by replacing input in 𝑦𝑓and observed output by 

𝑦 = exp(𝜀) 𝑦𝑓. Then, using GAMS the model was solved and after specifying  𝛽, the 

modified model was examined to get the new 𝑢𝑗
− 𝑎𝑛𝑑 𝑣𝑗

+. The mean squared error 

(MSE) between production function and both stochastic and modified frontiers are 

calculated. In the first example by applying modification, MSE has reduced from 

0.0108 to 0.0099 while in the second example, the change is even more significant. 

From 0.00685 to less than half (0.00339). All the related data is attached in appendices 

C & D. 
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Chapter 4 

4 CONCLUSION 

4.1 Summary of Methods 

In DEA methodology, an important part is SDEA in which various stochastic models 

are studied according to the possibility of random deviations in observations. Among 

different approaches to SDEA, Banker’s SDEA model was chosen to be the foundation 

of the presented investigation. The main goal was to address the weak efficient frontier 

considering the production function postulates in order to imitate the underlying true 

frontier. For this purpose, firstly, Banker’s model including the integration of MAD 

and DEA is considered and after applying the suggested modification, corresponding 

numeric examples for one and two inputs with single output are presented. Secondly, 

Banker’s model composed of quantile regression and DEA assuming optimal quantile 

is examined with suggested change in the constraints and numerical examples are 

provided to give a better illustration. In both cases, a new benchmark for estimating 

relative efficiency is obtained that not only follows general production function 

properties such as nonnegativity, monotonicity (nondecreasing), and concavity but 

also seems to be able to show a smoother frontier, especially in the weak efficient area. 

4.2 Future Study 

In this study, the modeling is done using GAMS software. Since for applying the 

suggested modification, we need to first, solve the original model, then, find the lower 

bound for the new constraint, and again solve the modified model, the procedure is 
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time-consuming. Hence, it can be improved using programming languages such as 

MATLAB and Python to do all the steps in one iteration. 

A suggested area to focus on could be the case of multiple outputs. Banker (1988) 

introduced alternative models and extensions to deal with multiple outputs case which 

can be examined by applying the modification method. However, the first model used 

in this study becomes a nonlinear programming problem when multiple outputs are 

considered. Thus, the linearization methods could be helpful to address this issue. 

Another potential area of investigation is sensitivity and stability analysis. The 

situation of perturbations of all inputs, output, and simultaneously all inputs and output 

could be studied on the modified models. 

Although in all discussed cases an illustrative example is provided, the application to 

a real-world case is worthy for future research. 

Moreover, finding a method for specifying the weight “c” based on the importance of 

the deviations and a specific desired estimate of the frontier could be studied in the 

future. 

Finally, for the second model which was an integration of DEA and quantile 

regression, assigning other distributions rather than normal distribution to the error 

term could be a potential research. Also, trying different sets of data obtained from 

different production functions could be discussed elsewhere. 
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Appendix A: 1 input 1 output illustrated application of Banker’s SDEA and suggested modified model for different 

values of the weight “c” 

 

DMU X Y w u+ u- v c z
Deviation

Ratio

Efficiency

Estimates
β w u+ u- v z

Deviation

Ratio

Efficiency

Estimates

1 416.09 2089.51 0.70 0.00 0.00 0.00 1.000 1.000 2.57 0.00 0.00 0.00 1.000 1.000

2 349.79 1919.35 2.57 0.00 0.00 0.00 1.000 1.000 2.57 0.00 0.00 0.00 1.000 1.000

3 399.40 1974.43 2.57 0.00 0.00 72.25 0.965 0.963 2.57 0.00 0.00 72.25 0.965 0.963

4 455.73 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 0.00 0.00 1.000 1.000

5 360.80 1792.88 2.57 0.00 0.00 154.75 0.921 0.914 2.57 0.00 0.00 154.75 0.921 0.914

6 396.24 1818.82 2.57 0.00 0.00 219.75 0.892 0.879 2.57 0.00 0.00 219.75 0.892 0.879

7 272.44 1537.66 4.94 0.00 0.00 0.00 1.000 1.000 4.94 0.00 0.00 0.00 1.000 1.000

8 312.95 1598.41 4.94 0.00 0.00 139.17 0.920 0.913 4.94 0.00 0.00 139.17 0.920 0.913

9 314.23 1701.87 4.94 0.00 0.00 42.03 0.976 0.975 4.94 0.00 0.00 42.03 0.976 0.975

10 416.09 1868.95 2.57 0.00 0.00 220.56 0.894 0.882 2.57 0.00 0.00 220.56 0.894 0.882

11 290.69 1554.14 4.94 0.00 0.00 73.58 0.955 0.953 4.94 0.00 0.00 73.58 0.955 0.953

12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 8.71 0.00 0.00 0.00 1.000 1.000

13 500.00 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 0.00 30.92 0.986 0.985

14 520.00 2000.00 0.00 0.00 0.00 117.16 0.945 0.941 0.70 0.00 0.00 162.04 0.925 0.919

15 475.00 2050.00 0.00 0.00 0.00 67.16 0.968 0.967 0.70 0.00 0.00 80.63 0.962 0.961

Observations Classic Model Modified Model

0.00 0.700.00 0.00
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DMU X Y w u+ u- v c z
Deviation

Ratio

Efficiency

Estimates
β w u+ u- v z

Deviation

Ratio

Efficiency

Estimates

1 416.09 2089.51 0.70 0.00 0.00 0.00 1.000 1.000 0.70 0.00 30.92 0.00 1.015 1.000

2 349.79 1919.35 3.74 0.00 77.78 0.00 1.042 1.000 3.27 0.00 77.78 0.00 1.042 1.000

3 399.40 1974.43 3.74 0.00 0.00 52.68 0.974 0.973 3.27 0.00 0.00 29.54 0.985 0.985

4 455.73 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 30.90 0.00 1.015 1.000

5 360.80 1792.88 3.74 0.00 0.00 89.89 0.952 0.950 3.27 0.00 0.00 84.75 0.955 0.953

6 396.24 1818.82 3.74 77.78 0.00 118.68 0.903 0.935 3.27 0.00 0.00 174.80 0.912 0.904

