Performance Evaluation of Software Defined

Networks Using Queueing Models

Maysarah Mohammad Al Masri

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master in Science
n
Computer Engineering

Eastern Mediterranean University
May 2019
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of
Master of Science in Computer Engineering.

Prof. Dr. Isik Aybay
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Prof. Dr. Dogu Arifler
Supervisor

Examining Committee

1. Prof. Dr. Dogu Arifler

2. Assoc. Prof. Dr. Enver Ever

3. Assoc. Prof. Dr. Mohammed Salamah

il

ABSTRACT

Evolving network requirements have recently made the software defined networking
paradigm very popular. In a software defined network (SDN), the data and control
functions of network nodes such as routers and switches are separated. In particular, a
physically separate controller, which is implemented in software, computes and
distributes forwarding tables to routing devices. Such a separation requires an
analysis of packet delay performance to evaluate the tradeoffs of using controllers
versus a traditional networking architecture. Previous studies have employed
simulations and analytical models to evaluate the performance of SDNs before actual
deployment. However, these studies are limited to specific topologies, are based on

approximations, and cannot be easily extended to more general topologies.

The work presented in this thesis employs classed networks of queues to model
SDNs. First, a topology that consists of a single switch and a single controller is
analyzed using the proposed queueing model. Then, the topology is extended to
multiple switches and the methodology is applied to model the extended network.
Finally, the classed queueing network model is used to evaluate the deployment of
multiple controllers. The single-switch, single-controller topology results are in
agreement with previous studies that employ single-class queueing theoretic methods.
There is currently limited or no data available to benchmark classed queueing
network models of multiple-switch or multiple-controller topologies. Nevertheless,
the results give insights into the design and deployment of multiple switches or
controllers. For instance, the findings indicate that the power-delay performance is

improved when two half-capacity controllers are deployed instead of a single

il

full-capacity controller. In addition, in case there are intermittent controller failures,

installing two controllers may be justified for large traffic loads.

Keywords: Classed network of queues, OpenFlow, Performance analysis, Queueing

theory, Software defined networks

v

(074

Gelisen ag gereksinimleri, yazilim tanimli ag (SDN) yaklagimlarini oldukga popiiler
hale getirmistir. SDN’lerde, yonlendirici ve anahtar gibi ag diigiimlerinde, veri ve
kontrol fonksiyonlar1 birbirinden ayrilmistir. Ozellikle, yazilim olarak uygulanan ve
fiziksel ayr1 bir kontrol birimi, génderim tablolarini hesaplayip yonlendirici cihazlara
dagitir. Bu aymrim, geleneksel ag mimarisinden farkli oldugundan, kontrol birimi
kullanmanin analiz edilmesini gerektirmektedir. Onceki calismalar, simiilasyon ve
analitik modellerle kurulum O©ncesi SDN’lerin performansini degerlendirmistir.
Ancak, bu calismalardaki metotlar bazi spesifik topolojilerle smirli olup,

yaklagtirmalara dayalidir ve genel topolojilere genisletilmesi kolay degildir.

Bu tezde anlatilan calisma, simifli kuyruklar aglarim1 kullamip SDN’leri modellemeyi
amaclamaktadir. 11k olarak, bir anahtar ve bir kontrol biriminden olusan topoloji
Onerilen kuyruk modeliyle analiz edilmistir. Daha sonra, topoloji birden fazla
anahtarla genisletilmis ve metotlar bu topolojiye uygulanmistir. Son olarak, sinifl
kuyruklar ag modeli, birden fazla kontrol biriminin kurulumunu degerlendirmek i¢in
kullanilmigtir. Tek-anahtar, tek-kontrol biriminden olusan topolojiyle elde edilen
sonuglar daha onceki calismalarda elde edilen ve tek sinifli kuyruk teorisi kullanan
metotlarla uyusmaktadir. Su anda, bu konuda calismalar ve sonuclar sinirh
oldugundan, birden fazla anahtar ve birden fazla kontrol birimi modellerinin verdigi
sonuclar teyit edilememistir. Ancak, buna ragmen sonuclarin birden fazla anahtar ve
kontrol birimi i¢geren aglarin tasarim ve kurulumuna yol gosterecegi ongoriilmektedir.
Ornegin, sonuglara gore, giic-gecikme performansinin, tek bir tam kapasite kontrol

