
3D Scene Recognition From a Single Image 

 
 
 
 
 
 

 

 

 

Altaf Khan 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 
 
 
 
 
 
 
 
 
 
 

 

 

Doctor of Philosophy 

in  

Computer Engineering 
 
 
 
 
 
 
 
 

Eastern Mediterranean University  
February 2021  

Gazimağusa, North Cyprus



  ii 
 

Approval of the Institute of Graduate Studies and Research 

Prof. Dr. Ali Hakan Ulusoy 

Director 

 

Prof. Dr. Hadi Işık Aybay 

 Chair, Department of Computer 

Engineering 

 

Prof. Dr. Hasan Demirel 

Co-Supervisor 

 Assoc. Prof. Dr. Alexander Chefranov 

Supervisor 

  

  

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor 

of Philosophy in Computer Engineering. 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer 

Engineering. 

Examining Committee 

1. Prof. Dr. Abdullah Aydın Alatan  

2. Prof. Dr. Gözde Bozdağı Akar  

3. Prof. Dr. Hasan Demirel  

4. Prof. Dr. Marifi Güler  

5. Assoc. Prof. Dr. Adnan Acan  

6. Assoc. Prof. Dr. Alexander Chefranov  

7. Assoc. Prof. Dr. Önsen Toygar  

 



   

iii 
 

ABSTRACT 

Human eyes capture the world around us and effortlessly derive an impression of scene 

depth from a single image. However, developing an artificial system that can identify 

the impression of the 3D scene with the same performance and robustness as humans, 

still is a challenge for researchers from such fields as physiology, computer science, 

and artificial intelligence. The 3D scene recognition from a single image is an 

important problem for many applications of computer vision such as autonomous 

vehicle control, scene understanding, and 3D TV. The contributions of the thesis are 

explored in three different ways. First, the segmentation-based feature extraction 

method is introduced to classify the relatively clear geometry structure images, in 

which the image features are extracted by exploiting predefined templates, each 

associated with an individual classifier. Each of the individual classifiers learns a 

discriminative model and their outcome are fused together using sum-rule for 

recognizing the 3D scene geometry of an input image. It achieves 86.25% recognition 

accuracy on ‘stage dataset 1’, which is higher than the state-of-the-art methods. 

In the second contribution, a new method of 3D scene recognition-based on the fusion 

of deep convolutional neural network (CNN) features and texture gradient features is 

presented. Meanwhile, as the 3D scene geometry dataset is not publically given, thus, 

a medium scale, ‘stage dataset 2’, is introduced. Experimental results exhibit that the 

proposed method reaches 86.29% recognition accuracy, which achieves higher 

accuracy and faster than the baseline methods. 



   

iv 
 

Finally, in the third contribution, the handcrafted features are integrated with multi-

layer features at different intermediate blocks of CNN, and each block is connected 

with an individual classifier and then scores of these classifiers are combined while 

using sum and product-rule to recognize the scene geometry type. The introduced 

approach is validated on two benchmark datasets and it achieves 95.17% and 97.68% 

recognition accuracy on ‘stage 2 dataset’ and ‘15-scene’, which is superior to the state-

of-the-art methods. 

Keywords: CNN, Ensemble of classifiers, Handcrafted feature, Multi-layer features, 

Predefined templates, Stages, 3D scene recognition 

  



   

v 
 

ÖZ 

İnsan gözleri çevremizdeki dünyayı yakalar ve tek bir görüntüden zahmetsizce sahne 

derinliği izlenimi çıkarır. Bununla birlikte, 3B sahnenin izlenimini insanlarla aynı 

performans ve sağlamlıkla tanımlayabilen yapay bir sistem geliştirmek, fizyoloji, 

bilgisayar bilimi ve yapay zeka gibi alanlardan araştırmacılar için hala bir zorluktur. 

Tek bir görüntüden 3B sahne tanıma, otonom araç kontrolü, sahne anlama ve 3B TV 

gibi birçok bilgisayar görüşü uygulaması için önemli bir sorundur. Tezin katkıları üç 

farklı şekilde incelenmiştir. İlk olarak, her biri ayrı bir sınıflandırıcıyla 

ilişkilendirilmiş önceden tanımlanmış şablonlardan yararlanılarak görüntü 

özniteliklerinin çıkarıldığı nispeten net geometri yapı görüntülerini sınıflandırmak için 

segmentasyon tabanlı öznitelik çıkarma yöntemi tanıtılmıştır. Her bir sınıflandırıcı, 

ayırt edici bir modeli öğrenir ve sonuçları, bir giriş görüntüsünün 3B sahne 

geometrisini tanımak için toplama kuralı kullanılarak bir araya getirilir. Son teknoloji 

yöntemlerden daha yüksek olan "aşama veri kümesi 1" de %86.25 tanınma 

doğruluğuna ulaşır. 

İkinci katkıda, derin evrişimli sinir ağı (CNN) özelliklerinin ve doku gradyan 

özelliklerinin birleşimine dayalı yeni bir 3B sahne tanıma yöntemi sunulmuştur. Bu 

arada, 3B sahne geometrisi veri kümesi halka açık olarak verilmediğinden, orta ölçekli 

bir "aşama veri kümesi 2" tanıtıldı. Deneysel sonuçlar, önerilen yöntemin, temel 

yöntemlerden daha yüksek doğruluk ve daha hızlı olan %86.29 tanıma doğruluğuna 

ulaştığını göstermektedir. 

Son olarak, üçüncü katkı olarak, el yapımı özellikler, farklı CNN ara bloklarında çok 



   

vi 
 

katmanlı özniteliklerle entegre edilir ve her blok ayrı bir sınıflandırıcıyla birleştirilir 

ve ardından bu sınıflandırıcıların puanları, toplam ve çarpım kuralı kullanılarak 

birleştirilir. Sunulan yaklaşım, iki kıyaslama veri kümesinde doğrulanmıştır ve son 

teknoloji yöntemlerden daha üstün olan "aşama veri kümesi 2" ve "15 sahnesi" veri 

kümesinde %95.17 ve  %97.68 tanıma doğruluğuna ulaşır. 

Anahtar Kelimeler: CNN, Grup sınıflandırıcılar, El işi öznitelikleri, Çok katmanlı 

öznitelikler, Önceden tanımlanmış şablonlar, Sahneler, 3B sahne tanıma 

  



   

vii 
 

DEDICATION 

 

 

 

 

To My Family 

  



   

viii 
 

ACKNOWLEDGEMENT 

First and foremost I would like to show my high gratitude and appreciation to my 

supervisor, Assoc. Prof. Dr. ALEXANDER CHEFRANOV and my Co-supervisor 

Prof. Dr. HASAN DEMIREL for their endless effort and great support along with 

valuable information that had benefit value on understanding this interesting topic with 

more details during their supervision of my thesis. I must show my sincere respect to 

their passion that they had for image processing & computer vision, as without their 

keen support, valuable comments and suggestions, I would not have been able to 

complete this work. 

I would like to thankful to my follow-up jury committee members Assoc. Prof. Dr. 

ADNAN ACAN and Assoc. Prof. Dr. ÖNSEN TOYGAR for their constructive 

advices and suggestions. 

I am truly thankful to my parents, brothers and my sisters for their love, trust, and 

support in all means. I dedicate this study to my family who was and will always be 

my idol.  

Finally, I would like to thank all my friends for supporting and encouraging me 

during my thesis study. 

  



   

ix 
 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................. iii 

ÖZ..…….. ................................................................................................................... v 

DEDICATION ......................................................................................................... vii 

ACKNOWLEDGEMENT ...................................................................................... viii 

LIST OF TABLES .................................................................................................. xiv 

LIST OF FIGURES ................................................................................................ xvi 

LIST OF SYMBOLS AND ABBREVIATIONS ................................................... xix 

1 INTRODUCTION .................................................................................................. 1 

1.1 Contributions ..................................................................................................... 7 

1.2 Outline ............................................................................................................... 8 

2 BACKGROUND, RELATED WORK, AND PROBLEM DEFINITION .......... 10 

2.1 Notions and Techniques of 3D Scene Recognition ......................................... 10 

2.1.1 3D Scene Recognition ............................................................................. 13 

2.1.2 Inputs of 3D Scene Recognition .............................................................. 18 

2.1.3 Pre-Processing Steps of Feature Extraction ............................................. 19 

2.1.4 Feature Extraction .................................................................................... 22 

2.1.4.1 Parameters of Weibull Distribution ............................................ 24 

2.1.4.2 Color Features ............................................................................. 27 

2.1.4.3 Histogram of Oriented Gradients Feature ................................... 27 

2.1.4.4 Local Binary Pattern and Entropy Value Features ...................... 30 

2.1.5 Training of Machine Learning Algorithm ............................................... 32 

2.1.5.1 Support Vector Machine ............................................................. 33 

2.1.5.2 Extreme Learning Machine ......................................................... 33 



   

x 
 

2.1.5.3 Ensembles of Classifiers ............................................................. 36 

2.1.6 Testing Images and Classification ........................................................... 37 

2.1.7 Performance Metrics ................................................................................ 38 

2.2 Convolutional Neural Networks and Scene Recognition ................................ 40 

2.2.1 Convolutional Neural Networks ............................................................ 40 

2.2.1.1 Convolutional Layers ................................................................ 41 

2.2.1.2 Pooling Layers .......................................................................... 42 

2.2.1.3 Fully Connected (FC) Layer ..................................................... 43 

2.2.1.4 Training and Validation of a CNN Architecture ...................... 44 

2.2.2 GoogLeNet Architecture ....................................................................... 46 

2.2.3 ResNet Architecture .............................................................................. 49 

2.3 Scene Recognition Methods and Results ........................................................ 51 

2.4 Problem Definition .......................................................................................... 58 

3 3D SCENE RECOGNITION USING SEGMENTATION-BASED FEATURE 

EXTRACTION METHOD ...................................................................................... 60 

3.1 Design of Segmentation-Based Feature Extraction Method ........................... 61 

3.1.1 Template-Based Segmentation and Feature Extraction Procedures  ....... 61 

3.1.1.1 Template-Based Segmentation Procedure Description ............... 63 

3.1.1.2 Segmentation-based Features Extraction Procedure ................... 65 

3.1.2 Classifiers Training and Testing for 3D Scene Recognition ................... 67 

3.1.3 Fusion of the Ensemble of Classifiers and Performance Measures ......... 68 

3.2 Implementation, Testing of Segmentation-based Feature Extraction Method, 

and Experiments on Stage and 15-Scene Datasets ................................................ 68 

3.2.1 Implementation Details ............................................................................ 69 

3.2.2 Testing of Segmentation-based Feature Extraction Method ................... 70 



   

xi 
 

3.2.3 Dataset 1: Stage Dataset .......................................................................... 74 

3.2.3.1 Experiments and Results for Stage Dataset ................................ 74 

3.2.3.2 Comparison With State-of-the-Art Methods ............................... 78 

3.2.4 Dataset 2: 15-Scene Images Dataset ........................................................ 83 

3.2.4.1 Experiments and Results for 15-Scene Images Dataset .............. 84 

3.2.4.2 Comparison with State-of-the-Art Methods for 15-Scenes Images 

Dataset ..................................................................................................... 85 

3.3 Summary ......................................................................................................... 87 

4 STAGE DATASET AND 3D SCENE RECOGNITION METHOD USING 

TEXTURE GRADIENT AND DEEP FEATURES FUSION ................................ 89 

4.1 Design of 3D Scene Recognition Method using Texture Gradient Features and 

Deep Feature Fusion .............................................................................................. 90 

4.2 Implementation, Testing of TGF-DeepFF Method, and Experiments on Stage 

Dataset 2 ................................................................................................................ 94 

4.2.1 Description of Dataset ............................................................................. 95 

4.2.2 Implementation Detail ............................................................................. 95 

4.2.3 Testing of Texture Gradient and Deep Features Fusion based Method .. 96 

4.2.4 Experimental Results ............................................................................... 98 

4.3 Summary ....................................................................................................... 101 

5 3D SCENE RECOGNITION MODEL USING HANDCRAFTED FEATURES 

AND MULTI-LAYER CNN FEATURES FUSION ............................................ 103 

5.1 Design of HF-HSF Model of 3D Scene Recognition .................................... 104 

5.1.1 Design of Model-HSF for 3D Scene Recognition ................................. 106 

5.1.2 Design of Model-HFF for 3D Scene Recognition ................................. 109 



   

xii 
 

5.2 Implementation, Testing of HF-MSF Model, and Results on 15-Scene and Stage 

Dataset 2 .............................................................................................................. 111 

5.2.1 Multi-Layer CNN Feature Extraction Setting ....................................... 111 

5.2.2 Classifiers Setting .................................................................................. 115 

5.2.3 Testing of the HF-MSF Model .............................................................. 116 

5.3 Experiments and Results ............................................................................... 118 

5.3.1 Performance of HF-MSF model on 15-Scene Dataset .......................... 118 

5.3.2 Performance of HF-MSF Model on Stage Dataset 2 ............................. 124 

5.3.3 Comparison with State-of-the-Art Methods .......................................... 131 

5.4 Summary ....................................................................................................... 135 

6 CONCLUSION AND FUTURE WORK ........................................................... 138 

6.1 Conclusion ..................................................................................................... 138 

6.2 Future work ................................................................................................... 142 

REFERENCES ...................................................................................................... 143 

APPENDICES ....................................................................................................... 162 

Appendix A: Predefined Template Structure ...................................................... 163 

Appendix B: Basic Description of Parameters of Weibull Distribution ............. 167 

Appendix C: Relation between Parameter of Weibull Distribution and Histogram.. 

 ............................................................................................................................. 169 

Appendix D: Analysis of Change of Parameters of Weibull Distribution with 

Respect to Change of Image Depth ..................................................................... 170 

Appendix E: 1D and 2D Kernel Using First Derivative ..................................... 172 

Appendix F: Matlab Code of Template-based Segmentation ............................. 173 

Appendix G: Matlab Code of Feature Combination from Segments .................. 174 

Appendix H: Matlab Code of Feature Extraction ............................................... 175 



   

xiii 
 

Appendix I: Matlab Code of Classifier Training and Testing ............................. 176 

Appendix J: Matlab Code of Predict Score Fusion ............................................. 177 

Appendix K: Matlab code of Performance Metric Calculation .......................... 178 

Appendix L: Matlab code of Pre-Trained Deep CNN ........................................ 179 

Appendix M: Matlab code of CNN-SVM and ELM ........................................... 180 

Appendix N: Matlab Code of Features Fusion Method ...................................... 181 

Appendix O: Matlab Code of Weibull Feature Extraction .................................. 182 

Appendix P: Matlab Code of Multi-layer Feature Extraction ............................. 183 

Appendix Q: Matlab Code of Classifiers Training, Testing, and Score-Level Fusion

 ............................................................................................................................. 184 

Appendix R: Matlab Code of Score-level Fusion Strategies .............................. 185 

Appendix S: Raw Data of Different Experiments Generated by Matlab ............ 187 

Appendix T: Predicting Accuracy Using Sum-rule ............................................ 193 

Appendix U: Predicting Accuracy Using CNN Models on Stage Dataset 1 ....... 194 

Appendix V: Predicting Accuracy Using Sum-rule on 15 Scene Dataset .......... 195 

Appendix W: Experiment on Stage Dataset 2 ..................................................... 196 

Appendix X: Experiment on 15-Scene Image Dataset: Influence of Handcrafted 

Features at Each Intermediate Layers ................................................................. 199 

Appendix Y: Experiment on Stage Dataset 2: Influence of Handcrafted Features at 

Each Intermediate Layers .................................................................................... 203 

 

  



   

xiv 
 

  LIST OF TABLES 

Table 2.1: Summary of previous work ....................................................................... 52 

Table 2.2: Summary of the datasets used in related methods .................................... 53 

Table 3.1: Accuracy of stage recognition for dataset 1 using different features ........ 76 

Table 3.2: Accuracy of stage recognition for dataset 1 using segmentation-based 

feature extraction method ........................................................................................... 78 

Table 3.3: The Acc, Pr, Re, F-Score, training + testing time of state-of-the-art and 

segmentation-based feature extraction method are given for stage dataset 1 ............ 80 

Table 3.4: The performance of stage recognition for dataset 1. The Acc, avg. precision 

(Pr), avg. recall (Re), avg. F-score, training and testing time (sec), fusion time (sec) of 

classifiers are given .................................................................................................... 82 

Table 3.5: The performance of the segmentation-based feature extraction method for 

15-scene dataset. Templates (a)-(h) are followed by figure 2.8. The majority vote, max 

and sum rules are used to evaluate the segmentation-based feature extraction 

method. ....................................................................................................................... 85 

Table 3.6: Comparison with proposed and state-of-the-art methods in terms of 

recognition rate while using 15-scene image dataset ................................................. 86 

Table 4.1: Experimental results on ‘stage dataset 2’ using feature fusion method .. 100 

Table 5.1: 15-scene images dataset: experiments on ‘with’ and ‘without handcrafted’ 

features fusion by using SVM and ELM classifiers................................................. 121 

Table 5.2: Experimental results of the Model-HSF on 15-scene images dataset ..... 123 

Table 5.3: Feature-level fusion: result of Model-HFF for 15-scene images dataset 123 

Table 5.4: Stage image dataset 2. Experiments of ‘with’ and ‘without handcrafted’ 

features fusion by using SVM and ELM classifiers................................................. 127 



   

xv 
 

Table 5.5: ‘Stage dataset 2’: performance of Model-HSF using ResNet and 

GoogLeNet architecture. .......................................................................................... 130 

Table 5.6: Model HFF results using ‘stage dataset 2’ .............................................. 131 

Table 5.7: The comparison of HF-MSF model with state-of-the-art methods for 15-

scene dataset ............................................................................................................. 132 

Table 5.8: Comparison of HF-MSF model with state-of-the-art methods for the ‘stage 

dataset 2’ .................................................................................................................. 134 

Table 6.1: Recommendations of introduced methods .............................................. 142 

 

 



   

xvi 
 

LIST OF FIGURES 

Figure 1.1: A simple image of indoor scene, having ceiling, side walls, and road. (a) 

Human view and understand the scene types and its parts. (b) A robot view the same 

image and does he understand the scene and its subparts? .......................................... 2 

Figure 1.2: (a) an outdoor sky-background-ground image and (b) an indoor image 

corner of the room. There 3D scene structure are shown in top right corner, 3D scene 

geometry figures are given at (Nedovic et al., 2010) ................................................... 3 

Figure 1.3: An artificial intelligence system that can recognize the 3D scene geometry 

of an image. Black arrows are indicating training images. Dotted arrows indicate data 

flow of test image (s).................................................................................................... 4 

Figure 1.4: Two different images of sky-ground class. same region of the two images 

generates different content information of the same class ........................................... 5 

Figure 2.1: An outdoor scene ..................................................................................... 11 

Figure 2.2: Gray-scale digital image of size 5×5 pixels. The positive x-axis increases 

downward and the positive y-axis increases to the right direction. M and N are row 

and column number of the image ............................................................................... 12 

Figure 2.3: Color Image. (a) is RGB image of size 5×5 pixels. The color cube model 

in (b) represents different color components in the range of [0, 1]............................ 13 

Figure 2.4: Examples of scene recognition ................................................................ 14 

Figure 2.5: Flowchart of 3D scene recognition .......................................................... 17 

Figure 2.6: Generation of 2D image from 3D world ................................................. 19 

Figure 2.7: Pre-processing steps of feature extraction ............................................... 20 

Figure 2.8: Examples of predefined templates (a) to (h) ........................................... 21 

file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572469
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472


   

xvii 
 

Figure 2.9: An example of active contours algorithm’s segmentation using predefined 

template  ..................................................................................................................... 22 

Figure 2.10: Convolutional operation on a 2D image of size 5x5 pixels ................... 23 

Figure 2.11: General representation of feature extraction and concatenation ........... 24 

Figure 2.12: An example of a single neuron. ............................................................. 34 

Figure 2.13: General model of ensemble of classifiers .............................................. 36 

Figure 2.14: A standard deep CNN architecture ........................................................ 41 

Figure 2.15: Example of convolutional operation ..................................................... 42 

Figure 2.16: Example of max-pooling using 2×2 conv. filter .................................... 43 

Figure 2.17: Basic structure of fully connected layer ................................................ 44 

Figure 2.18: GoogLeNet architecture ........................................................................ 47 

Figure 2.19: ResNet architecture................................................................................ 50 

Figure 3.1: 3D scene recognition using segmentation-based features extraction. The 

predefined templates are following by Figure 2.8 (a)-(h)). Seg is segmentation, Xt is 

feature vector for each template t. CLt is 𝑡th classifier. Sum-rule indicates summation 

of score of different classifiers ................................................................................... 63 

Figure 3.2: Example of template-based segmentation. Each image with size H×W is 

given to the Algorithm 3.2, with template, TS, which returns same size of segmented 

image as shown in the last column ............................................................................. 65 

Figure 3.3: Procedure of feature extraction from each template-based segments and 

feature combination. ................................................................................................... 67 

 Figure 3.4: Association of predefined templates with stages. Stage models (3D scene) 

are defined in (Khan et al., 2020) ............................................................................... 70 

Figure 3.5: The confusion matrix of segmentation-based feature extraction method for 

dataset 1. Raw dataset is shown in Appendix T ......................................................... 77 

file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572469
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572469
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472


   

xviii 
 

Figure 3.6: Examples of 15-scene images dataset. Each image represents a 

corresponding category type ...................................................................................... 84 

Figure 4.1: Texture gradient and deep features fusion based 3D scene recognition 

method ........................................................................................................................ 94 

Figure 4.2: Examples of ‘stage dataset 2’ and their categories. Images are originated 

from Zhou et al. (B. Zhou et al., 2018). The reference of 3D scene geometries images 

is (Nedovic et al., 2010) ............................................................................................. 59  

Figure 4.3: Confusion matrix of TGF-DeepFF method for ‘stage dataset 2’ .......... 101 

Figure 5.1: 3D scene recognition using Model-HSF (score-level fusion) ............... 510  

Figure 5.2: 3D scene recognition using Model-HFF (feature-level fusion) ............. 105 

Figure 5.3: 15-scene image dataset: influence of handcrafted features at each 

intermediate layers. Figure (a) and (b) are indicating GoogLeNet and ResNet 

architectures, respectively. Raw data is shown in Appendix X ............................... 201  

Figure 5.4: 15-Scene image dataset: performance of the model-HSF. Figure (a) and 

(b) are indicating GoogLeNet and ResNet architectures, respectively. Raw data is 

given in Appendix X ................................................................................................ 122 

Figure 5.5: ‘Stage dataset 2’: influence of handcrafted features at each intermediate 

block of GoogleNet (see in (a)) and ResNet architectures (see in (b)). Raw data is given 

in Appendix Y .......................................................................................................... 126 

Figure 5.6: ‘Stage dataset 2’: performance of Model-MSF. Figure (a) and (b) are 

indicating GoogLeNet and ResNet architectures, respectively. Raw Data is given in 

Appendix Y .............................................................................................................. 712  

Figure 5.7: Confusion matrices of ‘stage dataset 2’ using GoogleNet architecture with 

multi-layer and Model-HSF given in Figure (a) & (b). Raw data is given in Appendix 

Y. .............................................................................................................................. 291   

file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572469
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572471
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572472
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572465
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468
file:///C:/Users/adnan/Desktop/Connectivity-WSN/writings-thesis/Thesis_Reference_After_Biblio/Thesis-Nivine-Newww1.docx%23_Toc424572468


   

xix 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

AI Artificial Intelligence 

B Bines 

BoW Bag of Words 

BP Back Propagation 

CMY Cyan, Magenta, Yellow 

CNN Convolutional Neural Networks 

CWCH Concentric Weighted Circles Histogram 

DFF-ADML Deep Feature Fusion through Adaptive Discriminative 

Metric Learning 

E Entropy 

ELM Extreme Learning Machine 

FC Fully Connected 

FK Fisher Kernel 

F-s F-score 

FTOTLM Fine-Tuned On the proposed Transfer Learning Model 

G(x, y) Gaussian function 

GAP Global Average Pooling 

GB Giga Bytes 

G-MS2F GoogLeNet based Multi-Stage Feature Fusion 

HF-MSF Handcrafted Features with CNN Multi-Stages Features 

HGSIR Hybrid Geometric Spatial Image Representation 

HOG Histogram of Oriented Gradients 

HSV Hue, Saturation, Value 



   

xx 
 

I Image 

LBP Local Binary Pattern 

LBP-E Local Binary Pattern & Entropy value 

LVFC-HSF Local Visual Feature Coding based on Heterogeneous 

Structure Fusion 

MLA Machine Learning Algorithm 

Model-HFF Model of Handcrafted and multi-layer features using 

Feature-level Fusion 

Model-HSF Model of Handcrafted and multi-layer features using 

Score-level Fusion 

OVH Orthogonal Vectors Histogram 

Pr Precision 

R-CNN Region based CNN 

Re Recall 

ReLU Rectified Linear Unit 

RGB Red, Green, Blue 

Seg Segment 

SGD Stochastic Gradient Descent 

SIFT Scale Invariant Feature Transform 

SVM Support Vector Machine 

T Template 

TGF-DeepFF Texture Gradient Features and Deep CNN Feature 

Fusion 

TV TeleVision 

V Vector 



   

xxi 
 

VGG16 Visual Geometric Group and 16 indicates number of 

layers 

YTR(N) Training labels 

YTS(M) Testing labels 

Ω Set of categories 

𝐴𝑐𝑐 Accuracy 

𝐶𝐿𝑡 𝑡th classifier 

𝐻 ×𝑊 Image size with height and width 

𝛼 Shape parameter 

𝛽 Scale parameter 

𝜎 Standard deviation 

𝐹Ɲ 
𝐷 Feature vectors with Dimension (D) for Ɲ images 

‖𝑉‖2 L2-norm 

ω𝑖 𝑖th Category 

𝑃𝑡𝑗
𝑆  Probability of 𝑡th classifier of s number of categories for 

𝑗th image 

∇𝐼 Gradient of Image I 

1D One-Dimensional 

2D Two-Dimensional 

3D Three-Dimensional 



   

1 
  

Chapter 1 

INTRODUCTION 

Vision is the process of discovering from images what is present in the world that is 

captured in an image and where it is (Marr, 1982)? Human eyes capture 10 GB of 

information per second from the world around us (Anderson, Van Essen, & Olshausen, 

2005) and effortlessly derive an impression of scene depth from a single image the 

depth is the number of bits used to represent each pixel in an image. This is because 

the world around us behaves regularly and structure regularities are directly reflected 

in the 2D image of a 3D scene (Richards, Jepson, & Feldman, 1996). However, 

developing an artificial system that can identify the impression of the scene with the 

same performance and robustness as humans, still is a challenge for researchers from 

such fields as physiology, engineering, computer science, and artificial intelligence. 

For instance, in Figure 1.1 (a), the human can understand the structure of the figure as 

a tunnel with two sides (right and left wall), ceiling, and ground surface. But it is a 

challenge for a robot (computer vision algorithm) to understand the structure of the 

image (Derek Hoiem, Efros, & Hebert, 2007; Nedovic, Smeulders, Redert, & 

Geusebroek, 2010). How does it understand that input image is a tunnel and its parts? 

Furthermore, how does robot understand that green bushes are away from the position 

of the camera (depth of the object)? Deriving the same impression of the real world as 

a human can understand from the single 2D image is a challenging task for the 

computer vision algorithms. 



   

2 
  

   
(a)                                                                (b) 

Figure 1.1: A simple image of indoor scene, having ceiling, side walls, and road. (a) 

Human view and understand the scene types and its parts. (b) A robot view the same 

image and does he understand the scene and its subparts?  

  

 In computer vision, this impression is expressed in terms of 3D scene structure of a 

2D image. This problem is particularly challenging because of the vast complexity and 

variation in appearance, we observe from our visual world. Existing computer systems 

have limited memory and resources, therefore, researchers have narrowed down this 

problem and split the indoor and outdoor natural scenes into finite set of categories. 

Indoor images are mostly related to the human-made objects, e.g., room, kitchen, 

office, tunnel, etc., whereas the outdoor images are natural scenes without borders, 

e.g., sky-mountain-ground, building and sky, etc. Examples of indoor and outdoor 

images are shown in Figure 1.2. These categories are designed on the base of image 

scene geometry. Image scene geometry represents the 3D rough structure, also called 

as 3D scene geometry, the examples are shown in the top right corners of Figure 1.2, 

(a), (b). The 3D scene geometry recognition is important for many computer vision 

applications, such as 3D TV, navigation system, video categorization (Lou, Gevers, & 

Hu, 2015; Nedovic et al., 2010). 



   

3 
  

   
(a)                                                                (b) 

Figure 1.2: (a) an outdoor sky-background-ground image and (b) an indoor image 

corner of the room. There 3D scene structure are shown in top right corner, 3D scene 

geometry figures are given at (Nedovic et al., 2010). 

 

It is important for a computer vision system to understand the scene geometry of an 

input image because it is easier to understand and extract the image layout when its 

geometry type is known (Nedovic et al., 2010). There are several 3D scene geometries 

with which it can be possible to handle both indoor and outdoor images. Scene datasets 

introduced in (J. Deng et al., 2009; Xiao, Hays, Ehinger, Oliva, & Torralba, 2010) used 

about 900 and 1000 categories, respectively. However, these datasets have large 

number of categories that cannot be easily manipulated for 3D scene geometry 

recognition. Thus, Nedovic at al. (Nedovic et al., 2010) proposed significantly more 

compact approach splitting the indoor and outdoor scenes into 12 categories. These 

3D scene geometries reflect the rough structure of the images where the small objects 

are ignored and are called ‘stages’. In consequence, the 3D scene recognition problem 

can be solved by following way: train the 3D scene recognition model by using labeled 

images and then this model can be validated on testing image (s). For instance, Figure 

1.3 represents the generic model of 3D scene recognition of a single image. In this 

model, an artificial intelligence (AI) based system which is well trained by using 

training images, it has ability to identify the 3D scene geometry type of input image. 

While, to date, computer vision researchers have made astonishing progress in many 

of the individual fields of vision, such as object classification (Jia Deng et al., 2014), 



   

4 
  

face recognition (Zarbakhsh & Demirel, 2018), structure from motion (Iglhaut et al., 

2019), and matching and tracking (Luo, Sun, Chen, Ji, & Xia, 2015). Meanwhile, 

several researchers have paid attention to develop 3D scene recognition models that 

have ability to recognize 3D scene of a single input image (Lou et al., 2015; Nedovic 

et al., 2010). 

 
Figure 1.3: An artificial intelligence system that can recognize the 3D scene 

geometry of an image. Black arrows are indicating training images. Dotted arrows 

indicate data flow of test image (s). 

 

The short introduction of these methods and their drawbacks are discussed here. 

Nedovic et al. (Nedovic et al., 2010) divide an image into 4 × 4 grid parts, which is 

called patches and extract the rich discriminative information from each patch and 

combine these information into a single feature vector. These 𝑛 × 𝑛 parts of an image 

has height ℎ =
𝑊

𝑛
 and width 𝑤 =

𝐻

𝑛
, where H and W are representing the height and 

width of an image measured in pixels. The discriminative information is a set of 



   

5 
  

features of an image. These features, including parameters of Weibull distribution (J.-

M. Geusebroek & Smeulders, 2005), color, and perspective line features (J. 

Geusebroek, Smeulders, & Weijer, 2003) are combined for each input image and fed 

into a machine learning algorithm. Machine learning algorithms, such as Support 

vector machine (SVM) (Cortes & Vapnik, 1995), are programs that provide the ability 

to learn the system automatically and update from experience without being explicitly 

designed (Breiman, 2001). It achieves 38.0% recognition accuracy of 12 scene 

geometry dataset. However, this model did not show significant performance because 

it uses grid patches for features extraction which may result in large difference for the 

same category (Lou et al., 2015). For example, two images in Figure 4.1 belonged to 

the same category, which is sky-ground but their results may have a large difference. 

Such as, a square region which is labeled with red color, have different image content 

for both image. 

 
(a)                                                      (b) 

Figure 1.4: Two different images of sky-ground class. Same region of the two images 

generate different content information of the same class. 

 

To solve above issue, Lou et al. (Lou et al., 2015)  use predefined templates to segment 

the each image and then segments are used to extract the image features, namely, 

Histogram oriented gradients (HOG) (Dalal & Triggs, 2005), mean value of RGB and 

HSV components, parameters (𝛼, 𝛽) of Weibull distribution (J.-M. Geusebroek & 

Smeulders, 2005) from each patch. The predefined template represents a 2D rough 



   

6 
  

structure of 3D scene geometry (Lou et al., 2015). Instead of dividing the whole image 

into gird patches, they divide each template-based and obtained segment into patches, 

and features from these patches for all the segments are fused into a one feature vector. 

They introduced a model to learn a representation from image features to a category 

by utilizing the latent variables representing model sub-parts, i.e., sky-background-

ground. This model achieves 47.3% recognition accuracy of 3D scene geometry on the 

dataset used in (Nedovic et al., 2010). However, in this method, the template-based 

segmentation is used. For each image, it generates hundreds of segments (Lou et al., 

2015) and finds the segment that has the largest overlap-to-union score for each 

component of the templates, is computationally expensive.  

Other approaches that can be used for 3D scene recognition are based on Bag of words 

(BoW) model (Lazebnik, Schmid, & Ponce, 2006). For example, J. Sanchez et al. 

(Sanchez et al., 2013) use dense scale-invariant feature transform (SIFT)(Lowe, 1999) 

features in the Fisher Kernel (FK) (Sanchez et al., 2013) framework as an alternative 

patch encoding technique and it achieves 47.20% recognition accuracy by using 50% 

of SUN dataset (Xiao et al., 2010) samples for training (see Table 5, at last row 

(Sanchez et al., 2013)). The most recent approaches of image recognition are based on 

convolutional neural networks (CNN). These networks are typically trained on large 

image datasets, e.g., ImageNet (J. Deng et al., 2009), and have achieved sufficient 

accuracy in many applications, such as scene classification, face detection, and object 

localization (He, Zhang, Ren, & Sun, 2016; S. Liu & Deng, 2015; Szegedy et al., 2015) 

(B. Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2018). These techniques show high 

recognition accuracy for large datasets (B. Zhou et al., 2018) and also applicable for 

the 3D scene recognition if a large dataset is given. On the contrary, these networks 

require the large labeled images dataset and need high performance hardware 



   

7 
  

resources for parameters optimization (Marculescu, Stamoulis, & Cai, 2018). It is a 

one of the CNN main challenges. This challenge also exists with 3D scene recognition 

as well, because the large dataset of 3D scene geometries does not available publically, 

which can be used to train the CNN networks. There are some common shortfalls with 

state-of-the-art approaches: 

1) The effectiveness of the existing approaches (Lou et al., 2015; Nedovic et al., 

2010) were measured on the limited images (about 2000 images), which did not 

reach the significant level of 3D scene recognition. Furthermore, the classification 

performance is not enough, distinguishing the scene images with complex 

structure, this is because the presence of humans in feature extraction greatly 

affects the representation of the scene image. 

2) The datasets of 3D scene geometry are not publically available. 

3) The goal of the thesis is to develop the novel method of 3D scene recognition for 

both indoor and outdoor images. To overcome the above shortfalls, nature of the 

topic dictates the necessity of both theoretical and experimental studies on 3D 

scene geometry recognition to measure the effectiveness of the known and 

developed methods. 

1.1 Contributions 

The key contributions of the thesis are as follows:  

1) Introducing a method of 3D scene geometry recognition (Khan, Chefranov, & 

Demirel, 2020a) 

i. Utilizing different types of image features that provide rich information of 

scene depth.  



   

8 
  

ii. Each predefined template represents a different rough structure of an image, 

therefore, applying predefined templates to extract the features from subpart 

of the image. 

iii. Combine these features for each template and feed to an individual machine 

learning algorithm, combine their yield to predict the final 3D scene 

geometry. 

iv. Achieve the state-of-the-art recognition accuracy on two different datasets. 

2) Introducing novel 3D scene geometry dataset (Khan, Chefranov, & Demirel, 

2020b) and providing a deep CNN based model of 3D scene geometry recognition 

that yields state-of-the-art performance on the 3D scene geometry dataset (12000 

scene images).  

3) Introducing a novel 3D scene geometry recognition model by integration of 

handcrafted features with deep CNN multi-layer features by utilizing the feature 

fusion and score-level fusion techniques. 

i. Extracting deep features from multiple layers of CNN model. 

ii. Utilizing different types of handcrafted features that provide rich information 

of scenes geometries. 

iii. Combine handcrafted features and deep features at multiple layers of CNN 

and then score-level fusion is used to predict the 3D scene geometry.   

1.2 Outline 

The rest of the thesis is structured as follows. Chapter 2 describes related work, 

background of 3D scene recognition, and problem definition. In Chapter 3, the 

segmentation-based 3D scene recognition system is proposed and evaluated on two 

benchmark datasets. Chapter 4 presents a novel 3D scene geometry dataset and also a 

deep CNN based model of 3D scene geometry recognition. Chapter 5 introduces a 



   

9 
  

novel model of 3D scene recognition using handcrafted features, which have 

discriminative information about 3D scene geometry, combine with multi-layer deep 

features at different layers of CNN model. The evaluation results on novel 3D scene 

geometry dataset are also given in this chapter. Chapter 6 concludes the study and 

discusses the future work.



   

10 
  

Chapter 2 

BACKGROUND, RELATED WORK, AND PROBLEM 

DEFINITION 

In this chapter, Section 2.1 introduces background (notions, concepts, definitions) of 

3D scene recognition. Section 2.2 describes the deep CNN architecture. Section 2.3 

represents the existing methods and their results of scene recognition. Section 2.4 

describes the problem definition of this thesis. 

2.1  Notions and Techniques of 3D Scene Recognition 

In this Subsection, firstly, the notion of scene, digital image are described. Then basic 

concept of 3D scene recognition is given in Subsection 2.1.1 and its steps, including 

inputs, pre-processing steps, features extractions and different types of features, 

evaluation of 3D scene recognition model, and performance metric are given in 

Subsections 2.1.2-7, respectively. 

What is a Scene? According to Xiao et al. (Xiao et al., 2010), “a scene is a place in 

which a human can act within, or a place to which a human being could navigate”. 

Oliva et al. (Oliva & Torralba, 2001b) , p. 146, define the scene as follows: “If an 

image represents an ‘object’ when the view subtends one to two meters around the 

observer, a ‘view on a scene’ begins when there is actually a more space or distance 

between the observer and the fixated point. Typically this distance is more than five 

meters. Thus, a scene is defined as place in which we can move”. A complete scene 

on 2D image represents existing object(s), semantic relations between objects, and 



   

11 
  

contextual information with respect to the background (Xie, Lee, Liu, Kotani, & Chen, 

2020). An example is shown in Figure 2.1, it mainly consisting of three parts: sky, 

background, and ground. Each part can contain multiple objects, such as background 

contains building, trees, and ground contains dry grass, rough road, etc. In order to 

understand the scene in digital computer, the scene image must be in digital.  

 
Figure 2.1: An Outdoor scene. 

Digital image can be represented in gray-scale and color. A gray-scale digital image is 

a 2D function, 𝑓(𝑖, 𝑗), 𝑖 = 0,1,2, … ,𝑀 − 1, 𝑗 = 0,1,2, 𝐼, 𝑁 − 1, M is number of rows 

and N is number of columns, where (𝑖, 𝑗) are discrete coordinates, and 𝑓(𝑖, 𝑗) is 

intensity value, or gray-level of the image at that pixel (𝑖, 𝑗). In 8-bit gray-scale image, 

the range of the pixel values is 0,1,2,…,255: 0 represents the black and 255 represents 

for white color (Gonzalez, Woods, & Eddins, 2003). An example is shown in Figure 

2.2 (a), in which the value of the image at any coordinates (𝑖, 𝑗) is shown 𝑓(𝑖, 𝑗), 𝑖 and 

𝑗 are integers, 𝑖 = 0, 1,2, …𝑀 − 1, 𝑗 = 0,1,2. . 𝑁 − 1. More detail of gray-scale image 

is given in (Gonzalez & Woods, 2006), p.78. Some programming languages (e.g., 

MATLAB) have starting index one instead of zero. 



   

12 
  

 
Figure 2.2: Gray-scale digital image of size 5 × 5 pixels. The positive x-axis 

increases downward and the positive y-axis increases to the right direction. M and N 

are row and column number of the image. 

