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ABSTRACT 

In this thesis, five models, which are based on artificial neural network (ANN) and 

support vector machine (SVM), were proposed for prediction of personal injury 

severities. The models were examined by two case studies using STATS19 road 

safety data that occurred in the city of London and Cambridge. The main purpose 

of the first case study was to identify the group most in need of road safety 

intervention by predicting the severities sustained by all road users. Using Radial 

Basis Function (RBFNN), different factors and areas of concern contributing to 

direct actual influences in both case studies were identified and ranked. In more 

detail to the first case study, non–motorised road users were recognised to benefit 

from the interventions. Therefore, the second case study aims to predict cyclist 

injury severities. Furthermore, most of the key factors in both case studies were in 

connection with busy junctions and poor turn / manoeuvres, here, truly protected 

junctions might be the best answer to create space for everybody. On focus to the 

two-wheeled group, there were limited crossing facilities near to where they 

cycled. Importantly for Britain's everyday cycling capital, narrow bike lane 

defenders are needed to provide a fully segregated solution where road width is 

too limited.  

In order to increase prediction accuracies, key factors were applied to multi–layer 

perceptron neural network (MLPNN) and SVM in both case studies. The models 

were selected as the benchmark due to their popularity in prediction modelling. 

Although the results of the predictions are encouraging, the models were not able 

to overcome incorrect predictions for ‘fatal’ and ‘serious injury’ severities due to 
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limited data for those classes. In response to this, the two well-known models were 

combined as a hybrid MLPNN-SVM, and a learning vector quantization neural 

network (LVQNN) was improved for the first time ever to verify the best-fit 

model. Following this, different comparisons were made to evaluate the 

performance of the models in different classes. In addition, the models’ fitting 

results were presented and discussed, suggesting that all proposed models have 

ability to achieve satisfactory predictions, nevertheless, the improved LVQNN 

model performed better than others and was properly able to solve the incorrect 

predictions. This thesis concludes by identifying evidence-based road safety 

intervention options to mitigate the identified concerns. The general conclusion 

that can be drawn from this study is that most of the factors directly blame some 

kind of human error with high injury concentration being linked to junction actions. 

Therefore, in to crack down on bad driving / cycling, besides the road engineering 

interventions, it is recommended to deliver innovative road safety education and 

broadcast promotional messages for the recognised groups. 

Keywords: cyclist, driver, injury severity prediction, road safety intervention, 

STATS19. 
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ÖZ 

Bu tezde, kişisel yaralanma şiddetini tahmin edebilmek için, yapay sinir ağına 

(YSA) ve destek vektör makinesine (DVM) dayalı beş farklı model kullanılmıştır. 

Önerilen yöntemler, Londra ve Cambridge şehirlerinin kentsel sokak ağlarında 

meydana gelen, STATS19 verilerinin kullanıldığı iki vaka çalışmasıyla 

gösterilmiştir. İlk vaka çalışmasının temel amacı, tüm yol kullanıcılarının maruz 

kaldığı kişisel yaralanma şiddetlerini tahmin ederek, karayolu güvenliği 

müdahalesine en çok ihtiyaç duyan grubu belirlemekti. Radyal temel fonksiyonu 

(RTF) kullanan ilk vaka çalışmasında, doğrudan gerçek etkilere katkıda bulunan 

faktörler ve endişe alanları tanımlanmış ve sıralanmıştır. Sonuç olarak, ilk vaka 

çalışmasında, motorsuz karayolu kullanıcılarının müdahalelerden faydalandığı 

belirlenmiştir. Bu nedenle, ikinci vaka çalışması, özellikle bisikletçi yaralanma 

şiddetlerinin tahminine odaklanmıştır. RTF'nin tahmin sonuçları, faktörlerin 

çoğunun yoğun kavşaklar ve zayıf dönüşler / manevralarla bağlantılı olduğunu 

göstermiştir. Burada gerçekten korunan kavşaklarda herkes için alan yaratmak en 

iyi çözüm olabilir. İki tekerlekli araç gruplarına odaklanıldığında, bisiklet sürüş 

alanlarının yakınında sınırlı sayıda geçiş tesislerinin var olduğu belirlenmiştir. 

Özellikle İngiltere'nin bisiklet başkenti için, yol genişliğinin çok sınırlı olduğu 

yerlerde tamamen ayrılmış bir çözüm sağlamak için dar bisiklet şeridi 

savunucularına ihtiyaç olduğu söylenebilir. Bu göstergelerin ardından, her iki vaka 

çalışmasında da tahmin doğruluğunu en üst düzeye çıkarmak için çok katmanlı 

algılayıcı sinir ağına (ÇKA) ve DMV'ye temel yaralanma şiddeti etki faktörleri 

uygulanmıştır. Elde edilen tahminlerin sonuçları her iki model için iyi olsa da, 

‘ölümcül’ ve ‘ciddi yaralanma’ şiddetleri sınıflar için sınırlı sayıdaki veri 
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nedeniyle hatalı tahminlerin olmasını engelleyemedikleri görülmektedir. Yanlış 

tahminleri düzeltmek için, daha önce kullanılan iki modeli birleştirilerek karma bir 

model (hibrit ÇKA-DMV) yaratılmıştır. İlaveten öğrenen vektör niceleme (ÖVN) 

sinir ağı olan, verilerinin tahmini için en uygun modeli doğrulamak için 

geliştirilmiştir. Önerilen tüm modellerin tatmin edici tahminlere ulaşma yeteneğine 

sahip olduğu, bununla birlikte, geliştirilmiş ÖVN modelinin diğerlerinden daha iyi 

performans gösterdiği ve belirli sınıflar için verilerin sınırlamasını düzgün bir 

şekilde çözebildiği görülmüştür. Bu tez çalışması, ciddi boyutlu yaralanmaları 

azaltmak için kanıta dayalı yol güvenliği müdahale seçeneklerini belirleyerek sona 

ermektedir. İncelenen faktörlerin çoğu, yüksek yaralanmalı sonuçlarla, insan hatası 

ve kavşaklarda hareket öncelikleri ile bağlantılı olduğunu ortaya koymuştur. 

Dolayısı ile çalışma sonuçlarına göre, kötü sürüş / bisikletçilik davranışlarını 

değiştirmek için, yol mühendisliğine dayalı müdahalelerinin yanı sıra, belirli 

gruplara yenilikçi karayolu güvenliği eğitiminin verilmesi ve tanıtım mesajlarının 

yayınlanmasının yapılması önerilmektedir.  

Anahtar Kelimeler: bisikletçi, sürücü, yaralanma şiddeti tahmini, yol güvenliği 

müdahalesi, STATS19. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

1.1.1 Road Traffic Injuries and Deaths – Global Concern  

Road traffic injuries are always a major worldwide health concern as well as main 

barrier in the transport industry. Accident occurrence causes immense losses from 

the human, economic, and social sides, especially the injury and fatal crashes since 

current efforts to address road safety are minimal in comparison to this growing 

human suffering. As a result of increasing advance in technology and growing 

human population, road traffic injuries have become as a serious public health 

problem and the most important causes of unnatural losses in today’s world. 

According to statistics from World Health Organization (WHO) (2018a), every day 

more than 3700 people are killed, and thousands are seriously injured on the world's 

roads. People driving, riding, biking, walking to work or school, children playing in 

streets, will never return home. A lot of people every year spend long times in 

hospitals after severe accidents and many of them never are able to continue their 

normal life (WHO, 2018a). Kids, pedestrians, riders and elderly people are between 

the most vulnerable road users (VRUs). Unfortunately, road injuries are the eighth 

leading cause of fatalities worldwide for all ages. In addition, the leading cause of 

death among young people, aged 5–29 years.  
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1.1.2 Can Traffic Injuries Be Compared to AIDS, HIV, or COVID-19? 

A report from WHO displays that due to the road traffic related injuries more people 

now are killed than from tuberculosis and the human immunodeficiency viruses 

(HIV) / acquired immune deficiency syndrome (AIDS). This organization also 

predicted that there will be around a 67 % by the year 2020 increase of the already 

existing 1.35 million deaths each year, unless there is new commitment to prevention 

or reduction of these injuries. Road traffic accidents are not contagious like 

Coronavirus disease 2019 (COVID-19) but more than 1.35 million people lose their 

lives every year on the roads plus an extra 50 million suffer non-fatal injuries, often 

resulting in long-term disabilities. (WHO, 2018b). However, nobody has suggested a 

lockdown that will for sure save many lives and prevent many more hospitalisations 

with the additional bonuses of cleaner air and fighting climate change. 

1.2 UK's Road Safety Stats Raise Serious Concerns 

The main barrier also affects safety of Britain's roads. Though Britain regularly has 

one of the greatest road safety records in the world but there are still numerous 

people die and many road users seriously injure day-to-day on the roads. The effects 

of the casualties are devastating, for public, for bereaved, and loved ones, and for 

victims who suffer the injuries, some of whom possibly will have lasting life-

changing consequences (DfT, 2019a). Therefore, here is much more work to be done 

across the country in connection with traffic collision prevention and reduction 

techniques. It is vital to track the safety and reliability of Britain’s roads, in particular, 

where most of serious injuries and fatalities are concentrated, and which should be 

targeted (RoSPA, 2018).  

https://www.powerthesaurus.org/in_connection_with/synonyms
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1.2.1 Multi-million-pound Investment to Deliver Road Safety 

The UK government’s vision is multi-million-pound investment with respect to 

achieve a genuine avoidance  or reduction of the appalling concerns resulting in 

mortalities and injuries. Hence, quickly mitigate the issues and make sure that the 

country lasts to retain as a strong global leader in road safety. Safer road 

infrastructures for all road users and safer road users will definitely save more lives, 

but this strategy will also help to decrease pressure on the national health services 

(NHS) and emergency services in the UK. Likewise, efficient movement of traffic 

and finally, keep the economy growing (DfT, 2018a). 

1.2.1.1 Road Danger Reduction and Active Travel Plan 

 Road danger reduction and active travel plan for the central of London is part of this 

multi-million-pound investment. This plan seeks to set out important aims to sustain 

a safe environment for all road users as well as improve the quality of life in the City 

of London. It goals to work towards removing the annual number of people killed 

and seriously injured in road accidents to zero before 2041 (City of London 

Corporation, 2018). 

1.2.2 Safety of Vulnerable Road Users 

As a result of the dramatic increase in traffic related injuries, in recent years, road 

safety authorities have become more committed and have given full attention to 

solve any road safety concern. Therefore, it is necessary to encourage all road safety 

stakeholders to work better in partnership helping the government in building vision 

as a reality. Along with this goal, it is also important to prevent the fairly great 

danger of some clusters more quickly, in particular for VRUs such as; pedestrians, 

pedal riders and motorcyclists. More than half of all road traffic losses happen 

among VRUs, therefore, this group require effective road safety interventions due to 

https://www.powerthesaurus.org/with_respect_to/synonyms
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the lack of personal protection. For example, cyclists are particularly more 

vulnerable in event of a motor vehicle collision (MVC) since they do not have the 

same additional protection which an enclosed vehicle provides (DfT, 2018b).  

1.2.3 Road Danger as Biggest Barrier for UK Cycling 

Cycle traffic over the past decade has highly increased in the UK as it is a brilliant 

approach to get about and delivers a wide range of health and environmental welfares 

(DfT, 2018b). Specially, COVID-19 has created more cyclists to ease demand on the 

public transport, thereon, local authorities encourage people to access goods, services 

and activities within their local area maximally by cycling, so as to retain a safe 

distance from others and keep active (PKC, 2020). According to rule 66 of 

the Highway Code, cyclists must be allowed to ride side by side (DfT, 2015a). 

Therefore, it's vital to create safer roads for cyclists as well as making them more 

visible to motorists. As a result, this should also make it easier for careful drivers to 

overtake as pedal riders are not spread out along the road. However, the vulnerability 

to serious injuries has grown more rapidly than traffic, to illustrate, DfT reports that 

there was a 48% rise of serious injuries in recent years (2018b). Each year in Britain 

about 18,500 pedal riders are killed or injured as stated by police reported collisions, 

plus nearby 3,500 who are killed or seriously injured (KSI). In addition, numerous 

cyclist casualties are not reported to the police despite some of them being critical 

enough to be hospitalised. (RoSPA 2017c). As a result, statistics of the DfT 

determines that percentage share of bicyclist fatality is higher than car occupants 

(DfT 2018b).  

1.2.4 Cambridge as UK's Cycling Capital - It's on Decline 

Cambridge city is UK's everyday cycling capital and the Cambridgeshire council 

aims to seriously rival with world's most bicycle friendly cities (CityLab, 2015). 
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With this ambition, at the moment it is not surprising that cycling in Cambridge 

became an appealing means of transport (The Guardian, 2011). The city 

demonstrates to be extremely perfect for pedal riders. You just must venture out on a 

weekday to understand why this city is considered such a great biking destination. Of 

course, the city hasn’t got a lot of hills but there are many other reasons too. It boasts 

the wide-ranging cycle route networks of over 800 miles connecting the city with 

around towns and villages. Cambridge railway station bike park hosts space for over 

3,000 bicycles, and soon after it being opened to riders in 2016 it gained the top 

honour in the National Cycle-Rail Awards. Another reason biking is so widely held 

in Cambridge is that the residents are very, very pro-environment. They believe 

pedal riding is superior for the planet as well as better for their health. 

(CambridgeshireLive, 2018a). A large population of students hop into the saddle to 

access to the venerable university campuses (DfT, 2016). Most of the routes across 

the campuses are entirely open to cycling, thus up to half of all journeys in the city 

centre are made by bicycle (GCP, 2017).  

1.2.5 General Facts and Figures about British Road Users  

In Cambridge, out of the commuting residents, 32.5% cycle to work which is by far 

the highest ratio in the UK, while the rate across England is only 3.1%. (The 

Cambridge News, 2017). In total, pedal riding made up just 1% of the mileage 

aggregated by all vehicular traffic across Great Britain throughout 2018. In 

comparison, cars and taxis accounted for approximately 77% in mentioned year. The 

percentages of road traffic (vehicle miles) for all the vehicle types in the country are 

shown in the chart below (Cycling UK, 2018; DfT, 2019b). 
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Figure 1: Proportion of Traffic by Vehicle Type in Great Britain (Cycling UK, 2018) 

In particular, two-wheel use as a percentage of all vehicle miles for the same year are 

shown in the Table 1 for England, Scotland, Wales as well as through Great Britain. 

In the Table below, the amount for biking includes riding on cycle paths and public 

roads. It also does not contain biking movement elsewhere such as; on byways, 

bridleways or towpaths (DfT, 2019b). In the Table, bvm denotes billion vehicle miles 

(Cycling UK, 2018). 

  Table 1: Wheel use as a ratio of all vehicle miles 

Region 
Motor vehicle 

(bvm) 

Cycle 

(bvm) 

All bvm 

(motor + cycle) 

Cycled 

(%) 

  Great Britain 

 

328.1 3.3 331.4 1.00 

  England 

 

280.1 3.0 283.1 1.10 

  Scotland 

 

29.7 0.2 29.9 0.60 

  Wales 18.3 0.1 18.4 0.60 

 

1% 0.80%

76.90%

1%
15.40%

5.20%

Cycles

Motorcycles

Cars and taxis

PTV

LGV and OGV

HGV
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Figure 2 shows a proportion of miles cycled across Britain roads. The 

large percentage of British biking trips are referred to England. In line with England, 

two-wheel use increase has been greater in some urban zones. For instance, in 

London nearby 27,000 people biked among the central London cordon in 1977, in 

comparison to 162,000 in 2017. This amount is six times as many. Another example 

can be the tens of thousands of riders who use their bicycles in Cambridge each day. 

Cambridge leads the way in biking, and it is increasing day after day (Cycling UK, 

2018).  

 
Figure 2: Proportion of British Biking Trips Across Britain (Cycling UK, 2018) 

1.2.6 Automatic Cycle Counters across the UK  

The UK government installed a wide number of cycle counters across the country. 

For example, Cambridge’s bike counter recorded that there are more than a million 

trips each year and around 3,000 journeys on a daily basis (GCP, 2017). The Figure 3 

shows the counter which was installed in a bend of a cycle path in a corner of 

Parker's Piece. 

England
34%

Wales
18%

Scotland
18%

Great Britain
30%
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Figure 3: Cycle Counter in Cambridge 

Another counter in Cambridge is located on Hills Bridge road adjacent to the station 

which is used by more than five thousand pedal riders in a day. Accordingly, as 

result of the large database with cycling statistics, first priority has been given to 

pedal riders in Cambridge (CambridgeshireLive, 2018a). 

In order to visually understand why Cambridge leads a large percentage of 

population of pedal riders, we compared the number of people biking regularly in 

Cambridge with other cycling destinations in the UK. For example, cycles were the 

‘major mode’ for 1% of all trips in in 2018 across Northern Ireland (Cycling UK, 

2018).  



 

9 

 

A national survey by Cycling Scotland discovered the scots’ attitudes to getting on a 

bike. The study found that the most of the people living in Scotland trust biking isn’t 

for them and they have an ‘entrenched reluctance’ to getting on two wheels more 

often. Unfortunately, a particular number of those who were hesitant to biking either 

didn’t know how to ride or didn’t believe they were fit enough. The proportion of 

British biking trips shown in Figure 2 and the live cycle counter data in Figure 4 

indicates that there is very small daily and annual number of people cycling in 

Scotland. The finding of the survey acknowledges that their absence of investment is 

turning a lot of people away from biking.  

Due to the existing lack of cycling infrastructure, most of the Scots don’t consider 

themselves as regular cyclist and don’t support cycling as a means of transport. 

Compared to cycling destinations similar to Netherlands, where physically separated 

bike lanes are common, Scots share roads with motor vehicles. Scottish government 

sees motor vehicle traveling and flying as main priorities in their transport networks. 

However, Cycling UK reported that Scottish Government increases cycling 

investment in ‘active and sustainable transport’ (Inews, 2018). Therefore, number of 

trips undertaken by bike will increase in Scotland as they find it as cheap travel, 

affordable and convenient daily transport. Cycling UK hopes that this raise is just the 

start of a riding revolution in this country (Cycling Weekly, 2018). 
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Figure 4: Cyclist Counting Machine in Scotland, PKC 

1.2.7 Cycling Numbers in UK Jumped during Covid-19 Pandemic  

Fear of catching COVID-19 on public transport has helped lead to a boom in cycle-

to-work schemes in the UK. During Covid-19 lockdown and post-lockdown cycling 

numbers have also jumped in Scotland. The cycle counters at many sites found in 

some locations the number of pedal riders more than doubled. Scots have 

rediscovered riding during the virus, for essential journey and exercise. It is hoped 

that people will continue to ride and carry on benefiting from the great helpful 

influence biking has on physical and mental health (BBC, 2020a; BBC, 2020b). In 

this regard, local authorities have invested hundreds of millions of pounds since the 

lockdown in cycling in response to the Coronavirus (PKC, 2020). 
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At the same time, on the other side of the UK in Cambridge biking has regularly 

continued as the leading means of transport. Many investments into pedal riding have 

sustained over the years (CambridgeshireLive, 2018a). The latest model of cycling 

network is now open to traffic as part of a multi-million pound’ government schemes 

towards producing more cycle-friendly routes, which serve to improve road safety. 

Although, Cambridge is the top bike-friendly city in the UK but cycling collisions 

unsurprisingly are greater than any other vehicles (The Cambridge News, 2018). And 

unfortunately, the achievement of cycling capital is on the decline now.  The reality 

is that this reward has all been achieved without any real and enough cycling 

infrastructure for such a big cycling city (CambridgeshireLive, 2018b). Therefore, it 

is vital to deliver a better and inclusive cycling infrastructure which could be used 

specifically by cyclists to reduce the accidents and support the riders feel safer on the 

street. Accordingly, encourage more people to bike as well as keep the city’s 

prominence as an advanced biking destination in the world (DfT, 2018b). As a result, 

there are still extra improvements which are essential and need to be applied with the 

purpose of boosting Cambridge’s prominence as a global leading innovative riding 

city (DfT, 2018c).  

1.3 Personal Injury Severity Prediction  

Although improving geometric design of roads, traffic management systems, better 

road safety educations and sometimes enforcement running by police forces are 

helpful to reduce number of injuries, however, these traditional mitigation methods 

are not sufficient enough and often are not feasible or prohibitively are very 

expensive. The reality is that the road traffic accidents are usually occur by multiple 

reasons resulting from complex interactions. In this circumstance, influencing factors 

which are involved in accident remain nonlinear and complicatedly have profound 
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effects on outcome of injury (Siamidoudaran et al., 2019a; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019b). And therefore, the traditional methods 

along with analysing police report data, are perhaps not enough to describe 

connotation between the factors. In this event, personal injury severity prediction 

(ISP) model is a key tool as it unveils the relationship between the injury severities 

and various explanatory variables, particularly, to clearly understand this relationship 

in detecting the influences in a much wider area.  

1.3.1 Benefits of Injury Severity Prediction 

The benefits of ISP are numerous. This kind of study is vital since professionals in 

roadway design, freeway management, public health, enforcement, emergency and 

trauma, policy, and education and awareness could benefit from the results to reduce 

the occurrence of injury and fatality crashes from different aspects. Moreover, the 

contributory factors which are reported by police officers can be subjective based on 

the officer’s opinion rather than fact at the scene. Likewise, reliability and results of 

the personal ISP models have a vital meaning for improvement of road safety (TRL, 

2010; Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019b). 

1.4 Research Objectives 

This thesis tests the performance of machine learning techniques in modelling and 

predicting personal injury severities in road traffic accidents. Using STATS19 road 

safety data, this study explores the relationship between the severity of injuries and 

the contributing factors under different circumstances. Indeed, this study is looking 

for evidence being led by the data to detect the group most in need of intervention. 

This approach would lead us to look more at VRUs such as; pedestrian and cyclist 
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groups rather than other groups (e.g. drivers) which already have benefited from 

many interventions.  

Previous studies have highlighted a considerable increase in published research on 

driving (Abdelwahab and Abdel-Aty, 2001; Abdelwahab and Abdel-Aty, 2002; 

Abdel-Aty and Abdelwahab, 2004; Delen et al., 2006; Kim et al., 2007; Xie et al., 

2007; Li et al., 2008; Karlaftis and Vlahogianni, 2011; Li et al., 2012; Zeng and 

Huang, 2014; Chen et al., 2016b; Sharma et al., 2016; Yu et al, 2016; Li et al., 2016; 

Alkheder et al., 2017; Iranitalab and Khattakb, 2017; Li et al, 2018; Zhang et al., 

2018; Hasheminejad et al., 2018; SiamiDouadarn and Iscioglu, 2019; Siamidoudaran 

et al. 2019a; Venkat et al., 2019; Amiri et al., 2020; Pradhan and Sameen, 2020), 

however, walking and cycling related predictions are severely limited (Kim et al., 

2007; Siddiqui et al., 2012; Wei and Lovegrove, 2013; Vandenbulcke et al., 2014; 

Osama and Sayed, 2016; Prati et al., 2017a; Prati et al., 2017b; Lee and Abdel-Aty, 

2018; Guo et al., 2018; Zhai et al., 2018; Siamidoudaran et al., 2019b). Encouraging 

and enabling people to walk or cycle needs action on many fronts especially in terms 

of safety.  

Although, COVID-19 has been great for cycling (BBC, 2020a; BBC, 2020b; PKC, 

2020), there is urgent need for improvements since every year in the UK thousands 

of cycling accidents occur on the roads (RoSPA, 2017c; DfT 2018b). For that reason, 

main aim of this research is to examine an active travel intervention with a cycling 

focus in a city wherein cycling is the main mode of transport and is not merely just a 

nice activity of having fun during weekend (The Guardian, 2011; CityLab, 2015; 

DfT 2018b). 
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1.4.1 Prediction of Personal Injury Severities 

Crash prediction models (CPM) have been very popular in road safety analysis and 

particular attention has been on modelling of them in the reviewed literature. 

However, the prediction of injury severities is seldom (Abdelwahab and Abdel-Aty, 

2001; Abdelwahab and Abdel-Aty, 2002; Abdel-Aty and Abdelwahab, 2004; Delen 

et al., 2006; Chang and Wang, 2006; Li et al., 2012; Chen at el., 2016), if ever, the 

injury severity related outcome wasn’t a common significant focus to detect 

contributory factors for personal injury severities (Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). In addition, none of those 

predictions have further investigated the severity of injuries individually for a real-

life case study to identify a set of road safety intervention options for specific groups 

and to suggest appropriate remedial measures.  

Based on this framework, numerous road safety studies have been conducted over 

the years aiming at recognising factors that may affect both the frequency and the 

severity of road traffic accidents or injuries. However, as advised by Savolainen et al. 

(2011), one has to be aware that the variables contributing accident frequency and 

accident severity may vary from the ones influencing the severity of injuries; 

therefore, this thesis aims at examining prediction of injury severities individually. 

In addition, all the UK leading accident software systems such as; KeyACCIDENT, 

AccsMap, MAST, CrashMap, iMAAP etc. are all based on analysis of reported 

factors by police. However, the factors may not have been based on a wide-range of 

research and probably are only attributed to the police’s subjective judgement (TRL, 

2010). Likewise, to cover all these gaps and further explore contributory factors, this 

thesis predicts personal injury severity levels of two case studies; the City of London 
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and Cambridge. This thesis is conducting six predictions by applying STATS19 road 

safety data which has never been predicted before by previous researchers. This 

study primarily aims to identify the group most in need of intervention so that 

findings can be focused on in more detail in a second case study. 

1.4.2 Determination of Evidence-based Road Safety Interventions  

Some road safety projects do have negative influences on road safety, despite the 

greatest aims of the road safety practitioners who designed them. Following the 

findings in both case studies, this thesis attempts to suggest evidence-based road 

safety engineering interventions to mitigate the identified poor road designs. In this 

vein, STATS19 casualty data is the best type of evidence that can be used to 

determine whether an intervention is needed (RoSPA, 2017a; DfT, 2020). In addition, 

by proposing educational interventions, this study outlines behavioural change 

theories intending to change road users’ behaviour (Road Safety Scotland, 2020). In 

this field, unfortunately, relatively little assessment carries out in road safety thus it is 

so difficult to find evidence-based intervention related research and evaluation 

(RoSPA, 2017a; DfT, 2020). As a consequence, this thesis can be really valuable to 

support future works to design different interventions and predict potential effects. 

1.4.3 Predictive Modelling with Big Data to Improve Accuracy 

Enhancing a model performance can be challenging at times. In this connection, 

presence of more data always permits the ‘data to direct for itself’, in place of 

trusting on assumptions and poor associations which will help to reduce pain of 

working on limited data sets. As a result of the solid relationship between injury 

severities and related factors, using more data leads to getting higher prediction 

accuracy, otherwise the result of the prediction could be less accurate (Ray, 2015; Li 

et al., 2018; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 
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Siamidoudaran et al., 2019b; Hébert et al., 2019). In response to this, a large mass of 

input data applies to this thesis as an attempt to better understand the connection of 

independent variables with target variable that will for sure decrease the prediction 

error and result in better and correct predictions (Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). 

1.4.4 Rank Analysis of Personal Injury Severity Predictors (RBFNN) 

For the rank analysis, radial basis function neural network (RBFNN) with varying 

levels of success in previous studies addresses as an identification method for 

sensitive traffic injury severity predictors (Yan and Guang-si, 2008; Yu and Liu, 

2010; Huang et al., 2016; Pradhan and Sameen, 2020). Within this framework, the 

RBFNN applies to this study to predict personal injury severity sustained by all road 

users (including driver, motorcyclist, cyclist and pedestrian) into different classes to 

detect several crash related factors and areas of concern. There is no personal injury 

severity related studies which focus on all road users in a single prediction task in 

order to detect the specific group to be focused on, in a next case study.  

1.4.5 ISP of Group Most in Need of Intervention (Cyclist Group) 

This section refers to the main concern of this thesis which needed to be focused on 

in more detail in a different case study. The results of the first case study showed that 

the city of London’s cycling boom needs more road safety intervention. Therefore, 

this thesis suggests that an intervention to reduce bicycle injuries among the 

STATS19 data is extremely important. Cycling in the UK is on the rise since it is a 

brilliant style to get about and delivers a wide range of environmental and health 

profits. Notably, the COVID-19 pandemic has produced many more cyclists as a 

result of people’s desire to avoid crowded public transport as well as follow the 

government’s full guidance for physical distancing (PKC, 2020). However, this 
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mode of transport also holds a certain amount of danger, and so it is essential to 

explore the factors that affect the cycling related injuries (RoSPA, 2017c). In 

response to the detected concern in the first case study connected to the cyclist group, 

this thesis separately predicts cycling related injury severities. What’s more is that 

the second case study took place in Cambridge, known as the best cycling destination 

in the UK (The Guardian, 2011; CityLab, 2015; DfT 2018b). The road safety 

problem is a persistent barrier in the UK’s cycling capital that does lead to more 

cycling casualties compared to other groups (The Cambridge News, 2018; DfT 

2018b; Siamidoudaran et al., 2019). Importantly, in response to the severely limited 

number of previous studies on prediction models in particular for pedal riders related 

injury severities (Kim et al., 2007; Siddiqui et al., 2012; Wei and Lovegrove, 2013; 

Vandenbulcke et al., 2014; Osama and Sayed, 2016; Prati et al., 2017a; Prati et al., 

2017b; Lee and Abdel-Aty, 2018; Guo et al., 2018; Zhai et al., 2018; Siamidoudaran 

et al., 2019b), this thesis presents a different prediction task that applies particularly 

to cyclist group. 

1.4.6 Maximising Predictive Accuracy Using Key Factors (MLPNN and SVM) 

There are a scarce number of literature that applied a rank analysis to increase 

performance of ISP model (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b). In relation to this limitation, additional 

prediction applies to each case study using the most important contributory factors 

identified in the first prediction task to increase prediction performances. To achieve 

this goal, multilayer perceptron neural network (MLPNN) was used for the City of 

London case study and Cambridge related data was predicted through support of 

vector machine (SVM) network. 
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1.4.7 Additional Trials to Scrutinise Data (Hybrid MLPNN–SVM, and LVQNN) 

This thesis attempts to apply a hybrid ANN–SVM, and an improved type of ANN to 

overcome data limitation as well as to select the best fit model for prediction of 

STATS19 data. For the first time ever, this thesis aims at using learning vector 

quantization neural network (LVQNN) and hybrid MLPNN–SVM for accident injury 

related studies (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b).  

1.4.8 Comparison of MLPNN, SVM, Hybrid MLPNN– SVM, and LVQNN 

A comparison of SVM and ANN always provides fruitful outcomes; therefore, this 

study also aims to compare the performance of the proposed MLPNN, SVM, Hybrid 

MLPNN–SVM, and LVQNN predictive models by applying the most sensitive 

predictors. Accordingly, this study performs a comparison between actual and 

predicted target values of the injury severity for each class including different levels 

to evaluate prediction accuracy from the proposed models obtained through each 

class. To end, this study evaluates the performance of the predictive models in 

different classes according to confusion matrix, accuracy, error, and sensitivity.  