birimi yerine iki tane yarim kapasiteli kontrol birimi kullanildiginda daha iyi olacagi

beklenmektedir. Ayrica, ara sira devre dis1 kalan kontrol birimleri olmas1 durumunda,
iki kontrol birimi kurmanin, yiiksek trafik yogunlugunda tercih edilebilecegi yoniinde

bulgular elde edilmistir.

Anahtar Kelimeler: Sinifli kuyruklar agi, OpenFlow, Performans analizi, Kuyruk

teorisi, Vazilim tanimh aglar

vi

DEDICATION

Dedicated to my family.

vii

ACKNOWLEDGMENT

My deepest gratitude goes to my supervisor Prof. Dr. Dogu Arifler for his constant
support and wholehearted collaboration in my thesis. The list of skills I have learned
from him is too long to be included here. Therefore, simply thanks for everything, for
being a great teacher, for great research support, advice and for correcting this thesis.
Thanks for guiding me through this time, it has been and will be an honor and great

pleasure working with you.

My personal appreciation goes to Assoc. Prof. Dr. Enver Ever, and Assoc. Prof. Dr.
Mohammed Salamah for accepting to be in my jury. Their valuable comments and

suggestions have truly helped me to further improve my thesis writing and contents.

I am most grateful to my parents who were always there to support me and to share
my thoughts. I want to thank my mother for her love and endless support, thanks for
always being there for me and for being here in Cyprus during my defense. Thanks to

all my brothers and sister who always encourage me to finish this long journey.

Yet, in the end, my special thanks go to my life partner and dearest person Hamza
who reminded me that there is a life beyond the school. Without him I would not
have made it here. Thanks for understanding that time was often scarce and for always
encouraging me. Thanks for listening to me when I needed someone to talk to, thanks

for all the nights we spent managing time and scheduling for the next-step goals.

After all, I believe that the research I did during my Master is just an exercise and the

best is coming with time. This is just the beginning.

viii

TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt et b et sb et sbe et esee e [i]
OZ oo W
DEDICATION ..ottt sttt sttt ettt ettt esaeentesseeneesseense e
ACKNOWLEDGMENTcuiiiiiieiesieie sttt
LIST OF FIGURES ...ttt
LIST OF SYMBOLS AND ABBREVIATIONS.......ccootiiiiiienieienieeenceeseeeee [xiiil
1 INTRODUCTION ...ttt ettt ettt ettt et [l
1.1 Software Defined Networkingcccooviiiiiiiiiiiniiiiniiieeceeceee Il
1.1.1 SDN AICRItECTUIEviuveeievieieiieiieieiieteiee ettt 2l

1.2 OPENFLOW (OF)cuiiiiieieieiiieieeeeeeeeeeteee ettt enens
1.2.1 OpenFIOW OVETVIEWvovieeeiiiieieeieteeeeteeteee ettt even e

1.2.2 Packet MatChing...........ccoovivvieuieiieiieeieeeeeeeteeee ettt 7]

1.3 Thesis MOtIVALIONecvevveevieiirieeiieiieieeieeie ettt ee e se s e neeneens 7

1.4 RelAted WOTKouveviiieieiiieiieteieeceteeteet ettt esens ()

1.5 Main COontribULIONSccueeviruieiinieeienieetenie ettt ettt

1.6 ThESIS SIIUCTULE ..cuvveiiieiiieiieeiieete ettt et 12}

2 MODELS AND METHODSccoooiiiiiieeteeteteeeee e 13
2.1 Jackson Network Model of SDNcooiiiiiiiiiiieceeceeen
2.2 Modified Jackson NEtWOIKccccveieririeiiieieiieriieecieeee e,

