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ABSTRACT 

In this work a new method of designing filter for Dual-tree complex wavelet 

transform is presented. In the new method, the space of orthonormal wavelet filters is 

defined in terms of some parameters, these parameters are used to design Q-shift filters 

to have desirable properties including good smoothness and support in [-2p/3, 2p/3]. The 

constraints in parameterization method lead to wavelets having two vanishing moments. 

For obtaining the group delay of 1/4 sample period and minimizing the magnitude or 

energy in stop band [2p/3, p], Kingsbury minimized the energy in this domain. In the 

proposed method in this work, we minimized the peak magnitude of filters in the stop 

band. The design approach is illustrated with four examples. The results are compared 

with Kingsbury’s Q-shift in ana lyticity measures, shift-invariance property and half-

sample delay.  

The designed filters are then used in image denoising. We used the Bivariate 

shrinkage algorithm for wavelet coefficient modeling and thresholding. Three images 

(Boat, Baboon, and Cameraman) have been used for test. The experimental results are 

compared with those obtained using Kingsbury’s Q-shift filters. 

 

Keywords: Dual-tree complex wavelet transforms, Q-shift filters, Orthogonal wavelets, 

Parameterization, Image denoising. 
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ÖZ 

Bu çalismada Ikili agaç kompleksi dalgacik dönüsümü için filtre tasarlamanin 

yeni bir yöntemi sunulmaktadir. Yeni yöntemde ortonormal dalgacik filtrelerinin alani 

parametrelerle belirlenmektedir, sonra bu parametreler iyi pürüzsüzlük ve [-2p/3, 

2p/3]’de destek de dahil istenen özelliklere sahip Q-shift filtrelerinin tasarlanmasinda 

kullanilmaktadir. Parametrizasyon yöntemindeki kisitlar dalgaciklarin iki kaybolma 

hareketine sahip olmasina neden olmaktadir. 

1/4 örnek periyodunun grup gecikmesini elde etmek ve [2p/3, p]’de istenmeyen 

büyüklük veya enerjiyi asgariye indirmek için Kingsbury bu alandaki enerjiyi minimize 

etmistir. Bu çalismada önerilen yöntemde filtrelerin tepe büyüklügünü söndürme 

kusaginda minimize ettik. Sekilli örnekler tasarimin yaklasimini göstermektedir ve 

sonuçlar çözümleyicilik ölçümünde ler, shift-degismezlik özelliginde ve yarim örnek 

gecikmesinde Kingsbury’nin Q-shift’i ile karsilastirilabilirdir.  

Tasarlanan filtreler görüntü gürültüsüzlestirmede kullanilmaktadir. Dalgacik 

katsayi modellemesi ve esiklemesi için iki degiskenli fire algoritmasini kullandik. Test 

için üç image (Kayik, Babun ve Kameraman) kullanilmistir ve deneysel sonuçlar 

Kingsbury'nin Q-shift filtrelerinin kullanilmasiyla elde edilenlerle karsilastirilmistir. 

 

Anahtar sözcükler:  Ikili agaç kompleksi dalgacik dönüsümü, Q-shift filtresi, Ortogonal 

dalgaciklar, Parametrizasyon, Görüntü gürültüsüzlestirme. 
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Chapter 1 

1 INTRODUCTION 

 

1.1 Introduction  

Dual-Tree Complex Wavelet Transform (DT CWT) is one of a most important 

development in signal processing domain. It was first introduced by Kingsbury [1]. 

Generating complex coefficients by DT CWT introduces limited redundancy and allows 

the transform to provide shift invariance and directional selectivity of filters. These 

properties make it useful in areas of signal and image processing [2]. 

 By understanding the concept of Hilbert transform pairs, the DT CWT achieves 

desirable properties such as nearly shift invariance with limited redundancy. In DT CWT 

one wavelet is Hilbert transform of the other and scaling filters in primal filter banks 

should be designed to be offset from each other by a half sample delay [1, 3, 4]. This 

fundamental concept of Hilbert transform of wavelet bases relates to existence of two 

filter banks making together a dual-tree of filter banks. If the Hilbert transform pair 

requirement is satisfied, many properties are shared by the primal and the dual filter 

bank.  

This work is concern with the design of filters for DT CWT structure. There are 

two approaches to the design of dual-tree filter banks. The first is designing the primal 

and the dual filter banks at the same time. Kingsbury’s Q-shift solution [5] and Selesnick 
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common factor solution [6] fall in this category. The second is design the dual filter 

banks from an existing filter banks such as the Daubechies biorthogonal filter bank [5]. 

The idea of Q-shift filters is presented in the work of Kingsbury in [7, 8] for 

improving orthogonality and symmetry properties of filter banks in dual-trees. Then a 

new designed has been proposed in [9] for optimizing the Q-shift filters. In a Q-shift 

filters a half sample delay is obtained with filter delays of 1/4 or 3/4 of a sample period, 

and this is achieved with an asymmetric even length primal filter and its time reverse 

[9].  

A parameterization of orthonormal wavelets was introduced by Sherlock and 

Monro in [10] and recently extended in [11]. The parameterization method enables us to 

describe the space of orthonormal wavelets in terms of a set of parameters. The 

coefficients for all orthonormal perfect reconstruction FIR filters are generated with a 

simple recurrence [10, 11].  

In this work, we present a new design technique for Q-shift filters. The new 

design method is based on parameterization of orthonormal wave lets with two vanishing 

moments. The peak magnitude of the low pass filter in dual-tree structure is minimized 

in [2p/3, p] instead of the energy used by Kingsbury. The aim of this work is to design a 

Q-shift filter according to parameterization of wavelet filters. The proposed approach 

can lead to an FIR filter bank for analytic complex wave lets. In addition, filter bank 

properties such as orthogonality, vanishing moments and other properties can be 

incorporated in the design procedure. 
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1.2 Organization 

The DT CWT is briefly introduced in Chapter 2. Its structure, filter designing 

and extension to two dimensional are described in this chapter. In Chapter 3, a Q-shift 

filter design is defined and filter requirements for Q-shift filter design are explained. 

Then the parameterization method is introduced. We present design examples in this 

chapter. After designing, the mathematical properties of designed filter related to its 

analyticity and shift invariance are considered and compared with Kingsbury’s Q-shift 

filters.   

In Chapter 4, we study the application of DT CWT in image denoising. Several 

standard images are used to study the denoising problem. Each image is corrupted by an 

additive white Gaussian noise at various levels and then denoised by using a DT CWT. 