 

The digital color image is represented in different color spaces, such as RGB (Red, 

Green, Blue) (Figure 2.3(a)), HSV (hue, saturation, value), and CMY (Cyan, Magenta, 

Yellow) (see Figure 2.3 (b), etc., (Gonzalez et al., 2003). Color space is a “specification 

of a coordinate system and a subspace within that system where each color is 

represented by a single point” (Gonzalez et al., 2003), p.423).  This study uses RGB 

and HSV color spaces only. The RGB image is represented in 3-dimensional array 

𝐼(𝑀,𝑁, 3) where 𝑀 is number of rows, 𝑁 is number of columns, and 3 is number of 

components of RGB. Each pixel 𝐼𝑖,𝑗 of an RGB image has three components: red, 

green, and blue, which is represented by 𝐼(𝑖, 𝑗, k), where 𝑖 = 0,1,2, … ,𝑀 − 1, 𝑗 =

0,1,2… ,𝑁 − 1, and k= 1,2,3, as Figure 2.3 (a) illustrates. Red component is 

represented by 𝐼(𝑖, 𝑗, 1), green component is represented by 𝐼(𝑖, 𝑗, 2), and blue 

component is represented by 𝐼(𝑖, 𝑗, 3), belonging to 0,1,2…255. 

 



   

13 
  

 
(a) RGB image of size 5 × 5 pixels            (b) Color cube model 

Figure 2.3: Color Image. (a) is RGB image of size 5 × 5 pixels. The color cube 

model in (b) represents different color components in the range of [0, 1] (Gonzalez et 

al., 2003). 

 

The HSV (hue, saturation, value) color space separates luma, or the image intensity 

from chroma or the color information, which is very useful in many applications 

(Gonzalez et al., 2003). Hue is a color component that represent a pure color (pure 

yellow, orange, or red), whereas saturation (chroma) provides a measure of the degree 

to which a pure color is diluted by white light (Gonzalez & Woods, 2001). Value or 

brightness is an achromatic notion of intensity and is one of the key factors in 

describing the color sensation (Gonzalez & Woods, 2001). More detail about HSV is 

given in (Gonzalez et al., 2003), p.420, and HSV components are visualized in  

(Szeliski, 2011), p. 91. The HSV components can be calculated by MATLAB function, 

[ℎ, 𝑠, 𝑣] = 𝑟𝑔𝑏2ℎ𝑠𝑣(𝐼), where 𝐼 is an RGB image and ℎ, 𝑠, 𝑎𝑛𝑑 𝑣 are estimated HSV 

components. 

2.1.1 3D Scene Recognition 

When a human views the scene for a short time, he extracts enough visual information 

to accurately recognize its functional and categorical properties such as people in 

street, surrounded by tall building (Oliva & Torralba, 2001b), p. 146. So, in digital 

computer, scene recognition is one of the hallmark tasks, which allows definition of a 



   

14 
  

context for object recognition (Bolei Zhou, Lapedriza, Xiao, Torralba, & Oliva, 2014), 

p. 487. “Scene recognition not only describes existing objects but also the semantic 

relation between objects and the contextual information with respect to background” 

(Xie et al., 2020), p. 1, (Sect. 1, paragraph 2). It is widely used in many computer 

applications such as intelligent robotics, autonomous driving, and video surveillance. 

Consequently, 3D impression of these scenes as human can understand from the world 

can be categorized according to different image geometries (Nedovic et al., 2010; 

Oliva & Torralba, 2001b), which are called 3D scene geometries (‘stages’) (more 

detail about scene geometries are given in next section 2.1.1) and identification of 

images belonging to these scenes geometries is called 3D scene recognition. For 

instance, some examples of categories are shown in Figure 2.4, such as sky-

background-ground in Figure 2.4(a), sky-ground in Figure 2.4(b), and corridor in 

Figure 2.4(c), and their names (image id#) are shown at the top of the image. 

 
(a) Scene: sky-background-ground    (b) Scene: sky-ground       (c) Scene: corridor 

Figure 2.4: Examples of scene recognition. 

 

To recognize the 3D scene, a computer program requires the following fundamental 

steps as described in the flowchart, Figure 2.5. Each step is labeled with number. First 

we give a short overview of 3D scene recognition system and then detail of the each 

part is given in Subsections 2.1.2-7. Firstly, it inputs N training images, M testing 

images, 3D scene geometries (S(n)), n is the number of geometries, training labels 



   

15 
  

(𝑌𝑇𝑅(𝑁)), testing labels (𝑌𝑇𝑆(𝑀) ) as input to the computer program. These labels 

are names of the categories. Next, the training and testing images are pre-processed 

e.g. image segmentation (Lou et al., 2015) and then features are extracted for the both 

training and testing images. In feature extraction process, the particular discriminative 

information is extracted from each input image (G. Kumar & Bhatia, 2014). After 

extracting the features, the training images’ features with their labels (3D scene 

geometries) are used for training the machine learning algorithm (MLA). MLA can be 

defined as a pattern recognition technique, which categorizes a huge numbers of data 

into limited classes (Faruk Ortes, Derya Karabulut, & Arslan, 2019). After training a 

machine learning model, the testing images’ features are used to evaluate the trained 

model (more detail of training and testing steps are given in next Subsections). Thus, 

each testing image’s features are given to trained model and this model predicts the 

3D scene geometry of each input image. The predicted 3D scene geometry and given 

testing label of input image will be compared to calculate the performance. If both 

labels are same, it means system predicts an accurate 3D scene geometry of input 

image. Similarly, the predicted categories of all testing images are matched with given 

labels (3D scene geometries of testing images) and average accuracy and other metrics 

can be calculated over the M testing images. The formal description of 3D scene 

recognition in the form of pseudo code is given in Algorithm 2.1 and flowchart is given 

in Figure 2.5. 

 

 

 



   

16 
  

Algorithm 2.1:  3D Scene Geometry Recognition system 

Input: N training images TRI(N), M testing images TSI(M), S(n) geometry 

classes, YTR(N ) training images labels, YTS (M ) testing images labels 

Output: Performance Measures: Accuracy, Acc; Precision, Pr; Recall, Re; F-score 

// Pre-processing and feature extraction steps 

1: for j=1:N  do                                   // for each training image TR
jI  

2:       𝑇𝑅𝐼′𝑗= Apply pre-process step of each input image 𝑇𝑅𝐼𝑗 

3:       𝐹𝑗
𝑡𝑟𝑎𝑖𝑛= Extract features for each input image 𝑇𝑅𝐼′𝑗   

4: end for 

5: for j=1:M  do                                   // for each testing image TSI  

6:       𝑇𝑆𝐼′𝑗= Apply pre-process step of each input image TS𝐼𝑗 

7: 𝐹𝑗
𝑡𝑒𝑠𝑡= Extract features for each input image 𝑇𝑆𝐼′𝑗  

8: end for 

// Training step 

9: 𝑋′ = {(𝐹𝑗
𝑡𝑟𝑎𝑖𝑛, 𝑌𝑇𝑅𝑗)}𝑗=1

𝑁
 // N is a number of training samples, 𝑌𝑇𝑅𝑗 label of 

image 𝐼𝑗. 

10: 𝑀𝑜𝑑𝑒𝑙 = 𝑀𝐿𝐴(𝑋′),  // 𝑋′ is used to get trained  model ‘Model’ by MLA       

// Testing step  

11: for j=1: M  do     // loop on test images TSI 

12: 𝑠𝑗 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑀𝑜𝑑𝑒𝑙, 𝐹𝑗
𝑡𝑒𝑠𝑡) // 𝑠𝑗 is predicted label (geometry) for the image 

𝑇𝑆𝐼𝑗. 

13: end for//j                                                          

//Performance measures  

14:  [ Acc, Pr, Re,  F-score]=Performance Measures ((𝑠𝑗 , 𝑌𝑇𝑆𝑗)𝑗=1
𝑀
) //𝑌𝑇𝑆𝑗 is the 

true label of the test image 𝑇𝑆𝐼𝑗  

End Algorithm 

 

 



   

17 
  

  
Figure 2.5: Flowchart of 3D scene recognition. 

The steps of flowchart of 3D scene recognition are labeled with a number from 1 to 8. 

The pre-processing and feature extraction steps for both training and testing images 

are same. Therefore, they are labeled with same numbers. Meanwhile, Algorithm 2.1 

is illustrating the pseudo code of the 3D scene recognition and each line of this pseudo 

code and flow chart steps are described in Subsections 2.1.2-7. The step 1 of flow chart 

is described in Subsection 2.1.2. Step 2 is discussed in Subsection 2.1.3 (lines 2 and 6 

of Algorithm 2.1). Step 3 is described in Subsection 2.1.4 (lines 3 and line 7 of 

Algorithm 2.1). Step 4 is described in Subsection 2.1.5 (lines 9 and 10). Steps 5-6 are 



   

18 
  

described in Subsection 2.1.6 (lines 11-13). Steps 7, and 8 are explained in Subsection 

2.1.7 (line 14). 

2.1.2 Inputs of 3D Scene Recognition 

According to Figure 2.5 and Algorithm 2.1, the 3D scene recognition system has inputs 

of N training images, M testing images, S(n) categories, n is the number of categories, 

YTR(N) training images labels, and YTS(M) testing images labels. For 3D scene 

recognition, the images are labeled according to 3D scene geometries. The scene 

geometry concerns depth, shape, and pose (D. Hoiem, Efros, & Hebert, 2006; Jung & 

Kim, 2012; Nedovic et al., 2010). Some researchers (D. Hoiem et al., 2006; Jung & 

Kim, 2012; Nedovic et al., 2010) represent world scene images as 3D scene 

geometries. Each 3D scene geometry covers several images due to structure 

regularities in the physical world (Nedovic et al., 2010). This is beneficial to narrow 

down the scene recognition task and reduce the computational complexity (Jung & 

Kim, 2012). For instance, Figure 2.6 shows capturing a 2D image from Physical 3D 

world and examples of scene images corresponding to 3D scene geometry are also 

given in Figure 2.6. Here, 3D world is represented as a rough 3D scene geometry. 

Nedovic et al. (Nedovic et al., 2010) introduce twelve 3D scene geometries also called 

as ‘stages’ to represent the indoor and outdoor scene images, namely, sky-background-

ground (skyBkgGnd), sky-ground (skyGnd), background ground (bkgGnd), ground, 

one side wall (sidewallRL), box, diagonal background (diagBkgRL), ground-diagonal 

background (groundDiag BkgRL), corner, table-personbackground (tabPersonBkg), 

person-background (personBkg), and no depth (noDepth). Thus, all indoor and outdoor 

scene images are divided into these twelve categories. After that, each image is labeled 

with the name of its corresponding category, such as Figure 2.4, each image has 

category name given in the caption and name of each image is shown at the top of the 



   

19 
  

image. Thus, 𝑁 number of training and 𝑀 number of testing images are used and their 

category types are also given to the system. Mostly, 80% images of each category are 

used for training and 20% images for testing. 

 
Figure 2.6: Generation of 2D image from 3D world.  

2.1.3 Pre-Processing Steps of Feature Extraction  

In Figure 2.5 (3rd step) and (lines 2, 6 of Algorithm 2.1), for each training 𝑇𝑅𝐼𝑗 and 

testing images 𝑇𝑆𝐼𝑗  ( 𝑗 = 1,2. . 𝑁 for training and 𝑗 = 1,2. . 𝑀 for testing) is pre-

processed by different ways, such as image segmentation (Lou et al., 2015), filtering 

(Paris, Hasinoff, & Kautz, 2011) or patches (Nedovic et al., 2010). And pre-processing 

images of training (TR𝐼′ ) and testing (TS𝐼′ ) are further used for feature extraction. 

Here, we will explore two existing pre-processing techniques of feature extraction. 1) 

Uniform grid based patches. 2) Template-based segmentation. 

1) Some researchers (Nedovic et al., 2010; Oliva & Torralba, 2001b) divided the each 

input image into uniform grid patches. The patches are 𝑛 × 𝑛 parts of an image having 

height ℎ =
𝑊

𝑛
 and width 𝑤 =

𝐻

𝑛
, where H and W are the representing the height and 



   

20 
  

width of an image measured in pixels as it shown in Figure 2.7(a). The patch is shown 

with rectangle box corresponding to its position on the image 2.7 (a). 

 
(a) Grid patches technique.    

  
(b) Template-Based Segmentation  (Lou 

et al., 2015). 

Figure 2.7: Pre-processing steps of feature extraction. 

2) Lou et al. (Lou et al., 2015) use predefined template to segment the image for pre-

processing purpose. The template is a predefined 2D rough structure of 3D scene 

geometry (Lou et al., 2015). Each component of the template indicates corresponding 

subpart of 3D scene geometry. Therefore, these templates are beneficial to parse the 

image into subparts. For instance, in Figure 2.7(b), an input image is parsed into a 

template and its template-based segmentation are obtained: top is sky, middle is 

background, and bottom is ground as certain template has three components: top, 

middle, and bottom. After template-based segmentation, each segment available for 

feature extraction. The template can be defined as: template 𝑇, has the same size, 𝐻 ×

𝑊 as the input image I. It is composed of ST segments, s𝑘, 𝑘 = 1, . . , 𝑆𝑇. Element,

kT
ji  , if pixel, ),( jiI  belongs to the segment 𝑠𝑘, e.g., in Figure 2.8 (a, b, c), templates 

have two components (𝑆𝑇 = 2 ) and templates in Figure 2.8 (b, h, g), have three 

components (𝑆𝑇 = 3). The template (f) is shown empty indicating that a whole image 

is considered as a one segment (more detail about template generation is given in 

Appendix A). 



   

21 
  

 
Figure 2.8: Examples of predefined templates (a) to (h). 

Lou et al. (Lou et al., 2015) use soft and hard segmentation method to segment the 

input image. Hard segmentation follows a template components one-by-one, as it is 

shown in Figure 2.8. For example, a template in Figure 2.8(a) has two components. 

Thus, Image will be divided into two components and features will be extracted by 

following these segments. For soft segmentation, Lou et al. (Lou et al., 2015) use 

Carrira and Sminchinsescu (Carreira & Sminchisescu, 2012) segmentation method. In 

this method, the foreground seeds are placed on the image at uniformly grid points, 

and the background seeds are set at the boundary of the image. It generates several 

segments from each input image, the more detail is given at (Carreira & Sminchisescu, 

2012). They select the segments which have the largest overlap-to-union score for 

feature extraction. However, this technique generates hundreds of segments for each 

image and to select the segment that has largest overlap-to-union score is an expensive 

task as it requires to compare each template component to each segment. In contrary, 

the active contours algorithm (Chan & Vese, 2001) can be used for template-based 

segmentation. It generates a single accurate segment if a template component is used 

as an initial contour. Active contours algorithm is a segmentation technique which uses 

the energy constraints and forces in the image for separation of the region of interest. 

It separates boundaries for the regions of target object for segmentation. The region of 

interest possesses a group of pixels such as circle, polygon or irregular shapes, the 

 
(a) (b) (c)  (d) 

 
(e) 

 

(f) 

 

(g) 

 

(h) 

 



   

22 
  

more detail is given at (Chan & Vese, 2001). In MATLAB tool, the function 

activecontour(I, mask) indicates the method. It segments the image, 𝐼, into foreground 

and background regions using active contours. The mask indicates the initial contours 

(e.g. template component) for an image 𝐼. An example is shown in Figure 2.9, where 

a scene image is parsed with a predefined template 2.8(b) and, using active contours 

algorithm, the input image is segmented into three parts, namely, sky, background, and 

ground.  

 
Figure 2.9: An Example of active contours algorithm’s segmentation using 

predefined template. 

  

2.1.4 Feature Extraction 

Next, the 3rd step of the Figure 2.5 is the feature extraction (line 3 and 7 of Algorithm 

2.1). The feature is the discriminative information of an image extracted, e.g., by using 

convolutional operation on the input image (Gonzalez & Woods, 2001). Convolutional 

operation is the mathematical operation on two functions (A and B); it yields the result 

that represents the effect of B on function A (Gonzalez & Woods, 2006). In Figure 

2.10, a patch of an image having size 5x5 pixels, and 3x3 size of conv. function (filter) 

are applied at one pixel of an image. For example the red pixel (middle) has value ‘3’, 

and after applying the 3x3 convolutional filter on this pixel, which gets value ‘5’. A 



   

23 
  

convolutional filtering is the process of moving a filter mask over the image and 

computing the sum of products at each location. It is defined as a filter 𝑤(𝑥, 𝑦) of size 

𝑚 × 𝑛 with an image 𝐼(𝑥, 𝑦), denoted as 𝑤(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦), is given by the equation 

(Gonzalez & Woods, 2006), 

𝑤(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡) × 𝐼(𝑥 − 𝑠, 𝑦 − 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎 ,                      (2.1) 

where a=(m-1)/2, b=(n-1)/2, and 𝑚 and 𝑛 are odd integers. ‘*’ is convolutional 

operator. The detailed of convolutional operation is given in (Gonzalez & Woods, 

2006), pp. 168-171. 

 
Figure 2.10: Convolutional operation on a 2D image of size 5x5 pixels. 

In existing approaches of 3D scene recognition, such as (Lou et al., 2015; Nedovic et 

al., 2010), the features are extracted from each image patch, and, after that, they are 

concatenated to obtain a single feature vector. It is visualized in Figure 2.11: the small 

rectangles are connected into a single vector.  Assume 𝑥𝑖
𝑗
 is a feature vector for patch 

𝑖 of j-th input image.  The concatenated feature vector for 𝑗-th image can be written as, 

𝐹𝑗 = [𝑥1
𝑗
, 𝑥2
𝑗
, … , 𝑥𝑛×𝑛

𝑗
], where 𝑛 × 𝑛 is the number of patches of 𝑗-th input image. For 

N training images, the feature vector, 𝐹𝑗
𝑡𝑟𝑎𝑖𝑛, is extracted for each input train image, 

𝑇𝑅𝐼′𝑗 (see line 3 of Algorithm 2.1), 𝑗 = 1,2, . . 𝑁. Similarly, for M testing images, the 



   

24 
  

feature vector, 𝐹𝑗
𝑡𝑒𝑠𝑡 , is extracted for each input test image 𝑇𝑆𝐼′𝑗 (see line 7 of 

Algorithm 2.1), 𝑗 = 1,2, …𝑀. 

 
Figure 2.11: General representation of feature extraction and concatenation. 

Different types of image features can be extracted for 3D scene recognition, which 

provide discriminating information to distinguish one image scene from other scenes 

(Lou et al., 2015; Nedovic et al., 2010), namely parameters of Weibull distribution (J.-

M. Geusebroek & Smeulders, 2005), color (Nedovic et al., 2010), HOG (Dalal & 

Triggs, 2005), and Local binary pattern (Ojala, Pietik, & Maenpaa, 2002). The 

description of the features is given below in Subsections 2.1.4.1-5, respectively.  

2.1.4.1 Parameters of Weibull Distribution 

The relation between scene depth and image statistics is studied in (J.-M. Geusebroek 

& Smeulders, 2005; Nedovic et al., 2010; Torralba & Oliva, 2002). Nedovic et al. 

measure the depth of scene image based on stage types. “Nedovic et al. (Nedovic et 

al., 2010) show that parameters of the Weibull distribution are informative to capture 

local depth ordering” (Lou et al., 2015), p.3103 (background of Weibull distribution 

is given in Appendix B). Therefore, the parameters of the Weibull distribution can be 

used as scene features (Lou et al., 2015). They measure the parameters 

(𝛼 (shape), and 𝛽 (scale)) of Weibull distribution for each image patch (four 

features). “Parameters of the distribution are derived using maximum likelihood 



   

25 
  

estimator (MLE)” (Duffy, 1997) (Nedovic et al., 2010), p. 1677. The MATLAB 

provides the default function of MLE, namely, [𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, ~] = 𝑤𝑏𝑙𝑓𝑖𝑡(ℎ), where 

‘h’ is a sample data and function, 𝑤𝑏𝑙𝑓𝑖𝑡(. ) returns the estimates of Weibull 

parameters (𝛼, 𝛽).  For example, h = [0.05, 0.75,0.1, 1.0, 1.5, 2.0], then the estimates 

of Weibull parameters, 𝛼 = 0.99, 𝛽 = 0.89. Nedovic et al. (Nedovic et al., 2010), p. 

1677, describe that Gaussian derivative filters (x and y-directions with 𝜎 = 3) are used 

(as convolutional operators (equation (2.1))) to extract the texture information from 

each image patch. Gaussian function is defined with standard deviation, 𝜎, as 

(Gonzalez & Woods, 2018), p.724, 

G(x, y)=𝑒
−
𝑥2+𝑦2

2𝜎2 ,                                                      (2.2) 

So, the derivatives, with respect to x and y: 
x

yxG



 ),( ,  
y

yxG



 ),( , are calculated as 

(Gonzalez & Woods, 2018): 

)),(( yxG
x

  =−
𝑥

𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2  ,                                         (2.3) 





)),(( yxG

y
=−

𝑦

𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2 .                                         (2.4) 

The more detail of x and y-derivative filters are explained in (Gonzalez & Woods, 

2018), pp. 716-731. Let 𝐼(𝑥, 𝑦) denote input image, then the 𝐼𝑥(𝑥, 𝑦)  and 𝐼𝑦(𝑥, 𝑦) are 

generated by convolving I(x, y) with 
x

yxG



 ),( and 
y

yxG



 ),( , respectively: 

𝐼𝑥(𝑥, 𝑦) =
x

yxG



 ),( ∗ I(x, y),                                         (2.5) 

𝐼𝑦(𝑥, 𝑦) =  
y

yxG



 ),( ∗ I(x, y),                                        (2.6) 

where, ‘*’ is a convolutional operator defined in (2.1). After that, the histograms, hx 

and hy are calculated for 𝐼𝑥(𝑥, 𝑦) and 𝐼𝑦(𝑥, 𝑦), respectively. The histogram is 

generated by a complete set of non-overlapping intervals, called bins, and the number 



   

26 
  

of points in each bin is counted (Scott, 1992). The bins should all have the same width 

in order for the bin counts to be identical. Then, two parameters, the bin width, w, and 

the bin origin, t0, are fully determined by the histogram. Often, the bin origin is chosen 

to be t0=0 (Scott, 1992), p.52. More detail of histogram and its bins calculation is given 

in chapter 3 of (Scott, 1992). In implementation, it can be computed using Matlab 

function, histogram (H, b), H is an input data and ‘b’ is the number of bins. The size 

of bin is based on input data and this function calculates the width of the each bin and 

then distributes the data over the number of bins accordingly. After obtaining the 

histogram, before giving it into 𝑤𝑏𝑙𝑓𝑖𝑡(. ) function to estimate the Weibull parameters, 

its components are first normalized by dividing each of its components by the total 

number of pixels in the patch, denoted by the product ‘ℎ𝑤 = ℎ × 𝑤’, where ℎ and 𝑤 

are the row and column dimensions of the patch. The normalized histogram is obtained 

by dividing each component of the histogram to number of elements. It is defined as 

(Gonzalez & Woods, 2018; Scott, 1992),  

𝑓(𝑏) =
𝑏𝑘

ℎ𝑤
 ,                                                     (2.7) 

where bk is the number of data points falling in the k-th bin. For example, H = [2, 1, 

3,14, 17,3,4,5,6,5,8,9,12,24,25], and assume bins, b, set to 6, then the components of 

the histogram are: [5,4,2,1,1,2], where the width of each bin is 4.20. After it, the 

normalized components of the histogram, [0.333, 0.267, 0.133, 0.067, 0.067, 0.133], 

are computed by using (2.7).  The normalized components are used as input to Matlab 

function, 𝑤𝑏𝑙𝑓𝑖𝑡(. ) to estimate Weibull 𝛼, and 𝛽 parameters. The relation between 

histogram and parameters of Weibull distribution is shown in Appendix C. Thus, the 

4 features (𝛼 and β for x and y derivatives) are obtained for each patch as a feature set. 

The change of 𝛼 and β parameters with respect to depth are visualized in Appendix D. 

 



   

27 
  

2.1.4.2 Color Features 

The properties of a light source and colors of scene objects can be used for stage 

classification (Lou et al., 2015; Nedovic et al., 2010). Two different color spaces, RGB 

and HSV, are used as feature sets for each image patch. Nedovic et al.  (Nedovic et al., 

2010) use the three features of the color correction coefficients of RGB estimated by 

a Gray-World algorithm (Weijer, Gevers, & Gijsenij, 2007) and the other three 

features, Hue, Saturation and Value (HSV), are included in a color feature set for each 

image patch. Color correction is an estimation of the illumination of the color, which 

encodes the properties of the light source (Nedovic et al., 2010), p. 1677.  Nedovic et 

al. show that it improves the stage recognition accuracy. Gray-World algorithm is 

simplest color correction estimation method, “which assumes that the average 

reflectance of the surfaces in the world is achromatic” (Nedovic et al., 2010), p. 1677. 

The basic description and implementation is given in (Weijer et al., 2007), pp.2208-9, 

formula is given in (10). Matlab package of Gray-World algorithm is available in 

(Joost van de Weijer , Theo Gevers , & Gijsenij, 2007). The main function, 

[𝑊𝑅 ,𝑊𝐺 ,𝑊𝐵, ~] = 𝑔𝑒𝑛𝑒𝑟𝑎𝑙−𝑐𝑐(𝑅𝐺𝐵 𝑖𝑚𝑎𝑔𝑒, 0,1,0), takes an RGB image with it 

default parameters ((0, 1, 0), which indicates differential order, L1-norm, and sigma, 

respectively) as inputs and generates its color coefficients, 𝑊𝑅 for red, 𝑊𝐺 for green, 

and 𝑊𝐵 for blue. Here, we use color correction coefficient as features. The HSV 

components can be calculated by MATLAB function, [ℎ, 𝑠, 𝑣] = 𝑟𝑔𝑏2ℎ𝑠𝑣(𝐼), where 

𝐼 is an RGB image and ℎ, 𝑠, 𝑎𝑛𝑑 𝑣 are estimated HSV components. Therefore, six 

color features are obtained for each image patch. 

2.1.4.3 Histogram of Oriented Gradients Feature 

The histogram of oriented gradients (HOG) is one of the most popular features and has 

been widely used in an object detection for representing the shape of objects (Dalal & 



   

28 
  

Triggs, 2005; Tomasi, 2012). It is available as a Matlab function, [𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ] =

 𝑒𝑥𝑡𝑟𝑎𝑐𝑡ℎ𝑜𝑔𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝐼, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠), where, I is an input image and 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 representing the output of HOG feature vector. Parameters contain number 

of histogram bins, normalization type (i.e. L2-norm), and constant 𝜖 value. We modify 

the existing code by extracting the 9 features (setting bins=9) for each image patch as 

Lou et al. (Lou et al., 2015) used it. Instead of dividing the image into blocks, we use 

the patch as a single block for feature extraction. The HOG feature is useful for 

differentiating the image geometry such as the shape of the sky–ground and the shape 

of the corner are very different (Lou et al., 2015). The HOG feature can be calculated 

by following main steps as described in (Dalal & Triggs, 2005): gradient computation, 

orientation binning, and bin vector normalization. First step is gradient computation. 

The gradient at arbitrary location (𝑥, 𝑦) of an image,𝐼, denoted by ∇𝐼 and defined as 

the vector (Gonzalez & Woods, 2018), p. 716: 

∇𝐼(𝑥, 𝑦) = 𝑔𝑟𝑎𝑑[𝐼(𝑥, 𝑦)] = [
𝐼𝑥(𝑥, 𝑦)

𝐼𝑦(𝑥, 𝑦)
] = [

𝜕𝐼(𝑥,𝑦)

𝜕𝑥
𝜕𝐼(𝑥,𝑦)

𝜕𝑦

],                           (2.8) 

where, 
𝜕𝐼(𝑥,𝑦)

𝜕𝑥
 and 

𝜕𝐼(𝑥,𝑦)

𝜕𝑦
 are partial derivatives at each pixel location in the image. The 

magnitude M(x, y) of this gradient vector at a point (x, y) is given by (Gonzalez & 

Woods, 2018),  

𝑀(𝑥, 𝑦) = ‖∇𝐼(𝑥, 𝑦)‖ = √(𝐼𝑥(𝑥, 𝑦))2 + (𝐼𝑦(𝑥, 𝑦))2 ,                           (2.9) 

This is the value of the change rate at the point in the direction of the gradient vector 

(x, y). The direction of the gradient vector at a point (x, y) is calculated by (Gonzalez 

& Woods, 2018), 

𝜃(𝑥, 𝑦) = tan−1( 𝐼𝑦(𝑥, 𝑦)/𝐼𝑥(𝑥, 𝑦)),                               (2.10)  

Where the angle, 𝜃, is determined with respect to the x-axis in the counterclockwise 

direction. More detail is given in (Gonzalez & Woods, 2018), p. 716. Instead of using 



   

29 
  

the derivatives computed in equations (2.5) and (2.6), typically forward or centered 

finite difference (Milton Abramowitz  & Stegun, 1972) is used to calculate the 

derivative (Gonzalez & Woods, 2018), pp. 717-18) (Dalal & Triggs, 2005), formula is 

given in Appendix E. Using forward differences, we obtain (Gonzalez & Woods, 

2018), p. 718):  

 𝐼𝑥(𝑥, 𝑦) =
𝜕𝐼(𝑥,𝑦)

𝜕𝑥
= 𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥, 𝑦)                                 (2.11) 

𝐼𝑦(𝑥, 𝑦) =
𝜕𝐼(𝑥,𝑦)

𝜕𝑦
= 𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦)                                 (2.12) 

For all values of x and y, these two equations can be applied by filtering 𝐼(𝑥, 𝑦) with 

one dimensional (1D) kernels ([−1,1], [−1,1]′, see Figure 10.13 in (Gonzalez & 

Woods, 2018)). The different types of kernels are studied in (Dalal & Triggs, 2005; 

Tomasi, 2012). However, the best performance is obtained by convolution of 1D 

kernel, [-1, 0, 1] (Dalal & Triggs, 2005), p. 889. Convolutional function is given in 

equation (2.1). For RGB images, the gradients of each color component are calculated 

separately, and the one with the largest value is taken as the pixel gradient (Dalal & 

Triggs, 2005). In the next step, the histogram with orientation bins (B) is calculated 

for each local region (patch). The standard definition of histogram is defined in 

previous Subsection 2.1.4.1. Each pixel within the patch cost a weighted vote for an 

orientation-based histogram on the value computed in the gradient calculation (Dalal 

& Triggs, 2005), p. 889. “The vote is a function of the gradient magnitude at the pixel, 

either the magnitude itself, its square, its square root, or a clipped form of the 

magnitude representing soft presence/absence of an edge at the pixel. In practice, using 

the magnitude itself gives the best results” (Dalal & Triggs, 2005), p. 889. “The 

orientation bins are evenly spaced over 0° –  180°( 0 − 𝜋, unsigned gradient) or 0o – 

360o (0-2π, signed gradient)” (Dalal & Triggs, 2005), p. 889. The magnitude of each 

pixel is assigned to bin on the base of its orientation that in which bin it exist. In 



   

30 
  

implementation, (Dalal & Triggs, 2005) shows that unsigned gradient gives the best 

results. After obtaining a bin vector ‘V’ (with a dimension B, B is set to 9 by (Dalal & 

Triggs, 2005)) for a single image patch. It is normalized by its ‘L2- norm’. L2-norm is 

calculated as: Let V be the un-normalized descriptor vector, ‖𝑉‖2, ‖𝑉‖2 =

√𝑣1
2 + 𝑣2

2 +⋯+ 𝑣𝑛2, where 𝑣1
 , 𝑣1

 , . . , 𝑣𝑛
  are elements of vector with n length, be its 

L2-norm (more detail is given in (Weisstein & W., 2020)), and 𝜖 be a small constant 

(Dalal & Triggs, 2005), p. 891. It is defined as (Dalal & Triggs, 2005): 

𝑉 =
𝑉

√‖𝑉‖2
2+𝜖2

.                                                         (2.13) 

In Matlab, it can be calculated by 𝑉′ = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑉, ′𝑛𝑜𝑟𝑚′), where, norm is 

parameters which indicating the L2-norm calculation. Note: 𝜖 is used to prevent 

division by zero. It is equal to 0.01 to minimize its influence on HOG features. In this 

way, nine features are extracted for each image patch. 

2.1.4.4 Local Binary Pattern and Entropy Value Features 

One of the most successful approaches to texture description is Local Binary Pattern 

(LBP) and its variants (Ojala et al., 2002). It is explained in (Ojala et al., 2002). It 

obtains invariant, uniform representations, and rotation, important for many 

applications, such as face recognitions, texture recognition, and remote scene 

classification, etc. (Pietikäinen & Zhao, 2016), due to its discriminative power and 

computational simplicity (Pietikäinen, Hadid, Zhao, & Ahonen, 2011). The Matlab 

code of converting the RGB image into LBP code is available at (Nikisins, 2020), in a 

form of function, 𝐿𝐵𝑃𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐿𝐵𝑃(𝐼, 𝑅).  It has two parameters, input RGB image, 

I, and radius R. The possible value of the R=1, 2, 3., etc. By default, R=1, is used. R=1 

means eight neighbor pixels and R=2 means 16 neighbor pixels around the center pixel 

(more detail is given in (Ojala et al., 2002)). The 𝐿𝐵𝑃𝑜𝑢𝑡𝑝𝑢𝑡 is a 2D array of same size 



   

31 
  

of input image I. Then the histogram is constructed for 𝐿𝐵𝑃𝑜𝑢𝑡𝑝𝑢𝑡. The histogram is 

defined in Subsection 2.1.4.1. Here, the Matlab function, ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝐿𝐵𝑃𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑏) 

is used, b is number of bins. Then the components of the histogram are normalized as 

(2.7). Thus, the normalized components of dimension, b, are used as a feature vector 

for each image patch. 

Entropy (E) is another approach to describe the texture content (Gonzalez et al., 2003). 

It is a function which measures the variability of data and it approaches to zero for a 

constant input data (Gonzalez et al., 2003). “Given a source of statistically independent 

random events from a discrete set of possible events { 𝑎1, 𝑎2, … , 𝑎𝐽} with associated 

probabilities { 𝑝(𝑎1), 𝑝(𝑎2), … , 𝑝(𝑎𝐽)}, the average information per source output, 

called the entropy of the source, is” (Gonzalez & Woods, 2018), p. 546, 

𝐸 = −∑ 𝑝(𝑎𝑗) log2 𝑝(𝑎𝑗)
𝐽
𝑗=1 ,                                 (2.14) 

 where 𝑎𝑗 is called as a source symbol. E is an entropy of the source. The more detail 

is explained in (Gonzalez & Woods, 2018), p. 546. Different researchers use it as 

features for scene classification, such as (Derek Hoiem et al., 2007) utilize it for texture 

features. In Matlab, entropy is available in a function, 𝐸 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑥), where x is 

an sample data or gray-scale image and its output, E, is a real value. Each 3D scene 

geometry represents the different texture information of the image scene (Nedovic et 

al., 2010). Entropy measures the variability of data (Gonzalez et al., 2003), therefore, 

it can be used as a feature for 3D scene geometry classification. The 𝐿𝐵𝑃𝑜𝑢𝑡𝑝𝑢𝑡 

contains texture information, thus, it can be used for measuring the entropy value. For 

this, normalized histogram components are used as input of entropy function. Thus, 

we compute the LBP-E features for each patch. (As these features was not study for 



   

32 
  

3D scene geometry, we have shown the performance of these features in our 

experiment (see Chapter 3, Table 3.2)). 

2.1.5 Training of Machine Learning Algorithm 

After extracting the feature vector, the next point from Figure 2.5 is ‘train a machine 

learning algorithm, ‘MLA’ (lines 9, 10 of Algorithm 2.1). Suppose that we have 

training dataset with N samples (𝐹𝑗
𝑡𝑟𝑎𝑖𝑛, 𝑇𝑅𝑌𝑗), where 𝐹𝑗

𝑡𝑟𝑎𝑖𝑛 is a feature vector for 

image 𝑇𝑅𝐼𝑗, and TR𝑌𝑗 is the class label. 𝑇𝑅𝑌𝑗 ∈ 𝜑 = {𝜔1, 𝜔2, … , 𝜔𝑛}, 𝜔𝑖 denotes the 

class such as sky-background-ground, 𝑖 = 1,2. . 𝑛, n is number of classes. Then, the 

feature vectors with labels for N samples can be given as, 

𝑋′ = {(𝐹𝑗
𝑡𝑟𝑎𝑖𝑛, 𝑇𝑅𝑌𝑗)}𝑗=1

𝑁 .                                           (2.15) 

Then the features with labels, 𝑋′, are used as input to a machine learning algorithm, 

MLA (𝑋′) to train a model, 𝑀𝑜𝑑𝑒𝑙 (line 10 of Algorithm 2.1). It generates a single 

trained model, ‘Model’ for N labeled data. The model can be used as, 

𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 (𝑚𝑜𝑑𝑒𝑙, 𝑡𝑒𝑠𝑡−𝑖𝑚𝑎𝑔𝑒). Classify(.) is a function which predicts the class type 

of an input image, 𝑡𝑒𝑠𝑡−𝑖𝑚𝑎𝑔𝑒 (line 12 of Algorithm 2.1). The detail of testing images 

and prediction is given in the next Section 2.1.6. 

However, the most useful MLA of scene classification is a SVM (Cortes & Vapnik, 

1995; Nedovic et al., 2010). Recently, the extreme learning machine (ELM) also 

becomes a famous classifier because of its satisfactory generalization performance 

(Guang-Bin, Qin-Yu, & Chee-Kheong, 2004; G.-B. Huang, Zhu, & Siew, 2006; G. 

Huang et al., 2015b). The SVM (Cortes & Vapnik, 1995), ELM (G. Huang et al., 

2015b), and ensembles of classifiers, are introduced in Subsections 2.1.5.1-3, 

respectively. 

 



   

33 
  

2.1.5.1 Support Vector Machine 

Support vector machine (SVM) (Cortes & Vapnik, 1995) has been commonly 

employed in objects classification, image segmentations, and scene classification tasks 

(Cortes & Vapnik, 1995; Mohandes, Deriche, & Aliyu, 2018; Somvanshi, Chavan, 

Tambade, & Shinde, 2016). The SVM's key concept is to learn the maximal margin 

parameters of the hyperplane to distinguish two groups on a training set. In MATLAB-

2019a, SVM is available as a function, fitcecoc (.). The fitcecoc function takes feature 

vectors and class labels and returns a fully trained model using 𝑆(𝑆 − 1)/2 binary 

SVM models, where S is the number of unique class labels. The interface of the 

function is Model = fitcecoc(x, y, ‘learners’, t), where x is the input feature matrix of 

the training images, and y is a categorical vector of class labels. ‘Learners’ indicates 

the SVM classifier kernel, such as ‘linear,’ ‘polynomial’, ‘Gaussian’, etc., detail of the 

SVM kernel is given in (Anguita, Boni, Ridella, Rivieccio, & Sterpi, 2005). The t is 

an optional parameters that specifies the properties of classifiers such as ‘linear’, 

‘cross-validation’, etc. The ‘Model’ indicates the trained model, which is used to 

classify the test data.  

2.1.5.2 Extreme Learning Machine 

The extreme learning machine (ELM) is “originally proposed for generalized single-

hidden layer feedforward neural networks” (G. Huang et al., 2015b), p.18. Its learning 

speed can be thousands times faster than traditional feedforward network learning 

algorithms like back-propagation (BP) algorithm and obtains better generalization 

performance (Guang-Bin et al., 2004), p. 985. Guang-Bin et al, (Guang-Bin et al., 

2004), p. 985, note that it reaches to the smallest training error, runs extremely fast, 

and in order to differentiate it from the other popular learning algorithms, it is called 

the “Extreme Learning Machine (ELM)”. “A layer in the network is the set of nodes 



   

34 
  

(neurons) in a column of the network”  (Gonzalez & Woods, 2018), p. 945. Each layer 

in the network can have a different number of nodes, but each node has a single output. 

A single neuron is a basic unit of a neural network, often called a node or unit. It 

receives input from other nodes or external source and compute an output (Gonzalez 

& Woods, 2018; Ujjwalkarn, 2016). Each input has an associated weight (w) 

(Ujjwalkarn, 2016). The node applies an activation function, h, to the weighted sum of 

its inputs as given in Figure 2.12. In this Figure, the x1 and x2 are numerical inputs and 

has weights w1 and w2 respectively. Additionally, it has another input 1 with weight b 

(called the bias) associated with it. Y is output of the neuron (Ujjwalkarn, 2016), in 

the range of [0,1] or [-1,1]. The output, Y is obtained by activation function. 

 
Figure 2.12: Sample of a single neuron. 

The input vectors x transformation is given by  (Gonzalez & Woods, 2018),  

𝑧(𝑥) =  𝑤𝑇𝑥 + 𝑏                                                         (2.16)  

where w and x are n-dimensional column vectors and 𝑤𝑇𝑥 is the dot product of the 

two vectors. The b is bias and z is result of the computation performance by the neuron. 

