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ABSTRACT

One of the main starting point for the theory of calculus is the differentiation operation,

which is defined as follows. Firstly, divide the difference of two function values by

the difference of the corresponding two arguments, and then take the limit as the two

arguments converge to each other. The result of this limit is called the derivative of the

original function.

Many variants of this basic operation have been proposed, giving rise to different

theories and types of calculus. In this thesis, I will study some particular variants in

which the limiting process is omitted but the two arguments in the quotient expression

are linear functions of each other. The most basic one is the q-calculus (or quantum

calculus), which is a particular case of both the (q,ω)-calculus (or Hahn calculus) and

the (p,q)-calculus, which are the both special cases of the new type called

(p,q)-Hahn calculus.

These approaches give more discrete theories than the original calculus, more

applicable to quantum physics. But a lot of the structure remains the same: in all

cases there are derivatives, integrals, product and chain rules, exponential and Appell

functions. In this thesis, I will study important properties and special functions

associated with each of these three known types of calculus, and finally, I introduce

the new (p,q)-Hahn Calculus.

Keywords: q-calculus or quantum calculus, q,ω-calculus or Hahn Calculus, (p,q)-
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calculus, (p,q)-Hahn Calculus, Exponential Functions, Appell Polynomials.
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ÖZ

Analizin ana başlangıç noktalarından biri türev işlemdir ve şu şekilde tanımlanır. İlk

olarak, 2 fonksiyonun farkını eş 2 argümanın farkına bölünür ve sonra bu iki argüman

birbirine yaklaşana kadar limit alınır. Elde edilen limitin sonucuna da orjinal

fonksiyonun türevi denir.

Farklı teorilere ve analiz tiplerine yol açan bu temel işlemin bir çok değişik biçimi

sunulmuştur. Bu tezde, limit sürecinin atlandığı üç özel değişken üzerinde çalışacağım.

Ancak bölüm kısmında yer alan 2 argüman birbirlerinin lineer fonksiyonlarıdır. En

temel olanı ise q-calculusdur (veya quantum calculus)ve hem (q,ω)-calculus (veya

Hahn calculus) hem de the (p,q)-calculus’un özel durumudur.

Bahsedilen 3 yaklaşım orijinal analizden ziyade ayrık matematiğe çekilebilir ve

uygulanabilirlik açısından kuantum fiziğine daha yakındır. Fakat 3 durumda da,

türevler, integraller, çarpım and zincir kuralları, üslü ve Appell fonksiyonları vardır.

Bu tezde, analizin 3 tipi olan q-calculus,(q,ω)-calculus ve (p,q)-calculus’un önemli

özellikleri ve özel fonskiyonlarla ilişkilerini çalışacağım ve son olarak, yeni elde

ettiğim ve geliştirdiğim (p,q)-Hahn Calculus’un özelliklerini çalışacağım.

Anahtar kelimeler: q-calculus veya quantum calculus, q,ω-calculus veya Hahn

Calculus, (p,q)-calculus, (p,q)-Hahn Calculus, Üstel Fonksiyonlar, Appell

Polinomları.
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Chapter 1

INTRODUCTION

The minor subjects of this thesis are q-calculus (quantum calculus), q,ω-calculus

(Hahn calculus) and (p,q)-calculus. This thesis is generally based on the paper [1–3].

From [4], in the 17. century, the theory of differential and integral calculus is studied

for the first time by Newton and Leibniz. In their study, f ′(x) is defined by

f ′(x) = lim
z→0

f (x+ z)− f (x)
z

.

Now, consider the following:

f ′(x) = lim
q→1

f (qx)− f (x)
qx− x

.

This formula is equivalent to the following known derivative

f (x+(q−1)x)− f (x)
(q−1)x

.

In the 20th century, F.H. Jackson studied this derivative and many of its results. Then

Jackson defined the q-derivative as follows:

Dq f (x) =
f (qx)− f (x)

qx− x
, q ∈ (0,1).
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This q-derivative can be applied to functions that may not be differentiable. And it

reduces to the ordinary derivative when q→ 1:

lim
q→1

Dq f (x) = f ′(x).

In the reference of [5], the Hahn difference operator Dq,ω was defined in 1949 by

Wolfgang Hahn. It is like differentiation with two extra parameters q,ω. It may be seen

as the combination of the forward difference operator together with the q-difference

operator. Combining the ideas of these two operators, namely

∆ω f (x) =
f (x+ω)− f (x)
(x+ω)− x

,

and

Dq f (x) =
f (qx)− f (x)

qx− x
,

The Hahn difference operator is defined as

Dq,ω f (x) =
f (qx+ω)− f (x)
(q−1)x+ω

.

This operator appears in many references such as [6] and [7]. Its right inverse is

Jackson–Nörlund integration, which was introduced by Aldwoah [8–10]. This is a

generalization of both the inverse of Dq and also the inverse of ∆ω [9, 10].

The functions Eq,ω and eq,ω are the Hahn equivalents of exponential functions [1]. I

also studied new Hahn exponential-type functions from [11] which are called non-

parametric.
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The (p,q)-integers are defined in the reference [12], generalized q-calculus and used

to represent certain quantum algebras in the reference [13].

From [14], recently (p,q)-calculus has also been applied in the theory of

approximation. Let p,q ∈ R or C. The (p,q)-derivative of f (x) is defined by

D(p,q) f (x) =
f (px)− f (qx)

(p−q)x
.

Chapter 5 includes new operator, (p,q)-Hahn where we call it derivative and it is

defined by

D(p,q),ω f (x) =
f (qx+ω)− f (px)

(q− p)x+ω
.

In this thesis, there are six chapters. Introduction is the first Chapter which includes

the aims, background information and literature reviews of my thesis. The second

Chapter is about q-calculus definition and properties, including the big q-Appell and

q-Appell polynomials. Chapter 3 contains the Hahn difference Operator, its theorems,

definitions and properties, including the right inverse of the Hahn difference operator

(Jackson–Nörlund Integration), Hahn exponential and trigonometric functions, and

(q,ω)-Appell polynomials. Chapter 4 is about (p,q)-calculus; we studied

(p,q)-derivative, (p,q)-integral, (p,q)-exponential functions, (p,q)-Appell

polynomials and big (p,q)-Appell polynomials. In Chapter 5, we obtained the new

(p,q)-Hahn difference operator and its properties. The Chapter 6 is the conclusion

and it contains the main aim and results of my thesis.

3



Chapter 2

q-CALCULUS

This section is generally composed of references [2, 15]. This section is about the

quantum calculus. This operator is called Jackson’s q-difference operator or

q-derivative and it is symbolized by Dq f (t) or dq f (t)
dqt when applied to a function of f .

The function f is defined on a q-geometric set of A which is subset of R or C. The

q-derivative is defined by [2]

Dq f (t) =
f (qt)− f (t)
(q−1)t

, t,qt ∈ A (2.1)

where 0 < q < 1.

If we take limit when q→ 1

lim
q→1

Dq f (t) = lim
f (qt)− f (t)
(q−1)t

=
d f (t)

dt
(2.2)

we can obtain classical derivative of f .

In [15], the following obvious properties has shown

1) Dq is a linear operator, so

Dq( f +g)(t) = Dq f (t)+Dqg(t). (2.3)

2) If f is q-differentiable at t, then f (qt) = f (t)−Dq f (t)(q−1)t.

4



3) If f is q-differentiable, then f is continuous.

Let f ,g be functions which are q-differentiable at t ∈ I.

The following algebraic property of q-derivatives may be called the product rule:

Dq( f g)(t) = g(t)Dq[ f (t)]+ f (qt)Dq[g(t)]. (2.4)

By symmetry, if we interchange f with g, we can obtain that,

Dq( f g)(t) = f (t)Dq[g(t)]+g(qt)Dq[ f (t)]. (2.5)

The quotient rule for q-derivatives is

Dq

(
f
g

)
(t) =

g(t)Dq f (t)− f (t)Dqg(t)
g(t)g(qt)

, (2.6)

where g(t)g(qt) 6= 0.

Example 2.0.1. Assume that z 6= 0 and take q-derivative of f (z) = zn

Dqzn =
(qz)n− zn

qz− z
=

(qn−1)
(q−1)

zn−1.

From this solution, [n]q is defined in [16] as follows:

[n]q = 1+q+q2 +q3 + ...+qn−1 =
(qn−1)
(q−1)

(2.7)

and it is the q-analogue of n.

Finally, we can write q-derivative as follows:

Dqzn = [n]qzn−1. (2.8)
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In addition, [n]q! as follows:

[n]q! =


[1]q[2]q...[n]q, if n 6= 0,

1, if n = 0.

Remark 2.0.1. It may happen that Dq f (t), exists for a function g without being

differentiable or even continuous at zero. For instance: f : [0,1]→ R defined by

f (t) =


1, if t = 1√

n ,n ∈ N

t, otherwise.

Here f (0) = 0 but there is no limt→0 f (t) so f is not continuous at t = 0.

As a result:

Dq f (0) = lim
t→∞

f (tq)− f (0)
tq

= lim
t→∞

tq
tq

= 1.

Theorem 2.0.1 (Chain Rule for q-derivative [2]). Firstly, there doesn’t exist a general

chain rule for q-derivatives. However if the differentiation of a function of the form

g(z(t)) and z(t) is equals to atb, (a,b) are constants then chain rule exists for q-

derivatives.

Consider,

Dq [g(z(t))] = Dq

[
g(atb)

]
=

g(aqbtb)−g(atb)

qt− t

=
g(aqbtb)−g(atb)

aqbtb−atb .
aqbtb−atb

qt− t

=
g(qb)−g(z)

qb− z
.
z(qt)− z(t)

qt− t
.
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Then we can obtain that

Dqg(z(t)) =
(

Dqbg
)
(z(t)).Dqz(t).

Firstly, let’s give the definition of Taylor’s Formula. In the classical calculus, an

analytic function f (t) has power series around t = a as

f (t) =
∞

∑
n=0

f (n)(a)
(t−a)n

n!
.

Theorem 2.0.2 (Generalized Taylor’s Formula for Polynomials) [2]). Let a∈N, Dq be

a linear map acting on the vector space of polynomials , and (Pn(t)) be a polynomial

sequence such that

1) P0(a) = 1, Pn(a) = 0, ∀n > 0;

2) deg(Pn) = n;

3) DqPn(t) = Pn−1(t), ∀n > 0, Dq(1) = 0

Then there is a generalized Taylor formula as follows:

f (t) =
N

∑
n=0

(Dn
q f )(a)Pn(t). (2.9)

Proof. Assume that J is the space of all polynomials of degree≤N. From condition 2,

the polynomials P0(t),P1(t),P2(t), ...PN(t) are linearly independent and there is a rapid

increase in degrees. However they create a basis for J; i.e., as a sample we can give
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any polynomial f (t) ∈ J expressions as

f (t) =
N

∑
n=0

ckPk(t), (2.10)

where ck is constant.

Interchanging with t and a then if we use condition 1 we can get c0 = f (a) as a result.

After that, operator Dq continuously applied on both sides n times, where 1 ≤ n ≤ N.

Then, using condition 2 and 3

(Dn
q f )(t) =

N

∑
k=0

ckDn
qPk(t) =

N

∑
k=0

ckPk−n(t).

Then putting t = a and from condition 1, we have

cn = (Dn
q f )(a), 0≤ n≤ N

Finally, we can obtain (2.10) from (2.9).

2.1 q-Analogue of Power Function and q-Derivatives of Binomials

This section is composed of references [2]. Assume Dq is an operator acting linearly on

the vector space of polynomials. Let a sequence of polynomials P0(t),P1(t),P2(t), ...

satisfies the three conditions of theorem 2.0.2 . If a = 0, then we can choose,

Pn(t) =
tn

[n]q!
.

Using the result (2.8) for n≥ 1, we can write that

DqPn(t) =
Dqtn

[n]q!
=

tn−1

[n−1]!
= Pn−1(t).

