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ABSTRACT

One of the main starting point for the theory of calculus is the differentiation operation,
which is defined as follows. Firstly, divide the difference of two function values by
the difference of the corresponding two arguments, and then take the limit as the two
arguments converge to each other. The result of this limit is called the derivative of the

original function.

Many variants of this basic operation have been proposed, giving rise to different
theories and types of calculus. In this thesis, I will study some particular variants in
which the limiting process is omitted but the two arguments in the quotient expression
are linear functions of each other. The most basic one is the g-calculus (or quantum
calculus), which is a particular case of both the (g, ®)-calculus (or Hahn calculus) and
the (p,q)-calculus, which are the both special cases of the new type called

(p,q)-Hahn calculus.

These approaches give more discrete theories than the original calculus, more
applicable to quantum physics. But a lot of the structure remains the same: in all
cases there are derivatives, integrals, product and chain rules, exponential and Appell
functions. In this thesis, I will study important properties and special functions
associated with each of these three known types of calculus, and finally, I introduce

the new (p,q)-Hahn Calculus.

Keywords: g-calculus or quantum calculus, g, ®-calculus or Hahn Calculus, (p,q)-
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calculus, (p,q)-Hahn Calculus, Exponential Functions, Appell Polynomials.

v



0z

Analizin ana baglangi¢ noktalarindan biri tiirev islemdir ve su sekilde tanimlanir. Ik
olarak, 2 fonksiyonun farkini es 2 argiimanin farkina boliiniir ve sonra bu iki argiiman
birbirine yaklasana kadar limit alinir. Elde edilen limitin sonucuna da orjinal

fonksiyonun tiirevi denir.

Farkli teorilere ve analiz tiplerine yol acan bu temel islemin bir ¢ok degisik bicimi
sunulmugtur. Bu tezde, limit siirecinin atlandi81 ti¢ 6zel degisken iizerinde calisacagim.
Ancak boliim kisminda yer alan 2 argiiman birbirlerinin lineer fonksiyonlaridir. En
temel olan1 ise g-calculusdur (veya quantum calculus)ve hem (g, ®)-calculus (veya

Hahn calculus) hem de the (p, ¢)-calculus’un 6zel durumudur.

Bahsedilen 3 yaklasim orijinal analizden ziyade ayrik matematige cekilebilir ve
uygulanabilirlik agisindan kuantum fizigine daha yakindir. Fakat 3 durumda da,
tiirevler, integraller, ¢carpim and zincir kurallar, iislii ve Appell fonksiyonlar: vardir.
Bu tezde, analizin 3 tipi olan g-calculus,(g,®)-calculus ve (p,q)-calculus’un 6nemli
ozellikleri ve 6zel fonskiyonlarla iliskilerini ¢alisacagim ve son olarak, yeni elde

ettigim ve gelistirdigim (p, ¢)-Hahn Calculus’un 6zelliklerini ¢alisacagim.

Anahtar kelimeler: g-calculus veya quantum calculus, ¢,®-calculus veya Hahn
Calculus, (p,q)-calculus, (p,q)-Hahn Calculus, Ustel Fonksiyonlar, Appell

Polinomlari.
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Chapter 1

INTRODUCTION

The minor subjects of this thesis are g-calculus (quantum calculus), g,®-calculus

(Hahn calculus) and (p, g)-calculus. This thesis is generally based on the paper [1-3].

From [4], in the 17. century, the theory of differential and integral calculus is studied

for the first time by Newton and Leibniz. In their study, f/(x) is defined by

)ty LD ),

z—0 Z

Now, consider the following:

This formula is equivalent to the following known derivative

S+ (g—1)x) = f(x)
(g—1)x '

In the 20th century, F.H. Jackson studied this derivative and many of its results. Then

Jackson defined the g-derivative as follows:

Dyf() = TPV ZID o,

gx —x



This g-derivative can be applied to functions that may not be differentiable. And it

reduces to the ordinary derivative when g — 1:

lim D, f(x) = f'(x).

q—1

In the reference of [5], the Hahn difference operator D, ,, was defined in 1949 by
Wolfgang Hahn. It is like differentiation with two extra parameters ¢, ®. It may be seen
as the combination of the forward difference operator together with the g-difference

operator. Combining the ideas of these two operators, namely

flx+o) = f(x)

Aof(x) = (x+co)—x )
and
D,f(x) = f(q;)c:;]:(X)’

The Hahn difference operator is defined as

flgx+ o) — f(x)
(g—x+o

Dyof(x) =
This operator appears in many references such as [6] and [7]. Its right inverse is
Jackson—Norlund integration, which was introduced by Aldwoah [8—10]. This is a

generalization of both the inverse of 2, and also the inverse of A, [9, 10].

The functions E, « and e, o are the Hahn equivalents of exponential functions [1]. I
also studied new Hahn exponential-type functions from [11] which are called non-

parametric.



The (p,q)-integers are defined in the reference [12], generalized g-calculus and used

to represent certain quantum algebras in the reference [13].

From [14], recently (p,q)-calculus has also been applied in the theory of
approximation. Let p,q € R or C. The (p, g)-derivative of f(x) is defined by

f(px) — f(gx) .

Do) =720 Z g

Chapter 5 includes new operator, (p,q)-Hahn where we call it derivative and it is

defined by

flgx+®)— f(px)
(g—px+o

£D(p,q) ,(Df(x) =

In this thesis, there are six chapters. Introduction is the first Chapter which includes
the aims, background information and literature reviews of my thesis. The second
Chapter is about g-calculus definition and properties, including the big g-Appell and
g-Appell polynomials. Chapter 3 contains the Hahn difference Operator, its theorems,
definitions and properties, including the right inverse of the Hahn difference operator
(Jackson—Norlund Integration), Hahn exponential and trigonometric functions, and
(q,®)-Appell polynomials.  Chapter 4 is about (p,q)-calculus; we studied
(p,q)-derivative,  (p,q)-integral,  (p,q)-exponential functions, (p,q)-Appell
polynomials and big (p,q)-Appell polynomials. In Chapter 5, we obtained the new
(p,q)-Hahn difference operator and its properties. The Chapter 6 is the conclusion

and it contains the main aim and results of my thesis.



Chapter 2

q-CALCULUS

This section is generally composed of references [2, 15]. This section is about the

quantum calculus. This operator is called Jackson’s g-difference operator or

dg f (1)

g-derivative and it is symbolized by D, f(t) or e when applied to a function of f.

The function f is defined on a g-geometric set of A which is subset of R or C. The

g-derivative is defined by [2]

flat) —f(t)

, t,qgt € A
(q— 1)t 1

@qf(t) =

where 0 < g < 1.

If we take limit when g — 1

flar) —£(t) _ df(@)

. . qt
Iim D, f(t) =1
Jim Dy f ) =lim = =

we can obtain classical derivative of f.

In [15], the following obvious properties has shown

1) D, is a linear operator, so

Dy(f+8)(1) = Dy f (1) + Dy (1)

2) If f is g-differentiable at ¢, then f(qt) = f(t) — Dy f(t)(¢ — 1)t

2.1

(2.2)

(2.3)



3) If f is g-differentiable, then f is continuous.

Let f, g be functions which are g-differentiable at ¢ € I.

The following algebraic property of g-derivatives may be called the product rule:

Dy(f8)(1) = 8(t)Dylf ()] + f(qt) Dy8(1)]- 24

By symmetry, if we interchange f with g, we can obtain that,

Dy(f8)(1) = f(1)Dylg(1)] + &(qt) Dy[f (1)]. (2.5)

The quotient rule for g-derivatives is

2, (L) ) - 84210 ) 2yst 06
q - 9 .
3 8(1)g(q1)
where g(t)g(qt) # 0.
Example 2.0.1. Assume that z # 0 and take g-derivative of f(z) = 7"
n n n
. —1
D, = ()" =" _(¢"=1) o1
z—z  (¢=1)
From this solution, [r], is defined in [16] as follows:
n
—1
[n]qz1+q+cf+q3+...+q”*1=M 2.7)
(g—1)
and it is the g-analogue of n.
Finally, we can write g-derivative as follows:
D" = [n],2" " (2.8)



In addition, [n],! as follows:

Remark 2.0.1. It may happen that D,f(¢), exists for a function g without being

differentiable or even continuous at zero. For instance: f : [0,1] — R defined by

1, ifr=-L neN
n
f(r) =

t, otherwise.

Here f(0) = 0 but there is no lim,_,o f(¢) so f is not continuous at = 0.

As aresult:
tq) — f(0 t
D,f(0) = lim SUq) =S O) o td g,
t—oo tq t—oo tq
Theorem 2.0.1 (Chain Rule for g-derivative [2]). Firstly, there doesn’t exist a general
chain rule for g-derivatives. However if the differentiation of a function of the form

g(z(t)) and z(t) is equals to at®, (a,b) are constants then chain rule exists for q-

derivatives.

Consider,

(ag’t?) — g(ar®)

D, (5 (:(0))] = D, [s(ar”)] = &

qt—t
_ 8lag"t”) —g(ar”) ag’t® —ar®
N aqbtb —att qt —t
_8(q") —8(z) z(gt) —z(1)
¢-z = q—-r



Then we can obtain that

D8 (2(0)) = (Dypg) (2(0)). Dya(t).