7 272.44 1537.66 3.93 0.00 0.00 0.00 1.000 1.000 3.93 0.00 0.00 0.00 1.000 1.000

8 312.95 1598.41 3.93 0.00 0.00 98.43 0.942 0.938 3.93 0.00 0.00 98.43 0.942 0.938

9 314.23 1701.87 3.93 0.00 0.00 0.00 1.000 1.000 3.93 0.00 0.00 0.00 1.000 1.000

10 416.09 1868.95 3.74 0.00 0.00 220.55 0.894 0.882 3.27 139.60 0.00 50.04 0.908 0.973

11 290.69 1554.14 3.93 0.00 0.00 55.23 0.966 0.964 3.93 0.00 0.00 55.23 0.966 0.964

12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 8.71 0.00 0.00 0.00 1.000 1.000

13 500.00 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 0.00 0.00 1.000 1.000

14 520.00 2000.00 0.00 0.00 0.00 117.16 0.945 0.941 0.70 0.00 0.00 131.12 0.938 0.934

15 475.00 2050.00 0.00 0.00 0.00 67.16 0.968 0.967 0.70 0.00 0.00 49.71 0.976 0.976

Observations Classic Model Modified Model

0.55 606.44 0.70 649.69
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DMU X Y w u+ u- v c z
Deviation

Ratio

Efficiency

Estimates
β w u+ u- v z

Deviation

Ratio

Efficiency

Estimates

1 416.09 2089.51 2.47 0.00 70.39 0.00 1.035 1.000 2.47 0.00 156.71 0.00 1.081 1.000

2 349.79 1919.35 2.68 0.00 77.78 0.00 1.042 1.000 2.47 0.00 150.53 0.00 1.085 1.000

3 399.40 1974.43 2.68 0.00 0.00 0.00 1.000 1.000 2.47 0.00 82.90 0.00 1.044 1.000

4 455.73 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 2.47 0.00 86.34 0.00 1.043 1.000

5 360.80 1792.88 2.68 0.00 0.00 78.19 0.958 0.956 2.47 3.19 0.00 0.00 0.998 1.000

6 396.24 1818.82 2.68 147.14 0.00 0.00 0.925 1.000 2.47 64.89 0.00 0.00 0.966 1.000

7 272.44 1537.66 3.93 0.00 0.00 0.00 1.000 1.000 3.43 0.00 0.00 0.00 1.000 1.000

8 312.95 1598.41 3.93 0.00 0.00 98.43 0.942 0.938 3.43 78.09 0.00 0.00 0.953 1.000

9 314.23 1701.87 3.93 0.00 0.00 0.00 1.000 1.000 3.43 0.00 20.98 0.00 1.012 1.000

10 416.09 1868.95 2.68 1.03 0.00 149.13 0.926 0.920 2.47 63.84 0.00 0.00 0.967 1.000

11 290.69 1554.14 3.93 0.00 0.00 55.23 0.966 0.964 3.43 46.07 0.00 0.00 0.971 1.000

12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 8.71 0.00 0.00 0.00 1.000 1.000

13 500.00 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 2.47 23.14 0.00 0.00 0.989 1.000

14 520.00 2000.00 0.00 0.00 0.00 117.16 0.945 0.941 2.47 189.76 0.00 0.00 0.913 1.000

15 475.00 2050.00 0.00 0.00 0.00 67.16 0.968 0.967 2.47 28.48 0.00 0.00 0.986 1.000

Observations Classic Model Modified Model

0.875 790.99 2.47 994.92
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DMU X Y w u+ u- v c z
Deviation

Ratio

Efficiency

Estimates
β w u+ u- v z

Deviation

Ratio

Efficiency

Estimates

1 416.09 2089.51 3.00 0.00 120.84 0.00 1.061 1.000 3.00 0.00 148.23 0.00 1.076 1.000

2 349.79 1919.35 3.00 0.00 149.62 0.00 1.085 1.000 3.00 0.00 176.99 0.00 1.102 1.000

3 399.40 1974.43 3.00 0.00 55.83 0.00 1.029 1.000 3.00 0.00 83.22 0.00 1.044 1.000

4 455.73 2117.16 0.00 0.00 29.56 0.00 1.014 1.000 3.00 0.00 56.70 0.00 1.028 1.000

5 360.80 1792.88 3.00 9.91 0.00 0.00 0.995 1.000 3.00 0.00 17.47 0.00 1.010 1.000

6 396.24 1818.82 3.00 90.30 0.00 0.00 0.953 1.000 3.00 62.90 0.00 0.00 0.967 1.000

7 272.44 1537.66 3.00 0.00 0.00 0.00 1.000 1.000 3.00 0.00 27.35 0.00 1.018 1.000

8 312.95 1598.41 3.00 60.80 0.00 0.00 0.963 1.000 3.00 33.44 0.00 0.00 0.980 1.000

9 314.23 1701.87 3.00 0.00 38.82 0.00 1.023 1.000 3.00 0.00 66.18 0.00 1.040 1.000

10 416.09 1868.95 3.00 99.72 0.00 0.00 0.949 1.000 3.00 72.32 0.00 0.00 0.963 1.000

11 290.69 1554.14 3.00 38.28 0.00 0.00 0.976 1.000 3.00 10.92 0.00 0.00 0.993 1.000

12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 6.36 0.00 0.00 0.00 1.000 1.000

13 500.00 2117.16 0.00 0.00 29.56 0.00 1.014 1.000 3.00 75.84 0.00 0.00 0.965 1.000

14 520.00 2000.00 0.00 87.60 0.00 0.00 0.958 1.000 3.00 253.00 0.00 0.00 0.888 1.000

15 475.00 2050.00 0.00 37.60 0.00 0.00 0.982 1.000 3.00 68.00 0.00 0.00 0.968 1.000

Observations Classic Model Modified Model

848.421.00 3.00 1152.85
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Appendix B: 2 inputs 1 output illustrated application of Banker’s SDEA and suggested modified model for different 

values of the weight “c” 

 

 