If a 6= 0 then Pn(t) is not simply (t−a)n

n! ; for example,

8



Dq
(t−a)2

2!
6= (t−a).

Now set

P0(t) = 1.

In order that DqP1(t) = 1 and P1(a) = 0, we should have

P1(t) = t−a.

In order that DqP2(t) = t−a and P2(a) = 0 , we should have

P2(t) =
t2

[2]
−at− a2

[2]
−a2 =

(t−a)(t−qa)
[2]

.

Similarly for n = 3,

P3(t) =
(t−a)(t−qa)(t−q2a)

[2][3]
.

Finally, we can obtain that

Pn(t) =
(t−a)
[n]q!

(t−qa)...(t−qn−1a)

and when a = 0 we can obtain that

Pn(t) =
tn

[n]q!
.

.
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Definition 2.1.1 (The q-Binomial formula, The q-polynomial coefficient, The

q-factorial [17]). The q-factorial is given as

(a;q)n =



1, n = 0;

∏
n−1
j=0(1−q ja), n≥ 1;

∏
∞
j=0(1−q ja), n = ∞.

The q-binomial formula is defined by

(1−a)n
q = (a;q)n =

n

∑
k=0

 n

k


q

q(1/2)k(k−1)(−1)kak.

The q-binomial coefficient is defined by n

k


q

=
(q;q)n

((q;q)n−kq;q)k
, (k 6 n, n,k ∈ N). (2.11)

Definition 2.1.2 ( [2]). The q-analogue of (t−a)n is the polynomial

(t−a)n
q =


1, if n = 0,

(t−a)(t−qa)...(t−qn−1a), if n≥ 1.

We note that,

(t−a)m+n
q 6= (t−a)m

q (t−a)n
q.
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Indeed,

(t−a)m+n
q = (t−a)(t−qa)...(t−qm+n−1a)

=
(
(t−a)(t−qa)...(t−qn−1(qma))

)
.

The affirmative result is

(t−a)m+n
q = (t−a)m

q (t−qma)m+n
q . (2.12)

Putting m =−n, we get

(t−a)−n
q =

1
(t−q−na)n

q
.

So that (t−a)n
q is now defined for any integer n.

Theorem 2.1.1 ( [2]). q-derivative of (t−a)n
q is given by

Dq(t−a)n
q = [n]q(t−a)n−1

q , n ∈ Z. (2.13)

Proof. This theorem will be proven in 3 steps.

Fistly, Let’s use mathematical induction.

Let take n = 1 then Dq(t−a)n
q = 1 is true.

Then suppose that n = k case is true so, Dq(t − a)k
q = [k]q(t − a)k−1

q . Now, we will

11



prove that for n = k+1 is true:

Dq(t−a)k+1
q = Dq

[
(t−a)(t−qa)...(t−qk−1a)(t−qka)

]
= Dq

[
(t−a)k

q(t−qka)
]

= (t−a)k
q +(qt−qka)Dq(t−a)k

q

= (t−a)k
q +(qt−qka)[k]q(t−a)k−1

q

= (t−a)k
q +q[k]q(t−a)k−1

q (t−qk−1a)

= (t−a)k
q (1+q[k])

= [k+1]q(t−a)k
q.

Secondly, since [0]q = 0 it is clear for n = 0.

Thirdly, assume that n =−1,−2, ... . Then if n =−n1 < 0, we get

(t−a)k
q =

1
(t−q−n1a)n1

q
.

Taking q-derivative,

12



Dq(t−a)k
q = Dq

1
(t−q−n1a)n1

q

=−
Dq(t−q−n1a)n1

q

(t−q−n1a)n1
q .(qt−q−n1a)n1

q

=−
[n1]q(t−q−n1a)n1−1

q

(t−q−n1a)n1
q .(qt−q−n1a)n1

q

=−
[n1]q(t−q−n1a)n1−1

q

(t−q−1a).(t−q−n1a)n1−1
q (qt−q−n1a)n1

q

=−[n1]q
1

qn1(t−q−1a)(t−q−2a)...(t−q−n1−1a)

=−[n1]q
1

(t−q−n1−1a)n1+1
q

= [n]q(t−a)n−1
q .

2.2 q-Exponential and q-Trigonometric Functions

This section is generally composed of reference [2].

Definition 2.2.1. The two q-analogues of exponential functions are given by

eq(x) :=
∞

∑
n=0

xn

[n]q!
=

1
((1−q)x;q)∞

, (2.14)

Eq(x) :=
∞

∑
n=0

q
n(n−1)

2 xn

[n]q!
= (−(1−q)x;q)∞, (2.15)

where (a;q)∞ = ∏
∞
j=0(1−aq j).

13



Properties of q-exponentials [2]:

These q-analogues (2.14) and (2.15) satisfy:

eq(x)Eq(−x) = 1. (2.16)

eq(x) = E 1
q
(x). (2.17)

e 1
q
(x) = Eq(x). (2.18)

They are q-equivalents of the original exponential function since

lim
q→1

eq((1−q)z) = lim
q→1

Eq((1−q)z) = ez.

If we take q-derivative of q-exponentials, we can obtain these

Dqeq(x) =
∞

∑
j=0

Dqx j

[ j]q!
=

∞

∑
j=1

[ j]qx j−1

[ j]q!

=
∞

∑
j=0

x j

[ j]q!
,

and

DqEq(x) =
∞

∑
j=0

q
j( j−1)

2 Dqx j

[ j]q!

=
∞

∑
j=1

q
( j−1)( j−2)

2 q j−1x j−1

[ j−1]q!

=
∞

∑
j=0

q
j( j−1)

2 q jx j

[ j]q!
.

In other words, we can say these

Dqeq(x) = eq(x), DqEq(x) = Eq(qx).

14



From reference of [2], in general, ex
qey

q 6= ex+y
q . Additive property of the q-exponentials

has been supplied if yx = qxy. Since assume that

ex
qey

q =

(
∞

∑
j=0

x j

[ j]q!

)(
∞

∑
k=0

yk

[k]q!

)
=

∞

∑
j=0

∞

∑
k=0

x jyk

[ j]q![k]q!

=
∞

∑
j=0

∞

∑
k=0

[ j+ k]q!
[ j]q![k]q!

x jyk

[ j+ k]q!

If we change variable from j,k to j and n = j+ k, then for n, j runs from 0 to n.We

have

ex
qey

q =
∞

∑
n=0

 n

∑
j=0

 n

j

x jyn− j

 1
[n]q!

=
∞

∑
n=0

(x+ y)n

[n]q!

Thus, we have

ex
qey

q = ex+y
q ,

if yx = qxy.

Due to the commutation relation being not symmetric in x and y, we can obtain that

ex
qey

q 6= ey
qex

q.

Definition 2.2.2. [2] The q-trigonometric functions are given by

sinq z =
eiz

q − e−iz
q

2i
, Sinqz =

E iz
q −E−iz

q

2i
,

cosq z =
eiz

q + e−iz
q

2
, Cosqz =

E iz
q +E−iz

q

2
.

From (2.18) we get

Sinqz = sin 1
q

z, Cosqz = cos 1
q

z.
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Then we have

cosq zCosqz =
eiz

q E iz
q + e−iz

q E−iz
q +2

4
, sinq zSinqz =−

eiz
q E iz

q + e−iz
q E−iz

q −2
4

.

Hence, we get

cosq zCosqz+ sinq zSinqz = 1.

Applying the q-derivative to q-trigonometric functions,

Dq sinq z = cosq z, DqSinqz =Cosqz,

Dq cosq z =−sinq qz, DqCosqz =−Sinqqz.

2.3 q-Integral

In [2], Jackson had identified the q-integral which is a right inverse of the q-derivative.

In [2], the q-integral over [0,x] is defined as follows :

Iq =

� x

0
f (t)dqt := x(1−q)

∞

∑
k=0

qk f (xqk) (2.19)

and then more generally over [a,b] as follows:

� b

a
f (t)dqt :=

� b

0
f (t)dqt−

� a

0
f (t)dqt. (2.20)

Note that

I( f ) =
� x

0
f (t)dt = lim

q↑1
Iq( f )

Theorem 2.3.1 (Mean Value Theorem of q-Integral [18]). Firstly, function of f is a

continuous on [0,a]. Then ∀ q ∈ (0,1) and exists ε ∈ [0,a] so

Iq( f ) =
� b

0
f (t)dqt = b f (ε)
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Proof. Since f ∈C[0,b] and assume that

m = min{ f (x) : 0≤ x≤ b}, M = max{ f (x) : 0≤ x≤ b}.

From 0 < q < 1 we can write that

0≤ bqn ≤ b

and

m≤ f (bqn)≤M.

Then we can write that

mqn ≤ f (bqn)qn ≤Mqn

∞

∑
n=0

mqn ≤
∞

∑
n=0

f (bqn)qn ≤
∞

∑
n=0

Mqn

b(1−q)
∞

∑
n=0

mqn ≤ b(1−q)
∞

∑
n=0

f (bqn)qn ≤ b(1−q)
∞

∑
n=0

Mqn.

From the mean value theorem of q-integral

bm≤
� b

0
f (t)dqt ≤ bM,

m≤ 1
b

� b

0
f (t)dqt ≤M.

So, there exists ε ∈ [0,a] such that

f (ε) =
1
b

� b

0
f (t)dqt.
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Definition 2.3.1. Improper q-integrals on the interval [0,+∞) are explained as, if q ∈

(0,1), �
∞

0
f (t)dqt :=

∞

∑
k=−∞

� qk

qk+1
f (t)dqt, (2.21)

and if q > 1, �
∞

0
f (t)dqt :=

∞

∑
k=−∞

� qk+1

qk
f (t)dqt. (2.22)

Theorem 2.3.2 (FT of q-calculus [2]). If g(x) is the q-derivative of G(x) and is

continuous at zero, then for any interval [a,b] with

� b

a
g(x)dqx = G(a)−G(b), 0≤ a < b≤ ∞. (2.23)

Proof. Assume that G(x) is defined by the Jackson formula with the addition of a

constant number,

G(x) = (1−q)x
∞

∑
k=0

qkg(qkx)+G(0).

From the definition, we have

� 0

a
g(x)dqx := (1−q)a

∞

∑
k=0

qkg(qka).

Then we can obtain that

� a

0
g(x)dqx := G(a)−G(0).

For finite b the integral defined by,

� b

0
g(x)dqx := G(b)−G(0)
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and � b

a
g(x)dqx :=

� b

0
g(x)dqx−

� a

0
g(x)dqx = G(b)−G(a).

Finally, if shifting a with qk+1 (or qk) and b with qk (or qk+1), where q ∈ (0,1) (or

q < 1), and using definition (2.21), we can obtain that (2.23) is right for b = ∞ as well

as if limt→∞ G(x) exists.

Integration by parts in q-calculus is stated as

�
β

α

f (x)dqg(x) = f (β)g(β)− f (α)g(α)−
�

β

α

g(qx)dq f (x). (2.24)

It also satisfied if β = ∞. This can be applied to procure the q-Taylor formula with the

Cauchy remainder term as follows.

Theorem 2.3.3. [2] Suppose Dk
q f (t) is continuous at t = 0 an take j ≤ n+1. Then,

we can obtain q-Taylor’s is stated as

f (b) =
n

∑
k=0

(
Dk

q f
)
(a)

(b−a)k
q

[k]q!
+

1
[n]q!

� b

a
Dn+1

q f (t)(b−qt)n
q dqt. (2.25)

Proof. Using Theorem 2.3.2, we have

f (b)− f (a) =
� b

a
Dq f (t)dqt :=−

� b

a
Dq f (t)dq(b− t),
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which proves (2.25) for n = 0. Let (2.25) hold for n−1:

f (b) =
n−1

∑
k=0

(
Dk

q f
)
(a)

(b−a)k
q

[k]q!
+

1
[n−1]q!

� b

a
Dn+1

q f (t)(b−qt)n−1
q dqt.