Firstly, let’s give the definition of Taylor’s Formula. In the classical calculus, an

analytic function f(z) has power series around ¢t = a as

Theorem 2.0.2 (Generalized Taylor’s Formula for Polynomials) [2]). Leta € N, D, be
a linear map acting on the vector space of polynomials , and (P,(t)) be a polynomial

sequence such that

1) Py(a)=1, P,(a) =0, Vn>0;
2) deg(P,) =n;

3) DyPu(t) = Po_1(t), ¥n>0,D,(1)=0

Then there is a generalized Taylor formula as follows:

N

F(0) = Y (DGf)(@)Pa(1). (2.9)

n=0
Proof. Assume that J is the space of all polynomials of degree < N. From condition 2,
the polynomials Py(t),P;(t),Ps(t),...Py(t) are linearly independent and there is a rapid

increase in degrees. However they create a basis for J; i.e., as a sample we can give



any polynomial f(z) € J expressions as

N
= Y cPulo), (2.10)

where ¢y, is constant.

Interchanging with 7 and a then if we use condition 1 we can get co = f(a) as a result.
After that, operator D, continuously applied on both sides n times, where 1 <n <N.

Then, using condition 2 and 3

(Dgf)(t Z kD Pi (1) Z CrPr—n(

Then putting t = a and from condition 1, we have
cn=(Dgf)(a), 0<n<N
Finally, we can obtain (2.10) from (2.9). L]

2.1 g-Analogue of Power Function and g-Derivatives of Binomials
This section is composed of references [2]. Assume D, is an operator acting linearly on
the vector space of polynomials. Let a sequence of polynomials Py(z),Pi(t),Px(t),...

satisfies the three conditions of theorem 2.0.2 . If a = 0, then we can choose,

Using the result (2.8) for n > 1, we can write that

n n—1
@an(t) = [Q’:j]; = [nt_ 1]! :Pn—l(t)'

If a # 0 then P,(¢) is not simply (t=a)f ) ; for example,



(t—a)’

5 7 (1 —a).

Now set

Po(t): 1.

In order that D, Py (t) = 1 and Py (a) = 0, we should have

Pi(t) =t —a.

In order that D, P>(t) =t —a and P>(a) = 0, we should have

_r a5 (1=a)(t—qa)
2] 2] 2] '

Similarly for n = 3,

Bile) = BE |
Finally, we can obtain that
Pu(r) = (I[I,E;) (t—qa)..(t—q""'a)
and when a = 0 we can obtain that
B0~



Definition 2.1.1 (The g-Binomial formula, The g¢-polynomial coefficient, The

g-factorial [17]). The g-factorial is given as

1, n=0;
(@D =AMy (1—gla),  n>1;
\H?:O(l _qja)7 n = oo.
The g-binomial formula is defined by
- 1/2 1
(1—a);=(a:q)n =), gD (—1)kat
k=0 k

The g-binomial coefficient is defined by

= (4:9)n (k<n, nkeN).

(R

q

Definition 2.1.2 ( [2]). The g-analogue of (r —a)" is the polynomial

ifn=0,

(t—a)(t—qa)...(t—q" 'a), ifn>1.

We note that,

(1= a4 (1 —a)y(c — a)y

10

(2.11)



Indeed,

(t—a)y™ = (t—a)(t—qa)...(t — g" " la)

= ((t—a)(t—qa)...(t —q" "' (¢"a))) -

The affirmative result is

(t—a)y™ = (t—a))(t—q"a); ™. (2.12)
Putting m = —n, we get
1
(t—a)," =

So that (t — a)y is now defined for any integer n.

Theorem 2.1.1 ( [2]). g-derivative of (t —a)y is given by

Dyt —a)y = [n]q(t—a)g_l, nez. (2.13)

Proof. This theorem will be proven in 3 steps.
Fistly, Let’s use mathematical induction.

Let take n = 1 then D,(t —a)y = 1 is true.

Then suppose that n = k case is true so, D, (r — a)]; = [k]q(t — a)’(;_l. Now, we will

11



prove that for n = k+ 1 is true:

Dyt~ =D, (1 a)(t —ga)...(t - ¢ a) (1 — g*a)
=D, | (1~ )kt~ g*a)
= (t—a)y+ (g1 — d'a) Dyt — a),
= (1 —a)y+ (g —q"a) K]yt —a)y "
= (1= @)k +qlkly(r — @)k~ (1= ¢a)
= (1= @) (1+qlK)
= [k+1],(t —a)k.

q

Secondly, since [0], = 0 it is clear for n = 0.

Thirdly, assume thatn = —1,—2,... . Thenif n = —n; <0, we get

I
k _
== gy

Taking g-derivative,

12



1
Dyt —q " a)y
iyt —g Ma)y "
T @]
[n1]4(t —q "M a)g'
(t—gq7'a).(t =g~ ma)y " (gt — g~ Ma)y
1
qm(t— qila)(t — qua)...(t — q*"l*la)

1

=—\m
[ ]q(l—q_nl_la>21+l

Dy(t — a)z =D,

-1

= —[nilq

]
2.2 q-Exponential and q-Trigonometric Functions
This section is generally composed of reference [2].
Definition 2.2.1. The two g-analogues of exponential functions are given by
. 1
eq(x) := = ; (2.14)
0= L = (= gwa)-
oo qn(n;l)xn
Eqy(x):= Y, — = (—(1=q)x:9)e, (2.15)
=0 [”l]q :

where (a;q)e = [T7_o(1 — ag’).

13



Properties of g-exponentials [2]:

These g-analogues (2.14) and (2.15) satisfy:

eq(x)Ey(—x) = 1. (2.16)
eq(x) = Eé (x). (2.17)
e%(x) =E,(x). (2.18)

They are g-equivalents of the original exponential function since

lim e,((1—)2) = lim (1 - q)2) = "

g—1

If we take g-derivative of g-exponentials, we can obtain these

x] oo x] 1
D,e,(x) Z q Z J]q

_]:0
and
JjG=1)
=g 2 Dyt
Q)‘IEQ(X) = Z [] 'q
j=0 Jlgq
N j=1 [] - 1]‘]'
_ i g gl
& !

In other words, we can say these

Dyeq(x) = e4(x), DyE4(x) = Eq(gx).

14



From reference of [2], in general, e}ey 7# e; . Additive property of the g-exponentials

has been supplied if yx = gxy. Since assume that

(v 2 Xyt
(%Uh!) (33 ) LY G
v v A xlyk
=L L (0, [+ Ry

If we change variable from j,k to j and n = j+k, then for n, j runs from O to n.We

have
clv | ] I ¢ Gty
“a=2 | L X!yt ! )3 ]!
n=0 \ j=0 j q n=0 q
Thus, we have
_ Xt
ezef] —ez Y,

if yx = gxy.

Due to the commutation relation being not symmetric in x and y, we can obtain that

o A

[2] The g-trigonometric functions are given by

Definition 2.2.2.
iz __ ,—iz
sin, 7 — 4 ‘a_
4 2i
iz —iz
COS, 7 = %% T
q 1= 2 )

From (2.18) we get

Singz = sin; z,
q

Eiz _ E—iz
Si — 4 q 7
et 2i
EiZ +E—iZ
Cosgz = %.

Cosyz = cos: z.
q

15



Then we have

eiZEiZ—l—e;iZEq_iZ—l—Z

iz iz —izp—iz _
Eq quq —I—eq Eq 2
4 9

4

cos,zCos4z = sing zSingz = —

Hence, we get

cosy zCos 4z + sing zSingz = 1.

Applying the g-derivative to g-trigonometric functions,
D, singz = cosy 2, D,Singz = Cosyz,
Dy o8,z = —sing qz, DyCosqz = —Singqz.

2.3 q-Integral
In [2], Jackson had identified the g-integral which is a right inverse of the g-derivative.

In [2], the g-integral over [0, x] is defined as follows :

Iy = / F)dgt = x(1—q) Y. ¢ f(xd) 2.19)
0 k=0

and then more generally over [a, b| as follows:

b b a
/f(t)dqt ::/0 f(t)dqt—/o f(t)dgt. (2.20)

Note that

1(f) = /0 " f(0)dt = timI, (f)

qtl

Theorem 2.3.1 (Mean Value Theorem of g-Integral [18]). Firstly, function of f is a

continuous on [0,al. Then ¥ g € (0,1) and exists € € [0,a] so

b
I,(f) = /O F()dyt = b1 (e)

16



Proof. Since f € C[0,b] and assume that

m=min{f(x):0<x<b}, M = max{f(x) :

From 0 < g < 1 we can write that

and

m< f(bqg") <M

Then we can write that

From the mean value theorem of g-integral

b
bm < / f(t)dyst < bM,
0

1 [P
mg—/ f(t)dgt <M.
b Jo

So, there exists € € [0, a] such that

1 b
= E/o f(t)dgt.

17



Definition 2.3.1. Improper g-integrals on the interval [0, +o0) are explained as, if g €

(0,1),

k

/Oof(t)dqt:: i /q f(t)dyt, (2.21)
0 k=—ov(q

k+1

and if g > 1,

k+1

/Nf(t)dt:: y /q orm (2.22)
0 q qk q

k=—c0

Theorem 2.3.2 (FT of g-calculus [2]). If g(x) is the g-derivative of G(x) and is

continuous at zero, then for any interval [a,b] with

b
/ g(x)dyx = G(a) — G(b), 0<a<b<oo, (2.23)

Proof. Assume that G(x) is defined by the Jackson formula with the addition of a

constant number,

(o)

G(x) = (1-q)x ) ¢"g(¢"x) + G(0).
k=0

From the definition, we have

0 o
/ g(x)dyx:=(1-q)a 'y ¢"s(q"a).
a k=0

Then we can obtain that

18



and

/abg () dgx = /Obg () dgx = /O g4 dyx = G(b) ~ Gla).