The denoising method is used for three images (Boat, Baboon and Cameraman). The 

results of denoising are illustrated in this chapter. 

Chapter 5 summarized the material presented in this work.  It also discusses the 

possible future work.  
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Chapter 2 

2 DUAL-TREE COMPLEX WAVELET TRANSFORM 

 

2.1 Introduction  

 A Dual-Tree Complex wavelet Transform (DT CWT) is a recently development 

in wavelet domain that was first produced by Kingsbury in [1]. Its structure with good 

properties likes shift-invariance and good directionality in two and higher dimensions 

make it useful in signal and image processing applications. It achieves this with a limited 

redundancy (redundancy factor of D2  for D dimensional signals).  

In this chapter we will introduce DT CWT. At first we briefly explain wavelet 

domain analysis, and then Discrete Wave let Transform (DWT) and its properties. Then 

DT CWT and its characterization are introduced and filter designed procedure for DT 

CWT is explained. Finally we explain extension of the DT CWT to two dimensional 

(2D). 

2.2 Wavelet Transform  

 Wavelets are famous domain in signal processing. They are stretched and shifted 

version of real valued band pass wavelets )(tψ . Their combination with low pass scaling 

function )(tφ can form an orthonormal basis expansion that provides a time-frequency 
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analysis of signal. We can express any signal )(tx  in terms of wavelets and scaling 

function as in (2.1) [2]: 

)2(2),()()()(
0

2 ntnjdntnctx j

n j n

j

−+−= ∑ ∑ ∑
∞

−∞=

∞

=

∞

−∞=

ψφ         (2.1) 

where )(nc  is the scaling function coefficient, and ),( njd is the wavelet coefficient that 

are computed respectively: 

∫
∞

∞−
−= dtnttxnc )()()( φ                            (2.2) 

∫
∞

∞−
−= )2()(2),( 2 nttxnjd j

j
ψ  .                          (2.3) 

Time-frequency analysis is controlled by scale factor j and time factor n. 

There are algorithms to compute a scaling function and wavelet based on 

weighted sum of shifted scaling function (basis) that produce a discrete-time low pass 

filter )(0 nh  and high pass filter )(1 nh , and upsampling and downsampling operations 

which make filter banks structure. The DWT consists of recursively applying two-

channel filter bank shown in Figure 2.1. We refer to [2, 12] on theory about wavelet 

domain analysis. 

2↓

2↓

2↓

2↓

2↓

2↓

x

1Level
2Level

3Level

 
Figure 2.1: Tree of DWT 



6 

Filters )(0 nh , )(1 nh  makes a convenient parameterization for designing wavelets 

and scaling functions with properties like compact support, orthogonality to lower order 

polynomials (vanishing moments). These properties make wavelets more useful than 

Fourier analysis, and enable to represent many types of signals which are not matched 

by the Fourier basis [2]. 

 The DWT have these properties: good compression of signal energy, perfect 

reconstruction with short support filters, no redundancy and very low computation. In 

spite of good properties with real wavelets, there are some fundamental problems [4]: 

1) Oscillations: Wavelets are band pass functions, so their coefficients oscillate 

positive and negative around singularities (jump and spikes); this makes wavelet 

based processing to have some complexities. 

2) Shift variance: The wavelet coefficients will oscillate around singularities by a 

small shift of signal, though it complicates wavelet domain processing. 

3) Aliasing: Computing wavelet coefficients by discrete time upsampling and down 

sampling operations makes aliasing.  

4) Lack of directionality: Multi dimensional wavelet coefficients produce a pattern 

that is simultaneously oriented in several directions. This lack of directional 

selectivity makes problems in image processing.  

Complex wavelets provide solution to these shortcomings [2]. 
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2.3 Complex Wavelets and DT CWT 

The DWT’s problems [2] solved by Fourier transform’s properties. Unlike the DWT, 

Fourier transform doesn’t suffer from mentioned problems. The Fourier transform 

analysis is based on complex complex-valued oscillating sinusoids: 

)sin()cos( tjte tj Ω+Ω=Ω .                           (2.4) 

The oscillating real part (cosine) and imaginary part (sine) components form a 

Hilbert transform pair that produce an analytic signal tje Ω  which is supported on only 

half of the frequency axis ( 0>Ω ).  

Imitating the above representation, we can get a Complex wavelet transform (CWT) 

with complex valued scaling function [2]: 

)()()( tjtt irC ψψψ += .                                       (2.5) 

A complex valued wavelet coefficient is defined as below: 

),(),(),( njjdnjdnjd irC +=  .                       (2.6) 

According to (2.4) and (2.5), )(trψ is real and even and )(tiψ is imaginary and 

odd and by forming the Hilbert transform pair they make  )(tCψ  to be analytic signal 

[2]. These properties are illustrated in Figure 2.2.  

The design of CWT makes some new problems that DWT doesn’t have , so new 

approach is needed.  
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Figure 2.2: Complex wavelets with analyticity property [2] 

2.3.1 The DT CWT 

For implementing an analytic wavelet transform, Kingsbury introduced a DT 

CWT structure in [1]. The DT CWT employs two real DWT in its structure. The first 

DWT gives the real part of the transform and second part gives the imaginary part. The 

analysis and synthesis Filter banks used in DT CWT are shown in Figures 2.3 and 2.4 

respectively.  

The two real wavelet transforms use two different set of filters that satisfying the 

perfect reconstruction condition. Filters )(0 nh , )(1 nh  and )(0 ng , )(1 ng  denote the low 

pass/high pass filter pairs for the upper and lower filter banks respectively. Both filters 

are real but their combination produce a complex wavelet. For satisfying a perfect 

reconstruction condition the filters are designed to make a complex wavelet 

)()()( tjtt gh ψψψ +=  approximately analytic by two real wavelet transforms 

)(thψ and )(tgψ . Equivalently they are designed so that the lower wavelet )(tgψ  is the 

Hilbert transform of upper wavelets )(thψ ; { })()( tt hg ψψ Η≈   [2, 3, 6]. 
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Figure 2.3: Analysis filter banks of DT CWT 
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Figure 2.4: Synthesis filter banks of DT CWT 

 

In the inverse of DT CWT, like the forward transform, the real part and 

imaginary part are each inverted and the inverse of the two real DWTs gives a two real 

signal and finally the average of two real signals gives a final output. We can get an 

original signal from either real part or imaginary part alone.  
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2.3.2 The Half Sample Delay Condition 

 Several analysis are made about the fact that one wavelet is approximately the 

Hilbert transform of the other. If we want wavelets form a Hilbert transform pair, we 

need to design low pass filters satisfying this property. Now let 

∑=
n

hh tnht )()(2)( 1 φψ                                          (2.7) 

∑=
n

hh tnht )()(2)( 0 φφ                                          (2.8) 

where )()1()( 01 ndhnh n −−= ; for lower filter bank )(tgψ , )(tgφ and )(1 ng are defined 

similarly. Assuming that both real wavelets are orthonormal, from [2, 3] these filters 

should satisfy the property as below: 

)5.0()( 00 −≈ nhng  .                                                   (2.9) 

It means that one of them should be approximately half sample shift of the other. 