The equation is expressed in summation form as  (Gonzalez & Woods, 2018), 

z(x)= ∑ 𝑤𝑖𝑥𝑖 + 𝑏
𝑛
𝑖=1                                                       (2.17)  

The component of a vector x having length n are: 𝑥1, 𝑥2, … , 𝑥𝑛, 1 and component of 

1 

x1 

x2 

w2 

w2 

b 

Y h (w1*x1+w2*x2+b) (Output) 

(Inputs) 



   

35 
  

weight vector, 𝑤, are: 𝑤1, 𝑤2, … , 𝑤𝑛, 𝑤𝑛+1, where 𝑤𝑛+1 is the bias, represented by b 

in (2.16-17) (Gonzalez & Woods, 2018), pp. 935. The more detail is given in  

(Gonzalez & Woods, 2018), pp. 934-6. Activation function can be defined as: the 

output of the node denoted by 𝑎, is obtained by passing 𝑧 through ℎ(. ). ℎ(. ) is the 

activation function, and refer to its output, 𝑎 = ℎ(𝑧), as the activation value of the 

node (Gonzalez & Woods, 2018), p. 545. The activation function is non-linear function 

which introduces non-linearity into the output of a neuron. This is important because 

most real world sample data is non-linear and neurons to learn these non-linear 

representations (Ujjwalkarn, 2016). The several activation functions are used in 

practice, such as sigmoid and Gaussian function. The sigmoid function takes real 

value, z, as input and generates the output in the range of [0, 1]. The sigmoid function, 

ℎ(. ), is defined as (Gonzalez & Woods, 2018), p.944,  

ℎ(𝑧) =
1

1+𝑒−𝑧 
,                                                  (2.18) 

where z is the results of the computation performed by the neuron. The e-z is standard 

exponential function for input z. For example, x1=1.2, x2=1, w1=0.2, w2=0.5, and b=1, 

then the output of the (2.17) is become, 𝑧 = 1.2 ∗ 0.2 + 1 ∗ 0.5 + 1, z=1.74. Then, the 

output, Y, of the neuron using (2.18) is, 
1

1+𝑒−1.74 
= 1/(1+0.175)= 0.850. Results of 

activation function are used to decide that input pattern is belonged to which category. 

The more detail is given in (Gonzalez & Woods, 2018), p.949. 

The hidden layer/s is the layer between the input and output layers of the algorithm, in 

which the function applies weights to the inputs and direct them through the activation 

function as the output. Single hidden layer indicates only one layer between the input 

and output layers. 



   

36 
  

ELM provides efficient solutions for the applications of feature learning and image 

classification (G. Huang et al., 2015b), p.18. The ELM is described in (G.-B. Huang 

et al., 2006; G. Huang et al., 2015b). Implementation of the ELM is given at (G. Huang, 

Bai, Kasun, & Vong, 2015a). Generally, ELM algorithm requires the following 

parameters: ‘training features’, ‘training labels’, ‘test features’, ‘testing labels’, ‘L’, 

‘h’, and ‘C’ value and returns the trained model, prediction of testing images, and 

accuracy (optional output). L is number of hidden neurons (neurons of hidden layers). 

The ℎ indicates activation function. It uses ‘sigmoid’, ‘tribas’(triangular basis), and 

‘Gaussian’ (radial) as activation function, detail is given in (G.-B. Huang et al., 2006). 

C is the controlling parameter and its belong to (0.001,0.1,1,10,100) (G. Huang et al., 

2015b).   

2.1.5.3 Ensembles of Classifiers 

Ensembles of classifiers increase the performance of pattern recognition applications 

(Kittler, Hatef, Duin, & Matas, 1998; Mohandes et al., 2018; Snelick, Uludag, Mink, 

Indovina, & Jain, 2005; Tulyakov, Jaeger, Govindaraju, & Doermann, 2008). Typical 

ensembles of classifiers take features vector (𝑋′) and generate score vectors. Then 

these outputs from individual classifiers are used to produce a combined output for 

each class, as it is shown in Figure 2.13. 

 
Figure 2.13: General model of ensemble of classifiers. 



   

37 
  

To fuse the outputs of classifiers, two kinds of fusion strategies can be used: soft-level 

or score-level and hard-level fusion (Mohandes et al., 2018). Hard-level fusion 

involves summing the predictions for each class label and predicting the class label 

with the most votes, which is called as majority voting. Soft-level fusion or score-level 

uses estimate of the aposteriori probability or scores of the categories. It involves 

summing the predicted probabilities or score for each class label and predicting the 

class label with largest probability. The different rules can be used for predicting the 

class label, such as sum, max, product, and min rules. “Product rule quantifies the 

likelihood of a hypothesis by combining the aposteriori probabilities generated by the 

individual classifiers by means of a product rule” (Mohandes et al., 2018), p. 19630. 

The sum rule simply adds the weight of scores or aposteriori probabilities provided by 

each classifier for each class, and derives the class label for input image having the 

maximal sum value (Mohandes et al., 2018). “The max rule is an approximation of the 

sum rule and takes the maximum of the aposteriori probabilities (Mohandes et al., 

2018). In (Kittler et al., 1998; Mohandes et al., 2018; Snelick et al., 2005; Tulyakov et 

al., 2008), it is illustrated that the sum and product-rules are quite simple and have low 

error rate. 

2.1.6  Testing Images and Classification  

When a model is fully trained, the next step of 3D scene recognition is to evaluate or 

test the trained model (as shown in steps 5 and 6 of Figure 2.5). In testing model, 

suppose we have M input testing samples and their features, 𝐹𝑗
𝑡𝑒𝑠𝑡, 𝑗 = 1,2, . . , 𝑀,  (line 

7 of Algorithm 2.1) for each image 𝑇𝑆𝐼𝑗 is given to the trained model, 𝑀𝑜𝑑𝑒𝑙, (see 

lines 11-13 of Algorithm 2.1). The model predicts the class label, 𝑠𝑗, for each input 

image, 𝑇𝑆𝐼𝑗 j=1,2..M (see line 12 of Algorithm 2.1 and step 5 of Figure 2.5), which is 

defined as,  



   

38 
  

𝑠𝑗 = 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑀𝑜𝑑𝑒𝑙, 𝐹𝑗
𝑡𝑒𝑠𝑡), 𝑗 = 1,2, . . 𝑀,                                (2.19) 

where 𝑠𝑗 is predicted label of the input testing image 𝑇𝑆𝐼𝑗. M is test images. Predicted 

label 𝑠𝑗 is denoting the 3D category type, such as sky-background-ground.  

Meanwhile, model predict the aposteriori probability or score vector of the input 

image. The score vector or aposteriori probability distributed over the number of 

classes. The model can also predict 𝑠𝑐𝑜𝑟𝑒𝑗𝑛 vector distributed over categories, n, for 

each image 𝑇𝑆𝐼𝑗. If the ensemble of classifiers is used then these scores from each 

classifier can be combined using soft-level fusion and then final 3D scene geometry 

can be predicted as it discussed in Subsection 2.1.5.3. For example, if 𝑇 classifiers are 

used, then, the class label can be predicted by using sum rule, 

𝑠𝑗
′ = 𝑠𝑢𝑚−𝑟𝑢𝑙𝑒(𝑠𝑐𝑜𝑟𝑒

𝑡
𝑗𝑖
 
)
𝑡=1

𝑇
, 𝑖 = 1,2. . 𝑛, 𝑗 = 1,2…𝑀,                          (2.20) 

where T is an ensemble of classifiers, 𝑠𝑐𝑜𝑟𝑒𝑗𝑖
  is predicted score of 𝑡th classifier for 𝑗th 

input image and for 𝑖th class. The n is number of classes. M is testing images, and 

′𝑠𝑢𝑚_𝑟𝑢𝑙𝑒(. )’ is indicating the sum rule to combine the outcome of ensemble of 

classifiers. The 𝑠𝑗
′ is a predicted label of classifiers combination for input image, 𝑇𝑆𝐼𝑗 . 

2.1.7  Performance Metrics 

After testing, the last step (7) of Figure 2.5 is measuring the effectiveness of trained 

model. In order to evaluate the effectiveness, the different researchers use different 

calculation metrics. Most of the researchers calculate only accuracy of scene 

recognition, such as (Nedovic et al., 2010; Oliva & Torralba, 2001b) measure the 

accuracy of different classes. However, the state-of-the-art 3D scene recognition 

method (Lou et al., 2015) uses following metrics: confusion matrix (Ballabio, Grisoni, 

& Todeschini, 2018; Rosset, 2004), accuracy (Aghdam & Heravi, 2018; Lou et al., 

2015), means precision (Rosset, 2004), means recall (Rosset, 2004), and means F-



   

39 
  

score (Rosset, 2004). Let M samples are used in testing (line 14 of Algorithm 2.1). The 

𝑛 is the number of classes, cM represents the number of samples truly belonging to the 

𝑐-th class, while cM '  is the number of samples predicted belonging to the 𝑐-th class. 

The classification results can be represented in the confusion matrix (Ballabio et al., 

2018; Rosset, 2004). It is a square 𝑛 × 𝑛 matrix whose rows and columns represent 

true and predicted classes, respectively. Each its entry,
cgG , represents the number of 

samples belonging to 𝑐-th class and predicted as belonging to 𝑔-th class. The diagonal 

elements ccG represent the number of correctly classified samples, while remaining 

elements represent the number of incorrectly classified samples. Confusion matrix 

contains all the information related to the distribution of samples within the class and 

the classification performance. The number of test samples 𝑀 is (Ballabio et al., 2018; 

Rosset, 2004):  

M = ∑ ∑ 𝐺𝑐𝑔
𝑛
𝑔=1

𝑛
𝑐=1 .                                                 (2.21) 

The number of samples truly belonging to the 𝑐-th class is (Ballabio et al., 2018; 

Rosset, 2004): 

  M𝑐 = ∑ 𝐺𝑐𝑔
𝑛
𝑔=1 .                                                        (2.22) 

The number of sample predicted in the 𝑐-th class (𝑀′𝑐) is (Ballabio et al., 2018; Rosset, 

2004):  

M′𝑐 = ∑ 𝐺𝑐𝑔
𝑛
𝑐=1 .                                                      (2.23) 

Accuracy, Acc, is defined as the total number of truly predicted samples over total 

number of samples in dataset (Aghdam & Heravi, 2018; Lou et al., 2015). The 

accuracy is defined as:  



   

40 
  

Acc =
1

𝑀
∑ 𝐺𝑐𝑐
𝑛
𝑐=1 .                                                  (2.24) 

Precision, Pr(c), of the c-th class is defined as (Rosset, 2004): 

Pr(𝑐) =
𝐺𝑐𝑐

𝑀𝑐
′  .                                                       (2.25) 

then the average, Pr, is calculated by: 

Pr =
1

𝑛
∑ Pr(𝑐)𝑛
𝑐=1 .                                               (2.26) 

Recall, Re (c), is calculated as (Rosset, 2004): 

Re(𝑐) =
𝐺𝑐𝑐

𝑀𝑐 
  ,                                                       (2.27) 

the average, Re, is calculated as: 

Re =
1

𝑛
∑ Re(𝑐)𝑛
𝑐=1 .                                              (2.28) 

Finally, F-score, F(c), is calculated as (Lou et al., 2015; Rosset, 2004):  

F(𝑐) = 2
𝑅𝑒(𝑐)×Pr (𝑐) 

𝑅𝑒(𝑐)+Pr (𝑐)
 .                                             (2.29) 

The average F-Score is obtained by:  

F−Score =
1

𝑛
∑ F(𝑐)𝑛
𝑐=1 .                                          (2.30) 

2.2 Convolutional Neural Networks and Scene Recognition 

 
In this section, the basic concept of convolutional neural networks (CNN) is discussed. 

The CNN architecture is explained in Subsection 2.2.1. The standard CNN 

architectures that are used in our research are described in Subsections 2.2.2-3. 

2.2.1 Convolutional Neural Networks 

Neural networks are systems inspired by parallel distributed processing in the brain 

(Zurada, 1992). They show high classification when they are trained on a labeled 

dataset (Brownlee, April 24, 2019). Recently, the deep learning approaches show high 

accuracy in many computer vision applications including scene recognition (B. Zhou 

et al., 2018), medical images (Hassantabar, Ahmadi, & Sharifi, 2020), object detection 



   

41 
  

(He et al., 2016), etc. A deep neural network is the name used for ‘stack neural 

networks’, which is composed of several layers. The most wide used types of deep 

network is the convolutional neural networks (CNN). It adopts special architecture that 

is particularly focus on images classification (Brownlee, April 24, 2019). In Figure 

2.14, a standard CNN’s architecture is shown. It consists of convolutional layers, 

pooling layers, and fully connected (FC) layers. Input and output indicate input image 

and predicted class type, respectively. The detail of each layer is given below in 

Subsections 2.2.1.1-4, respectively. 

 
Figure 2.14: A standard deep CNN architecture (Phung & Rhee, 2019).  

2.2.1.1 Convolutional Layers 

It is a fundamental component of the CNN architecture that performs feature 

extraction, and it typically consists of combination of linear and nonlinear operations, 

i.e. convolutional operation and activation function (define in Section 2.1.5.2). 

Convolution operation is explained in Section 2.1.4 and formula is given in (2.1). 

Convolutional operation is applied on the input image, and yields a new value for each 

pixel, as Figure 2.10 illustrates. It is called as a feature map, an example is shown in 

Figure 2.15 in which 2D array size of 5 × 5 is given and 3 × 3 kernel is applied as 

convolutional operation. Next, the output of the convolution operation is then given to 

a nonlinear activation function. The activation function is deciding what value is to be 



   

42 
  

given to the next neuron. The most common nonlinear activation function, rectified 

linear unit (ReLU) is used, which simply computes the function:  

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥),                                            (2.31) 

where each x is numerical input which is taken from previous neuron (Krizhevsky, 

Sutskever, & Hinton, 2017; LeCun, Bengio, & Hinton, 2015). The output is in the 

range of [0,∞]. The m𝑎𝑥(. ) is a function which returns largest value from the numbers 

provided. 

  
Figure 2.15: Example of convolutional operation (Yamashita, Nishio, Do, & 

Togashi, 2018). 

2.2.1.2 Pooling Layers 

The pooling layer captures an increasingly larger field of view and it reduces the 

features map (Yamashita et al., 2018). The most popular form of pooling operation is 

max-pooling. It extracts patches from the input image feature maps, outputs the 

maximum value in each patch, and discard all the rest values. A max-pooling with a 

filter of size 2 × 2 is commonly used in practice (Yamashita et al., 2018), p. 616. An 

example is shown in Figure 2.16 in which an input data is divided into four patches 

and a maximum value is selected from each of the patches. Another pooling operation 

is global average pooling(GAP) (Yamashita et al., 2018). In this operation, the feature 

map with size of ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ (see Figure 2.15), is down sampled into a 1 × 1 

array by simple taking the average of all the elements in each feature map, whereas the 

depth of feature maps is unchanged (Yamashita et al., 2018). Depth indicates the length 



   

43 
  

of the feature vector that corresponding to the number of feature maps (feature vector 

with length n, where n is number of feature maps). Global pooling is applied only once 

before the FC layers. 

    
Figure 2.16: Example of max-pooling using 2 × 2 conv. filter. 

2.2.1.3 Fully Connected (FC) Layer 

The last layer of the CNN architecture is FC layer. The output feature maps of the final 

convolution or pooling layers is typically represented in a 1D array of vector and 

connected to a one or more FC layers, also called as dense layers (Yamashita et al., 

2018). In FC layer, every input is connected to every output by a learnable weight 

(Yamashita et al., 2018), as illustrated in Figure 2.17. The 1,2, … , 𝑛, denotes the 

number of input features to FC layer. The weights are generally learnt during training, 

therefore, it is called as learnable weight. FC layer has same number of outcome nodes 

as the number of categories. Each FC layer is followed by a non-linear function, such 

as ReLU, as given in (2.31). Furthermore, last/output layer is typically different from 

the input and middle FC layers. An activation function, “softmax function” is applied 

for classification problem (Yamashita et al., 2018), which outputs class probabilities 

or score vector, in which each value ranges between 0 and 1 and all values sum to 1. 



   

44 
  

The softmax function is special type of activation function, which is computed as 

(Brébisson & Vincent, 2015), 

𝑓(𝒙𝑖) =
exp(𝑥𝑖)

∑ exp(𝑥𝑗) 
𝑆
𝑗=1

, 𝑖 = 1,2. . 𝑆,                                     (2.32) 

Where 𝑓(𝑥𝑖) is softmax function, 𝑥𝑖 input vector, 𝑒𝑥𝑝(𝑥𝑖) is standard exponential 

function for input vector. S is number of classes. More detail of softmax function is 

given in (Brébisson & Vincent, 2015). Finally, the output of softmax function is 

measured in terms of accuracy or any metric as it depends on the classification 

problem. In this research, the accuracy is used, which can be measured using equation 

(2.24). 

 
Figure 2.17: Basic structure of fully connected layer. 

2.2.1.4 Training and Validation of a CNN Architecture 

 Network training is a method of identifying biases in convolution layers and weights 

in FC layers that reduce variations on a training dataset between performance 

predictions and given ground truth labels (Gonzalez & Woods, 2018), p. 953. 

“Backpropagation algorithm is the method commonly used for training neural 

networks where loss function and gradient descent optimization algorithm play 

essential roles” (Yamashita et al., 2018), p.617. Back propagation (BP) algorithm 

finding the value of the weights of FC layers and biases. It involves four basic steps 



   

45 
  

(Gonzalez & Woods, 2018), p. 953: (1) input the samples (training images), (2) a 

forward pass through the network to classify all the training samples and measure the 

classification error, (3) a backward (backpropagation) pass that feeds the performance 

error back through the network to measure the changes expected to adjust the 

parameters, and (4) updating the weights and biases in the network. “These steps are 

repeated until the error reaches an acceptable level” (Gonzalez & Woods, 2018), p.953. 

The detail of BP and training process is given in Chapter 12, (Gonzalez & Woods, 

2018), pp 953. Loss function (L) is a cost function, which is calculated the 

classification error (i.e. accuracy) between output predictions of the network and given 

ground truth labels (accuracy defined in (2.24)). The parameters are updated by 

stochastic gradient descent (SGD) optimization algorithm that iteratively updates the 

parameters including weights, basis of the architecture to minimize the classification 

error. This process is given in MATLAB (version 2018b) as a function that can be 

applicable for new image dataset. The function is defined as: Model = trainNetwork 

(TrainData, TrainLabels, ‘Pre-trained CNN’, ‘options’), where ‘TrainData’ indicates 

training images, and ‘TrainLabels’ is ground truth labels of training images. The ‘Pre-

trained CNN’ model is already trained model on the similar large dataset. Instead of 

building a model from scratch to solve the classification problem which need a large 

dataset and huge effort, the pre-trained model can be used as a starting point (Tang, 

Wang, & Kwong, 2017a). It consists of multiple layers and it allows fixed size of input 

image (as details of the different layers are given above). The fixed size mean the size 

of receptive field such as GoogLeNet (Szegedy et al., 2015) accept 224x224 pixels 

size of image in the RGB color space. Every architecture has different number of layers 

(most useful architectures are given in Section 2.2.2-3). The standard deep CNN 

architectures with different number of layers, such as AlexNet (Alex, Sutskever, & 



   

46 
  

Hinton, 2012), GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016), and VGG 

(Simonyan & Zisserman, 2015) are available in Matlab package, which can be easily 

installed and can be used. The last parameters, ‘options’, contain training parameters, 

such SGD, initial learning rate (e.g. 0.005), number of epoch (e.g. 20), and batch size 

(e.g. 16). The batch size indicates a subset of training dataset (detail is given in 

(Yamashita et al., 2018)). After completing the training process, it returns a trained 

model, ‘Model’. This model can be used to classify test images, and its performance 

can be calculated by metrics given in Subsection 2.1.7. The standard CNN 

architectures, namely GoogleNet (Szegedy et al., 2015) and ResNet (He et al., 2016) 

architectures are briefly described below. 

2.2.2 GoogLeNet Architecture 

The GoogLeNet (Szegedy et al., 2015) is the winner of the 2014 ILSVRC competition 

on ImageNet dataset (J. Deng et al., 2009). The main objective of the GoogLeNet 

architecture is to approach high accuracy with a reduced computation cost (Szegedy et 

al., 2015). It introduced the new concept of inception module in CNN, whereby it 

incorporates multi-scale convolutional transformation by splitting, transform, and 

merge idea, as shown in Figure 2.18. In inception module, the fixed size of 

convolutional filters (1 × 1, 3 × 3, 𝑎𝑛𝑑 5 × 5) and 3x3 max-pooling operation are 

used in a parallel way on the input image and the output of these filters are stacked 

together to generate final output for next module (Szegedy et al., 2015). In Figure 2.18, 

inception module, ‘Module 1’, is shown with its conv., pooling filters, and number of 

stride (S). The filter moves from one position to the next position by number of pixels, 

which is called “stride”. In this way, it captures spatial features at different scales. The 

standard GoogLeNet architecture consists of 9 inception modules and it contains three  



   

47 
  

 
Figure 2.18: GoogleNet architecture (Szegedy et al., 2015). 

 

 



   

48 
  

auxiliary classifiers, softmax 0, softmax 1, and softmax 2, connected after each of the 

three modules, respectively, (see Figure 2.18). The softmax function is defined in 

equation (2.32). The GoogleNet architecture has an additional conv., max-pooling 

layers at the beginning and three GAP layers before FC layers, which are connected 

individually with three auxiliary classifiers. Authors show that performance of 

auxiliary classifiers was relatively minor (around 0.5%) when the ImageNet dataset is 

used. In this architecture, the parameters are reduced from 60 million (AlexNet (Alex 

et al., 2012)), to 4 million, and it achieves a top-5 error rate of 6.67% (Szegedy et al., 

2015). The parameters are sum of all weights and biases in the network (Alom et al., 

2018). The two type of error rates are used (Alex et al., 2012): “top-1 and top-5, where 

the top-5 error rate is the fraction of test images for which the correct label is not 

among the five labels considered most probable by the model” (Alex et al., 2012), p.2. 

In Matlab the GoogLeNet is available as a pre-trained model on ImageNet dataset, 

𝑛𝑒𝑡 =  𝐺𝑜𝑜𝑔𝐿𝑒𝑁𝑒𝑡, which can be used as input to the trainNetwork(.) function to 

train the new model according to the given image dataset. Furthermore, the 

intermediate modules can be used for training the model. The features from these 

modules can be extracted using Matlab function, X1 = activations (net, Training data, 

layer); X’1= squeeze (mean(X1,[1 2]))’. Then these features can further use for training 

the classifier. Activation(.) function takes pre-trained CNN model (net), training data 

(labels and images), and particular name of the layer (mostly max-pooling layer) as 

input and generates the feature maps, X1. X1 is high dimensional matrix and it has 

different dimensions at different layer. E.g., 7x7x1000 dimensional array (see Figure 

2.18, (avg. pool 7x7) before softmax 2). The squeeze (.) function takes the X1 with [1, 

2] parameters and returns 1D array, feature vector, e.g., with the length of 1000, if 



   

49 
  

7x7x1000 array is given. Thus, these functions are used as GAP operation to extract 

the feature from any intermediate layer. 

2.2.3 ResNet Architecture 

The ResNet was introduced by He et al. (He et al., 2016) which is considered as 

continuation of deep network. ResNet wins the CNN architectural competition by 

introducing the concept of residual learning in deep CNN model and derived an 

efficient methodology for learning the deep network. The standard architecture is 

shown in Figure 2.19. The model consists of several blocks, each block is called as 

residual block or identity block. Residual block, as shown in the top left of Figure 2.19, 

is the basic structure of the ResNet architecture to learn the residual function of F(X), 

which is related to the standard function of H(X)=F(X)+X. The H(X) is learned by 

model which is closer to identifying function X than random. Thus, instead of having 

a network which learns H(X) from randomly initialized weights, the residual F(X) is 

learned. In this way, it saves the training time and also solve the problem of vanishing 

gradient by including the skip connections (He et al., 2016). The vanishing gradient 

problem is some cases, the gradient is vanishingly small, and in worst case it may 

completely stop the neural network from further training (Hochreiter, Bengio, 

Frasconi, & Schmidhuber, 2001). A skip connection allows the information of 

previous layer to flow more easily to the next layer, as shown in Figure 2.19. The 

ReLU is used as activation function (defined in (2.31)) in each residual block. 

Moreover, the downsampling is performed directly by conv. layers that have a stride 

2. The ResNet model has an additional conv layer at the beginning and GAP layer (avg 

pool in Fig 2.19) at the end after the last layer. It has FC layer with 1000 neurons and 

a softmax (He et al., 2016). More detail of the ResNet architecture is given in (He et 

al., 2016). It introduces with three different versions mainly, 50, 101, and 152 layers 



   

50 
  

deeper. It achieves 3.57% of top-5 error rate on ImageNet dataset (J. Deng et al., 2009) 

when the 152-layers are used. He et al. (He et al., 2016) also applied the ResNet with  

 
Figure 2.19: ResNet architecture (He et al., 2016).  



   

51 
  

50 and 101-layers deeper architectures on ImageNet dataset and achieve 5.25% and 

4.60% top-5 error rate, respectively. The Matlab provides 𝑛𝑒𝑡 = 𝑅𝑒𝑠𝑁𝑒𝑡50/101, as 

pre-trained model on ImageNet dataset, which can be used as input to the 

trainNetwork(.) function to train the new model according to the given image dataset. 

The deep features can be extracted from intermediate residual blocks as well by using 

the Matlab functions as described in above Section 2.2.2. 

2.3  Scene Recognition Methods and Results 

In this section, the existing methods for scene recognition are described. The summary 

of these methods are given in Table 2.1, in which author name of each method, dataset, 

methodology, and results are elaborated. The datasets detail is summarized in Table 

2.2, which are used by related methods. The dataset name, number of categories, scene 

types (indoor or outdoor), number of images, size of images, and images per category 

detail are given in this Table.  

Oliva et al. (Oliva & Torralba, 2001b) proposed a computational model where in order 

to represent the spatial structure of the image scene, they use local and global image 

scene data. It is estimated the relation between spatial properties and scene categories 

by using Gist features. The model suggested that images have a common spatial 

structure in a scene class that can be derived without image segmentation. The 

mathematical description of the spatial structure of the scene is represented using Gist 

features. It catches the dominant perceptual features of a scene, such as naturalness, 

openness, roughness, expansion, and ruggedness of a scene (Oliva & Torralba, 2001b). 

It achieves 83.0% accuracy on eight different outdoor scene categories. Hoiem et al. 

(Derek Hoiem et al., 2007) introduce a framework of outdoor 3D scene recognition 

from a single image. The method was designed for 3 outdoor categories including, sky, 



   

52 
  

background (vertical), and ground (support). It uses superpixels and multi-

segmentations and variety of cues such as color, texture, location, and perspective 

features to estimate the 3D surface of the outdoor images. However, the framework 

can only handle the outdoor images. It achieves 88.10% recognition accuracy on 

‘about 300’ images dataset. 

Table 2.1: Summary of previous work.  

Rows 

No. 

Name of 

Authors 

Name of 

datasets 
Methodology 

Performance 

Metric (%) 

1 

 Oliva et al. 

(Oliva & 

Torralba, 

2001b) 

8-scene 

categories 

Use GIST descriptors at 4 ×
4 uniform grid patches. 100 

samples for training of each 

class and rest for testing 

 Accuracy 

(ACC): 83.70 

2 

Hoiem et al. 

(Derek 

Hoiem et al., 

2007) 

3 

geometric 

classes 

Superpixels and multi-

segmentations utilization. 

Use different cues including 

color, texture, shape, and 

location.  

ACC: 88.10 

3 

Nedovic et al. 

(Nedovic et 

al., 2010) 

stage 

dataset  

Use texture gradient, color, 

and perspective line features 

at 4 × 4 grid patches.  

ACC: 38.0 

4 

Lou et al. 

(Lou et al., 

2015) 

stage 

dataset  

Predefined template-based 

segmentation and structure 

SVM. 50% for training and 

50% for testing 

ACC: 47.30, 

precision(PR): 

45.60,  recall 

(RE):44.90, F-

score: 44.20 

5 

J. Sánchez et 

al. (Sanchez 

et al., 2013) 

SUN 397 

dataset 

BoW, fisher & pyramid 

based method, Gaussian 

Mixture models (GMM). 

50% images for training and 

50% for testing 

ACC: 47.20  

6 

Zafar et al. 

(Zafar, 

Ashraf, Ali, 

Ahmed, 

Jabbar, & 

Chatzichristo

fis, 2018) 

15-scene, 

UCM-21 

datasets 

BoW & orthogonal vector 

histogram (OVH). 15-scene: 

100 images for training and 

rest for testing. UCM-21: 

80% for training and 20% 

testing. 

ACC 

 15-scene: 

87.07, 

UCM-21: 100 

7 
Ali et al. (Ali 

et al., 2018) 
15-scene 

Hybrid geometric spatial 

image representation 

(HGSIR) method. 100 

ACC: 90.41 



   

53 
  

images for training and rest 

for testing 

8 

Patalas et al. 

(Patalas & 

Halikowski, 

2019)   

Hand 

written 

image 

dataset  

Use CNN replacing FC layer 

with SVM. 60000 images for 

training 10000 images for 

testing. 

ACC: 99.04 

9 

Tang et al. 

(Tang et al., 

2017a) 

15-scene, 

MIT67, 

SUN397 

datasets 

Intermediate layer features 

of GoogLeNet model and 

score-level fusion. 15-scene: 

100 images for training and 

rest for testing. MIT67: 80% 

for training 20% for testing. 

SUN397: 50% for training 

and 50% for testing  

ACC 

15-Scene: 

92.90,  

MIT67: 79.63, 

SUN397:64.06 

10 

Liu et al. 

(Shaopeng 

Liu, Tian, & 

Xu, 2019) 

15-scene, 

MIT67, 

SUN397 

datasets 

Intermediate layer features 

of ResNet model, softmax 

function. It uses same 

setting given in Tang et al. 

(Tang et al., 2017a) 

ACC 

 15-scene: 

94.04, 

MIT67:74.63, 

SUN397:65.46 

11 

Chen et al. 

(Wang, Peng, 

& Lin, 2021) 

15-scene,   

UCM-21 

Robust local metric learning 

via least square regression 

regularization. It uses same 

setting as used in (rows: 

6,8,9) 

ACC 

15-scene: 

93.50, 

UCM-21: 

97.81 

 

12 

Chen et al. 

(Wang, Peng, 

& De Baets, 

2020) 

15-scene, 

MIT67, 

UCM-21 

datasets 

Intermediate layer features, 

adaptive discriminative 

metric learning. It uses same 

setting given in Tang et al. 

(Tang et al., 2017a) and for 

UCM-21: 80% for training 

and 20% testing.  

ACC 

15-scene: 

96.39, 

MIT67:88.43, 

UCM-21: 

99.14 

  

 

  Table 2.2: Summary of the datasets used in related methods. 

Rows 

No. 
Database name 

Indoor/ 

Outdoor 

No. of 

classes 

No. of 

images 

Size of 

images 

(pixels) 

No. of 

image per 

category 

1 
SUN 397 (Xiao 

et al., 2010) 
Both 397 130519 

Different 

size 
100 to 2361 

2 

MIT67 

(Quattoni & 

Torralba, 2009) 

Indoor 67 15620 
Different 

size 
At least 100 

3 

8-categories  

(Oliva & 

Torralba, 

2001b) 

Outdoor 8 2688 
256
× 256 

292 to 410 



   

54 
  

4 

15-scene 

(Lazebnik et al., 

2006) 

Both 15 4486 
different 

size 
200 to 400 

5 

stage dataset 

(Nedovic et al., 

2010) 

Both 12 
About 

2000 

Different 

size 

Different 

no. of 

images 

6 

UCM-21 (Yang 

& Newsam, 

2010) 

Remote 

scene 
21 2100 

256
× 256 

100 

7 

3 geometric 

classes (Derek 

Hoiem et al., 

2007) 

Outdoor 3 300 
Different 

size 

Different 

no. of 

images 

8 

Hand written 

digits dataset  

(Yann LeCun, 

Corinna Cortes, 

& Burges, 

2010) 

- 10 70000 28x28 

Different 

no. of 

images 

 

Some approaches of scene recognition are based on Bag of Words (BoW) model 

(Lazebnik et al., 2006), e.g., J. Sánchez et al. (Sanchez et al., 2013) use dense scale 

invariant feature transform (SIFT) features in the Fisher Kernel (FK) framework as an 

alternative patch encoding technique and it achieves reasonable accuracy of 47.2% by 

using 50% training samples of SUN397 dataset (Xiao et al., 2010). The SUN397 

contains 397 scene categories with 130519 images in total (detail is given in Table 

2.2). Similarly, Zafar et al. (Zafar, Ashraf, Ali, Ahmed, Jabbar, & Chatzichristofis, 

2018) proposed a new model based on BoW by computing an orthogonal vectors 

histogram (OVH) for triplets of identical visual words. The histogram–based 

representation is computed by using magnitude of these orthogonal vectors. This 

model is based on the geometric relationships among visual words and computation 

complexity of these approach increases exponentially with increasing in the size of 

codebook (Ali et al., 2018; Zafar, Ashraf, Ali, Ahmed, Jabbar, Qureshi, et al., 2018). 

It achieves 87.07% recognition accuracy on 15-scene categories (Lazebnik et al., 2006) 



   

55 
  

using 100 images for training and remaining for testing. It also utilized the UMC-21 

dataset (Yang & Newsam, 2010) as well and achieved 100% recognition accuracy 

when the 20% images were used for testing. UMC-21 is remote sensing categories 

dataset (summary is given in Table 2.2). Another recent approach, hybrid geometric 

spatial image representation (HGSIR) method (Ali et al., 2018) achieves the maximum 

recognition accuracy of 90.41% on 15-scene image dataset. The above methods 

classify images in different categories such as coast, beach, mountain, kitchen, 

bedroom, and office, etc. However, the number of scene categories is very large. E.g., 

the SUN dataset (Xiao et al., 2010) has 397 scene categories. On the other hand, UMC-

21 is not suitable for recognizing the world in 3D scene geometries (stages). 

Nedovic et al. (Nedovic et al., 2010) classified scenes into twelve stages, i.e., sky-

background-ground, ground, and background-ground, etc. Nedovic et al. (Nedovic et 

al., 2010) extract features set including parameters of Weibull distribution (four 

features), color (five features), and Perspective line (eight) features from 𝑛 × 𝑛 patches 

of an image for geometry classification. This algorithm uses multi-class SVM for stage 

recognition and achieves 38.0% recognition rate on their proposed a stage dataset 

which contains about 2000 images (summary is given in Table 2.2). Lou et al. (Lou et 

al., 2015) utilized template-based segmentation and extract HOG (Dalal & Triggs, 

2005) (nine features), color features (HSV and RGB, 6 features), parameters of 

Weibull distribution (J.-M. Geusebroek & Smeulders, 2005) (4 features) for each 

image patch and introduced a graphical technique to learn an image presentation from 

features to scene classes. In consequence, Lou et al. (Lou et al., 2015) achieves 47.30 

% accuracy of stage recognition on 50% testing images by utilizing the stage dataset 

(Nedovic et al., 2010). However, this method is complex and generates more than 100 



   

56 
  

segments for each template and finding the best fitting segment over component of a 

template is required extra computation. 

CNNs have recently revolutionized computer vision and demonstrate substantial 

output achieved in many applications, such as classification of image scenes (B. Zhou 

et al., 2018), texture recognition, and facial applications (Mei Wang & Deng, 2018), 

background of CNN is given in Subsection 2.2. The popular CNNs architectures, such 

as GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 2016), AlexNet (Krizhevsky 

et al., 2017), and VGG-16 (Simonyan & Zisserman, 2015) are required the large 

amount of labelled data for training process (J. Deng et al., 2009) with a specified input 

size and achieve a high rate of accuracy. The classification performance of CNN based 

methods depends on an input dataset. Recent studies, such as (Patalas & Halikowski, 

2019) having claimed that replacing the trainable classifier (conv. Softmax function) 

of a deep CNN model with SVM can enhance the recognition performance and 99.04 

% accuracy on hand written dataset is achieved (Yann LeCun et al., 2010). The CNN 

based methods require a large labeled dataset for a particular issue which is one of the 

CNN main challenges. And CNN architecture suffers from the overfitting problem 

when small or medium-scale datasets are utilized and this problem is existing with 3D 

geometry recognition as well. 

Some researchers utilize the intermediate and FC layers features for scene recognition. 

The standard CNN methods only take semantic information by activation of the FC 

layer, which are robust and show good performance of scene recognition. However, it 

loses the object description details during the multiple convolutional and pooling 

operations when the small or medium dataset is used (Shaopeng Liu et al., 2019; Tang 

et al., 2017a). To address this issue, Tang et al. (Tang et al., 2017a) introduced G-



   

57 
  

MS2F model which investigates the intermediate layers features of GoogLeNet 

(Szegedy et al., 2015) model for scene recognition. The inception modules in 

GoogLeNet contribute to limiting the size of parameters and the difficulty of the 

model. These modules are divided into three sections and three objective functions 

(classifiers) are included after every three inception modules to solve the problems of 

over-fitting (detail is given in subsection 2.2.2). The output features of each of the parts 

are fed to a classifier and predicted scores which are fused by using product-rule for 

final decision. It achieves 92.90% recognition accuracy on 15-scene image dataset 

using standard setting (100 images for training and remaining for testing, see Table 

2.2). Author also applied this method on MIT67 (Quattoni & Torralba, 2009), and 

SUN397 dataset and it achieved 79.63% and 64.06%, respectively. MIT67 is indoor 

67 categories dataset which contains 15620 images in total (summary is given in Table 

2.2). As ResNet model obtained higher performance than GoogLeNet model (see 

Subsection 2.2.3), Liu et al. (Shaopeng Liu et al., 2019) proposed a novel ResNet-

based model by utilizing multi-layer features and taking advantage of these features 

and fused them for scene classification by softmax function (FTOTLM). Multi-layer 

features denote the intermediate layer features of CNN model. Liu et al. (Shaopeng 

Liu et al., 2019) use the pre-trained 18-layer ResNet contains 8 residual blocks. Each 

of the blocks can be used for feature extraction while it is not wise to extract features 

from each block because it is similar to the adjacent block and it increases the 

redundancy and complexity of the model. Therefore, Liu et al. (Shaopeng Liu et al., 

2019) use 5 residual blocks to extract features. It increases the dimensionality which 

is reduced by using GAP. This model obtains 94.04% recognition accuracy on 15-

scene dataset. Also it achieves 74.63% and 65.46% accuracy on MIT67 and SUN397 

datasets, respectively. Chen et al. (Wang et al., 2021)  introduced a novel method, 



   

58 
  

called “robust local metric learning via least square regression regularization” (RLML-

LSR), to learn a more advance distance metric for scene categorization. This method 

achieves 98.33%, 97.81%, and 93.50% recognition accuracy on UCM-21, 8-categories 

sports image dataset, and 15-scene datasets, respectively. Chen et al. (Wang et al., 

2020) also proposed a deep feature fusion method, called “deep feature fusion through 

adaptive discriminative metric learning (DFF-ADML)”, to determine the 

complementary and consistent information for scene recognition. It achieves 96.39%, 

88.43%, 99.14% scene recognition accuracy on 15-scene, MIT67, and UCM-21 

datasets, respectively. These methods solved the scene recognition problem by 

adapting the intermediate layer features.  

In conclusion, the above datasets, such as 8-categories, MIT67, UCM-21, and SUN397 

are very large or only contain indoor or outdoor scene images. In addition, the datasets 

are not annotated on the base of image scene geometry structure, therefore, these 

datasets are not sufficient for 3D scene recognition problem. However, 15-scene 

datasets can be used to test the 3D scene recognition model as this dataset categories 

are likely to the stages, but the dataset contains 4485 images in total which are not 

enough to efficiently train a deep CNN model. The Nedovic et al. (Nedovic et al., 

2010) and Lou et al. (Lou et al., 2015) use the 3D scene geometry dataset (stage 

dataset, see Table 2.2), but this dataset is not publically available. 

2.4 Problem Definition 

In this thesis, the 3D scene recognition problem from a single image is considered, 

which is important for many applications of computer vision, such as robot navigation 

system, 3D TV, scene understanding. The problem of 3D scene recognition can be 

described in three following parts: 



   

59 
  

1) The recent approaches of 3D scene recognition, (Lou et al., 2015; Nedovic et al., 

2010), were applied on the limited images (about 2000 images), which did not reach 

the significant level of 3D scene recognition as results which were shown in 

literature study. And their classification performance are not enough to well 

distinguishing the scene images with complex structure. Therefore, it needs a deep 

investigation of 3D scene recognition and requires a novel approach, which should 

achieve sufficient performance of 3D scene recognition for medium scale datasets. 