2.3 Classed Networks of QUEUESccuueieeeiiieeeiiiie et e
2.4 Proposed Model for SDN Using Classed Networks of Queues 18
2.4.1 One Controller, One Switch TOPOlOZY......ccevvvieriieiiiieniieeiieeeieenne 19

2.4.2 Extended Data Plane Topologyccocceeviiiniiiiniiiiiiiinieciiceieee 20

iX

2.4.3 Topology with Multiple Controllerccceevveerieeriiieniieeiieenieene

2.4.4 Energy Performance Trade-off..........c.ccoeviiiiiiiiniiniiiiee e

3 RESULTS AND DISCUSSION.......coiiitiiiiiieeteteeeee ettt
3.1 One-Controller, One-Switch TOPOlOZYccceeviiiiiiiiniiiiiiieceeceeeeee,
3.2 Extended Data Plane...........cccccoovieiiiiiiiiiiiiiieeeceecee e

3.3 Multiple Controller TOPOIOZYeevviieriiiiiiiiiiieeie et
3.3.1 Energy Performance Trade-off..........c.cccooviiiiiiiniiiniieiieeeeee

3.3.2 Effect of Redundancy with Intermittently Failing Controllers

3.3.3 Benefits of Employing Multiple Controllers..........cccccccevueeriiieenneene

4 CONCLUSIONS AND FUTURE WORK......cccccoiiiiiiiienieeieeeeeee e
4.1 CONCIUSIONS. . ..eeniiiiiiiitinieeete ettt ettt st et sane e reens
4.2 FULUIE WOTK ..ottt st
REFERENCESottt ettt st

APPENDIXooiiiiii e e

LIST OF FIGURES

Figure 1.1: SDN architecture [T0]........ccocoveiieieiiiiierieieeeeeeeeeeeeeeee e
Figure 1.2: Centralized controller [T1]........ccccoeviririeiiiiieieiceeeeeeeeeeee e 3l
Figure 1.3: Distributed controller [[11]cccooviiiriiiiniiiiiiieeceeeeee e,)
Figure 1.4: General structure of SDN application plane functions [§]....................
Figure 1.5: Connectivity between OF switch and controller [16]cccccueeeneee. 6
Figure 1.6: Flow table entry for OF version 1.0.0........cccccocoevininiininiininninienn. 6]
Figure 1.7: 12—tuples of matching fields.ccoeviieriiiiiiieniieeeeee e, 8|
Figure 1.8: Packet matChing ProCessoecueeeriieriiiieriieeiieeriee et B

Figure 1.9: Queuing model of simple network with an OpenFlow switch connected to

a single controller [23]].cviiiiiieieieeeeee ettt [0l
Figure 2.1: An example Jackson queueing network model [29].cccccoceenenee. 13
Figure 2.2: Jackson queueing network model applied to SDN [[19]..............c......... 14l
Figure 2.3: Modified Jackson model [19]]........cc.cooiiiiniiiiiiiiiceeeeee,
Figure 2.4: Simple classed network of qUEUEScccceeevviiiiiiiiiiiiniiiiieeeeeeee,
Figure 2.5: Flowchart of proposed modelcccceeviiiiiiieniiieeiiieeieeeecee e, [18]
Figure 2.6: Simple OF network of proposed model...........ccccoevieriiiniininiccneennne. 19|
Figure 2.7: Extended data plane...........cccceovieeiiiiniiniiniieieneeceeeeeeee e 20
Figure 2.8: Extended control planec.ccceceevienieniiiinienicneeeeeceeeeeeeee

Figure 3.1: Comparison of the proposed model to the modified Jackson model [26)

Figure 3.2: Extended data plane with three switches ..o,
Figure 3.3: Comparison of different dispatching policiescocceerierierneeneennee. 29|

xi

Figure 3.4:

policies.......