The Fourier transform of (2.9) and its magnitude and phase are 

)()( 0
5.0

0
jwwjjw eHeeG −=                                               (2.10) 

)()( 00
jwjw eHeG =                                                   (2.11) 

weHeG jwjw 5.0)()( 00 −∠=∠  .                                       (2.12) 

 By having this property, wavelets will form Hilbert transform pair 

( { })()( tt hg ψψ Η≈ ) and the complex wavelet )()( tjt gh ψψ + will be approximately 

analytic, and the DT DWT is nearly shift-invariant. Also when the complex wavelets are 

analytic, the two filter banks share common properties including orthogonality (or 

biorthogonality) [13, 14].  
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Now we understand the aim of the Hilbert transform of wavelet bases. This 

fundamental concept relates to the existence of two filter banks making together a dual-

tree of filter banks. 

2.4 Filter Design for the DT CWT 

 As mentioned in the previous sections, filter properties in the filter banks 

structure play a significant role in obtaining the important properties of wavelet domain. 

So designing filters that satisfy these properties is important. 

Several methods proposed for designing filters for the DT CWT structure. In 

these methods the designed filters have some desired properties like: approximately half-

sample delay property, perfect reconstruction, finite support filters (FIR filters), 

vanishing moments, linear phase filters.  

The early methods for designing filters include linear-phase biorthogonal 

solution, Q-shift solution, and common factor solution. The first method is introduced in 

[1, 16]; common factor solution is explained in [6]; and Q-shift method that we used for 

designing a filter in this thesis is introduced by Kingsbury in [7]; and will be explained 

in next section. See [2] and [13] for more about the design of DT filter banks. 

 The other important thing in filter designing for dual-trees is that the first stage 

of the dual-tree filter banks should be different from the other stages. The half sample 

delay condition shouldn’t be used for the first stage. For the first stage, it is necessary 

only to translate one set of filters by one sample to the other ( )1()( 00 −= nhng ) and any 

set of perfect reconstruction filter can be used for first stage. For more explanation and 

its proof we refer to [2]. 
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2.4.1 Q-shift Filter Design 

 This method was introduced by Kingsbury in [7]. Satisfying linear-phase 

property of )(0 nh  is achieved by 

)1()( 00 nNhng −−=  .                                             (2.13) 

where N (even) is the length of )(0 nh  which is supported in 10 −≤≤ Nn . In this case 

the magnitude part of (1.12) is satisfied but the phase part (2.12) is not and will be like 

below [2]: 

)()( 00
jwjw eHeG =                                     (2.14) 

weHeG jwjw 5.0)()( 00 −∠≠∠  .                                     (2.15) 

The quarter-shift solved (2.15) problem. From (2.13) we can write 

wNjjwjw eeHeG )1(
00 )()( −−=  .                                       (2.16) 

And its phase becomes 

wNeHeG jwjw )1()()( 00 −−−∠=∠  .                               (2.17) 

From (2.12) we can rewrite (2.17) like below: 

wNeHweH jwjw )1()(5.0)( 00 −−−∠≈−∠ .                (2.18) 

Then we can obtain below formula: 

wwNeH jw 25.0)1(5.0)(0 +−−≈∠ .                            (2.19) 

So, )(0 nh is approximately linear-phase and symmetric around 25.0)1(5.0 −−= Nn ; that 

is a quarter away from a natural point of symmetry. So this method is named Q-shift 

method. In Q-shift method the imaginary part of the complex wavelet is a time-reversed 

of real part ( )1()( tNt hg −−= ψψ ) [2, 7].  
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Therefore Q-shift method is to design filters satisfying perfect reconstruction 

condition and approximately linear-phase condition with group delay required to be a 

quarter. 

2.5 Two-Dimensional DT CWT   

 One of the advantages of DT CWT is that it can be used to implement two-

Dimensional (2D). In 2D, DT CWT saved desirable properties of 1D case and has 

effective properties like directional selectivity. In particular, 2-D dual-tree wavelets are 

not only approximately analytic but also oriented and thus natural for analyzing and 

processing oriented singularities like edges in images [2].  

 At first we explains 2D DWT and then discuss 2D DT CWT. Using the wavelet 

transform for image processing requires implementation of a 2D version of analysis and 

synthesis filter banks. In this case, first, 1D analysis filter banks is applied to the 

columns of the image and then applied to the rows. Therefore four  sub-band images (LL, 

LH, HL, HH) are obtained; see Figure 2.5. For obtaining original image, the 2D 

synthesis filter bank combines the four sub-band image [2]. 

 
Figure 2.5: Wavelet decomposition of an image in one stage [21] 
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The separable (row-column) implementation of the 2D DWT is characterized by 

three wavelets as below [2]: 

)()(),(1 yxyx ψφψ =   (LH wavelet) 

)()(),(2 yxyx φψψ =   (HL wavelet) 

)()(),(3 yxyx ψψψ =   (HH wavelet). 

The LH (Low-High) and HL wavelets are or iented vertically and horizontally, 

the HH wavelets mix two diagonal orientations ( o45+ and o45− ). Figure 2.6 illustrates 

these wavelets [21]. 

 
Figure 2.6: The wavelets in space domain (LH, HL, and HH) [21]  

The separable DWT is unable to isolate these orientations. 2D DT CWT produce 

oriented wavelets that are oriented in six distinct directions. In each direction, one of the 

two wavelets can be interpreted as the real part while the other wavelet can be 

interpreted as the imaginary part of the complex-valued 2D wavelet. The complex 2D 

DT operating as four critically sampled separable 2D DWTs operating in parallel. The 

Figure 2.7 illustrates 2D DT CWT. 

We can see in Figure 2.7, the wavelets are or iented in the same six directions but 

there are two in each direction. The six wavelets on the first are interpreted as a real part 
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and the six wavelets on the second row are imaginary part of a set of six complex 

wavelets. The third row is the magnitude of the six complex wavelets [21].  