DMU X1 X2 Y w1j w2j u+ u- v c z
Deviation 

Ratio

Efficiency 

Estimates
β1 β2 w1j w2j u+ u- v z

Deviation

Ratio

Efficiency 

Estimates

1 1.00 7.00 2.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 1.50 0.08 0.00 0.00 0.00 1.000 1.000

2 3.00 4.00 2.50 0.67 1.62 0.00 0.00 0.00 1.000 1.000 0.67 1.62 0.00 0.00 0.00 1.000 1.000

3 3.50 4.30 3.32 0.40 1.25 0.00 0.00 0.00 1.000 1.000 0.40 1.19 0.00 0.00 0.00 1.000 1.000

4 8.00 1.00 1.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.40 1.25 0.00 0.00 0.00 1.000 1.000

5 1.50 10.00 3.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 1.50 0.08 0.00 0.00 0.00 1.000 1.000

6 4.50 6.00 5.75 0.00 0.08 0.00 0.00 0.00 1.000 1.000 0.40 0.08 0.00 0.00 0.00 1.000 1.000

7 7.50 9.00 6.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.40 0.08 0.00 0.00 1.20 0.833 0.800

8 12.00 1.50 2.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.40 1.25 0.00 0.00 1.22 0.620 0.388

9 8.00 10.00 6.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.40 0.08 0.00 0.00 1.48 0.802 0.753

10 1.60 6.00 1.80 5.50 3.50 0.00 0.00 0.00 1.000 1.000 5.50 3.50 0.00 0.00 0.00 1.000 1.000

11 8.00 7.00 4.60 0.00 0.08 0.00 0.00 1.23 0.789 0.732 0.40 0.08 0.00 0.00 2.63 0.636 0.428

12 6.40 6.70 4.00 0.00 0.08 0.00 0.00 1.38 0.743 0.654 0.40 1.19 0.00 0.00 1.34 0.750 0.666

13 10.00 11.60 5.00 0.00 0.00 0.00 0.00 1.00 0.833 0.800 0.40 0.08 0.00 0.00 3.42 0.594 0.317

14 4.00 4.50 3.21 0.40 1.25 0.00 0.00 0.56 0.851 0.826 0.40 1.19 0.00 0.00 0.55 0.854 0.829

15 1.50 8.00 2.12 2.00 0.00 0.00 0.00 0.88 0.707 0.585 1.50 0.08 0.00 0.00 0.71 0.748 0.663

Observations Classical Model Modified Model

0.000 0.000 0.083 0.0000.400
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DMU X1 X2 Y w1j w2j u+ u- v c z
Deviation 

Ratio

Efficiency 

Estimates
β1 β2 w1j w2j u+ u- v z

Deviation

Ratio

Efficiency 

Estimates

1 1.00 7.00 2.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.90 0.18 0.00 0.00 0.00 1.000 1.000

2 3.00 4.00 2.50 0.67 1.62 0.00 0.00 0.00 1.000 1.000 0.67 1.62 0.00 0.00 0.00 1.000 1.000

3 3.50 4.30 3.32 0.14 0.89 0.00 0.00 0.00 1.000 1.000 0.14 0.78 0.00 0.00 0.00 1.000 1.000

4 8.00 1.00 1.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.14 0.89 0.00 0.00 0.00 1.000 1.000

5 1.50 10.00 3.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.90 0.18 0.00 0.00 0.00 1.000 1.000

6 4.50 6.00 5.75 0.00 0.34 0.00 0.78 0.00 1.156 1.000 0.14 0.18 0.00 0.97 0.00 1.202 1.000

7 7.50 9.00 6.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.14 0.18 0.00 0.25 0.00 1.044 1.000

8 12.00 1.50 2.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.14 0.89 0.00 0.00 0.00 0.999 0.999

9 8.00 10.00 6.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.14 0.18 0.00 0.00 0.00 1.000 1.000

10 1.60 6.00 1.80 5.50 3.50 0.00 0.00 0.00 1.000 1.000 5.50 3.50 0.00 0.00 0.00 1.000 1.000

11 8.00 7.00 4.60 0.00 0.34 0.13 0.00 0.59 0.865 0.873 0.14 0.18 0.85 0.00 0.00 0.844 1.000

12 6.40 6.70 4.00 0.14 0.89 0.64 0.00 0.00 0.861 1.000 0.14 0.78 0.37 0.00 0.17 0.880 0.957

13 10.00 11.60 5.00 0.00 0.00 0.00 0.00 1.00 0.833 0.800 0.14 0.18 0.00 0.00 1.57 0.761 0.686

14 4.00 4.50 3.21 0.14 0.89 0.00 0.00 0.36 0.900 0.888 0.14 0.78 0.00 0.00 0.34 0.906 0.896

15 1.50 8.00 2.12 0.90 0.18 0.00 0.00 0.51 0.805 0.758 0.85 0.19 0.00 0.00 0.50 0.810 0.766

Observations Classical Model Modified Model

0.750 3.393 0.183 4.3750.139
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DMU X1 X2 Y w1j w2j u+ u- v c z
Deviation 

Ratio

Efficiency 

Estimates
β1 β2 w1j w2j u+ u- v z

Deviation

Ratio

Efficiency 

Estimates

1 1.00 7.00 2.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.75 0.21 0.00 0.00 0.00 1.000 1.000

2 3.00 4.00 2.50 0.67 1.62 0.00 0.00 0.00 1.000 1.000 0.49 1.32 0.00 0.00 0.00 1.000 1.000

3 3.50 4.30 3.32 0.05 0.61 0.00 0.00 0.00 1.000 1.000 0.05 0.54 0.00 0.18 0.00 1.058 1.000

4 8.00 1.00 1.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.05 1.64 0.00 0.00 0.00 1.000 1.000

5 1.50 10.00 3.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.75 0.21 0.00 0.00 0.00 1.000 1.000

6 4.50 6.00 5.75 0.00 0.53 0.00 1.35 0.00 1.307 1.000 0.05 0.51 0.00 1.64 0.00 1.400 1.000

7 7.50 9.00 6.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.05 0.21 0.00 0.23 0.00 1.040 1.000

8 12.00 1.50 2.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.05 1.64 0.00 0.00 0.00 1.000 1.000