Figure 3.5:
Figure 3.6:
Figure 3.7:

Figure 3.8:

Queue sizes for each of the two controllers under different dispatching

.. 31l
Cost function When 00 = 2........cooiiiiiiiiiniiriceeeeceee e 32
Cost function When 00 = 3.......c.ccceeririririerereieiiiieeeieee e, B3l
Controllers with intermittent failures............ccocceeevieeinieiniieenieenieeee
Failure all SCENATIOSccceeiriiiiiiiiiiiiiieeetcee e 36|

xii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface
FCFS First Come First Served

ICN Information Centric Networking
IoT Internet of Things

JSQ Join the Shortest Queue

NOS Network Operating System

NBI Northbound Interface

ONF Open Networking Foundation
OF OpenFlow

PDP Power Delay Product

RR Round-Robin

SSL Secure Sockets Layer

SDN Software Defined Networking

TLS Transport Layer Security

Xiii

Chapter 1

INTRODUCTION

1.1 Software Defined Networking

The rapid growth in network complexity as well as mobility and the wide use of
Internet of Things (IoT) and virtualization have made network management difficult.
Traditional networks require expert personnel to (re)configure and setup network
devices and appliances; this process is time consuming, costly and can become
unscalable in certain cases [1]. In addition, as the needs of users are increasing
sharply, developers and companies implement and develop new applications and
services in order to meet the customer requirements. Today’s data centers, campuses,
and enterprises need a more adaptable architecture, improve security and on demand
scaling. These challanges have led network researchers to rethink about new designs
of network architecture. The new designs should address the weaknesses in

traditional networks and make them compatible with the new requirements [2]].

Software Defined Networking (SDN) was initiated at Stanford University [3|] and
represents a new approach in computer networking. SDN provides network
management simplification, energy efficiency, and adaptive scalability. Moreover,
network resources can be installed, configured, and managed in a simple
manner [4}|5]. The core idea of this new paradigm is the decoupling of the control

plane (controller) and the data plane (switching devices). This decoupling allows

flexible management of the network resources on the fly instead of manual
(re)configuration [6,|7]. The main contribution of the SDN is its ability to enable

flexible and centralized control of the network.

1.1.1 SDN Architecture

Figure [I.1] illustrates the logical structure of a typical SDN. As defined by [§]] the
infrastructure layer, which includes the hardware devices like routers, switches, and
access points, lies at the bottom layer. Infrastructure layer, forwarding elements,
switching devices, network devices, and data plane all refer to the hardware devices in
SDN. Infrastructure layer is responsible for forwarding the incoming packets via
different ports based on flow table rules that are determined by the controller. It is

also responsible for collecting network traffic and network usage statistics [9].

Application Plane

APPLICATIONS | | | App | | App | | App |

NORTHBOUND INTERFACE Control Plane

CONTROLLERS

Control/Infrastructure API

SOUTHBOUND INTERFACE

Data Plane

Data Flow

Data Flow

NETWORK DEVICES

Data Flow
Forwarding

Data Flow
Forwarding

Figure 1 - Software-Defined Networking - A high level architecture

Figure 1.1: SDN architecture [[10]

The control layer (central layer) is a functional-based layer which is responsible for
switching, routing, mobility, and security. The network operating system (NOS) or
controller is a critical and key element in the SDN and is considered as the brain of

the network. The NOS has a global view of the network, determines the routes for

2

the flows, and sets the forwarding rules at networking devices on a path. Nowadays,
there are different implementations of NOS available in the market using different

programming languages such as C++, Java, and Python.

Centralized Control

Controller

=

B OpenFlow _.-"‘--
e Switch

[

Qﬂpen Flow
Switch
QD penFlow
C.Switch

Figure 1.2: Centralized controller

NOS can be classified as a centralized or a distributed architecture as shown in
Figures [1.2] and [I.3] respectively. In centralized architecture, only one NOS masters
the switching devices in infrastructure layer. This model represents a single point of
failure, and has limited scalability. Whereas in a distributed architecture, there are
many controllers which manage the forwarding devices. In this architecture, all the
controllers should have the same topology information simultaneously with

redundancy mechanisms for any kind of failure which may occur in the network.