The techniques of this thesis can be used in identify major contributing factors or 

understand relationship between severity of injuries and explanatory accident 

variables. The findings of this thesis can play an important role in helping road 

casualty reduction and prevention targets as well as handling several road safety 

problems. It is hoped that the findings can shed some light on the potential of 

remedial measures in order to mitigate such severity of personal injuries resulting 

from accidents. 
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Chapter 2 

LITERATURE REVIEW AND BACKGROUND 

2.1 Advantage of ANN and SVM Over Statistical Methods 

In recent years, researchers from multiple disciplines have been carried out various 

studies on CPMs. Using this technology, some models were built to predict road 

traffic accidents.  The related models mainly are grouped into following methods 

such as; statistics and machine learning techniques in which ANN is an example of a 

machine learning method. In this vein, statistical models are the most traditional ones 

and they can explicitly demonstrate affects of observed crash related factors. 

However, they struggle while dealing in circumstances of outliers, missing or mass 

of noisy nonlinear dataset. Also, weak performance in using many separable factors 

accompanied by big numbers of subdivision data is one more disadvantage (Principe 

et al., 2000; Abdelwahab and Abdel-Aty, 2002; Kim et al., 2007; Li et al., 2008; 

Karlaftis and Vlahogianni, 2011; Tabachnick et al., 2012). 

 Despite the wide range of studies about the statistical models, many researchers 

have developed a serious of ANN and SVM models in order to deal with weakness 

of the statistical approaches. The models have shown to be more beneficial in 

working with massive amounts of multidimensional accident data and achieving 

better prediction accuracy in comparison with the statistical techniques (Abdelwahab 

and Abdel-Aty, 2002; Xie et al., 2007; Li et al., 2008; Li et al., 2012; Zeng and 

Huang, 2014; Li et al, 2018; Zhang et al., 2018).  
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2.2 Most Popular Classification Algorithms 

In general, the first classification algorithm was presented by Fisher (1936). In this 

algorithm, minimising the classification error of train data is evaluated as an 

optimization criterion. This method has been used in many classification algorithms, 

yet there are some problems encountered mainly the generalization properties of the 

classifiers, which are not directly involved in the error function. The function 

measures the deviation of an observable value from a prediction. Indeed, the purpose 

is to discover values of model predictors for which returned number is as great as 

possible. Among these methods, MLPNN model is definitely the most frequently 

used by researchers. Another example is RBFNN which is popular type of 

feedforward neural networks. However, the determination of number of neurons in 

the hidden layers of MLPNN or the number of Gaussian functions in RBFNN is one 

of the most important and time consuming task because there may be concern of 

underfitting and overfitting caused by number of hidden layer neurons. SVM model 

is also another commonly method for supervised machine learning which is reviewed 

in this literature (Cortes and Vapnik, 1995). SVM is an elegant and powerful 

algorithm which is used for both classification and regression problems though it is 

frequently used to solve classification tasks. However, the faster SVMs may struggle 

when the data set has more noise. 

2.3 Driving Related Predictions 

In several studies, SVM models are used for driver injury severity prediction 

(Sharma et al., 2016; Yu et al, 2016; Li et al., 2016; Alkheder et al., 2017; 

SiamiDouadarn and Iscioglu, 2019; Venkat et al., 2020). An example of SVM refers 

to a comparison between SVM with an ordered probit model (OP). The result of the 

comparison between SVM and the proposed statistical model displayed that, the 
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SVM attained a superior performance in terms of prediction accuracy. The study also 

examined the potential of applying the SVM method for assessing the influences of 

external predictors on the severity of injuries. The sensitivity analysis outcomes 

showed that the SVM model made capable outcomes concerning the key influences. 

For numerous crash related factors, the outcomes of the SVM model were more 

reasonable than those found from the OP method (Li et al., 2012). Another SVM 

related study has been carried out for predicting MVCs (Li et al., 2008). The findings 

of SVMs have been compared with different types of negative binomial (NB) 

regression using traffic accident data obtained on rural frontage roads in Texas. The 

comparison demonstrated that SVM methods have shown their superior ability to 

predict accident data than other statistical models.  Furthermore, SVM models were 

faster to implement than back-propagation neural network (BPNN) models. Their 

study suggested that using SVM models are more appropriate if the objective of the 

research involves predicting motor vehicle accidents. 

Yu and Abdel- Aty (2014) used SVM model, random parameter logit model, and 

fixed parameter for performing accident injury severity predictions. Along with the 

data collected from accident reports, weather and real-time traffic data were also 

applied into the models. Injury severity of accidents was classified into severe and 

non-severe collisions. Accordingly, random forest model initially predicted to select 

key influences linked with severe accidents. Temperature, speed standard deviation, 

snow season indicator, and steep grade indicator were selected by the random forest 

method as inputs for analysing the data. For the aim of finding genuine associations 

between severe accident incident and the crash related factors as well as enhancing 

goodness-of-fit for the model, several methods were developed such as; fixed 

parameter logit model, random parameter logit model, and hybrid SVM–RBF to 
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identify non-linearity. The comparison outcomes presented that both random 

parameter and SVM established better prediction accuracy. Additionally, the results 

of their research showed that real-time traffic and weather factors have substantial 

impacts on accident injury severity.  

In most recent comparisons associated to SVM, Chen et al. (2016a) used this model 

with polynomial and gaussian RBF kernels to evaluate the performance of the 

proposed model. In addition, a classification and regression tree (CART) which is 

one of the most widely used data mining was applied with intention of detecting 

contributory factors. Consequently, the model predicted the driver injury severity 

levels on rollover accident relaying on two-year road safety data collected in New 

Mexico. In several studies, artificial intelligence (AI) and non-parametric approaches 

have been used to dominate the disadvantage of the traditional models. In this matter, 

Chang and Wang (2006), applied a classification and CART to observe the link 

between injury severity classes and the accident related factors. CART model has 

been verified to be an effective technique, mostly for dealing with prediction. They 

used one-year traffic crash data for Taipei, Taiwan. As a result, vehicle type was 

discovered as the main predictor connected to accident injury severity. All VRUs 

were recognised to have greater dangers of being injured than car drivers. The 

impacts of several contributory factors were observed with reference to accident and 

environmental factors, driver characters, and vehicle related factors. The results of a 

comparison indicated that that the SVM models verified superior prediction accuracy. 

The polynomial kernel showed an outperformance compare to the Gaussian RBF 

kernel. Explanatory variables related to comfortable driving environment 

circumstances, seatbelt used, alcohol or drug involvement by driver, travel lanes, 
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driver demographic characters, vehicle damages in accident, location of collision, 

and time band were discovered as the main contributory factors. 

Iranitalab and Khattakb (2017) used several statistical and machine learning models 

including SVM, random forests (RF), multinomial logit (MNL), and nearest 

neighbour classification (NNC) for ISP in two-vehicle accidents. The data was 

obtained from Nebraska, US between 2012–2015. The results of the comparison 

between statistical methods and machine leanings displayed that the NNC had the 

greatest prediction performance in overall in more serious accidents. RF and SVM 

models had the next two satisfactory performances and MNL was the poorest 

technique. Hasheminejad et al. (2018) used a hybrid clustering and classification 

method to examine the accident injury severity of rural network in Tehran, Iran 

between 2011-2013. For this purpose, a novel rule-based genetic algorithm (GA) was 

considered to predict the injury severities, which was assessed by performance 

measures in comparison with ANNs. The result indicated that GA model 

outperformed other classification in terms of prediction accuracy.  

Chen et al. (2016b) used ordinal logistic regression to create several predictive 

methods on a probabilistic basis. The main aim of their study was to evaluate factors 

for drivers both under and not under alcohol involvement in China. The results 

indicated that several contributory factors were identified to be significantly linked 

with the injury severity, including accident partner and type of junction.  Age band 

was detected as the main key influence under alcohol involvement. In other hand, 

collision pattern, junction type, light condition, sex of driver, and time band were 

detected as the most important key predictors connected with serious driver injuries 

involving motorists not under the impact of alcohol.  



 

24 

 

Another comparison related to ANN and statistical models was done by Xie et al. 

(2007). Bayesian neural network (BNN) models were used for predicting MVCs. To 

achieve this aim, a series of models was examined using data captured from rural 

networks in Texas. The models have been presented to accomplish superior than 

BPNN methods while at the same time decreasing the difficulty connected with over-

fitting the data. Accordingly, BPNN, BNN, and the NB regression models were 

compared. Although the BPNN approach was able to deliver superior prediction 

performance compared with the BNN method, in most circumstances its prediction 

performance was inferior than the BNN method. Moreover, the data fitting 

performance of the BPNN approach was reliably poorer than the BNN model, which 

suggested that the BNN method had higher generalization facilities than the BPNN 

method and was able efficiently alleviate the over-fitting issue without particularly 

compromising the nonlinear estimate capability. 

Abdelwahab and Abdel-Aty (2001) used MLPNN model and fuzzy adaptive 

resonance theory (ART) along with ordered logit methods for prediction mission. 

Accordingly, the association between several crash related factors and injury severity 

of motorist was observed covering driver, vehicle, roadway and environment 

characteristics. The analysis focuses on two-vehicle crashes that happened at 

signalised junctions. The outcome verified that MLPNN predicted the injury severity 

classes higher than other methods. Also, the outcome of the prediction displayed that 

rural junctions were more unsafe than urban junctions. Moreover, sex of driver, 

speed ratio, vehicle type, seatbelt used, and point of impact were very likely to 

contributed to a serious injury. A comparison was made between the models, 

showing a greater accuracy for the ANN model. 
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Again, after three years, Abdel-Aty and Abdelwahab (2004) used the same models in 

another study and compared the outcomes with the previous research. The objective 

of their research was to examine the capability and potential profits of applying the 

ANN to injury severity prediction. The outcome demonstrated that a higher accurate 

prediction ability for ANN model over statistical models. Likewise, the findings of 

the predictions proved that point of impact, sex, speed, area type, seatbelt, and 

vehicle type contributed to probability of injuries.  

Delen et al. (2006) used a series of binary MLPs to investigate the potentially non-

linear associations among the injury severity classes and the related factors. The 

injury severity levels classified into five categories (damage only, possible injury, 

minor non-incapacitating injury, incapacitating and fatality). Sensitivity analysis was 

applied on the models to recognise and rank the accident related variables as they 

applied to different injury severity classes. Using appropriate parameter selection, 17 

factors were selected that mostly affect the injury classes of drivers. However, 

applying more injury severity levels accompanied by the outcomes of the prediction 

did not determine any enhanced results than other earlier researches. Another 

example can be Alkheder et al. (2017) prediction task which was focused on 

developing ANN to predict injury severity in traffic crashes recorded over a six-year 

in Abu Dhabi. Compared with an ordered probit method with a forecast accuracy of 

59.5%, outcomes from the ANN made a much more accurate prediction rate by 

74.6% accuracy. However, their obtained accuracy outcomes were slightly lower 

than the results achieved by other ANN related studies. Using more sensitive 

predictors, this thesis seeks to achieve higher accuracies for predictions results. 
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Among all existing machine learning methods, SVM model has been increasingly 

applied in different areas of road safety studies for example; incident detection (Yuan 

and Cheu, 2003), VRU detection (Cheng et al., 2005), lane changing detection 

(Mandalia and Salvucci, 2005). It has been verified by the researches that SVM 

successfully achieved more accurate outcomes compared with other existing methods. 

ANN and SVM models have been used to examine injury severity impact factors 

(Delen et al., 2017). Using a few comparison metrics in their study (e.g. accuracy, 

sensitivity), the proposed SVM obtained the best outcomes compared with the other 

existing methods in their study. Using SVM in this thesis, additional comparison 

metrics are used in order to scrutinize the model performance which are discussed in 

results section of this thesis.  

Liz et al. (2012) used SVM for injury severity prediction and the accuracy result 

received by SVM was higher than ordered probit. In addition, Yu and Abdel-Aty 

(2014) compared the performance of SVM with fixed parameters and random 

parameters binary logit models. Again, the outcomes showed that SVM method 

perform superior than the fixed parameters model. Mokhtarimousavi et al., (2019) 

used SVMs for work zone crash injury severity prediction and the contributing 

factors by applying a parametric method. They used the mixed logit modelling 

structure and a non-parametric machine learning method applying SVM. The mixed 

logit model was fitted to the level of random parameter models in which the impacts 

of flexible factors across several observations were recognised, that is, data 

heterogeneity was considered. The results showed that SVM offers greater prediction 

accuracy and outperforms the other model.  
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As indicated in the literature, the accuracy obtained from different existing methods 

are clearly less than the ANN and SVM accuracies which highly encouraged us to 

apply these methods for prediction tasks in this thesis. 

2.4 STATS19 Related Predictions  

Previous literature displays that ANN and SVM models are very useful tools in road 

safety, given their potential for detecting crash frequency occurrence, and class 

severity of accidents and injuries. However, a careful and thorough reviewing of the 

literature shows that very few researchers (Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b) have examined the UK 

related data in prediction works. Using data analytics method, a recent study 

extracted some information for preventing possible accidents in rural and urban areas 

of the UK. The study applied several methods such as; SVM, data integration, 

correlation machines, and multinomial goodness. The research mainly offered a new 

framework model which could be trained and adapt itself to new data and create 

correct predictions. Using SVM, the study attempted to shed light on the use of 

SVMs to improve road safety. However, the study used very limited crash related 

factors and also failed to focus more on the outcomes of predictions which refers to 

contributory factors. In addition, the examined factors were insignificant (e.g. vehicle 

make and model) and were not common factors identified by DfT and other related 

previous studies. Using data for a particular site or a specific group (e.g. urban or 

rural, accidents at junctions, driver or VRU group, head-on collisions, animal-related 

accidents) could provide more accurate outcomes than focusing on all reported 

accidents in both rural and urban areas in a single task (TRL, 2009; TRL, 2010; DfT, 

2014; DfT, 2018a; DfT, 2018b; DfT, 2018c; DfT, 2018d; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  Rural 
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areas are the opposite of urban areas and therefore, some common factors that 

generally contribute to accidents could be totally different. For example, majority of 

wildlife-vehicle collisions occur on low-volume, high-speed rural roads, which are 

also likely to be areas with high animal populations (Hughes and Amis; 1996; Taylor 

et al., 2002; Wilkins et al., 2019). In addition, no technique was used to analyse 

ranked data in order to select actual influences for predictions (Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). As a final 

point, using SVM the predictions were not really satisfactory, therefore, the study 

suggested that the use of ANN might project more correct outcomes and create more 

optimum effects to attain better road safety (Lokala et al., 2019). 

To overcome the gap identified in the UK data related studies, for the first time ever, 

Siamidoudaran et al. (2019a) used LVQNN to predict injury severity in traffic 

accidents classified into fatality, serious injury, slight injury, and only damage to 

property. Their case study focused on particular road safety problems in the city of 

London. Once again, Siamidoudaran and Iscioglu (2019) compared a series of 

machine learning models for same case study including; MLPNN, SVM, and 

combination of the two models. As a result of the performance evaluation, their 

proposed MLPNN-SVM model demonstrated superiority in predicting the injury 

severities. Several predictors discovered as contributory factors and significant 

accident cluster sites. A specific finding revealed that a number of road safety 

interventions are required for the cycling group which have not been widely focused 

on by previous researchers.  In the intervention group, road safety education was the 

key intervention measure suggested in the evaluation of the intervention outcome. As 

a result of this specific finding, in this thesis we attempted to pay particular attention 

for cycling group.  To this end, in the next section of the literature review, cycling 
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related predictions and their associated factors were also reviewed. However, 

published articles which focus on this topic are still very limited (Kim et al., 2007; 

Siddiqui et al., 2012; Wei and Lovegrove, 2013; Vandenbulcke et al., 2014; Osama 

and Sayed, 2016; Prati et al., 2017a; Prati et al., 2017b; Lee and Abdel-Aty, 2018; 

Guo et al., 2018; Zhai et al., 2018; Siamidoudaran et al., 2019b). 

2.5 Cycling Related Predictions 

Considerable research has been carried out in recent years to establish associations 

between accidents and environmental influences, traffic flow, and elements relating 

to geometric road design. Injury severity prediction models focused on cycling, 

however, have rarely been examined. In addition, most research has paid but little 

attention to the safety effects of variables which STATS19 data specifically focuses 

on such as; crossing facilities, dazzling sun, bicycle and vehicle location, bicycle and 

vehicle manoeuvre, junction detail, junction location of bicycle and vehicle etc. 

(TRL, 2010; DfT, 2011; SiamiDoudaran and Iscioglu, 2019; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b). 

Kim et al. (2007) developed a multinomial logit model for cycling related predication 

activities. For this purpose, they used the accident data between bikes and MVCs in 

order to predict the severity of injuries. The findings displayed that several factors 

had higher affect in increasing fatal accidents. The factors were included; speed of 

motorised vehicle, goods, weather condition, rush hour, head-on crash, alcohol 

related accidents, elderly riders, and light condition. Along with these factors, the 

results of several studies showed that the pedal riders were very likely to be at fault 

than motorists in events of serious and fatal accidents (Kim et al. 2007; Wei and 

Lovegrove 2013; Prati et al. 2017b). In addition, likelihood of injury for group of 
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VRUs increases in urban roads in the vicinity of schools (Kim et al. 2007). Another 

cyclist related prediction was carried out by Vandenbulcke et al. (2014) using 

Bayesian statistics. A number of contributing factors were discovered for instance; 

tramway systems road, lack of crossing services for pedal riders on bridges, 

riding in wrong direction, riding in heavy traffic, type of intersections, type of 

roundabouts, and car parks at shopping centres.  

Prati et al. (2017a) used logistic regression analysis to examine association among 

different crash outcomes and contributory factors. Consequently, 

behaviour of drivers and riders were recognised as the key influences on generation 

of cycle – MVC’s. Other variables were related to gender and age of pedal riders. 

Once more, in the same year, Prati et al. (2017b) applied the Chi-squared automatic 

interaction detection (CHAID) decision tree model to prioritise the cycle crash 

related predictors. The factors refer to road type, crash type, cyclist age, road signage, 

sex of pedal rider, month, oncoming traffic, and segment classification. Thus, they 

applied Bayesian network analysis into same accident data and the outcomes 

indicated that crash type, road type, and opponent vehicle had higher affect in risk of 

cycle accidents.  

Several road safety studies used macro-level models in their cycle related predictions 

(Siddiqui et al., 2012; Osama and Sayed, 2016; Lee and Abdel-Aty, 2018; Guo et al., 

2018; Zhai et al., 2018). For instance, Siddiqui et al. (2012) used macro-level crash 

prediction models for pedestrian and bicycle related accidents in Florida. The 

important indexes were included numerous highway characteristics, and several 

demographic and socio-economic variables. Another alternative approach to 

incorporate spatial dependency in count models in the past has been to use a 

http://home.cc.umanitoba.ca/~psgendb/birchhomedir/doc/MeV/manual/bn.html
https://ascelibrary.org/doi/10.1061/41177%28415%29168
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conditional autoregressive (CAR) or a joint prior on a spatial random effect term that 

is introduced multiplicatively in exponential form in the parameterization of the 

expected value of the discrete distribution for the count variable. The result showed 

that there might be major spatial correlations in accident event across different sites. 

A separate distinct set of key influences were identified for the model related to cycle 

accident. In all circumstances, the Bayesian approaches with spatial correlation 

achieved superior performance compared to other the techniques that did not account 

for spatial correlation between traffic analysis zones. The outcomes indicated that 

spatial correlation must be examined while modelling pedal rider related collisions at 

the aggregate or macro-level. Osama and Sayed (2016) developed macro-level for 

predicting bicycle accidents. The researches applied generalised linear regression and 

full Bayesian (FB) approaches. They attempted to examine the models with and 

without spatial effects. They assessed the association among many cycling routs 

related indicators and the accidents outcomes. Following the predictions, the 

outcomes showed that there is a significant connection among cycle network 

infrastructure and the cycle crash related influences. 

 Another macro-level related study carried out by Lee and Abdel-Aty (2018) in order 

to identify key influences in cycle accidents. A multivariate Bayesian PLN 

conditional autoregressive (CAR) model was used to recognise the indexes which 

contributed to bicycle collisions. As a result, accident hotspots for the target areas 

were identified based on the modelling outcomes. Using their study can help to 

recognise contributing factors for cycle related accidents. Cyclist exposure is one of 

the most important factors that contribute to risk of accidents in bicycle–MVCs. Due 

to lack of this factor in a cycle accident related study, the researches focused on 

zonal characteristic and applied proxies in order to overcome the limitation of the 
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data. The outcomes of a recent study indicated that there were strong associations 

between cycle accident related factors and cycle safety at a zonal level. The 

contributory factors refer to demographic, cycle routes and accessibility. 

Additionally, the results showed that, junction’s actions had a higher affect in 

likelihood of cyclist injury severity classes. In respect of this outcome, recently, 

numerous approaches of zonal configurations were developed applying a FB model. 

Accordingly, cycle related macro-level models were carried our using Poisson 

lognormal (PLN), random parameters PLN (RPPLN), random intercepts PLN 

(RIPLN), and spatial PLN (SPLN). The outcomes showed that bike collisions were 

positively connected with several factors such as, signal density, traffic exposure, 

high density commercial zone, and households. On the other hand, negative 

association among the accidents and the factors related to cycle infrastructure 

indicators. As a final point, the outcome of the comparison between the several 

approaches displayed that goodness of fit test for the SPLN model performed 

far better than others (Guo et al. 2018). Alternatively, Zhai et al. (2018) only applied 

a few factors to evaluate the prediction performance of zonal configuration 

associated to macro-level model. The related task was carried out within a FB 

technique applying multivariate PLN approaches and multivariate conditional auto-

regressive priors. The outcome of their research showed that there were significant 

variations between several zonal configurations. As a result of this outcome, zonal 

configuration with greater zone achieved superior overall fit. 

2.6 Cycling Related Prediction Using STATS19 Data  

Most of the researches had been conducted to display the effect of using CPMs or 

ISP models. Moreover, very limited studies were applied on prediction of cycling 

related studies. Furthermore, none of the bicycling related predictions have been 
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conducted in the UK, apart from one recent study (Siamidoudaran et al., 2019b). The 

research predicted cyclist injury severity classes using LVQNN. Following this, 

relationship between injury severity levels and cycling related factors were 

discovered. As a result, their proposed prediction technique was able to find several 

predictors influencing the injury severity of the riders involved in MVCs. As a 

significant finding, T and staggered junctions where dedicated right-turn were 

noticed as the worst case scenario. The researchers applied the most important 

contributory factors into the model to maximise the prediction accuracy. Accordingly, 

they outlined nature of cycling accidents and casualties and made valuable 

recommendations for making a safer riding environment while sharing the road. 

Their findings can significantly help to reduce the possibility of injury and improve 

cycling uptake, and support people who need to cycle, but are discouraged from 

doing so because they believe it is dangerous. As a final point, they discovered how 

driver attitude and behaviour towards each other can be improved through education 

based on a number of factors. 

2.7 Comparative Literature of Various Models 

This section of literature review discusses several comparisons of existing methods 

to find appropriate algorithms for the prediction tasks in this thesis.  

2.7.1 Advantages and Disadvantages of Statistical Methods 

In summary, the reviewed literature exposes that statistical models have the ability to 

identify several crash related factors. However, the mass of noisy data makes it very 

difficult to better understand the relationship between the factors. Additionally, poor 

performance in using many subdivision variables (e.g. STATS19 data) is another 

weakness (Tabachnick and Fidel, 2012).  In respect of this issue, a number of 

researchers have notified the linearity and some distributions of error terms by the 
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statistical methods. Thus, the applied statistical models fail when dealing with 

complex and very nonlinear datasets (Principe, 2000; Abdelwahab and Abdel-Aty, 

2002; Li et al, 2008; Karlaftis and Vlahogianni, 2011; Tabachnick and Fidel, 2012). 

Therefore, using statistical models has been ignored from this thesis.  

2.7.2 ANN and SVM to Overcome Weakness of Statistical Methods 

In recent years, to overcome the disadvantage of the statistical models, many 

researches have also used machine learnings techniques instead of the statistical 

models due to their advantage of dealing with mass of noisy data like STATS19 data 

as well as superior predictive ability. As a result, those models especially, ANN and 

SVM models have showed to be more useful tool and have achieved a good model’s 

fit accompanied by prediction accuracy in comparison to other existing algorithms 

(Abdelwahab and Abdel-Aty, 2002; Zhang, 2006; Xie, 2007; Li et al., 2008; Li et al., 

2012; Zeng and Huang, 2014; Li et al., 2018; Zhang et al., 2018).  

2.7.3 Two Well-known Architectures of ANN 

Two well-known architectures of ANN; MLPNN and RBFNN have achieved 

varying degrees of success in reviewed literature and are shown to be very useful in 

road safety research (Abdelwahab and Abdel-Aty, 2001; Abdelwahab and Abdel-Aty, 

2002; Abdel-Aty and Abdelwahab, 2004; Delen et al., 2006; Yan and Guang-si, 

2008; Yu and Liu, 2010; Huang et al., 2016; SiamiDoudaran and Iscioglu, 2019; 

Pradhan and Sameen, 2020). 

In the authors’ previous application of machine learning in a road safety research, the 

MLPNN performed a little better than SVM for predicting drivers’ injury severity 

(SiamiDoudaran and Iscioglu, 2019). This thesis examines a potentially stronger 

technique, the RBFNN to detect most import contributory factors (Abdelwahab, 

Abdel-Aty, 2002; Yan and Guang-si, 2008; Yu and Liu, 2010; Zeng and Huang 
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2014; Huang et al., 2016; Pradhan and Sameen, 2020). In this regard, recursive least 

squares (RLS) learning is a powerful learning method for RBFNN (Park and 

Sandberg, 1991; Chen, 1995; Yu and Liu, 2010). For that reason, this thesis aims at 

using the RLS learning algorithm for improving performance of RBFNN (Wang and 

Zhu, 2000). 

The commonly used MLPNN also verified to be very capable when categorising the 

severity into different classes (Abdelwahab HT, Abdel-Aty, 2001; Abdel-Aty MA, 

Abdelwahab; 2004) like outputs of STATS19 data (Siamidoudaran and Iscioglu, 

2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). Additionally, in the 

reviewed literature this network was very successful when was addressed as an 

identification technique of most important factors (Delen, 2006; SiamiDouadarn, 

2019). In this thesis, we also aim at maximising the MLPNN performance through 

applying most important predictors of injury severities. Many studies used series of 

MLPNNs for road safety related prediction tasks (Abdelwahab and Abdel-Aty, 2001; 

Abdel-Aty and Abdelwahab, 2004; Delen, 2006; Alkheder et al., 2017; 

Shamsashtiany and Ameri, 2018), however, applying more injury classes along with 

the results of their predictions did not suggest any better solutions than other earlier 

researches. It is hoped using MLPNN along with applying several effective methods 

in methodology such as rank analysis and using more data can shed some new light 

on cause of personal injury severities as well as areas and groups of intervention 

(SiamiDoudaran and Iscioglu, 2019). This thesis applies Levenberg–Marquardt 

backpropagation (LM–BP) algorithm to attain superior performance of MLPNN 

through sensitive injury related factors (SimiDoudaran and Iscioglu, 2019). The LM–

BP algorithm seems to be the fastest technique for the training process of the 

network. In addition, the LM–BP algorithm operates efficiently in matrix laboratory 
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(MATLAB), because the solution of the matrix equation is a built-in function, so its 

properties become even more capable in a MATLAB environment (Hagan and 

Menhaj, 1994). This algorithm blends the gradient descent and gauss–newton 

algorithm in training process of the network (Suratgar et al., 2005; Costa et al., 2007; 

Kwak et al., 2011; Yu and Wilamowski, 2011; Wondimagegnehu and Alemu, 2017). 

Using this strategy, this thesis is seeking to achieve better result from MLPNN 

compare with other existing algorithms by importing a larger mass of input data, 

applying different types of road user, analysis of rank ordered data, and maximising 

predictive accuracy using most important injury severity impact factors 

(SimiDoudaran and Iscioglu, 2019).  

2.7.4 SVM as a Powerful Tool for Prediction 

Literature relating to the SVM showed that this model also like ANNs has ability to 

predict severity of accidents or injuries within acceptable satisfactory.  (Sharma et al., 

2016; Yu et al, 2016; Li et al., 2016; Alkheder et al., 2017; SiamiDouadarn and 

Iscioglu, 2019; Venkat et al., 2020). The comparison results with different models 

indicated that, SVM model produced results with a better prediction accuracy in 

recognising the significant predictors (Li et al., 2008; Li et al., 2012; Yu et al., 2014; 

Yu et al, 2016; Zhang et al., 2018). Furthermore, SVMs were very successful in 

resolving the limitation of statistical methods (Chang and Wangm, 2006) to 

determine the relationship among several classes of accidents and reasons 

influencing crash severity. SVMs also verified that they work quite well when there 

is clear margin of separation among classes. SVM is also showed to be more 

effective in high dimensional spaces, it is also effective in cases where number of 

dimensions is higher than the number of examples. Therefore, we believe SVM can 

be very suitable for prediction of STATS19 due to the nature of data (SiamiDoudaran 
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and Iscioglu, 2019). In this connection, kernel trick sounds like a perfect plan that we 

can consider to use for this thesis. Kernel trick is considered due to being able to 

bridge linearity and non-linearity. Using kernel function is a method used to take 

data as input and transform into the required form of processing data (Theodoridis, 

2008; Murty and Raghava, 2016). 

2.8 Decided Models Relying on Comparison of Existing Methods 

Based on the literature review, there is an urgent need for studying safety of VRUs of 

STATS19 data in order to cover the specified gaps identified in the reviewed 

literature. The major objective of this thesis is to detect contributory factors, site 

clusters and groups of intervention through RBFNN. In addition, to apply the 

identified factors to MLPNN and SVM, hybrid MLPNN–SVM, and LVQNN in 

order to maximise prediction accuracies and find out which model is the best fit for 

STATS19 data, finally, to suggest evidence-based intervention options to mitigate 

the concerns.   

2.8.1 RBFNN (Both Cases), MLPNN (City of London) and SVM (Cambridge) 

In recent years ANN and SVM based methods are becoming very popular due to 

their good predictive performance. Indeed, relying on the reviewed literature, the 

first three models were chosen for the thesis due to the empirical analysis and being 

notoriously good at detecting nonlinearities (Abdelwahab and Abdel-Aty, 2001; 

Abdelwahab and Abdel-Aty, 2002; Abdel-Aty and Abdelwahab, 2004; Delen et al., 

2006; Yan and Guang-si, 2008; Yu and Liu, 2010; Huang et al., 2016; 

SiamiDoudaran and Iscioglu, 2019; Pradhan and Sameen, 2020).  

2.8.2 Hybrid MLPNN–SVM (City of London) 

As a result of MLPNN and SVM success in gaining the targets in this thesis, this 

study presents a hybrid MLPNN–SVM model for prediction of the injury serveries. 
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This hybrid architecture is proposed to significantly improve the MLPNN 

performance (Bellili et al., 2003). Section 3 in this thesis details the idea of applying 

SVM in a hybrid combination architecture to develop the overall performance of 

MLPNN.  