 

 
Figure 2.7: 2D dual-tree complex wavelets [21] 

While the wavelets are oriented, approximately analytic, and non-separable, the 

implementation is very efficient and makes it useful in many applications of image 

processing such as denoising.  
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Chapter 3 

3 Q-SHIFT FILTER DESIGN OF DUAL-TREE FILTER 

BANKS 

 

3.1 Introduction 

We have described the DT CWT. This introduces limit redundancy and allows 

the transform to provide approximate shift invariance and directionality selection of 

filters while preserving the usual properties of perfect reconstruction and computational 

efficiency responses. We analyze the new designed filters in terms of directionality and 

shift invariance. 

In this chapter we present a new design of Q-shift filters for DT CWT. The idea 

of using Q-shift approach is motivated by the work of Kingsbury in [7] for improving 

orthogonality and symmetry properties of filter banks. Q-shift form employs a single 

design of even-length filter with asymmetric coefficients. The DT CWT structure 

requires most of the wavelet filters to have a well controlled group delay [7, 9] 

(equivalent to quarter of a sample period) to achieve approximately shift invariance. 

In Q-shift filters a half-sample delay difference is obtained with filter delays of 

1/4 and 3/4 of a sample period and this is achieved with an asymmetric even-length filter 

)(0 zH and its time reverse. Also lower tree filters are time-reverse of upper tree filters 

and reconstruction filters are the time-reverse of analysis filters, this make transform use 
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shorter filters and all filters form orthonormal set (bases are orthonormal) beyond level 

one. Then the two trees are matched very well and have a more symmetric sub-sampling 

structure [7, 15]. 

In this work we use parameterization method of orthogonal wavelet filter banks. 

This method was first introduced by Sherlock and Monro in [10] and then extended in 

[11]. According to the mentioned method, the space of orthonormal wavelet is described 

by a set of parameters [10]. The parameterization is not unique for different roots of the 

polynomial may be chosen. The advantage of this method is that it is able to 

parameterize wavelets that have vanishing moments greater than one, in this work is 

equal to two [11]. 

As we know one of the most important properties of complex wavelet filters in 

dual-tree filter banks is their analyticity. Other important mathematical properties of 

complex wavelet   filters are consequences of analyticity. 

In Section 3.2, the requirements of Q-shift filter design will explain. In Section 

3.3 the parameterization method will introduced. The design procedure is given in 

Section 3.4; Section 3.5 presents some design examples. The mathematical properties of 

complex wavelet filters introduced and their comparison between designed Q-shift filter 

and Kingsbury’s Q-shift filter are shown in Section 3.6.  

3.2 Filter Requirements for Q-shift Complex Wavelets 

Consider the Q-shift dual-tree in Figure 3.1 in which all filters beyond level 1 are 

even-length.  
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Figure 3.1: Q-shift dual-tree in 3 stages 

Our aim is to design the Q-shift filter 0H with desirable properties. In this method of 

designing, we the properties of Kingsbury’s Q-shift design [9] are complemented by 

parameterization method. The key properties of Q-shift filters according to [9] are: 

1) No aliasing: The symmetry properties of the Q-shift filters can be obtained by  

setting up these equations between the filters of dual-tree filter banks [9] 

)()(~
01 zzHzH −=                                                           (3.1) 

)(
~

)( 0
1

1 zHzzH −= −  .                                                       (3.2) 

2) Perfect Reconstruction: By satisfying the standard condition of perfect 

reconstruction of filter banks we obtain his property [9, 15]. So we will have  

2)(~)()(~)( 0000 =−−+ zHzHzHzH  .                                       (3.3) 

3) Orthgonality: The dual filter bank can achieve the orthogonality of primal filter 

bank if the half-sample delay condition is met [16]. In the Q-shift filters, the 

lower filter is the time reverse of upper filter and for satisfying orthogonality  we 

should setting up this equation 
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)()( 1
00

−= zHzG  .                                                    (3.4) 

4) Group Delay ≈  1/4 sample for 0H and 3/4 for 0G : To get this property we use 

Kingsbury’s method in [7, 9]. To obtain 2L-tap low pass filters, 0H and 0G  with 

1/4  and 3/4 sample delays, a 4L-tap linear phase and symmetric low pass filter 

)(2 zH L  with a delay of 1/2 sample is designed as follows 

)()()( 2
0

12
02

−−+= zHzzHzH L  .                                   (3.5) 

So the subsample filter 0H  will have a half of delay of )(2 zH L  (1/4 sample). 

5) Good smoothness when iterated over scale. 

6) Finite support in (-2p/3, 2p/3), that is, 0)(0 ≈jweH  For  w∉[-2p/3, 2p/3].    

To achieve the fifth and sixth properties we come back to one of the important 

properties of discrete-time systems that are shift invariant. We say, a discrete-

time system is µ-shift-invariant if a shift in input results the output shifted as well 

[16]. And the M-fold decimator (down sampler) is µ-shift-invariant for input if 

its frequency supports in not more than 2p/M and the output shouldn’t have the 

aliasing term in same frequency band with length of π2 . As we know one of the 

most important properties of DT CWT structures is its shift invariance property 

and for achieving this property the conjugate quadrature filters (CQF) should 

have support limited in [-2p/3, 2p/3], in addition to the well known half sample 

delay condition at high levels and the one sample delay condition in first level 

[16]. 

Analyticity of the complex wavelet filters alone is not enough for the µ-shift-

invariant of DT CWT. We should know that the stop band of )(0 zH  at each 
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scale suppresses energy at frequencies where unwanted pass bands appear from 

sub sampled filters operating at coarser scales [9, 16]. So we should minimize the 

magnitude spectrum or energy in [2p/3, p]. This cut off frequency has been used 

by Kingsbury for designing his Q-shift filter. This analysis of µ-shift-invariant 

helps explain the success of Q-shift filters in DT CWT based applications. 

In this work for obtaining the group delay of 1/4 sample period and minimizing 

the magnitude of the )(0 zH  in the mentioned method we use )(2 zH L as in [7, 9] and 

minimize the maximal magnitude of )(2 zH L  instead of the energy used in Kingsbury’s 

design in its stop band of [p/3, p].                                                                   

Minimizing the magnitude of )(2 zH L  in the mentioned domain and finally obtain 

the Q-shift filter are explained in next section.  