The communication protocol between the control plane and the data plane is realized
over the southbound application programming interface (API). One standard example
of the southbound API is the OpenFlow (OF) protocol, which is a combination of

specifications for setting the logical structure of a network. Moreover, OF can be

Distributed Control

Controller

S

B OpenFlow
~Switch
.rl Comnmtroller
B OpenFlow] :
| Sveitch Controller

QOPEHF|DW i
Switch

Figure 1.3: Distributed controller

considered as a documented protocol between SDN control and data plane [§]. Further

discussions about OF are given in Section [I.2]

[User Interface User Interface |

\ (local) (remote)

[Data Center Mobility & Information-
Networking Wireless Centric Networking |

(Traffic Measurement Security & |

§ Engineering & Monitoring Dependability

Network Services Abstraction Layer

Northbound Interface
(local)

Northbound Interface

] [(remote))

Figure 1.4: General structure of SDN application plane functions IEI

The application layer includes all the necessary services and operations required by

the network. These applications determine, control, and monitor the network behavior

and resources. Utilizing application control interfaces, the controller communicates

with the application layer in order to customize the behavior and the properties of the
network resources. Figure [I.4] shows a set of examples for SDN application plane
functions and interfaces. Interfaces can be local or remote, with one type used by the
user which is called the “user interface”, and the other coupled with the controller
which is called the “northbound interface (NBI)”. Variety of applications can be
executed by the application layer such as data center, wireless networking, traffic

engineering, and information centric networking (ICN).

1.2 OpenFlow (OF)

OpenFlow [12] is a protocol published by the Open Networking Foundation (ONF)
and is used to apply the concept of SDN in real network applications [13]]. It is used to
interact between the controller(s) and the forwarding element(s). Initially, it was used
in scholastic grounds, but then it started to be employed in commercial applications
[12]. OpenFlow has different versions and it has special abilities: for instance, it is
used to investigate traffic performance by software, and to control numerous routers
from a master controller. Additionally, it has the ability to update the forwarding tables
automatically. These capabilities enable innovative applications which are more secure
and manageable. In this section, the discussion is based on the fundamental version of
OF (version 1.0) [14]. Currently, there are six versions of OF, where additional features
are added to the original protocol in order to improve performance and make it user-
friendly. For examle, version 1.1 has multiple flow table and group table compared to
version 1.0. Version 1.4 has a default port for the packets which can be sent if there is

no match in the flow table [|15]].

1.2.1 OpenFlow Overview
The main components of OpenFlow are: 1) OpenFlow controller, 2) OpenFlow

protocol, and 3) OpenFlow switch, as illustrated in Figure In conventional

networks, the router runs a routing algorithm in order to decide the route to a
particular destination. In OpenFlow, this is done by the controller which is

responsible for programming all the packet forwarding rules in the switch.

OpenFlow
Protocol I 4
Secure | g4+ Controller
Channel
Flow
Table
OpenFlow Switch

Figure 1.5: Connectivity between OF switch and controller

The OF protocol defines the communication between the OpenFlow controller and
the switch. The connection between the controller and the switch is secured by the
secure sockets layer (SSL) or transport layer security (TLS) encryption protocols. The
OF switch contains one or multiple flow tables and one group table. Each flow table
contains flow entries, which consists of match fields, counters, and actions to be
applied on the matched packets. The main function for the switch is to check the flow

table entries to forward the packets.

Header Fields Counters Actions

Figure 1.6: Flow table entry for OF version 1.0.0.

Figure [I.6]shows the main components of the flow table entry which are listed as:

6

e Header fields or match fields: These are used to compare incoming packets

header fields to decide if there is a match or not.

e Counters: These are used to keep track of statistics such as the number of

packets/bytes forwarded or dropped.

e Actions: These identify how to deal with the packets in the flow.