From (2.7) and applying (2.24), we get

� b

a
Dn+1

q f (t)(b−qt)n−1
q dqt =− 1

[n]q

� b

a
Dn

q f (t)dq(b− t)n
q

= Dn
q f (a)

(b−a)n
q

[n]q
+

1
[n]q

� b

a
(b−qt)n

qDn+1
q f (t)dqt.

So, the above proof can be completed by mathematical induction.

2.4 q-Appell Polynomials

Appell polynomials are defined in 1880 by Paul Appell [19]. Al-Salam, in 1967,

presented the q-Appell polynomials An,q(x)
∞

n=0 and investigated their specialities

in [20]. In [20], An,q(x) is the q-Appell if it holds the below equation for n = 0,1, ...:

Dq(An,q(x)) = [n]q!An−1,q(x).

Definition 2.4.1 (q-Appell Polynomials [21]). The q-Appell polynomials are defined

equivalently by

Aq(z; t) := Aq(t)eq(tz) =
∞

∑
n=0

An,q(z)
tn

[n]q!
, (2.26)

where the function Aq(t) is

Aq(t) :=
∞

∑
n=0

An,q

[n]q!
tn, A(0) 6= 0, An,q := An,q(0),

and

eq(zt) =
∞

∑
k

zk

[k]!
.
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In addition, particular cases of q-Appell polynomials are the q-Bernoulli polynomials,

the q-Euler polynomials, and the q-Genocchi polynomials. These are the q-analogues

of the original Bernoulli, Euler and Genocchi polynimials which are particular cases

of Appell polynomials. The q-Bernoulli polynomials are given by

Bq(z, t) :=
t

eq(t)−1
eq(zt) =

∞

∑
n=0

Bn,q(z)
tn

n!
|t|< 2π,

and the q-Bernoulli numbers bn,q are given by

t
eq(t)−1

=
∞

∑
n=0

bn,q
tn

n!
.

The q-Euler polynomials are defined by

Eq(z, t) :=
2

eq(t)+1
eq(zt) =

∞

∑
n=0

En,q(z)
tn

n!
|t|< π,

and the q-Euler numbers En,q are given by

teq(t)
eq(2t)+1

eq(zt) =
∞

∑
n=0

En,q(z)
tn

n!
.

The q-Genocchi polynomials are defined by

Gq(z, t) :=
2t

eq(t)+1
eq(zt) =

∞

∑
n=0

Gn,q(z)
tn

n!
, |t|< π,

and the q-Genocchi numbers gn,q are given by

2t
eq(t)+1

=
∞

∑
n=0

gn,q
tn

n!
.

In the following, there are two major characterizations about q-Appell polynomials

which were studied in [22] and [20].
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Theorem 2.4.1. [20, 22] Let {Pn(x)} be a polynomial set. Then Pn(x) is q-Appell iff

there is a set of constants ak with a0 6= 0 and from 2.11 we can obtain that

Pn(x) =
n

∑
k=0

 n

k


q

an−kxk, (2.27)

where for some fixed number a

ak = (1−a)1−aq)..(1−aqk−1), a0 = 1.

Theorem 2.4.2. [22] Let {Pn(x)} be a polynomial set. Then Pn(x) is q-Appell iff there

is a formal power series

A(t) =
∞

∑
k=0

ak

[k]q!
tk, a0 6= 0, (2.28)

such that

A(t)eq(xt) =
∞

∑
k=0

Pn(x)tn

[n]q!
,

where

eq(xt) =
∞

∑
k

xk

[k]q!
.

In addition, we can say that ak is same as these two theorems and the condition a0 6= 0.

Theorem 2.4.3. [20, 23] Let {Pn(x)} be a polynomial set. Then Pn(x) is q-Appell iff

there is a function β(x;q) = β(x) of bounded variation on (0,∞) so that,

1) an =
�

∞

0 xndβ(x) exists ∀ n = 0,1,2...

2) a0 6= 0
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3) Pn(x) =
�

∞

0 (x+ t)ndβ(x).

The determining function is then

A(t) =
�

∞

0
e(xt)dβ(x).

Following [23], in the above theorem the set of (x+ t)t
q is replaceable by any q-Appell

set.

2.5 The Big q-Appell Polynomials

Definition 2.5.1. [24] The big q-Appell polynomials are defined by,

Aq(t)Eq

(
xt
q

)
=

∞

∑
n=0

Pn,q(x)
tn

[n]q!
,

where

Eq(x) =
∞

∑
n=0

q(
n
2)

xn

[n]q!
, (0<|q|<1;x ∈ C)

and

Aq(t) =
∞

∑
n=0

an,q
tn

[n]q!
.

In addition we can show that

Dq,x
(
Pn,q
)
(x) =

[n]q
q

Pn−1,q(qx).

where [n]q is known from (2.7).

Theorem 2.5.1. [24] The folowing statements are all equivalent to each other:

1) {Pn,q(x)}n∈N is a big q-Appell sequence
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2) The sequence {Pn,q(x)}n∈N has an explicit form given by

Pn,q(x) =
∞

∑
k=0

n

k


q

an−k,qq(
k
2)
(

x
q

)k

.

3) The big q-Appell sequence {Pn,q(x)}n∈N has a generating function

Aq(t)Eq

(
xt
q

)
=

∞

∑
n=0

Pn,q(x)
tn

[n]q!
,

where

Aq(t) =
∞

∑
k=0

ak,q
tk

[k]q!
.

Theorem 2.5.2 ( [24]). A recurrence relation satisfied by the big q-Appell polynomials

is (
x
q
+α0,q

)
Pn,q(qx)+

n−1

∑
k=0

n

k


q

αn−k,qPk,q(qx) = Pn+1,q(x). (2.29)
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Chapter 3

HAHN CALCULUS

3.1 Definition of Hahn Difference Operator

This section is generally composed of reference [1]. In this section the Hahn difference

operator and the related calculus is developed. In general the Hahn difference operator

Dq,ω composes both ∆ω and Dq. In other words, if you take limit ω ↑ 0 from Hahn

difference operator you can obtain Jackson’s q-difference operator and if we take limit

q ↑ 1 from Hahn difference operator we can obtain the Forward difference operator.

In [25, 26] Dq,ω is given as

Dq,ω f (t) =
f (qt +ω)− f (t)
(q−1)t +ω

, t 6= ω0, (3.1)

where q ∈ [0,1] and ω > 0 are constants and ω0 := ω

1−q . We can say that Dq,ω f (ω0) =

f ′(ω0), provided that derivative exists. So, (q,ω)-derivative of f is Dq,ω f . As a result,

if Dq,ω f (ω0) exists, we can say f is (q,ω)-differentiable. Assume that f is (q,ω)-

differentiable on the interval I and Dq,ω f = 0 then f is a constant function. Then

f (t) = f (qkt +ω[k]q), t ∈ I, t 6= ω0 k ∈ N,

and therefore if we take limit, we can obtain that f (t) = f (ω) ∀ t ∈ I, t 6= ω0.

The operator (2.1) is the first difference operator which Hahn’s operator generalizes.
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The second one is the ∆ω f (t), which is:

∆ω f (t) =
f (t +ω)− f (t)
(t +ω)− t

. (3.2)

The Nörlund sum is the associated integral of the forward difference operator, and it is

given as � x

∞

f (t)∆ωt :=−ω

∞

∑
k=0

f (x+ kω), (3.3)

and � b

a
f (t)∆ωt := ω

∞

∑
k=0

[ f (a+ kω)− f (b+ kω)], (3.4)

provided that the series is convergent.

Algebraic Properties of Hahn calculus [1]: Algebraic properties are like those of

differentiation (linear, product, quotient) but here they are properties of

q,ω-differentiation.

Let f ,g be functions and they are q,ω-differentiable at t ∈ I, then we have linearity,

product rule, quotient rule as follows:

Dq,ω( f +g)(t) = Dq,ω f (t)+Dq,ωg(t), (3.5)

Dq,ω( f g)(t) = Dq,ω f (t)g(t)+ f (qt +ω)Dq,ωg(t), (3.6)

Dq,ω

(
f
g

)
(t) =

Dq,ω f (t)g(t)− f (t)Dq,ωg(t)
g(t)g(qt +ω)

, (3.7)

where g(t)g(qt +ω) are not zero.

Example 3.1.1. The q-derivative of tn is shown in example (2.0.1) and the forward
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difference operator is applied to tn as follows:

∆ωtn =
n

∑
k=1

(
n
k

)
ω

k−1tn−k =
n−1

∑
k=0

(
n
k

)
ω

n−k−1tk. (3.8)

Here we consider (q,ω)-derivatives. If f (t) = (αt +β)n,

Dq,ω(αt +β)n = α

n−1

∑
k=0

(α(qt +ω)+β)k(αt +β)n−k−1. (3.9)

If f (t) = (αt +β)−n,

Dq,ω(αt +β)n =−α

n−1

∑
k=0

(α(qt +ω)+β)−n+k(αt +β)−k−1, (3.10)

where α,β ∈ R and (α(qt +ω)+β)(αt +β) 6= 0.

If we apply α = 1 and β = 0 then if we take q,ω-derivative, we can obtain that

Dq,ω(t)n =
(qt +ω)n− (t)n

(q−1)t +ω
=

n−1

∑
k=0

(qt +ω)ktn−k−1, (3.11)

Dq,ω(t)−n =
(qt +ω)−n− (t)−n

(q−1)t +ω
=

n−1

∑
k=0

(qt +ω)−n+ kt−k−1. (3.12)

3.2 Theorems of Hahn Difference Operator

Theorem 3.2.1 (Leibniz Formula For Hahn difference operator [1]). Let the functions

f ,g be given with existent q,ω-derivatives. Then the following equality is provided.

Dn
q,ω( f g)(t) =

n

∑
k=0

(
n
k

)
q
(Dn−k

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t), t 6= ω0. (3.13)

Proof. Assume that t 6= ω0. We proceed by using induction. For the case n = 1, the

result is already known as the original product rule (3.6).

27



Now, assume that (3.13) hold for n = m. We need to prove (3.13) for n = m+ 1 and

get r,k ∈ N and from [k+1]q− [k]q = qk, we get

(Dz+1
q,ω f )(qkt +ω[k]q) = (Dq,ωDz

q,ω f )(qkt +ω[k]q)

=
(Dz

q,ω f )(qk+1t +ω[k+1]q)− (Dz
q,ω f )(qkt +ω[k]q)

(qk+1 +ω[k+1]q− (qkt +ω[k]q)

=
(Dz

q,ω f )((qt +ω)qk +ω[k]q)− (Dz
q,ω f )(qkt +ω[k]q)

(qk(t(q−1)+ω)

= q−kDq,ω(Dz
q,ω f )(qkt +ω[k]q).

Now assume that n = m+ 1, and using the product rule from algebraic properties in

3.2, we obtain,

Dm+1
q,ω ( f g)(t) = Dq,ω(Dm

q,ω( f g)(t))

= Dq,ω

[
m

∑
k=0

(
m
k

)
q
(Dm−k

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t)

]

=
m

∑
k=0

(
m
k

)
q
Dq,ω((Dm−k

q,ω f )(qkt +ω[k]q))Dk
q,ωg(t)

+Dq,ω

[
m

∑
k=0

(
m
k

)
q
(Dm−k

q,ω f )(qk+1t +ω[k]q)Dk+1
q,ω g(t)

]

=
m

∑
k=0

(
m
k

)
q
qk(Dm−k+1

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t)

+Dq,ω

[
m

∑
k=0

(
m
k

)
q
(Dm−k

q,ω f )(qk+1t +ω[k]q)Dk+1
q,ω g(t)

]
.