Finally, if shifting a with ¢**! (or ¢*) and b with ¢* (or ¢**'), where ¢ € (0,1) (or
g < 1), and using definition (2.21), we can obtain that (2.23) is right for b = oo as well

as if lim;_,. G(x) exists. O

Integration by parts in g-calculus is stated as

p §
/(x f(x)dgg(x) =f(l3)g([3)—f(0°)g(0€)—/ 8(gx)dyf(x). (2.24)

o

It also satisfied if f = oo. This can be applied to procure the g-Taylor formula with the

Cauchy remainder term as follows.

Theorem 2.3.3. [2] Suppose Dc]; f(t) is continuous at t = 0 an take j < n+ 1. Then,

we can obtain g-Taylor’s is stated as

— - k (b_a)](; 1 b n+1 _ n
f(b)—k;)(@qf) (a) 7 +[n]q!/a DI f(t) (b — qt)idygt. (2.25)

Proof. Using Theorem 2.3.2, we have

b b
16)=1(0) = | Drwd =~ [ s db-0)

19



which proves (2.25) for n = 0. Let (2.25) hold for n — 1:

n—1 (b_a)k 1 b . .
f(b)zkg(@gf) (a) [k]q!u[n_l]q!/a DI F (1) (b —qt)i " dt.

From (2.7) and applying (2.24), we get

b 1 [P
/ DI () (b —qt)t gt = ——— / Dy f(t)dy(b—1)g
4 [n]q a

—_g)" b
b-a, 1 / (b—qt)a Dy f(t)dyt.
qJa

BRGNP

So, the above proof can be completed by mathematical induction. [

2.4 q-Appell Polynomials
Appell polynomials are defined in 1880 by Paul Appell [19]. Al-Salam, in 1967,
presented the g-Appell polynomials A, ,(x)"_, and investigated their specialities

in [20]. In [20], A, 4(x) is the g-Appell if it holds the below equation for n =0, 1,...:

Dy(Ang(x)) = [n]g'An—1,4(x).

Definition 2.4.1 (¢-Appell Polynomials [21]). The g-Appell polynomials are defined
equivalently by

Aq(z:1) = Ag(t)eq(12) = ZAn,q(Z)__a (2.26)

where the function A,(¢) is

(o)
Ay,

Ayt) == Z

n—0 [”]q

1 A0) A0, Angi=Aug(0),

and



In addition, particular cases of g-Appell polynomials are the g-Bernoulli polynomials,
the g-Euler polynomials, and the g-Genocchi polynomials. These are the g-analogues
of the original Bernoulli, Euler and Genocchi polynimials which are particular cases

of Appell polynomials. The g-Bernoulli polynomials are given by

t - "
B t) i = ——— 1) = B — H<2m
@)= ) = R Bl b <2m
and the g-Bernoulli numbers b, , are given by
t - t"
- Y, —
eq(t)—1 n;) "
The g-Euler polynomials are defined by
By(et) = 2 ey(i) = Y Bag) i <m
=——e = —
qg\Zs eq(t) +1 q\Z = n,qg\< ! 5
and the g-Euler numbers E, , are given by
tey(t) > "
———e,(zt)=) E —.
es2t) + 150 ,EO nal@)
The g-Genocchi polynomials are defined by
Gylet) = —eqle) = ¥ CugD, il <
g —e = J—
q\%, eq(t) 1 q\Z = n,qg\< I’L!, )

and the g-Genocchi numbers g, , are given by

2t - t"
eg(t) 1 ‘E)g’”’ﬂ

In the following, there are two major characterizations about g-Appell polynomials

which were studied in [22] and [20].
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Theorem 2.4.1. [20,22] Let {P,(x)} be a polynomial set. Then P,(x) is g-Appell iff

there is a set of constants aj, with ay # 0 and from 2.11 we can obtain that

n n
Px) =Y X~ (2.27)
k=0 k

where for some fixed number a

ar=(1—a)l —agq)..(1—ag"™ 1), ap = 1.

Theorem 2.4.2. [22] Let {P,(x)} be a polynomial set. Then P,(x) is g-Appell iff there

is a formal power series

Al = i B ) (2.28)
k=0 [ ]q!
such that
o Pt
A(t)eQ(XI) - ];) [n]q' ’
where

In addition, we can say that ay, is same as these two theorems and the condition ag # 0.

Theorem 2.4.3. [20,23] Let {P,(x)} be a polynomial set. Then P,(x) is g-Appell iff

there is a function B(x;q) = B(x) of bounded variation on (0,0) so that,

1) ay= [y x"dP(x) exists Vn=0,1,2...

2) ap#0
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3) Baa) = [+ 1)dB(x).

The determining function is then

Following [23], in the above theorem the set of (x+ t)fl is replaceable by any g-Appell
set.
2.5 The Big q-Appell Polynomials

Definition 2.5.1. [24] The big g-Appell polynomials are defined by,

xt > t"
AGE; | — ) = P, g(x ,
05y (%) = o
where
(o] n xn
E,x) =Y ¢®) o (O<lai<tixeC)
n=0 q-
and
=) tn
Ay(t) = Angt-
q( ) n;() q[n]q!

In addition we can show that

%A&awz%%Ham.

where [n], is known from (2.7).
Theorem 2.5.1. [24] The folowing statements are all equivalent to each other:

1) {Pnq(x)}nen is a big g-Appell sequence
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2) The sequence {P, 4(x)}nen has an explicit form given by

Pog@ =Y | | ariga® (f)k.

q
q

3) The big q-Appell sequence {P, 4(x)},cn has a generating function

where
0 ik
Aq(t) = l;)akgm

Theorem 2.5.2 ( [24]). A recurrence relation satisfied by the big g-Appell polynomials

Is

n—1|n

X
(5 + O('O,q> Pn,q (q—x) + Z an—k,qu,q (qx) = Pn—H,q (-x> (229)
k=0
k

q
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Chapter 3

HAHN CALCULUS

3.1 Definition of Hahn Difference Operator

This section is generally composed of reference [1]. In this section the Hahn difference
operator and the related calculus is developed. In general the Hahn difference operator
D, » composes both A, and D),. In other words, if you take limit ® 1 0 from Hahn
difference operator you can obtain Jackson’s g-difference operator and if we take limit

g T 1 from Hahn difference operator we can obtain the Forward difference operator.

In [25,26] D, « is given as

flgt+0)—f()

Dy (t) = (g—1)i+o

, t # 0, (3.1

where g € [0, 1] and ® > 0 are constants and @p := %. We can say that D, ,, f(09) =
f'(0), provided that derivative exists. So, (¢, ®)-derivative of f is D, f. As a result,
if D, of(0o) exists, we can say f is (¢,®)-differentiable. Assume that f is (g,®)-

differentiable on the interval I and D,  f = O then f is a constant function. Then
fO)=fldt+okly)t€l, t#w keN,

and therefore if we take limit, we can obtain that f(t) = f(®) V¢t €1, t# mp.

The operator (2.1) is the first difference operator which Hahn’s operator generalizes.
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The second one is the Ay, f(¢), which is:

fle+0) = £t

Aof(t) = (t+w)—t

(3.2)

The Norlund sum is the associated integral of the forward difference operator, and it is

given as
L 1) Aet — —m; [+ kw), (3.3)
and
/a ’ F() At = (oki;[ fla+ ko) — f(b+ ko), (3.4)

provided that the series is convergent.

Algebraic Properties of Hahn calculus [1]: Algebraic properties are like those of
differentiation (linear, product, quotient) but here they are properties of

q, w-differentiation.

Let f,g be functions and they are g, w-differentiable at r € I, then we have linearity,

product rule, quotient rule as follows:

Dyo(f+8)(t) = Dyof(t) + Dyws(t), (3.5)
Dyo(fe)(t) = Dyof(t)g(t) + flgt + ©) Dy wg(t), (3.6)

f . Q)@f(t)g(t) f(t )@,cog(t)
o (g) == g(1)g(qt + ) o 7

where g(1)g(qt + ®) are not zero.

Example 3.1.1. The g-derivative of " is shown in example (2.0.1) and the forward
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difference operator is applied to " as follows:

N £ WU = 7 W
Apt" =) Lot =2 () (3.8)

k=1

Here we consider (g, ®)-derivatives. If f(z) = (o + )",

Dy oot +B)" = ocnf(oc(qt + o)+ B) (o 4 B)" T+ (3.9)
k=0
If /() = (o +P)™"
Dyo(ot +B)" = —ocZ (gt +©)+B) K (o +B)* (3.10)

where o, 3 € R and (ou(gt + ®) + B) (az + B) #O.

If we apply oo = 1 and B = O then if we take ¢, w-derivative, we can obtain that

n__ n n—1
(gt +0)" (1) —Z(qt+w)kt”_k_1, (3.11)

D, o) = =
qvm() (q—1>t+(0 =

—-n __ —n n—1
<qtz;0j)l)t+(;) =Y (gt +o)—n+k . (3.12)
k=0

Dyo(t) " =

3.2 Theorems of Hahn Difference Operator
Theorem 3.2.1 (Leibniz Formula For Hahn difference operator [1]). Let the functions
f,g be given with existent q,®-derivatives. Then the following equality is provided.

n

D190 = 3 () (DN 0l Dhelt), 1 F00 G

k=0

Proof. Assume that t # ®y. We proceed by using induction. For the case n = 1, the

result is already known as the original product rule (3.6).
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Now, assume that (3.13) hold for n = m. We need to prove (3.13) forn =m+1 and

get r,k € N and from [k+ 1], — [k], = ¢*, we get

(@S,t)lf)(qkf+m[k]q> = (Q)q@Dfme)(qkt—I—m[k]q)
(D NG+ 0k + 1)) — (D% of) (¢t + 0[k]4)
B (¢! +olk+1],—( kt+w[k] )
(D% of) (gt + ©)g* + 0fk]y) — (D5 of) (gt + ©[k]y)
(q"(t(q—l)+w>

=q* Dy.0(Dy of) (q"t+ w[klg).