1.2.2 Packet Matching

The flow entries are handled in order. Once a match is discovered, no further matches
are made against that flow table. If all the flow tables are checked, but no match is
found, this status is called a table miss. When the packet arrives to the OF switch,
the header is examined against 12-tuple of match fields as shown in Figure The
fields can be set to wildcards, which means that all the packets will match the entry.
If a packet match is found, the switch applies the actions and updates the statistics.
Otherwise, the packet (or part of the packet) in the flow is encapsulated and sent to
the controller to determine the status of the packet. The controller forwards the rule to

all routers and switches on the path of the packet. The complete process is shown in

Figure[I.§

1.3 Thesis Motivation

SDNs are highly dynamic and scalable systems. They have to be evaluated under
different workloads for a variety of topologies and redundancy mechanisms. As a
result, neither real measurements nor packet level simulations will be fast enough and
cost-effective for exploring all the different parameters and cases that need to be
considered before deployment or reconfiguration of SDNs. This thesis aims to study
and model the performance of SDN switches and controllers based on queuing theory

and simulations in order to predict SDN-enabled network performance before actual

Matching fields

Switch input port

VLAN ID

VLAN priority

Ethernet source address
Ethernet destination address
Ethernet frame type

IP source address

IP destination address

IP protocol

IP Type of Service (ToS) bits
TCP/UDP source port
TCP/UDP destination port

Figure 1.7: 12—tuples of matching fields.

Apply ac-
tions,update
statistics

Match in
any table?

Packet arrives —— Extract —>

header fields

Encapsulate
and forward
to controller

Figure 1.8: Packet matching process

deployment. Queueing models and simulations may rather rapidly provide designers
with useful performance predictions for evolving SDN requirements. This study is
reinforced by analytical solutions based on queuing theory in order to directly
compare the simulation and the analaytical results. There are only a few studies
evaluate the performance of SDN and OpenFlow networks. Among theses studies,
some are described in Section[I.4} many studies are very specific to special topologies
and for certain applications. Contrarily, the study provided in this thesis is more
general and can be applied to multiple switch and controller topologies. The
performance metric measured in the proposed model is the sojourn time of the

packets, which measures how much time a packet spends in the network. The sojourn

time is measured in case of multiple controller and in case of multiple switch

scenarios.

1.4 Related Work

In this section, a review is provided about some of the previous research studies that
use queueing theory to evaluate controller-switch performance of SDN networks.
Queueing methodology [17]] considers the average performance quantities in steady
state. In [18]], an analytical study on OpenFlow network with Transmission Control
Protocol (TCP) traffic is described. The configuration consists of a single controller
and a switch, which is modeled as a feedback queuing system. The switch is modeled
as an M/M/1 queue with infinite buffer size. The expected value of the packet service
time is 9.8 us and arrivals are modeled as a Poisson process. The proposed model is
verified using Nox controller. The NOS queue is modeled as an M/M/1-S queue with
capacity of 512 packets for exponentially distributed service times with different
means. Simulation results show the correlation between the network sojourn time and
controller service rate. Furthermore, the correlation of the switch service rate on the
packet payload size and the flow rules within the flow table is demonstrated through
simulations. The main drawbacks of the proposed model in 18] are: 1) the inability
to extend the model to a multi-switch framework; and 2) traffic coming to a switch
from the controller should not return to the controller again. The shortcoming in [18]

is adderessed in [19]; more details about the work is discussed in Chapter 2]

The approach used in [20,21] focuses on measuring the performance of NOS. The
NOS is modeled as an M/G/1 queue and the switch as an M [X] /M/1 queue. The
authors derive the sojourn time for “PACKETIN” messages which are sent form the
switch to the NOS when a table miss happens. Simulations using Floodlight with the

benchmark tool Cbench demonstrate that forwarding rate of packets in large networks

depend on NOS processing capacity.

In [22], network elements are assumed to be M/Geo/1 queues with Poisson arrivals and
service times geometrically distributed. Yet, the authors do not consider the controller-
switch interaction. The results show the critical factors of mean response time as: 1)

number of flow table entries and their positions; and 2) packet arrival times.

Controller
Ne(t) . Inflnlte capacity

.@ —
Exponential B
Np(t) ' disteibuticn

)

.

)1 [1 - B
Puslsson Ng(t) 1 Switch
arrhal 5 Finle capaciy iy

Figure 1.9: Queuing model of simple network with an OpenFlow switch connected to
a single controller [23]].