7) Vanishing moments: Vanishing moments are feature of wavelets. They are the 

number of zeros of scaling filter at 1−=z . Having P vanishing moments means 

that wavelets coefficients for Pth order polynomial will be zero. That is any 

polynomial signal up to P-1 can be represented completely in scaling space. 

More vanishing moments means that scaling function can represent more 

complex signals accurately. In this work our design procedure let us to have two 

vanishing moments.  

3.3 A Parameterization of Orthonormal Filters 

  The parameterization of the space of two-channel orthonormal FIR filters enable 

us to describe the generation of all filters by using a simple recurrence. The method used 

here for wavelets has guaranteed the resulting wavelets have two vanishing moments. 
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The remaining degrees of freedom are re-parameterized which lead to a convex set of 

feasible parameter values [11]. 

Let )(0 zH be 2L (= N) length low pass filter, Sherlock and Monro’s recursive 

formulas for a filter of length 2(L+1) according to terms of 2L length filter, expressing 

the coefficients as in [11] 
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As we see that the orthonormal wavelet filters can be completely parameterized 

by L angles iα , Li ≤≤1 , which can assume any value in the set of real numbers and any 

choice of  iα will lead to a valid orthonormal FIR filter banks system, and any system 

can be expressed in terms of some choice of iα   [10, 11]. 

For a first vanishing moment the following condition should be satisfied 

0)( 10 =−=zzH  .                                                       (3.9) 

From (3.7) -(3.9) we can write )()(
0 zH L  with angles iα as below 

    ∑∑
==

−= −=
L

i
i

L

i
iz

LH
11

1
)(

0 sincos αα  .                                      (3.10) 
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So the first vanishing moment condition will become: 

∑
−

=

−=
1

14

L

i
iL α

π
α  .                                                  (3.11) 

For second vanishing moment it is necessary to impose this condition: 

0
)(

1

)(
0 =−=z

L

dz
zdH

 .                                              (3.12) 

And finally by doing some mathematical expressions on (3.12) and using above 

formulas the second vanishing moment condition will be obtained (The expression and 

proof are in [11]): 

∑∑ ∑
−

=

−

= =
− −
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2

1 1
1 ]2[sin

2
1

arcsin
2
1 L

k
k

L

k

k

i
iL ααα  .                          (3.13) 

Vanishing moments conditions reduces the number of free parameters to L-1 and 

L-2 respectively. For defining a convex region of parameters in 2−LR  a new parameter 

χ is proposed [11]. Second vanishing moment condition (formula (3.13)) have a real-

valued solution, if and only if the angles iα , 21 −≤≤ Li , satisfy the following 

constraints: 

2
1

)2(sin
2
3 2

1 1

≤≤− ∑ ∑
−

= =

L

k

k

i
iα  .                                           (3.14) 

But these constraints don’t define a convex region in 2−LR , so for having a convex region 

χ is defined as: 

∑
=

=
k

k
ik

1

2sin αχ , 21 −≤≤ Lk  .                                      (3.15) 

 The constraints can be rewritten as: 

2
1

2
3 2

1

≤≤− ∑
−

=

L

k
kχ                                                    (3.16) 
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1,...,,1 221 ≤≤− −Lχχχ  .                                          (3.17) 

And the values of iα , 21 −≤≤ Li  are obtained by using the following equations: 

)arcsin(
2
1

11 χα =                                                     (3.18) 

∑
−

=

−=
1

1

2)arcsin(
2
1 i

k
kii αχα  .                                         (3.19) 

Finally the filter banks coefficients are calculated by (3.6)-(3.8). 

By using this method of parameterization in our work we can design Q-shift filer 

with mentioned properties. The design procedure is explained in next section.  

3.4 Q-shift Filter Design Procedure  

 Following discussions in Sections 3.2 and 3.3, we now give a design procedure 

for Q-shift filter. By knowing the properties of filter; the design procedure starts with 

specifying the value of iχ . Parameter iχ  is very important parameter in our designing 

and produces a convex region for our parameterization. After parameterization, the 

magnitude of obtained filter according to the parameters is minimized and finally the 

favorite filter will be obtained by recurrence formula. In the following we explain the 

design procedure step by step.  

Step 0. Specify the basic properties of filter like length of scaling filter. 

Step 1.  Initialize the value of iχ , then generate the iα  by using (3.18) and (3.19). 

Step 2. Obtain 0h  from iα . At first get Lα from (3.11) and (3.13), then 0h is obtained 

from (3-6)-(3.8). 

Step 3. Define the 2LH as in (3.5). Then define the magnitude of )(2 zH L in [p/3, p]. This 

is for obtaining 0H and 0G with 1/4 and 3/4 sample period respectively.  
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Step 4. Minimize the peak magnitude of )(2 zH L . This is for achieving properties 6 and 

7 (Section 3.2) to obtain optimal magnitude. 

 For minimizing the magnitude of 2LH we use constrained minimization method 

by employing ’’fmincon’’ in the optimization toolbox of MATLAB. This function can 

find a constrained minimum of a function with several variables. Our variable here is χ  

and according to the constraints that we defined for χ to obtaining the convex region of 

parameterization, it can start to minimize the magnitude of 2LH .  

Step 5. Obtain the low pass filter 0h using ?. Then obtain 0g from 0h , according to 

relationship of dual-tree filters in Q-shift filter ( )()( 1
00

−= zHzG ). 

The procedure can be repeated with obtained ? as initial value in Step 1. After 

designing the filters, the complex wavelet gh jψψ + is expected to be approximately 

analytic. 

3.5 Design Examples 

We present four examples in this section to illustrate the design approach and its 

results. Design examples give filters of length 12, 14, 16, and 18 respectively. The 

normalized coefficients of 0h  for the mentioned lengths are shown in table 3.1. As we 

mentioned in previous section we can easily get the 0g  (dual filter bank) by flipping 0h . 
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                 Table 3.1: Coefficients of Q-shift filter 0h  
N= 12 N= 14 N= 16 N= 18 

    
0.00017654 
0.00202905 
0.01944400 
-0.05470174 
-0.02152764 
0.40680833 
0.55064137 
0.15754572 
-0.05006905 
-0.01156524 
0.00133476 
-0.00011613 

 

 
-0.00754976 
-0.00440359 
0.00135387 
0.00796048 
-0.08771886 
0.03250019 
0.42397196 
0.50635403 
0.19977468 
-0.10585055 
-0.02542829 
0.05588967 
-0.00440359 
0.00754976 

 

 
  -0.00246667 
  -0.00070423 
   0.01485766 
   0.00489657 
   0.03152301 
  -0.07051195 
  -0.03670630 
   0.42121140 
   0.52959241 
   0.17913806 
  -0.04230220 
  -0.01602463 
   0.00589103 
  -0.01936757 
  -0.00038895 
   0.00136235 

 
 
 

 
0.00000682 
0.00003496 
0.00006221 
0.00343113 
-0.01604502 
0.01037313 
-0.04315593 
-0.02872404 
0.40720354 
0.55129394 
0.15565237 
-0.05172803 
-0.00687361 
0.01534684 
0.00311584 
-0.00002133 
0.00003377 
-0.00000659 

 
 

Figures 3.2, 3.6, 3.10 and 3.14 show the normalized coefficients of 0h . For 

different lengths the magnitude and phase response of 0h are illustrated in Figures 3.3, 

3.7, 3.11, and 3.15. The group delay of 0h  are shown in Figures 3.4, 3.8, 3.12, and 3.16. 