Now assume that n = m + 1, and using the product rule from algebraic properties in

3.2, we obtain,

DS (£8)(1) = Dyo( Dy (£2) (1))
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From the known g-binomial coefficients property,

Dyt (fg i( > (DS ) (g" + o[kl Dh w8 (1)

+ D (F(0))g(e) + £(q" 1 + @lm+ 1)) D' g (1)
(

5> (k’fl)q Dy’ 1)(d'1+ 0lkly) Df w8 (1)

k=1

£
.

<’Z qq"+ (k'f 1)q> (D" 1)t + o[kl g) D 8 (1)
(

)
L")

k=1

DI 1) (gt + olkly) DE og(1)
q

+1 /o
=% (") ot ol P sl
q

3

>~

=1

Finally, (3.13) is right forn =m+ 1 and all n € N. ]

Remark 3.2.1. If t = mg at (3.13), the original Leibniz rule is recovered. But if ® 1 0,

we derive the g-Leibniz formula [5, 28, 29]

n

00 =3 (}) @D, o G

k=0

Letting g | 1, then we obtain

n

Al (fg)(t Z ( ) (ASK ) (1 + kw) Ak g(r) (3.15)

which is the classical discrete Leibniz formula, [27].

Theorem 3.2.2. [Chain Rule [1]] Assume that g : [ — R is (q,®)-differentiable and

f:R— R is ausual C' function. There is some ¢ € (gt + ®,1) with

Dyo(fog)(t) = f(g(c) Dy wg(t). (3.16)
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Proof. Assume that r # mg, we get

f(g(gt +®)) — f(g(r))
(g—1t+o

Dyo(fog)t) = , glgt+o) #g(t).

If g(qt + ©) = g(t)

I
e

@q,w(fog) (t) = fDq@g(t)

Hence,

flglat+ @) — f(s(1))  8(qt+©)—g(1)
g(qt +©) —g(1) (g— i+

Dyo(fog)t) = (3.17)

and there exists T between the point g(¢) and the point g(gf + ®) via

o flelgt+ o) — f(g(t))
fm)= glgt+w)—g(r) (3.18)

Finally, from (3.17) and (3.18) we can derive (3.16). In addition (3.16) is true in the

classical sense for t = (. L]

3.3 Jackson-Norlund Integration
This section is composed of reference [1]. In this section, the right inverse of the

operator 9, o, is studied. It is called the g, w-integral operator, and it is denoted by

/a ’ f(t)dgwt.

Definition 3.3.1 (Definition of Jackson-Norlund Integration). Let f: 1 — R be a
function. The (g, ®)-integral of this function between two numbers ¢ and b is given

by (3.19) which uses (3.20):

b b c
/ f(t)dq@t::/ f(t)dq,wt—/ f(t)dgwt, c,bel, (3.19)

)
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/ ) f()dy ot = (x(1—q) — o) i ¢ f(x¢" +olkl,), xcl. (3.20)
k=0

o

ensured that the latter series converges. If f is (¢, ®)-integrable over any interval [c, ]

in 7, then f is (¢, ®)-integrable on /. In addition the Jackson-Norlund sum is the sum

to the right hand side of (3.19).

In (3.20) and (3.19), while if ® 1 0 we can obtain (2.20) and (2.19), when ¢ 17 1 we can

obtain (3.4).

Lemma 3.3.1. Let f,g: I — R be function that are (q,®)-integrable and let o, 3,y be

three points in I. Then:

i) Jo f(Odgot =0, [5 f(0)dgot == [} F(6)dqot.
i) [P r@)dyor = [T F(t)dgot + fyﬁ F(t)dywt.

i) [Pkf(0) +1g(0)dgot = k [P £(1)dgot +1 [P (t)dy.ot.

Theorem 3.3.1 (FT of Hahn calculus [1]). For any function f : I — R that is continuous
at @, if
X
F(x):= [ f(t)dgot, xel,

Mo
then we can say that F is also continuous at 0. Additionally, D, F (x) exists at every
point in I and

DygoF (x) = f(x),

otherwise, ¥V a,b € 1,

b
/ Dy oF (Ve = F(b) - f(a).
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Proof. If x=s and s € I, from (3.20) we can say that

F(s) = (s(1 )~ ) Y. ¢ F(s¢* + 0lt],).
k=0

is continuous at . Let us prove that D, o F (x) exists V x € I. If x = my, then continuity

of f(x) is enough,

F(wo) —F(s)

Dy oF (0p) = lim —————
sk (@) v%g; 030—S
_s—>u)o Wy —s

=lim(1—g¢ kr(sg*+
YT(DO sz)qf q" + o[k,

—q) Y. 4 f(w0)

k=0

= f(ao).

Otherwise for x # ®y, let us prove that

/x Dyof(t)dg ot = f(x)— f(0p), forallxel

From (3.20), the continuity of f(x) for x € I, using(2.1) and [n+ 1], = 1]‘1

(o)

/m " Dyof (gt = (x(1 —q)— ) ¥ ¢ (D) flxd + 0[K],)

k=0

e S ralk 1) — S+ o)
=00 =0) Y d e ok 1], )
(

= S g+ olk+1],) — f(xg" + olk],)
1)

=(1-9)-0) g ol

:_i<f ¢+ ok+1],) — fxd" + ok
k=0

— tim (/o + 0l,) ~ Flag + olk+ 11q>>

=f(x) - f(w),
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which completes the proof. ]

Lemma 3.3.2 (g, w-integration by parts [1]). Suppose f,g: I — R are continuous at
the point ®y. From lemma (3.3.1) and the algebraic property of the product rule, we

can obtain

/f q(Dg )q,(»t_ |b /@qcof qt+m) q,0f-

Theorem 3.3.2 (Mean Value Theorem [7]). Let g : I — X be continuous and then we

can write that

b(r)
[ ¢(V)dy0t = (b(t) —1)g(0)

3.4 Hahn Exponential Functions
Firstly, the g-analogue, g-shift factorial, g-binomial coefficients, g-factorial are known
from other sections. Now several definitions and formulas from [11] will be gives

which are used in this section .

Let us give the polynomial bases {(x)y o }»>0 and {[x]} , }»>0. They can be shown in

the following way,
]2 o = x(qx+ 0)(¢*x+ [2]40)...(¢" 'x+ [n— 1],0), (3.21)

(X)Z,m =x-(x— ) (x—[2],0) (x—[3]40)...(x — [n — 1],0). (3.22)

These bases satisfy the following:
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If we apply Hahn difference operator to polynomial bases, we can obtain:
@q,m(x)z,m = [n]q('x>2;017

@q,w[x]z,m = [n]4[qx+ (D]Z,_ml

where g € (0,1) and ® >0 and n > 1.

(3.23)

(3.24)

Theorem 3.4.1. [11] Assume that ey (x) is the (q,®)-exponential function and q €

(0,1) satisfy the following first order initial value problem

@q,(of(x) = f()C),

£(0)=1.

what denoted by

vl (C9g)
=0

Lo [0 g o)

Proof. We know that D ()7 o, = [n]4(x)2 ), so

q,» >

(9= L o

|(1—¢g)x—o|<1.

(3.25)

(3.26)

(3.27)

is a solution of the problem given by (3.25) and (3.26). To show that it is unique, let

us write (3.25) in the form

_ flgr+ o) - fx)
(g—1x+o

Y

to obtain that
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Applying this identity m times, we derive

x) = f(¢" x+[m ] ! .
f(x)=f(q +| +1]qw)kl})l+qk((q—l)x+®)

Then allow m — oo, to obtain

a 1

() =1 )H) 1+4((g—1)x+ o)

Apply the initial condition (3.26), and from g¢-shift factorial definition, we get
A k
floo) =]+ 0g") = (—o;9). (3.29)
k=0
From (3.28) and (3.29), we have
fo=[Trer) ___ (Coe
k:01+qk[(q_1)x+m)] ((I_Q)X_O);Q)w

As a result, the initial value problem (3.25) and (3.26) has one solution. O

Theorem 3.4.2. [11] The (q,®)-exponential function EJ(x) and q € (0,1) satisfying

the following first order initial value problem

Dyof (x) = flgx+ o), (3.30)

fO)=1. (33D)

is devoted by

. o<1 (3.32)
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Proof. The function

[X]Z@
[n]4! '

fo =Y
n=0
is a solution of the problem given by (3.30) and (3.31). From (3.30), we get

flgx+w)— f(x)
(g—t+o

Dyof(x) = = f(gx+ ®),

SO we can obtain that

fx)=flgx+w)-(1-[(g— 1)t +w)).

Applying this identity m times, we derive
m

Fx) = flg" " x+m+ 1]q0))ln)(l —4"[(g— Dx+a)).

Then allow m — oo, to obtain

f(x) = floo) [T(1 = ¢"[(g— Dx+w]).

Apply the initial condition, and from the g-shift factorial definition, we get

1 1
F®0) = T o(1— 0gk) — (@)’

From (3.33) and (3.34); we get

) = ﬁ 11— (g—Dx+0)] (g Dt @3q)e

=0 (1—ogk) (;q)c

(3.33)

(3.34)

As a result, the first initial value problem (3.30) and (3.31) has one solution which

(3.32) exists.
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Remark 3.4.1. [11] It is obvious that,

) =eg(x),  dx)=¢, )= (1+w)s,

ES) =ev), E\)=¢, EPx)=(1-0)3.