2) The recent studies of scene recognition are based on deep CNN, which achieve 

significantly high performance on large image datasets as compared to traditional 

approaches. However, particular 3D scene geometry recognition using CNN is not 

well investigated. Meanwhile, the CNN based methods require a large labeled 

dataset for a particular scene classification problem, which is one of the CNN main 

challenges. The datasets of 3D scene geometry are not publically available and it is 

big obstacle to evaluate the new idea of 3D scene recognition. Therefore, it is 

required to introduce a new 3D scene geometry dataset, which should be suitable 

for learn the recent machine learning algorithms, such as deep CNN. 

3) Some researchers utilize the intermediate layer features of CNN for scene 

classification when the medium scale datasets are available. However, intermediate 

layer and higher layer features still show the weak performance because of losing 

the scene shape, color, texture information, and scene to object relationship when 

the images are passing from multiple convolutional and pooling operations. It needs 

more attention to investigate the complementary and consistent features of 3D scene 

recognition at intermediate layers. 

The above problems are investigated and solutions are proposed in Chapters 3-5, 

respectively.



   

60 
  

Chapter 3 

3D SCENE RECOGNITION USING SEGMENTATION-

BASED FEATURE EXTRACTION METHOD 

In this chapter, we introduce a novel segmentation-based feature extraction method of 

3D scene recognition. Literature study (Lou et al., 2015) shows that the predefined 

templates are rough 3D scene geometries, which can be used for segment the input 

image for feature extraction as it is discussed in Subsection 2.1.3. Inspired by this idea, 

we propose a novel method of segmentation-based feature extraction that utilizes the 

predefined templates and the ensemble of classifiers (see detail in Subsection 2.1.5.3). 

Each template represents unique rough structure and provides different segments. 

Features are extracted by following these template-based segments and then fed into 

individual classifier. Then classifiers outcome are combined using sum rule. Lou et al. 

(Lou et al., 2015) use Carrira and Sminchinsescu (Carreira & Sminchisescu, 2012) 

segmentation method, as described in Subsection 2.1.3. However, this technique 

generates hundreds of segments for each input image and to select the segment that 

has largest overlap-to-union score is an expensive task as it requires to compare each 

template component to each segment. In contrary, the active contours algorithm (Chan 

& Vese, 2001) can be used for template-based segmentation, which can generate one 

segment for one template-component, the description of active contours algorithm is 

given in Subsection 2.1.3. Next, the Segmentation-based feature extraction method 

uses ensemble of classifiers because of each template has unique structure and 

template generates different segments for feature extraction. Therefore, it is logical to 



   

61 
  

use an individual classifier for each template. 

The design of the method is given in Section 3.1. Its implementation, testing, and 

experimental results are given in Section 3.2. Summary of this method is given in 

Section 3.3. 

3.1 Design of Segmentation-Based Feature Extraction Method 

In this section, the segmentation-based feature extraction method is defined by 

Algorithm 3.1 and illustrated by Figure 3.1. For more understanding, we include the 

Matlab codes in Appendices corresponding to each main function of this algorithm. 

Compared to Algorithm 2.1, the Algorithm 3.1 contributes segmentation process, 

ensemble of classifiers, which are associated with T number of templates, and the 

combination of scores of T classifiers. The Algorithm 3.1 takes T templates, N training 

images, Ɲ total number of images, YN training labels, and YM testing labels, S classes 

as inputs and generates accuracy (Acc), precision (Pr), recall (Re), and F-score for 

testing images. The method consisting of three main steps for the 3D scene recognition 

of an image by exploiting template-based segmentation and feature extraction, the 

training and testing of an ensemble of classifiers, and the fusion of the ensemble of 

classifiers. Step 1: the template-based segmentation and feature extraction procedures 

are discussed in Subsection 3.1.1 (lines 1-6 of Algorithm 3.1). Step 2: classifier 

training and the testing of the ensemble of classifiers are described in Subsection 3.1.2 

(lines 7-17). Step 3: the fusion of the ensemble of classifiers are explained in 

Subsection 3.1.3 (lines 18-21).  

3.1.1 Template-Based Segmentation and Feature Extraction Procedures 

In this step of the 3D scene recognition method, each image is parsed to predefined 

templates T, as shown in Figure 3.1. Each template generates a different set of  



   

62 
  

Algorithm 3.1 Method of 3D Scene Recognition using segmentation based 

features extraction 

Input: T templates, N training images, Ɲ total number of images, S classes, YN  

training labels, YM testing labels 

Output: Acc, Pr, Re, F-score 

 // Template–based segmentation and features  extraction 

1: for j=1:Ɲ  do     // for each image 
jI  

2:    for t=1:T do 

3:       𝑆𝑒𝑔𝑡𝑗 = 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑏𝑎𝑠𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑡, 𝐼𝑗) // according to 

Algorithm 2 

4:     𝑋𝑡𝑗= 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑆𝑒𝑔𝑡𝑗, 𝐼𝑗) // feature vector for image 
jI , t is  

a certain template  

5:    end for 

6: end for 

// Training & testing 

7: for t=1:T do       

8: 𝑋̌𝑡 = {(𝑋𝑡𝑗, 𝑌𝑗)}𝑗=1
𝑁

 // N is a number of training samples. 

9: end for 

10: for t=1:T do             

11:   𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐶𝐿𝑡 = 𝐶𝐿𝑡(𝑋̌𝑡),  //where 𝑋̌𝑡  is used to train tth classifier         

12: end for 

// Testing (prediction)  

13: for j=N+1: Ɲ  do     // loop on M test images 

14:    for t=1:T do           //loop on classifiers  

15: 𝑃𝑡𝑗
𝑆 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐶𝐿𝑡, 𝑋𝑡𝑗) // 𝑃𝑡𝑗

𝑆  is S-dimensional score vector 

for an image Ij.    

16:    end for //t      

17: end for//j                                                                                               

// Classifiers combination 

18: for j=N+1: Ɲ  do        // M test images  

19:  
jl = Sum_rule ({𝑃𝑡𝑗

𝑆 } T

t 1
), fusion of T scores                              

20:  end for//j 

//Performance measures  

21:  [ Acc, Pr, Re,  F-score]=Calculate_Measures (𝒍’, YM).  // YM is a true 

labels  

end Algorithm 

 

segments and returning segments are used to extract the feature set, as steps are given 

on lines 1-6 in Algorithm 3.1. Line 3 derives segments, 𝑆𝑒𝑔𝑡𝑗, from an image 𝐼𝑗 by 

using template, 𝑡, 𝑡 = 1,2, . . 𝑇. On Line 4, the features are extracted from 𝑆𝑒𝑔𝑡𝑗, and  

are assigned to a vector 𝑋𝑡𝑗. The detail of template-based segmentation procedure is 

explained in Section 3.1.1.1 and the feature extraction procedure is described in 



   

63 
  

Section 3.1.1.2. 

 
Figure 3.1: 3D scene recognition using segmentation-based features extraction. The 

predefined templates are following by Figure 2.8 (a)-(h)). Seg is segmentation, Xt is 

feature vector for each template t. CLt is 𝑡th classifier. Sum-rule indicates summation 

of score of different classifiers. 

3.1.1.1 Template-Based Segmentation Procedure Description 

The template-based segmentation is described by 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 3.2 having two inputs: 

one is a template and second is an image 𝐼, and it generates a template-based 

segmentation, 𝑆𝑒𝑔. In Algorithm 3.2, line 1 shows the ‘s’ number of components of 

an input template, TS. Next, each component, 𝑠𝑘, 𝑠𝑘 ∈ 𝑠, is used as an initial contour 

in the active contours algorithm (description is given in Subsection 2.1.3). δ is a 2D 

array with a value of zero or sk. Lines 6 and 7 check whether the element of sk is equal 

to the element of TS(𝑖, 𝑗). Then it assigns δ(𝑖, 𝑗). Next, lines 11 and 12 measure the 

center of the template component and these center values are used to find the minimum 

distance of the pixels 𝐼(𝑖, 𝑗) to segments; if they are not assigned to any segments then 

that pixel will be assigned to the nearest segment. After that, on line 13, the active 

contours algorithm is used to generate a segment M′ of each sk component of the 

template. M′ is a 2D matrix contains the value [0, 1] where one shows that pixel  



   

64 
  

Algorithm 3.2 Template-based segmentation 

Input: TS(H,W) template,  I(H,W) image 

Output: Seg(H,W) segmented image of size I  

Initialization: Seg(H,W)=0, M(H,W)=0 where δ(H, W)=0 is temporary matrix 

1:  s=number of components(TS);//defines number of components in the 

template TS 

2:  for sk=1 to s do,   

3:       𝛿𝑖𝑗 = 0  ;                  // loop on TS components 

4:    for i=1 to H do           //loop on rows 

5:       for j=1 to W do        //loop on columns                  

6:          𝒊𝒇(𝑇𝑆𝑖𝑗 = 𝑠𝑘)  then  //check that 

7:              𝛿𝑖𝑗 = 𝑠𝑘                     //if yes, store it in 𝛿 

8:          end if 

9:     end for // j     

10:   end for // i 

// find the x and y coordinate of the centre point of the sk-th component  of TS 

11: 𝐶(𝑠𝑘, 1) = (min(𝑖|𝛿𝑖𝑗 = 𝑠𝑘) + max (𝑖|𝛿𝑖𝑗 = 𝑠𝑘))/2  

12: 𝐶(𝑠𝑘, 2) = (min(𝑗|𝛿𝑖𝑗 = 𝑠𝑘) + max (𝑗|𝛿𝑖𝑗 = 𝑠𝑘))/2 

13:       𝑀′ = 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑠(𝐼, 𝛿) 
14: for i=1 to H  do          //loop on rows 

15:        for j=1 to W do        //loop on columns                 

16:     𝒊𝒇(𝑀′
𝑖𝑗 == 1 && 𝑆𝑒𝑔𝑖𝑗 == 0) then //𝑀′𝑖𝑗 = 1 indicates part of the 

segment, 0 otherwise.  

17:             𝑆𝑒𝑔𝑖𝑗 = 𝑠𝑘 

18:           end if 

19:          end for // j 

20:      end for // i 

21: end for // sk 

22: for i=1 to H do, 

23:   for j=1 to W do, 

24:     if (𝑆𝑒𝑔𝑖𝑗 == 0) then       //if pixel is not a part of any segment     

25:       𝑐 = 𝑓𝑖𝑛𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑤𝑖𝑡ℎ_𝑐𝑒𝑛𝑡𝑟𝑒_𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑖, 𝑗, 𝐶)   
// finds nearest segment, c, using Euclidean distance to out of s components.  

26:       𝑆𝑒𝑔𝑖𝑗 = 𝑐;                  //c has value belonging to s.  

27:             end if 

28:  end for //end I  

29: end for // end j 

30: Return Seg // return the template-based segmentation  

     

I(𝑖, 𝑗) belongs to that certain segment. Thus, each component δsk, sk = 1, 2, …, s, is 

used as an initial contour and generates a segment M′ of an image I. In the next step 

(at line 16–17), if output M′( 𝑖, 𝑗) is equal to one and Sg(𝑖, 𝑗) is equal to zero then the 

sk value will be assigned to Sg(𝑖, 𝑗). Thus, the set of generated segments composed in 



   

65 
  

Sg are equal to the number of components of a template. For example, in the second 

row of Figure 3.2, the template has three components, ‘sky-background-ground’ and 

it generates three segments: upper, Sg1, middle, Sg2, and bottom Sg3. Each pixel of the 

image is assigned to one of the segments. Note that a pixel I(𝑖, 𝑗) that is not part of any 

segment is added to the segment Sgsk, by using the center of components (C(sk,1) and 

C(sk,2)), which has minimal Euclidean distance to I(𝑖, 𝑗), (see lines 24–25 of Algorithm 

2). The Matlab code of template-based segmentation procedure is shown in Appendix 

F. Line 25 illustrates the Euclidean distance function and returns the segment index c; 

later, it is assigned to the non-segmented pixel of image I(𝑖, 𝑗). The main purpose of 

this task is to fill the small holes among segments and generate proper segments for 

feature extractions. 

 
Figure 3.2: Example of template-based segmentation. Each image with size 𝐻 ×𝑊 

is given to the Algorithm 3.2, with template, TS, which returns same size of 

segmented image as shown in the last column. 

 

3.1.1.2 Segmentation-based Features Extraction Procedure 

As in Figure 3.1, the next step after segmentation is feature extraction (Algorithm 3.1, 

line 4). The procedure, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛, takes segmented image, 𝑆𝑒𝑔𝑡𝑗, and 

RGB image, 𝐼𝑗 , as input and returns the feature vector, 𝑋𝑡𝑗. In this procedure, the input 

𝑆𝑒𝑔𝑡𝑗, is divided into η × η grid patches: 𝑃𝑖1,𝑖2, 𝑖1, 𝑖2 = 1,2, . . . , 𝜂, such that, 



   

66 
  

𝑃𝑖1,𝑖2(𝑘, 𝑙) = 𝑆𝑒𝑔𝑡𝑗((𝑖1 − 1) ×  𝑀′ + 𝑘, (𝑖2 − 1) × 𝑁′ + 𝑙), k = 1…M′, 𝑙 = 1…N′,       

(3.1) 

where 𝑀′ = ⌊
𝐻

η
⌋ , 𝑁′ = ⌊𝑊/η⌋. H and W are height and width of 𝑆𝑒𝑔𝑡𝑗 . If all elements 

of a patch have the same segment number, 𝑠𝑘, then the patch belongs to the 

segment 𝑆𝑒𝑔𝑡𝑗(𝑠𝑘). The t indicates template and j indicates an input image. For 

example, Figure 3.3 shows that an image j is parsed by a template t and generates two 

segments, sky (𝑆𝑒𝑔𝑡𝑗(1)) and ground (𝑆𝑒𝑔𝑡𝑗(2)). Next, the patches are divided into 

groups by following these segments. Generally, a patch may overlap to several 

segments. In this scenario, it will be assigned to the segment group that has the largest 

overlap-to-union score. The corresponding function in Matlab is given in Appendix G. 

After that, the image features, F, that are explained in Subsection 2.1.4 are extracted 

for each image patch. From these features, the parameters of Weibull distribution (4 

features) (see Subsection 2.1.4.1), mean of the color corrected coefficient of RGB and 

HSV (6 features) (see Subsection 2.1.4.2), HOG (9 features) (see Subsection 2.1.4.3), 

and LBP-E (6 features) (see Subsection 2.1.4.4) are normalized (in range [0, 1]) and 

then concatenated one after the other to obtain a single vector. The Matlab function of 

features extraction and features combination is shown in Appendix H. Next, these 

feature vectors are fused into a single vector 𝑥𝑠𝑘 for each sk-th segment, as shown in 

Figure 3.3. Then feature vectors for all the segments are combined into a single feature 

vector 𝑋𝑡𝑗 and stored into ‘temp’. Thus, each feature vector 𝑋𝑡𝑗  for template ‘𝑡’ and 

image ‘𝑗’ has same length of η × η × F. 



   

67 
  

 
Figure 3.3: Procedure of feature extraction from each template-based segments and 

feature combination. 
 

3.1.2 Classifiers Training and Testing for 3D Scene Recognition 

Following Figure 3.1, the features vector from templates are ready to use in training 

set of classifiers. Suppose that we have training dataset with N records, (𝑋𝑡𝑗, 𝑦𝑖), where 

𝑋𝑡𝑗 is a feature vector of image Ij for the template t and },…,{ s1 i

jy is the ith 

category label, e.g., ωi denotes the category ‘skyBkgGnd’, 𝑖 = 1,2, … . 𝑆, S is number 

of categories. 𝑡 = 1,… , 𝑇, is a template (see Algorithm 3.1, line 7-12). Then, the N-

labeled feature vector can be represented by modifying (2.15), 

𝑋̌𝑡 = {(𝑋𝑡𝑗, 𝑦𝑗)}𝑗=1
𝑁
𝑡 = 1,2. . , 𝑇.                               (3.2) 

Therefore, we have the {𝑋̌1, 𝑋̌2, … 𝑋̌𝑇} set of labeled feature vectors for N training 

samples. Each 𝑋̌𝑡 has a different order of feature concatenation and, for this reason, 

they are used as inputs to an individual classifier, CLt(𝑋̌𝑡), to train a model 

TrainedCLt, t=1, 2,…,T. Therefore, the method generates T-trained models for N-

labeled data. As each template indicates a different pattern and features are extracted 

by following that pattern, the feature set of the testing data of each template is 

evaluated by using a corresponding trained model. Suppose that the feature vectors of 

the M testing samples are {𝑋𝑡1, 𝑋𝑡2, … , 𝑋𝑡𝑀} for template t, and are used as inputs to 

the TrainedCLt model, which predicts a score vector, 𝑃𝑡𝑗
𝑆 , for the j-th image. 𝑃𝑡𝑗

𝑆  is an 



   

68 
  

S dimensional vector, where S is a number of classes. The Matlab code of training 

classifier is shown in Appendix I. As classifiers are described in Subsections 2.1.5.2-

3, the training images are used as input and it needs to set the classifiers kernel type, 

more detail is described in the comments of the code, see Appendix I. Similarly, for 

testing images, these classifiers return score matrix with size of 𝑀 × 𝑆, where M is 

number of testing images, and S is number of classes. 

3.1.3 Fusion of the Ensemble of Classifiers and Performance Measures 

This is the last step of the 3D scene recognition method, wherein the outputs of the 

ensemble of classifiers are fused together to obtain a class label. In Algorithm 3.1, 

lines 18–20 describe the decision of score combination using sum-rule (the score 

combination and sum rule is described in Subsection 2.1.5.3). Each classifier provides 

an individual score vector, 𝑃𝑡𝑗
𝑆 , for each sample j, where t = 1, 2,…,T. Sum rule 

combines (2.20) the score vectors of T classifiers and generates a class label 𝑙𝑗
′, 𝑙𝑗

′ ∈ 𝛺 

and j indicates an input sample. Thus, for testing data with a size M, it predicts 𝑙𝑀
′ ,  

labels. The Matlab code of score combination is given in Appendix J. Finally, line 21 

of Algorithm 3.1 calculates the Acc, Pr, Re, and F-score of the input testing data using 

equations (2.24-2.30). The metric calculation using Matlab function is given in 

Appendix K. This code requires predicted labels of M images, and ground truth labels 

of the M images and returns the performance metric. 

3.2 Implementation, Testing of Segmentation-based Feature 

Extraction Method, and Experiments on Stage and 15-Scene Datasets 

In this section, implementation details, testing of the method, description of datasets 

(including stage dataset and 15-scene dataset (summary is given in Table 2.2)), results 

of (our) segmentation-based feature extraction method, and state-of-the-art methods 

are discussed in Subsections 3.2.1-4. 



   

69 
  

3.2.1 Implementation Details 

We conducted experiments with the segmentation-based feature extraction method to 

assess its effectiveness and performance on two different datasets. For both datasets, 

we followed the same sequence of steps, discussed in 3.1, to generate the features and 

their classification process. To evaluate this method, eight numbers of predefined 

templates (T = 8) are used in the experiments. Each template indicates particular image 

scene geometries as its association with scene geometries, which is shown in Figure 

3.4. For indoor images, we were inspired by the work of (Lee, Badrinarayanan, 

Malisiewicz, & Rabinovich, 2017), where they defined a keypoint-based room layout 

that actually determines the indoor room shape. We use it as predefined template to 

improve the recognition rate of our indoor scene images. Thus, we add two predefined 

templates, which roughly show the scenes of corner images, as shown in Figure 2.8 (g, 

h). The 3D scene recognition using segmentation-based feature extraction method is 

implemented in MATLAB-2019a without using any parallel processing functionality. 

The MATLAB code is available in Supplementary Material (Khan et al., 2020a) and 

main functions are also given in Appendices as discussed in above Section 3.1. The 

SVM classifier is used to train and test our method. In MATLAB-2019a, it is available 

as a function, fitcecoc (.), description is given in Subsection 2.1.5.1 (see Appendix 

I). The kernel functions set to the linear, Gaussian or polynomial (Quadratic: with 

degree 2), selected kernel for each experiment are reported in tables. The cross-

validation is set to 20-fold on the training dataset. We run it on a portable computer 

with Intel Core™ i5 CPU (M460), 2.53 GHz, 4 GB RAM, and Windows 7. 



   

70 
  

 
Figure 3.4: Association of predefined templates with stages. Stage models (3D scene) 

are defined in (Khan et al., 2020). 
 

Before using the designed method on the images. We have tested our system to be sure 

that it is correctly worked. For this purpose, we have done testing of the segmentation-

based feature extraction method which is given in Subsection 3.2.2. The evaluation of 

method on two different datasets is divided into two Subsections. Subsection 

3.2.3 describes the performance of segmentation-based feature extraction method and 

the baseline methods on image dataset 1 (stage dataset). Subsection 3.2.4 describes the 

proposed method’s performance on Dataset 2 (15-scene dataset) and the performance 

of the baseline methods that have used Dataset 2.  

3.2.2 Testing of Segmentation-based Feature Extraction Method 

In this Subsection, we tested segmentation-based feature extraction method discussed 

in Section 3.1. The method is implemented in the Matlab and code is verified it in 

following steps. The left side is indicating the expected value from the segmentation-

based feature extraction method. Right side is indicating the output of the 

segmentation-based feature extraction method for a single input image. Horizontal 

lines differentiate the different steps. 

https://www.mdpi.com/2073-8994/12/7/1072/htm#sec5dot2-symmetry-12-01072


   

71 
  

Manually calculation and settings Output of Segmentation-based feature 

extraction Method 

Step1: Input RGB image 

Input RGB image: Size 256x256x3 

pixels 

 

Image reference (B. Zhou et al., 2018). 

Step2: parameters settings 

Parameters verification: We set the 

following parameters: 4x4 grid 

patches. HOG parameters: Bins=9, 

normalization =L2-norm, angle= 

180 degrees, 𝜀 constant = 0.01. 

Output: Parameters verification 

 

Step 3: Template-based 

segmentation 

We apply templates (see Figure 2.8) 

and check that it is working 

properly. E.g. applying template (a) 

from Figure 2.8 with its two 

components. 

 

Output: Template–based segmentation of 

input image. Output segmented image has 

same size of input image and it has two 

segments (Seg1, Seg2) corresponding to an 

input template. 

 

Step 4: Patch size calculation   Output: Patch size calculation is shown here.  



   

72 
  

Input image size is 256x256x3 

pixels. Then each patch size is 

256x256/4= 64x64x3 pixels and 

e.g., first patch is belonging to top 

left corner, so it should be belonged 

to segment 1 (Seg 1).  

And it is also shown that it belongs to Seg1.  

 

  

Segment_number =1, which indicates that it 

belongs to Seg1.   

Step 5: Features extraction  

Each patch should has following 25 

features: HOG: 9 features, Color: 6 

features, Weibull distribution: 4 

features, LBP-E: 6 features. And full 

image should have, 4x4x25= 400 

features.  

Output: Method obtains 25 features for each 

patch and it generates 400 features for whole 

image, see in screenshots below. 

Each patch features: 25 features (data type: 

double) 

 

Whole image features: 400 features 

(datatype: double)  



   

73 
  

 

Step 6: As each template of Figure 

2.8 is generating 400 feature vector. 

We have 8 different feature vectors 

in total. Each image has particular 

category. So, we keep the category 

information for each template. The 

total size of a feature vector 

becomes 401. 

Output: Templates, t=1,2,..,8 are shown in 

screenshot with their feature vectors. 

However, size of each template-based 

features vector is 1x401 dimension double 

array in which 400 indicates total features of 

the image and one extra element of array is 

indicating the category type of the image. 

 

Step 7: Training and testing of machine learning algorithm. As we test our method 

on a single image, thus, training and testing part are not feasible, although we test 

our method that it is properly work for training and testing process, when two 

medium size of the datasets are applied. Next, the sum-rule is also tested on their 



   

74 
  

prediction scores as the performance is shown in the Table 3.2 (last four rows). 

 

3.2.3 Dataset 1: Stage Dataset 

As the stage dataset is not publically available. A new stage dataset is constructed by 

combining the different datasets. The new stage dataset contains 1209 images in total. 

It consists of 300 images from ‘Geometric Context’ dataset (D. Hoiem, Efros, & 

Hebert, 2005), 481 images from ‘Putting Objects in Perspective’ dataset (D. Hoiem et 

al., 2006), 205 indoor images from the dataset (Hedau, Hoiem, & Forsyth, 2009), 132 

images from ‘Pixel-wise labeled image’ dataset (Winn, Criminisi, & Minka, 2005), 

and 88 images from ‘gettyimages’ website  and resized by 512 × 512 pixels . We have 

annotated them manually into the twelve 3D scene geometries, which are used to test 

the proposed method, followed (Nedovic et al., 2010). These geometries are explained 

in Subsection 2.1.2.   

3.2.3.1 Experiments and Results for Stage Dataset 

In first experiment, the different features of existing methods (Existing methods are 

summarized in Subsection 2.3, Table 2.1) are extracted for the stage dataset and their 

accuracy (see equation (2.24)) are calculated for linear, Gaussian, and quadratic SVM 

kernels. The SVM kernels can be easily selected from Matlab code (see Appendix I). 

Each image is divided by 4 × 4 patches and features, namely HOG (Dalal & Triggs, 

2005), HSV, RGB, LBP-E, Weibull distribution (W) (J.-M. Geusebroek & Smeulders, 

2005), Atmospheric scatting (‘A’) (Nedovic et al., 2010) are extracted from each 

image patch. These features are described in Subsections 2.1.4.1-4. To measure the 

texture information, the five feature of LBP per patch is calculated and then their 

entropy E value is measured (six features). It is because we are measuring the stage 

information where the small objects are ignored. The small number of feature per patch 



   

75 
  

provides more generic information. Therefore, we set it to 5 in our experiments. 

Nedovic et al. (Nedovic et al., 2010) use atmospheric scatting (‘A’) consists of mean 

and variance of saturation component (2 features) and color coefficient of RGB 

estimated by grey world algorithm (Weijer et al., 2007) (3 features per patch) 

(saturation and RGB correction coefficient are described in Subsection 2.1.4.2). We 

also applied the Gist (Oliva & Torralba, 2001b) on stage dataset to compare the feature 

effectiveness. Gist features implementation is publically given at (Oliva & Torralba, 

2001a).  

The dataset is divided into two parts: half for training and half for testing. The Table 

3.1 shows the accuracy (see equation (2.24)) of each feature type. We combine the 

features into one set and perform different experiments. The best combination of 

different features and their accuracy are shown in Table 3.1. The feature set 𝐿 =

{𝐻𝑂𝐺,𝐻𝑆𝑉, 𝑅𝐺𝐵,𝑊, 𝐿𝐵𝑃-𝐸} having length of 400 features for each image yields 

69.50% accuracy, while by adding the Gist features  (Oliva & Torralba, 2001b) with 

32 features per image patch obtains 69.58% accuracy when the SVM with quadratic 

kernel is used. The improvement by adding Gist features is very limited. And it 

increases the length into 912 features per image. Therefore, we ignore the Gist features. 

The feature set 𝐿 is optimal and can be used to learn the stages efficiently. 

The second experiment is evaluated for measuring the effectiveness of segmentation-

based feature extraction method using eight numbers of templates. Each template-

based feature vector is individually fed to SVM classifier with the quadratic kernel to 

predict the class label for an input image and their average accuracy for each template 

is reported in Table 3.2.  



   

76 
  

 Table 3.1: Accuracy of stage recognition for dataset 1 using different features. 

No. of                

features/ 

image 

 

Feature name and their different sets 

Average accuracy of Stage 

recognition (%) 

SVM 

Linear 

SVM 

Quad. 

SVM 

Gaussian 

64 Weibul Dist. (W) 49.70 53.71 51.24 

80 Atm. Scattering (A) 48.61 50.88 50.60 

144 HOG 58.88 62.28 59.60 

48 HSV 48.61 54.31 52.87 

96 LBP-E 56.52 58.63 57.61 

512 Gist 61.61 63.71 61.01 

144 W+A 55.89 60.19 58.20 

208 W+HOG 60.14 65.10 61.54 

304 HOG+RGB+ HSV+W 62.73 66.72 64.43 

336 HOG+HSV+ RGB +LBP-E 64.42 68.51 65.82 

400 HOG+HSV+ RGB+W+LBP-E 65.01 69.50 66.43 

912 HOG+HSV+ RGB+W+LBP-E+Gist 65.60 69.58 65.34 

   Raw data is given in Appendix S. 

The Table 3.2 also shows the influence of different feature set with different number 

of templates where their associated classifiers outcome are combined by using sum 

rule (it is defined in Subsection 2.1.5.3, code is shown in Appendix J). For the features 

set (HOG+HSV+ RGB+W) used in Lou et al. (Lou et al., 2015) method are also tested 

on our method by using T=6 templates without including indoor corner templates and 

with including corner templates (T=8). The average accuracy of stage recognition 

approaches to 77.49% by using T=6 templates and it approaches 79.48% by using T=8 

number of templates. The segmentation-based feature extraction method with full 

feature set (HOG+HSV+RGB+W+LBP-E) and with T=6 templates achieves 80.40% 

accuracy of stage recognition. In addition, the segmentation-based feature extraction 



   

77 
  

method by using T=8 templates yields 82.50% accuracy. Thus, using full feature set 

(HOG+HSV+RGB+W+LBP-E) and T=8 templates allow outperforming by 5.01% 

accuracy of stage recognition. The confusion matrix for stage dataset is shown in 

Figure 3.5 (code is shown in Appendix K). The diagonal values show the precision for 

each class. It shows low performance in indoor categories, such as box, corner, and 

DiagBkgRL. This is due to less number of images for training and the larger variability 

of scene shape, amount of occlusions and diversity of objects present in these 

categories. E.g., some images of corner categories are confused with the similar 

category such as Box. 

 

 

 

 

 

  

Figure 3.5: The confusion matrix of segmentation-based feature 

extraction method for dataset 1. Raw dataset is shown in Appendix T.  
 



   

78 
  

Table 3.2: Accuracy of stage recognition for dataset 1 using segmentation-based 

feature extraction method. 

No. of 

features 
Methods Template(s) 

Accuracy of 

stages (%) 

400 

 

HOG+HSV+RGB+W+LBP-E 

 

(a) 68.59 

(b) 68.17 

(c) 66.25 

(d) 67.17 

(e) 66.58 

(f) 69.50 

(g) 68.59 

(h) 69.01 

304 HOG+HSV+ RGB+W (a)-(e) 77.49 

304 HOG+HSV+ RGB+W (a)-(h) 79.48 

400 HOG+HSV+RGB+W+LBP-E (a)-(e) 80.40 

400 HOG+HSV+RGB+W+LBP-E (a)-(h) 82.50 

Raw data is shown in Appendices S and T.  

3.2.3.2 Comparison With State-of-the-Art Methods 

The state-of-the-art methods (Derek Hoiem et al., 2007; Nedovic et al., 2010; Oliva & 

Torralba, 2001b; Sanchez et al., 2013) are summarized in Table 2.1 and applied on the 

our stage ‘dataset 1’. We follow the Nedovic et al. (Nedovic et al., 2010) approach, 

where each image is divided into non-overlapped 4×4 local regions (patches). Then, 

the following methods are used to extract their features, namely Gist features (Oliva 

& Torralba, 2001b), Nedovic et al. (Nedovic et al., 2010) features set, and Hoiem 

proposed feature set (D. Hoiem et al., 2005; Derek Hoiem et al., 2007) features. 

Features of each existing method are extracted from each image patch and grouped 



   

79 
  

into a single feature vector. The Nedovic et al. (Nedovic et al., 2010) introduced 

features set namely, Atmospheric scattering (discussed above in 3.2.3.1), Perspective 

line, and parameters of Weibull distribution (described in Subsection 2.1.4.1) and these 

features are extracted from each image patch and concatenate into a single vector. The 

perspective line (P) (Nedovic et al., 2010) is another feature type where an anisotropic 

filter are applied at four different angles (𝜃 = {30°, 60°, 120°, 150°}) (see detail at 

(Nedovic et al., 2010), p.1678). Using maximum likelihood estimator (MLE), the 

parameters (𝛼, 𝛽) of Weibull distribution (see Subsection 2.1.4.1) are obtained for 

each angle (8 features). The source code is given at (Jan Mark Geusebroek, Arnold W. 

M. Smeulders, & Weijer, 2007). Next, the Hoiem proposed features (D. Hoiem et al., 

2005; Derek Hoiem et al., 2007), namely color, texture, location and shape, and 3D 

scene geometry features are computed at each patch. The source code of Geometric 

Context features is available at (D. Hoiem, A.A. Efros, & Hebert, 2007). The Sánchez 

et al. (Sanchez et al., 2013) baseline method is also applied on stage dataset by using 

the MATLAB implementation that is given at (Mensink, 2012). The number of 

components for Gaussian Mixture Models (GMM) is set to 64. We run it on Ubuntu 

V. 18.04.3 by using same portable computer. After extracting the feature vectors of 

these methods, the SVM classifier with linear and quadratic kernel is applied. The 50% 

images are used for training and 50% for testing of stage recognition performance. The 

performance is measured in terms of accuracy (Acc), average precision (Pr), average 

recall (Re), and average F-score according to Subsection 2.1.7.  

The experiment results of stage recognition are given in Table 3.3, where Hoiem 

proposed features (Derek Hoiem et al., 2007) has achieved 64.7% accuracy, and Gist 

features (Oliva & Torralba, 2001b) obtains 63.7% recognition accuracy. The next, 



   

80 
  

stage recognition accuracy of Nedovic et al. (Nedovic et al., 2010) method reaches to 

59.8% with combining ‘A’ and ‘W’ features set, while it approaches to 60.29 % by 

combining ‘A’ and ‘P’ features set. The most effective performance from state-of-the-

art methods is obtained by Sánchez et al. (Sanchez et al., 2013) that is reached to 72.40 

%. In contrary, the segmentation-based feature extraction method achieves the 

recognition accuracy of 82.50%, which is outperform the Sánchez et al.(Sanchez et al., 

2013) by 10.10%. On the other hand, the training and testing time were calculated for 

each method. The segmentation-based feature extraction method consumes more time 

compare to state-of-the-art methods because it uses the ensemble of classifiers but 

achieves superior accuracy of stage recognition. 

Table 3.3: The Acc, Pr, Re, F-Score, training + testing time of state-of-the-art and 

segmentation-based feature extraction method are given for stage dataset 1. 

R
o
w

 #
 

N
o
. 

o
f 

fe
at

u
re

s 

M
et

h
o
d
 

[R
ef

er
en

ce
] 

S
V

M
 

(K
er

n
el

) 

A
cc

 %
 

P
r 

%
 

R
e 

%
 

F
-s

co
re

  
%

 

T
ra

in
in

g
 +

 

te
st

in
g
 t

im
e 

(s
ec

) 

1 512 
Gist  (Oliva & 

Torralba, 2001b) 
Quad. 63.71 69.41 52.02 55.09 16.03 

2 992 

Hoiem  et al. 

(Derek Hoiem et 

al., 2007) 

Quad. 64.70 66.81 51.63 55.74 76.75 

3 208 

Nedovic et al. 

(Nedovic et al., 

2010) (P+A) 

Gauss. 60.29 58.70 46.78 50.17 13.89 

4 144 

Nedovic et al. 

(Nedovic et al., 

2010) (W+A) 

Gauss. 59.80 59.11 45.85 49.47 13.44 

5 3072 

Sánchez et al. 

(Sanchez et al., 

2013) 

Quad. 72.40 73.4 59.90 63.61 68.45 

6 400 

Segmentation-

based feature 

extraction method 

Quad. 82.50 85.95 68.24 71.60 320.29 

Raw data is given in Appendices S and T.  



   

81 
  

The stage recognition performance of the segmentation-based feature extraction 

method is also compared with pre-trained famous CNN frameworks, namely 

GoogLeNet (Szegedy et al., 2015), GoogLeNet365 (GoogLeNet trained on Places365 

database (B. Zhou et al., 2018)), ResNet-50 (He et al., 2016), AlexNet (Krizhevsky et 

al., 2017), and VGG-16 (Simonyan & Zisserman, 2015). The Matlab code of deep 

CNN model is given Appendix L. We choose ResNet-50 model because of the stage 

dataset is small size dataset and deeper models, such as ResNet-101 may overfit on it. 

The stage dataset is randomly divided into two parts, with 80% used for training and 

20% is used for testing. Each CNN model uses BP algorithm with stochastic gradient 

descent for its parameters updates (described in Subsection 2.2.1.4). The training 

parameters are defined as follows: the size of the batch is 10, the number of epochs is 

set 20, the momentum, and learning rate are set to 0.9 and 0.0003, for each epoch, 

respectively. All deep CNNs models are trained by using these parameters setting and 

their Acc, average Pr, average Re, and average F-score are calculated for testing 

dataset (see equations (2.24-30)). Additionally, we re-implemented CNN-SVM (Kim, 

Kavuri, & Lee, 2013; Patalas & Halikowski, 2019) by using ResNet-50 (He et al., 

2016) replacing the FC layers with linear SVM classifier. The feature vector of 

ResNet-50 is normalized before feeding it into the linear SVM classifier (code is 

shown in Appendix M). Similarly, ELM is a new approach, which shows high 

performance for image classification when it uses with deep CNN model (G. Huang 

et al., 2015b), detail of ELM is given in Subsection 2.1.5.2. Instead of SVM, we apply 

CNN-ELM in which the ELM is used for classification of the input stream that can be 

obtained by CNN based method by replacing the FC layers with ELM classifier. We 

utilize pre-trained ResNet-50 (He et al., 2016) for feature extraction, and FC layers are 

replaced with ELM by setting neurons, 𝐿 = {1000, 2000, 3000, 4000, 5000, 6000}, 



   

82 
  

Table 3.4: The performance of stage recognition for dataset 1. The Acc, avg. precision 

(Pr), avg. recall (Re), avg. F-score, training and testing time (sec), fusion time (sec) of 

classifiers are given.  

R
o

w
#

 

M
et

h
o

d
 

A
cc

 %
 

P
r 

%
 

R
e 

%
 

F
-s

co
re

 %
 

T
ra

in
in

g
  

ti
m

e 

T
es

ti
n

g
 

 t
im

e 

F
u

si
o

n
 

 t
im

e 

T
o

ta
l 

ti
m

e 

1 

GoogLeNet  

(Szegedy et 

al., 2015) 

78.93 81.39 72.75 74.88 11518 46.31 - 11564.31 

2 

GoogLeNet36

5  (Szegedy et 

al., 2015) 

82.02 79.36 75.24 75.66 13324 47.32 - 13371.32 

3 
ResNet-50 (He 

et al., 2016) 
82.23 79.49 77.22 76.14 30099 37.07 - 30136.07 

4 

AlexNet 

(Krizhevsky et 

al., 2017) 

78.93 80.10 69.97 73.34 5760 38.70 - 5798.70 

5 

VGG-16 

Conv. 

(Simonyan & 

Zisserman, 

2015) 

79.75 77.52 75.78 75.55 12934 42.54 - 12976.54 

6 

CNN+SVM 

(Patalas & 

Halikowski, 

2019; Penatti, 

Nogueira, & 

Santos, 2015) 

80.58 83.48 75.24 76.24 22.72 10.16 - 32.88 

7 

CNN+ELM 

(S. Liu & 

Deng, 2015) 

76.86 70.32 81.43 73.45 22.41 0.51 - 22.92 

8 

Segment.-

based feature 

extraction 

method 

86.25 86.91 75.32 77.00 314.60 2.22 0.028 316.85 

Raw data is shown in Appendix U. 

𝐶 = 25, and activation function is set to ‘sigmoid function’ (Matlab code is shown in 

Appendix M). Finally, the maximum stage accuracy of CNN-ELM is obtained by 

using L=6000 neurons as shown in Table 3.4. To compare the recognition performance 



   

83 
  

with CNN models, the same set of 967 images (80%) for training and 242 (20%) for 

testing are used to evaluate the segmentation-based feature extraction method. The 

SVM is used with its polynomial (Quadratic) kernel. Time of training and testing of 

each experiment is individually measured. In Table 3.4, the ResNet-50 (He et al., 2016) 

achieves stage recognition accuracy of 82.23%, which is the highest over the deep 

CNN models, while the segmentation-based feature extraction method achieves 

86.25% recognition accuracy. It seems that the segmentation-based feature extraction 

method outperform the ResNet-50 (He et al., 2016) by 4.02% when small scare stage 

dataset is used. In this scenario, the segmentation based feature extraction method 

performs well. To compare the computational cost of the segmentation-based feature 

extraction method in terms of time taken for training and testing, the segmentation-

based feature extraction method took 316.85 sec in total versus ResNet-50 (He et al., 

2016) which takes 30136.07 sec. On the other hand, CNN-ELM (S. Liu & Deng, 2015) 

method although shows highest recall rate (81.43%) and took shortest time of stage 

recognition but its maximum accuracy approaches to 76.86% by using 6000 neurons 

which is comparably very low as illustrated by the corresponding accuracy values.  