28



From the known q-binomial coefficients property,

Dm+1
q,ω ( f g)(t) =

m

∑
k=1

(
m
k

)
q
qk(Dm−k+1

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t)

+Dm+1
q,ω ( f (t))g(t)+ f (qm+1t +ω[m+1]q)Dm+1

q,ω g(t)

+
m

∑
k=1

(
m

k−1

)
q
(Dm−k+1

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t)

=
m

∑
k=1

((
m
k

)
q
qk +

(
m

k−1

)
q

)
(Dm−k+1

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t)

+
m

∑
k=1

(
m

k−1

)
q
(Dm−k+1

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t)

=
m+1

∑
k=1

(
m+1

k

)
q
(Dm−k+1

q,ω f )(qkt +ω[k]q)Dk
q,ωg(t).

Finally, (3.13) is right for n = m+1 and all n ∈ N.

Remark 3.2.1. If t = ω0 at (3.13), the original Leibniz rule is recovered. But if ω ↑ 0,

we derive the q-Leibniz formula [5, 28, 29]

Dn
q ( f g)(t) =

n

∑
k=0

(
n
k

)
q
(Dn−k

q f )(qkt)Dk
qg(t), t 6= ω0. (3.14)

Letting q ↓ 1, then we obtain

∆
n
ω( f g)(t) =

n

∑
k=0

(
n
k

)
(∆n−k

ω f )(t + kω)∆k
ωg(t) (3.15)

which is the classical discrete Leibniz formula, [27].

Theorem 3.2.2. [Chain Rule [1]] Assume that g : I → R is (q,ω)-differentiable and

f : R→ R is a usual C1 function. There is some c ∈ (qt +ω, t) with

Dq,ω( f ◦g)(t) = f ′(g(c))Dq,ωg(t). (3.16)
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Proof. Assume that t 6= ω0, we get

Dq,ω( f ◦g)(t) =
f (g(qt +ω))− f (g(t))

(q−1)t +ω
, g(qt +ω) 6= g(t).

If g(qt +ω) = g(t)

Dq,ω( f ◦g)(t) = Dq,ωg(t) = 0.

Hence,

Dq,ω( f ◦g)(t) =
f (g(qt +ω))− f (g(t))

g(qt +ω)−g(t)
× g(qt +ω)−g(t)

(q−1)t +ω
(3.17)

and there exists τ between the point g(t) and the point g(qt +ω) via

f ′(τ) =
f (g(qt +ω))− f (g(t))

g(qt +ω)−g(t)
. (3.18)

Finally, from (3.17) and (3.18) we can derive (3.16). In addition (3.16) is true in the

classical sense for t = ω0.

3.3 Jackson–Nörlund Integration

This section is composed of reference [1]. In this section, the right inverse of the

operator Dq,ω is studied. It is called the q,ω-integral operator, and it is denoted by

� b

a
f (t)dq,ωt.

Definition 3.3.1 (Definition of Jackson-Nörlund Integration). Let f : I → R be a

function. The (q,ω)-integral of this function between two numbers c and b is given

by (3.19) which uses (3.20):

� b

c
f (t)dq,ωt :=

� b

ω0

f (t)dq,ωt−
� c

ω0

f (t)dq,ωt, c,b ∈ I, (3.19)
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� x

ω0

f (t)dq,ωt := (x(1−q)−ω)
∞

∑
k=0

qk f (xqk +ω[k]q), x ∈ I. (3.20)

ensured that the latter series converges. If f is (q,ω)-integrable over any interval [c,b]

in I, then f is (q,ω)-integrable on I. In addition the Jackson-Nörlund sum is the sum

to the right hand side of (3.19).

In (3.20) and (3.19), while if ω ↑ 0 we can obtain (2.20) and (2.19), when q ↑ 1 we can

obtain (3.4).

Lemma 3.3.1. Let f ,g : I→ R be function that are (q,ω)-integrable and let α,β,γ be

three points in I. Then:

i)
�

α

α
f (t)dq,ωt = 0,

�
α

β
f (t)dq,ωt =−

�
β

α
f (t)dq,ωt.

ii)
�

β

α
f (t)dq,ωt =

�
γ

α
f (t)dq,ωt +

�
β

γ
f (t)dq,ωt.

iii)
�

β

α
(k f (t)+ lg(t))dq,ωt = k

�
β

α
f (t)dq,ωt + l

�
β

α
g(t)dq,ωt.

Theorem 3.3.1 (FT of Hahn calculus [1]). For any function f : I→R that is continuous

at ω0, if

F(x) :=
� x

ω0

f (t)dq,ωt, x ∈ I,

then we can say that F is also continuous at ω0. Additionally, Dq,ωF(x) exists at every

point in I and

Dq,ωF(x) = f (x),

otherwise, ∀ a,b ∈ I, � b

a
Dq,ωF(x)q,ω = f (b)− f (a).
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Proof. If x = s and s ∈ I, from (3.20) we can say that

F(s) = (s(1−q)−ω)
∞

∑
k=0

qk f (sqk +ω[k]q),

is continuous at ω0. Let us prove that Dq,ωF(x) exists ∀ x∈ I. If x=ω0, then continuity

of f (x) is enough,

Dq,ωF(ω0) = lim
s↑ω0

F(ω0)−F(s)
ω0− s

= lim
s→ω0

−
� s

ω0
f (t)dq,ωt

ω0− s

= lim
s↑ω0

(1−q)
∞

∑
k=0

qk f (sqk +ω[k]q

= (1−q)
∞

∑
k=0

qk f (ω0)

= f (ω0).

Otherwise for x 6= ω0, let us prove that

� x

ω0

Dq,ω f (t)dq,ωt = f (x)− f (ω0), f or all x ∈ I.

From (3.20), the continuity of f (x) for x ∈ I, using(2.1) and [n+1]q =
1−qn+1

1−q ,

� x

ω0

Dq,ω f (t)dq,ωt = (x(1−q)−ω)
∞

∑
k=0

qk(Dq,ω) f (xqk +ω[k]q)

= (x(1−q)−ω)
∞

∑
k=0

qk f (xqk+1 +ω[k+1]q)− f (xqk +ω[k]q)
xqk(q−1)+ω([k+1]q− [k]q)

= (x(1−q)−ω)
∞

∑
k=0

qk f (xqk+1 +ω[k+1]q)− f (xqk +ω[k]q)
xqk(q−1)+ωqk

=−
∞

∑
k=0

(
f (xqk+1 +ω[k+1]q)− f (xqk +ω[k]q)

)
= lim

n→∞

(
f (xqk +ω[k]q)− f (xqk+1 +ω[k+1]q)

)
= f (x)− f (ω),
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which completes the proof.

Lemma 3.3.2 (q,ω-integration by parts [1]). Suppose f ,g : I → R are continuous at

the point ω0. From lemma (3.3.1) and the algebraic property of the product rule, we

can obtain

� b

c
f (t) ·Dq,ωg(t)dq,ωt = f (t)g(t)|bc−

� b

c
Dq,ω f (t) ·g(qt +ω)dq,ωt.

Theorem 3.3.2 (Mean Value Theorem [7]). Let g : I→ X be continuous and then we

can write that � b(t)

t
g(τ)dq,ωτ = (b(t)− t)g(t)

3.4 Hahn Exponential Functions

Firstly, the q-analogue, q-shift factorial, q-binomial coefficients, q-factorial are known

from other sections. Now several definitions and formulas from [11] will be gives

which are used in this section .

Let us give the polynomial bases {(x)n
q,ω}n≥0 and {[x]nq,ω}n≥0. They can be shown in

the following way,

[x]nq,ω = x(qx+ω)(q2x+[2]qω)...(qn−1x+[n−1]qω), (3.21)

(x)n
q,ω = x · (x−ω) · (x− [2]qω) · (x− [3]qω)...(x− [n−1]qω). (3.22)

These bases satisfy the following:

(x)n
q,0 = xn, (x)n

1,0 = xn,

[x]nq,0 = q
n(n−1)

2 xn, [x]n1,0 = xn.
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If we apply Hahn difference operator to polynomial bases, we can obtain:

Dq,ω(x)n
q,ω = [n]q(x)n−1

q,ω , (3.23)

Dq,ω[x]nq,ω = [n]q[qx+ω]n−1
q,ω (3.24)

where q ∈ (0,1) and ω > 0 and n≥ 1.

Theorem 3.4.1. [11] Assume that eω
q (x) is the (q,ω)-exponential function and q ∈

(0,1) satisfy the following first order initial value problem

Dq,ω f (x) = f (x), (3.25)

f (0) = 1. (3.26)

what denoted by

eω
q (x) :=

∞

∑
n=0

1
[n]q!

(x)n
q,ω =

(−ω;q)∞

((1−q)x−ω;q)∞

, |(1−q)x−ω|<1. (3.27)

Proof. We know that Dq,ω(x)n
q,ω = [n]q(x)n−1

q,ω , so

f (x) =
∞

∑
n=0

1
[n]q!

(x)n
q,ω

is a solution of the problem given by (3.25) and (3.26). To show that it is unique, let

us write (3.25) in the form

f (x) =
f (qx+ω)− f (x)
(q−1)x+ω

,

to obtain that

f (x) = f (qx+ω) · 1
1+(q−1)t +ω

.
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Applying this identity m times, we derive

f (x) = f (qm+1x+[m+1]qω)
m

∏
k=0

1
1+qk((q−1)x+ω)

.

Then allow m→ ∞, to obtain

f (x) = f (ω0)
m

∏
k=0

1
1+qk((q−1)x+ω)

. (3.28)

Apply the initial condition (3.26), and from q-shift factorial definition, we get

f (ω0) =
m

∏
k=0

(1+ωqk) = (−ω;q)∞. (3.29)

From (3.28) and (3.29), we have

f (x) =
m

∏
k=0

(1+ωqk)

1+qk[(q−1)x+ω)]
=

(−ω;q)∞

((1−q)x−ω;q)∞

.

As a result, the initial value problem (3.25) and (3.26) has one solution.

Theorem 3.4.2. [11] The (q,ω)-exponential function Eω
q (x) and q ∈ (0,1) satisfying

the following first order initial value problem

Dq,ω f (x) = f (qx+ω), (3.30)

f (0) = 1, (3.31)

is devoted by

Eω
q (x) :=

∞

∑
n=0

[x]nq,ω
[n]q!

=
((q−1)x+ω;q)∞

(−ω;q)∞

, |ω|<1. (3.32)
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Proof. The function

f (x) =
∞

∑
n=0

[x]nq,ω
[n]q!

.

is a solution of the problem given by (3.30) and (3.31). From (3.30), we get

Dq,ω f (x) =
f (qx+ω)− f (x)
(q−1)t +ω

= f (qx+ω),

so we can obtain that

f (x) = f (qx+ω) · (1− [(q−1)t +ω]).

Applying this identity m times, we derive

f (x) = f (qm+1x+[m+1]qω)
m

∏
k=0

(1−qk[(q−1)x+ω]).

Then allow m→ ∞, to obtain

f (x) = f (ω0)
∞

∏
k=0

(1−qk[(q−1)x+ω]). (3.33)

Apply the initial condition, and from the q-shift factorial definition, we get

f (ω0) =
1

∏
∞
k=0(1−ωqk)

=
1

(ω;q)∞

. (3.34)

From (3.33) and (3.34); we get

f (x) =
n

∏
k=0

1−qk[(q−1)x+ω)]

(1−ωqk)
=

((q−1)x+ω;q)∞

(ω;q)∞

.

As a result, the first initial value problem (3.30) and (3.31) has one solution which

(3.32) exists.
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Remark 3.4.1. [11] It is obvious that,

e0
q(x) = eq(x), e0

1(x) = ex, eω
1 (x) = (1+ω)

x
ω ,

E0
q(x) = eq(x), E0

1(x) = ex, Eω
1 (x) = (1−ω)

−x
ω .

Then,

E−ω
q (−x)eω

q (x) = 1.

3.5 Hahn Trigonometric Functions

The Hahn trigonometric functions are defined by

sinω
q z =

eωiz
q − e−ωiz

q

2i
, Sinω

q z =
Eωiz

q −E−ωiz
q

2i
,

cosω
q z =

eωiz
q + e−ωiz

q

2
, Cosω

q =
Eωiz

q +E−ωiz
q

2
.

and

Sinω
q z = sinω

1
q

z, Cosqz = cosω
1
q

z.