Then,

3.5 Hahn Trigonometric Functions

The Hahn trigonometric functions are defined by

Wiz __ ,—Oiz Wiz _ —0iz
sin®z = Y9 ~% Sin®z = I
q 2i ’ g 2i ’
Wiz —miz Wiz —miz
cos®z =4 Tl 4 Cos? = TR
q 2 ) q 2 '
and
Singz = sin?'z, Cosyz = cos?z.
q q
Then we have
Wiz [ Miz —iz [ —Wiz
cos?zCos®z = S R
q qc 4 ’
Wiz Wiz —IZ—0iz _
$in® z8in®z = — 4 B e 2
q q 4
Hence, we get
cosy 2Cos, 'z +sing zSingz = 1, where sin®z+cos’z = 1.

Applying the g, w-derivative to g-trigonometric functions, we get

L () [ () O, (V)
Dy,0 81N, 2 = €08, 2, Dy,0Singz = Cos, z,
©, __ ()] (O N O)
Dyw €08,z = —S8ing gz, DyCosyz = —Sing qz.
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3.6 (q,®)-Appell Polynomials
This section is composed of reference [11]. Sequences of (g, ®)-Appell polynomials

are defined by the relation

Dy wPa(x) = [1]Po1(x),n > 1. (3.35)

For example, if we take g, @-derivative of {(x)7 ,}»>0 then we get

Dy () o = [M]g(*)i (3.36)

So, we can say that {(x)g o }n>0 is (¢, ®)-Appell polynomial sequence.

We show some characterizations of (¢, ®)-Appell polynomials, equivalent to the

(3.35), first of all the generating function defined by

A(t)e(xt) = Z Pn(X)E’
n=0 :
where A(t) = Yoo axt*, ag # 0.
Firstly from (x)7 , basis, we can defined that;
e (x) =) S = ( 9) (1 —g)x—o|<1. (3.37)

= My (1 -g)x—0):9)

Theorem 3.6.1. [11] Let {P,(.;®;q)n>0} be a sequence of polynomials and then the

following representations are equivalent.

i) Pn(-;w; Q)nEO} is (q,O))—Appell.
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ii) The polynomial sequence {P,(.;®;q)n>0} is defined by

n n

Pasiq) =Y, | | ans(®)so (3.38)
k=0 k

q

where {ay }i>0 is a sequence of numbers independent of n with ay # 0.
iii) {Py(.;0;q)}n>1 is defined by
(3.39)

where the function A(t) is

o £k
l‘) = k_zoakm.

Proof. Show that (i)=>(ii). Assume that (i) is true. Since the sequence {(x)j o }n>0 is

(g, ®)-Appell, therefore:

Py(x;05q) = Zm Xk o0 Yun # 0 (3.40)

where v, x based on both n and k potentially. Using the operator 9, ¢ on this equation,

we have

k+1],
Py (x;0;9) = ZYnk+1 ]] )k : (3.41)

If changing n with n+ 1 in (3.41), we get

—

k+1]4

n
P(x;0:9) = Y Varran1 ()5 0 (3.42)
After that, comparing (3.42) with (3.40) gives,
n+1
Vil k+1 = lc—k—lyn’k' (3.43)
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Iterating (3.43) k times and taking Y, o = a,—x, we have

n n
Yk = Yn—k,0 = Ap—k- (3.44)
k k
q q
(ii)=-(iii). Start from (3.38), multiply both sides by - W } ;. some overn=0,1,...,, use

the Cauchy product of the series to obtain .

(ii1) =(1) Start from (3.39) and apply D, , on the both sides:

n [}

> t"+1 -
)3 Db 0,q) 7oy =1A(1) = Y Palx0,q) Z Faci (6 0,q) £y

From (3.35), we obtain that,

Dy, oPn(x;0,q9) = [n]gPu-1(x;0,9), n>1.

Theorem 3.6.2. [11] Suppose that {P,(-;®;q)}n>1 is a (q,®)-Appell sequence of

polynomials, and let the function A from (3.39) satisfy
R S
=Y o, (3.45)
k=0
and assume that the sequence {By }r>o is given by

Y limpBrt = (1+0r) Y limoyt® <= By = oy + 00y 1, (3.46)
k=0 k=0

where k > 0 and o._1 = 0. Then, the (q,®)-Appell sequence has following properties.

i) A recurrence relation:

]!
— !

Pri1(x0,q) = (x+Bog" — 0[n]y) P (x;0,q) + i Brg" i P,k (x;0,q)

k=0
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ii) A difference equation:

n
Z kalqnik@;w‘f’ (x+Bog" ' —0fn—1]4Dy0 — [nlg | Pa(x;0,9) =0
k=2

Proof. (i) Taking g-derivative of (3.39), it becomes in (2.4) and (3.37) that

0 n—1
DyA(1)eg” (x )(xqt)—}—rA( )eg (xt) = Z[n]an(x; m,q)#. (3.47)
n=0 q-
Then, we get
DA) N np (o v L Y RS
(1+or) Alqr) nzzloq Py(x;0,9) ! + ZoxPn X0,q) ! (3.48)
Z 11 (550, 9) + O[] Pa(x; 0, )] —— (3.49)
n—0 [n]4!
Using (3.45),(3.46) in (3.49) yields
oo ) M ) n
tk nPn NOA + Pn >, T 1 0
L:ZoBk ] LZO‘] TRl R SR
= L (B (60.0) + 0laly Py 0. 0)] o (3.50)

- nlg!

Comparing the coefficients of t o in (3.50) then applying the Cauchy product, the

result follows.
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(ii) Putting n — 1 instead of 7 in the recurrence relation, and multiplying it by [n],, leads

to

1

[]gPu(x;©,q) = (x+Bog"" — 0[n—1]y)[n]gPr1(x;®,q)

- —k_lnlg!
+kzzl3k—lqn k[n_i]q’Pn—k(X’O\)?q)
By considering the equality @é‘ oPn(x;0,9) = %Pn_k(x; ®,q), we achieve the
) q.
stated result. [
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Chapter 4

(p,q)-CALCULUS

4.1 The (p, q)-derivative
Let p and g be two arbitrary numbers in R and C. Then the (p, g)-derivative is defined

by

flqt) = f(pt)

s @.1)

Dip,q)f (1) =

and (D, 5 f) (0) = f'(0) provided that the function f is differentiable at 0. The (p, ¢)-
derivative is investigated in [3] starting from the g-derivative which was given by (2.1).

Let me introduce some notation from [30]. (p,q)-bracket or twin basic number and

given by
. .n—1 n—2 n—-3 2, n—2 n—1 __ 0 4.2
], =p" P g+ "+ pd g =], <g<p. (42
By some simple algebra from (4.2), we obtain that
plal,,=p"+p" g+ 0"+ + 0" +pg
g, =ar" '+ 0" +P" 7+ +pd" T+
P [n]pg —q [n]pg = pn - qn7
Finally, we have
pn _ qn
n], = . 4.3)
P4 p_g
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From [31], if we take limit of (4.3) when p — 1 we can obtain g-analogue of n. So

tim 1), =l g1

The (p,q)-powers are defined by [3,31]:

(tob), =t —b)(pt— gb)...(pt" 1 —gb" ).

The (p, q)-factorial is defined by:

[n]p,q! - szl [k]p,q, n>l1, and [O]p,q! =1.

The (p, g)-binomial coefficient is,

n [n],.4!
P:q

= , 0<k<n.

k =K, 4 K] 4!
Psq
In [31], it is obvious that.
n n
k n—k
P:q P:q

n+1 n n
— pk +qn—k
k k k—1
P4 L dpag L dpa
k| " x| "
=q +p"
k k—1
L dpag L dpa

where k = {0,1,2,3,...,n}.
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Proposition 4.1.1. [3, 32] The product rules of (p,q)-derivative is as follows

Dpq(f(t)g(t)) = f(pt)Dpq8(t) +8(qt) Dpqf () (4.8)

=8(pt)Dpqf (t) + f(qt) Dp48(t). 4.9)

Proposition 4.1.2. [32] The Quotient Rule for (p,q)-derivatives:

)

) (f(t)) _ g(qt)@pgf(t) _f<qt)@p,qg(t) _ 8(pt)@p7qf(t) _f(pt)@p,qg(t)
i g(pt)g(qt) g(pt)g(qr)

provided g(pt) # 0 and g(qt) # 0.

Theorem 4.1.1 (Chain Rule for (p,q)-derivative [33]). Firstly, there doesn’t exist a
general chain rule for (p,q)-derivatives. However if the differentiation of a function of
the form g (z(t)) and z(t) is equals to at®, a,b are constants then chain rule exists for

(p,q)-derivatives.