2.8.3 LVQNN (Cambridge) 

As a powerful predictor, LVQNN is considered to examine the merged classes (KSI) 

to overcome the limitation of the data for ‘fatal’ and ‘serious injury’ classes. This 

model of ANN is a precursor to self-organising maps (SOM) that can be applied 

where there is labelled input data. As the value of the STATS19 data used in this 

thesis is label, this method is more suitable for predicting the injury severities in 

comparison to other types of ANNs. Previous related studies showed that LVQNN is 

also an accurate application for road safety data analysis (Priyono et al., 2005; Shen 

and Chen, 2009) as well as it successfully being used for predicting data with 

subdivision values (Chen and Marques, 2009) such as STATS19 (Siamidoudaran et 

al., 2019a; Siamidoudaran et al., 2019b). Therefore, using LVQNN, this thesis is 

investigating a model that fits the data better than other commonly used models 

(Priyono et al., 2005; Chen and Marques, 2009; Shen and Chen, 2009; Al-Daoud, 

2009; Kohonen, 2012; Thanasarn and Warisarn, 2013; Nova and Estévez, 2014; 

Villmann et al., 2017; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  

In addition, rank analysis, large number of subdivision data, different kernels, 

activation functions and additional algorithms are considered to achieve higher 

percentage of correct predictions in test data as well as the models’ performance 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). Importantly, rank analysis leads to select correct input selection for 

models which is a necessary step to assure the successfulness of the model 
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performance achieving accurate prediction accuracy for the model’s output 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b, Alizamir et al., 2020).  
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Chapter 3 

METHODOLOGY 

This study uses a series of ANN and SVM models for prediction of personal injury 

severities. For this purpose, two case studies were considered by applying STATS19 

road safety data. The aim of the first case study is to identify the group most in need 

of road safety intervention by predicting personal injury severities suffered by all 

road users. Therefore, to overcome the identified concern in the first case study, the 

second case study specifically focuses on prediction of cyclist injury severities. 

Safety concerns are the main barrier to more cycling in the UK and importantly for 

the second case study (The Cambridge News, 2018; DfT 2018b; Siamidoudaran et al., 

2019). Furthermore, there are extremely limited number of previous prediction 

studies for cyclist injury severity which is the main contribution of this thesis to the 

literature (Kim et al., 2007; Siddiqui et al., 2012; Wei and Lovegrove, 2013; 

Vandenbulcke et al., 2014; Osama and Sayed, 2016; Prati et al., 2017a; Prati et al., 

2017b; Lee and Abdel-Aty, 2018; Guo et al., 2018; Zhai et al., 2018; Siamidoudaran 

et al., 2019b). 

Using MLPNN and SVM models, this thesis also aims to increase the prediction 

accuracies by applying the most important injury severity impact factors. In addition, 

using hybrid MLPNN-SVM and LVQNN for the first time ever, the models attempt 

to maximise the accuracies as well as to overcome limitations of the data in 

predictive analytics (Priyono et al., 2005; Al-Daoud, 2009; Shen and Chen, 2009; 
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Chen and Marques, 2009; Kohonen, 2012; Thanasarn and Warisarn, 2013; Nova and 

Estévez, 2014; Villmann et al., 2017; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b).  

Also, this thesis attempts to carry out different comparisons through applying the 

most sensitive predictors to evaluate the performance of the models (MLPNN, SVM, 

hybrid MLPNN-SVM, and LVQNN) in different injury severity classes. Finally, the 

study ends by suggesting evidence-based road safety intervention options to help 

reduce the identified concerns. Accordingly, the structure of this thesis and the 

relationship between stages are shown in the below flowcharts (Figures 5, 6, and 7) 

for each case study. 
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Figure 5: Flowchart Showing Structure of Thesis– First Case Study 
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Figure 6: Flowchart Showing Structure of Thesis– Second Case Study 
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Figure 7: Flowchart Showing Structure of Thesis– Additional Trials on Data 

3.1 Data Preparation 

The focus of this thesis is to predict and analyse personal injury severities involving 

road casualties in Great Britain. This study conducts different predictions by 

applying STATS19 road safety data which has never been forecasted before by 

previous researchers. The name comes from a UK police form titled STATS19. The 

STATS19 database consisting of a set of all the collisions that caused in a personal 

injury, where, the accidents are informed to the police forces within 30 days of the 

crash. The data is obtained directly by the police at the roadside or when the crash is 
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reported to a police station. The explanatory variables and data guide available in the 

dataset are defined by the DfT.  Following this, the data is either sent to DfT or to the 

relevant local authorities. Some of the factors are sensitive (as is the breath test result 

variable) so the government doesn’t make them publicly available and the related 

data was issued under an end user licence for this thesis. In addition, according to our 

agreement by DfT we were only able to publish the status as aggregations and not as 

specific accidents (or of a small set of accidents). This means that it was possible, for 

instance, publish the fact that “25% of the accidents on an M–class road had both 

‘turning manoeuvre’ and ‘inclement weather’ as a contributory factor”, but we were 

not able to point out “the accident that occurred on T junction 3 of the M6 on the 

06/06/2012 had ‘speeding’ as a contributory factor”. Therefore, it should be noted 

that identifying any specific circumstance or location was overlooked form this thesis.  

3.1.1 Case Study Areas  

The dataset along with the sensitive data used in this thesis was obtained officially 

from DFT and Cambridgeshire county council. The data includes different datasets 

of personal injury road accidents from 2007 to 2016 for the City of London and 

Cambridge city's total road networks.  

3.1.1.1 The City of London Case Study 

This case study focuses on developing personal injury severity prediction of all road 

users including driver, rider, pedal rider and pedestrian in the area situated in the City 

of London which is actually in the original London. The City is a local government 

district that covers the historic centre and the main central business district of 

London.  It is now only a small part of the metropolis of London, though it remains a 

famous part of central London. Administratively, it forms one of the 33 local 

authority districts of London; however, the City of London is not a London borough. 
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The City of London is the smallest city in England with residential population of 

8,000 people. However, over 500,000 people travel each day into the area for work 

and at the same time, more than 30 million tourists travel each year to the world's 

popular tourist destination (The City of London Corporation, 2020). Figure 8 details 

the locations where it is proposed to predict the injury severity levels (Google Maps, 

2020). 

Figure 8: Site Location – City of London (Google Maps, 2020) 

3.1.1.2 Cambridge Case Study  

Cambridge case study focuses only on developing of pedal rider injury severity 

prediction. Cambridge is a university city that is located on the River Cam nearly 50 

miles north of Greater London. Cambridge is the county town of Cambridgeshire 

council area which its population is around 129,000 as well as 25,000 students 

from all over the world. However, the population is expected to continue to 

Site Location 
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increase but constant population growth with natural growth and development of the 

famous university of Cambridge. There is rather to Cambridge than a university, the 

city is the third most popular tourist destination in Britain for international 

visitors. There are many museums, extraordinary cultural sites, great places for 

adventure and family fun (World Population Review, 2020). The site location is 

enclosed by red colour in Figure 9 where it is proposed to predict the injury severity 

levels (Google Maps, 2020). 

Figure 9: Site Location – Cambridge City  (Google Maps, 2020) 

3.1.2 Description of Data Variables 

Three major variables in the dataset are included; collision circumstances, vehicle 

indexes, and casualty data. The variables detail all the information concerning crash 

types, locations, occurrence times, roadway geometric characteristics, weather 

conditions, vehicle characteristics, driver demographic, behaviour information etc. 

These variables were applied to the prediction models as input parameters and the 

injury severity classes were considered as output indexes. The information of each 

variable is given in Table 2.  

Site Location 
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Due to the large number of input factors within STATS19 data, merely the most 

important factors identified by the models are given in more detail in the results 

section of this thesis. In addition, the sub-variables (labels) of the input data are 

shown and analysed in more detail in Tables 5 and 6. Therefore, the detailed 

explanation of insignificant factors has not been provided in this thesis. However, 

there is another document called STATS20, which is a full detailed guidance in 

relation to STATS19 input data and parameters. The STATS20 document (DfT, 

2011) aimed at providing instructions for the completion of traffic collisions reports 

and a detailed explanation of the information associated to the data used in this thesis 

(TRL, 2010; DfT, 2011).  

     Table 2: Implemented major input variables (DfT, 2011) 

Major explanatory variables 

Collison circumstances (input) Vehicle related variables (input) 

Time Skidding 

Day Vehicle type 

Month Overturning 

Year  Engine capacity 

Road type     Engine capacity    

Speed limit Junction location* 

Police force Sex of driver/rider 

1st road class   Vehicle location 

2nd road class* Vehicle propulsion 

1st Road Number Vehicle manoeuvre 

2st Road Number Age of driver/rider 

Junction detail 1st point of impact 

Junction control* Alcohol involvement 

Lighting condition Towing and articulation 

Weather condition   Vehicle propulsion code 

Urban/rural area Journey purpose 

Carriageway hazards Hit object in carriageway 

Number of vehicles Age of vehicle (manufacture) 

Numbers of casualties Vehicle leaving carriageway 

Road surface condition   Hit object off carriageway 
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Special conditions at site Was vehicle left hand drive 

Pedestrian crossing– human control Driver/rider home area type 

Pedestrian crossing – physical** Driver IMD  

Casualty class (output) Personal injury severity class 

       * This index is employed when the collision is at junction. 

       ** This parameter is applied for monitoring bicyclist and pedestrian’s movement. 

3.1.3 Data Presentation of Incident Severity Classes 

The figures in this section cover official DfT statistics about reported injury severity 

levels in traffic accidents resulting from 250 accidents as an illustration. The incident 

outcomes extracted from CrashMap licensed to Agilysis (2020) along with Google 

Map (2020) for the background map. The related incident severity classes are simply 

viewed in different casually types in both case studies. The data only indicates to 

personal injury collisions on public roads, using the STATS19 collision reporting 

form. Data on damage-only crashes, with no human injuries or crash on unadopted 

roads or car parks are not involved.  

Figure 10 refers to the 250 accidents involving young drivers resulting in 250 

casualties of all road users as a sample in a small part of the city of London. 



 

 

 

 
Figure 10:Incident Severity Levels by All Casualty Types – City of London (Google Maps, 2010; Agilysis, 2020) 



 

 

 

Figure 11 refers to the 250 accidents involving young drivers resulting in 95 bicycle casualties for the same specified area. The result 

shows that cyclists made up around 40% of the injuries between the 250 accidents. 

 
Figure 11: Incident Severity Levels by Cyclist Casualty Type – City of London  (Google Maps, 2010; Agilysis, 2020)



 

 

 

Figure 12 refers to the same number involving young drivers resulting in 42 pedestrian casualties for the same site. The proportion of 

the pedestrian injuries is approximately 20% compere to the other road users which is considerable losses to individuals. 

 
Figure 12: Incident Severity Levels by Pedestrian Casualty Type – City of London (Google Maps, 2010; Agilysis, 2020)



 

 

 

Figure 13 is 250 crashes involving all vehicle types resulting in 250 casualties in a small part of Cambridge as an illustration. 

 
Figure 13: Incident Severity Levels by All Casualty Types – Cambridge (Google Maps, 2010; Agilysis, 2020)



 

 

 

Figure 14 refers to the 250 crashes involving all vehicle types resulting in 180 pedal rider casualties (more than 70%) in the same 

area. The majority of the injuries were caused by cyclists which is much more compared to the cycling injuries in the city of London. 

 
Figure 14: Incident Severity Levels by Cyclist Casualty Type – Cambridge (Google Maps, 2010; Agilysis, 2020)
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Typically, the indication of the above figures simply gives an idea about the results 

of injuries caused by different road users. According to the data analysis as well the 

comparison between the incident severity levels, it is verified that Cambridge’s pedal 

riders have more collisions than other vehicle types.  Therefore, we only focus to 

pedal cycle casualties in Cambridge as they need more road safety intervention. 

3.2 Why Proposed ISP Models Were Selected 

Like CPM, ISP model is a mathematical model that defines associations between risk 

of personal injury severity and various road accident influences such as; environment 

variables, vehicle related factors, roadway geometric features, human’s behaviours 

etc. Being one of the major steps of road safety, ISP model can provide crucial 

information to evaluate the severity level of injuries, estimate the potential impacts, 

and implement efficient accident management procedures. There is no accurate 

statistical model that can describe the association since the influencing factors are 

nonlinear. However, ISP model can mathematically describe the relationship 

between a set of independent variables and a dependent variable. In this regard, many 

road safety problems involving complex interrelationships can be efficiently solved 

using machine learning algorithms. There are numerous types of machine learning 

models that we can use for prediction tasks. For example, ANNs or SVM models can 

be very useful to determine general solutions for irrelevant data which then causes an 

extracting pattern for types of road safety problems. These types of models have 

many benefits but one of the most important of them is the fact that it can essentially 

learn from assessing data sets. The models apply as a random function approximation 

technique and support the prediction through the most efficient approaches for 

gaining more accurate results while describing distributions and computing functions. 

These models indicate a more accurate prediction capability over other traditional 
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methods. The predictions models are measured as nonlinear data 

modelling techniques where the complex associations between inputs and outputs are 

used. (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b).  

This thesis examines the viability and potential benefits of using a series of ANNs 

and an SVMNN model in predicting personal injury severities for number of road 

users. RBFNN, MLPNN, SVMNN were selected as the benchmark simply because 

of their popularity in injury severity modelling (Abdelwahab and Abdel-Aty, 2001; 

Abdelwahab and Abdel-Aty, 2002; Abdel-Aty and Abdelwahab, 2004; Delen et al., 

2006; Yan and Guang-si, 2008; Yu and Liu, 2010; Huang et al., 2016; 

SiamiDoudaran and Iscioglu, 2019; Pradhan and Sameen, 2020). 

In relation to Hybrid MLPNN-SVM, combining two powerful methods in a single 

model is a great idea to achieve better accuracy. Notably, it has never been used by 

other researchers in an accident/injury prediction (SiamiDoudaran and Iscioglu, 

2019) and there are also few previous articles in different fields using this model for 

prediction tasks (Bishop, 1995; Bellili et al., 2003; Tifani et al., 2017).  

Lastly, LVQNN has been identified as a more powerful model for prediction to 

overcome the limitation of data in connection to ‘fatal’ and ‘serious’ injury classes. 

Importantly, it is a very suitable model where there is labelled and subdivision data 

such as STATS19 data (Priyono et al., 2005; Shen and Chen, 2009; Chen and 

Marques, 2009; Al-Daoud, 2009; Kohonen, 2012; Thanasarn and Warisarn, 2013; 

Nova and Estévez, 2014; Villmann et al., 2017; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b). In addition, it has never been used by other researchers 
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in an accident/injury prediction (Siamidoudaran et al., 2019a; Siamidoudaran et al., 

2019b). 

3.2.1 Introduction to Artificial Neural Networks 

ANNs are the most leading and powerful algorithms used in machine learning. 

Various fields of sciences such as engineering, medical science, mathematics etc. use 

ANNs for linear and non-linear regression, function approximation, classification 

and other technical and scientific applications. ANNs are mathematical models 

which is inspired by the human brain and learning rules to enhance existing data 

analysis tools. As the ‘neural’ part of their title proposes, they are brain-inspired 

methods which are aimed to reproduce the approach that we humans find out. 

However, much is still unclear regarding how the human brain trains itself to process 

a lot of information. Therefore, there are many concepts against this background. In 

the brain, a neuron gathers signals from others by the use of fine structures known as 

‘dendrites’. The neuron dispatch spikes of electrical action via a long, thin stand 

called an ‘axon’. Likewise, axon ruptures into thousands of branches and after the 

completion of each branch, structure of ‘synapse’ transforms the movement from the 

axon into electrical influences that excite or inhibit task from the axon into electrical 

influences that excite or inhibit task in the associated neurons. When a neuron 

obtains stimulator input that is appropriately great in comparison to its inhibitory 

input, it directs a spike of electrical action down its axon. In this case, learning task 

happens through varying the validity of the synapses. as a result, the effect of one 

neuron on alternative neuron modifies (Hinton, 1992). 

ANNs seem to be a modern development. However, it was created before the advent 

of computers, and has sustained at least one main setback and numerous eras. Several 

significant developments have been boosted through the use of low-cost computer 
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simulations. After a preliminary period of eagerness, it continued a period of 

disappointment and dishonour. At the time, when professional support was 

insignificant, great progresses were done by quite a small number of scientists. These 

innovators were able to improve convincing approach which surpassed the 

limitations recognised by Minsky and Papert (1969). The researches defined the 

limitations of the neural network and summed up a wide-ranging feeling of 

obstruction against these models. Their finding was accepted by maximum devoid of 

additional examination. However, at the present time, the neural network technique 

enjoys a resurgence of interest. The initial artificial neuron was created in 1943 by 

American neurophysiologist Warren McCulloch and the logician Walter Pits who 

worked in the area of computational neuroscience. However, the lack of the 

technology at that time did not let them to perform too much works related to this 

field (McCulloch and Pitts, 1943). 

ANNs have three layers that consist of input layer, output layer along with a hidden 

layer in most circumstances. Data that flows by the network influences the structure 

of the model as a neural network changes or learns, in a particular way referring to 

the input and output layers. The layers comprise of a number of interconnected 

‘nodes’ which hold an ‘activation function’. Patterns are offered to the model via the 

input layer and those neurons communicate to the second layer. Accordingly, they 

refer the data on to the hidden layer where the actual processing is completed via a 

method of weighted ‘connections’. The second layer covers neurons that transform 

the input into a position that the output layer can apply. The second layers then 

connect to an ‘output layer’ where the answer is output as displayed in the graphic 

below. Figure 15 describes by the way wherein circles (neurons) are linked together 

by lines (synapses). 
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Figure 15: ANN –  Neurones and Synapses (SiamiDoudaran and Iscioglu, 2019) 

At first glance, ANNs may look like a black box. As seen in Figure 15 the input layer 

catches the data into the hidden layer and following a magic trick, the information is 

obtained by the output layer. Nonetheless, important phase of ANN application and 

optimization is to clearly understand the responsivity of the second layer. Learning 

rule of ANNs changes the weights of the network in relation to the input patterns that 

it is offered with. ANNs learn by instance as prepare their biological counterparts; a 

kid learns to recognise cats from examples of cats. While there are numerous 

different types of learning rules applied by AANs, this substantiation is interested 

only with the delta rule. This rule is frequently used by the most common level of 

ANNs titled BPNNs. Using backpropagation technique, ‘learning’ is a supervised 

process that arises with each epoch. Means that, in every turn, the network is offered 

with a new input form. This implementation is carried out via a forward activation 

flow connected with outputs, and the backwards error propagation for weight 

modifications. Accordingly, once an ANN is firstly denoted with a shape it creates a 

random ‘guess’ as to what it might be. It then gets how much further its response was 

from the actual one and creates a suiTable modification to its linking weights 
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(Schalkoff, 1997). Training an ANN involves choosing from allowed models for 

which there are several associated algorithms. They are usually nonparametric tools 

that are represented by connections between a very large number of simple 

computing processors or neurons, have been used for a variety of classification and 

regression problems. They also very useful techniques for discovering methods 

which are far too complex or busy for a human programmer to exploit and train the 

machine to identify.  

There are many types of ANNs, but we shall concentrate briefly on our proposed 

RBFNN and MLPNN.  This study also presents an SVM model in order to improve 

the average accuracy of the cycling related prediction. ANN and SVM are two 

typical classifiers and hold similar idea using linear learning method for recognition 

task. However, they are two different algorithms and the main difference is on how 

non-linear data is predicted. Mainly, SVM model uses non-linear mapping in order to 

build the data linear detachable, accordingly, the kernel function is the significant 

strategy. On the other hand, an ANN model works multi-layer association and 

numerous activation functions in the direction of dealing with nonlinear difficulties.  

3.2.2 Proposed MLPNN Designed for ISP Model 

MLPNN has applied several learning rules designed for training networks. This 

learning rule is one of the most widely used type of ANNs which has been proved as 

a universal predictor. An MLPNN is a class of feedforward used for function 

approximation tasks. It holds three layers comprising of input layer, hidden layer, 

and output layer. Associated data run from the first layer and pass through the second 

one to the third layer to build outputs. An MLPNN with one hidden layer is able to 

predict any finite nonlinear function with great accuracy (Schalkoff, 1997). The 

example below displays an MLPNN architecture for proposed traffic ISP.  
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Figure 16: MLPNN Architecture (SiamiDoudaran and Iscioglu, 2019) 

In Figure 16, each layer contains of neurons that are handling elements of network. 

Each neuron in any linked layer with the total of the next layer neurons via lines 

covered with coefficients named ‘weight coefficients’. Any variation in coefficients 

modifies the function of the model. Actually, the major aim of the network training is 

to establish the top weight coefficients to gain the preferred outcome. The outcomes 

recovered from the earlier layer are summarised with determined weights, specific 

for each neuron along with the bias term.  The sum in a function named ‘activation 

function’. The function of a node describes the output of that node provided an input 

or group of inputs.  

The proposed MLPNN used in this study applies three standard activation functions 

include; identity function, sigmoidal function, and Gaussian. The neurons of the 

MLPNN keep the equal functions, with the same free factors that are specified by 

user and are not altered through the training algorithms. Consequently, all the trained 

network acts when the feature vector is proceeded as input. In this case, the size of 

vector is the same as the input layer size. It then, passes values as input to the initial 

hidden layer. Finally, outputs of the hidden layer are completed applying the 
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activation functions and the weights. Therefore, to figure the network, we must know 

all the weights. The weights are calculated by the training algorithm. The algorithm 

pulls a set of training, several input vectors with the corresponding output vectors, 

plus repetitively corrects the weights to allow the model to provide the chosen 

answer to the delivered input vectors. In some ways, to fix the weights and bias terms 

for learning set, a suitable algorithm is desirable, and it is straight depended on input 

data.  

3.2.2.1 LM–BP Algorithm 

In this thesis LM–BP algorithm was applied to achieve greatest performance for the 

prediction tasks. The LM–BP algorithm is a combination of the gradient descent and 

Gauss–Newton algorithm is used for training process of the network. The algorithm 

is examined on numerous function approximation problems; it is found that the 

algorithm is much more efficient than either of the other techniques when the 

network contains no more than a few hundred weights (Suratgar et al., 2005; Costa et 

al., 2007; Kwak et al., 2011; Yu and Wilamowski, 2011; Wondimagegnehu and 

Alemu, 2017; Siamidoudaran and Iscioglu, 2019). The LM–BP algorithm is more 

robust and trains ANNs at a rate of 10 to 100 times faster than the typical gradient 

descent backpropagation technique (Hagan and Menhaj, 1994). Training of the 

network automatically finishes when generalization ends improving, as showed by a 

rise in the mean square error (MSE). The algorithm is recognised as a technique of 

damped least-squares for reducing a function by using a numerical clarification. The 

process of the least squares is a system to fix the best fit line to data. In this thesis the 

BP algorithm was applied in the training that comprises of propagation and weight 

update. Hence, with the aim of performing this development, earlier layer data (front-

propagation) was considered for calculation of the neuron's outputs for every single 
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layer. Following this, in reference to the training outline target, the gradient of the 

weights was calculated via the difference between the target and the output. In 

conclusion, the weights of the layer are updated which is called ‘weight update’. The 

value for every single neuron in the hidden layer is considered as below: 

𝑃𝑗 = 𝑓(∑ 𝑥𝑖
𝑇𝐴

𝑖=1 . 𝑤𝑖𝑗 + 𝑏𝑗)                                                                                           (1) 

In the above equation 𝑓  is the activation function for hidden layer which is 

determined relaying on minimum test error. 𝐴 denotes the number of neurons linked 

to input layer; 𝑥𝑖  refers to the 𝑖th model’s input; interconnection among 𝑖th neuron 

connected to input layer and 𝑗th hidden layer neuron specified by 𝑤𝑖𝑗 .  The bias term 

of the 𝑗th  is presented by 𝑏𝑗  . Moreover, the value of every single neuron in the 

output layer is considered as following equation. 

𝑦𝑘 = 𝑔(∑ 𝑝𝑗
𝑇𝐵

𝑗=1 . 𝑤𝑗𝑘 + 𝑏𝑘)                                                                                                  (2)                   

In this equation activation function is shown by 𝑔 for output layer which is called 

‘linear transfer function’,  𝐵 denotes the number the neuron connected to hidden 

layer, 𝑝𝑗  is the amount of 𝑗th  the neuron associated to hidden layer. Moreover, 

Interconnection among 𝑗th  hidden layer neuron is presented through 𝑤𝑗𝑘  and 𝑘th 

refers the neurons in output layer and 𝑏𝑘 shows the bias term concerning 𝑘th neurons 

in output layer (Suratgar et al., 2005; Costa et al., 2007; Kwak et al., 2011; Yu and 

Wilamowski, 2011; Wondimagegnehu and Alemu, 2017; Siamidoudaran and 

Iscioglu, 2019). 

3.2.3 Proposed RBFNN Designed for ISP Model 

In the field of mathematical modelling, a RBF network is an ANN that uses RBFs as 

activation functions. Likewise, the indication of RBFNN originates from the concept 

of function approximation. As previously explained in the MLPNN section, MLPNN 

with a hidden layer of sigmoidal units is able to learn in the direction of approximate 
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functions. In this vein, RBFNN also acts as an insignificantly different method. An 

individual neuron in MLPNN model takes the weighted total of its input factors. 

Specifically, each factor is multiplied through a coefficient, and as a result, the 

outcomes are all summed together. A neuron refers to a simple linear predictor, but 

complex non-linear predictor can be made through merging the neurons accords a 

network. From this perspective, RBFNN seems to be an intuitive method compared 

to MLPNN model.  

Figure 17 simply displays the typical structure of an RBFNN model developed to 

predict injury severity classes. As seen in the figure the model is a special form of the 

three-layer feedforward ANNs. The structure of RBFNN comprises of an input 

vector, the second layer refers to the model’ neurons, and an output layer holding one 

node for each category of data. This model employs radial basis functions as 

activation functions and is very useful model for classification and prediction task. 

 
Figure 17: RBFNN Structure (McCormick, 2013) 

In Figure 17, the first layer is the(𝑛)–dimensional vector which is accounTable for 

classification task. The total vector is presented to each neuron in the above figure. In 
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the figure μ𝑘 is the prototype which denotes the   neuron’s centre. The model makes 

prediction through evaluating the input’s similarity to samples from the training data. 

Each RBFNN neuron stocks a prototype which is one of the instances from the 

training data. When a new input factor is classified, each neuron figures the 

Euclidean space among the input factors and its archetype. Likewise, a comparison is 

applied by each neuron among the input vector and the prototype. As a result, output 

value refers among 0 and 1 that is kind of similarity measure. If the input is 

equivalent to the neuron’s centre, then the output will be 1. On the other hand, if the 

space among the input and the centre raises, the answer drops off to 0. Likewise, if 

the input factor is more similar to the category 1 examples than the category 2 

examples, it is predicted as level 1. The figure of the model neuron’s reaction is a 

bell curve which is activation value. There are several potential sets of similarity 

functions. However, in this thesis the Gaussian was used which is the most common 

method.  

The output comprises of a set of nodes which will result in prediction for each class. 

An output calculates a sort of mark for the connected class. Generally, a prediction 

result is completed by allocating the input to the class with the maximum mark. The 

mark is assessed by taking a weighted figure of the activation function from each 

neuron. By means of weighted sum, an output node links a weight assessment with 

each of the model neurons and grows the neuron’s activation via the weight before 

adding it to the entire reaction. For the reason that an individual output node is 

figuring the mark for a different class, each output node takes its own set of weights. 

The output node normally provides a positive weight to the model neurons which is 

part of its class, and a negative weight in the direction of the rest (Park and Sandberg, 
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1991; Chen, 1995; Yu and Liu, 2010). The below network architecture typically 

explains RBFNN nomenclature. 

 
Figure 18: Structure of RBFNN Nomenclature (McCormick, 2013) 

Figure 18 illustration simply displays that the model is intended to primary 

implement nonlinear mappings from are mapped from the input space into the hidden 

space. Nonlinear function is referred to as RBF. In the next circumstance, patterns 

mapped from the hidden space toward the output space through a linear function 

(Broomhead and Lowe, 1988a; Broomhead and Lowe, 1988b; Haykin, 2009). Below 

is the equation for the Gaussian function which is generally applied in structure of all 

the RBFNN for the hidden layer. 

𝜙𝑘(x) =  exp = (−
1

2σ1
2 ‖x − μ𝑘‖2)  ,    𝑘 = 1, 2, 3, … , 𝐾                                        (3) 

In the above equation, x is input and  μ𝑘 denotes the centre of the network 𝜙𝑘(·)(𝑘 =

1, 2, . . . , 𝐾). ‖x − μ𝑘‖ is the Euclidean distance among x and μ𝑘. In this connection, 

Euclidian norm which refers for every single vector the length of its arrow and is 
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recognised as the magnitude. Symbol σ1 is the spread of function and manages the 

smooth function approximation. The basis refers via 𝑤0 and the connection weight 

among the output node and the network defines by 𝑤𝑘(𝑘 = 1, 2, . . . , 𝐾).  As a result, 

the predicted injury severity of driver or rider ( 𝜓 )  is specified as below (Huang et 

al., 2016). 

𝜓 = 𝑤0 + ∑ (𝑤𝑘 exp
1

2σ2
‖x − μ𝑘‖2)

𝑘

𝑘=1
                                                                (4)  

The training and leaning processes, RBFNN is too fast and the model is achieved 

wonderful performance at interpolation. The structure of training section is allocated 

into two phases; preliminary the weights from the first to second layer are established 

and the next stage refers the weights from the second to the last layer of neurons that 

creates given outputs for the database (Haykin 2009).  

The learning and training technique of RBFNN is used to estimate the association 

among input factors and the injury severity classes. Initially, the centres of the 

prediction model are specified through a K–means clustering. It is a technique of 

vector quantization, initially from signal processing, that goals to partition n 

observations into kclusters in which each observation belongs to the cluster with the 

closest mean , allocating as a prototype of the cluster. Following this, an RLS 

algorithm is used for prediction of the basis and weights among the output node and 

RBFs (Chen, 1995; Wang and Zhu, 2000; Abdelwahab, Abdel-Aty, 2002; Zeng and 

Huang 2014). 

3.2.4 Proposed SVM Designed for ISP Model  

In machine learning, SVMs are supervised learning algorithms that analyse data used 

for both binary regression and classification. Like ANNs models, SVMs are also one 

of the most popular applications used for prediction of crash injury severities 

https://nl.mathworks.com/discovery/supervised-learning.html
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(Siamidoudaran and Iscioglu, 2019). They are discriminative classifier and important 

characteristic of this technique is the power to mitigate the classification errors. This 

classification method is introduced by Cortes and Vapnik (1995). SVM reduces the 

operational hazard as an objective function in place of decreasing the classification 

fault and this advantage is the main difference of this model with other algorithms. 

An SVM creates an optimal hyperplane as a decision surface such that the largest 

margin of separation among the two levels is improved. The model performs 

prediction task through discovering the hyperplane and the hyperplane maximizes 

the margin among the levels. The vectors that describe the hyperplane stand as the 

support vectors.  The model makes subset of the training observations that are 

applied as support used for the optimal location of the decision surface. Actually, the 

model efforts to detect a separating hyperplane by decreasing the space of 

misclassified points to the decision boundary. In order to fit the data into the SVM 

model, a nonlinear mapping is applied to transfer the input factors from the primal 

space to the higher dimensional feature space. This action supports to discover the 

appropriate hyperplane and extended to solve multi-class issues. 