3.2.4 Dataset 2: 15-Scene Images Dataset 

The ’15-scene image dataset’ (Lazebnik et al., 2006) is a publically accessible dataset 

which consists of fifteen categories of indoor and outdoor images, there are total of 

4,485 images with an average of 300 × 250 pixels (summary is shown in Table 2.2). 

The images corresponding to each category are shown in Figure 3.6. It is a commonly 

used dataset for the assessment of scene classification studies. The details about the 

class labels and number of images per class is referred to  (Lazebnik et al., 2006). This 

dataset is utilized to evaluate our segmentation-based feature extraction method as 

categories representing the particular scene images such as Coast category is like as 



   

84 
  

sky-ground category. Therefore, the same set of templates are used for template-based 

segmentation. E.g., bedroom or street categories can be handle by corner or box 

templates. 

Bedroom

 

suburb

 

Industrial 

 

kitchen

 

living room

 
forest

 

highway

 

Inside city

 

mountain

 

open country

 
Tall building

 

office

 

store

 

coast 

 

street 

 
Figure. 3.6: Examples of 15-scene images dataset. Each image represents a 

corresponding category type. 

 

3.2.4.1 Experiments and Results for 15-Scene Images Dataset 

For evaluation of the segmentation-based feature extraction method on this dataset, as 

stated in Section 3.2.1, we followed the same experimental setup. To ensure a fair 

comparison with existing research in terms of recognition accuracy (see Table 2.1), 

the 100 images are selected from each of the class for training and remaining for 

testing. By following the Subsection 3.2.3.1, the feature set 𝐿 = {𝐻𝑂𝐺,𝐻𝑆𝑉,

𝑅𝐺𝐵,𝑊, 𝐿𝐵𝑃-𝐸} is extracted for each image by using eight predefined templates (see 

Figure 2.8). Then for each template, an individual model is trained. Next, these models 

are used to classify the test data and their performance are given in Table 3.5. Later 

on, these classifiers output are combined using majority voting, max and sum-rule 

(described in Subsection 2.1.5.3) and Acc, average Pr, Re and F-score are measured 

(code is given in Appendix K). The results demonstrate that maximum recognition 



   

85 
  

accuracy is obtained by utilizing the sum-rule is reached to 92.58% (Matlab function 

is shown in Appendix J) and its testing and its fusion time for eight classifiers is 

reached to 110.48 sec.  

Table 3.5: The performance of the segmentation-based feature extraction method for 

15-scene dataset. Templates (a)-(h) are followed by figure 2.8. The majority vote, max 

and sum rules are used to evaluate the segmentation-based feature extraction method. 

P
re

d
. 

T
em

p
la

te
s 

 

N
o

. 
o

f 
fe

at
u

re
s 

A
cc

. 
%

 

P
r 

%
 

R
e 

%
 

F
-S

co
re

 %
 

A
v

g
. 

T
ra

in
in

g
 

ti
m

e 
  

A
v

g
. 

 t
im

e 
o
f 

T
es

ti
n

g
 

+
 F

u
si

o
n

  
 

(a) 

400 

80.85 79.96 79.61 79.69 

486.61  

 

- 

(b) 79.40 79.10 77.94 78.36  -  

(c) 78.80 78.41 77.33 77.72 - 

(d) 79.55 78.33 78.33 78.53 13.71 

(e) 79.30 77.90 77.99 77.84 - 

(f) 82.94 82.62 82.07 82.28 - 

(g) 80.07 79.28 79.01 79.05 - 

(h) 78.77 77.36 77.16 77.20 - 

Majority vote((a)-

(h)) 
 86.46 86.19 85.84 85.96 - 109.88 

Max-rule((a)-(h))  89.36 89.32 95.41 90.74 - 110.40  

 Sum-rule((a)-(h))  92.58 92.59 95.96 93.19 - 110.48 

Raw data is shown in Appendix V. 

3.2.4.2 Comparison with State-of-the-Art Methods for 15-Scenes Images Dataset 

We compared segmentation-based feature extraction method performance with the 

recent methods that use 15-scene image dataset and show state-of-the-art recognition 

performance (see Table 2.1). The Table 3.6 exhibited that the segmentation-based 



   

86 
  

feature extraction method representation gains the highest recognition accuracy (see 

equation (2.24)). It provides 5.51% higher accuracy as compared to Zafar et al. (Zafar, 

Ashraf, Ali, Ahmed, Jabbar, & Chatzichristofis, 2018) (OVH) method. Lin et al.  (Lin, 

Fan, Zhu, Miu, & Kang, 2017) use “local visual feature coding based on heterogeneous 

structure fusion (LVFC-HSF)” and obtains 87.23% recognition accuracy. Zafar et al. 

(Zafar, Ashraf, Ali, Ahmed, Jabbar, Qureshi, et al., 2018) use “concentric weighted 

circles histogram (CWCH)” to obtain a robust performance for 15-scene images 

dataset and reached to 88.04% accuracy. The most recent approaches, “hybrid 

geometric spatial image representation (HGSIR) method” (Ali et al., 2018) achieves 

the maximum recognition accuracy of 90.41%. Alternative to these methods, the deep 

VGG-16 (Simonyan & Zisserman, 2015) method shows 88.65% recognition accuracy. 

Table 3.6: Comparison with proposed and state-of-the-art methods in terms of 

recognition rate while using 15-scene image dataset. 

Methods Accuracy% 

Zafar et al. (Zafar et al., 2018) (OVH ) 87.07 

Lin et al. (Lin et al., 2017) (LVFC-HSF) 87.23 

Zafar et al. (Zafar et al., 2018)  (CWCH) 88.04 

Ali et al. (Ali et al., 2018)(HGSIR) 90.41 

VGG-16 (Simonyan & Zisserman, 2015) 88.65 

Segmentation-based feature extraction method 92.58 

The segmentation-based feature extraction method uses low dimensional feature set 

and achieves the highest accuracy of scene recognition because the feature are 

extracted by following image geometry structure and fusion at decision-level by 



   

87 
  

utilizing sum rule is clear evidence from Table 3.5 and Table 3.6 that the segmentation-

based feature extraction method gains the highest recognition rate. 

3.3 Summary 

In this research study, a novel segmentation-based feature extraction method is 

proposed. In a segmentation-based feature extraction method, the feature set such as 

HOG, color (RGB, HSV), parameters of the Weibull distribution, and local binary 

patterns and its entropy value are extracted for each local region and combined into a 

single vector based on the template-based segmentation. A set of templates that are 

associated with individual classifiers are used in the segmentation-based feature 

extraction method. Each template defines a particular rough structure of 3D scene 

geometry. Thus, for each template, the individual classifier is trained. Finally, the 

obtained results of the ensemble of classifiers are fused using sum-rule. The 

segmentation-based feature extraction method is evaluated on a two different datasets. 

First dataset is a new stage dataset having 1209 images. Compared to the state-of-the-

art methods, our segmentation-based feature extraction method obtained significantly 

improvement in stage recognition accuracy on a new dataset. The segmentation-based 

feature extraction method’s results illustrate that the information fusion of different 

features by following the template-based segmentation and fusion using sum-rule 

provides a higher accuracy of stage recognition than the state-of-the-art algorithms. 

E.g., compared to Sánchez et al. (Sanchez et al., 2013) method, the segmentation-based 

feature extraction method improves stage accuracy by 10.10% and compared to CNN 

based methods, it achieves the better performance in most scenarios. Next, the 

segmentation-based feature extraction is evaluated on the 15-scene image dataset. This 

dataset is categorized on the base of global image structure and classes are limited as 

well. Thus, we use it in our study and obtained significantly high accuracy compared 



   

88 
  

to recent state-of-the-art approaches, such as Ali et al. (Ali et al., 2018) obtain 90.41% 

recognition accuracy on 15-scene images dataset, while the segmentation-based 

feature extraction approach achieves 92.58% recognition accuracy. 

The segmentation-based feature extraction method does not require the very high-

performance hardware and a large dataset for training that are typically required for 

CNN-based methods. Moreover, the segmentation-based feature extraction method is 

mainly designed for 3D scene geometry recognition, which can be used as prior 

knowledge for pixel-level 3D layout extraction. A statistical evaluation of the 

experimental results illustrated that the recognition rate of this method for both datasets 

was higher than the state-of-the-art methods in terms of accuracy and F-score value. 

This is because features are extracted for each sub-region separately and then grouped 

together for that region, indicating that they have similar statistical values, which 

reduces the intra-class variation. 

The segmentation-based feature extraction method can be applied on other scene 

datasets. If the categories of a dataset are based on scene geometry structure, then it 

may need to change the number of input templates. For example, if a dataset has only 

outdoor images, then it does not need to use indoor templates, e.g., box or corner. 

Furthermore, if a dataset contains objects such as a person or animals, etc., then the 

template structures can be adjusted according to the rough shape of that category.   

 



   

89 
  

Chapter 4 

STAGE DATASET AND 3D SCENE RECOGNITION 

METHOD USING TEXTURE GRADIENT AND DEEP 

FEATURES FUSION 

In this chapter, the two main tasks are considered. Firstly, it is investigated that a 

medium size 3D scene dataset is not available. A small scale stage dataset (1209 

images) is introduced in our previous Chapter (Chapter 3). However, the number of 

images in a per category is very small, which is not enough for recent deep-learning 

based methods that need a large scale image dataset for training process (B. Zhou et 

al., 2018).  Therefore, we introduced a medium scale dataset of 3D scene recognition, 

in which 1000 images in each class, with fixed size of 256 × 256 pixels. The 2nd task 

of this chapter is to verify the dataset by using baseline CNN models and to introduce 

a novel method based on the texture gradient features (TGF) and CNN features (also 

called as ‘deep features’) fusion into a single feature vector (TGF-DeepFF). The 

texture gradient features are measured by estimating the parameters of Weibull 

distribution for 𝑛 × 𝑛 local region of the input image (detail is given in Subsection 

2.1.4.1). The feature combination methods, such as (Khoo, Goi, Chai, Lai, & Jin, 2018; 

Xin et al., 2018) show sufficient accuracy in biometric recognition models by fusing 

the biometrics trait features. We are inspired by the progress of these approaches and 

have implemented a new methodology focused on 3D scene recognition. The fused 

feature vector is classified by using SVM and ELM classifiers (described in 



   

90 
  

Subsections 2.1.5.1-2). ELM classifier is applied because it is simple to use, provides 

satisfactory performance, and learns thousands of times faster than traditional 

feedforward network learning algorithm like BP algorithm (Huang et al., 2006), p.490, 

(G. Huang et al., 2015b), p.19. Furthermore, (Huang et al., 2006) claim that it reaches 

to smallest training error with smallest norm of weights. Researchers take benefits of 

ELM in different fields such as medical diagnosis (Özyurt, 2020), tumor detection 

(Özyurt et al., 2020), and other engineering practice (Lei et al., 2021). Also, (Cheng et 

al., 2015; J. Tang, Deng, Huang, & Zhao, 2015; Wang et al., 2020; Wang, Peng, & 

Lin, 2021; Weng, Mao, Lin, & Guo, 2017) applied it to remote sensing images, and 

indoor and outdoor image scene (e.g. 15 scene dataset) classification. Inspired by their 

results of scene classification, we utilize ELM classifiers to train a discriminative 

model. 

Design of 3D scene recognition method using TGF-DeepFF is given in Subsection 4.1. 

The new dataset detail, implementation detail, testing, and experimental results are 

given in Subsection 4.2. Summary of this Chapter is given in Subsection 4.3. 

4.1 Design of 3D Scene Recognition Method using Texture Gradient 

Features and Deep Feature Fusion 

In this section, we explain the TGF-DeepFF, two stream features with fusion method 

of 3D scene classification. The two-stream is indicating that the features are extracted 

in two different ways: deep CNN (1st stream) and TGF (2nd stream). The novelty of 

this method compared to Algorithm 2.1, are utilizing the deep features and texture 

gradient features in two different streams, and then combined them for each input 

image. Texture gradient contains rich information of 3D scene geometry and when it 

combines with deep features at FC layer, it improves the discriminative features of 3D 



   

91 
  

scene recognition. Next, process of training and testing are same as Algorithm 2.1. The 

TGF-DeepFF method is defined by Algorithm 4.1 and illustrated in Figure 4.1. It has 

following inputs: N training images, M testing images, Ɲ total number of images, CNN 

model, S classes, 𝑌𝑁  training labels, 𝑌′𝑀 testing labels. The output of the method is: 

performance metric in terms of Acc, Pr, Re, F-score. The detail of the method by 

following Algorithm 4.1 is given following main points: 

1) In first stream, Figure 4.1 shows that the deep features are extracted by three 

different steps: i) input layer, ii) feature extraction layer, iii) output layer ,which is 

also called as final layer. The detail of these layers is given in Subsections 2.2.1-3. 

Input layer is indicating that input RGB images are given to the pre-trained CNN 

model. Next layer is indicating the feature extraction layer. It has several 

convolutional and pooling layers, as discussed in Subsection 2.2.1. Finally, the 

features are obtained at GAP layer. CNN model returns a feature vector, 𝐹𝑗
𝐿, having 

length L, for each input image 𝐼𝑗, j=1,2,.. Ɲ, Ɲ is number of the images of scene 

dataset (see line 1 of Algorithm 4.1). The function, 𝑑𝑒𝑒𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(. ) 

is used which takes pre-trained CNN model, input images, Ɲ, and returns features 

𝐹Ɲ
𝐿, in the Algorithm 4.1. L is length of features for each input image. 

2) In second stream of feature extraction (see Figure 4.1, lines 2-4 of Algorithm 4.1) 

are extracted by using function, 𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(. ). It 

takes image 𝐼𝑗 , and 𝜂, and returns feature vector, 𝑇𝑔𝑗
𝐿′.  𝜂 is an input for 𝜂 × 𝜂 

patches. In this function, each input image is partitioned into 𝜂 × 𝜂 patches and 

TGF (𝑓𝑖
 , 𝑖 = 1,2, … , 𝜂 × 𝜂) are extracted for each patch, as described in Subsection 

2.1.4.1. It provides 4 features for each image patch. For whole image 𝐼𝑗, it generates  



   

92 
  

𝐿′ = 𝜂 × 𝜂 × 4 dimension vector, , 𝑇𝑔𝑗
𝐿′, where 𝑗 = 1,2, . . Ɲ. Ɲ is number of images 

of the scene dataset. 

3) After extracting the both feature vectors for every input sample. The next step, then 

to normalize and combine both feature vectors into a single vector. Thus, z-score 

normalization is utilized on both feature vectors, individually. Then both feature 

vectors are combined into a single vector. Z-score normalized is available in Matlab 

function, 𝐹𝑛𝑗 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐹𝑗), where 𝐹𝑗 is a input feature vector of image 𝐼𝑗, and 

𝐹𝑛𝑗  is a normalized output vector of 𝑗th image. The both feature vectors of deep 

CNN (𝐹 
𝐿) and texture gradient features (, 𝑇𝑔𝑗

𝐿′) are normalized using normalization 

function (see lines 5-7 of Algorithm 4.1). 

Algorithm 4.1 Method of 3D Scene Recognition using texture gradient and 

deep CNN feature fusion 

Input: N training images, CNN model,  Ɲ total number of images, S classes, 

YN  training labels, Y’M  testing labels, 𝜂 as input for 𝜂 × 𝜂 patches 

Output: Acc, Pr, Re, F-score 

1: F Ɲ
𝐿 = 𝑑𝑒𝑒𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(CNN model, Ɲ) // Features F Ɲ

L  for Ɲ 

images, L is length of feature vector, CNN model is pre-trained model as 

input 

2: for j=1:Ɲ  do  // for each image 
jI   

3:    𝑇𝑔𝑗
𝐿′= 𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐼𝑗 , 𝜂) // feature vector 

for image 
jI , 𝐿’ is length of feature vector, 𝜂 is  input for  𝜂 × 𝜂 patches 

4: end for 

5: For j=1: Ɲ  do 

6:  𝑭𝑗
𝐷 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑢𝑠𝑖𝑜𝑛(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(F 𝑗

𝐿 ), 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑇𝑔𝑗
𝐿′))

 
// combine 

two different features vectors, 𝐷 = 𝐿 + 𝐿’. 
7: End For 

// Training & testing 

8: 𝑭 
𝐷′ = {(𝑭𝑗

𝐷, 𝑌𝑗)}𝑗=1

𝑁
 // N is a number of training samples 

9: 𝑇𝑟𝑎𝑖𝑛𝑒𝑑_𝐶𝐿 = 𝐶𝐿 (𝑭 
𝐷′),  //where 𝑭 

𝐷′ labeled features is used to train 

the classifier         

// Testing (prediction)  

10: for j=N+1: Ɲ  do  // loop on M test images 

11: l𝑗 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 (𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐶𝐿 ,  𝑭𝑗
𝐷

 
) // 𝑙𝑗 is predicted label for image 𝐼j, 

belongs to S classes.      

12: end for//j                                                                                               



   

93 
  

//Performance measures  

13:  [ Acc, Pr, Re,  F-score]=Calculate_Measures (𝒍, 𝑌’𝑀).  // 𝑌’M is a true 

testing labels, 𝒍 is predicted labels for M images.  

End Algorithm 

 

4) Next, after normalization of both feature vectors, the results vectors are merged into 

a one vector. Thus, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑢𝑠𝑖𝑜𝑛(. ) function is used, which takes normalized 

input feature vectors, 𝐹𝑗
𝐿 , 𝑇𝑔𝑗

𝐿′, and returns combined feature vector, 𝑭𝑗
𝐷 for each 

image, 𝐼𝑗, j=1,2.., Ɲ. 𝑭𝑗
𝐷 is the fused feature vector, with dimension D. The length 

of the combined features, D, is equal to the sum of the length of the two feature 

vectors (𝐷 = 𝐿′ + 𝐿). The corresponding Matlab code is shown in Appendix N. The 

code takes both features vectors, normalized them and then returns the fused feature 

vector for each image. 

5) Following Figure 4.1, next point is to train the machine learning algorithm and then 

test to that trained model. The feature vectors are ready for training the machine 

learning algorithm. By following the description of the Subsection 2.1.5, we utilize 

N number of images features for training and rest of the M (M= Ɲ –N) images 

features are used testing by following training 𝑌𝑁 and testing 𝑌𝑀
′  labels. The feature 

vector, 𝑭𝑗
𝐷′ = (𝑭𝑗

𝐷

 
, 𝑌𝑗), 𝑗 = 1,2, . . 𝑁, with N labels are generated by using (2.15) 

(see line 8 of Algorithm 4.1), and used as input to classifier, CL, to train a model, 

𝑇𝑟𝑎𝑖𝑛𝑒𝑑_𝐶𝐿 (see line 9 Algorithm 4.1).  ELM is used as classifier to train a model. 

The feature vectors of the M testing images are used to evaluate the learned model. 

Suppose that the feature vector of the M testing images are 𝑭𝑗
𝐷 , 𝑗 = 1,2, . . 𝑀, and 

are used as inputs to the classify(.) function with trained model, 𝑇𝑟𝑎𝑖𝑛𝑒𝑑_𝐶𝐿, (see 

lines 10-12 of Algorithm 4.1), which predicts the class label, 𝑙𝑗, of each input image 



   

94 
  

𝐼𝑗 (testing process is given in Subsection 2.1.6, (2.19)). The predicted label is belong 

to S, and S is categories of 3D scene geometries. 

6) Finally, the method calculates the Acc, Pr, Re, and F-score of the M testing images 

using equations (2.24-2.30). The predicted labels, 𝒍, and ground truth labels, 𝑌𝑀
′ , are 

used to measure the performance metric. The metric calculation using Matlab 

function is given in Appendix K. The Matlab code takes true labels, and predicted 

labels and generates these metric. 

 
Figure 4.1: Texture gradient and deep features fusion based 3D scene recognition 

method. 
 

4.2 Implementation, Testing of TGF-DeepFF Method, and 

Experiments on Stage Dataset 2 

The MATLAB ‘2019a’ is used to implement the TGF-DeepFF method and it is run on 

the same system used for segmentation-based feature extraction method (see 

Subsection 3.2.1). Detail is described in subsections below: the new dataset is given in 

Subsection 4.2.1. The implementation detail is described in Subsection 4.2.2. Testing 

of the TGF-DeepFF method is given in Subsection 4.2.3. Finally, experimental results 

are illustrated in Subsection 4.2.4.  

 



   

95 
  

4.2.1 Description of Dataset 

We develop a novel stage dataset, which contains 12000 images in total. The source 

of the images are Places dataset (B. Zhou et al., 2018). The size of each image is 

defined by 256 × 256 pixels. All the images are manually labeled into the twelve 

different stages (3D scene geometries) (Nedovic et al., 2010), which are discussed in 

Subsection 2.1.2. We call it as ‘Stage dataset 2’. We have annotated 1000 images for 

each category as following the structure of an image that which stage it belong to. 

Figure 4.2 illustrates the categories and their corresponding images. This dataset 

consists of 12000 images in total. 

skyBkgGnd 

 

 

skyGnd 

 

 

bkgGnd 

 

    

tabPersonBkg 

 

 

personBkg 

 

 

box 

 

 

grndDiagBkgRL 

 

 

ground 

 

 

diagBkgRL 

 

 

sidewallRL 

 

 

Corner 

 

 

noDepth 

 

 

Figure 4.2: Examples of ‘stage dataset 2’ and their categories. Images are originated 

from Zhou et al. (B. Zhou et al., 2018). The reference of 3D scene geometries images 

is (Nedovic et al., 2010).  

4.2.2 Implementation Detail 

For feature extraction, in first stream, we utilize the pre-trained GoogLeNet (Szegedy 

et al., 2015) architecture for deep feature extraction because it is less deeper compared 

to ResNet (He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2015) architectures 

and generates discriminative features for medium scale dataset. The detail is given in 



   

96 
  

Subsection 2.2.2. These CNN architectures generate 1000 deep features for each input 

image by using GAP. Matlab code of deep feature extraction is shown in Appendix M. 

In second stream, the parameters of Weibull distribution are calculated for 4×4 patches 

of input image. For each patch, these parameters (𝛼, 𝛽) are calculated in both vertical 

and horizontal position as described in Subsection 2.1.4.1. In this way, the 64 features 

are measured for every input image. Matlab code is shown in Appendix O. After that, 

the normalization is utilized for both feature vectors and these features are combined 

into one vector. Matlab code of feature combination is shown in Appendix N. It 

generates, 1064=1000+64, length of the feature vector. For training the model, we 

adopt an ELM classifier to learn the 3D scene structure of train images. The 80% 

images are used for training and 20% images are used for testing. Then, for testing 

images, the performance is measured in accuracy, precision, recall and F-score 

(performance metrics are defined in Subsection 2.1.7). Matlab code is given in 

Appendix K.  The method is tested many times for consistent comparison of results. 

Finally, results are reported by taking the average performance over the total number 

of tests. 

4.2.3 Testing of Texture Gradient and Deep Features Fusion Based Method 

In this section, we test TGF-DeepFF Method implementation in different steps, which 

are given below.  

The left side is indicating expected value from the TGF-DeepFF method. Right side is 

indicating the output of the TGF-DeepFF method for a single input image. Horizontal 

lines differentiate the different steps. 

 



   

97 
  

Manually calculation and settings Output of TGF-DeepFF Method 

Step1: Input RGB image 

Input RGB image: Size 256x256x3 

pixels. 

 

Image reference (B. Zhou et al., 2018). 

Step2: Extract deep CNN features 

We extract the deep CNN feature for 

an input image. It is not wise to use 

a single image for feature extraction.  

However, we are testing the system 

using a single image. The 

GoogleNet provides 1000 image 

features for each input image. 

Output: Deep feature vector for single image 

is shown in screenshot below. It generated 

1000 features for a single input image.  

 

Step 3: Extract Texture gradient 

feature extraction 

We extract parameters of Weibull 

distribution features from each 

image patch. 4x4 patches are used 

and, which generates 64 features for 

each input image. 

Output: Texture gradient features are shown 

in screenshot. It is 64 features for a single 

image.  

 

 

Step 4: Features normalization 

and combination 

 

In this step, features are normalized 

first and then combined into single 

Output: The screenshot shows that features 

are first normalized using Matlab function 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(. ) and then the features are 

combined into a single vector, yielding 1065 



   

98 
  

vector. It length should be 1064 

features. By adding the class label, 

1, feature vector length becomes 

1065 in total. 

features. The output is 1064 features for a 

single image. It contains one more element 

which is indicating the class label of the 

image.  

 
Step 5: Training and testing step 

 

In this step, the extracted features are ready to use for training the machine learning 

algorithm. Here, in testing process, we use one image to test the system which is not 

feasible for training and testing the model. Therefore, the next Section 4.2.4 provides 

the training and testing results of TGF-DeepFF method.  

 

4.2.4 Experimental Results 

The experimental results are given in Table 4.1. We evaluate the performance of the 

deep features and then introduce the 2nd stream of TGF as parallel to the deep features. 

For this reason, we utilize well-known pretrained CCN architectures, including 

GoogLeNet (Szegedy et al., 2015), ResNet-50 (He et al., 2016), AlexNet (Alex et al., 

2012), and VGG-16 (Simonyan & Zisserman, 2015) to find the well-fitting 

architecture of medium scale scene geometry dataset. Each architecture is separately 

applied on the same dataset and deep features are extracted at FC layers (given in Table 

4.1) and then both linear SVM and ELM classifiers are applied for scene geometry 

recognition. The ELM parameters are set as follows: activation function set to 

‘sigmoid function’, hidden neurons, L=12000, and C=2−5, while the SVM kernel is 

set to linear with C=1. Beside this, these deep CNN architectures are applied with BP 



   

99 
  

algorithm. The training parameters of CNN models are defined as follows: the 

minimum batch size is set to 10, total number of epoch are set to 20, learning rate is 

set to (0.0003, 0.0005), and momentum is set to 0.9. The Matlab code is shown in 

Appendix L. The results demonstrate that GoogLeNet architecture achieves 79.33% 

and 79.92% recognition accuracy when SVM and ELM classifiers are applied, 

respectively, and it reaches 82.04% with BP algorithm. On the other hand, VGG-16 

architecture obtains 72.21% and 72.83%, accuracy with SVM and ELM classifiers, 

respectively, and even with BP algorithms, it achieves 80.88% recognition accuracy, 

which is 1.16% and 1% lower than GoogLeNet and ResNet-50 architectures, 

respectively (see Table 4.1). In addition, VGG-16 took 2833.53 mins when used with 

BP algorithm. Meanwhile, ResNet-50 architecture did not perform well compared to 

GoogLeNet, because it may overfit on medium scale scene dataset. Similarly, AlexNet 

architecture obtains the lowest recognition accuracy of 70.54%, 72.46%, and 78.13%, 

for SVM, ELM, and BP algorithms, respectively, compared the GoogLeNet, ResNet, 

and VGG-16 architectures. In conclusion, GoogLeNet architecture achieves the 

highest accuracy of scene geometry recognition because it is less deep than VGG-16 

and ResNet architecture. It takes advantage of inception module to get discriminative 

information of scene geometry for medium scale dataset. These experiments show (see 

Table 4.1) that ResNet and GoogLeNet architectures perform well compared to 

AlexNet and VGG-16 architectures for scene geometry structure recognition. As the 

GoogLeNet architecture achieves the best results of scene geometry recognition for all 

the three classification methods, therefore, we use it as backbone of our proposed 

method in which the GoogLeNet features are combined with Weibull distribution 

features. It reached the best performance of 85.54% and 86.29% for SVM and ELM 



   

100 
  

classifiers, respectively. It demonstrates that the two-stream architecture provides 

superior performance of 3D scene recognition than a single CNN architecture. 

 Table 4.1: Experimental results on ‘stage dataset 2’ using feature fusion method.  
M

et
h

o
d

s 

T
ra

in
in

g
 

m
et

h
o

d
 

F
ea

tu
re

s 

si
ze

 

A
C

C
%

 

P
R

%
 

R
E

%
 

F
S

%
 

T
ra

in
in

g
 +

 

te
st

in
g

 

ti
m

e/
se

c
 

Param. Weibull SVM 64 37.33 36.20 37.28 36.52 182.99 

Param. Weibull ELM 64 40.52 39.28 40.52 39.60 138.75 

Deep features of 

GoogLeNet Arch. 
SVM 1000 79.33 79.70 79.66 79.63 55.59 

Deep features of 

GoogLeNet Arch. 
ELM 1000 79.92 79.55 80.26 79.78 179.86 

Deep features of 

AlexNet Arch. 
SVM 1000 70.54 70.35 70.75 70.49 60.41 

Deep features of 

AlexNet Arch. 
ELM 1000 72.46 71.49 72.72 71.37 154.03 

Deep features of 

ResNet Arch. 
SVM 1000 77.04 77.02 77.06 76.96 27.93 

Deep features of 

ResNet Arch. 
ELM 1000 76.62 75.75 76.66 75.78 349.44 

Deep features of 

VGG-16 Arch. 
SVM 1000 72.21 71.72 71.97 71.80 79.26 

Deep features of 

VGG-16 Arch. 
ELM 1000 72.83 71.09 72.49 71.25 353.23 

TGF-DeepFF SVM 1064 85.54 85.72 85.62 85.63 38.65 

TGF-DeepFF ELM 1064 86.29 85.92 86.16 85.96 278.37 

GoogLeNet  

(Szegedy et al., 

2015) 

BP 

Algorm. 
- 82.04 82.17 82.09 82.11 659.1min 

AlexNet 

(Krizhevsky et al., 

2017) 

BP 

Algorm. 
- 78.13 77.76 78.13 77.81 517.16 min 

VGG-16 Net (S. 

Liu & Deng, 2015) 

BP 

Algorm. 
- 80.88 80.50 80.87 80.36 

2833.53 

min 

ResNet-50 (He et 

al., 2016) 

BP 

Algorm. 
- 81.88 81.92 81.88 81.73 1458.33min 

 *Bold text indicates the best result. Raw Data is given in Appendix W. 



   

101 
  

The performance at each class-level can be observed in confusion matrix, given in 

Figure 4.3. However, results demonstrate that ELM classifier outperform the linear 

SVM in terms of Acc, Pr Re, and F-score for scene geometry recognition. On the other 

hand, ELM classifier took more time in training and testing compared to linear SVM 

classifier because of use of large number of hidden neuron. Experimental results in 

Table 4.1 show that our TGF-DeepFF method outperforms the baseline CNN models 

by using same number of training and testing images. The maximum accuracy among 

standard CNN models is obtained by GoogLeNet (Szegedy et al., 2015), which is 

82.04%. On this other hand, ResNet-50 achieves 81.88% recognition accuracy. 

 
Figure 4.3: Confusion matrix of TGF-DeepFF method of ‘stage dataset 2’.  

4.3 Summary 

In this chapter, we have two contributions. First, introducing a new stage dataset, 

‘stage dataset 2’, of 3D scene geometries, which was not available publically. It 

consists of 12000 scene images, equally distributed on 12 different stages. Each class 

contains 1000 images. Second contribution, introducing a novel 3D scene geometry 



   

102 
  

recognition method, TGF-DeepFF that is based on the combination of deep features of 

CNN model and texture gradient features for 𝑛 × 𝑛 patches of an image. Then, the 

output features are combined into a single vector that is used for learning the stage 

model. The two different classifiers, ELM and linear SVM, are utilized to test the TGF-

DeepFF performance. TGF-DeepFF method is applied on the new ‘stage 2 dataset’. 

The well-known CNN architectures, including AlexNet, VGG-16, GoogLeNet, 

ResNet architectures are studied for the purpose of learning the scene geometry 

representation at FC layers, and finally results exhibited that the TGF-DeepFF method 

obtains the maximum accuracy of 86.29% of 3D scene recognition, which is higher 

than the accuracy achieved by baseline architectures, including AlexNet, ResNet-50, 

GoogLeNet and VGG-16 architectures. In addition, results of these methods on ‘stage 

dataset 2’ indicate that the dataset is properly organized and suitable for testing the 

effectiveness of the novel 3D scene recognition methods.



   

103 
  

Chapter 5 

3D SCENE RECOGNITION MODEL USING 

HANDCRAFTED FEATURES AND MULTI-LAYER CNN 

FEATURES FUSION 

In this chapter, a novel model is introduced in which the handcrafted features and 

multi-layer CNN features are fused at different layers. The handcrafted features are 

manually designed features (Nanni, Ghidoni, & Brahnam, 2017), which are used for 

classification problem in traditional approaches. The Weibull parameters (J.-M. 

Geusebroek & Smeulders, 2005), color, HOG (Dalal & Triggs, 2005) features (see 

description in Subsections 2.1.4.1-3). The multi-layer CNN features are indicating the 

CNN features that are extracted from different intermediate layers, as described in 

(Shaopeng Liu et al., 2019; Tang et al., 2017a). The handcrafted features possesses 

unique representative power of image scene geometry. We believe that it is remarkable 

to explore the integration of handcrafted features with CNN multi-stages features (HF-

MSF) by utilizing the feature fusion and score-level fusion techniques. We call these 

multi-stages as ‘𝑏𝑙𝑜𝑐𝑘𝑠’ to avoid the confusion with the word class ‘stages’. As CNN 

architecture contain different blocks (see Subsections 2.2.2-3). So, the features can be 

extracted after each block. The GAP operation is used to generate the feature vector 

from each intermediate CNN block, which is also called as multi-layer features. The 

standard CNN architecture and its layer detail is explained in Subsection 2.2. The 

design of the model is given in Section 5.1. The implementation detail and testing is 



   

104 
  

given in Section 5.2. Experiments and results are illustrated in Section 5.3. The 

summary is given in Section 5.4.  

5.1 Design of HF-HSF Model of 3D Scene Recognition 

In this section, we describe the HF-MSF Model of image scene geometry recognition. 

Novelty of the model compared to previous methods (Chapter 3, Chapter 4) and 

Algorithm 2.1, it is utilizing the multi-layer and learned features from different blocks 

of CNN, and combine them individually with handcrafted features at each block. Then 

these features are separately classified at each block and their outcome are combined 

to obtain the robust performance. Combination of features at each block-level, which 

contains discriminative features of scene geometry was not studied before for 3D scene 

recognition. Algorithm 2.1 indicates the traditional algorithm, which uses only 

handcrafted features, while Algorithm 3.1 is segmentation-based feature extraction 

method, which involves segmentation for feature extraction and shows improvement 

in the stage classification. In Algorithm 4.1, the deep features at final layer are 

combined with texture gradient features, for a 12000 images dataset. However, these 

algorithm lose object to scene relationship during feature extraction. Segmentation-

based feature extraction involves human interaction, which performs well for small 

scale dataset (see Table 3.4), but may lose discriminative information when the large 

scale dataset is used. The Algorithm 4.1, uses deep features which may lose 

information at intermediate layers when a large number of convolutional and pooling 

operations have been done.  

In this method, the score-level and feature-level fusion strategies are used and 

visualized in Figures 5.1-2, respectively. Figure 5.1 illustrates score-level fusion, we 

call it as ‘Model-HSF: Model of Handcrafted and multi-layer features using Score-



   

105 
  

level Fusion’ and Figure 5.2 represents the feature-level fusion, we call it as Model-

HFF: Model of Handcrafted and multi-layer features using Feature-level Fusion. The 

handcrafted features are extracted from 𝜂 × 𝜂 grid patches, as it describes in 

Subsection 3.1.1.2. However, this method simply divide image into patches and 

features are extracted (same as when template 2.8(f) is used in Subsection 3.1.1.2). 

The handcrafted features, namely, Weibull parameters, HOG, and color features, given 

in Subsections 2.1.4.1-3, are used to enhance the discriminative information of image 

scenes. The detail of the both strategies is given in Subsections 5.2.1-2.  

 
     Figure 5.1: 3D scene recognition using Model-HSF (score-level fusion). 

  

 

 

 
Figure 5.2: 3D scene recognition using Model-HFF (feature-level fusion). 

 

 



   

106 
  

5.1.1 Design of Model-HSF for 3D Scene Recognition 

Algorithm 5.1 represents step by step process of Model-HSF, which is also illustrated 

in Figure 5.1. The Algorithm 5.1 takes N training images, Ɲ total number of images, 

YN training labels, and 𝑌𝑀
′  testing labels, C classes, pre-trained CNN model, n number 

of blocks of CNN, η as input for η×η patches and score-level fusion method (e.g. sum 

or product rule) as inputs, and generates accuracy (Acc), precision (Pr), recall (Re), 

and F-score for testing images.  

 

In this model, the deep features, [𝑓1,𝑗
𝑑1, 𝑓2,𝑗

𝑑2, … , 𝑓𝑛,𝑗
𝑑𝑛], at multi-layers are extracted for 

each input image 𝐼𝑗 , 𝑗 = 1,2, . . Ɲ by using function ‘𝑑𝑒𝑒𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(. )’ 

(see line 1 of Algorithm 5.1). This function takes CNN model, and number images, Ɲ, 

and generates multi-layer features as output. 𝑛 is blocks or multi-stages of CNN 

(𝑆1,2,…,𝑛) and 𝑑𝑖 is a dimension of the 𝑖th block. The features extraction detail from 

intermediate blocks are shown in Subsection 2.2.2. Meanwhile, the handcrafted 

features,ℎ𝑓𝑗   
𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 , are extracted from the each input image, 𝐼𝑗 , 𝑗 = 1,2, . . Ɲ, 

following the model shown in Figure 5.1 (see lines 2-4 of Algorithm 5.1). Before 

combining the handcrafted features with deep multi-layer features, the both feature 

vectors are separately normalized by z-score normalization. Then combination of 

handcrafted features with multi-layer features is given in (see lines 5-9, Algorithm 

5.1), 

 𝐹𝑗
𝐷𝑖 = [ℎ𝑓

𝑗

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 + 𝑓𝑖,𝑗
𝑑𝑖], 𝑖 = 1,2, . . 𝑛, 𝑗 = 1,2, . . Ɲ,                         (5.1) 

where 𝐷𝑖 = (𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 + 𝑑𝑖), Ɲ is total images. ‘+’ is indicating the feature 

concatenation. Next, the Ɲ number of features vectors ( 𝐹Ɲ 
𝐷𝑖) is divided into N training 

and M testing parts by following the YN and Y’M input labels.  For training and testing, 



   

107 
  

we follow the description given in Subsections 3.1.2. The N-labeled feature vector can 

be represented by using (3.2), it become, 𝑭 𝑖
𝐷′ = {(𝐹𝑗𝑖 

𝐷𝑖

 
, 𝑦𝑗)}

𝑗=1

𝑁

𝑖 = 1,2. . , 𝑛. 

Therefore, we have the {𝑭 1
𝐷 ′, 𝑭 2

𝐷 ′, … 𝑭 𝑛
𝐷 ′} set of labeled feature vectors for N training 

samples. 𝑖 = 1,2. . , 𝑛 are different CNN blocks. Then, these features vectors are used 

as inputs to an individual classifier, CLi(𝑭 𝑖
𝐷′), i=1,2,..n, to train a model 

TrainedCLi, i=1, 2,…,n (see lines 11-13 of Algorithm 5.1). 

Algorithm 5.1 Method of 3D Scene Recognition using Model-HSF 

Input: N training images, CNN model,  Ɲ total number of images, C classes, 

YN  training labels, YM  testing labels, 𝜂 as input for 𝜂 × 𝜂 𝑝𝑎𝑡𝑐ℎ𝑒𝑠, 𝑛 is 

number of blocks of CNN, score-level fusion method 

Output: Acc, Pr, Re, F-score 

1: [𝑓1
𝑑1, 𝑓2

𝑑2, … , 𝑓𝑛
𝑑𝑛] = 𝑑𝑒𝑒𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(CNN model, Ɲ) // 

Features 𝑓1
𝑑1 for Ɲ images with length d1, at block, S1. 

2: for j=1:Ɲ  do  // for each image 
jI  

3:     ℎ𝑓
𝑗

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑
= ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐼𝑗 , 𝜂) // feature 

vector for image 
jI , 𝐿 is length of feature vector, 𝜂 is input for 𝜂 ×

𝜂 patches e.g. 𝜂 =4.  

4: end for 

5: For i=1:n 

6:    For j=1: Ɲ  do 

7:       𝑭𝑗𝑖
𝐷𝑖 =

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑢𝑠𝑖𝑜𝑛 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (ℎ𝑓
𝑗

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑) , 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑓𝑗𝑖
𝑑𝑖))

 

// 

combine two different features vectors, with length of 𝐷𝑖 = 𝐿 + 𝑑𝑖. 
8:    End For/j 

9: End For /i 

// Training & testing 

10: 𝑭 𝑖
𝐷′ = {(𝑭𝑗𝑖

𝐷𝑖, 𝑌𝑗)}𝑗=1

𝑁
 // N is a number of training samples with 𝐷’ 

dimension, and 𝑖th block, i=1,2..n. 