Then we have

cosω
q zCosω

q z =
eωiz

q Eωiz
q + e−ωiz

q E−ωiz
q +2

4
,

sinω
q zSinω

q z =−
eωiz

q Eωiz
q + e−ωiz

q E−ωiz
q −2

4
.

Hence, we get

cosω
q zCosω

q z+ sinω
q zSinω

q z = 1, where sin2 z+ cos2 z = 1.

Applying the q,ω-derivative to q-trigonometric functions, we get

Dq,ω sinω
q z = cosω

q z, Dq,ωSinω
q z =Cosω

q z,

Dq,ω cosω
q z =−sinω

q qz, DqCosω
q z =−Sinω

q qz.
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3.6 (q,ω)-Appell Polynomials

This section is composed of reference [11]. Sequences of (q,ω)-Appell polynomials

are defined by the relation

Dq,ωPn(x) = [n]qPn−1(x),n≥ 1. (3.35)

For example, if we take q,ω-derivative of {(x)n
q,ω}n≥0 then we get

Dq,ω(x)n
q,ω = [n]q(x)n−1

q,ω , (3.36)

So, we can say that {(x)n
q,ω}n≥0 is (q,ω)-Appell polynomial sequence.

We show some characterizations of (q,ω)-Appell polynomials, equivalent to the

(3.35), first of all the generating function defined by

A(t)e(xt) =
∞

∑
n=0

Pn(x)
tn

n!
,

where A(t) = ∑
∞
k=0 aktk,a0 6= 0.

Firstly from (x)n
q,ω basis, we can defined that;

eωt
q (x) :=

∞

∑
n=0

(x)n
q,ωtt

[n]q!
=

(−ωt;q)∞

(t((1−q)x−ω);q)∞

, |(1−q)x−ω|<1. (3.37)

Theorem 3.6.1. [11] Let {Pn(.;ω;q)n≥0} be a sequence of polynomials and then the

following representations are equivalent.

i) Pn(.;ω;q)n≥0} is (q,ω)-Appell.
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ii) The polynomial sequence {Pn(.;ω;q)n≥0} is defined by

Pn(x;ω;q) =
n

∑
k=0

n

k


q

an−k(x)k
q,ω, (3.38)

where {ak}k≥0 is a sequence of numbers independent of n with a0 6= 0.

iii) {Pn(.;ω;q)}n≥1 is defined by

A(t)eωt
q (xt) =

∞

∑
n=0

Pn(x;ω;q)
tn

[n]q!
, (3.39)

where the function A(t) is

A(t) =
∞

∑
k=0

ak
tk

[k]q!
.

Proof. Show that (i)⇒(ii). Assume that (i) is true. Since the sequence {(x)n
q,ω}n≥0 is

(q,ω)-Appell, therefore:

Pn(x;ω;q) =
n

∑
k=0

γn,k(x)k
q,ω,γn,n 6= 0 (3.40)

where γn,k based on both n and k potentially. Using the operator Dq,ω on this equation,

we have

Pn−1(x;ω;q) =
n−1

∑
k=0

γn,k+1
[k+1]q
[n]q

(x)k
q,ω. (3.41)

If changing n with n+1 in (3.41), we get

Pn(x;ω;q) =
n

∑
k=0

γn+1,k+1
[k+1]q
[n+1]q

(x)k
q,ω. (3.42)

After that, comparing (3.42) with (3.40) gives,

γn+1,k+1 =
n+1
k+1

γn,k. (3.43)
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Iterating (3.43) k times and taking γn−k,0 = an−k, we have

γn,k =

n

k


q

γn−k,0 =

n

k


q

an−k. (3.44)

(ii)⇒(iii). Start from (3.38), multiply both sides by tn

[n]q! , some over n = 0,1, . . . ,, use

the Cauchy product of the series to obtain .

(iii)⇒(i) Start from (3.39) and apply Dq,ω on the both sides:

∞

∑
n=1

Dq,ωPn(x;ω,q)
tn

[n]q!
= tA(t) =

∞

∑
n=0

Pn(x;ω,q)
tn +1
[n]q!

=
∞

∑
n=1

[n]qPn−1(x;ω,q)
tn

[n]q!
.

From (3.35), we obtain that,

Dq,ωPn(x;ω,q) = [n]qPn−1(x;ω,q), n≥ 1.

Theorem 3.6.2. [11] Suppose that {Pn(·;ω;q)}n≥1 is a (q,ω)-Appell sequence of

polynomials, and let the function A from (3.39) satisfy

DqA(t)
A(qt)

=
∞

∑
k=0

αktk, (3.45)

and assume that the sequence {βk}k≥0 is given by

∞

∑
k=0

limβktk = (1+ωt)
∞

∑
k=0

limαktk⇐⇒ βk = αk +ωαk−1, (3.46)

where k ≥ 0 and α−1 = 0. Then, the (q,ω)-Appell sequence has following properties.

i) A recurrence relation:

Pn+1(x;ω,q) = (x+β0qn−ω[n]q)Pn(x;ω,q)+
∞

∑
k=0

βkqn−k [n]q!
[n− k]q!

Pn−k(x;ω,q)
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ii) A difference equation:[
n

∑
k=2

βk−1qn−kDk
q,ω +(x+β0qn−1−ω[n−1]qDq,ω− [n]q

]
Pn(x;ω,q) = 0

Proof. (i) Taking q-derivative of (3.39), it becomes in (2.4) and (3.37) that

DqA(t)eωt
q (x)(xqt)+

x
1+ωt

A(t)eωt
q (xt) =

∞

∑
n=0

[n]qPn(x;ω,q)
tn−1

[n]q!
. (3.47)

Then, we get

(1+ωt)
DqA(t)
A(qt)

∞

∑
n=0

qnPn(x;ω,q)
tn

[n]q!
+

∞

∑
n=0

xPn(x;ω,q)
tn

[n]q!
(3.48)

=
∞

∑
n=0

[Pn+1(x;ω,q)+ω[n]qPn(x;ω,q)]
tn

[n]q!
. (3.49)

Using (3.45),(3.46) in (3.49) yields[
∞

∑
k=0

βktk

][
∞

∑
n=0

qnPn(x;ω,q)
tn

[n]q!

]
+

∞

∑
n=0

xPn(x;ω,q)
tn

[n]q!

=
∞

∑
k=0

[Pn+1(x;ω,q)+ω[n]qPn(x;ω,q)]
tn

[n]q!
. (3.50)

Comparing the coefficients of tn

[n]q! in (3.50) then applying the Cauchy product, the

result follows.
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(ii) Putting n−1 instead of n in the recurrence relation, and multiplying it by [n]q, leads

to

[n]qPn(x;ω,q) = (x+β0qn−1−ω[n−1]q)[n]qPn−1(x;ω,q)

+
n

∑
k=2

βk−1qn−k [n]q!
[n− k]q!

Pn−k(x;ω,q).

By considering the equality Dk
q,ωPn(x;ω,q) = [n]q!

[n−k]q!Pn−k(x;ω,q), we achieve the

stated result.
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Chapter 4

(p,q)-CALCULUS

4.1 The (p,q)-derivative

Let p and q be two arbitrary numbers in R and C. Then the (p,q)-derivative is defined

by

D(p,q) f (t) =
f (qt)− f (pt)
(q− p)t

, t 6= 0, (4.1)

and
(
D(p,q) f

)
(0) = f ′(0) provided that the function f is differentiable at 0. The (p,q)-

derivative is investigated in [3] starting from the q-derivative which was given by (2.1).

Let me introduce some notation from [30]. (p,q)-bracket or twin basic number and

given by

[n]p,q := pn−1+ pn−2q+ pn−3q2+ · · ·+ pqn−2+qn−1 = [n]q,p , 0 < q < p. (4.2)

By some simple algebra from (4.2), we obtain that

p [n]p,q = pn + pn−1q+ pn−2q2 + · · ·+ p2qn−1 + pqn−1,

q [n]p,q = qpn−1 + pn−2q2 + pn−3q3 + · · ·+ pqn−1 +qn,

p [n]p,q−q [n]p,q = pn−qn,

Finally, we have

[n]p,q =
pn−qn

p−q
. (4.3)
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From [31], if we take limit of (4.3) when p→ 1 we can obtain q-analogue of n. So

lim
p→1

[n]p,q = [n]q , q 6= 1.

The (p,q)-powers are defined by [3, 31]:

(t �b)n
p,q = (t−b)(pt−qb)...(ptn−1−qbn−1). (4.4)

The (p,q)-factorial is defined by:

[n]p,q! = ∏
n
k=1 [k]p,q , n≥ 1, and [0]p,q! = 1. (4.5)

The (p,q)-binomial coefficient is, n

k


p,q

=
[n]p,q!

[n− k]p,q! [k]p,q!
, 0≤ k ≤ n. (4.6)

In [31], it is obvious that.  n

k


p,q

=

 n

n− k


p,q

. (4.7)

From [34], the (p,q)-analogues of Pascal’s identity are defined by: n+1

k


p,q

= pk

 n

k


p,q

+qn−k

 n

k−1


p,q

= qk

 n

k


p,q

+ pn−k

 n

k−1


p,q

where k = {0,1,2,3, ...,n}.
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Proposition 4.1.1. [3, 32] The product rules of (p,q)-derivative is as follows

Dp,q( f (t)g(t)) = f (pt)Dp,qg(t)+g(qt)Dp,q f (t) (4.8)

= g(pt)Dp,q f (t)+ f (qt)Dp,qg(t). (4.9)

Proposition 4.1.2. [32] The Quotient Rule for (p,q)-derivatives:

Dp,q

(
f (t)
g(t)

)
=

g(qt)Dp,q f (t)− f (qt)Dp,qg(t)
g(pt)g(qt)

=
g(pt)Dp,q f (t)− f (pt)Dp,qg(t)

g(pt)g(qt)
,

provided g(pt) 6= 0 and g(qt) 6= 0.

Theorem 4.1.1 (Chain Rule for (p,q)-derivative [33]). Firstly, there doesn’t exist a

general chain rule for (p,q)-derivatives. However if the differentiation of a function of

the form g(z(t)) and z(t) is equals to atb, a,b are constants then chain rule exists for

(p,q)-derivatives.

Consider,

Dp,q [g(z(t))] = Dp,q

[
g(atb)

]
=

g(apbtb)−g(atbqb)

pt−qt

=
g(apbtb)−g(atbqb)

apbtb−atbqb .
apbtb−atbqb

pt−qt

=
g(zpb)−g(zqb)

zpb− zqb .
z(pt)− z(qt)

pt−qt
.

Then we can obtain that

Dqg(z(t)) =
(

Dpb,qbg
)
(z(t)).Dp,qz(t).

Theorem 4.1.2. [32] Assume that f is an nth-order (p,q)-differentiable function.
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Then,

(
Dn

p,q f
)
(t) =

q−(
n
2)

tn(p−q)n

n

∑
k=0

(−1)n−k

 n

k


p,q

q(
k
2) f (t pkqn−k)

pk(2n−k−1)/2
(4.10)

Proof. From (4.1) and (4.10), for n = 1

D(p,q) f (t) =
f (qt)− f (pt)
(q− p)t

=
f (qt)

(q− p)t
+

f (pt)
(q− p)t

= [1]p,q![qt, pt; f ]

and for n = 2,

D2
(p,q) f (t) =

(
Dn

p,q f
)

f (qt)−
(
Dn

p,q f
)

f (pt)
(q− p)t

=

f (q2t)− f (pqt)
(q−p)t − f (pqt)− f (p2t)

(q−p)t

(p−q)t

= (p+q)
[

f (q2t)
(q2− p2)(q− p)t2q

− f (pqt)
(q− p)2t2 pq

+
f (p2t)

(q2− p2)(q− p)t2 p

]
= [2]p,q![q2t, pqt, p2t; f ],

and continuing to n, we obtain

(
Dn

p,q f
)
(t) = [n]p,q![qnt,qn−1 pt, ...,qpn−1t, pnt; f ], (4.11)

and as known from [32],

[t0, t1, ..., tn; .] =
[t1, t2, ..., tn; .]− [t0, t1, ..., tn−1; .]

tn− t0
.