9 8.00 10.00 6.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.05 0.21 0.00 0.00 0.00 1.000 1.000

10 1.60 6.00 1.80 5.50 3.50 0.00 0.00 0.00 1.000 1.000 5.50 3.50 0.00 0.00 0.00 1.000 1.000

11 8.00 7.00 4.60 0.00 0.53 0.00 0.00 0.33 0.932 0.928 0.05 0.51 0.17 0.00 0.00 0.964 1.000

12 6.40 6.70 4.00 0.05 0.61 0.24 0.00 0.00 0.943 1.000 0.05 0.54 0.00 0.00 0.00 1.000 1.000

13 10.00 11.60 5.00 0.00 0.00 0.86 0.00 0.15 0.833 0.971 0.05 0.21 1.42 0.00 0.00 0.778 1.000

14 4.00 4.50 3.21 0.05 0.61 0.25 0.00 0.00 0.927 1.000 0.05 0.54 0.01 0.00 0.05 0.982 0.985

15 1.50 8.00 2.12 0.75 0.21 0.00 0.00 0.46 0.820 0.781 0.69 0.22 0.44 0.00 0.00 0.827 1.000

Observations Classical Model Modified Model

0.875 3.524 0.208 4.1490.045
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DMU X1 X2 Y w1j w2j u+ u- v c z
Deviation 

Ratio

Efficiency 

Estimates
β1 β2 w1j w2j u+ u- v z

Deviation

Ratio

Efficiency 

Estimates

1 1.00 7.00 2.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.68 0.22 0.00 0.00 0.00 1.000 1.000

2 3.00 4.00 2.50 0.45 1.26 0.00 0.00 0.00 1.000 1.000 0.46 1.26 0.00 0.00 0.00 1.000 1.000

3 3.50 4.30 3.32 0.06 0.58 0.00 0.22 0.00 1.070 1.000 0.06 0.56 0.00 0.21 0.00 1.069 1.000

4 8.00 1.00 1.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.05 1.60 0.00 0.00 0.00 1.000 1.000

5 1.50 10.00 3.00 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.68 0.22 0.00 0.00 0.00 1.000 1.000

6 4.50 6.00 5.75 0.05 0.56 0.00 1.59 0.00 1.383 1.000 0.05 0.50 0.00 1.66 0.00 1.407 1.000

7 7.50 9.00 6.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.05 0.22 0.00 0.25 0.00 1.043 1.000

8 12.00 1.50 2.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.05 1.60 0.00 0.00 0.00 1.000 1.000

9 8.00 10.00 6.00 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.05 0.22 0.00 0.00 0.00 1.000 1.000

10 1.60 6.00 1.80 5.50 3.50 0.00 0.00 0.00 1.000 1.000 5.50 3.50 0.00 0.00 0.00 1.000 1.000

11 8.00 7.00 4.60 0.05 0.56 0.30 0.00 0.00 0.939 1.000 0.05 0.50 0.19 0.00 0.00 0.961 1.000

12 6.40 6.70 4.00 0.06 0.58 0.03 0.00 0.00 0.993 1.000 0.06 0.56 0.00 0.00 0.00 1.000 1.000

13 10.00 11.60 5.00 0.00 0.00 1.00 0.00 0.00 0.833 1.000 0.05 0.22 1.43 0.00 0.02 0.775 0.995

14 4.00 4.50 3.21 0.06 0.58 0.04 0.00 0.00 0.987 1.000 0.06 0.56 0.04 0.00 0.00 0.989 1.000

15 1.50 8.00 2.12 0.68 0.22 0.44 0.00 0.00 0.828 1.000 0.68 0.22 0.44 0.00 0.00 0.828 1.000

Observations Classical Model Modified Model

1.000 3.616 0.220 4.2080.050
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Appendix C: Combined DEA and quantile regression model 

compared with the suggested modified model (dataset 1) 

 

 

DMU X ~ U(1,10) u ~N(0,0.1) v ~|N(0,0.2)| ε = u - v exp(ε) X^0.5 exp(ε)*(X^0.5) w u v SE w u v SE

1 4.393 -0.257 0.156 -0.413 0.662 2.096 1.387 0.154 0.000 0.800 0.008 0.154 0.000 0.800 0.008

2 2.982 0.088 0.103 -0.015 0.985 1.727 1.702 0.318 0.000 0.098 0.005 0.318 0.000 0.098 0.005

3 1.472 0.031 0.285 -0.254 0.776 1.213 0.942 0.994 0.000 0.094 0.032 0.994 0.000 0.094 0.032

4 4.019 0.108 0.048 0.060 1.062 2.005 2.130 0.154 0.000 0.000 0.016 0.154 0.000 0.000 0.016

5 9.606 -0.115 0.108 -0.224 0.799 3.099 2.478 0.000 0.000 0.453 0.028 0.086 0.000 0.477 0.021

6 8.951 0.027 0.211 -0.184 0.832 2.992 2.490 0.154 0.000 0.398 0.011 0.154 0.000 0.398 0.011

7 5.648 0.100 0.200 -0.101 0.904 2.377 2.149 0.154 0.000 0.231 0.000 0.154 0.000 0.231 0.000

8 3.648 -0.127 0.014 -0.141 0.868 1.910 1.658 0.318 0.000 0.354 0.010 0.318 0.000 0.354 0.010

9 9.290 -0.088 0.025 -0.113 0.893 3.048 2.723 0.086 0.000 0.205 0.014 0.086 0.000 0.205 0.014

10 1.645 0.002 0.255 -0.253 0.777 1.282 0.996 0.944 0.000 0.202 0.007 0.944 0.000 0.202 0.007

11 2.900 -0.052 0.180 -0.232 0.793 1.703 1.350 0.318 0.000 0.424 0.005 0.318 0.000 0.424 0.005

12 6.892 0.140 0.261 -0.120 0.887 2.625 2.327 0.154 0.000 0.244 0.003 0.154 0.000 0.244 0.003

13 9.112 0.060 0.287 -0.227 0.797 3.019 2.405 0.154 0.000 0.507 0.011 0.154 0.000 0.507 0.011