 Figure 19 typically shows the structure of an SVM developed to predict injury 

severity classes. 
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Figure 19: SVM Architecture (SiamiDoudaran and Iscioglu, 2019)  

Using SVM model in predicting traffic injury severity classes is basically a binary 

classification and associated training data are given as (𝑥1, 𝑦1), … , (𝑥𝑖 , 𝑦𝑖 ) where 

𝑥𝑖 𝜖 𝑅𝑑  and 𝑦𝑖 𝜖 {+1, −1} . The methodology is applied using a hyperplane to 

separate the data from one dimension to high dimensional space plus the support 

vectors which refer to the points lying on the boundaries. Accordingly, the two-

dimensional space, a line typically divides the associated levels in middle of the 

margin. The middle of the margin is a discriminator and the margin of separation is 

maximised through this method. Margin of separation refers to the separation among 

the hyperplane and the nearest data point for bias and an assumed weight vector. On 

the other hand, in the multidimensional spaces circumstances which hold more than 

three dimensions, a hyperplane separates the levels as usual and the SVM classier 

function is assumed as below.  

{
𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≥ 1    ,               𝑖𝑓𝑦𝑖 = 1        𝑖 = 1, 2, … , 𝑛

𝑤𝑇 ∙ 𝑥𝑖 + 𝑏 ≤ −1 ,              𝑖𝑓𝑦𝑖 = −1      𝑖 = 1, 2, … , 𝑛
                                           (5) 
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In this case, in order to attain the required discrimination, the margins among the 

levels must be the greatest. For that reason, by assessing the space among the support 

hyperplanes and the obtained margin is considered as
1

2
‖𝑤‖2. Nonetheless, in actual 

fact, the data in this thesis was not regularly separated and the data slightly took 

place in multiple datasets. As a result of this interaction, a hyperplane is achieved in 

relation to the minimum number of errors. Related indexes of each level are 

identified by examining the space from its own level which denotes by (𝛿) borderline. 

This technique is achieved using the strategy of soft margin formulation. This 

strategy allows the model to create a specific number of errors and retain margin as 

wide as possible ensure that other points are classified properly. Non-negative 

parameters ( 𝛿𝑖 ) is measured as inactive indexes appertaining to (s.t.)  δi ≥ 0 . 

Accordingly, the primal problem is calculated as following equations. 

Minimize 
1

2
𝑤𝑇 ∙ 𝑤 

s.t.: 

𝑦𝑖(𝑤𝑇 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝛿𝑖           𝑖 = 1, 2, … , 𝑛                                                                   (6) 

𝛿𝑖 ≥ 0                                                                                                                    

so, 

𝐿𝑝 =
1

2
𝑤𝑇 ∙ 𝑤 − ∑ [𝑦𝑖(𝑤𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 + 𝛿𝑖]

𝑛
𝑖=1          𝑖 = 1, 2, … , 𝑛                         (7) 

The main requirement in this condition is to answer with a quadratic issue that 

desires some struggles to be fixed. In the meantime, input vector predictors are not 

the only indexes to be measured. Specifically, the problem reasonably requests to 

allow for a number of other indexes. Thus, the original formula modifies a dual form 

through applying Lagrange multipliers(αi ,μi). Hereon, the Lagrange coefficients 

(αi, μi) are fixed to be non-negative real predictors, the equation is reformed in this 

way. 

https://www.powerthesaurus.org/appertaining_to/synonyms
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𝐿𝑝 =
1

2
𝑤𝑇 ∙ 𝑤 + 𝐶 ∑ 𝛿𝑖

𝐧
i=1 −  ∑ 𝛼i

𝑛
i=1 [𝑦𝑖(𝑤𝑇 ∙ 𝑥𝑖 + 𝑏) − 1 + 𝛿𝑖] − ∑ 𝜇𝑖 ∙ 𝛿i

𝑛
i=1         (8) 

αi, μi ≥ 0                

Where C is reflected to be the fine cause and Lp is a saddle factor, for that reason, the 

bottom volume must be used by using the factors w , b  and δ . At this rate, the 

maximum amount wishes to be set by examining the Lagrange multipliers. With the 

aim of shifting the major problem to a maximized problem, the partial derivative of 

w, b and δ requests to be assessed. Following this induction, the dual problem is 

assumed as below. 

𝐿𝐷 = − 
1

2
∑ ∑ 𝛼𝑖 ∙ 𝛼𝑗 ∙ 𝑦𝑖 ∙ 𝑦𝑗 ∙ 𝑥𝑖

𝑇 ∙ 𝑥𝑗
𝑛
𝑗=1 +𝑛

𝑖=1 ∑ 𝛼𝑖
n
𝑖=1 .                                            (9) 

Best decision function used for hyperplane is achieved applying a developed formula. 

𝑦𝑖 = Sign(𝑤𝑇 ∙ 𝑥𝑖 + 𝑏)                                                                                            (10) 

It is extremely complex to pick the right hyperplane. This selection is in the direction 

of dividing the nonlinear data. To fix this sensitive issue, the Hilbert-Schmidt 

operator has been introduced to modify the D–dimensional feature vector of x to a 

high dimensional feature space. This action is carried out using the multidimensional 

support vector function and the relationship is considered as: (∅ ∶  Rd → RN ). Where 

in the link, the achieved decision function connected with the optimal hyperplane for 

an SVM is defined as following equation. 

𝑦 = sign (∑ 𝛼𝑖 ∙ 𝑦𝑖 ∙ 𝐾(𝑥𝑖, 𝑥) + 𝑏 )       𝑛
𝑖=1                                                                (11) 

Here, 𝐾(𝑥𝑖, 𝑥𝑗) refers to SVM kernel function.  

3.2.4.1 The Kernel Trick 

The task of the kernel function is inclusive of taking the data as input and then 

transforms the date into the essential formula. In this context, the functions can be in 

different format as the potential SVM algorithms are different. These functions can 
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be different types. For instance, the following methods are different types of SVM 

kernel functions; sigmoid, RBF, polynomial, linear, nonlinear, kernel trick etc.  

In this thesis, kernel trick was used to transform the prediction system from linear 

situation into nonlinear. From this perspective the Gaussian kernel function 

computed as below. 

𝐾(𝑥𝑖, 𝑥𝑗) = ex p (−
1

2𝜎2
‖𝑥𝑖 − 𝑥j‖

2
)                                                                         (12) 

In the above, 𝑥𝑖 , 𝑥𝑗  refer to the input vectors and 𝜎  is the kernel function 

(Siamidoudaran and Iscioglu, 2019). This kernel is figured with a support vector 

which remains as an exponentially decaying function in the input. Following this, the 

determined value is reached at the support vector and fades equally in all ways 

nearby the vector. In circumstances where various levels get up, one level is typically 

compared with one more class that regularly creates the n classifier. Against this 

background, process of solving a special form of mathematical optimisation problem 

is presented involving a clarification achieved by the quadratic programming using n 

variables.  

In this thesis, a constructive strategy was raised as ‘one-versus-rest’. This method is 

involved training a single predictor per level with the examples of that level as 

positive example and all other examples as negatives (Cortes and Vapnik, 1995; 

Vapnik, 2013). 

3.2.5 Proposed Hybrid MLPNN-SVM Designed for ISP Model 

The combination of MLPNN and SVM networks is mainly aimed at connecting the 

output layer of an MLPNN classifier by means of optimal margin hyperplanes. The 

indication of using hybrid architecture of MLP-SVM is perceived to be the 
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significantly improved model of MLPNN in terms of performance (Bellili et al., 

2003; Tifani et al., 2017; SiamiDoudaran and Iscioglu, 2019). That is, it determines a 

distinctive solution to the last layer factors by using convex optimisation 

accompanied by a primal-dual understanding, as well as guaranteeing a higher bound 

concerning testing errors.   

The hybrid model was applied with extra efficiency in comparison to the non-linear 

SVM which are trained in the input space. This was because of a nonlinear SVM 

requiring selection and turning a kernel to reach a respectable nonlinear mapping 

through the input space to a transformed feature space in which data was seemingly 

more linear separable. Concerning the hybrid model, this nonlinear mapping was 

discretely optimised all through the MLPNN training in the structure of the sigmoid 

kernel. In the phase of training in MLPNN, the function approximation application 

was used to map the input and output data in the first layer.  

In an attempt to optimise the network, back-propagation was used to decrease the 

relative entropy among the output delivery and the true label delivery by constructing 

use of the optimised input aimed at hidden layer factors. Then, the input data 

dimension was reduced to one-dimension space fixing the operation for its next stage. 

For the next training period, the output data from MLPNN was reserved and was 

imported to SVM using the SVM scheme of ‘one-versus- the rest’ to forecast the 

personal injury severity levels (Bishop, 1995; Bellili et al., 2003; Tifani et al., 2017; 

SiamiDoudaran and Iscioglu, 2019).  
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Figure 20 simply shows the structure of the hybrid MLPNN-SVM used in this thesis 

in order to increase prediction performance.  

 
Figure 20: Hybrid SVM–MLPNN Architecture (Bellili et al., 2003)  

3.2.6 Proposed LVQNN Designed for ISP Model 

In this thesis LVQNN classification algorithm was used for personal injury severity 

prediction by applying sensitive predictors (Priyono et al., 2005; Al-Daoud, 2009; 

Shen and Chen, 2009; Chen and Marques, 2009; Kohonen, 2012; Thanasarn and 

Warisarn, 2013; Nova and Estévez, 2014; Villmann et al., 2017; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b). LVQNN is special example of a feed 

forward ANN assumed from supervised learning which are demonstrated as a 

competitive ANN. LVQNN is one of the most powerful methods for prediction 

(Villmann et al., 2017) and has reached best overall accuracy in comparison with 

other existing AANs (Al-Daoud, 2009; Thanasarn and Warisarn, 2013). Previous 

related studies revealed that LVQNN is also a proper application for road traffic data 

analysis (Priyono et al., 2005; Shen and Chen, 2009) as well as it effectively being 

used for classifying data with categorical values (Chen and Marques, 2009). Thus, by 
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reason of using a large number of subdivisions for variables in this thesis, LVQNN 

was considered to scrutinise the prediction of personal injury severity classes 

(Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). 

This algorithm was devised by Teuvo Kohonen (2012). This model of ANN is a 

precursor to SOM which can be used where there is labelled input data. In this regard, 

the value of the STATS19 data is label, therefore, this learning method is more 

suitable for predicting the injury severities in comparison to other types of ANNs. 

Therefore, LVQNN is looking to maximise the prediction accuracies for injury 

severity classes. LVQNN uses the level data to relocate the Voronoi vectors slightly, 

in order to recover the quality of the classifier decision areas. It is a two stage 

procedure which contains a SOM trailed by LVQNN as presented in Figure 21. 

 
Figure 21: Two Phase Process Built from a SOM  (Siamidoudaran et al., 2019a) 

The model used in this thesis is an improved method of prediction and exactly 

appropriate for prediction concerns. The first phase is a collection of features that the 

unsupervised recognition of a reasonably minor set of specifications in which the 

main statistics content of the input data is focused. The second phase is the 

classification where the feature scopes are referred to individual classes. By using an 
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encoder pattern for a big number of input vectors 𝑥 ∈ 𝐼𝑅𝑛 , and transforming the 

input into an i-value which establish fewer major factors and attain a superior 

prediction to the unique input space. Below input vector x and suppose 𝑥 ∈ 𝐼𝑅𝑛, the 

LVQNN transforms the label input factors into an i-value with an encoder form 

which 𝑖 ∈ {1,2,3, … , 𝑘}. Possibly the most efficient means to reflect the LVQNN is 

concerning about to the common encoders and decoders. After a decoder process has 

been applied to the above i, the vector 𝑚 ∈ 𝐼𝑅𝑛 is gained. Indeed, 𝑚  is an 

approximation of 𝑥, where the quantum error value is attained from the Eq. 13. The 

Figure 22 simply shows that the architecture of the LVQNN includes two 

components as an encoder and a decoder. 

Figure 22: Encoder-Decoder Architecture in LVQNN (Siamidoudaran et al., 2019a) 

Typically, 𝑥 is selected at random in connection to some probability function 𝑝(𝑥). 

At that point the optimum encoding-decoding shape is recognised by adjusting the 

functions x and 𝑚𝑐 to mitigate the expected distortion described by eq. 13.  

𝐸 = 𝜀{‖𝑥 − 𝑚𝑐‖2} = ∫ ‖𝑥 − 𝑚𝑐‖2𝑝(𝑥)𝑑(𝑥)                                                         (13) 

Here, 𝜀 is the expected value (EV) and 𝑚𝑐 is defined as centre of the winner. Once a 

decoder procedure is applied to i, the vector 𝑚 ∈ 𝐼𝑅𝑛,  is gained and 𝑚 remains an 

approximation of 𝑥, in the error of vector quantization approximation equation. The 

EV and the winning neuron are attained from the following equation in which 𝐶 is 

the winner and obtained from eq. 14.  
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𝐶 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖‖𝑥 − 𝑚𝑖‖
2                                                                                         (14) 

To identify the limit of each level, it is essential to display the midline of the line 

segment designed for 𝑚1  , 𝑚2 . Actually, the midline identifies a route that the space 

of all points on that route, is equal from the centres of 𝑚1 and 𝑚2 (𝑑1 = 𝑑2). In 

terms of three-dimensional space, the midline performs as a midplane, and typically 

it is offered as a hyperplane. The algorithm initiates through a trained SOM with 

input vector and uses weight/Voronoi diagram if the circumstance for a range of 

more centres is recognised (Kohonen, 2012; Nova and Estévez, 2014; Heris, 2016; 

Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  

 
Figure 23: Model Updating Rule (Siamidoudaran, et al., 2019) 

The classification labels of the inputs are used to notice the highest classification 

label for each Voronoi neuron. As the Voronoi neuron boundaries do not match the 

classification boundaries, the model is efforts to fix this problem through shifting the 

boundaries. 

https://www.powerthesaurus.org/length/synonyms
https://www.powerthesaurus.org/within/synonyms
https://www.powerthesaurus.org/in_terms_of/synonyms
https://www.powerthesaurus.org/in_terms_of/synonyms
https://en.wikipedia.org/wiki/Three-dimensional_space
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If  𝑥(𝑡)  does not exist on the boundary (𝑑1 ≠ 𝑑2), the associated centre encourages 

the classified integer level (𝑚𝑖(𝑡)  to become closer to 𝑥(𝑡)) and informs as revealed 

in the below equations (e.g. the weight of the winning output node has the same class 

label, which then moves them closer together by ∆𝑚𝑖(𝑡) as in the SOM algorithm). 

 𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + ∆𝑚𝑖(𝑡)     𝑖 = 1,2,3, . . . , 𝑘                                                   (15) 

  ∆𝑚𝑖(𝑡) = 𝛿𝑐𝑖. 𝛼(𝑡). [𝑥(𝑡) − 𝑚𝑖(𝑡)]                                                                        (16)
 

   𝛿𝑐𝑖 = {
1       𝑐 = 𝑖
0       𝑐 ≠ 𝑖

   ,  0 < 𝛼(𝑡) < 1                                                                             

Here 𝛼(𝑡)  is a learning rate which decreases with the number of iterations/epochs of 

the training process. In this method better classification results are achieved than by 

the SOM alone. In fact, the learning rate falls by the number of the iterations/epochs, 

and in each progress, this coefficient is dropped among 0 and 1. In this regard, 

Voronoi vectors/weights corresponding to other input regions are left unchanged 

with ∆𝑚𝑖(𝑡) = 0 (Bullinaria, 2004) . 

LVQNN1 is an improved form of LVQNN and is updated similarly in the adjacent 

centre. Nevertheless, if input 𝑥(𝑡) and associated Voronoi or weight such as, winning 

output node is properly classified and has the similar label of class, encouragement 

the of 𝑚𝑖(𝑡) to 𝑥(𝑡) moves closer together as in the SOM network. If they have the 

different level labels, at that point,  it is penalised, and 𝑚𝑖(𝑡) moves apart from 𝑥(𝑡). 

Voronoi vectors or weights corresponding to other input areas are left unmoved with 

∆𝑚𝑖(𝑡) = 0. Consequently, the following equations are attained. 

 ∆𝑚𝑖(𝑡) = 𝛿𝑐𝑖. 𝑓𝑖(𝑡). 𝛼(𝑡). [𝑥(𝑡) − 𝑚𝑖(𝑡)]               ,    𝑖 = 1,2,3, . . . , 𝑘                   (17)
 

 𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛿𝑐𝑖. 𝑓𝑖(𝑡). 𝛼(𝑡). [𝑥(𝑡) − 𝑚𝑖(𝑡)]                                            (18)
 

  𝑓𝑖(𝑡) = {
 +1           𝑖𝑓  𝑚𝑖(𝑡) , 𝑥(𝑡) ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙       

   −1          𝑖𝑓  𝑚𝑖(𝑡) , 𝑥(𝑡) ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙
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Consequently, the following equations are considered.    

  𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝑠𝑖(𝑡). 𝛼(𝑡). [𝑥(𝑡) − 𝑚𝑖(𝑡)]                                                  (19) 

which   𝑠𝑖(𝑡) = {

+1     𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  
  −1    𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
      0                                        𝑖𝑓 𝑛𝑜𝑡

                                     

In the case of optimised LVQNN1, 𝛼(𝑡) in place of being similar for all centres, it 

performs as an individual learning rate for each centre. Thereby, the superior 

classification is achieved through the SOM alone. This will be reached if the ranking 

of the input data does not oppose in relation to the timeframe in a manner that the 

effect of the initial data has no significant difference with the last input, and also, all 

the data have the equal class labels. Therefore, in such circumstances, the following 

is developed: 

 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑥(𝑡) → 𝛼𝑖(𝑡)                                                                                             (20)                             

 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑥(𝑡 − 1) → [1 − 𝑠𝑖(𝑡). 𝛼𝑖(𝑡)]. 𝛼𝑖(𝑡 − 1)                                             (21) 

As a result of equating the above relationships, the following is gained: 

 𝛼𝑖(𝑡) = [1 − 𝑠𝑖(𝑡). 𝛼𝑖(𝑡)]. 𝛼𝑖(𝑡 − 1)]                                                          (22)                            

𝛼𝑖(𝑡) =
𝛼𝑖(𝑡−1)

[1+𝑠𝑖(𝑡).𝛼𝑖(𝑡−1)
          0 < 𝛼𝑖(𝑡) < 1                                                 (23) 

  {

       
0 < 𝛼𝑖(𝑡) < 1       

𝛼𝑖(0) = 0.3 ~ 0.5
     

LVQNN2 is the second developed type of the LVQNN that is used in this thesis and 

it moves closer in effect to Bayesian decision theory. LVQNN2 which is opposite of 

LVQNN1 is updated at the parallel nearer to the centre. The method uses the correct 

and incorrect classification update equations. So, in this case, the winners are two 

members as 𝑚𝑖(𝑡) , 𝑚𝑗(𝑡). The input vector 𝑥 gives the correct classification through 

https://www.powerthesaurus.org/in_a_manner/synonyms
https://www.powerthesaurus.org/no_significant_difference/synonyms
https://www.powerthesaurus.org/in_such_circumstances/synonyms
https://www.powerthesaurus.org/opposite/synonyms
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the associated Voronoi vector (𝑚𝑖(𝑡)) and the other nearest centre is incorrectly 

classified (𝑚𝑗(𝑡)). Moreover, the input vector 𝑥 is well near to the decision boundary 

and 𝑥(𝑡) is in a specified range (W) (Bullinaria, 2004).  Consequently, the following 

equations are obtained as below.  

𝑑𝑖 = ‖𝑥(𝑡) − 𝑚𝑖(𝑡)‖                                                                                                        (24) 

𝑑𝑗 = ‖𝑥(𝑡) − 𝑚𝑗(𝑡)‖                                                                                                       (25)                                   

Learning here is similar to that in the LVQNN2 weight learning function seeks two 

vectors of layer one that are closest to the input vector can be updated, provided that 

one belongs to the true level and one belongs to an incorrect level, and further 

produced that the input falls into a ‘window’ adjacent the midplane. If  𝑑  is the 

Euclidean distance between 𝑥  and  𝑚 , the window is defined by the Eq. 26 

(MathWorks, 2020).  

 min (
𝑑𝑖
𝑑𝑗

,
𝑑𝑗

𝑑𝑖
) > 𝑠                                                                                                   (26)  

where  

𝑠 =
1−𝑤

1+𝑤
                                                                                                  (27)                                                 

where 𝑤 is the boundary width and normally is 0.2 ≪ 𝑤 ≤ 0.3 and that results to 

7

13
≤ 𝑠 ≤

2

3
 

0.5 < 𝑚𝑖𝑛 (
𝑑𝑖

𝑑𝑗
,
𝑑𝑗

𝑑𝑖
) ≤ 1       

 where 𝑑𝑖 < 𝑑𝑗 then we will have the following equations: 

𝑑𝑖

𝑑𝑗
=

𝑑𝑖+𝑑𝑗

2
−

𝑑𝑗−𝑑𝑖

2
𝑑𝑖+𝑑𝑗

2
+

𝑑𝑗−𝑑𝑖

2

=
1−

𝑑𝑗−𝑑𝑖

𝑑𝑗+𝑑𝑖

1+
𝑑𝑗−𝑑𝑖

𝑑𝑗+𝑑𝑖

                                                                           (28)                                              
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𝑤 =  
𝑑𝑗−𝑑𝑖

𝑑𝑗+𝑑𝑖
                                                                                 (29)                                                   

𝑑𝑖

𝑑𝑗
=

1−𝑤

1+𝑤
                                                                                   (30) 

where 𝑚𝑖 is considered as correct classification and 𝑚𝑗 as an incorrect classification, 

we will have the equations as below. 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡). [𝑥(𝑡) − 𝑚𝑖(𝑡)]                                                           (31) 

𝑚𝑗(𝑡 + 1) = 𝑚𝑗(𝑡) + 𝛼(𝑡). [𝑥(𝑡) − 𝑚𝑗(𝑡)]                                                           (32) 

LVQNN acts as a differential mode and moves one centre nearer together while 

moving another node apart. Alternatively, the preliminary selection of nodes for the 

LVQNN2 is more complicated, and to work out this weakness, initially the runs were 

made using the LVQNN1 and then retrieved by the LVQNN2 below (Bullinaria, 

2004; Kohonen, 2012; Nova and Estévez, 2014; Heris, 2016; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b).  

LVQNN3 is another variation on this theme which is also used for producing 

additional superior classification systems.  Following this, where 𝑚𝑖 , 𝑚𝑗 and 𝑥 have 

the same class label, the equation is obtained as below  (Kohonen, 2012; Nova and 

Estévez, 2014; Heris, 2016; Siamidoudaran et al., 2019a; Siamidoudaran et al., 

2019b). 

𝑚𝑘(𝑡 + 1) = 𝑚𝑘(𝑡) + 𝜖 𝛼(𝑡). [𝑥(𝑡) − 𝑚𝑘(𝑡)]      ,               𝑘 =  𝑖, 𝑗                      (33) 

In the above equation 𝜖  is dependent on 𝑤  and  0.1 ≤ 𝜖 ≤ 0.5.  

LVQNN as a great pattern recognition performance in many more complex 

predictions, and as a different type of ANN, apart from the commonly reviewed 

ANNs is considered in this thesis on the modelling of injury severity prediction. In 
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this context, the model is used by applying personal accident injury data for 

Cambridge case study (Priyono et al., 2005; Shen and Chen, 2009; Chen and 

Marques, 2009; Al-Daoud, 2009; Kohonen, 2012; Thanasarn and Warisarn, 2013; 

Nova and Estévez, 2014; Villmann et al., 2017; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b). 

3.3 Application of Rank Analysis  

Selection of key input factors is always an arduous task which needs a sensible 

engineering judgment and a good understanding of building classification. Before 

implementation of the prediction models, it is important to identify what input factors 

are to be examined. which index is more sensitive and which is less sensitive 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). In this regard, application of rank analysis is valuable technique for 

recognising significant model factors, testing the model understanding, and 

improving the model performance in terms of accuracy. This application is essential 

to classify the predictors that affect the injury severity classes as outputs. This tool is 

the examine of how the improbability in the output of a model can be distributed to 

different sources of doubt in its inputs. Accordingly, it helps to achieve better model 

efficiently and performance. 

3.3.1 Using RBFNN for Rank Analysis 

 In this thesis, sensitivity test was applied using RBFNN to study of whether and how 

the output is influenced by different inputs. Thus, it offers an insight as to which 

factors are most important and which ones are not in the injuries. As we were dealing 

with hierarchical data along with large number of accident factors, rank analysis was 

essential for calibrating all the proposed models with purpose of focusing only on the 

sensitive inputs. And so, uncertainty reduction was applied for each prediction 
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progression in order to assessment of strength of injury outcomes in the attendance of 

uncertainty. By way of encountering unexpected associations between crash related 

factors and injury severity classes, searching for errors in the model was carried out. 

As a result of data simplification, the factors that had no effect on the injury severity 

were identified. Accordingly, redundant factors of the model were removed, and the 

space of input factors dropped to minimum. Likewise, appropriate value settings on 

the injury severity related factors was improved with regard to predicting result 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b).  

3.4 Predictive Models’ Performance Evaluation 

In this thesis, different accuracy measures were used to assess the participants' value. 

From this perspective, MSE delivers an accurate picture of prediction quality along 

with Root Mean Square Error (RMSE) which is also a right measure of accuracy. 

They are the most important standards for the goodness-of-fit if the major aim of the 

model is prediction. MSE is probability function, in proportion to the predicted 

assessment of the squared variation between the fitted values denoted by the 

predictive function and the assessment of the non-observable function. In other 

terms, it is an adjustment or curve fitting process in prediction model (Lehmann and 

Casella, 2006; Siamidoudaran and Iscioglu, 2019).  

RMSE is a commonly used assessed value of the differences among values predicted 

by a model and shows the rate of how spread out prediction errors are. It implies the 

typical deviation of the residuals in a prediction model Likewise, RMSE verifies 

exactly how focussed the data is nearby the line of better fit (Hyndman et al., 2006). 

In this connection, normally the threshold related to good predictive model is lower 
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values of MSE and RMSE. Correlation coefficient (R) is also successfully performed 

to measure the correlation between outputs and target and is also a measurement for 

the strength and direction of the relationship between outputs and targets 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b).  

As a result of the rank analysis, unreliable factors were eliminated. The reduced data 

was designed at application of the final predictions to increase the accuracies. The 

confusion matrix is used to assess the performance of the prediction models.  

3.4.1 Error Matrix 

The error matrix was primarily presented to assess outcomes from binominal 

classification. In view of this, ‘accuracy (ACC)’, ‘sensitivity (SEN)’, and ‘error’ 

parameters are used to compute the number of correct and incorrect predictions of 

each level. Accordingly, one of the two classes as the class of interest is taken (e.g. 

the positive class). one value as the positive class is chosen arbitrarily in the target 

column. Following this, the other value is randomly measured as the negative class. 

Table 3 shows an error matrix displaying actual and predicted positive and negative 

levels in test set. The associated equations of the matrix are also defined in table 3. 

      Table 3: Sample of error matrix (Siamidoudaran and Iscioglu, 2019) 

 

n 
Class1 (predicted) Class2 (predicted) T

o
tal (+) (–) 

 

Class 1 (actual) 

 

(+) 

 

 

True positives (TP) 

 

False negatives (FN) 

 

N 

 

 

Class 2 (actual) 

 

 

(–) 

  

False positives (FP) 

 

 

True negatives (TN) 

 

P 

Total N P  
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In the above matrix, the data rows refer to positive class and properly classified as 

such. They are named ‘true positives (TP)’ and their room is located in the top left 

cell of the matrix. The data rows associate to the positive class and wrongly 

classified as negative. They are ‘false negatives (FN)’. The sum of false negatives is 

in the top right. The data rows related to the negative class and inaccurately classified 

as positive which is ‘false positives (FP)’, they are in the lower left. The last position 

is when the data rows in regard to the negative class and properly classified as well. 

They are named as ‘true negatives (TN)’ which are placed in the lower right cell of 

the error matrix. Consequently, accurate predictions are on the diagonal with a grey 

colour; those without any colour are false predictions. Using the four counts in the 

above matrix, the injury severity class assesses in terms of accuracy as well as the 

model performance using the formulas in the below. In the equations, how many 

positive and negative actions are predicted properly or wrongly are evaluated. 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                         (34)                                         

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                             (35) 

 Recall  =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                    (36)                                          

Likewise, the average predicted class will be compared with actual class and the 

accuracy of the network will be calculated to obtain prediction performance 

(Hyndman et al., 2006; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b). 
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Chapter 4 

RESULTS AND DISCUSSION 

This thesis used a series of machine learning algorithms to predict personal injury 

severity classes for different road users which are included; RBFNN, MLPNN, 

SVM, hybrid MLPNN–SVM, and LVQNN. In both case studies, RBFNN was used 

for rank analysis practice. MLPNN and hybrid MLPNN–SVM were applied for 

prediction of all road users (driver, rider, cyclist and pedestrian) injury severity levels 

in the city of London. SVM and LVQNN models predicted pedal rider injury 

severities in Cambridge. Pedal rider related prediction was to overcome the identified 

cycling safety concern in the first case study. 

4.1 The City of London Case Study  

In this section, the case study focuses on predicting of personal injury severity aim at 

all road users in the city of London.  

4.1.1 Data Cleansing & Analysis Methodology – City of London  

Data cleansing is the process of identifying and modifying or eliminating incorrect 

records or corrupt data. Accordingly, referring to classify inaccurate, incorrect, 

incomplete or irrelevant sections of the data and then replace, adjust, or remove the 

useless or coarse factors (Han and Kamber, 2001).  

The data used in this thesis is delivered from the UK government, however, due to 

the large and complex data, the realisation of the factors is extremely complicated. In 

addition, the version of the database is mainly designed to be used by in-house 
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software types which makes it very difficult to use for research purpose using other 

technical methodologies. For this reason, this study represents a perfect 

implementation to get stuck into a chunky data processing challenge. Accordingly, 

appropriate coding was carried out in order to clean and label the data in a usable 

format for predictions models.  

Using MATLAB programming language as a powerful numerical computing 

environment, quality of the data was developed much more useful after it has been 

cleaned and labelled for the prediction models, compared to the national STATS19 

database provided by the government. The analysis was run by RBFNN, and figures 

of the most important predictors were calculated.  As a result, the relationship 

between accident related factors and the injury severity outcomes for the databases 

shown in Table 2 were examined. Table 5 breaks down the descriptive statistic of the 

sub-variables involved in the accidents and validates the distributions 

class for count data (e.g. the distribution among factors intended for 2nd Road class 

that are include the following labels; not at junction or within 20 metres, motorway, 

A(M) class road, A class road, B class road, C class road, and unclassified road) as 

well as percentage rate used for the injury severity outputs for the total frequency. It 

should be noted that 'unknown' code is only used in exceptional circumstances where 

no information on related factor is available, or where the other related labels codes 

are inappropriate (DfT, 2011; Siamidoudaran et al., 2019a; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019b). 

4.1.2 Analysis of Rank Ordered Data by RBFNN – City of London  

The question refers to this stage is to find the most effective inputs from a set of 

STAST19 data as pre specified inputs. Accordingly, RBFNN technique was used to 

predict the outcome of a decision given a certain range of crash related factors. 



 

88 

 

MATLAB software was used for each task in building a given set of the data. In this 

activity, the prediction model was able to identify how changes in one accident 

related variable affect the injury severity outcome. In fact, we simply specified the 

input factors through the model for feature selection, trained the model, and then 

systematically varies each of the inputs in a range relevant to its domain while 

keeping all other inputs fixed, and then measuring the change in the output. This 

supplied an estimate on the variability of the output conditional on the input, and 

hence the relative importance. 