Figure[I.9 shows the OF network assumptions in [23]], which consist of a single server
and a switch. It is assumed that the incoming traffic is Poisson and it is called class S.
The packets are looked up in the table; if there is a table miss, they are forwarded to
the controller with probability () and labeled as class C. Otherwise, the packets are
directed out of the network with probability (1 - 3). When the packets are redirected
from the controller to the switch they are labeled as class F, where they have higher
priority than the newly arrived packets in the queue. The service times at the controller
is exponentially distributed and the controller has infinite buffer size. The switch has
a queue with finite size and geometrically distributed flow packet sizes. The authors

calculate the number of jobs, the packet loss probability for each of the three classes,

10

and the average packet transfer delay in the system using a multi-dimensional Markov
Chain model. This model is more accurate, because there is differentiation between
the traffic from the controller and newly arriving traffic. Yet, the authors do not extend
the work to multiple nodes. Moreover, they employ a priority queue to separate the

packets into classes. The OF switches do not currently specify such separation.

The other strategy of analytical analysis is network calculus (NC), which considers the
worst case performance bounds in the network such as throughput, delay in the system,
and queue length [24]. The early performance studies of SDN network behaviour were
studied by [25]]. In that work, the authors quantified the packet delay and queue length
bounds for the data plane and control plane. Their model represents a single node
in the data plane. On the contrary, in [26] the authors have used calculus method to
calculate the upper bound of the bandwidth, where latency is measured for a virtualized
SDN controller. As reported in [27], the model of the system is based on stochastic
network calculus with results obtained using Matlab. The authors proposed the lower
bounds for the switch-controller end-to-end delay systems. In addition, their model is
considered as the fastest tool used to measure the performance metric rather than using

time consuming benchmarking tools.

The proposal studied in [28] measures the end-to-end delay in the network. The
experimental results were obtained using switches of type OVS and controllers of
POX type. Simulations were performed using OpenFlow on three different platforms;
Mininet emulator, GENI, and OF@TEIN. The results show that M/G/1 models the
end-to-end delay in OpenFlow enabled networks more accurately than M/M/1

models.

11

1.5 Main Contributions
The main contributions of this thesis are:
e Proposal of a class-based queueing network model to evaluate SDN network

performance;

e Evaluation of the performance of the OpenFlow networks in different realistic

scenarios;

e Extension of the existing analytical and simulation based studies to multiple

controller and switch topologies;

e Use of a cost function that can be used for analysis of the performance and the

energy consumption in the SDN;

e Presentation of a numerical analysis which justifies the effectiveness of having

multi-controllers in scenarios with intermittent controller failures.

1.6 Thesis Structure

The remaining parts of this thesis are organized as follows: Chapter [2] presents the
proposed model. Simulation results are discussed in Chapter[3] Conclusions and future

work are given in Chapter

12

Chapter 2

MODELS AND METHODS

2.1 Jackson Network Model of SDN

The Jackson queueing network is considered as the simplest model of packet routing
in a computer network. In a Jackson queueing network, there are k nodes. In each
node the service time is exponentially distributed with rate y; and there is an infinite
buffer. In Jackson networks, each node can be viewed as an independent M/M/1 queue.
Moreover, external arrivals to a node are considered as a Poisson process with rate r;.
The arrivals are served as first-come-first-served (FCFS). The routing of packets is
probabilistic. Each packet finishing at node i will be sent to node j with probability P;;,

or will leave the network with likelihood P; oy = 1 =} ; Pij [29].

Poisson (rj) ———
() »

—> DProut
Pk

—

P J
Poisson (r;) — @ P

P out Poisson (ry)

P

Figure 2.1: An example Jackson queueing network model [29].