Theorem 4.1.3 ((p,q) Leibniz Rule [32]). Let functions f ,g : Dp,q→ C be nth-order

(p,q)-differentiable. After that,

Dn
p,q( f g)(t) =

n

∑
m=0

 n

m


p,q

Dm
p,q( f )(t pn−m)Dn−m

p,q (g)(tqm) (4.12)
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Proof. Assume that functions f ,g : Dp,q → C are nth-order (p,q)-differentiable.

Therefore, ( f g)(t) is nth-order (p,q)-differentiable and

Dn
p,q( f g)(t) = [n]p,q!

n

∑
m=0

[qnt,qn−1 pt, ...,qn−m+1 pm−1t,qn−m pkt; f ]

× [qn−m pmt,qn−m−1 pk+1t, ...,qpn−1t, pnt;g] (4.13)

Proof of this theorem is clear with lemma and (4.11).

Corollary 4.1.1. [32] Assume that the function f be (p,q)-differentiable function of

order n and p,q ∈ C such that 0 < |q|< |p|5 1. Then

f (x) =
n

∑
m=0

n

m


p,q

qm(m−n)p(
m+1

2 )(qt− pt)m(Dk
p,q f )

(
t pn−m

qm

)
. (4.14)

Proof. Since for m ∈ 0,1, ...,n,n

k


1
p ,

1
q

=
[n] 1

p ,
1
q
!

[n−m] 1
p ,

1
q
![m] 1

p ,
1
q
!
=

(pq)−(
n
2)

(pq)−(
n−m

2 )(pq)−(
m
2)

n

m


p,q

, (4.15)

we can obtain that for n = 1, we have

(D 1
p ,

1
q

f )(t) =
f ( t

q)− f ( t
p)

(p−q)t
(pq) = pq(Dp,q f )

(
t

pq

)
and for n = 2 we have

(D2
1
p ,

1
q

f )(t) =
pq(Dp,q f )( t

pq)− pq(Dp,q f )( t
pq)

( 1
p −

1
q)t

=
(pq)2[(Dp,q f )( t

pq2 )− (Dp,q f )( t
pq)]

(p−q)t

= p2q2(D2
p,q f )

(
t

p2q2

)
.
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Finally,

(Dn
1
p ,

1
q

f )(t) = pnqn(Dn
p,q f )(

t
pnqn )

for all n,

f (t) =
n

∑
m=0

n

m


p,q

qm(m−n)p(
m+1

2 )(qt− pt)m(Dm
p,q f )

(
t pn−m

qm

)
,

So, the proof is completed.

4.2 The (p,q)-integral

In [3], the inverse of (p,q)-derivative is defined and they called it the (p,q)-integral.

Let g be any function and b ∈ R. The (p,q)-integral of g(t) on [0,b] is descibed as

follows [3, 30]

� b

0
g(t)dp,qt := b(q− p)

∞

∑
k=0

pk

qk+1 g
(

pk

qk+1 b
)
, | p

q
|< 1, (4.16)

� b

0
g(t)dp,qt := t(p−q)

∞

∑
k=0

qk

pk+1 g
(

qk

pk+1 b
)
, |q

p
|< 1. (4.17)

For the (p,q)-integral on a semi-infinite interval [0;+∞] we define

�
∞

0
g(t)dp,qt := (p−q)

∞

∑
k=−∞

qk

pk+1 g
(

qk

pk+1

)
, 0 <

q
p
< 1, (4.18)

�
∞

0
g(t)dp,qt := (q− p)

∞

∑
k=−∞

pk

qk+1 g
(

pk

qk+1

)
,

q
p
> 1. (4.19)
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From (4.17),

�
∞

0
g(t)D(p,q) f (t)dp,qt = (p−q)t

∞

∑
k=0

qk

pk+1 g(
qk

pk+1 x)D(p,q) f
(

qk

pk+1 t
)

= (p−q)t
∞

∑
k=0

qk

pk+1 g
(

qk

pk+1 t
) f ( qk

pk t)− f ( qk+1

pk+1 t)

(p−q) qk

pk+1 t

=
∞

∑
k=0

g
(

qk

pk+1 t
)(

f
(

qk

pk t
)
− f

(
qk+1

pk+1 t
))

,

in other words,

�
g(t)dp,q f (t) =

∞

∑
k=0

g
(

qk

pk+1 t
)(

f
(

qk

pk t
)
− f

(
qk+1

pk+1 t
))

. (4.20)

Theorem 4.2.1 (The FT of (p,q)-calculus [3]). If G(t) continuous at t = 0 and its

(p,q)-derivative is of g, after that

� b

a
g(t)dp,qt = G(b)−G(a), f or 0≤ a≤ b≤ ∞. (4.21)

Proof. The function G(t) is given by

G(t) = t(p−q)
∞

∑
m=0

qm

pm+1 g
(

qm

pm+1 a
)
+G(0).

We can say that from (4.20),

� a

0
g(t)dp,qt = G(a)−G(0),

and � b

0
g(t)dp,qt = G(b)−G(0),

and thence we get

� b

a
g(t)dp,qt =

� b

0
g(t)dp,qt−

� a

0
g(t)dp,qt = G(b)−G(a).
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Exchanging a with qm+1

pm+1 and b with qm

pm and considering (4.20), we can see that (4.21)

will also be right for b = ∞.

Remark 4.2.1. [3] If we take p = 1 in (4.19), we can obtain the well known Jackson

Integral (2.19).

Corollary 4.2.1. [3] If f (x) is a function whose ordinary derivative exists in a

neighbourhood of t = 0 and it is continuous at the point t = 0, then we obtain that

� b

a
Dp,q f (t)dp,qt = f (b)− f (a). (4.22)

Proof. By L’Hospital’s rule,

lim
t→0

Dp,q f (t) f (t) = lim
t→0

f (pt)− f (qt)
(p−q)t

= lim
t→0

p f ′(pt)−q f ′(qt)
p−q

= f ′(0).

So defining (Dp,q f )(0) = f ′(0) ensures thatDp,q f (t) is continuous at t = 0 and then

(4.22) follows.

From [3], an important property of the q-integral and (p,q)-integral, compared with

ordinary integration, is that behaviour of a function at t = 0 can affect its integral on

any interval. This can be seen from the definition and convergence conditions for the

derinite (p,q)-integral.
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For any functions f (t) and g(t) whose ordinary derivatives exist close to t = 0, the

product rule (4.9) combined with the FTC gives

f (β)g(β)− f (α)g(α) =
�

β

α

f (pt) ·Dp,q f (t)dp,qt +
�

β

α

g(qt) ·Dp,q f (t)dp,qt,

or the following rule for (p,q)-integration by parts:

�
β

α

f (pt)Dp,qg(t)dp,qt = f (β)g(β)− f (α)g(α)−
�

β

α

g(qt)Dp,q f (t)dp,qt.

Note that b = ∞ is possible.

4.3 (p,q)-Exponential Functions

The (p,q)-exponential functions from [31] are

ep,q(z) =
∞

∑
n=0

p(
n
2)

[n]p,q!
zn =

∞

∑
n=0

p
n(n−1)

2

((p,q);(p,q))n
zn, (4.23)

Ep,q(z) =
∞

∑
n=0

q(
n
2)

[n]p,q!
zn =

∞

∑
n=0

q
n(n−1)

2

((p,q);(p,q))n
zn, (4.24)

and we can say that,

ep,q(x)Ep,q(−x) = 1.

4.4 (p,q)-Trigonometric Functions

The (p,q)-Trigonometric Functions can be defined by

sinp,qz =
eiz

p,q− e−iz
p,q

2i
, Sinp,qz =

E iz
p,q−E−iz

p,q

2i
,

cosp,q z =
eiz

p,q + e−iz
p,q

2
, Cosp,q =

E iz
p,q +E−iz

p,q

2
.

and

Sinp,qz = sin 1
p,q

z, Cosp,qz = cos 1
p,q

z.

Then we have

cosp,q zCosp,qz =
eiz

p,qE iz
p,q + e−iz

p,q E−iz
p,q +2

4
,
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sinp,q zSinp,qz =−
eiz

p,qE iz
p,q + e−iz

p,q E−iz
p,q −2

4
.

Hence, we get

cosp,q zCosp,qz+ sinp,q zSinp,qz = 1, where sin2 z+ cos2 z = 1.

Applying the p,q-derivative to p,q-trigonometric functions,

Dp,q sinp,q z = cosp,q z, Dp,qSinp,qz =Cosp,qz,

Dp,q cosp,q z =−sinp,q qz, Dp,qCosp,qz =−Sinp,qqz.

4.5 The (p,q)-Appell Polynomials

This section is generally composed of reference [31].In this section we introduce

sequences of (p,q)-Appell polynomials. We study some of their algebraic properties,

recurrence relations, difference equations, etc. for such polynomials. In addition, if

we replace p with 1, we can create the q-Appell polynomial sequences which were

mentioned in chapter 2. If we replace p,q with 1, we gain some other Appell

polynomial sequences which were studied in [35].

Definition 4.5.1. [31] Let a sequence of polynomials is {Pn(t)}∞
n≥0 and if

Dp,qPn+1(t) = [n+1]p,qPn(pt), n≥ 0. (4.25)

it is called a (p,q)-Appell sequence.

For example from [3], the sequence (x�a)n
p,q defined by (4.4). It can be checked that

this satisfies the condition for being (p,q)-Appell.
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Now, we prove the several characterization of (p,q)-Appell polynomial sequences.

Theorem 4.5.1. [31] For any sequence of polynomials {Pn(t)}∞
n≥0 the following

conditions are equivalent:

i) The sequence {Pn(t)}∞
n≥0 is (p,q)-Appell.

ii) There is a sequence of numbers (ak)k≥0, with a0 6= 0, all independent of n, such

that

Pn(x) =
n

∑
k=0

n

k


p,q

p(
n−k

2 )akxn−k, n≥ 0.

iii) The polynomial sequence is given by a generating function

A(t)ep,q(xt) =
∞

∑
n=0

Pn(x)
tn

[n]p,q!
,

where

A(t) =
∞

∑
n=0

an
tn

[n]p,q!
.

iv) There is a sequence of numbers (ak)k≥0, with a0 6= 0, all independent of n, such

that

Pn(x) =

(
∞

∑
k=0

p(
n−k

2 )ak

[k]p,q!
Dk

p,q

)
xn.

Proof. Firstly, we will show that (i) =⇒ (ii) . Since {Pn(t)}∞
n=0 is a sequences of

polynomials and

Pn(x) =
n

∑
k=0

n

k


p,q

an,k p(
n−k

2 )xn−k, n = 1,2,3... (4.26)
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where an,k may depend on n and an,k 6= 0. We will show that an,k is independent of n.

Applying (4.1) to (4.26), we can obtain that,

Pn−1(x) =
n−1

∑
k=0

n

k


p,q

an,k p(
n−1−k

2 )(px)n−1−k, n = 1,2,3... (4.27)

where Dp,qx0 = 0. Changing n with n+1 and Replacing x with xp−1 in (4.27) we get

{Pn(x)}=
n

∑
k=0

n

k


p,q

an+1,k p(
n−k

2 )xn−k, n = 1,2,3... (4.28)

Comparing (4.26) and (4.28), we get an+1,k = an,k always, whence the an,k do not

depend on n.

Now, we will show that (ii) =⇒ (iii). From (ii), we get

∞

∑
n=0

Pn(x)
tn

[n]p,q!
=

∞

∑
n=0

 ∞

∑
k=0

n

k


p,q

p(
n−k

2 )akxn−k

 tn

[n]p,q!