14 9.371 -0.019 0.036 -0.054 0.947 3.061 2.899 0.000 0.000 0.031 0.017 0.086 0.000 0.035 0.016

15 2.384 0.083 0.042 0.041 1.042 1.544 1.609 0.318 0.000 0.000 0.004 0.318 0.000 0.000 0.004

16 9.116 0.047 0.060 -0.013 0.987 3.019 2.980 0.154 0.067 0.000 0.011 0.154 0.067 0.000 0.011

17 7.533 -0.016 0.179 -0.195 0.823 2.745 2.258 0.154 0.000 0.412 0.006 0.154 0.000 0.412 0.006

18 8.026 -0.071 0.292 -0.363 0.695 2.833 1.970 0.154 0.000 0.776 0.008 0.154 0.000 0.776 0.008

19 1.993 -0.023 0.460 -0.483 0.617 1.412 0.871 0.318 0.000 0.614 0.005 0.318 0.000 0.614 0.005

20 5.464 -0.041 0.470 -0.512 0.599 2.338 1.401 0.154 0.000 0.950 0.000 0.154 0.000 0.950 0.000

21 7.593 0.066 0.015 0.050 1.052 2.756 2.898 0.154 0.219 0.000 0.006 0.154 0.219 0.000 0.006

22 4.439 0.066 0.189 -0.123 0.884 2.107 1.862 0.154 0.000 0.332 0.008 0.154 0.000 0.332 0.008

23 4.259 0.089 0.004 0.085 1.089 2.064 2.247 0.154 0.081 0.000 0.011 0.154 0.081 0.000 0.011

24 8.304 -0.074 0.081 -0.155 0.857 2.882 2.468 0.154 0.000 0.320 0.009 0.154 0.000 0.320 0.009

25 5.841 -0.022 0.064 -0.087 0.917 2.417 2.216 0.154 0.000 0.194 0.000 0.154 0.000 0.194 0.000

26 4.060 -0.128 0.080 -0.207 0.813 2.015 1.638 0.154 0.000 0.498 0.015 0.154 0.000 0.498 0.015

27 3.211 -0.003 0.203 -0.206 0.814 1.792 1.459 0.318 0.000 0.414 0.007 0.318 0.000 0.414 0.007

28 9.658 0.029 0.231 -0.202 0.817 3.108 2.540 0.000 0.000 0.390 0.031 0.086 0.000 0.419 0.022

29 5.075 -0.077 0.128 -0.206 0.814 2.253 1.834 0.154 0.000 0.458 0.002 0.154 0.000 0.458 0.002

30 1.926 0.138 0.026 0.112 1.118 1.388 1.552 0.318 0.088 0.000 0.006 0.318 0.088 0.000 0.006

31 6.825 -0.023 0.035 -0.058 0.943 2.612 2.464 0.154 0.000 0.096 0.003 0.154 0.000 0.096 0.003

32 9.591 -0.042 0.013 -0.055 0.946 3.097 2.930 0.000 0.000 0.000 0.028 0.086 0.000 0.023 0.021

33 8.381 0.055 0.132 -0.077 0.926 2.895 2.680 0.154 0.000 0.120 0.009 0.154 0.000 0.120 0.009

34 7.155 -0.213 0.005 -0.218 0.804 2.675 2.151 0.154 0.000 0.461 0.004 0.154 0.000 0.461 0.004

35 7.050 -0.049 0.227 -0.275 0.759 2.655 2.016 0.154 0.000 0.579 0.004 0.154 0.000 0.579 0.004

36 2.998 0.068 0.068 0.000 1.000 1.732 1.732 0.318 0.000 0.073 0.005 0.318 0.000 0.073 0.005

37 6.420 0.058 0.152 -0.094 0.910 2.534 2.306 0.154 0.000 0.192 0.001 0.154 0.000 0.192 0.001

38 6.897 0.062 0.136 -0.074 0.929 2.626 2.439 0.154 0.000 0.133 0.003 0.154 0.000 0.133 0.003

39 9.319 0.121 0.044 0.077 1.080 3.053 3.296 0.000 0.366 0.000 0.015 0.086 0.366 0.000 0.015

40 4.926 -0.046 0.048 -0.094 0.910 2.219 2.021 0.154 0.000 0.248 0.002 0.154 0.000 0.248 0.002

41 2.352 -0.128 0.087 -0.215 0.807 1.534 1.237 0.318 0.000 0.362 0.004 0.318 0.000 0.362 0.004

42 6.820 0.118 0.260 -0.142 0.868 2.612 2.266 0.154 0.000 0.294 0.003 0.154 0.000 0.294 0.003

43 2.526 0.055 0.123 -0.068 0.934 1.589 1.485 0.318 0.000 0.170 0.004 0.318 0.000 0.170 0.004

44 8.840 -0.113 0.144 -0.256 0.774 2.973 2.301 0.154 0.000 0.570 0.010 0.154 0.000 0.570 0.010

45 6.756 0.079 0.043 0.036 1.036 2.599 2.693 0.154 0.143 0.000 0.002 0.154 0.143 0.000 0.002

46 9.997 -0.007 0.106 -0.113 0.893 3.162 2.825 0.000 0.000 0.106 0.053 0.086 0.000 0.164 0.030

47 8.749 0.082 0.152 -0.069 0.933 2.958 2.759 0.154 0.000 0.097 0.010 0.154 0.000 0.097 0.010

48 6.540 0.132 0.148 -0.016 0.984 2.557 2.517 0.154 0.000 0.000 0.002 0.154 0.000 0.000 0.002

49 1.268 -0.053 0.237 -0.290 0.748 1.126 0.843 0.944 0.000 0.000 0.080 0.944 0.000 0.000 0.080

50 6.879 -0.096 0.221 -0.317 0.728 2.623 1.910 0.154 0.000 0.659 0.003 0.154 0.000 0.659 0.003

Generated Data SDEA Modified SDEA
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Appendix D: Combined DEA and quantile regression model 

compared with the suggested modified model (dataset 2) 

 

 

 

DMU X ~ U(1,10) u ~N(0,0.1) v ~|N(0,0.2)| ε = u - v exp(ε) X^0.5 exp(ε)*(X^0.5) w u v SE w u v SE