Finally the analytic wavelet gh jψψ + for mentioned lengths are depicted in Figures 3.5, 

3.9, 3.13, and 3.17. 
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Figure 3.2: Normalized coefficients of 0h  (length= 12) 
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Figure 3.3: Magnitude and phase response of 0h  (length= 12)  
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Figure 3.4: Group delay of scaling filter 0h  (length=12)  
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Figure 3.5: Magnitude spectra of complex wavelets gh jψψ +  (length= 12)  
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Figure 3.6: Normalized coefficients of 0h  (length= 14) 
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Figure 3.7: Magnitude and phase response of 0h  (length=14)  
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Figure 3.8: Group delay of scaling filter 0h  (length= 14)  
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Figure 3.9: Magnitude spectra of complex wavelets gh jψψ +  (length= 14) 
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Figure 3.10: Normalized coefficients of 0h  (length= 16) 
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Figure 3.11: Magnitude and phase response of 0h  (length= 16)  
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Figure 3. 12: Group delay of scaling filter 0h  (length= 16)  
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Figure 3.13: Magnitude spectra of complex wavelets gh jψψ +  (length= 16)  
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Figure 3.14:Normalized coeffic ients of 0h  (length= 18) 
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Figure 3.15: Magnitude and phase response of 0h  (length= 18)  
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Figure 3.16: Group delay of scaling filter 0h  (length= 18) 
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Figure 3.17: Magnitude spectra of complex wavelets gh jψψ +  (length= 18)  
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The proposed Q-shift filter design technique is applied for different length filters. 

We can see vanishing moments (number of zeros at z = -1) from filter coefficients in 

Table 3.1, and from the figures we can conclude that our designed Q-shift filter 

satisfying the mentioned properties we defined before. The magnitude and phase of 

filters in figures shows the minimum magnitude of filter in [2p/3, p] and our filter has 

linear phase in [0, 2p/3). Figures 3.4, 3.8, 3.12, and 3.16 shows that our designed filters 

have a desired group delay of 1/4 sample period and magnitude spectra of complex 

wavelets show our filter are nearly analytic. 

3.6 Mathematical Properties of the Q-shift Filters  

 In this section mathematical properties of the designed Q-shift filters are 

compared with Kingsbury’s Q-shift filters. These mathematical features can be 

compared according to their moments, regularities, analyticity measurement of complex 

wavelet filters and the half sample delay error. 

 One of features of wavelets are moments, they are equal to the number of roots 

of scaling filter at z = -1. In Section 3.2 we talked about the vanishing moments. Both 

designed Q-shift filter in this work and Kingsbury’s Q-shift have two vanishing 

moments. Vanishing moments effects on regularity, or smoothness of wavelets.  

An important property of wavelet is its smoothness. Smoother wavelets provide 

sharper frequency resolution of functions. Holder and Sobolev regularities [17] used to 

characterize smoothness of wavelets. For a smooth convergence of the iterated filter 

bank the minimum of regularity is required [17]. 

 



35 

By knowing the concept of complex wavelet filters in DT CWT, and according 

to Figure 3.1, we define complex wavelet filter as: 

)()()( 00 jwjGjwHjwP +=                                          (3. 20) 

As we mentioned in Section 2.3.2, the complex wavelet is analytic if and only if 

CQFs satisfy the one sample delay in first level and the half sample delay condition in 

next levels [16]. This property makes wavelets form Hilbert transform pairs and the DT 

CWT become nearly shift invariant.  

All these condition are gathered in Theorem 4 of [16] that indicates the DT CWT 

is µ-shift-invariant at levels more than one if and only if the CQFs satisfy the one sample 

delay condition in the first level and half sample delay condition in high levels, and 

CQFs are supported in [-2p/3, 2p/3]. The cut off frequency 2p/3 is used in designing 

filter for DT CWT in this work and Kingsbury’s work in [9]. The support of CQFs in 

DT CWT is in [0, p). For the µ-shift-invariant system the magnitude spectrum (energy) 

of its output is insensitive to input shift, and the phase changes linearly [16]. So the 

energy is used to calculate the errors in sequel.  

By measuring the following errors we want to know that how much our complex 

wavelet filter is analytic or how much the CQFs are shift invariance. The half sample 

delay errors show how the CQFs could make a half sample delay related to the 

analyticity of the complex wavelets. Smaller errors indicate better designed filters. 
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The analyticity measure of complex wavelet filter is obtained by 
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For the CQFs, the shift invariance measure can be obtained from HI 2 and GI 2  
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Other indices for measuring the shift invariance property of filters are 
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And the energy of half-sample delay error is obtained by the following formulas: 

∫

∫

−

−

−−
= π

π

π

π

dwjwH

dwjwGejwH
E

jw

2
0

2

00

2

)(

)()(
                                        (3.27) 

and 

)(max

)()(max

0),[

00),[

jwH

jwGejwH
E

w

jw

w

ππ

ππ

−∈

−∈
∞

−
=                                         (3.28) 

Results of these properties for designed filter in this work and for Kingsbury’s 

filter for length of 12, 14, 16, and 18 (all with 2 vanishing moments) are shown in 

Tables 3.2 and 3.3 respectively for comparison. 

Table 3.2: Mathematical properties of designed Q-shift filter 
 
N 

 
Sobolev 

Reg. 

 
Holder 

Reg. 