=

(
∞

∑
n=0

an
tn

[n]p,q!

)(
p(

n
2)

[n]p,q!
(xt)n

)

= A(t)ep,q(xt).

Finally, we will show that (iii) =⇒ (i). Let Pn(t)}∞
n=0 be given by

A(t)ep,q(xt) =
∞

∑
n=0

Pn(x)
tn

[n]p,q!
,
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Using Dp,q on this, we obtain that

tA(t)ep,q(pxt) =
∞

∑
n=0

Dp,qPn(x)
tn

[n]p,q!

=
∞

∑
n=0

[n]p,qPn−1(px)
tn

[n]p,q!
.

Comparing tn coefficients ∀ n , we get (i). Then (ii)⇐⇒ (iv) is clearly from Dk
p,qtn = 0

for k>n.

Theorem 4.5.2 (Recurrence relations [31]). Let {Pn(t)}n≥0 be a (p,q)-Appell

sequence of polynomials with generating function

A(x, t) = A(t)ep,q(xt) =
∞

∑
n=0

Pn(x)
tn

[n]p,q!
. (4.29)

Then there is a recurrence relation, which is linear and homogeneous, given by

Pn

(
px
q

)
=

1
[n]p,q

n

∑
k=0

n

k


p,q

αkPn−k(x)+ pn−14q−1xPn−1(x), (4.30)

where

t
Dp,qA(t)

A(pt)
=

∞

∑
n=0

αn
tn

[n]p,q!
. (4.31)

Proof. At the beginning, substituting x by xp in condition (3) and applying (4.1) (with

respect to t ) to both sides of condition (3) then multiplying by t, firstly we get

tD{t}p,qA(px, t) = t
∞

∑
n=0

[n]p,qPn(px)
tn−1

[n]p,q!
=

∞

∑
n=0

[n]p,qPn(px)
tn

[n]p,q!
.
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Secondly we have

tD{t}p,qA(px, t) = t
[
D{t}p,qAA(t)ep,q(pxt)

]
= t
[
A(pt)D{t}p,qAA(t)ep,q(pxt)+ ep,q(pqxt)D{t}p,qA(t)

]
= t pxA(pt)ep,q(pqxt)+ tDp,qA(t)ep,q(pqxt)

= A(pt)ep,q(pqxt)

(
t px+ t

D{t}p,qA(t)
A(pt)

)

= A(qx, pt)

(
t px+ t

D{t}p,qA(t)
A(pt)

)
.

These 2 equations imply that,

∞

∑
n=0

[n]p,qPn(px)
tn

[n]p,q!
= A(qx, pt)

(
t px+ t

D{t}p,qA(t)
A(pt)

)

=

(
∞

∑
n=0

pnPn(qx)
tn

[n]p,q!

)(
∞

∑
n=0

αn
tn

[n]p,q!
+ t px

)

=
∞

∑
n=0

 n

∑
k=0

n

k


p,q

αk pn−kPn−k(qx)

 tn

[n]p,q!

+ x
∞

∑
n=0

pn+1Pn(qx)
tn+1

[n]p,q!

=
∞

∑
n=0

 n

∑
k=0

n

k


p,q

αk pn−kPn−k(qx)

 tn

[n]p,q!

+ x
∞

∑
n=0

[n]p,q pnPn−1(qx)
tn

[n]p,q!
.

Comparing tn coefficients, we gain

[n]p,qPn(px) =
n

∑
k=0

n

k


p,q

αk pn−kPn−k(qx)+ [n]p,q pnPn−1(qx),
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After that, shifting x replaced by xp gives the result.

Theorem 4.5.3 ((p,q)-difference for Appell Polynomials [31]). Let {Pn(t)}n≥0 be a

sequence of (p,q)-Appell polynomials with generating function which in (4.27).

Consider (4.31), we get

t
D{t}p,qA(t)

A(pt)
=

∞

∑
n=0

αn
tn

[n]p,q!
, (4.32)

which is valid near t = 0. Then the following (p,q)-difference equation is satisfied:(
n

∑
k=0

αk

[k]p,q!
L−k

p Dk
p,q + pnq−1xL−1

p Dp,q

)
Pn(x)− [n]p,qPn

(
px
q

)
= 0,

where the operator Lp is defined by

Lk
p f (x) = f (pkx), k ∈ Z.

Proof. The Pn satisfy the recursion formula, it is shown in (4.30). Since the sequence

{Pn(t)}n≥0 is (p,q)-Appell, we get

Dk
p,qPn(x) =

[n]p,q!
[n− k]p,q!

Pn−k(pkx), 0≤ k ≤ n.

or in other words,

Pn−k(x) =
[n− k]p,q!
[n]p,q!

L−k
p Dk

p,qPn(x), 0≤ k ≤ n.
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Then from (4.30),

Pn

(
px
q

)
=

1
[n]p,q

n

∑
k=0

n

k


p,q

αk
[n− k]p,q!
[n]p,q!

L−k
p Dk

p,qPn(x)+ pnq−1xPn−1(x)

=
1

[n]p,q

n

∑
k=0

αk

[k]p,q!
L−k

p Dk
p,qPn(x)+ pnq−1xPn−1(x)

=
1

[n]p,q

(
n

∑
k=0

αk

[k]p,q!
L−k

p Dk
p,q + pnq−1xL−k

p Dp,q

)
Pn(x)

4.6 The Big (p,q)-Appell Polynomials

This section is composed of reference [24]. In this section, we will present the big

(p,q)- Appell polynomials, prove an equivalence theorem fulfilled by them, and obtain

recurrence relations fulfilled by them.

Definition 4.6.1. From [24], the big (p,q)-Appell Polynomials are defined by the

following relation, similar to (4.5) but with Ep,q instead of ep,q:

Ap,qEp,q

(
xt
q

)
=

∞

∑
n=0

Pn,p,q(x)
tn

[n]p,q!
,

where

Ep,q(x) =
∞

∑
n=0

q(
n
2)

xn

[n]p,q!
, 0<

∣∣∣∣qp
∣∣∣∣<1; |x|<1

and

Ap,q =
∞

∑
n=0

an,p,q
tn

[n]p,q!
.

The big (p,q)-Appell polynomials satisfy the following relation:

(
Dp,qPn,p,q

)
(x) =

[n]p,q
q

Pn−1,p,q(qx),
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where [n]p,q is defined in (4.2).

In addition, replacing p with 1 in definition of the big (p,q)-Appell polynomials, we

can obtain the big q-Appell polynomials defined by

AqEq

(
xt
q

)
=

∞

∑
n=0

Pn,q(x)
tn

[n]q!
,

where

Eq(x) =
∞

∑
n=0

q(
n
2)

xn

[n]q!
, 0<|q|<1;x ∈ C.

Theorem 4.6.1. [24] The following statements are all equivalent to one another:

1) {Pn,p,q(x)}n∈N is a big (p,q)-Appell sequence.

2) The sequence {Pn,p,q(x)}n∈N has an explicit form given by

Pn,p,q(x) =
∞

∑
n=0

n

k


p,q

an−k,p,qq(
k
2)
(

x
q

)k

.

3) The sequence {Pn,p,q(x)}n∈N has a generating function,

Ap,qEp,q

(
xt
q

)
=

∞

∑
n=0

Pn,p,q(x)
tn

[n]p,q!
,

where

Ap,q(t) =
∞

∑
k=0

ak,p,q
tk

[k]p,q!
.

Proof. Fistly, we will prove that (1) =⇒ (2). Assuming, condition (1) is correct, we

get

Pn,p,q(x) =
n

∑
k=0

an,k,p,q[x]kp,q, (4.33)
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where,

[x]kp,q = x
(

q
p

x
)(

q2

p2 x
)
...

(
qk−1

pk−1 x
)
=

q(
k
2)

p(
k
2)

xk.

and the (p,q)-derivative of [x]kp,q is given by,

Dp,q[x]kp,q = [k]p,q
q(

k
2)

p(
k
2)

xk−1.

Applying the (p,q)-derivative on both sides of (4.33) and using (4.6), we have

[n]p,q
q

Pn−1,p,q(qx) =
n

∑
k=1

an,k,p,q
q(

k
2)

p(
k
2)

xk−1[k]p,q,

i.e.

Pn−1,p,q(qx) =
q

[n]p,q

n

∑
k=1

an,k,p,q
q(

k
2)

p(
k
2)

xk−1[k]p,q.

Shifting k with k+1 in the above equation, we get

Pn−1,p,q(qx) =
q

[n]p,q

n−1

∑
k=0

an,k+1,p,q
q(

k+1
2 )

p(
k+1

2 )
xk[k+1]p,q.

Now replacing n by n+1 and qx by x, we get

Pn,p,q(x) =
q

[n+1]p,q

n

∑
k=0

an+1,k+1,p,q
q(

k+1
2 )

p(
k+1

2 )

(
x
p

)k

[k+1]p,q.

Then comparing (4.33) and the above equation, we obtain

an,k,p,q =
pk−1

q
[n]p,q
[k]p,q

an−1,k−1,p,q.

If we iterate the above equation k times, we have

an,k,p,q =
p(

k
2)

qk

n

k


p,q

an−k,0,p,q.
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Setting an−k,0,p,q = an−k,p,q and adding an,k,p,q to (4.33), we create that

Pn,p,q(x) =
n

∑
k=0

n

k


p,q

an−k,p,qq(
k
2)
(

x
q

)k

.

Secondly, we will prove (2) =⇒ (3). Assume that

Pn,p,q(x) =
n

∑
k=0

n

k


p,q

an−k,p,qq(
k
2)
(

x
q

)k

.

Summing both sides of the above equation from n = 0 to n = ∞ and multiplying by

tn

[n]p,q! , we can obtain

∞

∑
n=0

Pn,p,q(x)
tn

[n]p,q!
=

∞

∑
n=0

n

∑
k=0

n

k


p,q

an−k,p,qq(
k
2)
(

x
q

)k tn

[n]p,q!
.

Now, using the Cauchy product in the above equation, we get

∞

∑
n=0

Pn,p,q(x)
tn

[n]p,q!
=

∞

∑
n=0

∞

∑
k=0

n+ k

k


p,q

an,p,qq(
k
2)
(

x
q

)k tn+k

[n+ k]p,q!

=
∞

∑
n=0

∞

∑
k=0

an,p,q

[n]p,q![k]p,q!
q(

k
2)
(

x
q

)k

tn+k

=
∞

∑
n=0

tn

[n]p,q!

∞

∑
k=0

q(
k
2)

(
xt
q

)k

[k]p,q!
,

which, in statement (3) and the series expression for the big (p,q)-exponential

function, yields
∞

∑
n=0

Pn,p,q(x)
tn

[n]p,q!
= Ap,q(t)Ep,q

(
xt
q

)
.
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Thirdly, I will prove (3) =⇒ (1) . Let, {Pn,p,q(x)}n∈N has a generating function and it

is

Ap,q(t)Ep,q

(
xt
q

)
=

∞

∑
n=0

Pn,p,q(x)
tn

[n]p,q!
.

Then take the (p,q)-derivative by x on both sides of the above equation, we can obtain

that

Ap,q(t)Dp,q,x
(
Ep,q

)(xt
q

)
=

∞

∑
n=0

Dp,q,x
(
Pn,p,q(x)

) tn

[n]p,q!
,

and

Dp,q,x
(
Ep,q

)
=

t
q

Ep,q(xt).

So,

Ap,q(t)
t
q

Ep,q(xt) =
∞

∑
n=0

Dp,q,x
(
Pn,p,q(x)

) tn

[n]p,q!
.

Replacing the left side by the corresponding series, we have

1
q

∞

∑
n=0

(
Pn,p,q(qx)

) tn+1

[n]p,q!
=

∞

∑
n=0

Dp,q,x
(
Pn,p,q(x)

) tn

[n]p,q!
,

in other words,

1
q

∞

∑
n=0

[n]p,q
(
Pn−1,p,q(qx)

) tn

[n]p,q!
=

∞

∑
n=0

Dp,q,x
(
Pn,p,q(x)

) tn

[n]p,q!
.