Consider,

a b.b\ _ Clb b
Dpq18(2(1)] = Dpg [g(atb)} _ 8lap tpi_zt( 1°q”)

_ glapt®) —g(at®q”) ap®t® —atq
apbt® —atbgb  pt—qt
g(zp”) — g(zq") z(pt) —z(qr)
pl—zg® T pt—qt

b

Then we can obtain that

Dyg (1)) = (Dyp ) (2(1))-Dpg2(0).
Theorem 4.1.2. [32] Assume that f is an nth-order (p,q)-differentiable function.
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Then,

- =» n () p(r ok nk
. q e g\ f(tp*q" ")

P4

Proof. From (4.1) and (4.10), forn =1

Dipa (1) = f(cé;)__;)(tpt) - (;(_q;))t T (5?2), = [Upq!lat, pt: f]

and forn =2,

(D8 1) flar) — (D of ) f(pr)

(q—p)t
f(@*)—f(pat)  fpgt)—f(p*t)
_ a—p)t (g—p)t
(p—aq)t
—(p1q) flg’) __Slpa) f(p*)
(@ —pH)(a—p)tPq (q—p)**pg  (¢*—p*)(q—p)t*p
= [2]pq'la’t, pat. pt; £,
and continuing to n, we obtain
(D8 f) () = [nlpg'ld"t, " " pt,.oqp™ e, pt: f], (4.11)
and as known from [32],
oty ooty = [0 t1, -y tn 15
[to,ﬁ,...,tn;.]:[l’z’ oty = [tost1, s ta—t ]'
]

Theorem 4.1.3 ((p,q) Leibniz Rule [32]). Let functions f,g : D, 4 — C be nth-order

(p,q)-differentiable. After that,

n

o (Fo) () =Y D)D) g (412)

m=0 m
P
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Proof. Assume that functions f,g : D,, — C are nth-order (p,q)-differentiable.
Therefore, (fg)(¢) is nth-order (p, q)-differentiable and
n

Dn () (1) =nlpg! Y [d"t.q" " pt, g " " e g PR ]

m=0

n—m.__m n—m—1_ k+1

x [q" " p"t,q P gp" e pt gl (4.13)

Proof of this theorem is clear with lemma and (4.11). L]

Corollary 4.1.1. [32] Assume that the function f be (p,q)-differentiable function of

order n and p,q € C such that 0 < |q| < |p| £ 1. Then

=Y g" " p("2) (gt — pry"(DE ) (”’qm ) . (4.14)

P9

- Y[m]%,é! N (pg)~"2") (pg)~ (%) . ’ (4.15)

and for n = 2 we have

PQ(@pﬂf)(ﬁ) —PQ(@pyqf)(ﬁ)
=D
(P0)*[(Dp.af) (i) = (Dp.af) (7))

e
(p—q)t

= p*q*(D; .f) <%) :

P’q

(D2 11)(0) =
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Finally,

t
(D} 1)) = T (D))
for all n,
n n B m+1 tpnfm
=3 " @ g (250,
m=0 m q
P
So, the proof is completed. [

4.2 The (p, q)-integral

In [3], the inverse of (p,q)-derivative is defined and they called it the (p, ¢)-integral.

Let g be any function and b € R. The (p,q)-integral of g(z) on [0,5] is descibed as

follows [3, 30]

b oo pk pk p
[ evdai=tia-n ¥ Zie(Fo). 1Pt @ao
0 =04 q q
b 0 k k
q q q
g(t)dp gt :=t(p—q —g(—b), =< 1. 4.17)
/0 () pq ( )kz%)pk_,_] pk'H |P‘

For the (p, ¢)-integral on a semi-infinite interval [0; 40| we define

” =g q" q
/0 g(t)dy gt == (p—q)k;wlwg (W) ,  0< . <1, (4.18)
” > ph P q
/O g(t)dy gt == (q—p)k;w ety (F) 5> 1. (4.19)
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From (4.17),

k qk

[} o k
q q
/ 8(1)Dp g f(t)dp gt = (p—q)t Z 18 k+1x)@(P7Q)f< k+lt)
0 =0 P p V4
+

k
o ok ko f(et) = f(deet)
q q pk pk+1
=(p—q)r ), k+1g( k+1t) x
—o P p (P —q) it
t ;

[ edpar(t - gog (pZ—f_lr) (f (j;’,ir) 7 (j%t)) @)

Theorem 4.2.1 (The FT of (p,q)-calculus [3]). If G(t) continuous at t = 0 and its

(p,q)-derivative is of g, after that

b
/ g(1)dy gt = G(b) —G(a), for 0<a<b<eo. 4.21)

Proof. The function G(t) is given by

G(t)=t(p—q) iopi—i]g (pff:] a) +G(0).

We can say that from (4.20),

/0 " 4(t)dy gt = Gla) — G(0),
and
b
/0 8(1)dp gt = G(b) — G(0),

and thence we get

b b a
/a g(t)dp,qt :/0 g(t)dp,qt_/o g(t)dp,qt = G(b) — G(a).

49



Exchanging a with 1% and b with Z—Z and considering (4.20), we can see that (4.21)

will also be right for b = co. 0

Remark 4.2.1. [3] If we take p =1 in (4.19), we can obtain the well known Jackson

Integral (2.19).

Corollary 4.2.1. [3] If f(x) is a function whose ordinary derivative exists in a

neighbourhood of t = 0 and it is continuous at the point t = 0, then we obtain that

b
/ Dpof (t)dpqt = f(b)— f(a). (4.22)

Proof. By L’Hospital’s rule,

=0 (p—q)t

So defining (D, ,f)(0) = f'(0) ensures thatD, ,f(¢) is continuous at # = 0 and then

(4.22) follows. [

From [3], an important property of the g-integral and (p, g)-integral, compared with
ordinary integration, is that behaviour of a function at = 0 can affect its integral on
any interval. This can be seen from the definition and convergence conditions for the

derinite (p,q)-integral.
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For any functions f(7) and g(z) whose ordinary derivatives exist close to t = 0, the
product rule (4.9) combined with the FTC gives

B p
F(B)g(B) — fla)g(a) = /a F(pt)- Dy gf (t)dp gt + /a 8(qt) - Dpqf(t)dp gt

or the following rule for (p,g)-integration by parts:

B p
[ 001Dt = FBB) ~ F(oe(e) ~ | (ar) Dy (.
o o

Note that b = o is possible.

4.3 (p,q)-Exponential Functions

The (p, q)-exponential functions from [31] are
e = = , .

P Sl 2 (pa)i (o)
-

Epq(z) =) =) _ 7", (4.24)

and we can say that,

4.4 (p,q)-Trigonometric Functions

The (p,q)-Trigonometric Functions can be defined by

iz _ iz iz _ iz

Sin. o — €pg " €pq Sin. - — Epy—Epg
p,gl = T o p,gl = T

iz —iz iz —iz

oS 7 — €rq T €pg Cos.  — EpgtEpg
gl = 5 PaT T 5

and
Sinp gz =sin 1 z, Cosp gz =cos 1 Z.
2 pq

Then we have

174 iz —iz—iz
epqbpqtepqbpg +2

4 )

€08p,q2C08p,g7 =
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iz iz —izp—iz __
epabpgtepqbpg —2

sin, ,zSing, 42 = —

4
Hence, we get
. . ) 2
€08y 42C0sp gz +siny, ,z8ing, 4z =1, where sin“z-+cos“z=1.
Applying the p, g-derivative to p,g-trigonometric functions,
Dp.g8inp g2 = €OSp 42, Dy gSinp gz = Cosp 42,
Dy 4 €OSp g2 = —SiNp 4Gz, Dy 4Cosp gz = —Sinp 4qz.

4.5 The (p, q)-Appell Polynomials

This section is generally composed of reference [31].In this section we introduce
sequences of (p,q)-Appell polynomials. We study some of their algebraic properties,
recurrence relations, difference equations, etc. for such polynomials. In addition, if
we replace p with 1, we can create the g-Appell polynomial sequences which were
mentioned in chapter 2. If we replace p,q with 1, we gain some other Appell

polynomial sequences which were studied in [35].

Definition 4.5.1. [31] Let a sequence of polynomials is {P,(t)},% and if
Dy gPoi1(t) = [n+ 1], 4Pu(pt), n>0. (4.25)

it is called a (p, q)-Appell sequence.

For example from [3], the sequence (x © a)? 4 defined by (4.4). It can be checked that

this satisfies the condition for being (p, q)-Appell.
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Now, we prove the several characterization of (p,q)-Appell polynomial sequences.

Theorem 4.5.1. [31] For any sequence of polynomials {Py(t)}; the following

conditions are equivalent:

i) The sequence {Py(t)}>q is (p,q)-Appell.

ii) There is a sequence of numbers (ay)i>0, with ag # 0, all independent of n, such

that

P4
iii) The polynomial sequence is given by a generating function

=] tn

A(t)ep g(xt) = Z P, (x)

n=0 [n]I%CI ! ’

where

iv) There is a sequence of numbers (ay)x>0, with ap # 0, all independent of n, such

= (")
Xx) = P~ 79k b X"
Pﬂ( ) (kgo [k]p,q! DPa‘I)

Proof. Firstly, we will show that (i) = (ii) . Since {P,(t)};_, is a sequences of

that

polynomials and

Px)=Y anip( )k =123 (4.26)
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where a, ; may depend on n and a,  # 0. We will show that a,, ; is independent of 7.

Applying (4.1) to (4.26), we can obtain that,

n—1|n el
Pii(x)=Y aupC 2 V) 1k n=1,23.. @27
k=0
k

p.q

where Q)pyqxo = 0. Changing n with n+ 1 and Replacing x with xp~! in (4.27) we get

n n n—k
P} =Y an U2k =123, (4.28)
k=0 k
Pq

Comparing (4.26) and (4.28), we get a, 1 = a, always, whence the a,; do not

depend on n.

Now, we will show that (if) = (iii). From (ii), we get

iPn(x) r ': i i " p(ngk)akxn_ a |
n—0 P k=0 | 1 [n]p.q
pq
- n (2)
_ a 4 p )
& "[n]p,q!> ([n],,,q# " )
= A(1)ep,q(xt).
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Using D, , on this, we obtain that

t}’l
tA(t)epq(pxt) = Z Dy 4Pul )—'
n=0 [n]P UM
1(px) :
nZ pafn- [”]p,q!