 

2I  

 

HI 2  

 

GI 2  

 

2E  

 

∞I  

 

HI∞  

 

GI ∞  

 

∞E  

12 1.4887 1.0377 0.3059 0.0100 0.0100 0.0080 0.8401 0.3057 0.3057 0.1289 
14 1.0409 0.7959 0.3397 0.0040 0.0040 0.0169 0.8650 0.1209 0.1209 0.1834 
16 1.1295 0.8706 0.2976 0.0090 0.0090 0.0336 0.8015 0.2780 0.2780 0.2184 
18 1.2811 1.0091 0.2993 0.0129 0.0129 0.0097 0.8585 0.3320 0.3320 0.1509 

 
 

Table 3.3: Mathematical properties of Kingsbury’s Q-shift filter 
 

N 
 

 
Sobolev 

Reg. 

 
Holder 

Reg. 

 

2I  
 

HI 2  
 

GI 2  
 

2E  
 

∞I  
 

HI∞  
 

GI ∞  
 

∞E  

12 1.4410 1.0754 0.3059 0.0023 0.0023 0.0040 0.8184 0.1744 0.1744 0.0918 
14 1.5300 1.3164 0.3087 0.0020 0.0020 0.0002 0.8274 0.1815 0.1815 0.0248 
16 1.5694 1.3647 0.3082 0.0017 0.0017 0.00009 0.8298 0.1728 0.1728 0.0125 
18 1.8292 1.5323 0.3109 0.0006 0.0006 0.0001 0.8205 0.1204 0.1204 0.0193 

 
We also illustrate the results using diagrams. According to the results from 

Tables 3.2 and 3.3 or Figures 3.18 and 3.19 we see that the smoothness of designed Q-

shift filter in this work is better than the smoothness of Kingsbury’s Q-shift filter. 
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Figure 3.18: Comparison of Sobolev regularity 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Length=12 Length=14 Length=16 Length=18

Designed Q-shift filter

Kingsbury's Q-shift filter

 
Figure 3. 19: Comparison of Holder regularity 
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Figures 3.20 and 3.21 illustrate the comparison of analyticity measure of 

complex filters for both Q-shift filters. From Table 3.2 and 3.3 and Figures 3.20 and 

3.21 the analyticity measure of complex wavelet filter 2I  and ∞I  the designed Q-shift 

filter in this work is smaller than the analyticity measure Kingsbury’s Q-shift. So the 

complex wavelets of designed Q-shift filter in this work are more analytic. 

The comparison results of shift invariance measure are shown in Figures 3.22 

and 3.23. Results of HI 2  are similar with GI 2  and HI∞  are similar with GI ∞ . We show 

shift invariance measure just for HI 2  and HI∞ . 

  From the tables and figures shift invariance measures of Kingsbury’s Q-shift 

filter are smaller than the CQF’s in this work. This indicates that shift invariance 

property of Kingsbury’s Q-shift filter for CQFs is better than the designed Q-shift filter. 

Figures 3.24 and 3.25 are shown the errors of half sample delay ( 2E  and ∞E ). 

According to Tables 3.2 and 3.3 and Figures 3.24 and 3.25, the half-sample delay error 

of Kingsbury’s Q-shift filter is smaller than the half-sample delay error of the designed 

Q-shift filter. 

The difference between errors is related to the designed procedure of both Q-

shift filters. Kingsbury minimize the energy of 2LH and we minimize the peak 

magnitude of 2LH . 
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Figure 3.20: Comparison of analyticity measure ( 2I ) 

 

 
Figure 3.21: Comparison of analyticity measure ( ∞I ) 
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Figure 3.22: The comparison results of shift invariance measure ( HI 2 ) 

 

 
Figure 3.23: The comparison results of shift invariance measure ( HI∞ ) 
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Figure 3.24: The half-sample delay error ( 2E ) 

 

 
Figure 3.25: The half-sample delay error ( ∞E ) 
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Chapter 4 

4 IMAGE DENOISING USING Q-Shift FILTERS  

 

4.1 Introduction 

 The aim of this chapter is to introduce the application of our recently proposed q-

shift filter bank in image denoising. We hope that the dual-tree complex wavelet 

transform using the Q-shift filters is advantageous in image processing applications. The 

application of designed Q-shift filter is shown in removing additive noise from a noisy 

image (denoising). Next Section shows image denoising using the designed q-shift filter. 

4.2 Image Denoising Using the Designed Q-shift Filter 

One technique for denoising is wavelet thresholding or shrinkage. In recent years 

there have been many studies on using wavelet thresholding for denoising in signal 

processing. Two methods for denoising have been proposed: linear and nonlinear. 

Thresholding belongs to the nonlinear category. It gives a simple denoising scheme by 

applying to wavelet coefficients [18]. As we know, all details in image are in high 

frequency sub-bands, the idea of thresholding is to set all high frequency sub-band 

coefficients that are less than a particular threshold to zero. These coefficients are used 

in an inverse wavelet transformation to reconstruct the data set. The wavelet transform 

yields a large number of small coefficients and a small number of large coefficients. In 

simple denoising using wavelet transform, the wavelet transform of noisy signal is 
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calculated, the noisy wavelet coefficients according to some role are modified and the 

inverse transform according the modified coefficients computed. The mentioned 

methods use a threshold value that must be estimated correctly in order to obtain good 

performance.  

 The employed denoising technique is based on Bivariate Shrinkage [19, 20], that 

will be explained in next section.  

4.2.1 Bivariate Shrinkage Denoising  

 This technique is based on the modeling of the wavelet transform coefficients of 

natural images. The denoising of natural images corrupted by Gaussian noise is a 

classical problem in signal processing. The wavelet transform has become an important 

tool for this problem due to its energy compaction property.  

 A new simple non-Gaussian bivariate probability distribution function has been 

proposed by Sendur and Selesnick [19, 20] to model the statistics of wavelet coefficients 

of natural images. In this work the denoising of an image corrupted by white Gaussian 

noise will be considered.  

The problem is formulated as 

nxg +=                                                          (4.1) 

where g is noisy signal and x  is the desired signal that should be estimated according to 

some criteria where n is independent Gaussian noise. In wavelet domain, the problem 

can be reformulated as 

nwy +=                                                         (4.2) 

where ),( 21 yyy = is noisy wavelet coefficients, ),( 21 nnn =  is noise coefficients, which 

is independent Gaussian, and ),( 21 www = is true wavelet coefficients. Let 2w  be the 
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parent wavelet coefficient of 1w at the same spatial position with different scale. 1n  and 

2n are identically and independently distributed Gaussian noise with the same variance 

2
nσ . The following non-Gaussian bivariate shrinkage probability distribution function 

(pdf) is used in bivariate shrinkage denoising algorithm: 

2
2

2
1

3

22
3

)(
ww

w ewp
+−

= σ

πσ
 .                                        (4.3) 

With this pdf, 1w  and 2w are uncorrelated, but not dependent; 2σ is the signal 

variance for each wavelet coefficient. The maximum a posteriori estimator (MAP) of 

1w yields the following bivariate shrinkage function: 
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From [21] for this bivariate function, the greater values for the shrinkage are 

obtained when the smaller values are chosen for the parent. For this shrinkage function 

both signal variance and noise variance should be known for each wavelet coefficient 

and at first these parameters are estimated by algorithm. 