4.1.2.1 Implementation of Rank Analysis – City of London  

Using engineering judgment 28 explanatory variables were selected from the data 

listed in the Table 2 as being involved in results of injury severities. Other factors 

mentioned in the Table hold very insignificant value or is impacted by missing data 

so they clearly were noticeable by visual perception. In addition, some factors were 

impacted by a large increase of unknown values, therefore, the related factors simply 

were eliminated from the data designed for rank analysis. The selected explanatory 

variables are shown in Table 4. Following this, initially the data was shuffled and 

normalised for each iteration to gain an equal series of value. It then, the data was 

applied individually as an input factor into the prediction model in an attempt to 

comparing the influence of each crash related factor on outcome of the injury 

severity. Therefore, the model predicted the injury severities for 28 times by 

changing an input factor in each period while retaining the other crash related factors 

fixed.  

As a result of sensitivity analysis, more influential indexes on prediction of the injury 

severities were identified. Following this, the poor predictors were removed. This 

reduction was to recover the quality of the data and referred to deduct the input 
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factors to less dimension space (Broomhead and Lowe, 1988a; Broomhead and Lowe, 

1988b). This status strongly helped to boost the speed of the models, and 

subsequently to better understanding of the close associations between input and 

output indexes in the predictions (Siamidoudaran and Iscioglu, 2019; Siamidoudaran 

et al., 2019a; Siamidoudaran et al., 2019b).  

4.1.2.2 Rank Analysis Evaluation – City of London  

Table 4 presents the amount of MSE, RMSE, and R–value versus absence of each 

index. On the basis of their MSE values, the most sensitive predictor variables were 

discovered and ranked as the most important contributory factors. R–value measures 

how accurately the model fits the dataset. If the R–value is close to 1 (good) then it 

displays that the RBFNN prediction exists very close to the actual dataset. Then 

again, if the value is zero (bad) then it displays that the model fully fails in building 

an accurate prediction (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b).  

Based on the results of the rank analysis, the effects of the predictors were identified 

and listed in the below Table.  The sensitive predictors from 1 to 9 are considered as 

the main factors which contributed to the injury severity outcomes according to their 

MSE, RMSE, and R values. In different circumstances, the variables after rank of 9 

refers lower sensitivity value which are considered as the poor predictors. By reason 

of using large number of subdivision variables, unreliable indexes after rank of 28 

haven’t been pointed out in the Table, as a result of their immaterial association. 

However, their major variables are itemised in Table 2. Furthermore, it can be 

referred to (DfT. 2011) for full specifics of the eliminated indexes in this stage. 
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Table 4:Sensitivity of RBFNN against the absence of each variable–First case study 

R–value RMSE MSE Contributory factors Rank 

0.925 0.197 0.009 Pedestrian crossing facilities A01 

0.895 0.212 0.012 Junction location A02 

0.885 0.226 0.055 2nd road class A03 

0.872 0.251 0.065 Vehicle type A04 

0.868 0.260 0.074 Road type A05 

0.856 0.265 0.081 Vehicle manoeuvre A06 

0.832 0.285 0.088 Junction detail A07 

0.829 0.295 0.098 1st Point of impact A08 

0.821 0.301 0.101 Alcohol/drug involvement   A09 

0.798 0.303 0.106 Time frame A10 

0.795 0.319 0.116 Condition of lighting A11 

0.792 0.320 0.124 Condition of weather A12 

0.788 0.322 0.137 1st road class A13 

0.783 0.335 0.147 Age of driver A14 

0.779 0.340 0.142 Vehicle no. involved A15 

0.772 0.342 0.150 Road environment A16 

0.769 0.351 0.153 Vehicle propulsion A17 

0.765 0.358 0.155 Age of vehicle A18 

0.758 0.361 0.156 Engine capacity A19 

0.757 0.369 0.157 Casualty no. involved A20 

0.756 0.398 0.158 Urban or rural area A21 

0.739 0.409 0.167 Month band A22 

0.739 0.413 0.171 Journey purpose of driver/rider A23 

0.730 0.415 0.172 Sex of driver/rider  A24 

0.723 0.420 0.176 Driver home type area A25 

0.721 0.421 0.177 Speed limit A26 

0.712 0.430 0.184 Driver IMD decile A27 

0.669 0.452 0.204 Carriageway hazards A28 

0.728 0.419 0.175 All STAS19 data  

4.1.2.3 Elimination of Unreliable Variables – City of London  

At this stage, as a result of the prediction designed for large number of the STATS19 

subdivision variables, the poor factors after rank 20 were eliminated. This 

elimination is an effective way to generalise the dimensional feature space and to 

improve the limitation of poor quality data. Thus, the unreliable factors with minor 

R–value were dropped to 20 factors in ordered to apply to MLPNN model aimed at 
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implementation of final prediction. All the sensitive predictors were normalised 

between 0 and 1 and run was completed using random division of 70 % and 30 % 

into training and testing datasets. Rank and affect for all the input parameters are 

listed in the Table 4. In addition, the specific result for total of the data is presented 

in Figure 25 (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b). 

4.1.3 Important Contributory Factors – City of London  

In this thesis, the contributory factors were found to help provide some insight into 

why and how road injuries happened. The factors were detected to reveal the key 

actions and failures that led directly to the actual impact to help investigation of how 

severity of injuries might be reduced. Table 5 in this thesis provides detailed 

information about the subdivisions of the identified factors (labels). It is also strongly 

recommended that readers of this thesis refer to the STATS20 document (DfT, 2011) 

for more detailed information as this explains to police officers how they should 

complete the STAST19 reporting forms. 

4.1.3.1 Crossing Facilities (A01) – Most Important Factor  

The first identified factor is A1 which refers to pedestrian crossings including shared 

facilities with cyclists (physical facilities such as; footbridge, central refuge, zebra 

crossing, pelican, puffin, toucan or similar non-junction pedestrian light crossing) 

(TRL, 2010; DfT, 2011). This identified factor verified that the city of London is the 

area where pedal riders and pedestrians are most in danger of injuries. The findings 

along with the exploratory data analysis of the related labels (shown in Table 5) 

displayed that injuries involving the specific groups (cyclist and pedestrian) 

happened frequently nearby the crossings locations controlled by physical facilities. 

'Pedestrian phase at traffic signal junction' is any pedestrian crossing at a junction 
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controlled by traffic lights which has an indicator light for pedestrians and cyclists 

(as seen in the below example, Figure 24). This means that these facilities which are 

designed for pedestrians and cyclists were not necessarily good enough to avoid the 

severity of injuries in accidents (Siamidoudaran and Iscioglu, 2019; Siamidoudaran 

et al., 2019a; Siamidoudaran et al., 2019b).  

 
Figure 24: Example of Pedestrian Phase at Traffic Signal Junction 

As seen in Table 4, the influence of this factor (A01) is overhead compared to the 

other predictors. The outcome of A01 among with MSE, RMSE, and R–value 

verifies greater relationship between injury severity severities and their crash related 

factors, thus this index is considered as the main contributory factor. In this thesis 

generally, the R–value has been considered as the main measurement used for 

assessment of the most important contributory factors. As seen in Table 4, the R–
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value for A01 is 0.925 which is close to 1 and this result displays that the prediction 

exists very close to the actual dataset.  

In addition, Table 4 displays the results of the MSE and RMSE as 0.009 and 0.197, 

respectively. In this regard, both values are small and refer to a good prediction in 

comparison to other input factors. Furthermore, subdivided predictors of this variable 

(A01) are shown in the analysis of STATS19 data (Table 5) which  are specified 

for pedestrians and pedal riders to cross a route. 

The identified factor fits the author previous studies verifying that a greater part of 

the injuries took place for vulnerable road users in this area. In those researches, 

series of ANNs (MLPNN and LVQNN), SVM and hybrid SVM–MLPNN were 

applied to predict STATS19 data in different case studies. Nonetheless, all the results 

blamed the same factor which refers to pedestrian crossing facilities (Siamidoudaran 

and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). In 

this regard, Chang and Wang (2006) found that the pedestrians and cyclists were at a 

greater risk of injury in accidents. In addition, a Dutch crash statistics indicated that 

more than half of the KSI accidents which vulnerable road users are involved in 

occur while crossing the street (SWOV, 2010). This result also is in line with a 

previous research showing that the increase of crossing facilities at intersections have 

an extra positive safety outcome in reducing the number of the cycling injuries 

(Gårder et al., 1998). 

https://en.wikipedia.org/wiki/Pedestrians
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4.1.3.2 Improving Safety at Pedestrian Crossings and on Cycle Tracks  

To overcome the first detected factor, it is essential in some areas that crossings 

facilities for pedestrians and cyclist be improved and separated from the other traffic. 

In this connection ‘protected junction’ can definitely complement new crossing 

facilities as majority of the ‘pedestrian phase at traffic signal junction’ failed to 

prevent the severity of injuries (RoSPA, 2017a; RoSPA, 2017b; RoSPA, 2017c; 

TfGM, 2019; Reid, 2019; Cambridgeshire County Council, 2020; Cambridge 

Cycling Campaign, 2020; Daily Mail, 2020; Glasgow City Council, 2020; DfT, 

2020).  

4.1.3.3 Junction Location of Vehicle (A02) 

The next sensitive predictor attributes to junction location of vehicle (A02) showing 

a higher impact and playing a key role in outcome of the injury severities 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). R–value for A02 is 0.895, and results of MSE and RMSE are 0.012 and 

0.212 respectively. ‘Junction location of vehicle’ is an aspect covering the 

geographical location of junction where each accident happened (e.g. vehicles 

waiting to enter the roundabout/main road). The labels of this variable (analysed in 

Table 5) indicate the position of vehicles at or nearby busy junctions.  

This finding fits the DFT’s report that many British pedal riders are injured at 

junctions during recent years in build-out areas. Accordingly, large amount of 

bicyclist deaths happened at these locations (DfT, 2018b). Furthermore, UK's 

Transport Research Laboratory reinforced the same outcome verifying that about 

75% of vulnerable road users’ crashes take place at or near junctions (Knowles et al, 

2009). 
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4.1.3.4 Improving Junction Safety 

To solve the second identified concern, again, it is recommended to make junctions 

more safer for VRUs using ‘protected junction’ designed for heavy traffic congestion 

in the city centre wherein people travelling on foot, by bike. Using the protected 

junctions’ vehicles are all separated as they cross through the intersection. Unlike 

traditional intersections, which typically need right-turning pedal riders to wait in the 

centre of the intersection for an appropriate gap in the traffic, the protected junction 

donates a safer advantage (RoSPA, 2017a; RoSPA, 2017b; RoSPA, 2017c; TfGM, 

2019; Reid, 2019; Cambridgeshire County Council, 2020; Cambridge Cycling 

Campaign, 2020; Daily Mail, 2020; Glasgow City Council, 2020; DfT, 2020). 

4.1.3.5 Second Road Class (A03) 

A03 refers to ‘2nd road class’ in the dataset which shows the class of the road upon 

which a collision took place (DfT, 2011). The letter labelling for each type of road 

classified road customs a prefix to its number of road. The ‘2nd road class’ is used 

when the accident is on a junction. The ‘1st road class’ is the road that the vehicle 

was on at the time of the collision; the 2nd road class is the road that the junction was 

with (if relevant). For collisions at intersections which cannot clearly be allocated to 

one certain road, the class of the major road is considered. The major road is 

specified as the road which has priority. For signalised intersections and 

roundabouts, the major road is the one with the greatest class of all the roads entering 

the intersection.  Accordingly, as shown in the results, A02 predictor refers to the 

contributory factor which linked with junction actions. The R–value related to this 

factor is 0.885, and results of the MSE and RMSE are 0.055 and 0.226 respectively. 

As a result of the prediction in this stage, an alarming number of accidents in or 

around junctions are caused by drivers, cyclists and riders (Knowles et al, 2009; DFT, 

http://mast.roadsafetyanalysis.org/wiki/index.php?title=Crash
http://mast.roadsafetyanalysis.org/wiki/index.php?title=Road_number
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2018b; Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019b). 

4.1.3.6 Vehicle Type (A04) 

In relation to A04, influence of the vehicle type was well recognised and 

demonstrated as a significant role in result of injury severities. The amounts of R–

value, MSE, and RMSE are as 0.872, 0.065 and 0.251 respectively. ‘Type of vehicle’ 

identifies the nature of each vehicle involved in an accident (DfT, 2011). Vehicle 

type category is incorporated into two major ranges; motor vehicles and non-motor 

vehicles, and are shown in Table 5 (Abdelwahab and Abdel-Aty, 2001; Abdel-Aty 

and Abdelwahab, 2004; Chang and Wang, 2006; DfT, 2014; Li et al., 2018; 

Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 

2019b). 

4.1.3.7 Road Type (A05) 

A05 ‘Road type’ directs the type of road upon which an accident took place and 

refers to physical nature of the road, for example number of carriageways completely 

is different with road class (DfT, 2011). Roads are adapted to a large variety of 

infrastructures and types with the purpose of attaining a common objective 

of transport under a huge and extensive series of circumstances.  As a result, factor 

A05 contributed the higher impact of road types in outcome of the injuries. The 

results are as 0.868 for R–value, 0.074 for MSE, and 0.260 for RMSE. The different 

range of roads are described in more detail in Table 5 which contributed to the road 

injuries (DfT, 2014; DfT, 2018d; Siamidoudaran and Iscioglu, 2019; Siamidoudaran 

et al., 2019a; Siamidoudaran et al., 2019b). 

http://mast.roadsafetyanalysis.org/wiki/index.php?title=Crash
https://en.wikipedia.org/wiki/Transportation
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4.1.3.8 Vehicle Manoeuvre (A06) 

‘Vehicle manoeuvre’ (A06) implies to vehicle manoeuvre which directs the junction 

actions taken by a motor vehicle/non-motor vehicle  instantly earlier it became 

involved in an accident (DfT, 2011). The results for R–value, MSE, RMSE are as 

follow respectively; 0.856, 0.081, 0.265. Based on RBFNN prediction model as well 

as the data analysis shown in Table 5, ‘going ahead bend’ and ‘turning manoeuvres’ 

were identified as direct contributory factors to the outcome of the injuries. In 

addition, parked vehicles are contained public service vehicle (PSV) such as; coaches 

and buses stationary at a bus stop which is very common in the central London. 

Collisions involving stationary queues of the traffic in resulting the 

associated pedestrian casualties running out from in front of the bus (DfT, 2014; DfT, 

2018d; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b). 

4.1.3.9 Junction Detail (A07) 

Next identified factor contributing to the injury severities refers to junction detail 

(A07). ‘Junction’ is defined as a location where two or more streets meet whatever 

the angle of the axes of the roads. ‘Junction detail’ specifies the general layout of 

the intersection where an accident happened (e.g. mini roundabout, slip road, T or 

staggered junction) (DfT, 2011). Only collisions which took place at or within 20 

metres of an intersection are implied by this index. The results of the prediction are 

as following: R–value = 0.832, MSE = 0.088, and RMSE = 0.285. If two or more 

intersections are available within 20 metres, the intersection nearest to the to the 

collision location is applied. Table 5 simply defines the specific varieties of junction 

(Abdelwahab and Abdel-Aty, 2001; Abdel-Aty and Abdelwahab, 2004; Chang and 

http://mast.roadsafetyanalysis.org/wiki/index.php?title=Crash
http://mast.roadsafetyanalysis.org/wiki/index.php?title=Junction


 

98 

 

Wang, 2006; DfT, 2014; Li et al., 2018; DfT, 2018d; Siamidoudaran and Iscioglu, 

2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). 

4.1.3.10 First Point of Impact (A08) 

 1st Point of impact’ (A08) contributed to the injuries severities where initial point to 

arise into contact with another motor vehicle, bicycle, pedestrian, or other object. If a 

vehicle breaks suddenly to avoid contact with another vehicle, bicycle, pedestrian or 

object in a street, but there is no impact, then ‘did not impact’ label is recorded by the 

police officer (shown in Table 5). R–value, MSE, and RMSE obtained the following 

results; 0.829, 0.098, and 0.295 (DfT, 2014; DfT, 2018d; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  

4.1.3.11 Alcohol/Drug Involvement (A09) 

A09 refers to the pedestrian(s) impaired by alcohol/drug and behaved in a way which 

contributed to traffic as well as the severity of injuries. The R–value, MSE, RMSE 

are 0.821, 0.101 and 0.301, respectively. The contribution of the alcohol involvement 

(whether or not completely drunk) among the road users are shown in the Table 5 

(DfT, 2014; DfT, 2018d; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b).  

4.1.3.12 Overall Prediction by RBFNN– City of London   

As a final point, Figure 25 shows an overall prediction of the STATS19 data 

obtained from the total crash related variables affecting the injury severity classes 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). R–value for the total data is 0.728, and results of the MSE and RMSE are 

0.175 and 0.419, respectively that are presented in Figure 25 (small MSE and RMSE 

values, and R–value close to 1). The figure displays that the proposed ANN has an 

acceptable performance, however, the learning process is relatively difficult. The 
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error diagram is exposed where the values of MSE and RMSE also are marked, in 

which both of the values are small. Indeed, the idea of MSE isn't equal to zero, since 

then we would have a model that completely forecasts the training data, which in this 

case would not be capable of totally estimating any other data. In this subfigure the 

error value is mostly between −0.1 and 0.1, and the error instances and its relation to 

the typical distribution; the value of μ and σ is shown which is indicative of the good 

performance of the ANN. In Figure 25, the prediction chart is shown where output 

and the target are drawing closer together; the R–value is close to 1, this means that 

most of the data is truly fitted. However, due to lack of data for first class and limited 

data for second class, the model totally failed to predict fatal class and had some 

incorrect predictions for serious injury severity class. Likewise, they could not be 

precisely fitted due to inadequate data for these classes. On the other hand, the 

predictions of class 3 and class 4 were satisfactory which referred to achieve 

acceptable R–value due to sufficient data for these classes (Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). 

 
Figure 25: Sensitivity by Overall Data – City of London Case Study 
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Consuming professional judgment, threshold of the measured values is considered as 

percentage of 25 which is 75% of the range. Likewise, predictors over the threshold 

of 25% had a larger impression in performance of the prediction in terms of accuracy. 

As a result, the factors from A1 to A20 proved greater association to outcome of the 

injury severities. These factors have been listed in specific order (Table 5) according 

to their influence as a result of their R–value; time frame, lighting condition, weather 

condition, 1st road class, age of driver, number of vehicle involved in accident, road 

surface, vehicle propulsion, age of vehicle, engine capacity, casualty number 

involved in accident. Examples for coding the input variables are shown in table 5 in 

more details. In various situations, variables after A21 indicated minor R–value 

which are considered as unreliable indexes. Because of their poor affect, they were 

eliminated from the impending implementations. This removal was essential aimed 

at extra performance improvement of the models. The factors that are included; 

urban or rural area, month, journey purpose, gender, driver home type area (urban, 

small town or rural), speed limit, driver IMD decile (an IMD decile is a dimension 

which places the deprivation scores of individual zones), carriageway hazards (this 

factor is used for all personal injury accidents and includes various types of hazards 

such as; animal or any object). For more information about the factors, the STATS20 

document (DfT, 2011) details exactly what data were required to be collected by 

police officers as part of the STATS19 system. 

4.1.3.13 Summary of RBFNN Prediction – City of London  

In summary, the influence of the pedestrian physical crossing facilities is overhead 

compared to the other factors. This clearly indicates that, pedestrians and pedal riders’ 

groups were most VRUs and suffered the majority of the injuries (Gårder et al., 
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1998; Chang and Wang, 2006; SWOV, 2010; Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). 

Other discovered key factors are related to junction actions include; junction location, 

2nd road class, vehicle manoeuvre, and junction detail (DfT, 2014, DfT, 2018d; 

Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 

2019b). Vehicle and road types also played massive roles in result of the injuries and, 

were discovered as the important contributory factors/ area of concerns (Abdelwahab 

and Abdel-Aty, 2001; Abdel-Aty and Abdelwahab, 2004; Chang and Wang, 2006; 

DfT, 2014; Li et al., 2018; DfT, 2018d; Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  The details of the 

contributory factors/ area of concerns are shown in the Table 5. 

4.1.4 Maximising Predictive Accuracy by MLPNN– City of London  

After elimination of the insignificant crash related factors, the indexes from A1 to 

A20 were detected as the most important sensitive predictors. At this section, the 20 

key predictors were applied to MLPNN model in the input layer which included; 

pedestrian crossing facilities, junction location, 2nd road class, vehicle type, road type, 

vehicle manoeuvre, junction detail, 1st point of impact, alcohol/drug involvement, 

time frame, condition of lighting, condition of weather, 1st road class, age of driver, 

number of vehicle involved, road environment, vehicle propulsion, age of vehicle, 

engine capacity, and casualty number. 

4.1.5 Analysis of Key Predictors – City of London 

Analysis of key factors contributing to the injury severities are described in Table 5. 

The Table displays the percentage distribution of the data across levels of each 

variable (e.g. the distribution among vehicle types; goods, PSV, car/taxi/private hire 

car, motorcycle, pedal cycle, and other vehicle) as well as the injury severity outputs 
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(damager only, slight, seriously injured, and fatal) for the whole occurrence 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). 

  Table 5: Description of key contributing factors – The city of London case study 

In
p

u
t 

S
u

b
d

iv
is

io
n

  

Variable type 

C
o
d

e 

Label 

T
o
ta

l 
(%

) 
 

 

1 

 

 

6 

 

Pedestrian crossing 

facilities 

 

1 
2 

3 

4 
5 

6 

 

Pelican, puffin, toucan or similar light crossing 
No physical crossing facilities within 50 metres 

Footbridge or subway 

Zebra 
Central refuge 

Pedestrian phase at traffic signal junction 

 

02.77 
46.14 

00.41 

02.12 
00.44 

48.12 

 

 

2 

 

9 

 

Junction location 

 
1 

2 

3 
4 

5 

6 
7 

8 
9 

 
Not at or within 20 metres of junction 

Approaching / waiting / parked at junction approach 

Leaving from roundabout 
Leaving from main road 

Entering from slip road 

Entering roundabout 
Entering main road 

Mid Junction  
Cleared junction / waiting / parked at junction exit 

 
10.93 

43.67 

00.03 
02.16 

00.01 

00.00 
01.11 

30.98 
11.11 

 

 

3 

 

 

6 

 

2nd Road Class 

 

1 
2 

3 

4 
5 

6 

 

U 
C 

B 

A 
A(M) 

Motorway 

 

17.45 
52.01 

02.89 

27.65 
00.00 

00.00 

 

 

4 

 

6 

 

Vehicle type 

 

1 

2 
3 

4 

5 
6 

 

Goods  

PSV 
Car/Taxi/Private hire car 

Motorcycle 

Pedal cycle 
Other vehicle 

 

15.01 

11.01 
31.23 

13.02 

29. 25 
00.39 

 

5  

6 

 

Road type 

 

1 
2 

3 

4 
5 

6 

 

One-way street 
Single carriageway 

Dual carriageway 

Roundabout 
Slip road 

Unknown  

 

04.50 
83.34 

10.60 

01.69 
00.00 

00.00 
 

 

6 

 

9 

 

Vehicle manoeuvre 

 

1 

2 
3 

4 

5 
6 

7 

8 
9 

 

Overtaking  

Moving off 
Waiting to go - held up 

Reversing 

Slowing or stopping 
Parked 

Going ahead bend 

Turning / Waiting to turn  
Changing lane to left or right 

 

 

09.12 

04.09 
05.15 

01.05 

03.12 
07.31 

46.89 

20..41 
02.86 
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7 

 

9 

 

Junction detail 

 

1 

2 

3 

4 
5 

6 

7 
8 

9 

 

T or staggered junction 

More than 4 arms (not roundabout) 

Crossroads 

Not at junction or within 20 metres 
Roundabout 

Private drive or entrance 

Slip road  
Mini-roundabout 

Other junctions 

 

61.69 

03.65 

18.79 

12.11 
01.88 

00.43 

00.49 
00.00 

00.96 

 

 

8 

 

5 

 

1st Point of impact 

 
1 

2 
3 

4 

5 

 
Did not impact 

Front 
Nearside 

Back 

Offside 

 
04.06 

36.22 
23.74 

12.65 

22.79 
 

 

9 

 

3 

 

Alcohol/drug 

involvement   

 

1 

2 

3 

 

Pedestrian 

Rider 

Driver 

 

68.23 

19.15 

12.62 

 

 

10 

 

6 

 

Time  

 
1 

2 

3 
4 

5 

6 

 
00:00 - 03:59 

04:00 - 07:59 

08:00 - 11:59 
12:00 - 15:59 

16:00 - 19:59 

20:00 - 11:59 

 
06.25 

11.36 

26.87 
18.28 

27.53 

09.71 
 

 

11 

 

5 

 

Condition of lighting 

 

1 

2 
3 

4 

5 

 

Darkness - no lighting 

Darkness - lights unlit 
Darkness - lights lit 

Daylight 

Darkness - lighting unknown 

 

00.00 

00.40 
26.01 

73.33 

00.26 
 

 

12 

 

8 

 

Condition of weather  

 

1 

2 

3 

4 
5 

6 

7 
8 

 

Fog or mist 

Snowing + high winds 

Snowing no high winds 

Raining + high winds 
Raining no high winds 

Fine no high winds 

Fine + high winds 
Other 

 

00.06 

00.00 

00.26 

00.20 
06.91 

90.12 

00.40 
02.06 

 

 

13 

 

6 

 

1st Road class 

 
1 

2 

3 
4 

5 

6 

 
U 

C 

B 
A 

A(M) 

Motorway  

 
01.17 

33.04 

01.77 
64.02 

00.00 

00.00 
 

 

14 

 

9 

 

Age of driver 

 

 

1 

2 

3 

4 

5 
6 

7 

8 
9 

 

11 - 15 

16 - 20 

21 - 25 

26 - 35 

36 - 45 
46 - 55 

56 - 65 

66 - 75 
over75 

 

00.17 

01.67 

09.24 

31.04 

25.99 
20.49 

08.95 

02.10 
00.36 

 

 

15 

 

6 

 

Vehicle no. involved 

 
1 

2 

3 
4 

5 

6 

 
One vehicle  

Two vehicles  

Three vehicles 
Four vehicles  

Five vehicles  

Over five vehicles 

 
23.02 

70.82 

05.28 
00.57 

00.14 

00.17 
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16 

 

6 

 

 

Road environment 

 

1 

2 

3 

4 
5 

6 

7 

 

Mud 

Wet or damp 

Flood over 3cm. deep 

Oil or diesel 
Dry 

Snow 

Frost or ice 

 

00.00 

11.54 

00.40 

00.00 
87.98 

00.06 

00.40 
 

 

17 

 

10 

 

Vehicle propulsion  

 

1 

2 
3 

4 
5 

6 

7 
8 

9 

10 

 

New fuel technology  

Petrol 
Gas 

Gas/Bi-fuel 
Petrol/Gas (LPG) 

Electric 

Hybrid electric 
Heavy oil 

Steam 

Fuel cells 

 

00.00 

38.05 
00.06 

00.27 
00.05 

00.27 

03.26 
57.99 

00.00 

00.00 
 

 

18 

 

6 

 

Age of vehicle 

 

1 

2 
3 

4 

5 
6 

 

00 - 05 

06 - 10 
11 - 15 

16 - 20 

21 - 25 
26 - 30 

 

53.19 

32.09 
12.49 

10.33 

00.74 
00.16 

 

 

19 

 

5 

 

Engine capacity (EC) 

 
1 

2 

3 
4 

5 

 
0 - 1000 

1001 - 2000 

2001 -3000 
3001-5000 

Over 5000 

 
21.22 

34.54 

29.08 
04.22 

10.93 

 

 

20 

 

5 

 

Casualty no. involved  

 
1 

2 
3 

4 

5 

 
One casualty   

Two casualties  
Three casualties 

Four casualties 

Over four casualties  

 
88.95 

09.11 
01.31 

00.57 

00.06 
 

O
u

tp
u

t 

 

4 

 

Personal injury severity 

class 

 

B1 

B2 

B3 

B4 

 

Fatal injury 

Serious injury 

Slight injury 

Damage only  

 

00.39 

12.25 

42.77 

44.59 

 

4.1.6 Implementation of MLPNN Applying Key Predictors – City of London 

At this stage, typically, random division was used for 70% of the data in in training 

process, and 30% for testing section. For hidden layer, the tangent sigmoid function 

was used for finding the relation between the inputs and outputs indices.  The layer 

also made of twenty-five (optimum value) neurons which each neuron relates to each 

input parameters and this relation is controlled by weight factors and bias terms. In 

training process, the LM–BP algorithm using MATLAB was applied. Furthermore, 
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the MSE was used as a performance point of the network. The neural network 

structure and training process are shown in Figure 26. In the training process of 

MLPNN, the network stopped after 13 iterations with MSE and gradient equal to 

0.0399 and 0.0407, respectively. The performance of the model trained with LM–BP 

algorithm using MATLAB programming language, is presented in the figure 

(Siamidoudaran and Iscioglu, 2019).  

 
Figure 26: Final Structure and Train Process of MLPNN  
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4.1.7 Train Regression by MLPNN – City of London 

The Regression plot defines connotation between the outputs and the targets. Figure 

27 shows train regression for prediction of the data. R–value for this phase was 

calculated to measure the relationship between outputs and targets as 0.905 for the 

training response. An R–value close to 1 means a close association, and close to 0 is 

a random correlation (Siamidoudaran and Iscioglu, 2019). 

 
Figure 27: Train Regression Result by MLPNN – City of London 

4.1.8 Error Histogram by MLPNN – City of London 

Error histogram displays how accurately the trained MLPNN model fits the 

STATS19 dataset. In this point, the error values were computed as the difference 

between target values and predicted values. The graph in Figure 28 displays an error 
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histogram with 20 bins for all the data. The plot indicates how to picture errors 

among target values and estimated values after training a feedforward neural 

network.  The concentration of error bins around the zero line shows that the network 

was able to predict the injury severity classes with high accuracy (Siamidoudaran 

and Iscioglu, 2019). 

 
Figure 28: Error Histogram Result of MLPNN – City of London 

4.1.9 Best Training Performance by MLPNN – City of London 

Figure 29 plots the training errors and, in this regard, the amount of MSE was 

considered. The amount of MSE for each train steps is shown in the figure. From the 

figure it is observed that the best performance was obtained at epoch 13 with MSE 

equal to 0.0399. As seen in Figure 29, the MSE of the network started from the top 

value and decreased to the minor value and means that the MLPNN learning was 

improving (Siamidoudaran and Iscioglu, 2019). 
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Figure 29: Best Training Performance MLPNN – City of London 

4.1.10 Error Matrix by MLPNN – City of London 

Confusion matrix is always used in machine learning field specifically for 

classification problem. Using this matrix, performance of the prediction model is 

well-defined on the set of the test data for which the true values are recognised 

(Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et 

al., 2019b). The error matrix resulting from the train and test phases of MLPNN are 

shown as the specific Table layouts in the below in that allows understand the model 

performance. The rows of the matrix show the instances in the predicted classes of 

the injury severity. In other hand, the columns signify the instances in actual classes 

(or vice versa) (Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019b).  