11: for i=1:n do             

12:   𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐶𝐿𝑖 = 𝐶𝐿𝑖(𝑭 𝑖
𝐷′),  //where 𝑭 𝑖

𝐷′  is used to train ith classifier         

13: end for 

// Testing (prediction)  

14: for j=N+1: Ɲ  do     // loop on M test images 

15:    for i=1:n do           //loop on classifiers  

16: 𝑃𝑖𝑗
𝐶 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐶𝐿𝑖 , 𝑭 𝑗𝑖

𝐷 ′
) // 𝑃𝑖𝑗

𝐶  is C-dimensional score 

vector for an image Ij.    

17:    end for //I      



   

108 
  

18: end for//j             

// Classifiers combination 

19: for j=N+1: Ɲ  do        // M test images  

20:  
jl = score-level fusion ({𝑃𝑖𝑗

𝐶}𝑖=1
𝑛 ), fusion of n classifiers scores 

21:  end for//j 

//Performance measures  

22:  [ Acc, Pr, Re,  F-score]=Calculate_Measures (𝒍’, YM).  // YM is a true 

labels  

end Algorithm 

  

The Matlab code of training classifier is shown in Appendix I. In this code a classifier 

takes a set of labeled features and trains a model. Therefore, the method generates n-

trained models for N-labeled data (detail is given Subsection 3.1.2). The feature set of 

the testing data at each block is evaluated by using a corresponding trained models. 

Suppose that the feature vectors of the M testing samples are {𝑭 1𝑖
𝐷 ′
, 𝑭 2,𝑖

𝐷 ′
, … , 𝑭 𝑀,𝑖

𝐷 ′
} for 

ith block, and are used as inputs to the TrainedCLi model, which predicts a score 

vector, 𝑃𝑗𝑖
𝐶 , for the jth image (see Algorithm 5.1, lines 14-18). 𝑃𝑗𝑖

𝐶  is an C-dimensional 

vector, where C is classes. Next step of Model-HSF is score-level fusion, wherein the 

outputs of the 𝑛 classifiers are fused together to obtain a class label (see lines 19-21, 

Algorithm 5.1). As it describes in Subsection 3.1.3, the predicted score of n classifiers 

combined using sum or product-rule (described in Subsection 2.1.5.3). Each classifier 

provides an individual score vector, 𝑃𝑗𝑖
𝐶 , for each jth sample, where 𝑖 =  1, 2, … , 𝑛. 

Sum or product-rule combines the score vectors of n classifiers and generates a class 

label 𝑙𝑗
′ and, 𝑗 indicates an input sample. Thus, for testing data with a size M, it predicts 

𝑙𝑀
′ ,  labels. The Matlab code of score combination is given in Appendix J. Finally, the 

Acc, Pr, Re, and F-score of the input testing data using equations (2.24-2.30) are 

calculated (see line 22 of Algorithm 5.1). The metric calculation while using Matlab 

function is given in Appendix K. It takes predicted and ground truth class labels of M 

images and generates performance metric. 



   

109 
  

5.1.2 Design of Model-HFF for 3D Scene Recognition  

The Model-HFF (see Figure 5.2) fused the multi-layer features and handcrafted 

features into a single vector. Steps are described in Algorithm 5.2. It takes same input 

as given for Model-HSF and generates Acc, Pr, Re, and F-score as output. Similar to 

Model-HSF, the multi-layer features and handcrafted features are obtained from input 

samples as it describes in Algorithm 5.2, lines 1-4. 

Algorithm 5.2 Method of 3D Scene Recognition using Model-HFF 

Input: N training images, CNN model,  Ɲ total number of images, C classes, 

YN  training labels, YM  testing labels, 𝜂 as input for 𝜂 × 𝜂 𝑝𝑎𝑡𝑐ℎ𝑒𝑠, 𝑛 is number 

of blocks of CNN 

Output: Acc, Pr, Re, F-score 

1: [𝑓1
𝑑1, 𝑓2

𝑑2, … , 𝑓𝑛
𝑑𝑛] = 𝑑𝑒𝑒𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(CNN model, Ɲ) // 

Features 𝑓1
𝑑1 for Ɲ images with length d1, at block, S1, CNN model is pre-

trained model 

2: for j=1:Ɲ  do  // for each image 
jI  

3:     ℎ𝑓
𝑗

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑
= ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐼𝑗 , 𝜂) // feature 

vector for image 
jI , 𝐿 is length of feature vector, 𝜂 is input for 𝜂 × 𝜂 patches 

e.g. 𝜂 =4.  

4: end for 

5:    For j=1: Ɲ  do 

6:       𝑭𝑗
𝐷𝑖 =

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑢𝑠𝑖𝑜𝑛 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (ℎ𝑓
𝑗

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑) , { 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑓𝑗𝑖
𝑑𝑖)} 𝑛

𝑖=1
)
 

// 

combine two different features vectors, with length of 𝐷𝑖 = 𝐿 +
𝑑𝑖, +⋯ , 𝑑𝑛. 

7:    End For/j 

// Training & testing 

8: 𝑭 
𝐷′ = {(𝑭𝑗

𝐷𝑖, 𝑌𝑗)}𝑗=1

𝑁
 // N is a number of training samples with 𝐷’ dimension 

9:  𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐶𝐿 = 𝐶𝐿 (𝑭 
𝐷′),  //where 𝑭  

𝐷′ is used to train CL classifier         

// Testing (prediction)  

10: for j=N+1: Ɲ  do     // loop on M test images  

11:  
jl = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐶𝐿 , 𝑭 𝑗

𝐷′)  //𝑙𝑗 predicted label of image, Ij.    

12: end for//j                                                                                               

//Performance measures  

13:  [ Acc, Pr, Re,  F-score]=Calculate_Measures (𝒍’, YM).  // YM is a true 

labels  

end Algorithm 

 



   

110 
  

Then, these multi-layer features and handcrafted features are first normalized as shown  

in Algorithm 5.2, lines 6, and then are linearly concatenated to form a 𝑭𝐷, that is given 

by, 

𝑭𝒋
𝐷 = [𝑓

𝑗

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 + ⋃ (𝑓𝑖,𝑗
𝑑𝑗
)𝑛

𝑖=1 ],  𝑗 = 1,2, . . Ɲ,                          (5.2) 

where 𝑓
𝑖

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑  is a handcrafted features of the image 𝐼𝑗 , 𝑗 = 1,2, . . Ɲ, ∪ is union 

operator, which indicating the combination of features of 𝑛 sample, and ‘+’ is a 

concatenation operator for handcrafted features and multi-layer features. 𝐷 =

𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑 + (𝑑1 + 𝑑2 +⋯+ 𝑑𝑛) and 𝑓𝑖,𝑗
𝑑𝑖 is a multi-layer features from the 

block 𝑆𝑖 for jth image. Next, the Ɲ number of features vectors ( 𝐹Ɲ 
𝐷) is divided into N 

training and M testing parts by following the YN and Y’M input labels (see lines 8 and 

9 of Algorithm 5.2). For training, the feature vector, 𝑭𝑗
𝐷′ = (𝑭𝑗

𝐷

 
, 𝑌𝑗), 𝑗 = 1,2, . . 𝑁, with 

N labels are generated by using (2.15), and used as input to a classifier, CL, to train a 

model, 𝑇𝑟𝑎𝑖𝑛𝑒𝑑_𝐶𝐿 (see line 9 of Algorithm 5.2). The feature vectors of the M testing 

images are used to evaluate the trained model. Suppose that the feature vectors of the 

M testing images are 𝑭𝑗
𝐷 , 𝑗 = 1,2, . . 𝑀, and are used as inputs to the 𝑇𝑟𝑎𝑖𝑛𝑒𝑑_𝐶𝐿 

model, which predicts the class label, 𝑙𝑗, of each input image 𝐼𝑗 (testing process is given 

in Subsection 2.1.6, (2.19)) (see lines 10-12 of Algorithm 5.2). The predicted label 

belongs to C, and C is categories of 3D scene geometries. After predicting the class 

label, 𝐼𝑀 , M is testing images, the Acc, Pr, Re, and F-score of the input testing data 

using Equations (2.24-2.30) are calculated (see line 13 of Algorithm 5.2). The metric 

calculation using Matlab function is given in Appendix K. It takes predicted and 

ground truth class labels of M images and generates performance metric. 

 

 



   

111 
  

5.2 Implementation, Testing of HF-MSF Model, and Results on 15-

Scene and Stage Dataset 2 

In this section, the implementation setting of our HF-MSF model is given. The multi-

layer feature extraction setting is given in Subsection 5.2.1. The classifiers setting is 

given in Subsection 5.2.2. The HF-MSF model is validated on the two benchmark 

image scenes datasets: 15-scene and ‘stage dataset 2’, which are illustrated in 

Subsection 3.2.3, and Subsection 4.2.1, respectively. The MATLAB ‘2019a’ is used 

to implement the HF-MSF model and executed on a Dell PC with 8 GB RAM, 2.53 

GHz i5 processor, and Ubuntu OS. 

5.2.1 Multi-Layer CNN Feature Extraction Setting 

In order to measure the effectiveness of the HF-MSF model, we show in Section 4.2.3 

(results are described in Table 4.1) that the GoogLeNet (Szegedy et al., 2015), and 

ResNet-50 (He et al., 2016) architectures perform well for image scene geometry 

recognition. Furthermore, the recent studies (Tang et al., 2017a) and  (S. Liu et al., 

2019)  utilize the multi-layer information of GoogLeNet and ResNet architectures for 

scene categorization, respectively, and achieve state-of-the-art performance. 

Therefore, we utilize these architectures as a backbone for multi-layer features 

extraction. These features are extracted at early, intermediate, and last layers, where 

these layers output are connected to the GAP function to reduce their dimensionality, 

at these places, the activation function (𝑅𝑒𝑙𝑢) (see equation (2.31)) can be used to 

activate the multi-layer features, as described in Subsection 2.2.2. The Matlab code 

with ResNet model is shown in Appendix P. Further, implementation detail for each 

CNN model is given below. 



   

112 
  

The GoogLeNet and ResNet models (described in Subsections 2.2.2-3) consists of 

several consecutive layers and due to the redundancy among these layers’ features, it 

reduces the performance of scene recognition for medium and small scale datasets. To 

implement the HF-MSF model using pre-trained GoogLeNet architecture (pre-trained 

on Places365 (B. Zhou et al., 2018)), we follow (Tang et al., 2017a), where model is 

divided into three blocks (𝑆1, 𝑆2, 𝑆3), to extract three different feature vectors for each 

input image (Matlab code is shown in Appendix P, which is needed to set GoogleNet 

blocks given in comments). The features are extracted from GAP layer, before 

auxiliary classifiers, see Figure 2.18. In this way, we are getting branches where each 

block generating feature vector with 1000 dimensions. At each block (𝑆𝑖), 𝑖 = 1,2. . 𝑛, 

the deep features (𝑓𝑖
1000) and handcrafted features (𝑓ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑

320 ), are integrated by 

following proposed Model-HSF, which form a 1320-dimension fusion vector (𝐷𝑖 =

(𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑
320 , 𝑑𝑖

1000)), 𝑖 indicates an intermediate 𝑖th block, and 𝑑 is the feature 

dimension. Matlab code is shown in Appendix N. The handcrafted feature set is 

calculated by partitioning each image into 4 × 4 patches and then parameters of 

Weibull distribution (four features, see in Subsection 2.1.4.1), Color (seven features, 

including color corrected coefficient of RGB (3 features), mean of HSV (3 features), 

and variance of saturation component (1 feature)), and HOG (nine features, described 

in Subsection 2.1.4.3) features are extracted for each patch that yields 320-dimensional 

feature vector for a single image. As the experiments in Chapter 3 (see Table 2.3) show 

that the template (f), from Figure 2.8 has better results compared to each individual 

template, therefore, we adopt it with 4 × 4 grid patches for handcrafted feature 

extraction. For selecting the particular features of image scene geometry, we follow 

(Nedovic et al., 2010) and (Lou et al., 2015) methods, which particularly pay attention 

to the use of rich image scene geometry features. These methods utilize parameters of 



   

113 
  

Weibull distribution, color features (correction coefficient of RGB using gray word 

algorithm, mean of HSV, an average of the variance of saturation component), and 

HOG features. Besides this, we also use LBP-E features to represent the scene 

geometry structure. These features are applied on ‘stage dataset 2’ using linear SVM. 

The results of different features combinations are shown in Appendix S, in Table S4 

and, Figure S1. We found that combining the above features (without LBP-E features) 

achieves 58.71% recognition accuracy for ‘stage dataset 2’ (12000 images), (see 

Appendix S, in Table S4), while by adding the LBP-E features, the accuracy reaches 

56.46% (2.25% decreases) and the size of the feature vector reaches 400 when the 4x4 

grid patches are used. Therefore, we ignore using of the LBP features for medium-

scale dataset. On the other hand, the parameters of Weibull distribution capture the 

texture information (Nedovic et al., 2010), p.1677 and improve the scene geometry 

recognition accuracy when combined with deep features, as we observe in Chapter 4 

(see Table 4.1). Thus, the HOG, color, and parameters of Weibull distribution are 

extracted as handcrafted features from each image patch to represent the image scene 

geometry. These features are normalized before integrating into a one single set. For 

Model-HFF, the deep features of each block (𝑆𝑖) and handcrafted features are linearly 

integrated to allow 3320-dimensions fusion vector 𝐷 =

[𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑
320 , 𝑑1

1000, 𝑑2
1000, 𝑑3

1000]. It performs feature-level fusion with handcrafted 

features. The combination of these features are done by same function, shown in 

appendix N. 

Next, the HF-MSF model has also utilized the pre-trained ResNet-50 architecture. The 

pre-trained ResNet-50 architecture contains 16 residual blocks. The basic structure of 

the residual block is shown in Figure 2.19. Each block contains several internal layers, 



   

114 
  

and at the end of the block, the output of current block is combined with the previous 

block by the residual connection. After this point, we can extract the features. “The 

feature maps created from the adjacent residual block have certain similarities. It is not 

wise to extract features from every block, which can increase both the network 

complexity and computation time” (S. Liu et al., 2019), p.194. Therefore, we extract 

each feature vector after two consecutive blocks. Five different residual blocks, 

namely blocks 10 (‘activation_29_relu’), 12 (‘activation_35_relu’), 14 

(‘activation_41_relu’), 16 (‘activation_45_relu’), and at ‘fc1000’ layers (𝑆1, 𝑆2, … , 𝑆5) 

are selected for multi-layer feature extraction. Matlab code is given in Appendix P. 

The previous blocks are ignored because beginning layer contain more detailed 

information, but suffer the problem of background clutter and semantic ambiguity (Yu, 

Yang, Yao, Sun, & Xu, 2017). The model provides 5 different vectors having 256, 

256, 512, 512, 1000 dimensions and each block outcome is separately concatenated 

with handcrafted features vector (320 features). And then it feeds to the five ensemble 

of classifiers. Matlab code is shown in Appendix Q. By using Model-HFF, the all 

feature vectors including handcrafted features which are linearly integrated to form a 

2,856-dimensions fused vector (𝐹𝐷 , D = (𝑑ℎ𝑎𝑛𝑑𝑐𝑟𝑎𝑓𝑡𝑒𝑑
320 , 𝑑1

256 , 𝑑2
256, 𝑑3

512 , 𝑑4
512,

𝑑5
1000)). The combination of these features are done same function, shown in appendix 

N. We also apply the pre-trained AlexNet (Alex et al., 2012) architecture. We extracted 

the multi-layer features, 96, 256, 256, and 1000, at ‘maxpool1’ (𝑆1), ‘maxpool2’ (𝑆2), 

‘maxpool5’(𝑆3), and ‘fc8’ (𝑆4) layers, respectively, by applying the ReLU activation 

function with GAP operation and then these features are individually fed to the 

classifiers, as it is described above for GoogLeNet and ResNet architectures. 



   

115 
  

We adopt the pre-trained GoogleNet model on Places365 (B. Zhou et al., 2018) 

Dataset, which contains about 10 million scene images in total and more than 400 

image categories. The ResNet is pre-trained on ImageNet dataset (J. Deng et al., 2009) 

which contains more than 1.2 million images with 1000 classes. After that, both 

models’ parameters are fine tune on the two benchmark scene datasets: 15-scene and 

‘stage dataset 2’, which are illustrated in Subsection 3.2.3, and Subsection 4.2.1, 

respectively. 

5.2.2 Classifiers Setting 

In HF-MSF model, we applied two well-known classifiers, namely ELM and Linear 

SVM (description is given in Subsections 2.1.5.1-2).  SVM is a solid choice for scene 

geometry classification (Nedovic et al., 2010). The ELM also shows high performance 

for scene classification in several studies (Cheng et al., 2015; Lei et al., 2021; Özyurt, 

2020; Özyurt et al., 2020; J. Tang et al., 2015; Wang et al., 2020; Wang et al., 2021; 

Weng et al., 2017), as it is described at the beginning of Chapter 4. Inspired by the 

high performance of (Wang et al., 2020) of scene recognition, we also utilize the ELM 

as a classifier in this study. We set following parameters: 𝐶𝐿𝑖 is set to 𝐸𝐿𝑀, 𝑖 =

1,2…𝑛, 𝑛 is blocks, neurons 𝐿 = 12,000, the activation function is set as ‘sigmoid 

function’, and C= 10−7. Matlab code of ELM classifier is given in Appendix I. It 

predicts the hard-label for each input image. Therefore, majority voting is used to 

obtain the final label when the Model-HSF is used. For Model-HFF, the fused feature 

vector is used to ELM classifier and class label is directly predicted. 

Secondly, the linear SVM is considered due its effectiveness and efficiency for the 

CNN architectures (Kim et al., 2013; Tang et al., 2017a). We employed it with default 

parameters. The Matlab code is given in Appendix I. It generates aposteriori 



   

116 
  

probabilities or scores distributed over the number of classes and class label (class 

type) for each input image. In Model-HSF, these scores for 𝐶𝐿𝑖 , 𝑖 = 1,2, . . 𝑛 (𝑛 = 3 

for GoogLeNet, and 𝑛 = 5 for ResNet) are combined for test images by using 

majority, max, sum, and product rules. Matlab code is shown in Appendix R. In 

Model-HFF, it is directly used to predict the output label for test images. 

5.2.3 Testing of the HF-MSF Model 

In this section, we test HF-MSF Method implementation in different steps, which are 

given below. The left side is indicating expected value from the HF-MSF method. 

Right side is indicating the output of the HF-MSF method for a single input image. 

The horizontal lines are differentiating multiple steps.  

Manually calculation and settings Output of HF-HSF Method 

Step1: Input RGB image 

Input RGB image: Size 256x256x3 

pixels. 
 

Image reference (B. Zhou et al., 2018). 

Step2: Extract multi-layer CNN 

features 

We extract the multi-layer features 

from different blocks of the CNN 

models. Here, we show that features 

from 5 different blocks of ResNet-

50 generates 256, 256, 512, 512, 

1000 features for each input image. 

Output: Multi-layer features for single 

image is shown in screenshot below. The 

256, 256, 512, 512, 1000 features from 5 

different blocks are shown below for each 

input single input image. 

 



   

117 
  

Step 3: Handcrafted features 

extraction  

We extract handcrafted features 

which are explained in Subsection 

2.1.4.1-3. And these features are 

also used in Chapter 3. So, same 

code is used here with 𝑛 × 𝑛 grid 

patches. However, it generates 320 

features for each input image are 

extracted. 

Output: The code generates 320 handcrafted 

features for each input image as shown in 

screenshot.  

 

Step 4: Features normalization 

and combination 

In this step, multi-layer and 

handcrafted features are normalized 

first and then combined into single 

feature vector. The Model-MSF 

generates 5 different feature 

vectors. Here, we show a single 

feature vector. The other features 

vector can be generated similarly.  

Suppose the length of the feature 

vector is 576= 256+320 at first 

block. By adding the class label, it 

reaches to 577. Similarly, Model-

HFF features are combined. 

Output: The screenshot shows that features 

are first normalized while using Matlab 

function 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(. ) and then the features 

are combined into a single vector, yielding 

576 features. It contains one more element 

which is indicating the class label of the 

image. It means that our implementation is 

accurate.

 

Step 5: Training and testing step 

 



   

118 
  

In this step, the fused feature vectors are ready to use for training the machine 

learning algorithm. We use 5 parallel classifiers and their output are combined at 

score-level. This process is given in the next section because here we verified that 

our implementation is correct for input testing image. 

 

5.3 Experiments and Results 

The image scene geometry recognition performance of the Model-HSF model, and 

comparison with the baseline methods are discussed in this section. The performance 

metrics is used which are described in Subsection 2.1.7, equations (2.24-30). The detail 

results, including Acc, Pr, Re, and F-score (F-s.) are given in Tables and accuracy is 

visualized in bar graphs (Figures) as well. The graphs are generated by excel tool. The 

best results are shown in bold font. The performance of HF-MSF model on 15-Scene 

and ‘stage dataset 2’ are given in Subsections 5.3.1-2, respectively. The 15-scene and 

‘stage dataset 2’ are described in Subsections 3.2.4.1 and 4.2.1, respectively. For 15-

scene dataset, the 100 images per category are used for training and rest for testing (as 

following standard setting, see Table 2.1). In ‘stage dataset 2’, the 80% images are 

used for training and 20% for testing as given in Subsection 4.2.1. 

5.3.1 Performance of HF-MSF Model on 15-Scene Dataset 

In the 15-scene dataset, there is a limited number of images in each category. We 

observe that the intermediate layer of both GoogLeNet and ResNet-50 architectures 

improve the performance by adding handcrafted features, as it given in Table 5.1. The 

score-level fusion (Model-HSF) uses different blocks of both ResNet and GoogLeNet 

architectures. In Table 5.1 and Figure 5.3, it is shown that adding handcrafted features 

increase accuracy of scene recognition at each block of CNN (𝑆1, … , 𝑆𝑛). Figure 5.3 

(a) illustrates the GoogLeNet model with its three different blocks (𝑆1, 𝑆2, 𝑆3) and 



   

119 
  

Figure 5.3 (b) illustrates the ResNet-50 based model with its five different blocks, 

where SVM and ELM classifiers are applied at each block (𝑆1, 𝑆2, … 𝑆5). ‘with’ and 

‘without handcrafted’ indicates that handcrafted features are integrated at each steps 

or without integration and the results of each block for both SVM and ELM classifiers 

are given. Results in Figure 5.3 (a & b) and Table 5.1 describe that beginning blocks, 

𝑆1 and 𝑆2, show lower results than the blocks 𝑆3, 𝑆4, and 𝑆5 of ResNet-50 architecture 

and similar behavior is observed of GoogLeNet architecture (see Figure 5.3 (a)). 

Therefore, previous blocks are ignored for score-level fusion. Table 5.1 also describes 

the scene recognition results of four different layers, 𝑆1, 𝑆2, 𝑆3, 𝑆4, of AlexNet 

architecture. Results (see Table 5.1, AlexNet Arch.) indicate that the scene recognition 

accuracy increases from 𝑆1 toward 𝑆4 for both SVM and ELM classifiers and it reaches 

69.23% to 86.73% for 𝑆1 and 𝑆4, respectively. Adding the handcrafted features to 

AlexNet architecture achieves maximum accuracy of 94.09% at the ‘maxpool5’ (S3) 

layer when the SVM classifier is used. However, it is lower than the GoogLeNet and 

ResNet architectures by 2.92% and 2.70%, respectively (see Table 5.1). The results of 

the combination of different layers feature and score-level fusion are given in 

Appendix X (in Table X2 & X3). The Model-HSF performance is given in Table 5.2. 

In score-level fusion, the maximum accuracy is obtained by the sum and product rules 

which approaches to 97.55 % by using GoogLeNet architecture and the F-score is 

reached to 97.42% by using sum-rule. By adopting the ResNet-50 architecture (see 

Table 5.2, rows 6-10), the sum rule shows 97.86% and product-rule reaches to 97.77% 

using linear SVM. The maximum F-score is 97.79% when the sum-rule is used (8th 

rows). Graphical representation of results is shown in Figure 5.4, where SVM and 

ELM classifiers are used and effects of ‘with’ and ‘without’ handcrafted features are 

visualized. The accuracy is calculated by majority voting, max, sum, and product rules 



   

120 
  

for each classifier. Figure 5.4(a) illustrates GoogLeNet based Model-HSF results and 

Figure 5.4(b) shows the results of the Model-HSF model using the ResNet-50 

architecture. Similarly, the AlexNet architecture using sum-rule achieves 93.98% 

recognition accuracy, which is 3.88% and 3.57% lower than ResNet-50 and 

GoogLeNet architecture, respectively (see Table 5.2). 

 
(a)  Using GoogLeNet architecture. S-1, S-2,S-3 are indicating the S1, S2,S3 blocks, 

respectively. 

 
(b)  Using ResNet architecture. S-1, S-2,..,S-5 are indicating the S1, S2,…,S5 blocks, 

respectively. 

 

Figure 5.3: 15-scene image dataset: influence of handcrafted features at each 

intermediate layers. Figure (a) and (b) are indicating GoogLeNet and ResNet 

architectures, respectively. Raw data is shown in Appendix X. 

9
0

.4
5

9
0

.4
5

9
5

.2
3

9
5

.9

9
3

.8
4

9
3

.6
2

9
6

.3
9

9
6

.9
2

9
3

.8
4

9
3

.0
9

9
7

.0
1

9
7

.2
8

85

87

89

91

93

95

97

99

SVM ELM SVM ELM

Without With handcrafted

A
cc

u
ra

cy
 %

Influence of handcrafted feature at each level using GoogleNet on 15-Scene image 

Dataset

S-1 S-2 S-3

8
8

.4
9

8
8

.2
7

9
1

.3
5

9
0

.1
9

9
2

.4
6

8
8

.6
3

8
8

.4
9

9
2

.3
3

9
0

.1
0

9
2

.3
7

9
2

.8
6

9
3

.6
7 9
5

.2
7

9
5

.4
1

9
5

.5
8

9
5

.2
7

9
5

9
6

.5
7

9
5

.5
8

9
6

.7
9

84

86

88

90

92

94

96

98

S-1 S-2 S-3 S-4 S-5

A
cc

u
ra

cy
 %

 

Influence of handcrafted features at each stage using ResNet on 15-scene image dataset

Without Hand-crafted ELM Without Hand-crafted SVM

With Hand-crafted ELM With Hand-crafted SVM



   

121 
  

Table 5.1: 15-Scene images dataset: experiments on ‘with’ and ‘without 

handcrafted’ features fusion by using SVM and ELM classifiers. 

CNN 

Architecture 
Blocks 

Without handcrafted 

(Accuracy %) 

With handcrafted (Accuracy 

%) 

ELM SVM ELM SVM 

R
es

N
et

 A
rc

h
it

ec
tu

re
 

𝑆1 88.49 88.63 92.86 95.27 

𝑆2 88.27 88.49 93.67 95.00 

𝑆3 91.35 92.33 95.27 96.57 

𝑆4 90.19 90.1 95.41 95.58 

𝑆5 92.46 92.37 95.58 96.79 

G
o

o
g

L
eN

et
 A

rc
h

. 

𝑆1 90.45 90.45 95.9 95.23 

𝑆2 93.62 93.84 96.92 96.39 

𝑆3 93.09 93.84 97.28 97.01 

A
le

x
N

et
 A

rc
h

. 

𝑆1 69.23 77.70 81.27 84.39 

𝑆2 82.94 83.84 91.19 91.42 

𝑆3 85.95 87.74 92.31 94.09 

𝑆4 86.73 85.73 93.53 93.87 

Raw Data is given in Appendix X. 

Next, the feature-fusion strategy is applied (Model-HFF) on 15-scene image dataset. 

The features of different blocks and handcrafted features are fused into a one feature 

vector. Then, the SVM and ELM are applied and recognition results are given in Table 

5.3. The maximum performance is obtained by ELM, which is reached to 97.41% 

recognition accuracy (2nd row). While by employing the ResNet with SVM, the 

proposed Model-HFF achieves 96.48% recognition accuracy (3rd row). On the other 

hand, AlexNet architecture reaches to 94.95% recognition accuracy when the SVM 

classifier is used. In conclusion, the GoogLeNet achieves the best performance 

(97.41%) when the Model-HFF is used. Generally, both proposed approaches (Model-

HSF and Model-HFF) perform well by which it is clear evidence that handcrafted 



   

122 
  

features influence is positively improved the recognition of image scene classification. 

In conclusion, the Model-HSF shows the best performance in scene recognition 

compared to the Mode-HFF because of using score-level fusion of different classifiers. 

 
(a)  Using GoogLeNet architecture 

 

(b)  Using ResNet architecture 

Figure 5.4: 15-Scene image dataset: performance of the model-HSF. Figure (a) and 

(b) are indicating GoogLeNet and ResNet architectures, respectively. Raw data is 

given in Appendix X. 

9
2

.0
9

9
2

.7
4

9
2

.7
2

9
2

.4
1

9
2

.1
8

9
2

.3
6

9
2

.8
7

9
7

.3
7

9
7

.3
2

9
7

.5
5

9
7

.5
5

9
7

.4
1

9
7

.4
7

9
7

.5
5

80

82

84

86

88

90

92

94

96

98

100

SVM SVM SVM SVM ELM SVM ELM

Majority

voting

Max-rule Product-rule Sum-rule Majority

voting

Model- HFF Model- HFF

A
cc

u
ra

cy
 %

HF-MSF model using GoogLeNet on 15-scene image dataset

Without With handcrafted

9
3

.4

9
3

.9
8

9
3

.9
8

9
4

.1
6

9
2

.6
4

9
3

.7
6

9
3

.3
1

9
7

.5

9
7

.7
7

9
7

.8
6

9
7

.7
7

9
6

.9
1

9
7

.3
7

9
6

.4
8

80

82

84

86

88

90

92

94

96

98

100

SVM SVM SVM SVM ELM SVM ELM

Majority

voting

Max-rule Sum-rule Product-rule Majority

voting

Model-HFF Model-HFF

A
cc

u
ra

cy
 %

HF-MSF model using ResNet on 15-scene image dataset 

Without With handcrafted



   

123 
  

Table 5.2: Experimental results of the Model-HSF on 15-scene images dataset.  

 
  Raw data is given in Appendix X. 

Table 5.3: Feature-level fusion: result of Model-HFF for 15-scene images 

dataset. 

CNN Architecture Classifier Acc.% Pr. % Re. % F-score% 

GoogLeNet 

Architecture 

 SVM 97.32 97.45 97.34 97.25 

ELM 97.41 97.33 97.45 97.45 

ResNet 

Architecture 

SVM 97.37 97.24 97.41 97.30 

ELM 96.48 96.39 96.39 96.32 

AlexNet Arch. 

SVM 95.32 95.32 94.91 94.95 

ELM 93.98 94.29 93.50 93.61 

   Raw Data is given in Appendix X.  
 



   

124 
  

5.3.2 Performance of HF-MSF Model on Stage Dataset 2 

In ‘stage dataset 2’, since the scenes are relatively classified according to image scene 

geometry structure and dataset size is larger than 15-scene dataset. Therefore, it is 

useful to employ the deeper architecture. The handcrafted features provide rich 

discriminative information of image scene geometry and fusion of this information at 

each deep CNN block, it improves the recognition rate effectively when we apply the 

Model-HSF. Figure 5.5, and Table 5.4 differentiate ‘with’ and ‘without’ handcrafted 

feature influence at each block of GoogLeNet and ResNet Architectures. In Figure 

5.5(a), which illustrates the effectiveness of handcrafted features at different blocks of 

GoogLeNet model, shows that block (𝑆1) achieves 74.75% to 91.33% recognition 

accuracy when the handcrafted features are added and SVM classifier is applied. 

Similarly, block (𝑆1) reaches 76.50% to 87.50% recognition accuracy when the 

handcrafted features are added and ELM classifier is applied. The same behavior can 

be observed in Figure 5.5(b) and Table 5.4 (rows 1-5) by using the ResNet-50 Model. 

We also used the AlexNet architecture to ’stage dataset 2’. The results of each layer 

‘with’ and ‘without handcrafted’ features are shown in Table 5.4. We observe that the 

recognition accuracy is increased toward the higher layers, such as it reaches 57.33% 

at 𝑆1 and 70.49% at 𝑆4 (see Table 5.4, with SVM). Adding the handcrafted features to 

AlexNet architecture, the accuracy reaches 77.17% for 𝑆1 and it reaches 88.17% for 

𝑆4 when the linear SVM is used. It means that adding handcrafted features improves 

the recognition accuracy at each intermediate layer. However, the ResNet and 

GoogLeNet architectures achieve 3.87% and 5.58% higher accuracy, respectively, 

compared to AlexNet architecture when the handcrafted features are integrated (see 

Table 5.4). The performance of Model-HSF improves 81.83% to 95.17% (see Table 

5.5 (row 4)) by using product-rule on test images when the GoogLeNet architecture is 



   

125 
  

applied. Meanwhile, its maximum F-score is achieved 95.06%. Detailed of the model-

HSF is shown in Figure 5.6, where majority voting, sum, max, and product rules are 

calculated when an SVM classifier is applied and ELM performance is calculated by 

majority voting only. Figure 5.6(a) illustrates the effectiveness of handcrafted features 

for score-level fusion using GoogLeNet model. Product-rule achieves the highest 

performance and reaches to 95.17% when the handcrafted features are included. Figure 

5.6(b) shows the effectiveness of Model-MSF using ResNet model. The handcrafted 

features influence improves 83.25% to 93.96% recognition accuracy by employing the 

product-rule when the SVM classifier is selected. It improves 10.71% recognition 

accuracy compared to the baseline ResNet model. By comparing among score-level 

fusion techniques (see Table 5.5), it is shown that the sum and product-rule always 

show better performance than majority voting and max rule, and provides highest score 

for both architectures (Table 5.5, rows:3,4 and 8, 9). The discriminative information 

for each class is exhibited in confusion matrix, Figure 5.7 (a, b), which clearly shows 

that simple combination of multi-layers features has confusion with different classes, 

such as sidewallRL confused with groundDiagBkgRL class up to 18.42%, while 

Model-HSF reduces this confusion to 3.62% (see Figure 5.7(b)). On the other hand, 

the AlexNet architecture reaches 74.38% recognition accuracy when the sum-rule is 

used for classifier-level aggregation without integrating the handcrafted features. It is 

3.89% higher than the accuracy of the ‘fc8’ layer of AlexNet architecture. The results 

of intermediate layers feature combination and score-level combination are given in 

Appendix Y (Table Y3). However, the performance of AlexNet architecture is 6.58% 

and 7.79% lower than ResNet and GoogLeNet architectures, respectively, because 

these models take advantage of residual and inception blocks to avoid the overfitting 

problem. 



   

126 
  

 

(a) Using GoogLeNet architecture. S-1, S-2,S-3 are indicating the 

S1, S2,S3 blocks, respectively. 

 

(b) Using ResNet architecture. S-1, S-2,..,S-5 are indicating the S1, S2,…,S5 

blocks, respectively. 

 

Figure 5.5: ‘Stage dataset 2’: influence of handcrafted features at each intermediate 

block of GoogleNet (see in (a)) and ResNet architectures (see in (b)). Raw data is 

given in Appendix Y. 

 

 

7
4

.7
5

7
6

.5

9
1

.3
3

8
7

.5

7
8

.9
2

8
1

.5

9
3

.1
3

9
0

.5
4

8
2

.2
5

8
0

.1
3

9
3

.7
5

9
0

.9
2

50

55

60

65

70

75

80

85

90

95

100

SVM ELM with hand-crafted

feature (SVM)

With handcrafted

features(ELM)

A
cc

u
ra

cy
 %

Influence of handcrafted features at each level. The stage  dataset 2 using 

GoogLeNet Architecture

  (S­1)   (S­2)   (S­3)

7
5

.2
9

7
4

.8
3 7

8
.2

9

7
8

.5

7
8

.2
58

2

8
1

.7
8

8
3

.2
5

8
2

.6
8

8
2

.5

8
8

.8
3

8
8

.8
8

9
0

.7
9

8
9

.4
6

8
9

.5

8
9

.5
8

8
9

.8
3

9
2

.0
4

9
1

.2
1

9
0

.7
9

70

75

80

85

90

95

100

S-1 S-2 S-3 S-4 S-5

A
cc

u
ra

cy
 %

Influence of hand-crafted features at each level using ResNet Model for ‘stage dataset 2’

Without handcrafted (ELM) Without handcrafted (SVM)

With handcrafted (ELM) With handcrafted (SVM)



   

127 
  

Table 5.4: Stage image dataset 2. Experiments of ‘with’ and ‘without handcrafted’ 

features fusion by using SVM and ELM classifiers. 

CNN 

Architecture  

CNN 

Blocks 

Without handcrafted (Acc. %) With handcrafted (Acc. %) 

ELM SVM ELM SVM 

R
es

N
et

 A
rc

h
it

ec
tu

re
  

𝑆1 75.29 82.00 88.83 89.58 

𝑆2 74.83 81.78 88.88 89.83 

𝑆3 78.29 83.25 90.79 92.04 

𝑆4 78.50 82.68 89.46 91.21 

𝑆5 78.25 82.50 89.50 90.79 

G
o

o
g

L
eN

et
 

A
rc

h
it

ec
tu

re
 𝑆1 76.50 74.75 87.50 91.33 

𝑆2 81.50 78.92 90.54 93.13 

𝑆3 80.13 82.25 90.92 93.75 

A
le

x
N

et
 A

rc
h

. 

𝑆1 52.25 57.33 77.58 77.17 

𝑆2 64.42 64.38 81.58 84.21 

𝑆3 70.88 67.33 85.63 85.46 

𝑆4 72.46 70.49 85.92 88.17 

   Raw data is given in Appendix Y. 

 

(a) Using GoogLeNet architecture 

 

Figure 5.6: ‘Stage dataset 2’: performance of Model-MSF. Figure (a) and (b) are 

indicating GoogLeNet and ResNet architectures, respectively. Raw Data is given in 

Appendix Y. 

8
2

.8
8

8
1 8
1

.8
3

8
2

.0
8

8
2

.9
6

8
0

.7
9

8
2

.1
3

9
4

.4
6

9
5

.0
4

9
5

.1
7

9
5

.1
3

9
1

.7
5

9
3

.9
6

9
0

.4
2

70

75

80

85

90

95

100

SVM SVM SVM SVM ELM SVM ELM

Majority

voting

Max-rule Product-rule Sum-rule Majority

voting

Model-HFF Model-HFF

A
cc

u
ra

cy
 %

Performance of HF-MSF model using GoogLeNet on ‘stage dataset 2’.

Without With hand crafted



   

128 
  

 

(b)  Using ResNet architecture 

In contrast, Table 5.6 shows that the Model-HFF achieves 93.92% recognition 

accuracy when the handcrafted features are integrated with multi-layer learned 

features of GoogLeNet model and selecting linear SVM as a classifier. It shows that 

handcrafted features influence greatly effects of feature-level fusion as well and it 

improves 11.42% recognition accuracy from 82.50% recognition accuracy which is 

achieved by using ResNet architecture with a linear SVM classifier. Meanwhile, the 

AlexNet architecture reaches 91.40% recognition accuracy of image scene geometry 

when the handcrafted features and multi-layer features are combined (see Table 5.6). 

The detailed results of the multi-layer combination are given in Y (Table Y4). 

However, the maximum accuracy is achieved by GoogLeNet architecture, which is 

reached 93.96% when it is integrated with handcrafted features. On the other hand, 

ResNet50 is reached 92.54% when the handcrafted features are integrated and SVM 

classifier is used. Both GoogLeNet and ResNet architectures achieve higher accuracy 

compared to AlexNet architecture because they are utilizing the concept of inception 

modules and residual blocks to avoid the overfitting problem, respectively. 

8
2

8
1

.7
8

8
3

.2
5

8
2

.6
8

7
9

.5
4 8
2

.5

8
0

.6
7

9
2

.7
9

9
3

.5
4

9
3

.7
9

9
3

.9
6

9
1

.8
8

9
2

.5
4

8
9

.8
3

70

75

80

85

90

95

100

SVM SVM SVM SVM ELM SVM ELM

Majority

voting

Max-rule Sum-rule Product-rule Majority

voting

Model- HFF Model- HFF

A
cc

u
ra

cy
 %

Performance of HF-MSF model using ResNet on ‘stage dataset 2’.

Without With handcrafted



   

129 
  

 
(a) Confusion matrix of Model-HSF ‘without handcrafted’ features using sum-rule. 

 

 

 
(b) Confusion matrix of HSF Model with handcrafted feature using product rule.       

 

Figure 5.7: Confusion matrices of ‘stage dataset 2’ using GoogleNet architecture 

with multi-layer and Model-HSF given in Figure (a) & (b). Raw data is given in 

Appendix Y. 