1 2.283 0.112 0.398 -0.286 0.751 1.511 1.135 0.406 0.000 0.257 0.014 0.406 0.000 0.257 0.014

2 6.690 0.108 0.109 -0.001 0.999 2.586 2.583 0.171 0.000 0.002 0.000 0.171 0.000 0.002 0.000

3 2.223 -0.045 0.045 -0.090 0.914 1.491 1.362 0.406 0.000 0.005 0.015 0.406 0.000 0.005 0.015

4 5.716 -0.061 0.094 -0.155 0.856 2.391 2.048 0.237 0.000 0.336 0.000 0.237 0.000 0.336 0.000

5 6.737 -0.121 0.522 -0.643 0.526 2.596 1.365 0.171 0.000 1.229 0.000 0.171 0.000 1.229 0.000

6 7.085 -0.018 0.026 -0.045 0.956 2.662 2.545 0.171 0.000 0.108 0.000 0.171 0.000 0.108 0.000

7 8.036 0.199 0.259 -0.059 0.942 2.835 2.671 0.171 0.000 0.145 0.000 0.171 0.000 0.145 0.000

8 4.727 0.020 0.154 -0.134 0.875 2.174 1.902 0.237 0.000 0.248 0.001 0.237 0.000 0.248 0.001

9 6.422 0.009 0.062 -0.052 0.949 2.534 2.405 0.171 0.000 0.135 0.000 0.171 0.000 0.135 0.000

10 6.493 -0.276 0.046 -0.322 0.725 2.548 1.847 0.171 0.000 0.705 0.000 0.171 0.000 0.705 0.000

11 8.572 0.005 0.015 -0.010 0.990 2.928 2.898 0.000 0.000 0.000 0.001 0.171 0.000 0.010 0.000

12 9.695 -0.165 0.008 -0.173 0.841 3.114 2.618 0.000 0.000 0.280 0.047 0.171 0.000 0.482 0.000

13 8.457 0.155 0.222 -0.067 0.935 2.908 2.720 0.171 0.000 0.168 0.000 0.171 0.000 0.168 0.000

14 5.601 -0.011 0.000 -0.011 0.989 2.367 2.340 0.237 0.000 0.016 0.000 0.237 0.000 0.016 0.000

15 1.404 0.055 0.205 -0.150 0.861 1.185 1.020 0.463 0.000 0.000 0.027 0.463 0.000 0.000 0.027

16 4.080 0.027 0.246 -0.219 0.803 2.020 1.623 0.237 0.000 0.374 0.001 0.237 0.000 0.374 0.001

17 2.095 0.086 0.269 -0.183 0.833 1.447 1.206 0.406 0.000 0.109 0.018 0.406 0.000 0.109 0.018

18 1.653 -0.050 0.074 -0.124 0.883 1.286 1.136 0.406 0.000 0.000 0.023 0.406 0.000 0.000 0.023

19 4.982 -0.186 0.113 -0.299 0.742 2.232 1.656 0.237 0.000 0.554 0.000 0.237 0.000 0.554 0.000

20 5.799 0.008 0.048 -0.040 0.961 2.408 2.314 0.237 0.000 0.090 0.000 0.237 0.000 0.090 0.000

21 7.413 -0.074 0.007 -0.081 0.922 2.723 2.511 0.171 0.000 0.198 0.000 0.171 0.000 0.198 0.000

22 6.256 0.251 0.099 0.152 1.164 2.501 2.913 0.237 0.401 0.000 0.000 0.237 0.401 0.000 0.000

23 4.033 0.017 0.293 -0.275 0.759 2.008 1.525 0.237 0.000 0.460 0.001 0.237 0.000 0.460 0.001

24 7.437 0.000 0.090 -0.090 0.914 2.727 2.492 0.171 0.000 0.222 0.000 0.171 0.000 0.222 0.000

25 8.988 0.097 0.184 -0.086 0.917 2.998 2.751 0.000 0.000 0.147 0.010 0.171 0.000 0.228 0.000

26 5.206 0.204 0.212 -0.008 0.992 2.282 2.263 0.237 0.000 0.000 0.000 0.237 0.000 0.000 0.000

27 6.872 0.038 0.056 -0.018 0.982 2.621 2.575 0.171 0.000 0.041 0.000 0.171 0.000 0.041 0.000

28 4.651 -0.038 0.121 -0.159 0.853 2.157 1.840 0.237 0.000 0.292 0.001 0.237 0.000 0.292 0.001

29 4.330 0.160 0.111 0.049 1.050 2.081 2.186 0.237 0.130 0.000 0.001 0.237 0.130 0.000 0.001

30 2.535 -0.073 0.139 -0.213 0.808 1.592 1.287 0.406 0.000 0.207 0.010 0.406 0.000 0.207 0.010

31 2.343 0.033 0.111 -0.078 0.925 1.531 1.416 0.406 0.000 0.000 0.013 0.406 0.000 0.000 0.013

32 4.089 0.003 0.293 -0.290 0.748 2.022 1.513 0.237 0.000 0.485 0.001 0.237 0.000 0.485 0.001

33 2.537 -0.066 0.112 -0.177 0.838 1.593 1.334 0.406 0.000 0.161 0.010 0.406 0.000 0.161 0.010

34 5.445 -0.081 0.032 -0.113 0.893 2.333 2.083 0.237 0.000 0.236 0.000 0.237 0.000 0.236 0.000

35 9.137 0.146 0.242 -0.096 0.908 3.023 2.745 0.000 0.000 0.153 0.016 0.171 0.000 0.260 0.000

36 5.080 0.075 0.271 -0.197 0.822 2.254 1.852 0.237 0.000 0.382 0.000 0.237 0.000 0.382 0.000

37 2.632 0.035 0.120 -0.084 0.919 1.622 1.491 0.406 0.000 0.042 0.008 0.406 0.000 0.042 0.008

38 8.543 0.013 0.012 0.001 1.001 2.923 2.927 0.000 0.029 0.000 0.001 0.171 0.024 0.000 0.000