Confusion matrix for the train data  =  [

1 3 0 0
1 6 121 0
0 19 789 136
0 0 104 1289

] 

 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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 Total accuracy = 93.75 %, MSE = 0.0399, RMSE = 0.1998 ; 

Confusion matrix for the test data =  [

0 2 0 0
0 2 49 0
0 11 317 71
0 0 37 571

] 

 

Total accuracy = 75.38 %, MSE = 0.1979, RMSE = 0.4448 . 

Table 6 simply shows the summary of MSE, RMSE, total accuracy (ACC) along 

with confusion matrix for the train data and test phase of MLPNN. 

  Table 6: Summary of MSE, RMSE, total ACC, and error matrix by MLPNN 

Prediction results in the training data set 

MSE RMSE ACC (%) Error matrix Class 

 
 

0.0399 

 
 

0.1998 

 
 

93.75 

 

[

1 3 0 0
1 6 121 0
0 19 789 136
0 0 104 1289

] 

 

 
B1 
B2 
B3 
B4 

Prediction results in the testing data set 

MSE RMSE ACC (%) Error matrix Class 

 
 

0.1979 

 
 

0.4448 

 
 

75.38 
 

 

[

0 2 0 0
0 2 49 0
0 11 317 71
0 0 37 571

] 

 

 
B1 
B2 
B3 
B4 

4.1.11 Sensitivity, Precision, Accuracy and Error – City of London 

Based on extracted confusion matrix from MLPNN, the amounts of SEN 

(sensitively), PRE (precision), ACC and error for each class and each set of data are 

presented in Table 7. The amount of error for train and test data were obtained equal 

to 06.25% and 24.62%, respectively. The results show that the best classes are 
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numbers 3 and 4 (slight injury and damage) because of the sufficient number of the 

data for these classes in training phase. The detailed results of the performance for 

other classes are defined in the Table below. 

     Table 7: The SEN, PRE, ACC and error for each class by MLPNN 
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SEN NaN 65.08 91.29 92.49 NaN 16.09 82.14 87.07 

PRE 18.57 63.74 96.42 98.42 0 20.01 80.22 84.21 

ACC 93.75 75.38 

Error 06.25 24.62 

4.1.12 Comparison of Actual and Predicted Classes of MLPNN  

The predicted results by the training and testing phases of MLPNN for the city of 

London case study are interpreted in the next Figures in which allow visualisation of 

the model performance in different injury severity classes as well as comparison 

between actual and predicted classes. The obtained findings are breakdown by 

different colours in each level.  

4.1.12.1 Interpretation of the Analysis   

The blue symbols imply the actual levels of injury severity of the data and the pink 

symbols show the predicted classes resulting from MLPNN. The interpretation of the 

analysis specifies that, if the pink symbols are integrated with the blue marks, the 

MLPNN was successful to predict the severity of injury outcomes with highest 

accuracy. Against this background, if there is no integration, the situation specifies 

that the model was failed to predict the outputs of train or test data, or the model 



 

111 

 

made less accurate predictions. Figures 30 and 31 also display comparison 

of the actual and the predicted target values of the injury severities in the train data 

and test data. The results show that best performance obtained through classes 

number B3 (slight injury) and B4 (damage only) as the number of the data in these 

classes was more than enough for tanning process of network. At that point, the 

prediction accuracy was satisfactory for B2 which implies the serious injury severity 

class. On the other hand, due to the insufficient number of the data for B1, the 

network was not able to attain a good performance in predicting for fatal class 

(Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et 

al.,2019b).       



 

 

 
Figure 30: Actual and Predicted Classes of Injury Severity by MLPNN – Train Data



 

 

 

 

 
Figure 31: Actual and Predicted Classes of Injury Severity by MLPNN – Test Data
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4.2 Cambridge City Case Study  

As a result of higher accident injury severity involvement in the previous STATS19 

prediction and potential of using data analysis in relation to bicycle–motor vehicle 

collisions, this section of thesis was observed for the two-wheels. Therefore, this case 

study only focuses on developing of cyclist injury severity prediction in Cambridge 

city.  

4.2.1 Data Cleansing & Analysis Methodology 

Data cleaning was also carried out by MATLAB programing language for 

Cambridge data due to the large and complex factors to adjust coarse factors as well 

as to detect preliminary unreliable data (Han and Kamber, 2001). As a result of this 

stage, quality of the data was improved and formatted in more appropriate figure in 

order to use for prediction tasks. Data on road safety in the UK are typically based on 

traffic crashes reported to the police via the STATS19 format. This allows police 

forces to report all personal-injury crashes to several departments. Table 5 splits 

down the data into related important labels as well as percentage rate used for the 

outputs. In this section, the output was also classified into following factors; fatal, 

serious injury, slight injury, and damage only collision. (DfT, 2011; Siamidoudaran 

and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). 

4.2.2 Analysis of Rank Ordered Data by RBFNN – Cambridge Case Study 

To determine the sensitive predictors as well as to rank the most important factors, 

error of each input factor resulting from RBFNN prediction model was measured. In 

reality, the sensitivity of RBFNN against the absence of each predictor for the 

presence of all factors was compared. As a result of applying the most important 

factors to the final prediction, the accuracy of prediction designed for the cyclist 

injury severities will be increased. 
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 4.2.2.1 Implementation of Rank Analysis – Cambridge Case Study  

In order to carry out the rank analysis, the factors listed in the Table 2 were applied 

to the model. All the factors were normalised between 0 and 1 and run was done by 

random division of 70 % and 30 % into training and testing datasets. As a result of 

the rank analysis, the most operative inputs were identified using RBFNN prediction 

model. The model was able to find how changes in one injury incident factor 

contribute the injury severity classes. Accordingly, each input factor was changed in 

a range related to its domain while retaining all other labels fixed, and then 

evaluating the change in the outcome. Likewise, the influence of each crash related 

factors on the injuries were compared and significant factors on the prediction were 

recognised. At the same time, error of each input factor was evaluated, and unreliable 

factors were eliminated in order to increase the final prediction accuracy.  

4.2.2.2 Rank Analysis Evaluation – Cambridge Case Study 

Similar to the previous case study, MSE, RMSE, and R–value measured the strength 

and the direction of the association between injury severity class of cyclist and the 

injury severity impact factors (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et 

al., 2019a; Siamidoudaran et al., 2019b). Figure 32 interprets the graphical 

representation for the output in relation to overall training response. In this phase, the 

results of the strength measurements are as; MSE = 0.156, RMSE = 0.395, and R–

value is around 0.742 for the total response, the values of μ and σ also is also 

determined. More information about the below figures (Figures 32, 33, and 34) are 

given in the explanation of Figure 25. 
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Figure 32: Sensitivity by Train Data Phase – Cambridge Case Study 

Figure 33 depicts the sensitivity plots with respect to test data. In this stage, effects of 

iteration on MSE = 0.207, RMSE = 0.455, and R–value is 0.692. 

 
Figure 33: Sensitivity by Test Data Phase – Cambridge Case Study 

Figure 34 shows the rank analysis plots for the output for total data in which MSE = 

0.171, RMSE = 0.414, and R–value is 0.726. 
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Figure 34: Sensitivity by Total Response – Cambridge Case Study 

In general, the above figures (Figure 32, Figure 33, and Figure 34) display that the 

model achieved a satisfactory performance as the values of MSE and RMSE are 

small and the R–value is close to one. This means that most of the data has been 

accurately fitted. However, due to lack of the data for ‘fatal’ class and limited data 

for ‘serious injury’ class, the model totally failed to predict the first class and had 

many incorrect predictions for the second class. In fact, they could not be accurately 

fitted due to the insufficient data for these classes. This shortfall was also recognised 

in the first case study which must be focused on in a different task to resolve the 

incorrect predictions. On the other hand, the predictions of ‘slight’ class and ‘damage 

only’ class were satisfactory which resulted in achieving acceptable R–value due to 

sufficient data for these classes (Siamidoudaran et al., 2019a; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019b). 

4.2.3 Results of the Rank Analysis – Cambridge Case Study 

In general, R–value is considered to measure the correlation between the predictors 

for each injury related factor (Siamidoudaran et al., 2019a; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019b). Based on the outcomes of the RBFNN 
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against the absence of each variable, affect of each factor was recognised and listed 

in Table 8.  The results of the factors after A30 are not mentioned on the Table due to 

their insignificant effect. The factors from A01 until A30 are included; bicycle 

manoeuvre, time, junction location of bicycle, vehicle manoeuvre, physical crossing 

facilities, 2rd class, junction detail, junction location of vehicle, bicycle location, day, 

1st point of impact–bicycle, junction control, vehicle type, weather condition, light 

condition, 1st point of impact–vehicle, road surface, speed limit, road type, journey 

purpose, driver sex, cyclist sex, 1st road class, age of driver, number of vehicles, 

month, skidding, carriageway hazards, cyclist age, and IDM. 

  Table 8: Rank analysis results by RBFNN – Cambridge data 

R–value (%) 
Predictors Rank 

 All data Test data Train data 

84.45 81.14 84.22   Bicycle location  A01 

81.62 77.02 82.04  Bicycle manoeuvre A02 

80.95 78.35  80.65  Junction location of bicycle  A03 

78.97 75.24 80.16  Vehicle manoeuvre A04 

68.14 64.11 70.17 Pedestrian crossing–physical facilities A05 

57.14 54.95 63.52 2nd Road class A06 

51.34 52.01 61.01  Junction detail   A07 

49.34 51.67 60.27 Junction location of vehicle A08 

43.17 52.95 54.41 Time A09 

27.91 26.19 29.15 Day A10 

26.51 25.99 26.34 1st Point of Impact – bicycle A11 

23.19 22.15 24.42 Junction control A12 

25.01 24.17 25.52  Vehicle type A13 

24.95 23.25 25.34 Weather condition A14 

22.90 21.95 23.84 Light condition A15 

17.34 16.04 17.09  1st Point of impact – vehicle A16 

15.24 14.14 15.94  Road surface A17 

10.84 10.45 11.87  Speed limit A18 

08.99 08.54 10.77 Road type A19 

08.67 8.51 09.61 Journey purpose A20 

07.2 07.6 07.55  Driver sex A21 

07.1 07.4 07.45 Cyclist sex A22 

07.0 07.1 07.34  1st road class A23 

06.2 06.6 06.94  Age of driver A24 

05.88 05.64 05.42  Number of vehicles A25 
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04.24 03.44 04.06  Month A26 

03.55 03.14 04.03  Skidding A27 

03.58 03.48 03.88 Carriageway hazards A28 

03.19 02.45 03.21  Cyclist age  A29 

02.59 02.06 03.08 Driver IMD A30 

4.2.4 Most Important Contributory Factors – Cambridge  

As the result of the prediction in this stage, the most important factors/areas of 

concern which contributed to the severity of cyclist injuries were discovered. At this 

stage, R-value measures the strength and direction of the relationship between 

variables. It ranges from -1.0 to +1.0. If the value is close to 1, it means there is a 

good relationship but if it is close to 0, it means there is no relationship between the 

variables. As seen in Table 8, R–values for A01, A02, A03, A04, A05, A06, A07, 

A08, and A09 are 84.45%, 81.62%, 80.95%, 78.97%, 68.14%, 57.14%, 51.34%, 

49.34%, 43.17%, respectively. These values are almost between 0.84 and 0.43 which 

is more closer to 1 and are almost triple/double compared to other factors (A10 to 

A19) and so they were considered as the important contributory factors for the 

Cambridge case study. On the other hand, A20 to A30 have been identified as very 

poor predictors and played very insignificant roles in the outcome of injuries. Table 9 

in this thesis offers detailed information about the subdivisions of the contributory 

factors from A01 to A19. In addition, STATS20 is the designation of a document 

entitled ‘instructions for the completion of road accident reports’ published by DfT 

(2011). This document defines the scope and meaning of each input factor used in 

this study in more detail. 

4.2.4.1 Bicycle Location (A01) – Most Important Cycling Factor  

A01 refers to bicycle location at the time of accidents (restricted lane/away from 

main road). For example, cycle lane wherein lane (advisory or mandatory) marked 
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off within main roadway for use by bicycle only. Or cycleway which is forms part of 

the road but is not part of the main carriageway (DfT, 2011). Cycling across a certain 

lane (A01) had a massive influence in increasing the risk of injury severities (TRL, 

2009; RoSPA, 2017c; DFT, 2018b; Siamidoudaran et al., 2019b). Although cycle 

facilities are used on Cambridge roads, but it appears there are still limited modern 

protected bike tracks associated with these locations or the existing sequences are not 

standardised. It seems that the painted bike lanes are not enough to protect riders but 

instead cause drivers to pass closer (e.g. Figure 49). The routs that are not physically 

separated from other traffic significantly decrease the space drivers provide because 

motorists do not feel the need to give cyclist space when they have their own way. 

Therefore, where the rider is in the same lane as the driver, the driver must make an 

overtaking. This circumstance is a commonly identified factor which contributes to 

the risk of cyclist injury wherein riding across the main carriageway and not in 

restricted lanes had a huge effect in increasing the numbers of injuries (TRL, 2009; 

RoSPA, 2017c; DfT, 2018b). On the other hand, where there are bicycle-specific 

infrastructure alongside other road users, the driver has a clear lane ahead to pass 

(Siamidoudaran et al., 2019b).  

4.2.4.2 Making Space for Cycling 

To improve safety of cyclists, narrow cycle lane defenders can deliver cycle lane 

segregation and are safer for riders because they offer continuous or light segregation 

by excluding other traffic from the bike lane (Siamidoudaran et al., 2019b; Rosehill 

Highways, 2020).  

4.2.4.3 Cyclist Manoeuvre (A02) 

A02 applies to any manoeuvre made by the cyclist which happened, or contributed 

to, the crash. Examples include changing lanes, overtaking reversing, U-turn, and 
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turning right or left. Table 9 in this thesis lists more possible cyclist manoeuvres 

(DfT, 2011). This identified factor is in line with many studies where cyclists are far 

more likely to suffer when a motorist is waiting to turn in an incorrect place or when 

they made an unsafe left or right 'hook' turn suddenly across the path of a cyclist who 

is riding straight towards a junction on a bend ahead (TRL, 2009; DfT, 2015b; 

Siamidoudaran et al., 2019b).  

4.2.4.4 Junction Location of Bicycle (A03) 

A03 also played a large role in the injuries around and in junctions with collisions 

happening more frequently here than in any other zones in the city (SiamiDoudaran 

and Iscioglu, 2019; Siamidoudaran et al., 2019b). ‘Junction location of bicycle’ 

refers to a position on the road where each crash occurred (e.g. cyclists waiting to 

enter the roundabout/main road). Cyclist absolute geographic location is defined by 

two coordinates, longitude and latitude. The labels of this variable (analysed in Table 

9) indicate the position of pedal riders at or nearby busy junctions (DfT, 2011). In 

this vein, the UK government reported that many cyclists are injured around and at 

intersections, in particular, more than half of bicycle-MVCs happen at intersections 

in the UK, both the rider and the driver may be at fault (Knowles et al, 2009; DfT, 

2018b). 

4.2.4.5 Vehicle Manoeuvre (A04) 

Vehicle manoeuvre (A04) contributed to the injuries which deal with action 

immediately prior to an accident A04 was caused due to poor driving manoeuvre 

nearby busy junctions (Siamidoudaran et al., 2019b). The most important 

configurations between bicycle–MVCs is the vehicle turning right or left while the 

rider is cycling straight ahead (DfT, 2015b). A similar outcome was also found by 

RoSPA (2017) which identified 'poor turn/manoeuvre' by drivers as a common 
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contributory factor. Another finding by DfT (2018b) displays that between 2011 and 

2016, 46% of the riders’ KSI casualties that happened at T or staggered junctions 

occurred by the rider ‘cycling ahead’ and the driver turning right or turning left. In 

addition, UK police forces arbitrated stationary or parked vehicle as a contributory 

factor in accidents involving bicycle and motor vehicles for the above period (DfT, 

2018b). This situation can reduce visibility especially at a junction onto a main road. 

Most likely, drivers or passengers in stationary or parked vehicles incautiously open 

doors without looking and slams it against a passing cyclist (TRL, 2009; DfT, 2015b; 

DfT, 2018b; Siamidoudaran et al., 2019b). 

4.2.4.6 Crossing Facilities (A05) 

A05 refers to pedestrian crossing facilities including shared facilities with bicyclists. 

This factor indicates that the local authority services were not able to make 

existing crossings safer for the road users (Siamidoudaran et al., 2019a; 

Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019b).  Injuries involving 

cyclists occurred frequently at facilities designed for cyclists (e.g. pedestrian 

crossings, cycle lanes, and cycle tracks). This means that these facilities were not 

necessarily good enough to avoid accidents in Cambridge. This factor was also 

identified as the main contributory factor for the previous case study. In this regard, 

Chang and Wang (2006) suggested that cyclists are at a superior danger of severity in 

injuries around crossing facilities. Furthermore, a road safety research showed that 

more than half of the KSI crashes which cyclists are also involved in happen while 

crossing streets (SWOV, 2010). This outcome is also in line with a previous research 

displaying that the increase of the crossing facilities at crossings have an extra 

positive safety outcome in dropping the number of the cycling injuries (Gårder et al., 

1998). 
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4.2.4.7 Factors Related to Junction Actions (A06-A08) 

Again, factors from A06 to A08 refer to some kind of junction actions including ‘2nd 

road class’ (A06), ‘junction detail’ (A07), and ‘junction location of vehicle’ (A08) 

(Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et 

al., 2019b). These factors have also been identified as the most important 

contributory factors in the city of London case study. The explanation of the factors 

is given in the results section of the previous study. According to many studies, pedal 

riders are more often involved in accidents while trying to cross a multilane road. 

This finding fits many studies, while official government reports also indicate that 

many cyclists are injured at or nearby intersections during recent years (TRL, 2009; 

SWOV, 2010; RoSPA, 2017; DFT, 2018b; Siamidoudaran et al., 2019a; 

Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019b). For that reason, 

large amount of bicyclist deaths occurred at these locations (Knowles et al, 2009; 

DfT, 2018b).  

4.2.4.8 Improving Junction Safety 

Like previous case study, truly protected junctions can offer specific cycle-signals 

which aid those on bikes to pass straight ahead or to carefully turn right, within the 

segregated bike lane (RoSPA, 2017a; RoSPA, 2017b; RoSPA, 2017c; TfGM, 2019; 

Reid, 2019; Cambridgeshire County Council, 2020; Cambridge Cycling Campaign, 

2020; Daily Mail, 2020; Glasgow City Council, 2020; DfT, 2020). 

4.2.4.9 Time (A09) and Day (A10) 

Next factors (A09 and A10) show that the riders were far more expected to suffer 

during specific time bands and days (Siamidoudaran et al., 2019b). According to the 

data analysis in Table 9, the weekday peak time for cyclist injuries is from 7am to 

9am and from 4pm to 6pm. This predicament is an injury severity result which is 
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consistent with the UK government’s official report which found that almost 

majority of cyclist injuries take place during rush hours on weekdays (DfT, 2015b). 

This finding is highly accurate since one in four Cambridge residents cycle to work 

during the identified hours. This amount is the greatest level of cycling to work in the 

UK. In addition, a very high proportion of the students hop into the saddle to get to 

their universities and colleges in Cambridge (CambridgeshireLive, 2018a; 

CambridgeshireLive, 2018b). 

4.2.4.10 Other Cycling Predictors  

Factors from A11 to A19 associated with increased risk of injuries including; 1st 

point of impact by bicycle, junction control, vehicle type, weather condition, light 

condition, 1st point of impact as a result of vehicle, road surface, speed limit, and 

road type, however, as seen in Table 9 their influences are not as great as A01 to A10 

were (TRL, 2009; SWOV, 2010; RoSPA, 2017; DfT, 2018b; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  

4.2.4.11 Unreliable Cycling Predictors  

The variables from A20 to A30 are located at the bottom of Table 9 and have been 

shown to play insignificant roles on the outcome of injury severities while keeping 

their affects nearly equal (Knowles et al, 2009; DfT, 2018b; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). These 

factors comprise of journey purpose, driver sex, cyclist sex, 1st road class, age of 

driver, number of vehicles, month, skidding, carriageway hazards, cyclist age, and 

driver IMD (Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019b). 
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4.2.5 Maximising Predictive Accuracy by SVM – Cambridge   

In order to generalise the dimensional feature space before processing the data into 

the SVM network through MATLAB, poor predictors were eliminated. As a result of 

the previous prediction by RBFNN intended for large number of subdivision 

variables, the labels after A19 were removed due to their minor significance. Also 

related predictors from A1 to A19 were discovered as the most significant 

contributory factors. Following this, the sensitive predictors were applied to SVM as 

input factors in order to get a higher prediction accuracy (Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  

These factors are included; bicycle location, bicycle manoeuvre, junction location of 

bicycle, vehicle manoeuvre, pedestrian crossing facilities, 2nd road class, junction 

detail, junction location of vehicle, time, day, 1st point of impact by bicycle, junction 

control, vehicle type, weather condition, light condition, 1st point of impact by 

vehicle, road surface, speed limit, and road type.  

4.2.6 Analysis of Key Predictors – Cambridge 

Predictors from A1 to A19 were discovered as the most significant predictors. The 

descriptive statistics of these predictors are broken down in the Table 9. The Table 

shows the count and percentage distribution across levels of each cluster (e.g. the 

distribution among 20, 30, 40, 50, and 60 mph speed limits) and the injury severity 

classes (fatal injury, serious injury, slight injury, and damage only) for the total 

frequency (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b).  
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Table 9: Description of contributing factors – Cambridge case study 

In
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Variable 

C
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e 

 

 

Sub-variables 

T
o
ta

l 
(%

) 

 

 

1 

 

6 

 

Bicycle location 

 

1 
2 

3 

4 
5 

6 

 

Footway   
Bus lane 

Not in restricted lane (main Rd) 

Busway (including guided busway) 
Cycle lane (on main Rd) 

Cycleway or shared use F/W (not part of main Rd) 

 

 

03.23 
00.82 

84.01 

00.19 
09.69 

02.06 

 

 

2 

 

 

9 

 

Bicycle manoeuvre 

 

 

1 

2 
3 

4 

5 
6 

7 

8 
9 

 

Parked 

Reversing 
Waiting to go - held up 

Slowing or stopping 

Moving off 
Turning / Waiting to turn  

Changing lane to left/right 

Overtaking vehicle  
Going ahead bend 

 

00.05 

00.00 
01.88 

02.95 

03.45 
11.02 

01.82 

11.09 
67.74 

 

 

3 

 

 

5 

 

Junction location of bicycle 

 
1 

2 

3 
4 

5 

 

 
Approaching junction  

Mid Junction / on roundabout  

Leaving / Entering roundabout 
Leaving / Entering main road 

Not at or within 20 metres of junction 

 

 
17.22 

46.12 

04.02 
04.06 

28.62 

 

4 

 

9 

 

Vehicle manoeuvre 

 

 
1 

2 

3 
4 

5 

6 
7 

8 

9 

 
Parked 

Reversing 

Waiting to go 
Moving off 

Slowing 

Changing lane 
Overtaking vehicle 

Turning / Waiting to turn 

Going ahead bend 
 

 
09.17 

01.04 

02.77 
11.02 

03.10 

01.03 
07.98 

41.03 

22.86 

 

5 

 

6 

 

Physical crossing facilities 

 

 

1 
2 

3 

4 
5 

6 

 

Pelican, puffin, toucan or similar non-junction light  
No physical crossing facilities within 50 metres 

Pedestrian phase at traffic signal junction 

Footbridge or subway 
Central refuge 

Zebra 

 

18.25 
67.25 

08.25 

00.05 
02.36 

03.84 

 

 

6 

 

6 

 

 

2st Rd class 

 

 

1 

2 
3 

4 

5 
6 

 

Not at junction or within 20 metres 

Motorway (including A(M) Rd) 
A 

B 

C 
U 

 

00.00 

00.01 
09.23 

00.42 

17.23 
73.11 

 

 

7 

 

7 

 

Junction detail 

 

1 
2 

3 

4 
5 

6 

7 

 

Slip road 
Roundabout 

Crossroads 

T or staggered junction 
Private drive or entrance 

Other junctions 

Not at junction or within 20 metres 
 

 

00.15 
19.14 

07.53 

41.25 
07.25 

01.66 

23.02 

 

8 

 

5 

 

Junction location of vehicle 

 

1 
2 

3 

 

Mid Junction - on roundabout 
Leaving/Entering roundabout 

Leaving/Entering main road 

 

20.59 
13.04 

27.26 
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4 

5 

 

Approaching junction or waiting in a queue 

Not at or within 20 metres of junction 

15.20 

23.91 

 

9 

 

4 

 

Time 

 

1 

2 
3 

4 

 

07:00–09:00 and 16:00–18:00  

09:01–15:59 
18:00–22:00 

22:01–06:59 

 

40.36 

32.89 
21.45 

05.03 

 

 

10 

 

2 

 

Day 

 

1 

2 

 

Weekday 

Weekend 

 

85.65 

14.35 
 

 

11 

 

5 

 

1st Point of Impact – 

bicycle 

 

1 
2 

3 

4 
5 

 

Front 
Back 

Offside 

Nearside 
Did not impact 

 

42.12 
13.32 

24.55 

16.99 
03.02 

 

 

12 

 

5 

 

Junction control 

 

1 
2 

3 

4 
5 

 

Stop sign 
Authorised person 

Auto traffic signal 

Give way or uncontrolled 
Not at junction or within 20 metres 

 

 

00.43 
00.35 

10.79 

88.43 
00.00 

 

 

13 

 

3 

 

Vehicle type 

 

 
1 

2 

3 

 
Car 

Motorcycle 

Buses, lorries and goods 
 

 
79.23 

01.03 

19.74 

 

14 

 

2 

 

Weather condition   

 

1 

2 
 

 

Inclement 

Good  

 

19.95 

80.05 
 

 

15 

 

2 

 

Light condition 

 

 

1 
2 

 

Daylight 
Darkness 

 

69.22 
30.78 

 

 

16 

 

5 

 

1st Point of impact – vehicle 

 

 
1 

2 

3 
4 

5 

 
Front 

Back 

Offside 
Nearside 

Did not impact 

 
43.25 

05.36 

16.87 
29.28 

05.24 

 

 

17 

 

2 

 

Rd surface  

 
1 

2 

 
Wet 

Dry 

 
23.19 

76.81 

 

 

18 

 

5 

 

Speed limit 

 

 

1 

2 
3 

4 

5 
 

 

20 

30 
40 

50 

60 
 

 

09.86 

89.23 
00.41 

00.23 

00.04 
 

 

19 

 

4 

 

Rd Type 

 

1 

2 
3 

4 

 

Single carriageway 

Dual carriageway 
One-way street 

Roundabout 

 

73.17 

01.98 
02.24 

22.61 

 

O
u

tp
u

t 

 

4 
 

 

Injury severity class 

of cycles 

 

 

B1 

B2 

B3 

B4 
 

 

Fatal injury 

Serious injury 

Slight injury 

Damage only 

 

01.86 

14.78 

39.80 

43.56 
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4.2.7 Implementation of SVM Applying Key Predictors – Cambridge 

In this section of the thesis, SVM prediction model was fit on training, validation, 

and testing subsets. For this prediction task, random division was used for 70% of the 

data in training. For validation phase 15% of data was used with intention of 

delivering an unbiased assessment. Lastly, the remaining 15% was considered in the 

test phase.  

As seen in Figure 35, the second layer produced thirty neurons to discover the 

relationship between the inputs and outputs.  Each neuron is related to each input 

factor and the weights associated with each predictor gives statistics about its weight 

for the discrimination of the levels. Accordingly, the hyperplane is implicitly defined 

in a higher dimensional space through the kernel trick. Again, like MLPNN model, 

the LM–BP algorithm was applied in the training phase. MSE was considered for 

evaluating the model performance (Siamidoudaran and Iscioglu, 2019). The structure 

of the network and training process are shown in Figure 35. 
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Figure 35: Final Structure and Train Process of the SVM 

In the training phase, the network was discontinued after 10 iterations with MSE 

result of 0.0461 and gradient equal to 0.0490 as shown in Figure 35. As a result, the 

network was able to balance among overfit (very small MSE value for training) and 

underfit (great value of MSE for test or validation data). Therefore, the model should 

be suitable to predict the test data that we haven't yet seen. In fact, the indication of 

MSE isn't equal to zero, since then we would have a model that entirely predicts the 

training data, but which is impossible to completely forecast any other data 

(Siamidoudaran and Iscioglu, 2019). 
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4.2.8 Error Histogram by SVM – Cambridge  

The below error histogram with 20 bins were achieved using SVM. The error 

histogram shows how to represent errors between target values and estimated values. 

In line with Figure 36, it is evident that the histogram has a peak about 0.04 that 

displays an accurate prediction for the model (Siamidoudaran and Iscioglu, 2019). 

 
Figure 36:  Error Histogram by SVM– Cambridge 

4.2.9 Best Validation Performance by SVM – Cambridge  

Figure 37 shows the training, validation, and test errors to identify the validation 

error in the training window. SVM structure generated the best model for predicting 

cyclist injury severity classes, with the best validation performance of 0.07878 at 

iteration of 4 as shown in Figure 37. The diagram also indicate that the validation 

and test curves are very close. If the outcome of test curve had particularly raised 

before the validation curve raised, then there would have likely been some error. As 
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a result, it is evident that the model was able to predict the minimise error 

(Siamidoudaran and Iscioglu, 2019). 

 
Figure 37: Best Validation Performance by SVM– Cambridge 

4.2.10 Regression Results by SVM – Cambridge  

Figure 38 plots the regression results by SVM for the output with in connection with 

training, validation, and test data. R–value was considered to understand the 

association between outputs and targets. An R–value close to 1 means a close 

association, and close to 0 is a random correlation. The performance of the SVM is 

presented in Figure 38 in which the regression results for training (0.815), validation 

(0.765), test (0.733) phases and total response of the data (0.795) (Siamidoudaran 

and Iscioglu, 2019). 
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Figure 38: Regression Results by SVM – Cambridge 

4.2.11 Error Matrix by SVM – Cambridge  

This matrix is used as a valuable technique to summarise the performance of a 

classification algorithm (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b). The matrix shows the various types of errors 

that happened for the prediction task by SVM. Visualization of the model 

performance is specified in the below matrix showing the true values for set of the 

accident data aimed at Cambridge case study. The rows display the actual classes (or 

output level that is gained from the dataset) and the columns indicate the predicted 
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class (or target level that is predicted by the model after being trained). The Error 

matrix for the train data and test process are specified as below. 

Error matrix for the train data  = [

0 0 0 0
2 23 116 7
4 56 931 41
0 0 31 1289

] 

 Total accuracy = 92.15 %, MSE = 0.0461, and RMSE = 0.1955 

Confusion matrix for the test data =  [

0 0 2 2
5 37 61 2
0 52 353 31
0 0 31 524

] 

Total accuracy = 72.85 %, MSE = 0.1911, RMSE = 0.4422 . 

     Table 10: Summary of MSE, RMSE, total ACC, and error matrix 

Prediction results in the training data set 

MSE RMSE ACC (%) Confusion matrix class 

 

 

0.0461 

 

 

0.1955 

 

 

92.15 

 

[

0 0 0 0
2 23 116 7
4 56 931 41
0 0 31 1289

] 

 

 

B1 

B2 

B3 

B4 

Prediction results in the testing data set 

MSE RMSE ACC (%) Confusion matrix class 

 

 

0.1911 

 

 

0.4422 

 

 

72.85 

 

[

0 0 2 2
5 37 61 2
0 52 353 31
0 0 31 524

] 

 

 

B1 

B2 

B3 

B4 

4.2.12 Sensitivity, Precision, Accuracy and Error – Cambridge  

In reference to the above results from SVM, the amounts of SEN, PRE, ACC and 

error for each level as well as for each set of the data were specified. The sum of 
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error for train and test data were found as 07.85% and 27.15%. The outcomes display 

that the greatest levels refer to B4 damage only and B3 slight injury.  The prediction 

accuracy for B2 serious injury is acceptable, however, lack of the data for B1 fatality 

class is still remained as the number of the data for this class wasn’t sufficient for 

training of the network. 