 

 

 

 



   

130 
  

Table 5.5: ‘Stage dataset 2’: performance of Model-HSF using ResNet and 

GoogLeNet architecture.  

 
  Raw data is given in Appendix Y.  

 

 



   

131 
  

Table 5.6: Model HFF results using ‘stage dataset 2’. 

C
N

N
 

A
rc

h
it

ec
tu

re
 

C
la

ss
if

ie
r Without With handcrafted features 

A
cc

.%
 

P
r.

 %
 

R
e.

 %
 

F
-s

%
 

A
cc

.%
 

P
r.

 %
 

R
e.

 %
 

F
-s

%
 

G
o

o
g
L

eN
et

 

A
rc

h
it

ec
tu

re
 

SVM 80.79 80.64 80.4 80.44 93.96 93.92 92.87 93.88 

ELM 82.13 81.32 82.00 81.54 90.42 90.24 90.49 90.25 

R
es

N
et

 

A
rc

h
it

ec
tu

re
 

SVM 82.50 82.28 82.05 82.10 92.54 92.33 92.32 92.38 

ELM 80.67 80.16 80.74 80.16 89.83 89.81 89.92 89.73 

A
le

x
N

et
 

A
rc

h
. SVM 74.04 73.90 74.24 94.03 91.33 91.48 91.43 91.45 

ELM 75.29 74.50 75.57 74.25 87.38 87.29 87.61 87.30 

Raw data is given in Appendix Y. 

5.3.3 Comparison with State-of-the-Art Methods 

In this section, the HF-MSF model is compared with existing methods. The existing 

methods, for 15-scene dataset are given in Table 2.1. The G-MS2F (Tang et al., 2017a), 

FTOTLM (Shaopeng Liu et al., 2019), DFF-ADML (Wang et al., 2020), RLML-LSR 

Chen et al. (Wang et al., 2021)  methods performance are also compared with HF-MSF 

model, and accuracy of these methods are given in Table 5.7. These methods achieve 

an accuracy of 92.90%, 94.01%, 96.39%, and 93.50%, respectively, on 15-scene 

dataset. On the other hand, Liu, et al.(B. Liu, Liu, & Lu, 2015), Lin et al. (Lin et al., 

2017), Zafar et al. (Zafar, Ashraf, Ali, Ahmed, Jabbar, & Chatzichristofis, 2018) 

utilized BoW feature encoding techniques (see Table 2.1) and achieve 89.70%, 

87.23%, 87.01%, respectively, on 15-scene dataset. Table 5.7 shows that CNN based 

methods (Shaopeng Liu et al., 2019; Tang et al., 2017a; Wang et al., 2020) achieve  

 



   

132 
  

Table 5.7: The comparison of HF-MSF Model with state-of-the-art methods for 

15-scene dataset. 

Methods Accuracy % 

Liu, et al. (B. Liu et al., 2015) 89.70 

GoogLeNet (Places365) (B. Zhou, et al., 2018) 90.19 

GoogLeNet (ImageNet) (J. Deng et al., 2009) 91.12 

Zafar et al. (Zafar et al., 2018) 87.07 

Lin et al. (Lin et al., 2017) 87.23 

Segmentation-based feature extraction method 92.58 

G-MS2F (Tang et al., 2017a) 92.90 

FTOTLM (Shaopeng Liu et al., 2019) 94.01 

DFF-ADML (Wang et al., 2020) 96.39 

RLML-LSR (Wang et al., 2021) 93.50 

HF-MSF model: (model-HSF using ResNet multi-layer features) 97.86 

HF-MSF Model: (model- HFF using GoogLeNet multi-layer 

features) 
97.41 

   

higher recognition accuracy by taking the advantages of multi-layer features. HF-MSF 

model also utilized the advantages of multi-layers features of ResNet model and by 

adopting a score-level strategy, it reaches to 94.16% without adding external 

handcrafted features (see Figure 5.3(b)). At the end, full HF-MSF model with score-

level strategy, including multi-layer features and handcrafted features, it achieves 

97.86% recognition accuracy on 15-scene dataset, which is superior to the existing 

methods. The Segmentation-based feature extraction method (see Chapter 3) achieves 

92.58% performance on 15-scene dataset. However, HF-MSF model improves the 

accuracy of 5.10% compared segmentation-based feature extraction method. It 



   

133 
  

demonstrates that combining rich handcrafted features with deep features of multi-

layer improves the accuracy of the image scene recognition. 

The existing methods are also evaluated on the ‘stage dataset 2’. For fair comparison 

to existing methods, we apply the Nedovic et al. (Nedovic et al., 2010) and J. Sánchez 

et al. (Sanchez et al., 2013) methods on the ‘stage dataset 2’ by utilizing 80% part 

training and 20% part for testing. Results are reported in Table 5.8. Nedovic et al. 

(Nedovic et al., 2010) features are extracted by partition the image into 4 × 4 patches 

and features are combined into a single vector for each image. In J. Sánchez et al. 

method (Sanchez et al., 2013), the Gaussian components in the GMM for encodes 

features is empirically set to be 64 (more detail of implementation is given in 

Subsection 3.2.3.2). We use SVM classifier for both methods and achieve maximum 

accuracy of 52.65% and 74.89%, respectively, as shown in Table 5.8. Next, the popular 

deep CNN architectures, which are the pre-trained on ImageNet dataset, namely 

GoogLeNet (Szegedy et al., 2015), ResNet-50 (He et al., 2016), AlexNet (Alex et al., 

2012), and VGG-16 (Simonyan & Zisserman, 2015) are also employed on the ‘stage 

dataset 2’. These pre-trained weights are used as starting weights to learn the stage 

geometries. Each deep CNN parameters is fined tuned through the standard BP 

algorithms with a batch size 10. In order to obtain optimum performance of CNN 

models, the same learning parameters are used as described in Subsection 4.2.4. 

Training and testing time of each method is reported in Table 5.8. The results of deep 

CNN models are also reported same as given in Table 4.1. In standard CNN 

architectures, the GoogLeNet achieves maximum accuracy which reached to 82.25%. 

 

 



   

134 
  

Table 5.8: Comparison of HF-MSF model with state-of-the-art methods for the ‘stage 

dataset 2’. 

Methods Acc.% Pr.% Re.% F-s% 

Training 

+testing 

time/sec 

Nedovic et al. (Nedovic et al., 2010) 52.65 51.95 52.37 52.04 58.0 

Sánchez et al. (Sanchez et al., 2013) 74.89 71.57 68.23 69.11 180.0 

GoogLeNet (Szegedy et al., 2015) 82.25 82.13 82.07 82.08 1009 min +43 

AlexNet (Alex et al., 2012) 78.13 77.76 78.13 77.81 517min +16 

VGG-16 Net (Simonyan & Zisserman, 

2015) 
80.88 80.50 80.87 80.36 2833 min +53 

ResNet-50 (He et al., 2016) 81.88 81.92 81.88 81.73 1458min +33 

TGF-DeepFF method 86.29 85.92 86.16 85.96 275.72 

G-MS2F(Tang et al., 2017a) 82.96 82.13 82.82 82.27 47.29+4.35 

HF-MSF Model: (Model-HSF, using 

GoogLeNet multi-layer features) 
95.17 95.13 95.03 95.06 48.74+3.98 

HF-MSF Model: (Model-HFF using 

GoogLeNet multi-layer features) 
93.96 93.92 92.87 93.88 48.09+4.14 

Raw data is given in Appendix W and Y.  

Our HF-MSF model shows superior performance compared to existing methods for 

the 3D scene geometry recognition. The best performance of our method mainly 

benefits from the fusion of deep and handcrafted features, as our TGF-DeepFF method 

in Chapter 4 shows the positive influence of handcrafted feature fusion for image scene 

geometry recognition. 

By involving the particular handcrafted features with multi-layer features CNN 

architecture, the accuracy significantly improved over the existing methods such as G-

MS2F (Tang et al., 2017a) achieves 82.96% recognition accuracy when it applies on 

‘stage dataset 2’. G-MS2F is implemented by using three auxiliary classifiers 

(explained in Subsection 2.2.2) and their outcome are combined using product-rule 



   

135 
  

(defined in Subsection 2.1.5.3). We use SVM with linear kernel, as author described 

in their study. The code is given at (Tang, Wang, & Kwong, 2017b). In contrast, the 

HF-MSF model approaches to 95.17% and 95.13% recognition accuracy when the 

score-level fusion using the product and sum rule is applied, respectively. It means that 

handcrafted features which are particularly contained the image scene geometry 

information has strong influence in image scene recognition of ‘stage dataset 2’ and it 

improves accuracy of 12.21% than existing G-MS2F (Tang et al., 2017a) method. It is 

shown that our HF-MSF model outperform by 12.92% of the G-MS2F (Tang et al., 

2017a) method. On the other hand, it also improves 8.88% performance compared to 

TGF-DeepFF method. It is because of adding the discriminative information of scene 

geometry at each block of CNN and then applying the score-level fusion. The 

evaluation time of the HF-MSF model (training and testing) is approached to 52.72 

sec and 52.23 sec for Model-HSF and Model-HHF, respectively, which is clear 

evidence that it is faster than BP techniques that takes a long time to fine tune it 

parameters. 

5.4 Summary 

In summary, we present a solution based on multi-layer features of CNN and 

handcrafted features fusion for the problem of 3D scene geometry recognition of a 

single image. The handcrafted features contain rich information of image scene 

geometry, including shape, depth, and color. Fusing the handcrafted features at 

different blocks of multi-layer CNN architecture improves the discriminative 

information of image geometry, which is important for 3D scene geometry recognition 

of a single image. Furthermore, HF-MSF model utilizes score-level and feature-fusion 

strategies to gain the highest recognition accuracy. In score-level fusion, the multi-

layer features combined with handcrafted features at each blocks individually fused 



   

136 
  

and the classifier at each block which  is used to learn the image representation, then 

their predicted scores at each block are combined using sum or the product rule to 

obtain final category type. In feature-level fusion, the handcrafted features and multi-

layers features of CNN from different blocks are combined into a single feature vector 

and fed into a classifier to obtain final decision. Finally, to compare the effectiveness 

of the HF-MSF model, it is evaluated on two different datasets. One is a 3D scene 

geometry dataset, called the ‘stage dataset 2’, while the other is the ‘15-scene dataset’, 

which is useful in image scene recognition. The HF-MSF model is built on well-known 

deep architectures, namely GoogLeNet and ResNet architectures. The deep features 

are extracted at three different blocks of GoogLeNet and five different residual blocks 

of ResNet model. Two classifiers, linear SVM and ELM are used with score-level 

fusion and feature-level fusion strategies. Analysis shows that score-level fusion using 

SVM classifier achieves best performance for both datasets. The HF-MSF model 

achieves maximum accuracy of 97.86% on 15-scene dataset and 95.17% on ‘stage 

dataset 2’ by using ResNet and GoogLeNet models, respectively. We also tested the 

AlexNet architecture with four different layers for feature extraction on ‘stage dataset 

2’, while the accuracy was low compared to ResNet and GoogLeNet architectures, 

which shows that ResNet and GoogLeNet capture strong scene discriminative 

information. Compared to state-of-the-art methods, HF-HSF model achieves superior 

performance on the both datasets with 12.21% and 4.96% which increases accuracy 

versus the G-MS2F (Tang et al., 2017a) method and 11.92% and 3.85% increase  

accuracy versus FTOTLM (Shaopeng Liu et al., 2019) method on ‘stage 2’ and ‘15-

scene’ image datasets, respectively. On the other hand, compared to DFF-ADML 

(Wang et al., 2020) and RLML-LSR (Wang et al., 2021) methods, our HF-MSF model 

increases 1.47%, 4.36% accuracy on 15-scene dataset, respectively. Compared to 



   

137 
  

segmentation-based feature extraction method, HF-MSF model improves the accuracy 

of 5.10% when the 15-scene image dataset is used. Summarily, the results indicate that 

our contributions provide superior accuracy under two different CNN models with 

SVM and ELM classifiers. However, model is designed for medium scale 3D scene 

geometry datasets. Furthermore, it also involves the handcrafted features which needs 

to extract beside with deep CNN features that increase the computational time 

compared to standard CNN model.  



   

138 
  

Chapter 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis, we investigate the problem of 3D scene recognition from a single image, 

which is an important task for many computer vision applications, i.e., 3D TV, vehicle 

navigation system, video categorization. In this study, we explore different aspects of 

image scene, such as image features, segmentation techniques, dataset availability, 

deep CNN features, and handcrafted features integration at different blocks to obtain 

higher recognition rate. The most recent approaches of feature extraction, machine 

learning and image processing are adapted to tackle the 3D scene recognition problem. 

In this thesis, we introduce three different methods of 3D scene recognition. In the first 

method, we explored the different features that describe the structure information of 

image scene, and predefined templates with respect to scene geometries, and the 

segmentation process is utilized to obtain high accuracy on small and medium-scale 

datasets. Thus, the segmentation-based feature extraction method of 3D scene 

recognition is implemented to tackle the problem of the 3D scene recognition for small 

and medium scale datasets and to achieve the significant recognition accuracy of 3D 

scene recognition. The handcrafted features, including HOG, color (RGB, HSV), 

parameters of the Weibull distribution, local binary patterns, and entropy value are 

studied and these features are fused for each patch and further these fused feature 



   

139 
  

vectors are combined into a single vector based on the template-based segmentation, 

which is individually fed into an SVM classifier. In this way, this method reduces the 

intra-class variation problem. Finally, the obtained results of these eight classifiers are 

integrated by using sum-rule. Compared with the state-of-the-art methods, our 

segmentation-based feature extraction method obtained the significant improvement 

in 3D scene geometry recognition accuracy on two different scene datasets. The results 

are motivating in the sense that applying the appropriate templates and particular 

image features improve the 3D scene recognition accuracy on small and medium-scale 

datasets when the images with relatively clear geometry structures are given. 

Accordingly, in the second method, the problem of 3D scene recognition is tackled for 

the medium-scale dataset by using texture gradient features and deep CNN feature 

fusion method (TGF-DeepFF). It reduces the intra-class variation problem between 

the similar stages by using additional features of parameters of the Weibull 

distribution. As CNN models require a large dataset for training purpose and 3D scene 

geometry dataset is not publically available. Therefore, a novel 3D scene geometry 

dataset, ‘stage dataset 2’ is constructed to handle this issue. The key advantages of 

using texture gradient features are that rich image scene geometry knowledge is easy 

to extract. Finally, ELM classifier is applied to learn the 3D scene geometry model. 

The TGF-DeepFF method is evaluated on introduced dataset, ‘stage dataset 2’, and 

results exhibit that the TGF-DeepFF method obtains 86.29% recognition accuracy, 

which is higher and it requires less training time compared to standard CNN 

architectures, including AlexNet (Alex et al., 2012), GoogLeNet (Szegedy et al., 

2015), VGG-16 (Simonyan & Zisserman, 2015) and ResNet-50 (He et al., 2016)  

architectures. 



   

140 
  

Finally, in the third method, a novel approach is presented based on multi-layer CNN’s 

features and handcrafted features fusion to the problem of 3D scene geometry 

recognition of a single image (HF-MSF). Above proposed methods show reliable 

performance on small or medium-scale datasets, but losing scene to object relationship 

because using the predefined structure and human interaction in feature extraction does 

not represent well of image scene geometry structure when complex image scenes are 

given. And TGF-DeepFF method uses CNN architecture which do not well train on 

the small or medium scale datasets. Thus the HF-MSF approach is proposed to achieve 

high recognition accuracy of the medium-scale scene geometry dataset. The related 

works did not pay attention to use the handcrafted and deep feature fusion at the 

intermediate layer. In this system, the handcrafted features and multi-layer features are 

fused at different blocks. The handcrafted features contain rich information of image 

scene geometry, including shape, depth, and color. Fusing the handcrafted features at 

different blocks of multi-layer CNN architecture improves the discriminative 

information of image geometry, which is important for 3D scene geometry recognition 

of a single image when the medium scale datasets are given. Furthermore, the proposed 

HF-MSF model utilizes score-level and feature-fusion strategies to gain the highest 

recognition accuracy. The analysis shows that score-level fusion using the SVM 

classifier achieves the best performance for both datasets. The proposed HF-MSF 

approach achieves maximum accuracy of 97.86% on 15-scene dataset and 95.17% on 

‘stage dataset 2’ by using ResNet and GoogLeNet models, respectively, which is 

superior to the state-of-the-art methods. Result indicates that the proposed approach 

achieves high accuracy on medium-scale scene datasets using additional handcrafted 

features with multi-layer CNN features. 



   

141 
  

Summarily, the 3D scene recognition problem is studied in this thesis and it can be 

recommended in three different aspects: 

1) Template-based segmentation method (see Chapter 3) is used to achieve high 

recognition accuracy on small and medium-scale datasets with relatively clear 

geometric structures (see Tables 3.2, 3.3, and 3.5). We recommend this method for 

small-scale image scene geometry datasets with relatively clear geometric structure, 

see Table 6.1. 

2) Texture Gradient Features and Deep CNN Feature Fusion (TGF-DeepFF) method 

is introduced for medium-scale image scene recognition. The proposed TGF-DeepFF 

method is useful for capturing the accurate depth and scene structure information as it 

shows better accuracy on ‘stage dataset 2’ (see Table 4.1) compared to standard CNN 

architecture. It takes benefits of texture gradient features (Nedovic et al., 2010), which 

provides rich information of scene depth and by applying the extreme learning 

machine (Huang et al., 2006), it fine-tunes the scene recognition model faster than 

standard a backpropagation algorithm (see Table 4.1). Recommendations are given in 

Table 6.1 (row 2) that it can be useful for medium scale scene geometry dataset. It is 

very fast in training compared to standard CNNs based backpropagation algorithm. 

3) Finally, if the complex scene medium scale datasets are given, then the Handcrafted 

Features with CNN Multi-Stages Features (HF-MSF) approach can be applied. As it 

uses additional features with multi-layer CNN features and achieving 95.17% and 

97.87% recognition accuracy on ‘stage dataset 2’ and ‘15-scene’ dataset, it can be 

recommended (see Table 6.1, row 3) for medium-scale datasets when high accuracy is 

required. It is complex compared to segmentation-based feature extraction and texture 

gradient features and deep CNN feature fusion method, but it achieves high accuracy 

on medium-scale datasets.  



   

142 
  

Furthermore, the TGF-DeepFF and HF-MSF approaches are proposed for medium-

scale datasets and they use additional handcrafted features when the large scale 

datasets are not given because the images are not enough to well train the CNN models. 

Therefore, the accuracy of both approaches are higher than baseline methods. 

 

Table 6.1:  Recommendations of introduced methods.  

Chapter 

# 
Methods Recommendation 

1 

Segmentation-

based feature 

extraction method 

We recommend this method for small-scale image 

scene geometry datasets with relatively clear 

geometric structures, as it shows high accuracy on 

‘stage dataset 1’ (see Tables 3.2 and 3.4). 

2 

Texture Gradient 

Features and Deep 

CNN Feature 

Fusion method 

It is recommended for medium-scale scene dataset 

as it shows higher accuracy compared to standard 

CNN architectures (see Table 4.1). It is very fast in 

training compared to standard CNN architectures 

(see Table 4.1). It can be useful for real-time 

systems. 

3 

Handcrafted 

Features with 

CNN Multi-Stages 

Features model 

It is applicable for medium-scale scene geometry 

datasets when the high accuracy of image scene 

recognition is required. 

 

6.2 Future work 

In future work, the 3D scene recognition may aggregate with object detection, 3D 

scene layout extraction by using advanced machine learning approaches. A recent 

study of deep CNN shows that the CNN can be used for objects detection and 

segmentation purpose, i.e., region based-CNN (R-CNN) and mask R-CNN (He, 

Gkioxari, Dollár, & Girshick, 2020). We expect that objects detection and scene layout 

extraction accuracy may improve when the 3D scene geometry is known of a single 

image. However, a deep study of CNN for object detection and scene layout extraction 

by following 3D scene geometry of a single image is required. 



   

143 
  

REFERENCES 

Aghdam, H. H., & Heravi, E. J. (2018). Guide to Convolutional Neural Networks: A 

Practical Application to Traffic-Sign Detection and Classification Springer, 1-

303. doi:10.1007/978-3-319-57550-6 

Alex, K., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep 

Convolutional Neural Networks. 1097--1105.  

Ali, N., Zafar, B., Riaz, F., Hanif Dar, S., Iqbal Ratyal, N., Bashir Bajwa, K.,  Sajid, 

M. (2018). A Hybrid Geometric Spatial Image Representation for scene 

classification. PLOS ONE, 13(9), e0203339. 

doi:10.1371/journal.pone.0203339 

Alom, M. Z., Taha, T., Yakopcic, C., Westberg, S., Hasan, M., Esesn, B., Asari, V. 

(2018). The History Began from AlexNet: A Comprehensive Survey on Deep 

Learning Approaches.  

Anderson, C. H., Van Essen, D. C., & Olshausen, B. A. (2005). CHAPTER 3 - 

Directed Visual Attention and the Dynamic Control of Information Flow. In L. 

Itti, G. Rees, & J. K. Tsotsos (Eds.), Neurobiology of Attention (pp. 11-17). 

Burlington: Academic Press. 

Anguita, D., Boni, A., Ridella, S., Rivieccio, F., & Sterpi, D. (2005). Theoretical and 

Practical Model Selection Methods for Support Vector Classifiers. In L. Wang 



   

144 
  

(Ed.), Support Vector Machines: Theory and Applications (pp. 159-179). 

Berlin, Heidelberg: Springer Berlin Heidelberg. 

Ballabio, D., Grisoni, F., & Todeschini, R. (2018). Multivariate comparison of 

classification performance measures. Chemometrics and Intelligent 

Laboratory Systems, 174, 33-44.  

Brébisson, A., & Vincent, P. (2015). An Exploration of Softmax Alternatives 

Belonging to the Spherical Loss Family.  

Breiman, L. (2001). Random Forests. Mach. Learn., 45(1), 5–32. 

doi:10.1023/a:1010933404324 

Brownlee, J. (April 24, 2019). Convolutional Neural Network Model Innovations for 

Image Classification. Deep Learning for Computer Vision. Retrieved from 

https://machinelearningmastery.com/review-of-architectural-innovations-for-

convolutional-neural-networks-for-image-classification/, Feb 2020. 

Carreira, J., & Sminchisescu, C. (2012). CPMC: Automatic Object Segmentation 

Using Constrained Parametric Min-Cuts. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 34(7), 1312-1328. 

doi:10.1109/TPAMI.2011.231 

Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions 

on Image Processing, 10(2), 266-277. doi:10.1109/83.902291 

https://machinelearningmastery.com/review-of-architectural-innovations-for-convolutional-neural-networks-for-image-classification/
https://machinelearningmastery.com/review-of-architectural-innovations-for-convolutional-neural-networks-for-image-classification/


   

145 
  

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 

273-297. doi:10.1023/A:1022627411411 

Cheng, D., Yu, W., He, X., Ni, S., Lv, J., Zeng, W., & Yuanlong, Y. (6-9 Dec. 2015). 

Scene recognition based on extreme learning machine for digital video archive 

management. Paper presented at the 2015 IEEE International Conference on 

Robotics and Biomimetics (ROBIO). 

D. Hoiem, A.A. Efros, & Hebert, M. (2007). Matlab code of Recovering Surface 

Layout from an Image.   Retrieved from http://dhoiem.cs.illinois.edu/, Feb 

2018. 

Dalal, N., & Triggs, B. (20-25 June 2005). Histograms of oriented gradients for human 

detection. Paper presented at the 2005 IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition (CVPR'05). 

Deng, J., Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S., Adam, H. (2014). 

Large-Scale Object Classification Using Label Relation Graphs. Paper 

presented at the Computer Vision – ECCV 2014, Cham. 

Deng, J., Dong, W., Socher, R., Li, L., Kai, L., & Li, F.-F. (20-25 June 2009). 

ImageNet: A large-scale hierarchical image database. Paper presented at the 

2009 IEEE Conference on Computer Vision and Pattern Recognition. 

http://dhoiem.cs.illinois.edu/


   

146 
  

Duffy, S. F. (1997). Weibull Parameter Estimation Theory and Background–

Information, Connecticut Reserve Technologies, LLC, Cleaveland, Ohio 

44114, 1-22.  

Faruk Ortes, Derya Karabulut, & Arslan, Y. Z. (2019). General Perspectives on 

Electromyography Signal Features and Classifiers Used for Control of Human 

Arm Prosthetics. IGI Global, 1-17. doi:http://doi:10.4018/978-1-5225-2255-

3.ch043 

G. Kumar, & Bhatia, P. K. (8-9 Feb. 2014). A Detailed Review of Feature Extraction 

in Image Processing Systems. Paper presented at the 2014 Fourth International 

Conference on Advanced Computing & Communication Technologies. 

gettyimages. (accessed at March 2019). gettyimages data Retrieved from 

https://www.gettyimages.com/photos/, June 2018. 

Geusebroek, J.-M., & Smeulders, A. W. M. (2005). A Six-Stimulus Theory for 

Stochastic Texture. International Journal of Computer Vision, 62(1), 7-16. 

doi:10.1007/s11263-005-4632-7 

Geusebroek, J., Smeulders, A. W. M., & Weijer, J. v. d. (2003). Fast anisotropic Gauss 

filtering. IEEE Transactions on Image Processing, 12(8), 938-943. 

doi:10.1109/TIP.2003.812429 

Gonzalez, R. C., & Woods, R. E. (2001). Digital Image Processing: Addison-Wesley 

Longman Publishing Co., Inc. 

http://doi:10.4018/978-1-5225-2255-3.ch043
http://doi:10.4018/978-1-5225-2255-3.ch043
https://www.gettyimages.com/photos/


   

147 
  

Gonzalez, R. C., & Woods, R. E. (2006). Digital Image Processing (3rd Edition): 

Prentice-Hall, Inc. 

Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing 4Th edition. 

Pearson: Printed and bound in Malaysia. 

Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2003). Digital Image Processing 

Using MATLAB: Prentice-Hall, Inc. 

Guang-Bin, H., Qin-Yu, Z., & Chee-Kheong, S. (25-29 July 2004). Extreme learning 

machine: a new learning scheme of feedforward neural networks. Paper 

presented at the 2004 IEEE International Joint Conference on Neural Networks 

(IEEE Cat. No.04CH37541). 

Hassantabar, S., Ahmadi, M., & Sharifi, A. (2020). Diagnosis and detection of infected 

tissue of COVID-19 patients based on lung x-ray image using convolutional 

neural network approaches. Chaos, Solitons & Fractals, 140, 110170. 

doi:https://doi.org/10.1016/j.chaos.2020.110170. 

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2020). Mask R-CNN. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 42(2), 386-397. 

doi:10.1109/TPAMI.2018.2844175 

He, K., Zhang, X., Ren, S., & Sun, J. (27-30 June 2016). Deep Residual Learning for 

Image Recognition. Paper presented at the 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR). 

https://doi.org/10.1016/j.chaos.2020.110170


   

148 
  

Hedau, V., Hoiem, D., & Forsyth, D. (29 Sept.-2 Oct. 2009). Recovering the spatial 

layout of cluttered rooms. Paper presented at the 2009 IEEE 12th International 

Conference on Computer Vision. 

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in 

recurrent nets: the difficulty of learning long-term dependencies. In S. C. 

Kremer & J. F. Kolen (Eds.), A Field Guide to Dynamical Recurrent Neural 

Networks: IEEE Press. 

Hoiem, D., Efros, A. A., & Hebert, M. (17-21 Oct. 2005). Geometric context from a 

single image. Paper presented at the Tenth IEEE International Conference on 

Computer Vision (ICCV'05) Volume 1. 

Hoiem, D., Efros, A. A., & Hebert, M. (17-22 June 2006). Putting Objects in 

Perspective. Paper presented at the 2006 IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition (CVPR'06). 

Hoiem, D., Efros, A. A., & Hebert, M. (2007). Recovering Surface Layout from an 

Image. International Journal of Computer Vision, 75(1), 151-172. 

doi:10.1007/s11263-006-0031-y 

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory 

and applications. Neurocomputing, 70(1), 489-501. 

doi:https://doi.org/10.1016/j.neucom.2005.12.126 

https://doi.org/10.1016/j.neucom.2005.12.126


   

149 
  

Huang, G., Bai, Z., Kasun, L. L. C., & Vong, C. M. (2015a). Extreme learning 

machine, Matlab implementation.   Retrieved from 

https://github.com/ExtremeLearningMachines/ELM-LRF, August 2019. 

Huang, G., Bai, Z., Kasun, L. L. C., & Vong, C. M. (2015b). Local Receptive Fields 

Based Extreme Learning Machine. IEEE Computational Intelligence 

Magazine, 10(2), 18-29. doi:10.1109/MCI.2015.2405316 

Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). 

Structure from Motion Photogrammetry in Forestry: a Review. Current 

Forestry Reports, 5(3), 155-168. doi:10.1007/s40725-019-00094-3 

Jan Mark Geusebroek, Arnold W. M. Smeulders, & Weijer, J. v. d. (2007). Matlab 

code for anisotropic filter Retrieved from 

https://ivi.fnwi.uva.nl/isis/publications/bibtexbrowser.php?key=GeusebroekT

IP2003&bib=all.bib, July 2018. 

Joost van de Weijer , Theo Gevers , & Gijsenij, A. Retrieved from 

https://staff.fnwi.uva.nl/th.gevers/software.html, March 2019.  

Jung, C., & Kim, C. (2012). Real-time estimation of 3D scene geometry from a single 

image. Pattern Recognition, 45(9), 3256-3269. 

doi:https://doi.org/10.1016/j.patcog.2012.02.028 

https://github.com/ExtremeLearningMachines/ELM-LRF
https://ivi.fnwi.uva.nl/isis/publications/bibtexbrowser.php?key=GeusebroekTIP2003&bib=all.bib
https://ivi.fnwi.uva.nl/isis/publications/bibtexbrowser.php?key=GeusebroekTIP2003&bib=all.bib
https://staff.fnwi.uva.nl/th.gevers/software.html
https://doi.org/10.1016/j.patcog.2012.02.028


   

150 
  

Khan, A., Chefranov, A., & Demirel, H. (2020a). Image-Level Structure Recognition 

Using Image Features, Templates, and Ensemble of Classifiers. Symmetry, 

12(7), 1072. doi:doi.org/10.3390/sym12071072 

Khan, A., Chefranov, A., & Demirel, H. (2020b, 10-12 Aug. 2020). Texture Gradient 

and Deep Features Fusion-Based Image Scene Geometry Identification System 

Using Extreme Learning Machine. Paper presented at the 2020 3rd 

International Conference of Intelligent Robotic and Control Engineering 

(IRCE), University of Oxford, UK. 

Khoo, Y.-H., Goi, B.-M., Chai, T.-Y., Lai, Y.-L., & Jin, Z. (2018). Multimodal 

Biometrics System Using Feature-Level Fusion of Iris and Fingerprint. Paper 

presented at the Proceedings of the 2nd International Conference on Advances 

in Image Processing, Chengdu, China. 

https://doi.org/10.1145/3239576.3239599 

Kim, S., Kavuri, S., & Lee, M. (2013). Deep Network with Support Vector Machines. 

Paper presented at the Neural Information Processing, Berlin, Heidelberg. 

Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226-

239. doi:10.1109/34.667881 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with 

deep convolutional neural networks. Commun. ACM, 60(6), 84-90. 

doi:10.1145/3065386 

https://doi.org/10.1145/3239576.3239599


   

151 
  

Lazebnik, S., Schmid, C., & Ponce, J. (17-22 June 2006). Beyond Bags of Features: 

Spatial Pyramid Matching for Recognizing Natural Scene Categories. Paper 

presented at the 2006 IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition (CVPR'06). 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444. doi:10.1038/nature14539 

Lee, C., Badrinarayanan, V., Malisiewicz, T., & Rabinovich, A. (22-29 Oct. 2017). 

RoomNet: End-to-End Room Layout Estimation. Paper presented at the 2017 

IEEE International Conference on Computer Vision (ICCV). 

Lei, Y., Karimi, H. R., Cen, L., Chen, X., & Xie, Y. (2021). Processes soft modeling 

based on stacked autoencoders and wavelet extreme learning machine for 

aluminum plant-wide application. Control Engineering Practice, 108, 104706. 

doi:https://doi.org/10.1016/j.conengprac.2020.104706 

Lin, G., Fan, C., Zhu, H., Miu, Y., & Kang, X. (2017). Visual feature coding based on 

heterogeneous structure fusion for image classification. Inf. Fusion, 36(C), 

275–283. doi:10.1016/j.inffus.2016.12.010 

Linda G. Shapiro , & Stockman, G. C. (2001). Computer Vision (1st Edition ed.): 

Pearson, ISBN-10: 0130307963. 

Liu, B., Liu, J., & Lu, H. (2015). Learning representative and discriminative image 

representation by deep appearance and spatial coding. Computer Vision and 

https://doi.org/10.1016/j.conengprac.2020.104706


   

152 
  

Image Understanding, 136, 23-31. doi: 

https://doi.org/10.1016/j.cviu.2015.03.006 

Liu, S., & Deng, W. (3-6 Nov. 2015). Very deep convolutional neural network based 

image classification using small training sample size. Paper presented at the 

2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). 

Liu, S., Tian, G., & Xu, Y. (2019). A novel scene classification model combining 

ResNet based transfer learning and data augmentation with a filter. 

Neurocomputing, 338, 191-206. doi: 

https://doi.org/10.1016/j.neucom.2019.01.090 

Lou, Z., Gevers, T., & Hu, N. (2015). Extracting 3D Layout From a Single Image 

Using Global Image Structures. IEEE Transactions on Image Processing, 

24(10), 3098-3108. doi:10.1109/TIP.2015.2431443 

Lowe, D. G. (20-27 Sept. 1999). Object recognition from local scale-invariant 

features. Paper presented at the Proceedings of the Seventh IEEE International 

Conference on Computer Vision. 

Luo, N., Sun, Q., Chen, Q., Ji, Z., & Xia, D. (2015). A Novel Tracking Algorithm via 

Feature Points Matching. PLOS ONE, 10(1), e0116315. 

doi:10.1371/journal.pone.0116315 

Marculescu, D., Stamoulis, D., & Cai, E. (2018). Hardware-aware machine learning: 

modeling and optimization. Paper presented at the Proceedings of the 

https://doi.org/10.1016/j.cviu.2015.03.006
https://doi.org/10.1016/j.neucom.2019.01.090


   

153 
  

International Conference on Computer-Aided Design, San Diego, California. 

https://doi.org/10.1145/3240765.3243479 

Marr, D. (1982). Vision: A Computational Investigation into the Human 

Representation and Processing of Visual Information: Henry Holt and Co., Inc. 

Mei Wang, & Deng, W. (2018). Deep Face Recognition: A Survey. arXiv preprint 

arXiv:1804.06655.  

Mensink, T. (2012). Matlab code of Retrieved from https://github.com/tmensink/fvkit, 

July 2018. 

Milton Abramowitz , & Stegun, I. A. (1972). Handbook of Mathematical Functions 

with Formulas, Graphs, and Mathematical Tables (9th ed.). 

Mohandes, M., Deriche, M., & Aliyu, S. O. (2018). Classifiers Combination 

Techniques: A Comprehensive Review. IEEE Access, 6, 19626-19639. 

doi:10.1109/ACCESS.2018.2813079 

Nanni, L., Ghidoni, S., & Brahnam, S. (2017). Handcrafted vs. non-handcrafted 

features for computer vision classification. Pattern Recognition, 71, 158-172. 

doi:https://doi.org/10.1016/j.patcog.2017.05.025 

Nedovic, V., Smeulders, A. W., Redert, A., & Geusebroek, J. M. (2010). Stages as 

models of scene geometry. IEEE Trans Pattern Anal Mach Intell, 32(9), 1673-

1687. doi:10.1109/TPAMI.2009.174 

https://doi.org/10.1145/3240765.3243479
https://github.com/tmensink/fvkit
https://doi.org/10.1016/j.patcog.2017.05.025


   

154 
  

Nikisins, O. (2020). Local binary patterns transformation of the input image.   

Retrieved from https://ch.mathworks.com/matlabcentral/fileexchange/37781-

local-binary-patterns-transformation-of-the-input-image, June 2018. 

Ojala, T., Pietik, M., & Maenpaa, T. (2002). Multiresolution Gray-Scale and Rotation 

Invariant Texture Classification with Local Binary Patterns. IEEE Trans. 

Pattern Anal. Mach. Intell., 24(7), 971-987. doi:10.1109/tpami.2002.1017623 

Oliva, A., & Torralba, A. (2001a). Gist descriptor Matlab code Retrieved from 

https://people.csail.mit.edu/torralba/code/spatialenvelope/, June 2018. 

Oliva, A., & Torralba, A. (2001b). Modeling the Shape of the Scene: A Holistic 

Representation of the Spatial Envelope. International Journal of Computer 

Vision, 42(3), 145-175. doi:10.1023/A:1011139631724 

Özyurt, F. (2020). A fused CNN model for WBC detection with MRMR feature 

selection and extreme learning machine. Soft Computing, 24(11), 8163-8172. 

doi:10.1007/s00500-019-04383-8 

Özyurt, F., Sert, E., & Avcı, D. (2020). An expert system for brain tumor detection: 

Fuzzy C-means with super resolution and convolutional neural network with 

extreme learning machine. Medical Hypotheses, 134, 109433. 

doi:https://doi.org/10.1016/j.mehy.2019.109433 

https://ch.mathworks.com/matlabcentral/fileexchange/37781-local-binary-patterns-transformation-of-the-input-image
https://ch.mathworks.com/matlabcentral/fileexchange/37781-local-binary-patterns-transformation-of-the-input-image
https://people.csail.mit.edu/torralba/code/spatialenvelope/
https://doi.org/10.1016/j.mehy.2019.109433


   

155 
  

Paris, S., Hasinoff, S. W., & Kautz, J. (2011). Local Laplacian filters: edge-aware 

image processing with a Laplacian pyramid. ACM Trans. Graph., 30(4), 1-12. 

doi:10.1145/2010324.1964963 

Patalas, M., & Halikowski. (2019). A Model for Generating Workplace Procedures 

Using a CNN-SVM Architecture. Symmetry, 11(9), 1151. 

doi:10.3390/sym11091151 

Penatti, O. A. B., Nogueira, K., & Santos, J. A. d. (7-12 June 2015). Do deep features 

generalize from everyday objects to remote sensing and aerial scenes 

domains? Paper presented at the 2015 IEEE Conference on Computer Vision 

and Pattern Recognition Workshops (CVPRW), Boston, MA, USA. 

Phung, & Rhee. (2019). A High-Accuracy Model Average Ensemble of Convolutional 

Neural Networks for Classification of Cloud Image Patches on Small Datasets. 

Applied Sciences, 9, 4500. doi:10.3390/app9214500 

Pietikäinen, M., Hadid, A., Zhao, G., & Ahonen, T. (2011). Computer Vision Using 

Local Binary Patterns. In M. Pietikäinen, A. Hadid, G. Zhao, & T. Ahonen 

(Eds.), Computer Vision Using Local Binary Patterns (pp. E1-E2). London: 

Springer London. 

Pietikäinen, M., & Zhao, G. (2016). Two decades of local binary patterns: A survey. 

CoRR, abs/1612.06795.  



   

156 
  

Quattoni, A., & Torralba, A. (20-25 June 2009). Recognizing indoor scenes. Paper 

presented at the 2009 IEEE Conference on Computer Vision and Pattern 

Recognition. 

Richards, W., Jepson, A., & Feldman, J. (1996). Priors, preferences and categorical 

percepts. In C. K. David & R. Whitman (Eds.), Perception as Bayesian 

inference (pp. 93-122): Cambridge University Press. 

Rosset, S. (2004). Model selection via the AUC. Paper presented at the Proceedings of 

the twenty-first international conference on Machine learning, Banff, Alberta, 

Canada.  

Sanchez, J., Perronnin, F., Mensink, T., & Verbeek, J. (2013). Image Classification 

with the Fisher Vector: Theory and Practice. Int. J. Comput. Vision, 105(3), 

222-245. doi:10.1007/s11263-013-0636-x 

Scott, D. W. (1992). Histograms: Theory and Practice, Chapter 3 Multivariate Density 

Estimation (pp. 47-94). 

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-

Scale Image Recognition, arXiv:1409.1556 http://arxiv.org/abs/1409.1556. 

http://arxiv.org/abs/1409.1556 

Snelick, R., Uludag, U., Mink, A., Indovina, M., & Jain, A. (2005). Large-scale 

evaluation of multimodal biometric authentication using state-of-the-art 

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


   

157 
  

systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

27(3), 450-455. doi:10.1109/TPAMI.2005.57 

Somvanshi, M., Chavan, P., Tambade, S., & Shinde, S. V. (12-13 Aug. 2016). A review 

of machine learning techniques using decision tree and support vector 

machine. Paper presented at the 2016 International Conference on Computing 

Communication Control and automation (ICCUBEA). 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Rabinovich, A. 