Comparing t" coefficients V n , we get (i). Then (ii) <= (iv) is clearly from Dk g"=0

for k>n. ]

Theorem 4.5.2 (Recurrence relations [31]). Let {P,(t)},>0 be a (p,q)-Appell

sequence of polynomials with generating function

Ax,r) = A(t)epg(xt) = Y Pu(x) - (4.29)
n=0 [n]Pa‘I'
Then there is a recurrence relation, which is linear and homogeneous, given by
X 1 & |7 14—
P, (”—) LV T b g R (), @30)
q ["]p,q k=0 | 1
P9
where
D, Alt = t"
 Doadlt) _ Oty (4.31)

Alpt) 2 gt

Proof. At the beginning, substituting x by xp in condition (3) and applying (4.1) (with
respect to ¢ ) to both sides of condition (3) then multiplying by z, firstly we get

l’l— e t}'l

t@lgl;A(px )=t Z pq px Z W
P n=0 p-q-:
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Secondly we have
(DA (pr.) = 1 [ D AA(Dep (1)
—1 |A(pt) D} AA DA
t |A(pt)Dp.gAA(t)ep.q(pxt) + epq(pgxt) DpgAlt)

=tpxA(pt)ep q(pgxt) +1t Dy, ,A(t)ep 4(pgxt)

{r}
Dp.gAl?)
= A(pt)epq(pgxt) (fpx + fﬁ)
DI A(r)
= Agx, pt) | tpx+1—21—5 ).
A(pt)
These 2 equations imply that,
= " DYYA(1)
[1] p.gPu(px) ——— = A(qx, pt) | tpx+1 =212
ngb pan [n]p.q! A(pr)
= P"P(gx) Oy ——— +1tpx
> n k "
=Y 1) oy p" " Py_i(gx) ,
P4
0 thrl
N n n —k tn
n=0 | k=0 | 1. ] p.q!
pg
oo lJl
+x ) [nlpgp"Pa-1(gx) x
n=0 [n]p.q!
Comparing t" coefficients, we gain
n n .
[1]pgPa(px) =} ep" " Pai(qx) + [1]p.g 0" Pu1(qx),
k=0 k
P4
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After that, shifting x replaced by xp gives the result. [

Theorem 4.5.3 ((p, q)-difference for Appell Polynomials [31]). Let {P,(t)},>0 be a
sequence of (p,q)-Appell polynomials with generating function which in (4.27).

Consider (4.31), we get
@,ﬁ’;A

Z O (4.32)

p,q-

which is valid near t = 0. Then the following (p,q)-difference equation is satisfied:

S Ok gk no—1_—1 px
Z L, Dy y+P"q XLy, Dy g | Balx) =[] pghPn| — | =0,

k=0 [k]P,q! q

where the operator L, is defined by

Lgf(x):f(pkx), keZ.

Proof. The P, satisty the recursion formula, it is shown in (4.30). Since the sequence

{Pu(t) }n>0 is (p,q)-Appell, we get
k [n]p.q! k
Dy, gPu(x) = [n——k]pq!P"_k(p x), 0<k<n.

or in other words,
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Then from (4.30),

pr\y_ LWt K, )
i <;) " x Tl Ly Dy gPal) £ P P (3)
P9 k=0 | pq

P4
LR S Sy n —1
= il & gt 77 a0

n
_ O ke Ak
= (,;0 [k]pq!Lp DY +p'q 'xL; @p,q> Py(x)

4.6 The Big (p,q)-Appell Polynomials
This section is composed of reference [24]. In this section, we will present the big
(p,q)- Appell polynomials, prove an equivalence theorem fulfilled by them, and obtain

recurrence relations fulfilled by them.

Definition 4.6.1. From [24], the big (p,q)-Appell Polynomials are defined by the

following relation, similar to (4.5) but with E), ;, instead of ¢, 4:

Ay E (’“) i Py o) —
J— — P, X —_—,
p.9=pq q for? n,p.q [n]p#!

where

and
t}’l

Apg=) anpg—i.
o= L,

The big (p,q)-Appell polynomials satisfy the following relation:

).
(@p7an7p7q) (x) = qquninvq(qx)?
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where [n], 4 is defined in (4.2).

In addition, replacing p with 1 in definition of the big (p,q)-Appell polynomials, we

can obtain the big g-Appell polynomials defined by

xt ad t"
aEn (7) = L Py

where

Theorem 4.6.1. [24] The following statements are all equivalent to one another:

1) {Pnpq(x)}nen is a big (p,q)-Appell sequence.

2) The sequence {P, p ,(x)}neN has an explicit form given by

o n

Papa@ = Y| | anppga® (i‘)k.

n=0 k 4q
p.q

3) The sequence {P, p ,(x)},eN has a generating function,

xt - t"
ApgEpg <_> =Y Pupg®)
lp.q!

4q n=0

where
Apqlt) = Z ak,p-,qW-
k=0

p.g-
Proof. Fistly, we will prove that (1) = (2). Assuming, condition (1) is correct, we

get

n
Popqg(®) =Y ankpqglll 4 (4.33)
k=0
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where,

=39 (59)- () =S5

and the (p, q)-derivative of [x] f, 4 18 given by,

(3)
@m[x];q = [k]p,q%x
)4

2

k—1

Applying the (p,q)-derivative on both sides of (4.33) and using (4.6), we have
e

[n] _
PP, 1,p,q(qx) = Zankmq (k)x 1[k]p,q7
p 2

i.e.
NG
Pu-1,p4(qx) = Zankpq (k)x (k] p.q-
P 9 k= p\?
Shifting k with k+ 1 in the above equation, we get
q n—1 q szrl
Pi-1,p.q(gx) = W Z "HJH-IJWW)‘]([I“F 1pg
P9 k=0 p 2
Now replacing n by n+ 1 and gx by x, we get
k+1 k
q n q( 2 ) X
) ( ) T 1 An+1,k+1,p, (_) [k+ 1] )
Psq [n+1]P7611;) P‘Zp(k-zu) p pq

Then comparing (4.33) and the above equation, we obtain

P nlpg

Ankpg = 77  9n—1k—1,
n.k.p.q 7 Kpg n— Pq-

If we iterate the above equation k times, we have

(k
p 2) n
an7k7p7q = qk al’l—k707p,q‘
k
psq

60



Setting a,_k0,p.g = An—k,p,q and adding a,  , 4 to (4.33), we create that

k

n |n X k
P pg(x) = Z an—k,p,qq(z) (_) .
k=0 k

p-q

Secondly, we will prove (2) = (3). Assume that

Summing both sides of the above equation from n = 0 to n = c and multiplying by

tl‘l .
——, We can obtain
[n]p.q!

P _— (2) — -
p.q
[e] [ee] k
— An,p.q ) (X ntk
n=0k=0 [n]p.q' k] p.q! q

which, in statement (3) and the series expression for the big (p,q)-exponential

function, yields
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Thirdly, I will prove (3) = (1) . Let, {P, . 4(x) }nen has a generating function and it
is

Apa0Eps (5) = L Pupald

q

Then take the (p, q)-derivative by x on both sides of the above equation, we can obtain

that
t}’l
Apq(t)Dp g (Ep, ( ) Z g (Prp.q(%)) ],
n= pPq-
and
t
Q)pqux (EP7CI) = QEP#]()“)'
So,
oo t}’l
Apq(t)—Epq(xt) Z Dp,g.x (Pup.g(x)) ],
n=0 pPq-
Replacing the left side by the corresponding series, we have
LY Bunal@) oy = X Dy ()
- Pupyg qx = 2 P (Pupqx)) 05—
qn:() [”]p,q! n=0 [”]pﬂ!

in other words,

oo

l Z [”]p,q (Pn—lvp,q(qx)) T

q,=0 [”]p,q- n=0 [”]IMI! '

Then, comparing ol } ; coefficients, we can obtain that

[n]p,
Dp.gx (Pmp,q(x)) = qpqpnfl,p,q(qx)

Finally, it is shown that {P, , ,(x) },en be a big (p,q)-Appell sequence. O
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Theorem 4.6.2. [24] The big (p,q)-Appell polynomials satisfy

xp" q n—1|n

TPn,p,q ;x + Pop.g(qx)00,p.q + Z Ok, p.gPh,p.q(4X) = Prt1,p,q(%).
k=0

k

P4
(4.34)

Proof. Differentiating both sides of the generating function of the big (p,q)-Appell

polynomials with respect to ¢, we get

Dy g (A S
Apqa(pt) Dy gs (EM <E)) +Ap 4 (t)Ep 4 (xt) P,Ziqé,;z(f)) :nZOPn-i-l,Pﬂ(x)Wa

and

Then inserting D, 4, (t") = t"~'[n], , and after some series manipulations
) 7t ) — = ) x ‘
pat\ Zra\ g P

Now, inserting the above equation in (4.35), we can obtain

X Dpgr (Apg(t) & t"
aAP,q(Pf)Ep,q(xr)+Ap7q(f)Ep,q(xr) pat (Apa(t) = ZPn+l,p7q(x)n—' (4.36)
n=0

Apq(t) [n]p.q!

Now, if we define

Dpgi (Apg(t)) & "
=Y o
) r;) n,p,q

Apqlt [n]pq!

63



then from (4.36) we can obtain that

ko "

Xy g\ ()" ¢ = "
- Z Pup.g (—x) + Z Pk,p,q(qx)— Z Cnpgr = Pnﬂ,p,q(x)—
p k=0 =0 [n

[”]pg! [k]nq! n=0 [”]nq! n ]p,q-

Now, applying the Cauchy product,

X e q (pt)n 0 n n tn e t}’l
- Z Pn7p7q (;x) | + Z Z kal’#](qx)an—k,lﬁqm = Z P’H‘]»Pﬂ(x)—

L/ ["]p,q- n=0k=0 | . P4 n=0 [”]p,q!.
g

Equating the coefficients of Wn, in the above equation, we get
pq:

xpﬂ q n n
—Pipg (—x) + Z Pip.g(q%) 0 p.g = Pat1,p,q(%),
q p k=0
k
P.q

TPmp,q (I_?x) + Pupg(qx)00,p.g + Z Pip.q(qX)On—k pg = Ps1,p,q(x)
k=0
k

pq
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Chapter 5

(p,q)-HAHN CALCULUS

This Chapter is very important because it constitutes the purpose of this thesis. In
this chapter, the (p,q)-Hahn difference operator is introduced and its properties are
investigated. First, we give some definitions and formulas.