    Table 11: The SEN, PRE, ACC and error matrix for each class 

 

 

Values 

(%) 

 

Train Data Test Data 
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SEN NaN 64.25 91.59 93.59 NaN 15.12 81.19 85.11 

PRE 17.85 62.22 97.42 98.14 0 19.23 81.23 83.55 

ACC 92.15 72.85 

Error 07.85 27.15 

4.2.13 Comparison of Actual and Predicted Classes of SVM 

Moreover, the predicted outcomes of the cyclist injury severities in view of the train 

and test dataset are interpreted in Figure 39. The figure is able to visually compare 

the prediction classes for the injury severity wherein the training and testing phases 

are presented into each class.  

4.2.13.1 Interpretation of the Analysis   

The blue marks show the actual level of the data and the pink colours specify the 

predicted class of the injury severities. As seen in the graphical representation, the 

pink symbols are integrated with the blue results in class B4 (damage only) and class 

B3 (slight injury), it indicates higher accuracy in predicting cyclist injury severities 

for these classes. On the other hand, there is no much integration for class of B2 
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which refers to serious injury, this situation specifies that the SVM model was 

predicted with less accuracy. In addition, as a result of the limited data for B1 

(fatality), the model failed in making correct predictions for this class. The 

comparison between the actual classes and the predicted classes for the train data and 

test data display that the greatest performances were achieved for B4 and B3. The 

number of the data in these levels was more than enough for tanning process of 

network (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b). 



 

 

 

 
Figure 39: Actual and Predicted Classes of Cyclist Injury Severity by SVM – Train and Test Data



 

137 

 

4.3 Comparison between MLPNN and SVM  

Using STATS19 key predictors we aim at comparing the predictive performance, 

including prediction accuracy and error between the proposed ANN and SVM for 

personal injury severity classes. In this thesis, in the spotlight is the technique from 

the ANN family, most notably, MLPNN was considered for the comparison task due 

to the use of the most important contributory factors.  

As two different algorithms, ANN and SVM share the similar theory using linear 

learning approach for pattern recognition. The main difference is mostly on how non-

linear data is predicted. In general, SVM model uses nonlinear mapping to create the 

data linear separable, therefore, the kernel function is the significant tactic. On the 

other hand, ANN works multi-layer association and several activation functions to 

deal with nonlinear issues. Actually, single layer ANN can merely produce linear 

boundary, and the second layer can join the linear boundary together; while at least 

three layers are needed to create boundary of arbitrary forms (Ren, 2012).  

At this stage, we compare the performance of MLP and SVM when applied to 

STATS19 data and explore the sensitivity of the models tuning of a successful 

MLPNN and SVM architectures. According to the obtained results from the 

confusion matrix obtained from MLPNN and SVM, the comparison of the actual and 

the predicted classes of models was applied and explained in the Table 12. 



 

 

 

      Table 12: Comparison between MLPNN and SVM using most important contributory factors of STATS19 data 

 

M
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el 

Training process of ISP models Testing process of ISP models 

ACC  

(%) 

Error  

(%) 

Error matrix 
Severity 

class 

SEN  

(%) 

ACC  

(%) 

Error  

(%) 

Error matrix 
Severity 

class 

SEN 

(%) 

 

M
L

P
N

N
 

 

 

93.75 

 

 

06.25 

 

[

1 3 0 0
1 6 121 0
0 19 789 136
0 0 104 1289

] 

 

 

Fatal 

 

00.00 

 

 

75.38 
 

 

 

24.62 

 

[

0 2 0 0
0 2 49 0
0 11 317 71
0 0 37 571

] 

 

Fatal 

 

00.00 

Serious 65.08 Serious 16.09 

Slight 91.29 Slight 82.14 

Damage 92.49 Damage 87.07 

 

S
V

M
 

 

 

92.15 

 

 

07.85 

 

[

0 1 3 0
0 0 110 16
0 0 738 181
0 0 156 1246

] 

 

 

Fatal 

 

00.00 

 

 

72.85 

 

 

27.15 

 

[

0 0 2 0
0 0 53 1
0 0 325 69
0 0 76 525

] 

 

Fatal 

 

00.00 

Serious 64.25 Serious 15.12 

Slight 91.59 Slight 81.19 

Damage 93.59 Damage 85.11 
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4.3.1 Results of Comparison between MLPNN and SVM  

In the MLPNN model, the accuracy measure for ISP model in the training and testing 

phase were found 93.75% and 75.38%, respectively.  However, the number of the 

fatalities was not particularly high, thus, due to the lack of data; the network wasn’t 

able to evaluate accurate prediction for this class in the training process. Therefore, 

in the test phase, the amount of sensitivity for this class was equal to zero. For 

serious injury class, the network was unable to perform a good prediction. In fact, in 

the training process, the network accommodated the input parameters with slight 

injury class instead of serious injury class. For slight injury class, the classification 

was almost desirable and the amount of sensitivity for the training and test phase was 

obtained as 91.29 and 82.14%, respectively. Moreover, in this class, the classification 

was ‘occasionally tended to damage only’ class. Lastly, among the classes, the 

prediction of the injury severity for ‘damage only class’ was performed better than 

other classes (92.49% for train phase, 87.07% for test phase and 87.07% sensitivity). 

In the SVM model, the amount of accuracy obtained was slightly less than MLP 

network (92.15% for the training phase and 72.85% for test phase). However, for 

fatal class, both in the training and testing process, like MLPNN model, the SVM 

totally failed in predicting the severity class (sensitivity equalled to zero). As for the 

prediction of serious injury, the SVM was unsuccessful and more data was 

incorrectly classified. As for ‘serious injury’ and ‘damage only’ class, compared to 

the two previous classes, the performance of SVM had improved and the sensitivity 

value for the training and testing process was obtained around 80% and 90%, 

respectively.  
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4.3.2 Performance Comparison of MLPNN and SVM 

In conclusion, the performance from the two classifiers becomes very capable for 

predicting STATS19 data, but, it seems that MLPNN slightly outperforms SVM and 

the MLPNN has been able to improve the accuracy rate for predicting the injury 

severity by 5%. The finding fits many studies that indicated the ANN and SVM 

models are capable networks for understanding the nonlinear relationship between 

independent variables and dependent variables. In most cases, MLPNN is effectively 

capable of predicting injury severity classes, accident severity and accident 

frequency for high nonlinear data and gives better performance (Abdelwahab and 

Abdel-Aty, 2001; Abdel-Aty and Abdelwahab; 2004; Delen, 2006; Alkheder et al., 

2017; Shamsashtiany and Ameri, 2018; SiamiDouadarn and Iscioglu, 2019). 

Additionally, SVM fits data well so it is also a capable tool for prediction of injury 

severity data (Chang and Wangm, 2006; Li et al., 2008; Li et al., 2012; Yu et al., 

2014; Li et al., 2016; Sharma et al., 2016; Yu et al., 2016; Alkheder et al., 2017; 

Zhang et al., 2018; SiamiDouadarn and Iscioglu, 2019; Venkat et al., 2020). 

4.3.3 Using MLPNN-SVM to Achieve Better Accuracy – City of London  

As a result of comparison between proposed MLPNN and SVM, the results indicated 

that both models are very capable in prediction of personal injury severities. 

However, as a result of poor prediction accuracies for serious injury and fatal classes, 

we combined the both algorithms in a single prediction model in order to 

predominantly link the output layer of an MLPNN classifier by means of optimal 

margin hyperplanes. Therefore, combining two powerful methods in a single model 

should be a great idea, importantly it has never been used by other researchers in an 

accident/injury prediction. There are also a few previous articles using this model for 
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any prediction tasks. (Bellili et al., 2003; Tifani et al., 2017; SiamiDoudaran and 

Iscioglu, 2019). 

In this section, the key predictors of STATS19 data for the city of London resulting 

from the rank analysis were applied into the hybrid MLPNN-SVM. MATLAB 

programming language was again used in the training, testing and structure 

algorithms of MLPNN-SVM. All the factors were normalised between zero and one. 

The delivered dataset was randomly separated to form two subsets; training data of 

70 % and testing data of 30 % which lead to implementation of the structure 

optimization algorithm accompanied by the performance comparison between the 

injury classes. Following this, run was made using the random division. In the 

process of the hybrid MLPNN-SVM, at the first level, the MLPNN had reduced the 

dimension space of input data, and it led to facilitate the process of prediction for the 

second layer (SVM). The obtained results from the hybrid model are shown in the 

below Table using confusion matrix. For evaluation of the model, in addition to 

ACC, error parameters, and sensitivity SEN were used to show the rate of correct 

positive prediction of each injury severity classes (SiamiDoudaran and Iscioglu, 

2019). 

    Table 13: Confusion matrix for hybrid model (SiamiDoudaran and Iscioglu, 2019) 

 

Training results of hybrid MLPNN-SVM 

 

ACC  Error  Confusion matrix Severity class                         SEN 

 

91.3% 

 

08.6% 

 

[

3 1 0 0
2 14 110 0
2 52 827 38
0 0 7 1395

] 

Fatality  7.5% 

Serious Injury 11.1% 

Slight injury 89.9% 

Damage only 99.5% 
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Testing results of hybrid MLPNN-SVM 

 

ACC  Error Confusion matrix Severity class SEN 

 

90.5% 

 

09.4% 

 

[

1 1 0 0
4 6 44 0
0 30 348 16
0 0 4 597

] 

Fatality 5.0% 

Serious Injury 11.1% 

Slight injury 88.3% 

Damage only 99.3% 

 

4.3.4 Comparison between MLPNN, SVM, and Hybrid MLPNN-SVM  

According to the outcomes from the confusion matrix shown in the above Table, the 

comparison of the actual and the predicted classes of the injury severity for training 

and testing data was applied. As seen in Table 13 (results of hybrid MLPNN-SVM) 

and in Table 12 (comparison between SVM and MLPNN), hybrid model provided a 

superior fitting of model and increased the accuracy rate by 20% in comparison to 

MLPNN and SVM. This amount is greater than the accuracy rates which were 

previously received by similar hybrid ANN–SVM models (Bellili et al., 2003; Tifani 

et al., 2017). However, incorrect classifications for ‘serious injury’ and ‘fatal’ classes 

still remain. Therefore, using STATS19 dataset, it is suggested that the combination 

of MLPNN and SVM achieved better prediction accuracy.  

A similar comparison outcome was attained by Bellili et al. (2003) in a classification 

task. The aim of their research was to reduce the recognition of error rate applying 

the hybrid MLP-SVM recogniser. Accordingly, their outcome proved that the hybrid 

MLP-SVM model significantly increased the performance. However, they used 

limited data in their study so application of a rank analysis was missing from the 

methodology. In a more recent comparison between SVM and the hybrid model, 
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Tifani et al., (2017) proposed a similar hybrid ANN-SVM for an estimation task in 

which the hybrid model had more accuracy rate, by 5% compared to SVM.  

4.3.5 Additional Trail Using LVQNN to Overcome Incorrect Predictions  

As a result of the comparisons between SVM, MLPNN, and hybrid MLPNN-SVM 

different insights were generated which needed to be more focused on, by using a 

different model. Such a prediction will aim to overcome the limited data for ‘fatal’ 

and ‘serious injury’ classes and to make predictions for better outcomes (Priyono et 

al., 2005; Al-Daoud, 2009; Chen and Marques, 2009; Shen and Chen, 2009; 

Kohonen, 2012; Thanasarn and Warisarn, 2013; Nova and Estévez, 2014; Villmann 

et al., 2017; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). 

4.3.6 Killed and Seriously Injured Casualties as a Single Injury Class (KSI) 

The analysis obtained from the error matrix showed that the limited data for ‘fatal 

class’ led to poor classification. Moreover, for ‘serious injury’ class, quantitative 

effects of each input factor on the injury severity could not predict very well and 

tended to work with a different class. Therefore, in order to achieve better results for 

all classes, ‘fatal class’ and ‘serious injury’ classes were merged together in a single 

factor as KSI (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b).  

4.3.7 Prediction of Cyclist Injury Severity Levels Using LVQNN – Cambridge  

Due to the necessary cycling intervention, Cambridge data was considered in order to 

be examined by LVQNN. At this stage only two injury severity classes were used 

(slight injury and KSI) in order to overcome the incorrect predictions for ‘fatal’ and 

‘serious injury’.  In addition to KSI class, ‘slight injury’ severity class was used to 

focus more on personal injury related classes. Again, MATLAB application was used 

to apply LVQNN into the STATS19 data. The most important contributory factors 
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were directly applied to improve the data quality and transfer the data into a space of 

fewer dimensions which can aid to boost the network speed, optimise the efficiency 

and, as a result, it will impact the accuracy of the LVQNN. In addition, combining 

the ‘fatal’ and ‘serious injury’ severity classes, we aim to maximise the prediction 

accuracies in comparison to the other existing models. 

Consequently, to achieve this aim, the data was applied separately as an input to the 

LVQNN to compare the influence for each injury related factor in the output (slight 

or KSI). In this section, the model was predicted with the more sensitive factors 

which had been found as the contributory factors. Typically, all data was firstly 

shuffled and also normalised for each iteration in order to have an equal series of 

feature values and to ensure that training, validation and testing sets are 

representative of the total distribution of the data. For this section, the LVQNN was 

fit on training, validation and testing subsets. 70% of the total data was randomly 

separated for training data with the purpose of recognising apparent association that 

doesn’t hold in common. 15% of data was used for validation, in order to provide an 

unbiased assessment, fit on the training dataset through tuning the model's 

hyperparameters. As a final point the remaining 15% of data specified in the test 

dataset which is independent of the training dataset but examines the similar 

probability distribution. Again, for evaluation of the LVQNN, the confusion matrix 

was used to summarise the performance of prediction results, which the classes 

comprised of KSI (no.1) and slight injury (no.2). According the LVQNN, the number 

of correct and incorrect predictions have been summarised as an error matrix and the 

value of each injury severity class broken down in Figure 40 (Siamidoudaran et al., 

2019b). 
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Figure 40: Error Matrix – LVQNN (Siamidoudaran et al., 2019b) 

The outcomes of accrual and predicted injury severity classes display the insights in 

which the LVQNN was confused or predicted properly during the prediction. The 

number and value of correct predictions are recognised by first two cells diagonally. 

For example, in the all error matrix, 145 injury severities were correctly predicted as 

KSI. This refers to 11.5% of all 1264 injury severities in the STATS19 data. 

Analogously, 1071 severities were properly predicted as slight injury. This refers to 

84.7% of all injury severities. 9 numbers of the slight injury severities were wrongly 

predicted as KIS and this refers to 0.7% of all 1264 injury severities. In the same 

vein, 39 events of the KSI casualties were wrongly predicted as slight injury and this 
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equals to 3.1% of all the data. Out of 154 KSI predictions, 94.2% were correct and 

5.8% remained incorrect. Out of 1110 slight injury predictions, 96.5% were correct 

and 3.5% were incorrect. Out of 184 KSI casualties, 78.8% were correctly classified 

as KIS and 21.2% were classified as slight. Out of 1080 injuries, 99.2% were 

properly predicted as malignant and 0.8% were predicted as KSI. In addition, the 

four grey squares (starting the top right, clockwise) denote the net present value, 

precision, sensitivity and specificity. The blue cell in the bottom right displays the 

overall percent of properly predicted injury severities (in green) and the total percent 

of misclassified events (in red). As shown in the blue square, the overall accurate 

prediction rate is 96.2% for overall data and 3.8% were incorrect which was very 

accepTable. These amounts are highly improved compared to the previous models 

(MLPNN, SVM, and hybrid MLPNN-SVM) used in this thesis (Siamidoudaran et al., 

2019b). 

4.3.8 Comparison of Actual and Predicted Classes of LVQNN 

Comparison between the actual and the predicted injury severity classes of the 

training, validation, testing, and total data are interpreted in Figures 41, 42, 43, and 

44. The blue symbols denote the actual levels and the pink symbols display the 

predicted classes resulting from LVQNN. As seen in the below figures, the acquired 

results of the predictions for each injury severity class were very satisfactory as there 

is great integrations between pink and blue marks. Therefore, the LVQNN model 

succeeded to predict each cyclist injury severity class with an advanced accuracy. 

However, the class 2 (Slight injury) provided a greater fitting of the model plus an 

improved prediction accuracy in comparison with class 1 (KSI) in each stage as a 

result of having more data for ‘slight injury’ casualties (Siamidoudaran et al., 2019b). 



 

 

 

 
Figure 41: Actual and Predicted Classes of Cyclist Injury Severity by LVQNN – Train Data (Siamidoudaran et al., 2019b)



 

 

 

 

 
Figure 42: Actual and Predicted Classes of Cyclist Injury Severity by LVQNN – Validation Data (Siamidoudaran et al., 2019b)



 

 

 

 

 
Figure 43: Actual and Predicted Classes of Cyclist Injury Severity by LVQNN – Test Data (Siamidoudaran et al., 2019b)



 

 

 

 

 
Figure 44: Actual and Predicted Classes of Cyclist Injury Severity by LVQNN – All Data (Siamidoudaran et al., 2019b)
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4.3.9 Comparison between MLPNN, SVM, MLPNN-SVM, and LVQNN 

At this stage, the prediction accuracies of MLPNN, SVM, hybrid MLPNN-SVM, and 

LVQNN models were also evaluated and compared. As the comparison results of 

MLPNN, SVM, hybrid MLPNN-SVM have already been discussed in the previous 

sections, we mostly focus on the testing results of the models along with overall 

prediction of LVQNN which are summarised and ranked in Table 14. 

  Table 14: Comparison results of MLPNN, SVM, MLPNN-SVM, and LVQNN 

 

SVM – Case study of Cambridge (4th rank) 

 

ACC Error Confusion matrix Severity class                         SEN 

 

72.8% 

 

27.1% 

 

[

0 0 2 0
0 0 53 1
0 0 325 69
0 0 76 525

] 

Fatality 00.00 

Serious Injury 15.1% 

Slight injury 81.1% 

Damage only 85.1% 

 

MLPNN - Case study of the city of London (3rd rank) 

 

ACC Error  Confusion matrix Severity class SEN 

 

75.3% 

 

 

24.6% 

 

[

0 2 0 0
0 2 49 0
0 11 317 71
0 0 37 571

] 

Fatality 00.00 

Serious Injury 16.0% 

Slight injury 82.1% 

Damage only 87.0% 

 

Hybrid MLP-SVM - Case study of the city of London (2nd rank) 

 

ACC  Error  Confusion matrix Severity class                         SEN 

 

90.5% 

 

09.4% 

 

[

1 1 0 0
4 6 44 0
0 30 348 16
0 0 4 597

] 

Fatality 5.0% 

Serious Injury 11.1% 

Slight injury 88.3% 

Damage only 99.3% 

 

LVQNN - Case study of Cambridge (1st rank) 
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ACC  Error  Confusion matrix Severity class SEN 

 

96.2% 

 

3.8% [
145 09
39 1071

] 

KSI 78.8% 

Slight injury 99.2% 

 

The outcome shows that the fitting and prediction performance of all models are 

satisfactory but the hybrid model performed better than SVM and MLPNN 

(Siamidoudaran and Iscioglu, 2019). This thesis suggests that the MLPNN, SVM, 

and the hybrid model fit the data well so they are promising tools for future accident 

injury severity studies (Abdelwahab and Abdel-Aty, 2001; Abdel-Aty and 

Abdelwahab; 2004; Chang and Wangm, 2006; Delen, 2006; Li et al., 2008; Li et al., 

2012; Yu et al., 2014; Yu et al., 2016; Sharma et al., 2016; Li et al., 2016; Alkheder 

et al., 2017; Alkheder et al., 2017;  Zhang et al., 2018; Shamsashtiany and Ameri, 

2018; Siamidoudaran et al., 2019a; Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019b; Venkat et al., 2020).  

Using the identical dataset of the city of London for MLPNN and the hybrid model 

(Siamidoudaran and Iscioglu, 2019), this thesis suggests that the hybrid model was 

better able to decrease the recognition of error rate. Although the results of the 

comparisons are positive, the incorrect predictions remain for ‘fatal’ and ‘serious 

injury’ classes by all the models. Therefore, by using LVQNN as a powerful method 

for prediction, it was intended to verify that there might be other existing models that 

fit the data better than the proposed models (Priyono et al., 2005; Al-Daoud, 2009; 

Chen and Marques, 2009; Shen and Chen, 2009; Kohonen, 2012; Thanasarn and 

Warisarn, 2013; Nova and Estévez, 2014; Villmann et al., 2017; Siamidoudaran et al., 

2019a; Siamidoudaran et al., 2019b). As a result of comparison shown in Table 14, it 
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is suggested that LVQNN is the best method for prediction of STATS19 data (by 

applying the identical data which was used for the Cambridge case study). The 

model showed an improved overall accuracy (96.02%) and also maximised the 

prediction rates for each injury severity class (78.8% for KSI and 99.2% for slight 

injury class). Therefore, using LVQNN along with combination of ‘fatal’ and 

‘serious injury’ classes within a single class (KSI), this model was able to overcome 

the limitation of data (Siamidoudaran et al., 2019a; Siamidoudaran et al, 2019b).  

4.4 Discussion of Results 

4.4.1 First-stage Prediction– Rank Analysis (RBFNN) 

In this thesis we provide evidence of how prediction models of injury severities can 

truly help to understand the relationship between crash related factors. Using this 

technology can decrease severity of injuries directly and indirectly. Indeed, the main 

aim of this stage was to select key input factors for the next stage of prediction in 

order to maximise model performance. The RBFFNN model was applied to link the 

likelihood of injury occurrences at different severity levels with various traffic 

related factors. 

4.4.1.1 First Case Study– Identification of Group Most in Need of Intervention 

In the first stage, RBFNN was used to examine the influence of a number of factors 

on the injury severity faced by all road users involved in road accidents for the case 

study of London. The prediction results for the RBFNN model for city of London are 

shown in Table 4 for the city of London. In that stage, different variables were found 

to be significantly correlated with the likelihood of injury severities. The results 

displayed that different contributory factors affect different road users differentially. 

More specifically, the prediction model suggests that the severity of injury likelihood 

tends to be high where the crossing facilities were not available within 50 metres. 
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Here, the most common injuries were suffered by the VRUs, especially the cyclist 

group. In this vein, a previous research verified that the VRUs were considered to 

affect the high likelihood of being involved in accidents (Chang and Wang, 2006; 

Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a). Moreover, a Dutch 

traffic collision study displayed that more than half of the KSI crashes which VRUs 

were involved in happened while crossing the road (SWOV, 2010). 

4.4.1.2 Second Case Study – Response to First Case Study Concern 

In response to the first case study concern regarding to the two-wheel group, the 

RBFNN model was applied to the Cambridge case study to investigate the influence 

of a number of crash related factors on the injury severity faced only by pedal riders. 

The prediction model indicated that a variety of cycling accident related factors can 

highly affect the severity of injuries. Most of the factors were in connection with 

busy intersections and poor turn/manoeuvres. Importantly, biking across the main 

carriageway and not in a restricted lane had a massive effect in increasing the 

severity of injuries. This scene is well-known and always contributes to risk of 

cyclist injury (Knowles et al., 2009; RoSPA, 2017c; DFT, 2018b; SiamiDoudaran et 

al., 2019b).  

4.4.2 Second-Stage Prediction–Maximise Performance (MLPNN and SVM) 

An accurate ISP requires a good insight into the factors that are believed to be related 

directly to severity of road accident injuries. Therefore, based on the selected 

contributory factors, a second stage of prediction was carried out for each case study 

to maximise the prediction accuracy. We applied MLPNN and SVM to STATS19 

data to find out the relationship between injury severities and sensitive predictors 

which were identified in the previous stage of predictions (listed in Table 5 and 

Table 9). Using most important contributory factors at this stage we aim to improve 
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performance of both models (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et 

al., 2019a; Siamidoudaran et al.,2019b). 

4.4.3. Extra Trials on STATS19 Data (Hybrid MLPNN-SVM and LVQNN) 

ANN and SVM models were chosen as the benchmark in this thesis, particularly as a 

result of their popularity and success in injury severity modelling. However, using 

sensitive predictors, the MLPNN and SVM were not capable to overcome the 

incorrect predictions for ‘fatal’ and ‘serious injury’ severity classes. Therefore, the 

comparison between MLPNN and SVM couldn’t verify that these models are the 

best tools for STATS19 data. Therefore, using hybrid MLPNN-SVM, and LVQNN 

were also necessary to examine the same datasets in order to outline a comprehensive 

comparison result. 

4.4.3.1 KSI to Overcome Limitation of Data Using LVQNN 

Using an improved LVQNN in this thesis, ‘fatal class’ and ‘serious injury’ classes 

were merged together in a single factor as KSI to achieve better results for all classes 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). As a result, applying same identical data which was earlier used in 

Cambridge case study, LVQNN was able to fit the same data better than SVM for 

cycling injury severities.   

4.4.4 Model Comparisons (MLPNN, SVM, MLPNN-SVM, and LVQNN) 

Initially, the prediction accuracies of the MLPNN and SVM models were evaluated 

and compared. The outcome shows that the fitting and prediction performance of 

both models is satisfactory but MLPNN performed a little better than SVM 

(Siamidoudaran and Iscioglu, 2019). This thesis suggests that the ANN and SVM 

models fit the data well so they are promising tools for future accident injury severity 

studies. Accordingly, if the main purpose of a research is to predict injury severity 
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classes, the ANN and SVM models can be a very good choice (Abdelwahab and 

Abdel-Aty, 2001; Abdel-Aty and Abdelwahab; 2004; Chang and Wangm, 2006; 

Delen, 2006; Li et al., 2008; Li et al., 2012; Yu et al., 2014; Yu et al., 2016; Sharma 

et al., 2016; Li et al., 2016; Alkheder et al., 2017;  Zhang et al., 2018; Shamsashtiany 

and Ameri, 2018; Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b; Venkat et al., 2020). 

An interesting direction was to discover some new methods and compare them with 

the proposed machine learning models. Therefore, additional trials using hybrid 

MLPNN-SVM (first case study dataset), and LVQNN (second case study dataset) on 

the same datasets were applied to draw a comparison. Hybrid MLPNN-SVM, and 

LVQNN methods were used for the first time in an injury severity related prediction 

by the author (Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; 

Siamidoudaran et al., 2019b). 

Although the hybrid model was able to highly improve the overall prediction 

accuracy, LVQNN overperformed all the models used in this thesis plus correctly 

predicted the data for all the classes. Therefore, this comparison can suggest that the 

improved LVQNN is the best tool for prediction of STATS19 compared to other 

existing methods used in this thesis. In addition, in particular to LVQNN, further 

details can be referred to in the author’ previous case studies for the city of London 

and Cambridge (Siamidoudaran el al., 2019a; Siamidoudaran el al., 2019b).  

4.4.5 Requirement of Road Safety Interventions  

The identification of effective road safety interventions is essential. In this regard, 

not only should the requirement for an intervention be based on evidence, the 

intervention chosen should also be based on evidence. A needs assessment involves 
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using STATS19 data as evidence to recognise whether an intervention is required to 

address a particular road safety problem. This is a vital stage. If the intervention is 

not desired, there could be a pointless waste of resources. STAS19 data can be used 

to detect: the what, where, when and who in connection to the road safety problem. It 

can aid to identify specific roads, areas or road user groups such as pedestrian, cyclist, 

young drivers, children that might benefit from an intervention. Accordingly, their 

findings should have a main role in road safety design, policy and education 

(Ameratunga et al., 2006; Perel et al., 2007; RoSPA, 2017a; DfT, 2020). 

Typically, to achieve this, the government collected statistics can be analysed using 

different types of in-house software (RoSPA, 2017a). However, all the types of 

software are based on the reported contributory factors which are subjective and are 

all based on the police’s opinion at the scene, and perhaps are not based on a wide 

long-term investigation so may well not be absolutely reliable (TRL, 2010; DfT, 

2014). In addition, some of the factors are less likely to be recorded since evidence 

may not be available after the accident (DfT, 2014). Therefore, we believe, the 

findings of this thesis are more meaningful compared to the contributory factors 

reported by police. Moreover, there is very limited researches carry out on road 

safety interventions thus it is so challenging to discover evidence-based intervention 

related evaluations (RoSPA, 2017a; DfT, 2020). 

In this connection, the thesis ends by suggesting evidence-based road safety 

intervention options relying on the identified key injury severity impact factors in 

order to mitigate poor road designs and bad behaviour of road users. The suggestions 

in this thesis greatly matches the author’s previous published articles (Siamidoudaran 

and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). In 
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addition, we have cited different published articles and official government reports to 

support our ideas (RoSPA, 2017a; TfGM, 2019; Reid, 2019; Cambridgeshire County 

Council, 2020; Cambridge Cycling Campaign, 2020; Daily Mail, 2020; Glasgow 

City Council, 2020; DfT, 2020). 

4.4.5.1 Evidence-based Suggestions 

Evidence-based plans were created in the field of medicine, but have been translated 

into a lot of policy areas, including road safety (RoSPA, 2017a; DfT, 2020). From 

this perspective, many road safety intervention options are suggested to reduce 

severity of injury accidents. However, the suggestions often do not match up to 

reality plus some projects could make roads more dangerous (Luria et al., 2000; 

McKenna, 2010), and it is therefore vital that interventions are designed based on 

evidence (Connexions, 2001; Hauer, 2007; McKenna, 2010; RoSPA, 2017a; DfT, 

2020).  

This involves looking at collision, casualty and especially examining historical 

collision data to be sure that the safety concerns are addressed, and research and 

evaluations to investigate whether the intervention type being considered is likely to 

be helpful. Even if a previous intervention was not evidence based in order to start 

with, it is a great idea to go back and look at the evidence (RoSPA, 2017a; DfT, 

2020). Although, this might be a long process, it can aid to improve the intervention 

based on the greatest practice of other road safety practitioners. Moreover, it will 

help to understand whether the intervention is really needed for the related site. For 

instance, although there might be a lot of public concern about a road safety in a 

specific area, examining the accident data might suggest that it is not a priority 

concern (RoSPA, 2017a). 
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Before planning a road safety intervention, it was essential to pin point the road 

safety issues that need to be tackled and then identify the most appropriate ways of 

dealing with them. In this regard, there are a number of types of evidence that can be 

used.; mainly, investigating STATS19 casualty data, as this will help to determine 

whether an intervention is really needed (RoSPA, 2017a; Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b; DfT, 2020). 

Unfortunately, relatively little assessment is carried out on road safety, and therefore 

it might be difficult to find research and evaluation reports that are related to a 

particular intervention (RoSPA, 2017a; DfT, 2020). In response to this shortage, this 

thesis attempted to suggest different evidence based road safety interventions. 