39 4.493 0.005 0.387 -0.382 0.683 2.120 1.447 0.237 0.000 0.647 0.001 0.237 0.000 0.647 0.001

40 8.513 0.169 0.079 0.090 1.094 2.918 3.192 0.171 0.295 0.000 0.000 0.171 0.295 0.000 0.000

41 3.339 0.163 0.040 0.124 1.132 1.827 2.068 0.237 0.247 0.000 0.000 0.237 0.247 0.000 0.000

42 6.385 0.081 0.060 0.021 1.021 2.527 2.579 0.171 0.046 0.000 0.000 0.171 0.046 0.000 0.000

43 3.550 0.026 0.178 -0.152 0.859 1.884 1.619 0.237 0.000 0.252 0.000 0.237 0.000 0.252 0.000

44 8.715 -0.059 0.333 -0.393 0.675 2.952 1.994 0.000 0.000 0.904 0.003 0.171 0.000 0.938 0.000

45 9.739 -0.162 0.099 -0.261 0.771 3.121 2.405 0.000 0.000 0.493 0.050 0.171 0.000 0.703 0.000

46 9.531 0.057 0.144 -0.088 0.916 3.087 2.828 0.000 0.000 0.069 0.036 0.171 0.000 0.243 0.000

47 6.101 -0.092 0.108 -0.200 0.819 2.470 2.022 0.237 0.000 0.453 0.000 0.237 0.000 0.453 0.000

48 3.208 0.015 0.150 -0.136 0.873 1.791 1.564 0.406 0.000 0.203 0.001 0.406 0.000 0.203 0.001

49 1.856 -0.085 0.311 -0.396 0.673 1.362 0.917 0.406 0.000 0.301 0.021 0.406 0.000 0.301 0.021

50 9.082 -0.113 0.041 -0.154 0.857 3.014 2.584 0.000 0.000 0.314 0.013 0.171 0.000 0.411 0.000

Generated Data SDEA Modified SDEA
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Appendix E: Sensitivity analysis report for the weight “c” using the 

data in section 3.5.2 

W.L: 𝑤𝑖𝑗 

Up.L: 𝑢𝑗
+ 

Un.L: 𝑢𝑗
− 

V.L: 𝑣𝑗  

----     54 PARAMETER result   
 
    Value of C           Z 
1        0.000       0.000 
2        0.050       0.233 
3        0.100       0.465 
4        0.150       0.698 
5        0.200       0.930 
6        0.250       1.163 
7        0.300       1.395 
8        0.350       1.628 
9        0.400       1.860 
10       0.450       2.093 
11       0.500       2.325 
12       0.550       2.558 
13       0.600       2.791 
14       0.650       3.023 
15       0.700       3.256 
16       0.750       3.393 
17       0.800       3.454 
18       0.850       3.501 
19       0.900       3.548 
20       0.950       3.595 
21       1.000       3.616 
22       1.050       3.616 
23       1.100       3.616 
24       1.150       3.616 
25       1.200       3.616 
26       1.250       3.616 
____________________________________________________________________________ 

 
----     52 PARAMETER C                    =        0.000   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.400                   2.000 
2                   1.617       1.248       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                               0.400       2.000 
2       2.000       3.500       0.083       0.833       1.248 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
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                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.383,    13 1.000,    14 0.560,    15 0.880 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.050   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.100   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.150   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 



71 

 

2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.200   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.250   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.300   
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----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.350   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.400   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
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                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.450   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.500   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.550   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
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2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.600   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.650   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.700   
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----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.372                   2.000 
2                   1.617       1.211       2.000                   0.083 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.121       0.372       1.114 
2       2.000       3.500       0.083       1.034       1.211       0.148 
 
 
----     52 VARIABLE Up.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE Un.L   
 
                      ( ALL       0.000 ) 
 
 
----     52 VARIABLE V.L   
 
11 1.233,    12 1.295,    13 1.000,    14 0.538,    15 0.585 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.750   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.139                   2.000 
2                   1.617       0.892       2.000                   0.342 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.139       0.139       0.902 
2       2.000       3.500       0.342       0.892       0.892       0.183 
 
 
----     52 VARIABLE Up.L   
 
11 0.131,    12 0.644 
 
 
----     52 VARIABLE Un.L   
 
6 0.775 
 
 
----     52 VARIABLE V.L   
 
11 0.586,    13 1.000,    14 0.358,    15 0.514 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.800   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.045                   2.000 
2                   1.617       0.609       2.000                   0.533 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.045       0.045       0.753 
2       2.000       3.500       0.533       0.609       0.609       0.208 
 
 
----     52 VARIABLE Up.L   
 
12 0.240,    13 0.646,    15 0.464 
 
 
----     52 VARIABLE Un.L   
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6 1.350 
 
 
----     52 VARIABLE V.L   
 
11 0.333,    13 0.354,    14 0.254 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.850   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.045                   2.000 
2                   1.617       0.609       2.000                   0.533 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.045       0.045       0.753 
2       2.000       3.500       0.533       0.609       0.609       0.208 
 
 
----     52 VARIABLE Up.L   
 
12 0.240,    13 0.646,    15 0.464 
 
 
----     52 VARIABLE Un.L   
 
6 1.350 
 
 
----     52 VARIABLE V.L   
 
11 0.333,    13 0.354,    14 0.254 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.900   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.045                   2.000 
2                   1.617       0.609       2.000                   0.533 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.045       0.045       0.753 
2       2.000       3.500       0.533       0.609       0.609       0.208 
 
 
----     52 VARIABLE Up.L   
 
12 0.240,    13 0.855,    14 0.254 
 
 
----     52 VARIABLE Un.L   
 
6 1.350 
 
 
----     52 VARIABLE V.L   
 
11 0.333,    13 0.145,    15 0.464 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        0.950   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.670       0.045                   2.000 
2                   1.617       0.609       2.000                   0.533 
 
+           8          10          11          12          14          15 
 
1                   5.500                   0.045       0.045       0.753 
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2       2.000       3.500       0.533       0.609       0.609       0.208 
 