Then, comparing tn

[n]p,q! coefficients, we can obtain that

Dp,q,x
(
Pn,p,q(x)

)
=

[n]p,q
q

Pn−1,p,q(qx).

Finally, it is shown that {Pn,p,q(x)}n∈N be a big (p,q)-Appell sequence.
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Theorem 4.6.2. [24] The big (p,q)-Appell polynomials satisfy

xpn

q
Pn,p,q

(
q
p

x
)
+Pn,p,q(qx)α0,p,q +

n−1

∑
k=0

n

k


p,q

αn−k,p,qPk,p,q(qx) = Pn+1,p,q(x).

(4.34)

Proof. Differentiating both sides of the generating function of the big (p,q)-Appell

polynomials with respect to t, we get

Ap,q(pt)Dp,q,t

(
Ep,q

(
xt
q

))
+Ap,q(t)Ep,q(xt)

Dp,q,t
(
Ap,q(t)

)
Ap,q(t)

=
∞

∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
,

(4.35)

and

Dp,q,t

(
Ep,q

(
xt
q

))
= Dp,q,t

∞

∑
n=0

q(
n
2)

(xt
q )

n

[n]p,q!

=
∞

∑
n=0

q(
n
2)q−nxn Dp,q,t(tn)

[n]p,q!
.

Then inserting Dp,q,t(tn) = tn−1[n]p,q and after some series manipulations

Dp,q,t

(
Ep,q

(
xt
q

))
=

x
q

Ep,q(xt).

Now, inserting the above equation in (4.35), we can obtain

x
q

Ap,q(pt)Ep,q(xt)+Ap,q(t)Ep,q(xt)
Dp,q,t

(
Ap,q(t)

)
Ap,q(t)

=
∞

∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
. (4.36)

Now, if we define

Dp,q,t
(
Ap,q(t)

)
Ap,q(t)

=
∞

∑
n=0

αn,p,q
tn

[n]p,q!
,
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then from (4.36) we can obtain that

x
q

∞

∑
n=0

Pn,p,q

(
q
p

x
)

(pt)n

[n]p,q!
+

∞

∑
k=0

Pk,p,q(qx)
tk

[k]p,q!

∞

∑
n=0

αn,p,q
tn

[n]p,q!
=

∞

∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
.

Now, applying the Cauchy product,

x
q

∞

∑
n=0

Pn,p,q

(
q
p

x
)

(pt)n

[n]p,q!
+

∞

∑
n=0

n

∑
k=0

n

k


p,q

Pk,p,q(qx)αn−k,p,q
tn

[n]p,q!
=

∞

∑
n=0

Pn+1,p,q(x)
tn

[n]p,q!
.

Equating the coefficients of tn

[n]p,q! in the above equation, we get

xpn

q
Pn,p,q

(
q
p

x
)
+

n

∑
k=0

n

k


p,q

Pk,p,q(qx)αn−k,p,q = Pn+1,p,q(x),

xpn

q
Pn,p,q

(
q
p

x
)
+Pn,p,q(qx)α0,p,q +

n

∑
k=0

n

k


p,q

Pk,p,q(qx)αn−k,p,q = Pn+1,p,q(x)

.
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Chapter 5

(p,q)-HAHN CALCULUS

This Chapter is very important because it constitutes the purpose of this thesis. In

this chapter, the (p,q)-Hahn difference operator is introduced and its properties are

investigated. First, we give some definitions and formulas.

5.1 Definition of (p,q)-Hahn Difference Operator

In general the (p,q)-Hahn difference operator D(p,q),ω unifies Hahn operator and

(p,q)-derivative. The definition is

D(p,q),ω f (t) =
f (qt +ω)− f (pt)
(q− p)t +ω

, (5.1)

where p,q ∈ [0,1] and ω>0.

The particular cases os the operator (5.1) can be found by taking the limits as.

lim
q→1
p→1
ω→0

D(p,q),ω f (t) = lim
q→1
p→1
ω→0

f (qt +ω)− f (pt)
(q− p)t +ω

= f ′(t), (5.2)

lim
q→1
p→1

D(p,q),ω f (t) = lim
q→1
p→1

f (qt +ω)− f (pt)
(q− p)t +ω

=
f (t +ω)− f (t)
(t +ω)− t

= ∆ω f (t), (5.3)

lim
ω→0

D(p,q),ω f (t) = lim
ω→0

f (qt +ω)− f (pt)
(q− p)t +ω

=
f (qt)− f (pt)
(q− p)t

= Dp,q f (t), (5.4)

lim
p→1

D(p,q),ω f (t) = lim
p→1

f (qt +ω)− f (pt)
(q− p)t +ω

=
f (qt +ω)− f (t)
(q−1)t +ω

= Dq,ω f (t). (5.5)

5.2 Differentiation

Theorem 5.2.1. Let f be a function. f is (p,q),ω-differentiable if Dp,q,ω f (ω0) exists

where ω0 =
ω

1− p
q

.
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Proof. Assume that ω0 =
ω

1− p
q

. Taking limit of Dp,q,ω f (ω0) gives

lim
q→1
p→1
ω→0

D(p,q),ω f (ω0) = f ′(ω0).

So, since Dp,q,ω f (ω0) exists. then f is (p,q),ω-differentiable.

Theorem 5.2.2. Assume that D(p,q),ω f (t) = 0 , ∀ t ∈ R, then f is constant.

Proof. From (3.1) we can write that,

D q
p ,ω

f (pt) =
f ( q

p pt +ω)− f (pt)

( q
p −1)pt +ω

.

It is obvious that

D(p,q),ω f (t) = D q
p ,ω

f (pt).

On the other hand,

D(p,q),ω f
(

t
p

)
=

f ( q
pt +ω)− f (pt)

( q
p −1)t +ω

.

It’s easy to see that

D(p,q),ω f
(

t
p

)
= D q

p ,ω
f (t).

So, from this notation D(p,q),ω f ( t
p) = 0 ∀ t ∈ R means that f ( q

pt +ω) = f (t).

Let h q
p
(t) = q

pt +ω , then f (t) = f (h q
p
(t)) ∀ t ∈ R. So

f (t) = f (h q
p
(t)) = f (h2

q
p
(t)) = f (h3

q
p
(t)) = ...
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If f (t) = f (h q
p

n) for all n, then in the limit n→ ∞ we have q
p

n → ω0 and therefore

f (t) = f (ω0). So, f is constant.

5.3 Algebraic Properties of (p,q)-Hahn Difference Operator

Assume that f ,g be p,q,ω-differentiable on the interval I, then

Linearity:

D(p,q),ω( f +g)(t) = D(p,q),ω f (t)+D(p,q),ωg(t).

Product Rule:

D(p,q),ω( f g)(t) =
f (qt +ω)g(qt +ω)− f (pt)g(pt)

(q− p)t +ω

=
f (qt +ω)g(qt +ω)− f (qt +ω)g(pt)+ f (qt +ω)g(pt)− f (pt)g(pt)

(q− p)t +ω

=
f (qt +ω) [g(qt +ω)−g(pt)]

(q− p)t +ω
+

g(pt) [ f (qt +ω)− f (pt)]
(q− p)t +ω

= f (qt +ω)D(p,q),ωg(t)+g(pt)D(p,q),ω f (t)

and if we add ±g(qt +ω) f (pt)

D(p,q),ω( f g)(t) =
f (qt +ω)g(qt +ω)− f (pt)g(pt)

(q− p)t +ω

=
f (qt +ω)g(qt +ω)−g(qt +ω) f (pt)+g(qt +ω) f (pt)− f (pt)g(pt)

(q− p)t +ω

= g(qt +ω)D(p,q),ω f (t)+ f (pt)D(p,q),ωg(t)
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Quotient Rule:

D(p,q),ω

(
f
g

)
(t) =

f (qt+ω)
g(qt+ω) −

f (pt)
g(pt)

(q− p)t +ω

=

f (qt+ω)g(pt)−g(pt) f (pt)+g(pt) f (pt)− f (pt)g(qt+ω)
g(qt+ω)g(pt)

(q− p)t +ω

=
g(pt) f (qt+ω)− f (pt)

(q−p)t+ω
− f (pt)g(qt+ω)−g(pt)

(q−p)t+ω

g(qt +ω)g(pt)

=
g(pt)D(p,q),ω f (t)− f (pt)D(p,q),ωg(t)

g(qt +ω)g(pt)
,

D(p,q),ω

(
f
g

)
(t) =

f (qt+ω)
g(qt+ω) −

f (pt)
g(pt)

(q− p)t +ω

=

f (qt+ω)g(pt)−g(qt+ω) f (qt+ω)+g(qt+ω) f (qt+ω)− f (pt)g(qt+ω)
g(qt+ω)g(pt)

(q− p)t +ω

=
g(qt +ω) f (qt+ω)− f (pt)

(q−p)t+ω
− f (qt +ω)g(qt+ω)−g(pt)

(q−p)t+ω

g(qt +ω)g(pt)

=
g(qt +ω)D(p,q),ω f (t)− f (qt +ω)D(p,q),ωg(t)

g(qt +ω)g(pt)
.
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Chapter 6

CONCLUSIONS

In conclusion, I will summarize the general results of q-calculus, Hahn calculus,

(p,q)-calculus and (p,q),ω-calculus with table 1. Then we will give the relationship

between q-Appell, Hahn Appell polynomials, (p,q)-Appell polynomials, the big

q-Appell polynomials, the big (p,q)-Appell with table 2. In table 3, we will compare

q-calculus, Hahn calculus, (p,q)-calculus and (p,q),ω-calculus with classical

derivative. Finally, in table 4 we will show same properties of q-calculus, Hahn

calculus, (p,q)-calculus and (p,q),ω-calculus.

69



                            Table 1: The general results of q-calculus, Hahn calculus, (p,q)-calculus and (p,q),ω -calculus. 

 



                     Table 2: The general results of q-Appell, Hahn Appell, (p,q)-Appell, the big q-Appell, the big (p,q)-Appell polynimials. 

 
 



                      Table 3: The general results of q-calculus, Hahn calculus, (p,q)-calculus and (p,q),ω-calculus with classical derivative. 

 



        Table 4: Properties of q-calculus, Hahn calculus, (p,q)-calculus and (p,q),ω-calculus. 

 



REFERENCES

[1] Annaby, M. H., Hamza, A. E., & Aldwoah, K. A. (2012). Hahn difference

operator and associated Jackson–Nörlund integrals. Journal of optimization

theory and applications, 154(1), 133-153.

[2] Kac, V., & Cheung, P. (2001). Quantum calculus. Springer Science & Business

Media .

[3] Sadjang, P. N. (2013). On the fundamental theorem of (p,q)-calculus and some

(p,q)-Taylor formulas. arXiv preprint arXiv:1309.3934.

[4] CM (2018).what is q calculus ?, https://mathematicalgarden.wordpress.com/2008/

12/15/what-is-q-calculus/.
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g-calculus. Matematički vesnik, 54(3-4), 171-178.

[19] Appell P (1880). Une classe de polynômes. Ann Sci École Norm Sup 9(2),
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Université Nationale du Bénin, Porto-Novo..

[26] Patanarapeelert, N., & Sitthiwirattham, T. (2017). Existence results for fractional

Hahn difference and fractional Hahn integral boundary value problems. Discrete

Dynamics in Nature and Society, 2017.

[27] Jordan, C. (1965). Calculus of Finite Differences. 3rd edn, New York, Chelsea.

[28] Koornwinder, T. H. (1999). Some simple applications and variants of the q-

binomial formula. Informal note, Universiteit van Amsterdam.

[29] Moak, D. S. (1981). The q-analogue of the Laguerre polynomials. Journal of

Mathematical Analysis and Applications, 81(1), 20-47.

77
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