(2015). Going deeper with convolutions. 

https://doi.org/10.1109/CVPR.2015.7298594 

Szeliski, R. (2011). Computer vision algorithms and applications. London; New York: 

Springer. 

Tang, P., Wang, H., & Kwong, S. (2017a). G-MS2F: GoogLeNet based multi-stage 

feature fusion of deep CNN for scene recognition. Neurocomputing, 225, 188-

197. doi:https://doi.org/10.1016/j.neucom.2016.11.023 

Tang, P., Wang, H., & Kwong, S. (2017b). G-MS2F: GoogLeNet Based Multi-Stage 

Feature Fusion of Deep CNN for Scene Recognition. Retrieved from 

https://mic.tongji.edu.cn/51/46/c9778a86342/page.htm, August, 2020. 

Tang, J., Deng, C., Huang, G., & Zhao, B. (2015). Compressed-Domain Ship 

Detection on Spaceborne Optical Image Using Deep Neural Network and 

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1016/j.neucom.2016.11.023
https://mic.tongji.edu.cn/51/46/c9778a86342/page.htm


   

158 
  

Extreme Learning Machine. IEEE Transactions on Geoscience and Remote 

Sensing, 53(3), 1174-1185. doi:10.1109/TGRS.2014.2335751 

Tomasi, C. (2012). Histograms of oriented gradients. Computer Vision Sampler 1-6.  

Torralba, A., & Oliva, A. (2002). Depth estimation from image structure. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1226-1238. 

doi:10.1109/TPAMI.2002.1033214 

Tulyakov, S., Jaeger, S., Govindaraju, V., & Doermann, D. (2008). Review of 

Classifier Combination Methods. In S. Marinai & H. Fujisawa (Eds.), Machine 

Learning in Document Analysis and Recognition (pp. 361-386). Berlin, 

Heidelberg: Springer Berlin Heidelberg. 

Ujjwalkarn. (August 9, 2016 ). A Quick Introduction to Neural Networks.   Retrieved 

from https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/, Dec 

2020. 

Wang, C., Peng, G., & De Baets, B. (2020). Deep feature fusion through adaptive 

discriminative metric learning for scene recognition. Information Fusion, 63, 

1-12. doi:https://doi.org/10.1016/j.inffus.2020.05.005 

Wang, C., Peng, G., & Lin, W. (2021). Robust local metric learning via least square 

regression regularization for scene recognition. Neurocomputing, 423, 179-

189. doi:https://doi.org/10.1016/j.neucom.2020.08.077 

https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://doi.org/10.1016/j.inffus.2020.05.005
https://doi.org/10.1016/j.neucom.2020.08.077


   

159 
  

Weng, Q., Mao, Z., Lin, J., & Guo, W. (2017). Land-Use Classification via Extreme 

Learning Classifier Based on Deep Convolutional Features. IEEE Geoscience 

and Remote Sensing Letters, 14(5), 704-708. 

doi:10.1109/LGRS.2017.2672643 

Weihull, W. (1951). A statistical distribution function of wide applicability. J Appl 

Mech, 18, 290-293.  

Weijer, J. v. d., Gevers, T., & Gijsenij, A. (2007). Edge-Based Color Constancy. IEEE 

Transactions on Image Processing, 16(9), 2207-2214. 

doi:10.1109/TIP.2007.901808 

Weisstein, & W., E. (2020). Vector Norm. Retrieved from 

https://mathworld.wolfram.com/VectorNorm.html, Dec., 2020. 

Winn, J., Criminisi, A., & Minka, T. (17-21 Oct. 2005). Object categorization by 

learned universal visual dictionary. Paper presented at the Tenth IEEE 

International Conference on Computer Vision (ICCV'05) Volume 1, Beijing, 

China  

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (13-18 June 2010). SUN 

database: Large-scale scene recognition from abbey to zoo. Paper presented at 

the 2010 IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, San Francisco, CA, USA 

https://mathworld.wolfram.com/VectorNorm.html


   

160 
  

Xie, L., Lee, F., Liu, L., Kotani, K., & Chen, Q. (2020). Scene recognition: A 

comprehensive survey. Pattern Recognition, 102, 107205. 

doi:https://doi.org/10.1016/j.patcog.2020.107205 

Xin, Y., Kong, L., Liu, Z., Wang, C., Zhu, H., Gao, M., Xu, X. (2018). Multimodal 

Feature-Level Fusion for Biometrics Identification System on IoMT Platform. 

IEEE Access, 6, 21418-21426. doi:10.1109/ACCESS.2018.2815540 

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural 

networks: an overview and application in radiology. Insights into Imaging, 

9(4), 611-629. doi:10.1007/s13244-018-0639-9 

Yang, Y., & Newsam, S. (2010). Bag-of-visual-words and spatial extensions for land-

use classification. Paper presented at the Proceedings of the 18th 

SIGSPATIAL International Conference on Advances in Geographic 

Information Systems, San Jose, California.  

Yann LeCun, Corinna Cortes, & Burges, C. J. (2010). [online] MNIST hand-written 

digit database. AT&T Labs.  

Yu, W., Yang, K., Yao, H., Sun, X., & Xu, P. (2017). Exploiting the complementary 

strengths of multi-layer CNN features for image retrieval. Neurocomputing, 

237, 235-241. doi:https://doi.org/10.1016/j.neucom.2016.12.002 

Zafar, B., Ashraf, R., Ali, N., Ahmed, M., Jabbar, S., & Chatzichristofis, S. A. (2018). 

Image classification by addition of spatial information based on histograms of 

https://doi.org/10.1016/j.patcog.2020.107205
https://doi.org/10.1016/j.neucom.2016.12.002


   

161 
  

orthogonal vectors. PLOS ONE, 13(6), e0198175. 

doi:10.1371/journal.pone.0198175 

Zafar, B., Ashraf, R., Ali, N., Ahmed, M., Jabbar, S., Qureshi, K. N.,  Jeon, G. (2018). 

Intelligent image classification-based on spatial weighted histograms of 

concentric circles. Comput. Sci. Inf. Syst., 15, 615-633.  

Zarbakhsh, P., & Demirel, H. (2018). Low-rank sparse coding and region of interest 

pooling for dynamic 3D facial expression recognition. Signal, Image and Video 

Processing, 12(8), 1611-1618. doi:10.1007/s11760-018-1318-5 

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 

Million Image Database for Scene Recognition. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 40(6), 1452-1464. 

doi:10.1109/TPAMI.2017.2723009 

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., & Oliva, A. (2014). Learning deep 

features for scene recognition using places database. Paper presented at the 

Proceedings of the 27th International Conference on Neural Information 

Processing Systems, Volume 1, Montreal, Canada. 

https://dl.acm.org/doi/10.5555/2968826.2968881 

Zurada, J. (1992). Introduction to artificial neural systems: West Publishing Co. 

https://dl.acm.org/doi/book/10.5555/131393. 

 

https://dl.acm.org/doi/10.5555/2968826.2968881


   

162 
  

 

 

 

 

 

 

 

 

 

APPENDICES 



   

163 
  

Appendix A: Predefined Template Structure  

Template,𝑇, is represented by an array of 𝑅 × 𝐶 size same as input image I. Each 

element of an array is an integer number in a range of 𝑆𝑆 = [0. . 𝑆 − 1], 𝑆 = 2…𝑁𝑏 is 

the number of segments/components, Ns, in the template, 𝑇. Nb is obtained by =
 ⌈𝑙𝑜𝑔₂𝑁𝑠⌉. Element 𝑇𝑖𝑗 = 𝑘, where 𝑘 is from SS, if the pixel 𝑝(𝑖, 𝑗) in an image shall 

belong to the 𝑘-th segment. If 𝑁𝑠 = 2, then 𝑁𝑏 = 1 and 21 = 2 (2 are segments in 

one template, e.g. shown in Figure A.1). 

  

 

 

 

 

 

 

 

Figure A.1: Image 𝐼 with 𝑅 rows and 𝐶 columns. Coordinates of four corners are 

shown. Each cell represents a pixel of 2D image 𝐼. 
 

The some templates’ example are given below: 

Template T1 from Figure 2.8 (a) can be represented by equation (A.1). Assume T1 

same size as input image 𝐼, then,  

 

  {

T1 (1: ⌈
R

2
⌉ , 1: C) =  1,

and

T1(⌈
R

2
⌉ + 1: R, 1: C) = 0.  

                                                          (A.1) 

 

So, resultant T1 can be visualized by Figure A.2.  

 

  

 

 

                                                             

 

 

 

 

 

(a) Template with each pixel value   (b) Template with each pixels value and 

shadow. 

Figure A.2: Implementation of template T1 for 𝑅 = 𝐶 = 8. 

 

The template T2 (Figure 2.8 (b)) can be obtained by dividing the image into 3 

horizontal components as it is shown in Figure A.3 (b). Thus, 

1,1       1,C 

        

        

        

        

        

        

R,1       R,C 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 



   

164 
  

  

{
 
 
 

 
 
 T2 (1: ⌈

R

3
⌉ , 1: C) =  1,

and

T2 (
R

3
: ⌈
R

3
⌉ + ⌈

R

3
⌉ , 1: C) = 2,

and

T2 (⌈
R

3
⌉ + ⌈

R

3
⌉ + 1: R, 1: C) = 3.
 

                                                 (A.2) 

 

 

 

 

 

 

 

 

 

(a)                                                (b)  

Figure A.3.  Implementation of template T2. (a) is showing the value of each pixel 

and (b) is a segments with boundaries by following these values. 

 

Template T3 from Figure 2.8(c) is formed a triangle. Hence, we assume three points, 

(𝑝1, 𝑝2, 𝑝3) to generate mask of triangle using image coordinates.  

𝑝1 =  𝑇3 ( 1, 1), 
𝑝2 =  𝑇3 (1, 𝐶), 
𝑃3 =  𝑇3 (𝑅, 𝐶), 

  

t3={T3(𝑖, 𝑗) = 0;  𝑖 = 1,2, . . . , 𝑅, 𝑗 = 1,2, . . . , 𝐶, 
 

T3=  {𝑝𝑖𝑥𝑒𝑙_𝑖𝑛𝑠𝑖𝑑𝑒_𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 (t3, 𝑝1, 𝑝2, 𝑝3) = 1.                          (A.3) 

 

𝐼𝑚𝑎𝑔𝑒 =  𝑝𝑖𝑥𝑒𝑙_𝑖𝑛𝑠𝑖𝑑𝑒_𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒( 𝑝1, 𝑝2, 𝑝3)  = 1, where the pixel lie inside the 

triangle, the value is considered to be 1. And remaining pixels value will be zero. 

Example is shown in Figure A.5.  

 

 

 

 

 

 

 

 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 

3 3 3 3 3 3 3 3 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 

3 3 3 3 3 3 3 3 



   

165 
  

      
(a)                                                       (b) 

Figure A.5: Implementation of template Figure 2.8(c). (a) is showing the value of 

each pixel and (b) is a segments with boundaries by following these values. 

Template T4 from Figure 2.8 (d) can be defined by using equation (A.3). Only value 

of the parameters will be changed. Thus, the value of the parameter 

points (𝑝1, 𝑝2, 𝑝3) is: 

𝑇4 =  𝑠𝑖𝑧𝑒(𝐼); 
𝑝1 =  𝑇4 ( 𝑅, 1) 
𝑝2 =  𝑇4 (1, 𝐶) 
𝑃3 =  𝑇4 (𝑅, 𝐶) 

 

 

 

 

 

 

 

 

 

 

(a)                                                           (b) 

Figure A.6: Implementation of template T4. (a) is showing the value of each pixel 

and (b) is a segments with boundaries by following these values. 

Template T5 (Figure 2.8(e)) can be obtained by, 

 

  {

T5(𝑖, 𝑗) = 0;  𝑖 = 1,2, … , 𝑅;  𝑗 = 1,2, … , 𝐶,

T5 (
R

2
−
R

8
: ⌈
𝑅

2
+
𝑅

8
⌉ ,
C

2
−
C

8
: ⌈
𝐶

2
+
𝐶

8
⌉) =  1.

 

                                 (A.4) 

The graphical representation of the template T5 (e) is given in Figure A.7. 

 

 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 1 

0 0 0 0 0 1 1 1 

0 0 0 0 1 1 1 1 

0 0 0 1 1 1 1 1 

0 0 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 1 

0 0 0 0 0 1 1 1 

0 0 0 0 1 1 1 1 

0 0 0 1 1 1 1 1 

0 0 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 



   

166 
  

 

 

 

 

 

 

 

 

 (a) 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 1 1 1 0 0 

0 0 1 1 1 0 0 

0 0 1 1 1 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

                             (b) 

                        

 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 1 1 1 0 0 

0 0 1 1 1 0 0 

0 0 1 1 1 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Figure A.7: Implementation of template T5. (a) is showing the value of each pixel 

and (b) is segments with boundaries by following these values. 



   

167 
  

Appendix B: Basic Description of Parameters of Weibull Distribution 
 

Weibull distribution was introduced by the Swedish physicist Waloddi Weibull in 

1939 (Weihull, 1951). The definition of Weibull distribution is, a random variable X 

is said to have a Weibull distribution with parameters α and β where α>0, β>0; if the 

pdf of X is, 

.                       (B.1) 

Where, α is shape and β is scale parameter and x is real number. Both α and β can be 

varied to get the number, as it looking in density curves. Figure B.1 illustrates the α is 

shape and β is scale parameter. Figure B.2 illustrates α is shape and β is scale parameter 

and it shows different scale of β for (0.5, 1, 2). In Figure B.2 (a-d) shows examples of 

the Weibull distribution for β=1 with varying the value of 𝛼 ={0.5, 1, 2, 4}. Increasing 

the value of 𝛼, it yields smoother curve.  

 
Figure B.1: Weibull distribution with different 𝛼 and 𝛽 values using equation (B.1). 

 
(a) alpha =0.5 Beta =1 (b) Alpha =1, Beta =1 



   

168 
  

(c) Alpha=2, Beta=1 (d) Alpha=4, Beta =1 

Figure B.2: Representation of Weibull distribution and its parameters.



   

169 
  

Appendix C: Relation between Parameter of Weibull Distribution 

and Histogram  

The relationship of histogram and weibull distribution can be visualized using Matlab 

package, as shown in Figure C.1. The 𝑏 = 𝑏𝑒𝑡𝑎𝑟𝑛𝑑(𝐴, 𝐵,𝑚, 𝑟) is a Matlab function, 

geneates random numbers from the beta distribution with parameters specified by A 

and B. The m is a size of radom data. The b is an output of beta distriubtion with 

dimention of 𝑟 × 𝑚. Assume a data sample m=100 with paramters (3, 20), then beta 

distribution is: b = betarnd(3,20,100,1). It returns the beta values with size of 1 × 100. 

Then the histogram using n bins with beta distrubtion can be constructed using matlab 

funciton, 𝐻𝑖𝑠𝑡𝑓𝑖𝑡(𝑏, 𝑛, ‘𝑏𝑒𝑡𝑎’), where n (we use 15 in Figure C.1) are bins of histogram 

and ‘beta’ is indicating beta distribution value. 

 

 
 

Figure C.1: Histogram and weibull fit (beta) of random data.  

Figure C.1 indicates the histgoram gives the discrete representation of weibull 

parameters. Therefore, it is contructed for weibull parameters estimation. 

 
  



   

170 
  

Appendix D: Analysis of Change of Parameters of Weibull 

Distribution with Respect to Change of Image Depth 

The change in Weibull parameters over depth is demonstrated in Figure D.1. We 

describe here the (Nedovic et al., 2010) experiments of parameters of Weibull 

distribution with respect to depth. Nedovic et al. direction (Nedovic et al., 2010) 

compute the and β parameters of Weibull distribution for vertical position and 

horizontal position by dividing the input image into patches and individual average 

them along the direction perpendicular to change in depth. The Figure D.1(a) (see at 

next page) demonstrates the vertical image position, in which the Weibull parameters 

are averaged along x-direction (horizontal axis) over the n number of patches. The 

Figure D.1(d) demonstrates the horizontal image position, in which the Weibull 

parameters are average along y-direction (vertical axis) over the n patches, more 

description is given in (Nedovic et al., 2010), p. 1677. The the average along n patches 

can be defined as, 

𝑎𝑣𝑔−𝛼 =
1

𝑛
∑ 𝛼𝑖
𝑛
𝑖=1 ,                                            (D.1) 

𝑎𝑣𝑔−𝛽 =
1

𝑛
∑ 𝛽𝑖
𝑛
𝑖=1 .                                            (D.2) 

Similarly, in the horizontal image position, the Weibull parameters are averaged along 

y-direction (vertical axis) over the n patches. These average values of Weibull 

parameters in x and y-directions are plotted in Figure D.1 (b, c), and Figure D.1 (e, f) 

respectively, for two different surfaces, the implementation is followed by (Nedovic 

et al., 2010), p.1677. According to the nature of an image (see Figure D.1 (a)), 𝛼 

increases (see Figure D.1 (b, e)) with the depth of an image and β decreases slightly 

with the depth of the image (see Figure D.1 (c, f)). 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

171 
  

 

 
Figure D.1: Weibull paramters values (for y-derivative) as a function of depth for 

texture of grassy and brick surfaces (Nedovic et al., 2010). (a,d) are original input 

images. (b,c) and (e,f) are graphs of parameters of Weibull distribution for vertical 

and horizontal image positions. 𝛼 increases with depth, whereas β decreases slightly 

with the depth of the image. 

  



   

172 
  

Appendix E: 1D and 2D Kernel Using First Derivative 
 

We can obtain the 1D kernel by using first derivative along x or y-axis, (Taylor series 

expansion) (Milton Abramowitz  & Stegun, 1972).  

The forward difference of 𝑓(𝑥) is following: A function 𝑓(𝑥) can be evaluated at 

values that lie to right of x. In calculus, we have continuous valued function but with 

images we have discrete pixel values. The first derivative (un-centered difference) of 

discrete data is defined in equation (E.1). The un-centered difference can be obtained 

by h =1 as following (Dalal & Triggs, 2005) and output kernel can be used as 

convolutional filter with an input image. 

)(

]1,1[
2

1
:1),()1(

)()(
lim'

0

xatcenterednot

Maskhxfxf
h

xfhxf
f

dx

df

h
x









.     (E.1) 

For central-difference, a function 𝑓(𝑥) can be evaluated at the values which exist left 

and right of the x. The formula will show that the abscissas that are selected 

symmetrically on both sides. It is defined as:  

1,
2

)1()1(

2

)()(
lim

0









h

xfxf

h

hxfhxf

dx

df

h
, )](1,0,1[

2

1
: xatcenteredMask   

(E.2) 

For 2D kernel, it can be defined as: 

 

1,
2

),1(),1(

2

),(),(
lim

0









h

yxfyxf

h

yhxfyhxf

dx

df

h
 (E.3) 

Note:  Often the division by 2 is ignored to save the computation time, resultant 

matrix is scaled estimates (Gonzalez et al., 2003; Linda G. Shapiro  & Stockman).   



   

173 
  

Appendix F: Matlab Code of Template-Based Segmentation 
 

  



   

174 
  

Appendix G: Matlab Code of Feature Combination from Segments 
 

 

  



   

175 
  

Appendix H: Matlab Code of Feature Extraction  
 

 

  



   

176 
  

Appendix I: Matlab Code of Classifier Training and Testing  
  

 
  



   

177 
  

Appendix J: Matlab Code of Predict Score Fusion  
 

 

  



   

178 
  

Appendix K: Matlab Code of Performance Metric Calculation  
  

 

 

  



   

179 
  

Appendix L: Matlab Code of Pre-Trained Deep CNN   
 

  



   

180 
  

Appendix M: Matlab Code of CNN-SVM and ELM 
 

 

  



   

181 
  

Appendix N: Matlab Code of Features Fusion Method  
 

 

  



   

182 
  

Appendix O: Matlab Code of Weibull Feature Extraction  
 

 

 

 

 

  



   

183 
  

Appendix P: Matlab Code of Multi-layer Feature Extraction 
 

 

  



   

184 
  

Appendix Q: Matlab Code of Classifiers Training, Testing, and Score-

Level Fusion 

 

  



   

185 
  

Appendix R: Matlab Code of Score-level Fusion Strategies  
 

 



   

186 
  

 

  



   

187 
  

Appendix S: Raw Data of Different Experiments Generated by 

Matlab  

     Table S1: Scene geometry recognition results of different features descriptors by using 4x4 patches.  

 

       (Continue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature Set/ Methods 

 Stage Classification (12 Stages) 

SVM Linear/M. Gauss/ Quad. Kernel, 

c=1 (Acc %).  

1312f – Geom. context feature (Hoiem D. 2007) 63.1/60.3/64.7 

128f –   Presp. Line (P) 38.2/42.6/43.2 

512f –   Gist descriptor(Gist) 61.25/61.1/62.8 

48f    -   HSV feature 49.3/52.6/54.1 

144f –   HOG features 58.5/59.2/62.6 

32f   –   local binary pattern(LBP) 45.3/48.6/49.5 

32f  -  Local binary pattern R=2(LBP2 ) 44.2/ 47.8/48.5 

3072f  -Fisher & pyramid (2013) 69.4/66.2/72.4 

3379f – fisher and pyramid (2013)+ HOG +HSV+ 

color 
74.0 



   

188 
  

 

Table S3: Scene geometry recognition results of different number of features with 8x8 grid 

patches and template based features combination. 

8x8 feature vector Svm (kernel : 

linear/Gaussian/quadratic) Acc.% 

256f- Weibull distribution (T) 51.5/53.3/53.9 

128f-  LBP 43.9/48.6/47.7 

512f- Line_pres (P). 44.8/45.7/47.3 

320f-Atm. Scattering. (A) 49.1/49.5/51.0 

576f - HOG 57.6/57.9 /61.5 

192f - HSV 49.7/53.3/53.6 

4x4 version Linear/Quadratic/Gaussian/cubic 

64f -  Weibul Dist. (T) 49.7/53.7/51.2 

81f – Atm. Scattering (A) 48.6/50.9/50.6 

128f – Pres. Line(P) 43.4/46.1/46.1/46.8 

144f- HOG 58.9/62.3/59.6/62.6 

48f- HSV 48.6/54.3/52.9 

96f -  LBP-E(5 LBP bins, 1 entropy) 45.5/48.9/48.9  

160f- LBP+T 58.3/61.1/60.6 

144f - T+A 55.9/60.2/58.2 

209f - P+A 54.3/57.2/54.5 

512f - Gist 61.6/ 63.7/61.0 

208f - T+HOG 60.1/65.1/61.5/65.5 

288f - HOG+Color+T 62.7/66.7/64.4/67.0 

800f – HOG+Color+T+Gist 63.9/68.2/ 64.8/69.5 

848F- HOG+A+T+HSV +Gist 64.9/69.1/ 65.1/ 

336f – HOG+A+HSV+T 64.5/68.1/65.6/68.4 

880F- HOG+COLOR+T+HSV+LBP + Gist 65.3/69.8/65.3 

 HOG+HSV+RGB+W+LBP-E features from each 

template T    

SVM kernel: Linear/Q/Gauss/Cubic 

400f- T(a) 66.6/68.3/66.2 

400f- T(b) 65.2/67.3/66.6 

400f- T(c) 63.4/65.7/62.3 

400f- T(d) 64.1/66.0/63.3 

Table S2: Scene geometry recognition results using different templates 

Feature extraction using Lou method and 

applied on majority method (see Appendix R) 

Using segment parameter 20 for box 

hard seg. 

304f -T1 ( HOG +HSV+RGB)x16 66.2/65.4/68.1 

304f -T2 64.7/65/67 

304f -T3 63.7/63.2/65.8 

304f -T4 63.0/62.2/67.7 

304f -T5 63.9/63/65.2 

304f -T6 66.8/66.5/69.6 

Majority voting/max rules 73.53/77.88 

Max adaptive rule 78.64 

Using Lou et al. metod (Lou et al. 2015) method 

with LBP 

67.25 

Implementation of Lou’s feature extraction Using hard and soft segments 

608f -T1 ( HOG+HSV+RGB)x16x2:32patches 69.5 

608f -T2 69.1 

608f -T3 68.9 

608f -T4 68.9 

608f -T5 67.1 

608f -T6 70.1 

Majority voting 68.6/69.1 

3379f – fisher and pyramid (2013)+hog+hsv+color 74.0 



   

189 
  

400f- T(e) 64.4/65.7/64 

400f- T(f) 66.7/69.5/66.4 

400f- T(g) 65.2/67.5/ 65.4/67.8 

400f- T(h) 65.5/67.6/65.7/68.3 

Majority voting using up to T8 templates/max 

rules 

76.63/81.18 

Majority voting using up to T6 templates/max 

rules 

73.45/77.72 

Majority voting using up to T8 templates/sum-

rules 

  81.15/82.495 

       

 Table S4: The experiments on ‘stage dataset 2’. Linear SVM is used with 80% images for 

training and 20% for testing.  

Feature (f) set extracted by 4x4 patches  Acc./Pr/Re/F-score (%) 

 320f – HOG+HSV+saturation var.+ 

RGB+Weibull features 
58.71/58.59/ 58.68/58.55 

400f – HOG+HSV+ RGB+Weibull features+LBP-

E 

56.46/56.18/56.88/56.44 

 

 

  
(a)                                              (b) 

Figure S1. (a) indicates the results of ‘HOG+HSV+Saturation variance+Weibull distr.’ features. (b) 

represents the results of ‘HOG+HSV+Weibull distr.+LBP-E’ features. 

 

 

 
Figure S2, T1 confusion matrix and Accuracy. 

 



   

190 
  

 
Figure S3. Confusion matrix of Gist feature on 1209 images. 

 

  
Figure S4: hog_T_Color_Hsv_gist feature accuracy and confusion matrix 

 

 



   

191 
  

 
Figure S5: Confusion matrix of Hog+color+LBP feature set (304f) over 12 stages 

dataset 1 

 

  
Figure S 6:  hog+color+LBP+gist (816f) feature set and confusion matrix. 

 

 

 



   

192 
  

 
Figure S 7:  hog+color+T confusion matrix and accuracy. 

 

  



   

193 
  

Appendix T: Predicting Accuracy Using Sum-rule  

 

Figure T1: Predicting accuracy of Segmentation-based feature extraction method 

on stage dataset 1. 



   

194 
  

Appendix U: Predicting Accuracy Using CNN Models on Stage 

Dataset 1  

The result of ResNet 50 is shown. Other methods results are calculated which are in 

form of structure, listed in left side of the window. We show these results in Table 3.4. 

 

 
  



   

195 
  

Appendix V: Predicting Accuracy Using Sum-rule on 15 Scene 

Dataset  

 

Results are obtained from Matlab structure. The screenshot is shown for sum-rule 

method corresponding results are given in Table 3.5. Similarly, max rule is used here. 

 

 
Figure V1: Predicted results using Sum-rule on 15 scene dataset. 

  



   

196 
  

Appendix W: Experiment on Stage Dataset 2  

The deep features are extracted using Appendix M, and texture gradient features 

(Weibull parameters) are extracted using Appendix O, and are combined with deep 

feature using Function given in Appendix N. Output is shown below (Figure  W1). 

The standard CNN models, AlexNet, ResNet, GoogLeNet, and VGG-16 are trained 

using Appendix L and their processing is shown below (Figure W2-W5). The perform 

metric is calculated by Appendix K. The 9600 images of stage dataset 2 are used for 

training and 2400 images for testing. 

 

 
Figure W1: Combining the Texture gradient features and Deep CNN features. 

Results is shown the one of the iteration. The Accuracy, precision, recall, and F-score 

is calculated using Appendix K. 

 

 



   

197 
  

 
Figure W2: GoogLeNet architecture using back propagation with stochastic Gradient 

descent algorithm. Epoch=20. 

  
Figure W3: RESNET-50, Training and testing using back propagation with 

stochastic Gradient descent algorithm. Epoch=20. 



   

198 
  

 
Figure S4: Vgg-16 architecture using back propagation with stochastic Gradient 

descent algorithm. Epoch=20 

 

 

 
Figure S5: AlexNet architecture using back propagation with stochastic Gradient 

descent algorithm. Epoch=30 

  



   

199 
  

Appendix X: Experiment on 15-Scene Image Dataset: Influence of 

Handcrafted Features at Each Intermediate Layers 

The results of Matlab code is saved in excel sheet. Here, we show one screenshot that 

contains Matlab structure, such as Ssvm and Selm are structures which contain score-

level fusion results in majority voting, sum, max, and product rules. The Svm0, Svm1, 

Svm2, Svm3,Svm4 are contained the output of SVM classifier at each block 1-5 with 

their score values for ResNet and 1-3 blocks for GoogLeNet model. Similarly, Selm 

represents the output of ELM classifiers containing results in majority voting. For each 

block elm0-elm4 contain predicted values for test images. Meanwhile, feature-level 

fusion is also conducted and its output is shown in elmCMB, and svmCMB structures 

for ELM and SVM classifier, respectively.    

 
Figure X1: Screenshot of Matlab code that contain predicted data and final output. 



   

200 
  

 
Figure X2: 15-scene Dataset result using GoogLeNet Model 

 

 

SVM ELM SVM ELM

S-1 90.45 90.45 95.23 95.9

S-2 93.84 93.62 96.39 96.92

S-3 93.84 93.09 97.01 97.28

With handcraftedWithout

9
0

.4
5

9
0

.4
5

9
5

.2
3

9
5

.9

9
3

.8
4

9
3

.6
2

9
6

.3
9

9
6

.9
2

9
3

.8
4

9
3

.0
9

9
7

.0
1

9
7

.2
8

85

87

89

91

93

95

97

99

SVM ELM SVM ELM

Without With handcrafted

A
cc

ur
ac

y
%

Hand-crafted feature influence at each stage using GoogleNet on 15-Scene 
image Dataset

S-1 S-2 S-3



   

201 
  

 

Figure X3: 15-scene dataset result using score-level (A) and feature level (B) 

methods shown in this Figure.  
 

Table X1: 15 scene dataset using ResNet (with local features)ELM 

𝑆1 92.86 92.39 92.46 92.36 

𝑆2 93.67 93.24 93.38 93.25 

𝑆3 95.27 94.93 94.95 94.9 

𝑆4 95.41 95.26 95.26 95.22 

𝑆5 95.58 95.49 95.5 95.45 

Majority 96.91 96.83 96.94 96.83 

Feature fusion (𝑆1+. . +𝑆5). 96.48 96.39 96.39 96.32 

 
    

15 scene dataset using ResNet (with localfeatures) with SVM 

classifier 

𝑆1 95.27 95.08 95.02 94.99 

𝑆2 95 94.76 94.92 94.81 

𝑆3 96.57 96.39 96.36 96.35 

𝑆4 95.58 95.4 95.33 95.3 

𝑆5 96.79 96.72 96.69 96.68 

Majority 97.5 97.29 97.4 97.31 

Max rule 97.77 97.68 97.65 97.63 

Sum rule 97.86 97.8 97.83 97.79 

Methods Classifier Without With handcrafted

Majority 

voting
SVM 92.09 97.37

Max-rule SVM 92.74 97.32

Product-rule SVM 92.72 97.55

Sum-rule SVM 92.41 97.55

Majority 

voting
ELM 92.18 97.41

Model-HFF  SVM 92.36 97.47

Model-HFF ELM 92.87 97.55

9
2

.0
9

9
2

.7
4

9
2

.7
2

9
2

.4
1

9
2

.1
8

9
2

.3
6

9
2

.8
7

9
7

.3
7

9
7

.3
2

9
7

.5
5

9
7

.5
5

9
7

.4
1

9
7

.4
7

9
7

.5
5

80

82

84

86

88

90

92

94

96

98

100

SVM SVM SVM SVM ELM SVM ELM

Majority
voting

Max-rule Product-rule Sum-rule Majority
voting

Model-HFF Model-HFF

A
cc

ur
ac

y
%

Proposed Method A and B using GoogLeNet on 15-scene image dataset

Without With handcrafted



   

202 
  

Product rule 97.77 97.69 97.72 97.68 

Feature fusion (𝑆1+. . +𝑆5). 97.37 97.24 97.41 97.3 
 

    
15 Without local texture features / ELM  

𝑆1 88.49 88.24 87.84 88.28 

𝑆2 88.27 88.11 87.77 87.91 

𝑆3 91.35 91.21 91.03 91.04 

𝑆4 90.19 89.82 89.63 89.68 

𝑆5 92.46 92.38 92.2 92.26 

Majority 92.64 92.43 92.39 92.36 

Feature fusion (𝑆1+. . +𝑆5). 93.31 93.19 93.13 93.12 

 

Without local texture features /SVM  
𝑆1 88.63 88.24 88.04 88.07 

𝑆2 88.49 88.24 87.92 88.04 

𝑆3 92.33 92.34 91.74 91.96 

𝑆4 90.1 90.21 89.35 89.63 

𝑆5 92.37 92.85 91.92 92.26 

Majority 93.4 93.74 92.93 93.23 

Max rule 93.98 93.94 93.61 93.73 

Sum rule 93.98 94.33 93.44 93.74 

Product rule 94.16 93.39 93.65 93.92 

Feature fusion (𝑆1+. . +𝑆5). 93.76 94.14 93.2 93.53 
 

    
Table X2: 15 scene dataset using AlexNet (without handcrafted) features with 

Model-HSF. 

Feature set 
Deep features without handcrafted 

with Linear SVM 

 Majority 

voting 

Max 

rule 

Sum 

rule 

Product 

rule 

Combine maxpool 1 and maxpool 2 83.84 83.84 85.28 84.50 

Maxpool1+maxpool2+maxpool5 87.85 87.07 88.85 87.85 

Maxpool1+maxpool2+maxpool5+fc8 87.51 88.74 90.64 89.86 

 
 Table X3: 15 scene dataset using AlexNet with Model-HFF. 

Feature set SVM ELM 

maxpool1+maxpool2 84.50 83.05 

Maxpooling+maxpooling2+maxpooling 5 88.96 87.96 

Maxpool1+maxpool2+maxpool5+fc8 91.19 90.75 

Combined all with handcrafted 95.32 93.98 

  

 
  



   

203 
  

Appendix Y: Experiment on Stage Dataset 2: Influence of 

Handcrafted Features at Each Intermediate Layers 

 

The methods are run by Matlab and output are stored in structure. Thus, here we take 

those output in the tabular form. Some Screenshot are given. Data is given in tables. 

Detail about Matlab structure (Output of score-level and feature-level fusion) is given 

in Appendix X.   

 
Figure Y1: An iteration of Matlab code. Ssvm: score-level combination for 5 

different blocks using SVM classifier. ‘stage dataset 2’ is used.  Left side of the 

window contains Matlab structure. We use them in excel sheet as our output. 



   

204 
  

 
Figure Y2: An iteration for feature-level fusion using ResNet. SvmCMB: fused 

features given to the SVM. ‘stage dataset 2’ is used. 

 
Figure Y3: ELM classifier perform using ResNet model when without handcrafted 

features are used of ‘stage dataset 2’. 

 



   

205 
  

Data in Tabular form is given below. 

 

Table Y1: ResNet results on ‘stage dataset 2’ with and without handcrafted features 

influence at each block.   
ResNet result on ‘stage dataset 2’  

 
For each stage  with handcrafted features    
Methods /SVM Accuracy  Precision Recall F-

score  
majority 92.79 92.86 92.73 92.78  
Max rule 93.54 93.47 93.36 93.4  
Sum rule 93.79 93.77 93.64 93.69  

Product rule 93.96 93.89 93.82 93.84 

 
Using all together 92.54 92.33 92.32 92.38 

 
Without handcrafted feature influence  

majority 82 81.22 81.55 81.35  
Max rule 81.78 81.61 81.5 81.53  
Sum rule 83.25 82.69 82.8 82.7  

Product rule 82.68 82.12 82.18 82.1 

 
Using all together   82.5 82.28 82.05 82.1 

 
Without handcrafted feature  

S1 73.08 72.59 72.68 72.59  
S2 74.29 74.25 73.85 73.89  
S3 78.46 78.26 77.99 78.05  
S4 76.25 75.93 75.77 75.81  
S5 78.29 77.75 77.74 77.72  

Combined features with hand-crafted  
S1 89.58 89.49 89.37 89.41  
S2 89.83 89.79 89.6 89.67  
S3 92.04 92.02 91.83 91.89  
S4 91.21 91.16 91 91.06  
S5 90.79 90.72 90.6 90.64  

Hand-crafted features only. Using SVM and ELM  
SVM 58.71 58.52 57.81 57.99  
ELM 58.75  59.55 58.33 59.30 

ELM on ‘stage dataset 2’ with handcrafted 
  

 
Methods Acc Precision Recall Fscore   

S1 88.83 88.83 89 88.77  
S2 88.88 88.94 889.05 88.887  
S3 90.79 90.82 90.93 90.78  
S4 89.46 89.36 89.6 89.36  
S5 89.5 89.42 89.63 89.39  

Majority 91.88 91.87 92.01 91.83 

  Using all together  89.83 89.81 89.92 89.73 



   

206 
  

 ELM without handcrafted features on ‘stage dataset 2’  
S1 75.29 74.71 74.42 74.72  
S2 74.83 74.31 74.9 74.17  
S3 78.29 77.62 78.38 77.66  
S4 78.5 77.82 78.64 77.83  
S5 78.25 77.56 78.35 77.6  

Majority 79.54 78.91 79.65 78.87  
Using all together   80.67 80.16 80.74 80.16 

  

 Table Y2: Results of GoogLeNet and ResNet on ‘stage dataset 2’ in tables.  Model-

HSF (Method A). 

 
 

Table Y3: Results of AlexNet ‘stage dataset 2’ in Tables. Score-level fusion 

without handcrafted features of AlexNet model using Model-MSF with linear 

SVM.  

Classifiers scores at 

intermediate stages 
 No. features 

Majority 

voting  

Max 

rule 

Sum 

rule 

Produc

t rule 

Combining 

‘maxpooling1’, and 

‘maxpooling2’ layers  

96+256 64.38 64.75 65.75 66.58 

Combining 

maxpooling1, 

maxpooling2, 

‘maxpooling5’ layers  

96+256+256 67.29 68.58 70.63 69.92 

Stage dataset perofrmance using score-level fusion  method

Architecture
Proposed 

Method (A)
Classifier Acc.% Pr. % Re. % F-s% Acc.% Pr. % Re. % F-s%

Majority 

voting
SVM 82.88 82.55 82.74 82.58 94.46 93.2 93.09 93.18

Max-rule SVM 81 80.78 81.05 80.89 95.04 94.99 94.87 94.91

Sum-rule SVM 82.08 81.61 81.71 81.62 95.13 95.09 94.99 95.02

Product-rule SVM 81.83 81.61 81.72 81.65 95.17 95.13 95.03 95.06

Majority 

voting
ELM 82.96 82.13 82.82 82.27 91.75 91.69 91.83 91.65

Majority 

voting
SVM 82 81.22 81.55 81.35 92.79 92.86 92.73 92.78

Max-rule SVM 81.78 81.61 81.5 81.53 93.54 93.47 93.36 93.4

Sum-rule SVM 83.25 82.69 82.8 82.7 93.79 93.77 93.64 93.69

Product-rule SVM 82.68 82.12 82.18 82.1 93.96 93.89 93.82 93.84

Majority 

voting
ELM 79.54 78.91 79.65 78.87 91.88 91.87 92.01 91.83

all fusion into one set  for googlent stage  data

Method Classifier Accuracy%
Precision

%
Recall% F-score%

GoogLeNe

t (S1+ S1+ 

S1)+hand-

crafted

SVM 93.96 93.92 92.87 93.88

GoogLeNe

t (S1+ S1+ 

S1)+hand-

crafted

ELM 90.42 90.24 90.49 90.25

Without with hand-crafted features

G
o

o
g

L
e
N

e
t 

A
rc

h
it

e
c
tu

re
R

e
sN

e
t 

A
rt

ic
h

it
e
c
tu

re



   

207 
  

Combining 

maxpooling1, 

maxpooling2, 

maxpooling5, and Fc8  

96+256+256

+1000 
68.92 71.54 74.38 72.88 

 

 

Table Y4: Performance of AlexNet model at each layer using Model-HFF. SVM 

and ELM took 61.05 sec and 123.65 sec average time, respectively. 

Model-HFF Accuracy % 

Features combination at different layers SVM ELM 

 ‘maxpooling1’, + ‘maxpooling2’ layers 63.79 62.58 

 maxpooling1, + maxpooling2, + 

‘maxpooling5’ layers  
68.71 71.33 

 maxpooling1+ 

maxpooling2+maxpooling5+Fc8  
74.04 75.29 

 