 
----     52 VARIABLE Up.L   
 
12 0.240,    13 0.855,    14 0.254 
 
 
----     52 VARIABLE Un.L   
 
6 1.350 
 
 
----     52 VARIABLE V.L   
 
11 0.333,    13 0.145,    15 0.464 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        1.000   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.454       0.062                   2.000       0.050 
2                   1.257       0.583       2.000                   0.564 
 
+           8          10          11          12          14          15 
 
1                   5.500       0.050       0.062       0.062       0.679 
2       2.000       3.500       0.564       0.583       0.583       0.220 
 
 
----     52 VARIABLE Up.L   
 
11 0.298,    12 0.028,    13 1.000,    14 0.042,    15 0.440 
 
 
----     52 VARIABLE Un.L   
 
3 0.216,    6 1.592 
 
 
----     52 VARIABLE V.L   
 
                      ( ALL       0.000 ) 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        1.050   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.454       0.062                   2.000       0.050 
2                   1.257       0.583       2.000                   0.564 
 
+           8          10          11          12          14          15 
 
1                   5.500       0.050       0.062       0.062       0.679 
2       2.000       3.500       0.564       0.583       0.583       0.220 
 
 
----     52 VARIABLE Up.L   
 
11 0.298,    12 0.028,    13 1.000,    14 0.042,    15 0.440 
 
 
----     52 VARIABLE Un.L   
 
3 0.216,    6 1.592 
 
 
----     52 VARIABLE V.L   
 
                      ( ALL       0.000 ) 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        1.100   
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----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.454       0.062                   2.000       0.050 
2                   1.257       0.583       2.000                   0.564 
 
+           8          10          11          12          14          15 
 
1                   5.500       0.050       0.062       0.062       0.679 
2       2.000       3.500       0.564       0.583       0.583       0.220 
 
 
----     52 VARIABLE Up.L   
 
11 0.298,    12 0.028,    13 1.000,    14 0.042,    15 0.440 
 
 
----     52 VARIABLE Un.L   
 
3 0.216,    6 1.592 
 
 
----     52 VARIABLE V.L   
 
                      ( ALL       0.000 ) 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        1.150   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.454       0.062                   2.000       0.050 
2                   1.257       0.583       2.000                   0.564 
 
+           8          10          11          12          14          15 
 
1                   5.500       0.050       0.062       0.062       0.679 
2       2.000       3.500       0.564       0.583       0.583       0.220 
 
 
----     52 VARIABLE Up.L   
 
11 0.298,    12 0.028,    13 1.000,    14 0.042,    15 0.440 
 
 
----     52 VARIABLE Un.L   
 
3 0.216,    6 1.592 
 
 
----     52 VARIABLE V.L   
 
                      ( ALL       0.000 ) 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        1.200   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.454       0.062                   2.000       0.050 
2                   1.257       0.583       2.000                   0.564 
 
+           8          10          11          12          14          15 
 
1                   5.500       0.050       0.062       0.062       0.679 
2       2.000       3.500       0.564       0.583       0.583       0.220 
 
 
----     52 VARIABLE Up.L   
 
11 0.298,    12 0.028,    13 1.000,    14 0.042,    15 0.440 
 
 
----     52 VARIABLE Un.L   
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3 0.216,    6 1.592 
 
 
----     52 VARIABLE V.L   
 
                      ( ALL       0.000 ) 
____________________________________________________________________________ 
 
----     52 PARAMETER C                    =        1.250   
 
----     52 VARIABLE W.L   
 
            1           2           3           4           5           6 
 
1       2.000       0.454       0.062                   2.000       0.050 
2                   1.257       0.583       2.000                   0.564 
 
+           8          10          11          12          14          15 
 
1                   5.500       0.050       0.062       0.062       0.679 
2       2.000       3.500       0.564       0.583       0.583       0.220 
 
 
----     52 VARIABLE Up.L   
 
11 0.298,    12 0.028,    13 1.000,    14 0.042,    15 0.440 
 
 
----     52 VARIABLE Un.L   
 
3 0.216,    6 1.592 
 
 
----     52 VARIABLE V.L   
 
                      ( ALL       0.000 ) 
____________________________________________________________________________ 
 

the coding in GAMS software for sensitivity analysis of the weight “c” 
 
Sets 
i index of input /1,2/ 
r index of output /1/ 
j index of DMUs /1*11/ 
Iteration /1*30/; 
Alias (k,j); 
Scalar C /0.95/; 
 
Parameter 
result(Iteration,*); 
 
table 
X(i,j) Inputs 
         1    2    3      4    5    6    7    8    9    10   11 
1        1    3    3.5    8    1.5  4.5  7.5  12   8    1.6  8 
2        7    4    4.3    1    10   6    9    1.5  10    6   7  ; 
 
table 
Y(r,j) Output 
         1    2    3    4    5    6      7   8   9    10    11 
1        2    2.5  3.32 1    3    5.75   6   2   6    1.8   2  ; 
 
Variables 
Z 
Positive variable W 
Positive Variable Up 
Positive Variable Un 
Positive Variable V  ; 
 
Equations 
ObjectiveFunction 
Co1(j,k) 
Co2; 
*Co3(j); 
 
ObjectiveFunction .. Z =e= sum((j),Up(j)+Un(j)+C*V(j)) ; 
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Co1(j,k)          .. Sum((i),(X(i,k)-X(i,j))*W(i,j))+V(j)-
V(k)+Up(j)-Un(j)-Up(k)+Un(k) =g= Sum((r),Y(r,k)-Y(r,j)) ; 
Co2               .. sum((j),Up(j)-Un(j)) =e= 0    ; 
*Co3(j)            .. W("1",j) =g= 0.333; 
 
Model StochasticDEA /all/; 
 
Loop (Iteration, 
C = C + 0.05 
Solve StochasticDEA using LP Minimizing Z; 
result(Iteration,"Value of C")= C; 
result(Iteration,"Z") = Z.l; 
*result(Iteration,"W") = W.l; 
*result(Iteration,"Up") = Up.l; 
*result(Iteration,"Un") = Un.l; 
*result(Iteration,"V") = V.l; 
); 
Display result; 
execute_unload 'FirstResult.gdx'; 

 

 

 