 

The data was applied into the ANN model to detect specific groups and areas of 

concerns that require more intervention of road safety. The outcomes from the above 

predictions (shown in Tables 4 and 8) along with the data analysis for the most 

important contributory factors (shown in Tables 5 and 9) display that most of the 

factors were in connection with busy junctions and poor turn/manoeuvres. To 

overcome this concern, installing truly protected junctions in various site clusters is 

the key solution. In more detail to the first case study, non–motorised road users 

(pedestrians and cyclists) were recognised to benefit from road safety interventions. 

On focus to the cycling, there were limited crossing services near to where they 

cycled. Importantly, for Cambridge, such a big cycling city, narrow bike lane 

defenders are needed to provide a full segregation where road width is too limited 

(RoSPA, 2017a; RoSPA, 2017b; RoSPA, 2017c; TfGM, 2019; Reid, 2019; 

Cambridgeshire County Council, 2020; Cambridge Cycling Campaign, 2020; Daily 

Mail, 2020; Glasgow City Council, 2020; DfT, 2020). The injuries resulting from 
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car and non-motorised road users played a large part in the injuries. Following this, 

the most common injuries suffered by cyclists happened where the crossing facilities 

were not presented within 50 metres for the controlling of pedal riders crossing. 

Furthermore, junctions were definitely the accident hotspots, particularity when they 

attempted to approach or were located at the mid of the junction leading into another 

road. In a word, most of the factors identified in this study were in connection with 

busy junctions and poor turning manoeuvres. In addition, the majority of these 

actions were caused by human error or misjudgement. To solve the human error, 

intervention options concerning the specific groups should be applied through 

professional Road Safety Education, Training and Publicity (Siamidoudaran and 

Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b).  The 

followings examples of interventions are suggested by this thesis.   

4.4.5.2 Infrastructure of Engineering Intervention 

As a result of the factors identified in this thesis, it seems that the design of the roads 

may be flawed. In this regard, majority of the injuries caused by poor road design 

which tended to be extremely dangerous for road users, especially cyclist group often 

resulted in serious injuries. The suggestions of the protected junctions and the narrow 

road defenders in this section greatly matches the author’s previous publish articles 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). In addition, the suggestions fit the local governments’ new cycling and 

walking infrastructure plan which are detailed below (RoSPA, 2017b; TfGM, 2019; 

Reid, 2019; Cambridgeshire County Council, 2020; Cambridge Cycling Campaign, 

2020; Daily Mail, 2020; Glasgow City Council, 2020). The concern resulting from 

junction actions taken by the two-wheel group was identified and the idea of the 

solution was suggested in general by the former UK Ministry of Transport about one 



 

161 

 

century ago but surprisingly, has not been taken seriously enough until now (Reid, 

2019). 

4.4.5.2.1 Protected Junctions 

It’s relatively not difficult to protect pedal riders on busy roads using curbs to carve 

out a cycleway. However, it is not at all easy to protect cyclist group at intersections. 

At this point, truly protected junctions can be a good solution for both case studies. 

Junctions like this, giving priority to pedal riders and pedestrians are common 

practice in Netherlands. Also, they are extensively and successfully used across 

Europe, however protected junctions are not common in the UK. Protecting pedal 

riders at intersections has been a known concern since the 1930s. “The benefit of the 

cycle-track is lost at the intersection (just where traffic segregation is most needed).” 

detailed Architectural Review magazine in year 1937. (Reid, 2019). 

 
Figure 45: Importance of Protected Junctions in An Old Magazine, 1937 (Reid, 2019) 

As it is shown in the above magazine, it is clear that protected junctions are really 

needed for cycling network in the UK. At the time, a junior engineer from the 

Ministry of Transport in the 1930s, complained that the UK’s putative cycle network 

system modeled in the Dutch style provided protection where the carriageway was 
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safe but discharged the cyclists into the whirlpool of main traffic where the network 

was most dangerous. Again the ministry reported on 1946 showing that how cycle 

routes should be implemented nearby roundabouts, offering protection everywhere, 

but no instances were proposed at the time (Reid, 2019). Almost a century has gone 

by but only a few UK cities, including Cambridge, Glasgow, Manchester and 

Aberdeen, working on (very limited) protected junctions. The below types of 

protected junctions are some examples which are matched with findings of this 

thesis. 

4.4.5.2.2 Glasgow Style Protected Junction 

As part of the South City Way, the below junction shown in Figure is being trialled 

in Glasgow city, which is the first of this kind of junction in the UK outside of 

London (Glasgow city Council, 2020). 

 
Figure 46: Proposed New Style of Junction, Glasgow (Glasgow city Council, 2020)   
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This kind of junction has been verified to be much safer because it reduces conflict 

between road users, and particularly for those on cycles. It is a road junction 

designed so that road users travelling on foot, by cycle, and in vehicles are all 

separated as they pass through the junction. Unlike traditional junctions, which 

usually requires right-turning bicyclists to wait in the mid of the junction for an 

appropriate gap in the traffic, this type of junction offers a safer alternative. 

Furthermore, protected cycle tracks like those on Figure 46 make it easier for people 

to have everyday travels by cycle instead of by motor vehicle. The protected 

junction design produces space for these segregated tracks to flow through and 

nearby the junction, making a continuous and safe road (Glasgow City Council, 

2020).  

4.4.5.2.3 Dutch-style Roundabout 

The evidence based intervention identified in this thesis fits the installation of the 

UK's first Dutch-style junction which was officially opened during Covid-19 post–

lockdown in Cambridge and is the first of its kind in the UK (Cambridgeshire 

County Council, 2020; Cambridge Cycling Campaign, 2020; Daily Mail, 2020). 

However, in 2013 Transport for London (TfL) worked on a design with TRL                            

the Future of Transport (Transport Research Laboratory) but Cambridge claimed it 

installed the initial truly Dutch style in Britain after building a semi Dutch example 

junction in 2013 by TfL (Reid, 2019). 
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Figure 47: UK's First Dutch-style Junction, Cambridge (Daily Mail, 2020)   

UK’s cycling capital celebrates the arrival of this style of junction as it was opened in 

a cyclist killing zone at a cost of £2.4m. The protected junction holds a red bike lane 

round to give cyclists and pedestrians priority (Cambridge Cycling Campaign, 2020). 

It has been called Dutch roundabout due to being developed in the Netherlands.  

A Dutch-style roundabout has parallel cycle and pedestrian zebra crossings on each 

arm which allows the VRUs to have priority over drivers. The entry and exit arms 

are vertical, rather than tangential to the roundabout and have minimal flare. 

Moreover, by decreasing the width of the arms and circulatory carriageway, all 

vehicle speeds decrease. With speeds reduced, any collisions that do happen are 

probably to be of much lesser severity. A central over-run area permits big vehicles 

to manoeuvre round the roundabout (Cambridgeshire County Council, 2020; 

Cambridge Cycling Campaign, 2020; Daily Mail, 2020). This kind of scheme can 

encourage cycling amongst both adults and children, which in turn can bring health 
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welfares from better physical activity of new riders (Cambridgeshire County Council, 

2020). 

4.4.5.2.4 CYCLOPS Junction 

Another option regarding protected junctions can be Cycle Optimised Protected 

Signals (CYCLOPS) type which an orbital cycle route separates riders from motor 

vehicles, decreasing the likelihood of accidents or conflicts.  The UK's 

first CYCLOPS cycling junction has been proceeded in South Manchester, planned 

to separate VRUs from traffic. Pedal riders approach the intersection from four 

‘arms’, converging onto a cycle route which fully encircles the intersection, allowing 

bicycles to create a right turn while being protected from traffic flow, and to perform 

the manoeuvre in one movement (subject to signal timings) (TfGM, 2019). 

 
Figure 48: Proposed UK's First CYCLOPS, Greater Manchester (TfGM, 2019) 

The key innovation of the design in CYCLOPS is the cycle track being on the 

outside of the pedestrian crossings, which offers more space and means for all kinds 
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of junction activities which can be incorporated within the external orbital bile route. 

It is estimated that the amount of people cycling and walking will rise in the future, 

therefore CYCLOPS junctions can simply accommodate this modal shift as cycle 

and pedestrian stages run in parallel simultaneously profiting from green time 

reallocated from traffic phases (TfGM, 2019). 

4.4.5.2.5 Narrow Cycle Lane Defenders 

Within framework of the second case study, the first key injury severity impact 

factor refers to location of bicycle. The reality is that the title ‘cycling capital’ has 

been achieved without any real and enough cycling infrastructure for such a big 

cycling city (CambridgeshireLive, 2018b).  The majority of network for central 

routes in Cambridge, cyclists rely on narrow lanes which consist of merely a few 

inches of white paint (as example below) which give the riders a false feeling of 

safety on busy mandatory cycle tracks (Siamidoudaran and Iscioglu, 2019; 

Siamidoudaran et al., 2019a; Siamidoudaran et al., 2019b). The below photo shows 

an example related to the narrow bike lanes. 
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Figure 49: Narrow Bike Lanes Design Flaws Make A Bike Lane Incredibly Unsafe 

Nonetheless, based on the first factor detected in this thesis, narrow protected cycle 

defenders are needed to segregate bikes from other traffic where road width is too 

narrow (ISJ, 2020). In addition, flexible, passively safe, highly visible 

bollards/wands should also be combined with defenders to clearly direct where a 

cycle lane is to other road users. Moreover, continuous segregation should be 

considered where passible and for over longer distances where vehicle speeds may 

be higher. The below photo is an example of narrow bike defender which are 

suggested be more effective for narrow roads (ISJ, 2020; Rosehill Highways, 2020). 

The photo shows Wand Orca defenders combining vertical cones with reflective 

markings, together with horizontal rubber modules (Rediweld, 2020).  
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Figure 50: Narrow Cycle Defender Incorporating Wands (Rediweld, 2020) 

The defenders must provide cycle lane segregation and safety for cyclists as well as 

provide continuity by excluding other traffic from the cycle lane (where possible). 

Importantly, they must integrate reflectivity for maximum visibility. 

Fully protected bike lanes are an effective and increasingly popular tool to elevate 

cycling mode shares and road safety in most cycling destinations in the world such 

as; Netherlands. However, most of the current defenders in the UK (e.g. Orcas shown 

in Figure 51) provide light segregation which are not really suitable for bike friendly 

cities where carriageway width is too limited. These kinds of defenders are a 

compromise and are definitely not very suitable for some sites in Cambridge as well 

as the City of London, the big cycling cities. Although, this type of separator 

discourages drivers from drifting or parking, there are reports of people not seeing 

the defenders as they cross the road, tripping over and hurting themselves (BSfE, 

2018). 
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Figure 51: Example of Cycle Lane Soft Segregation 

Perhaps a more visible form of separator, like the Wand-Orca is more noticeable to 

pedestrians. Ultimately it is hoped that the light segregations will lead to improve 

and be fully segregated cycle lanes in the future like the paths we see in the 

Netherlands. In this regard, where carriageway width is limited, the narrow cycle 

lane defenders are the perfect solution at just 235mm wide for continuous 

segregation which comply with Cycling England and Sustrans guidelines (Rosehill 

Highways, 2020). The finding of this study fits the UK government advice against 

the use of public transport due to physical distancing during Covid-19 post lockdown 

distancing and while promoting ‘active travel’ to work, local authorities across the 

UK are strongly seeking to rapidly expand their protected cycle lane networks (ISJ, 

2020). 
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4.4.5.3 UK Cycling Is Booming During COVID–19 

There is a 200% increase in bicycle orders from people working for some service 

area (BBC, 2020b). Restrictions and fear of catching the Covid-19 virus on public 

transport has inevitably helped lead to a boom in cycle-to-work schemes as well as 

number of people cycling to work in their area; and physical distancing guidelines 

mean they require more space in which to do so. In the meantime, it’s vital that pedal 

riders feel safe when travelling to work (BBC, 2020a; BBC, 2020b; PKC, 2020).  

4.4.5.4 Road Safety Education, Training and Publicity   

As the majority of the identified predictors directly blame some kind of human error, 

what is clear from this important outcome is that it seems there is still lack of an 

effective education in road safety in both case studies and this privation poses 

significant dangers for VRUs, specifically for the cyclist group. Therefore, this 

strongly suggests that poor road safety skills of road users need to be improved by 

applying various and truly effective education as well as training and publicity 

programmes to further ensure VRUs are safer on streets, particularly around and in 

junctions. To overcome this, road safety intervention options concerning the specific 

groups should be applied (Luria et al., 2000).  

4.4.5.5 Importance of Educational Interventions in Road Safety Engineering 

Road engineering has traditionally been thought of as being an extrinsic method of 

improving road safety. However, road safety education, information, training and 

publicity can also be a vital part of the safer systems. Educational interventions have 

been a popular method to cope with road safety concerns as they satisfy a number of 

aims. Education interventions allow governments to address a problem of public 

concern, they are apparently reasonable and they are politically uncontroversial. 

Nevertheless, evidence offers that a lot of these interventions are ineffective 
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(McKenna, 2010) because they are frequently designed in the lack of theory or 

evidence such as examining STATS19 data. (RoSPA, 2017a). Lopez et al (2009) 

recommends that designing an educational intervention without any guiding model is 

similar to planning a medical intervention without an understanding of physiology. 

Just as it cannot be expected that aspirin decreases the risks of a heart disease without 

evidence, intuition and what seems plausible cannot give information on how much 

of delivering road safety education or publicity programme on seatbelt wear will 

change drivers and occupants’ behaviour (Hauer, 2007). In addition, addressing road 

safety education and training are important requirements of road safety design in 

most of developed countries (Vardaki et al., 2018). Therefore, it is vital for all 

engineers and technicians to have solid knowledge of road safety education, training 

and publicity programmes.  

To better understand the requirement, this thesis provides an example to show the 

importance of education, training and publicity in laying these foundations in the 

design process. For example, if a design plan (e.g. traffic calming measures) is to 

install bollards opposite a primary school, across a path which is approaching a 

crossing point in order to discourage child pedestrians from proceeding straight 

across road, it is great idea to use pencil shaped bollards and match the colours of the 

bollards with the pupils’ uniform. Because this kind of bollard is a more suitable 

option for school environments compared to the traditional pedestrian guardrail. Its 

distinctive pencil shape provides a clear and effective form of pedestrian and vehicle 

demarcation for a wide range of landscapes (Marshalls, 2020). This is an effective 

idea which can emphasise the traffic calming features and can highly help encourage 

drivers to voluntarily slow down. In this regard, many previous studies have shown 

that traffic calming can reduce collision levels by up to 40%, and have an important 
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impact on reducing the severity of injuries (Harvey, 1992; Elliott et al., 2003). The 

below photo shows installed Ferrocast PiPencil Bollards in a school environment.  

 
Figure 52: Example of PiPencil Bollards 

As it is clear in the example, the designers can fail to use an effective idea in the 

design process, if they not completely aware of importance of educational and 

publicity interventions in road safety engineering (Vardaki et al., 2018). Indeed, road 

safety education, training and publicity plans are complementary to road safety 

engineering and can provide more effective models for engineering roles. Institutions 

of Highways and Transportations in UK such as; The Institute of Highway Engineers 

(IHE), Road Safety GB Academy, and Chartered Institution of Highways and 

Transportation (CIHT) recognised this shortfall and already have included Education, 

Information, Training and Publicity in the content of their road safety engineering 
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course as a specific subject (IHE, 2020 and Road Safety GB Academy, 2020). 

Unfortunately, educational and publicity interventions are ignored by most of the low 

and middle-income (LMIC) countries. Majority of the current road safety 

intervention researches (including SATAS19 data and interventions in this thesis) 

originate from high‐income countries, despite LMIC countries bearing the more 

injury burden (Ameratunga et al., 2006; Perel et al., 2007). 

4.4.5.6 Improving Effectiveness of Road Safety Campaigns through Humour 

 Online activities can help inspire the road users’ interest in road safety learning. For 

example, game, video or ads with a series of humorous scenarios can be used to start 

learning travel, leading to discovering vital themes through fun, play and active 

experience.  More specific to young people, this thesis believes that humour can be a 

key part of road safety to encourage safer behaviour and it is an effective way to 

engage the audience, and mainly a younger audience.  

For example, a new campaign by Road Safety Scotland urges young people to drive 

like their grandmother is in the car with them. The ‘Drive like Gran's in the car’ 

humorous ads targeted at young male drivers in particular, shows a series of videos 

related to Grandmother characters, who unexpectedly appear in the car while their 

grandsons are driving (as shown in Figure 53) (Road Safety Scotland, 2020). 
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Figure 53: Drive Like Gran's in the Car (Road Safety Scotland, 2020) 

Each video shows a different scenario, with the grandmothers addressing unsafe and 

bad driving behaviours including some of the key contributing factors that lead to 

casualties such as mobile phone use, alcohol and drug involvement, passenger 

distraction and driving too fast. It comes after research found that young lads change 

their driving behaviour depending on who they have in the car with them. It’s a fact 

that young people drive better with their grans in the car. According to an official 

survey, they drive more carefully when they are carrying "valuable cargo" like their 

grandmother in the car. Therefore, the ideology is that, next time during bad driving 

behavior, they should imagine Grandmother is in the car with them (Road Safety 

Scotland, 2020).   



 

 

 

In addition, the concerns and suggestions made for decreasing the severity of injuries in traffic accidents are summarised in Table 15. 

Table 15: The summary of concerns and suggestions made to improve road safety 

Evidence-based Road Safety Interventions 

No Type of 

Intervention 

Theme (s) Location Concern Purpose of intervention 

1 Protected 

junctions (e.g. 

Glasgow style, 

Dutch-style 

roundabout, and 

CYCLOPS) 

Travelling safely (All 

group specifically 

people travelling on 

foot and by cycle) 

Intersections Crossing busy junctions 

on foot or by cycle is a 

scary and difficult 

experience 

Provide cyclists physical 

separation through an entire 

junction and eliminate stressful 

junctions with motor vehicles 

2 Narrow cycle 

lane defenders 

Cycling safety Where carriageway 

width is too limited 

Narrow bike lanes design 

flaws make a bike lane 

incredibly unsafe 

Provide protected segregation 

for bikes from other traffic 

3 Cycle lane soft 

segregation  

Cycling safety Where there is 

conjunction with 

mandatory cycle 

lane markings 

Risk of cycling injury 

while sharing the road 

with motor vehicles 

Provide light segregation by 

excluding other traffic from bike 

lane (not highly recommended 

due to being a compromise) 

4 Continuous cycle 

lane segregation / 

Fully continuous 

Cycling safety Where passible and 

for over longer 

distances where 

Vehicles entering a cycle 

lane must be deterred 

Provide continuous segregation 

by excluding other traffic from 



 

 

 

cycle lane 

segregation 

vehicle speeds may 

be higher 

bike lane 

 

5 Flexible, 

passively safe, 

highly visible 

bollards/wands 

Cycling safety Combined with 

defenders 

Driver can crash into 

cycle lane bollards 

Clearly direct where a cycle lane 

is to other road users/integrate 

reflectivity for maximum 

visibility 

6 Trials of lower 

speed limit (e.g. 

20mph) 

Travelling safely 

(people travelling on 

foot and by cycle) 

Busy and narrow 

roads in city centre 

People biking and 

commuters encounter 

increasing traffic 

(especially when 

physically distancing due 

to Covid-19) 

Provide safer conditions for 

VRUs by introducing a lower 

speed limit 

7 Safety 

effectiveness of 

crossing 

enhancements 

(e.g. PiPencil 

bollard) 

Crossing safety 

(VRUs) 

At locations where 

designers wish to 

encourage VRUs to 

cross 

Risk of injury to a 

cyclist/pedestrian while 

crossing a carriageway 

Improving the visibility of 

pedestrian crossing points and 

providing more adequate 

facilities for crossing 

carriageways 

8 Proper road 

safety education 

(e.g. humour ads) 

Addressing the key 

contributing factors 

that led to casualties 

Humorous scenarios 

addressing bad 

driving habits 

Unsafe driving 

behaviours including 

distractions 

Protecting specific road users 

and reducing devastating 

casualties by teaching life-saving 

messages 
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4.4.5.7 Future Study of Road Safety Education 

In field of road safety education, publicity and training, further research needs to 

discover innovative teaching and learning approaches as well as platforms in 

direction of playing a dynamic role in laying these foundations. The evidence-based 

road safety intervention options of this thesis offer peace of mind for VRUs. The 

findings of this study can play a vital role in helping casualty reduction and 

prevention targets along with handling numerous road safety issues.  

4.4.6 Advanced Automatic Collision Notification 

The results can be also connected to vehicle safety for instance; advanced automatic 

collision notification (AACN). AACN captures contributing factors in real-time and 

announces the information to emergency responders, warning responders of the 

location and nature of the collision so they can be responded to more quickly. AACN 

is able to improve results among severely injured crash patients by predicting the 

probability of serious injury among vehicle occupants (Stitzel et al., 2016; Yoshida et 

al., 2016). 

4.4.7 Standards and Guidelines on Road Safety Engineering  

As Civil Engineering degrees from EMU (recognised globally as an international 

university) are accepted by UK National Recognition Information Centre (UK 

NARIC) and the Institution of Civil Engineers (ICE), this study aimed to shed some 

light on the potential of remedial measures and techniques while trying to meet road 

safety engineering requirements of the UK DfT, ICE, IHE, CIHT, Road Safety GB 

Academy, Road Safety Scotland, RoSPA, TRL, and local authorities.  
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Chapter 5 

CONCLUSION 

5.1 Thesis Statement 

Although much of STATS19 data proves that UK has some of the safest roads in the 

world, there is still much more work to be done in order to improve the safety 

(Siamidoudaran and Iscioglu, 2019; Siamidoudaran et al., 2019a; Siamidoudaran et 

al., 2019b). In particular, collision history for South East England, London, and 

Cambridge alarm that more traffic injury prevention interventions should be done to 

protect specific groups. The UK government has a vision to avoid all road fatalities 

and mainly mitigate injury severities and subsequent costs and social influences from 

traffic collisions (DfT, 2018d). Therefore, there is an urgent need to detect the factors 

that significantly affect severity of the injuries caused by accidents. 

5.2 Key Points and Contributions  

In this thesis, RBFNN, MLPNN, SVM, Hybrid MLPNN-SVM, and LVQNN were 

applied to understand the relationship between injury severity levels as well as the 

factors that contribute to their generation. To achieve this goal, two case studies were 

considered on the basis of STATS19 road safety data.  

5.2.1 Rank Analysis to Find Key Factors (RBFNN) 

The objective of the first case study which refers to the city of London, was to 

predict personal injury severity levels through RBFNN for all road users. Using this 

technology that includes the interaction of input and output factors, the model 

predicted likelihood of the injury severities while classifying them into different 
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levels. The prediction model was addressed as an identification system for key injury 

severity impact factors. The sensitive predictors were the key actions and failures 

that led directly to the actual influences.  

5.2.2 Cycling as a Common Concern between Two Case Studies 

As a result of the first case study, specific groups were recognised as needing more 

road safety interventions. In this regard, most vulnerable were detected as non–

motorised road users, therefore, to solve the first case study’s concern within an 

innovative way, the pedal rider group was considered for the UK’s cycling capital 

case study. Although, Cambridge has clung on to this title, new statistics display that 

road safety concerns are the top barriers to pedal riding.  Thus, RBFNN also shed 

some light on the potential of remedial techniques to predict injury severities 

sustained by the two–wheel group. In both case studies, the associated explanatory 

factors have been discovered and ranked as most import contributory factors or 

accident cluster sites.  

5.2.3 Key Findings of the First Case Study – City of London  

The first case study results warn that absence of required crossing facilities was 

responsible for the majority of injuries involving collisions with vehicles and VRUs 

wherein interventions should be a high priority. The probability of high injury 

severities increases as a result of poor manoeuvres at and around busy junctions; 

therefore, certain manoeuvres must be banned on some of the specific roads. Specific 

types of vehicles were correspondingly responsible for majority of the injuries. 

Certain point of the ‘initial contact’ in crashes was another contributory factor. Drug 

and alcohol consumption also had a negative effect on pedestrians’ safety. Foot-

travelers were injured as a result of being intoxicated by alcohol or illicit drugs in the 

city of London.  
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5.2.4 Key Findings of a Second Case study – UK’s Every Day Cycling Capital  

Within cyclist related injuries, the first factor refers to location of bicycle, in which 

cyclists relied on narrow lanes comprised of only a few inches of white paint to give 

riders on bikes a feeling of comfort and safety on busy mandatory cycle lanes. 

Modern protected cycle routes are suggested to fully separate bikes from other traffic 

where road width is too narrow. Like the first case study, T or staggered junctions on 

an unclassified bend was discovered to be particularly dangerous for the UK's 

cycling capital and was identified as a collision hotspot. Lack of a necessary number 

of crossing facilities for the riders were identified to have a higher affect on 

probability of the injuries. Following this position, possibly they just went across the 

street without a signal or they didn’t completely appreciate how the facilities work 

leading to conflict or confusion. Installing protected junction in busy sites can 

definitely give priority to cyclists and pedestrians, which unfortunately is not a 

common practice in the UK. A higher accident involvement, with regard to their 

traffic volumes, was observed for specific times and days such as; rush hour during 

weekday or weekends.  

5.2.5 Maximise Accuracy by Sensitive Predictors (MLPNN and SVM)   

The models used with the intention of building an improved performance model 

through applying the key injury severity impact factors. To achieve this, rank 

analysis was done to find the key predictors, then, MLPNN was applied to the first 

case study and SVM was used for cycling injuries in Cambridge. MSE, RMSE and 

R–value was used to measure the relationship between actual crash related factors 

and predicted classes of the injury severity.  
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5.2.6 Comparison of MLPNN and SVM along with Severity Classes  

As a result of a comparison among the classes, the predicted classes of ‘slight injury’ 

and ‘damage only’ achieved higher prediction accuracy in comparison to serious 

injury levels. In these classes, the models’ predictions were very close to the actual 

dataset.  Due to the lack of data for ‘fatal class’, the MLPNN and SVM totally failed 

to predict this class in both case studies. A comparison of model fitting results of the 

proposed ANN and SVM models show that the models are effectively capable in 

prediction of STATS19 data but MLPNN performs a little better than SVM. 

Howbeit, this thesis suggests SVM is also another viable modelling alternative for 

injury severity prediction. 

5.2.7 Overcoming Limitation of Data (Hybrid MLPNN-SVM and LVQNN)   

In response to this, a hybrid MLPNN-SVM and an improved LVQNN were 

considered to improve the prediction accuracies.  In this regard, hybrid MLPNN–

SVM was applied to the same dataset which was used for the city of London by 

MLPNN. Although the hybrid model was able to demonstrate an advanced 

development (approx. 20%) on predictions, the incorrect predictions for ‘fatal’ and 

‘serious injury’ still persisted. Therefore, ‘fatal’ and ‘serious injury’ classes were 

combined within a single class as KSI to improve the quality of the data. In this vein, 

an improved LVQNN was successfully applied for building a better performance 

model by using the identical dataset which was used for Cambridge by SVM. As a 

result, the LVQNN prediction model achieved a higher overall accuracy compared to 

MLPNN, SVM, and hybrid MLPNN-SVM. The model was also able to obtain a 

supreme result for each injury severity class in terms of correct predictions. 
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5.2.8 Contribution of Study 

The contribution of this thesis is multiple. First, the RBFNN model was used for 

traffic accident injury severity prediction. In general, a large series of ANN and SVM 

models have been used for traffic crash injury severity studies. However, after a 

thorough literature review, we identified a gap in the published studies on the 

methodology in traffic injury severity research through rank analysis. There are 

limited prediction applications using rank analysis to find key injury severity impact 

factors, which believes that applying most important contributory factors is the key 

approach for maximising prediction accuracy. This assumption may not be valid in 

predictions which use limited crash related factors.  

There have been great efforts to develop prediction models for numerous road safety 

concerns, however, as far as the author is aware, prediction models have still not 

been developed in the UK for determining traffic accident or injury key predictors. 

Thus, in this thesis, prediction models for two case studies were set up on the basis of 

STATS 19 data. 

STATS19 information is of great value to road safety practitioners, however, most 

research has paid only little attention to the contributory factors which STATS19 

data specifically focuses on. Having more data is always a great way to improve 

prediction accuracy, therefore, the second major contribution of this thesis is 

applying mass of subdivision data to examine personal injury severity classes. We 

apply RBFNN to SATAS19 data to find out the relationship between injury 

severities and related contributing factors. Approximately 50 potential explanatory 

variables were examined initially using the RBFNN model. Each variable holds 

many new subdivision data (label) which are surely an innovation in the field of road 
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safety. As a result of rank analysis, around 20 of them were found to be contributory 

in increasing the severity of injuries. Nevertheless, some commonly used variables 

such as weather condition, road surface condition; gender and age of road users were 

found to have no important impact on the injury severities. This outcome could have 

some key implications in road safety and warrant extra investigation which can be 

done in the future.  

In addition, we discovered several groups and site clusters that needed to benefit 

from road safety interventions. In the reviewed literature, we also found a major gap 

on injury-related results of the predictions which was not a common key focus with 

the aim of discussing contributory factors and intervention options. To bridge this 

gap, we suggested several evidence-based intervention options and demonstrated 

how they could be applied to mitigate the concerns which have largely been ignored 

by researchers. 

This thesis examined different models and compared them to find the best fit model 

for prediction of STATS19 data. In order to maximise model performance and to 

respond to the limitation of data, for the first time ever, a hybrid MLPNN-SVM and a 

LVQNN have been used in an accident injury severity related study by the author. 

Using the identical data for both case studies, performance of the predictive models 

along with prediction accuracies for each class were also compared and discussed. 

The result suggests that the models have the capability to handle sub-categorical data 

of STATS19 so they are promising tools for future crash injury severity studies with 

similar datasets. Nevertheless, LVQNN model was more accurate in predicting all 

the injury severity classes and fitted the data better than MLPNN, SVM, and the 

hybrid model.  
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Prediction models specifically focused on cycling injuries or accidents have rarely 

been investigated. Therefore, in response to the lack literature on prediction models 

for cyclist related injury severities, this study separately predicts cyclist injury 

severities for one of the most incredible cycling destinations in the world which is 

believed to be the most important contribution of this thesis. In this vein, bicycles 

were involved in the highest number of casualties on roads in Cambridge; one of the 

most bike-friendly cities in the world wherein cycling is considered as a significant 

means of transport.  

5.3 The Significance of Research 

The result of this thesis can be used as a function to assess the safety performance of 

the overall road networks. Having this methodology as a casualty reduction 

technique, local authorities and communities can point out the main safety concerns 

as well as their own priorities in their area to use to for engineering, education, and 

enforcement. We believe, the findings are more accurate compared to the reported 

factors which the attending police officer thought had contributed to the accident. 

Those factors are largely subjective, reflecting the opinion of the reporting police 

officer, and are not necessarily the outcome of wide-ranging investigation so may 

well not be completely reliable. 

5.4 General Conclusion 

The general conclusion that can be drawn from this thesis is that all the ANN, SVM, 

and the hybrid ANN-SVM have the ability to predict within accepTable limits. In 

view of that, the models are capable tools for predicting severity of personal injuries. 

However, combination of the fatal and serious injury classes is important to achieve 

accurate predictions.  
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Most commonly identified contributory factors occurring in both case studies were a 

result of human error with high accident concentration being attributed to busy 

junction actions and poor turning manoeuvres. To address this concern, along with 

the road engineering interventions (fully protected junctions and visible narrow cycle 

defenders) intervention options concerning the specific groups should be applied 

through professional road safety education, training and publicity. 
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