5.1 Definition of (p, q)-Hahn Difference Operator

In general the (p,q)-Hahn difference operator D(p.q),0 unifies Hahn operator and

(p,q)-derivative. The definition is

flgt+o)— f(pt) 5.1)

Q)(p,q),wf<t) = ((]—p)f—l-(x) >

where p,q € [0, 1] and ©>0.

The particular cases os the operator (5.1) can be found by taking the limits as.

fqt+o)— f(pt)

;ién% @@,q),mf(t):;i% R (5:2)
g—>0 g—>0

: o flggto)—fp)  fE+e)—f7)
L};ni@(p,q)@f(f)— 315‘11 G piio — Gro)i =Aof(t),  (5.3)
p— p—

. o flgete)—f(pt)  flg)—f(pt)
f}%@(”"’)’mﬂl)_f}% (g—pr+o — (¢—p) =Draft), - GH
. o flggte)—f(pt)  flgt+o)—f(1)

lim Dy of ) = im = e ~ = Diro  Dwe/() G

5.2 Differentiation
Theorem 5.2.1. Let f be a function. f is (p,q),®-differentiable if D), 4 of(00) exists

where 0y = —5.
q
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Proof. Assume that @y = 7. Taking limit of D), ;o f (o) gives
q

;1_1;1} Q)(p,q),mf(('oO) = fl(m())'
p—1
0—0

So, since Dy, 4 o f (o) exists. then f is (p,q), w-differentiable.

Theorem 5.2.2. Assume that Q)( )0 f(t) =0,V t €R, then fis constant.

Proof. From (3.1) we can write that,
Da o F(pt) = f(Gpt+o)—f(pt)
§iol WP = (%—l)pt-l-w

It is obvious that

@(p,q)@f(t) = @%,(of(pt)'

On the other hand,
O\ F(r o) f(pr)

Q“W“”(E): (F-Dito

It’s easy to see that

Dipgpof (5) =Dy of (1)

So, from this notation D, ;) »f(;) =0V € R means that f(t+0) = f(t).

t+,then f(t) = f(ha(t)) V¢ €R. So

SIS

Let hq(t) =
P
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If f(t) = f(hqn) for all n, then in the limit n — oo we have %" — ®p and therefore
p

f(t) = f(wp). So, f is constant. O

5.3 Algebraic Properties of (p, q)-Hahn Difference Operator

Assume that f, g be p, g, w-differentiable on the interval 7, then

Linearity:

Dip.g)olf +8) ) = Dip.g).0f (1) + Dy g).08(t)-

Product Rule:

f(qt +®)g(qt +w) — f(pt)g(pt)
(g—pit+o

f(qt +o)g(gt + ) — f(qt +®)g(pt) + f(qt +w)g(pt) — f(pt)g(pt)

@(p,q),co(fg) (t) =

(g—p)t+o

ﬂw+@k@Hm%£@m+gWMﬂw+®—ﬂmﬂ
(g—pt+o (g—p)t+o

= f(qt + (’)) @(p,q),mg(t) +g(pt)@(p,q),mf(t)

and if we add +g(qf + ®) f(pt)

f(qt +®)g(qt + ) — f(pt)g(pt)
(g—pit+o

f(qt +o)g(qt +w) —g(qt + ) f(pt) + g(qt +©) f(pt) — f(pt)g(pt)

Q)(p,q),m(fg) (t) =

(g—p)t+o

= g(ql + 0)) D(p,q),u)f(t) +f(pt)@(p,q),0)g(t)
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Quotient Rule:

flgt+w)  f(pt)

f
Dip.g)o (—) (t) = slarva) _s(pr) _i(z;)
(

g q—p)t
flgt+o)g(pt)—g(pt) f(pt)+g(pt) f(pt)—f(pt)g(qt+®)
g(qt+w)g(pt)
(g—pit+o
s (o) NS — o)
g(qt +®)g(pt)

g(pt) @(p,q),wf(t) - f(pt)@(p,q),cog(t)

- )

g(qt +w)g(pt)

flat+o)  fpt)

f) ggito) _ g(pi)
D L) () = L5 S

(
flgt+w)g(pt)—g(gt+w) f(gt+0)+g(gt+0) f(gtH+o)— f (pt)g(gt+®)
g(gt+w)g(pt)

(g—plt+o

(gt + ) MG — Flan + ) SO

g(qt +w)g(pt)
g(qt + 0*)) Q)(p,q),mf(l) - f(qt + 0)) Q)(p,q),cog(t)
g(qr +w)g(pt) '
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Chapter 6

CONCLUSIONS

In conclusion, I will summarize the general results of g-calculus, Hahn calculus,
(p,q)-calculus and (p,q), ®-calculus with table 1. Then we will give the relationship
between g-Appell, Hahn Appell polynomials, (p,q)-Appell polynomials, the big
g-Appell polynomials, the big (p,q)-Appell with table 2. In table 3, we will compare
g-calculus, Hahn calculus, (p,q)-calculus and (p,q),®-calculus with classical
derivative. Finally, in table 4 we will show same properties of g-calculus, Hahn

calculus, (p,q)-calculus and (p, ), ®w-calculus.
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Table 1: The general results of g-calculus, Hahn calculus, (p,q)-calculus and (p,q),o -calculus.

Hahn Difference

Operator
/ N\
a—0 q—1
g
Jackson’s q difference
Operator
Fundamental
Theorem

Jackson’s g-Integral }

Jackson’s Norlund
Integration

(p.q) Hahn Difference
Operator

p:q—1 w—0

. « Y

Forward Difference

Operator (p,q) derivative

Norlund Sum




Table 2: The general results of q-Appell, Hahn Appell, (p,q)-Appell, the big q-Appell, the big (p,q)-Appell polynimials.

The big (p.q)- Appell

Polynomials

Hahn Appell (p.q)- Appell
Polynomials Polynomials

a—0 p—1 p—1 p—1
q-Euler
Polynomials
v

q-Appell The big q- Appell

q-Bernoulli
Polynomials _ Polvnomials — e~ E — Polynomials

q-Genocchi
Polynomials

_ |

€pq > Epqg —»

q—1

D
Euler l
Polynomials
Bernoulli _ Appell Polynomials
.
Genocchi
Polynomials
e




Table 3: The general results of q-calculus, Hahn calculus, (p,q)-calculus and (p,q),w-calculus with classical derivative.

q-derivative

™~

q—1
q

(q,m)-derivative

/ dx

—1
(p,q)-derivative I o
P

w—0
/
sq_’l

(PsC_I)-Hahn
derivative

=
=
=




Table 4: Properties of g-calculus, Hahn calculus, (p,q)-calculus and (p,q),0-calculus.

q — Calculus

Hahn Calculus

(p,q) — Calculus

(p,q) — Hahn Calculus

Linearity Do (f +9)(t) = Daf(t) + Dag(t) Do (f + 9)(0) = Dguf (V) Dyq (f +9)(t) = Dpaf (t) + Dpag(t) Dpgo (f +9)(t) = Dpquf(t)
+ Dgug(t) + Dpgeg(t)
Product Rule Dg (fg)(t) = f(£)Dag (1) Dgo (fg)(0) = g(O)Dguf (1) Dpq (fg)(1) = g(qt)Dpof (£) Dip.gye (F9)(E) = g@E)Dip.q)ef (1)
+9(qt)Daf (1) +f(qt + @)Dg0g(t) + F(P)Dpag(t) +f(qt + @)Dp.g)09(t)
Quetient Rule » (Ho b (b by (L) Doare (L)@
_ 9(@®)D,yf(t) — f(t)Dqg(t) _ 9(®)Dg0f (1) — f(t)Dg09(t) _ 9Dy (1) — f(POIDpa9(1) | _ 9D pg)ef (£) — F(P)D(p )09 (t)
9(qt)g(t) g(t)g(qt + o) 9(qt)g(pt) 9(qt +@)g(pt)
B'Lnomigl [ ] [n]q [ ] _ [n]q [n] _ [n]p’ql
Coefficient k [n—klg! [k]g! kg [n— k] ! [k],! klpg [n—=klpq! [klpg!
q-bmomlal coefficients q-binomial coefficients P, g-binomial coefficients
Exponential, eq(x), Eq(x) eg(x), EF(x) epq(X) . Epq(x)
TJ'igOl.lOIIletl'iC Sing, sing, cosg, Cosy Sinq. smq ,cosqa’, Cosqm Sing q, Siny g, €osy g, Cosy g
Function
Int l X X X
e [ Fodg [ 1©dgut | Ferda
li] g
. =(x(1—q)
—x(1-q) ) q*f(xq") > - (x(p - q))Z ka( )
= ~) ) g f(xg* +olk],)
k=0
Fundamental Fundamental theorem for Fundamental theorem for Fundamental theorem for
Theorem q — Calculus Hahn Calculus (p.q) — Calculus
Leibniz Leibniz Formula for Leibniz Formula for Leibniz Formula for
Formula q — Calculus Hahn Calculus (p.q) — Calculus
Chain Rule Chain rule for Chain rule for Chain rule for
q — Calculus Hahn Calculus (p.q) — Calculus
Appell q — Appell polynomial q, e — Appell polynomial (p,q) — Appell polynomial
Polynomial The big q — Appell polynomial The big (p, q)
— Appell polynomial
Analogue of n q" -1 g —1 Y ——
e =7 e =g e = g
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