 To summarize, the algorithm has two steps: at first the noise variance is 

calculated, then for each wavelet coefficient signal variance is calculated. Each 

coefficient is estimated by using the bivariate shrinkage function.  

4.3 Experimental Results 

 We used three standard images (Boat, Baboon, and Cameraman) of size 

512512×  for test. Each image is corrupted by an additive white Gaussian noise at 

different noise levels and then denoised using the bivariate shrinkage algorithm [19]. In 

our experiment we use two DT filter banks. The first one is Kingsbury’s q-shift 
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orthogonal solution of length 14/14 [9], the other one is our designed q-shift of length 

14/14. As mentioned before, different filter banks are used in the first stage of 

implementation of the transform. We use the Daubechies 9/7 filters in the first stage in 

both designs. The performance is evaluated by the peak signal-to-noise ratio (in decibel) 

using )/25(log20 10 rmsePSNR = with rmse being root mean square error between the 

noisy and original image. The numerical results of PSNR are tabulated in Table 4.1. 

Results using other filters designed for DT CWT can be found in [18]. 

We present the original, noisy and typical denoised images of three test images 

in Figures 4.1, 4.2, 4.3. Denoising results in these figures show that Kingsbury’s Q-shift 

filter’s performance is better than the Q-shift filter designed in this work.  

As mentioned in Section 3.6 the difference between the results of both designed 

Q-shift filters are related to the method that has been used for magnitude minimization 

of 2LH in designing procedure. Kingsbury’s method of minimization is on the energy of 

2LH whereas we minimize the peak magnitude of 2LH . This difference may be the 

reason for better PSNR results of Kingsbury’s Q-shift filters. 
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Table 4.1: Averaged PSNR values (in dB) of denoised images for  
                   different noisy images 

 
Images 

 
Noisy 
Image 

 

 
Designed 

Q-shift Filter 

 
Kingsbury’s  
Q-shift Filter 

Boat  
10=σ  13.63 33.49 34.34 
15=σ  13.45 31.08 32.21 
20=σ  13.20 29.33 30.74 
25=σ  12.90 27.87 29.69 
30=σ  12.56 26.77 28.81 

Baboon  
10=σ  15.38 28.76 29.51 
15=σ  15.09 26.61 27.59 
20=σ  14.73 25.07 26.18 
25=σ  14.31 23.77 25.14 
30=σ  13.83 22.79 24.27 

Cameraman  
10=σ  12.21 35.19 36.53 
15=σ  12.07 32.66 34.34 
20=σ  11.88 30.99 32.89 
25=σ  11.65 29.68 31.74 
30=σ  11.40 28.70 30.85 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.1: Boat: (a) Original image, (b) Noisy image ( 10=σ , PSNR= 13.6335), (c) 
Denoised image by Kingsbury’s Q-shift filter (PSNR= 34.3487), (d) Denoised image by 
designed Q-shift filter (PSNR= 33.4932)  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.2: Baboon (a) Original image, (b) Noisy image ( 15=σ , PSNR= 15.0952), (c) 
Denoised image by Kingsbury’s Q-shift filter (PSNR= 27.5924), (d) Denoised image by 
designed Q-shift filter (PSNR= 26.6104)  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.3: Cameraman (a) Original image, (b) Noisy image ( 25=σ , PSNR= 11.6575), 
(c) Denoised image by Kingsbury’s Q-shift filter (PSNR= 31.7490), (d) Denoised image 
by designed Q-shift filter (PSNR= 29.6833)  
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Chapter 5 

5 CONCLUSION AND FUTURE WORK 

This work is concerned with the design of filter for DT CWT structure. 

Introducing the DT CWT structure and its properties that provide shift invariance and 

directional selectivity of filter banks with a limit redundancy a new design of Q-shift 

filters is presented. The Q-shift filter is motivated by Kingsbury’s work for improving 

orthogonality and symmetry properties. In this work we complemented Kingsbury’s 

approach with a new method of designing. 

 Considering the requirements of Q-shift filters such as no aliasing, perfect 

reconstruction, orthogonality, group delay of 1/4 sample, good smoothness and finite 

support in (-2p/3, 2p/3), a new design of Q-shift filter via parameterization method is 

proposed. With this method the space of orthonormal filter banks is parameterized and 

the parameters are used in designing filter with desirable properties. The constraints that 

have been used in this method guaranteed two vanishing moments of wavelets. 

 In designing of both Q-shift filters for obtaining the group delay of 1/4 and 3/4 

samples the 4L tap, linear phase and symmetric low pass filter ( 2LH ) have been used. 
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For obtaining the desirable property of 1/4 and 3/4 sample period we minimized the peak 

magnitude of 2LH in [p/3, p] instead of minimizing energy used by Kingsbury [9]. 

Results of designing are shown that the desirable mentioned properties are 

obtained for the Q-shift filter. The designed Q-shift filter is compared with Kingsbury’s 

Q-shift approach according to analyticity measurement, shift invariance and half-sample 

delay, which are the most important properties of wavelet filters in dual-tree filter banks.  

The designed Q-shift filter is applied in image denoising. Three standard image 

that corrupted by an additive Gaussian noise are used. The Bivariate shrinkage algorithm 

is employed for wavelet coefficient modeling and thresholding. The performance 

(PSNR) of Kingsbury’s Q-shift filter (L= 14) is better than that of the designed filter (L= 

14) in this work. Both filters have the same performance in visual. 

 The difference between results related the optimization method that has been 

used in this method. Kingsbury minimized the energy of 2LH in the [p/3, p] and we 

minimized the peak magnitude of 2LH in this work.  

The most important reason of using the mentioned method of designing Q-shift 

filter in this work is that the method has perfect orthogonality whereas Kingsbury’s 

approach is approximate. It guarantees two vanishing moments by using simple 

constraints and using a simple method of optimization.  
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As a future work we can explore other image applications where the designed 

filters may be of advantages due to the small peak error property.  
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