Although it is now widely accepted that Poisson packet arrival and exponentially
distributed packet size assumptions are not very realistic in modeling computer

networks, these Markovian assumptions provide simple tractable analytical models

13

that enable designers to quickly understand how performance measures of interest
vary as a function of certain parameters. This understanding is key to conducting

more detailed empirical or experimental performance studies.

e < _
Q{aCkF1
C]{Mkr1
A Y I . i I' |, k
(=g

Figure 2.2: Jackson queueing network model applied to SDN [[19]

Figure shows the original configuration of Jackson network when applied to SDN
which consists of one controller and one switch as described in [19]. The packets
arrive at a switch with arrival rate A;. When a table miss happens in the flow table,
the switch redirects the packet (or part of the packet) in the flow to the controller. This
event is captured by probability q{‘lc". Then, when the packet reaches to the controller,
the controller finds the route for the packet installs the route into the switch, and the

packet is redirected again to the switch. The net input to the controller I'; is equal to

. = g}, 2.1)

where I’y is the net input to the switch which is the summation of the controller output

14

and the outside traffic:

I = A +q]%Ty. (2.2)

The main shortcoming in Jackson network to model OpenFlow networks is that the
processed packet (the packet which is returned from the controller) and the newly
arrived packet from outside are treated identically by the switch. In other words, there
1s no differentiation between a newly arrived packet and a processed packet. In reality,
traffic arriving at a switch that comes from the controller should not be redirected again

to the controller; since the packet should now find a match in the flow table.
2.2 Modified Jackson Network

In order to avoid the shortcoming in Jackson network model in [[19], the authors have
modified the model of Jackson network in order to separate the traffic flow from the
switch to the controller and vice versa correctly. The modified Jackson network is
assumed to be a better representation of OF-based SDN network, and more accurately
represents the OpenFlow operation rule. Figure [2.3] depicts the topology of the

modified Jackson network.

He <+ ;
Q?f)\l 0 M

> M1

Figure 2.3: Modified Jackson model [[19]

15

The net input to the controller I', is now

T.=q"\, (2.3)

where q’llf

is the probability that the packet is forwarded to the controller when a table
miss occurs. The probability q{‘wk described in Section needs some modification

to model OF correctly when the net input to two models are the same. Therefore,

=M +47 M, 2.4)
and
g = ¢\, (2.5)
so that
nf
q
et = . (2.6)
14+ q,

The authors in [[19] thus propose an approximate solution to overcome the shortcoming
of Jackson network by deriving the probability value when a table-miss occurs. Yet,
by the nature of the Jackson networks, their model still fails to distinguish between
the newly arrived packet and the processed packet by the controller. Moreover, their

model is not easily to extendable to multiple node in control plane.

In the following sections, a model is proposed to overcome the difficulty in
distinguishing between the newly arrived packets and the processed ones. A classed
queuing network is suggested as an alternative model the SDN switch and the

controller.

16

2.3 Classed Networks of Queues

In classed queueing networks there are k nodes and / classes of jobs (customers or
packets). It is assumed that service time at each node is exponential with rate u; and
an there is infinite buffer space. Hence, each node is viewed as an independent M/M/1
queue. Jobs at a node are served in FCFS manner. Each node may receive traffic from
outside or inside the network. The outside traffic is a Poisson process with arrival rate
r; and follows a specific route depending on its class. The outside traffic can be from
specific class (n). When the job is served by the node i, it will be transferred to node
(n)(n)

, or it may leave the network P; /.~ °. The lower indices in

j with probability P

P

the notation z;n refer to sending the jobs from the node i to node j, while the upper
indices in that notation refer to a customer class change from class n to class n'. In this
type of networks, jobs can change the class, visit the node multiple times, and each
class can have different priorities [29]. Figure [2.4{ shows a simple class based queuing

network.

e}

(n)(n") o
ik (n")(n
Poisson (r;(n)) —— i \ o /_' F k.ou')t()

P‘(n)(tn) Poisson (ry(n"))

(n")(n)
P/m

Figure 2.4: Simple classed network of queues

17

2.4 Proposed Model for SDN Using Classed Networks of Queues

The proposed model is derived based on classed queueing networks where different
classes are assigned to the processed packet and the newly arrived packet. In the
following discussion, the packets that visit the controller will be designated as class 0
packets. Thus, the switch can discriminate between different types of packets based
on their class. How packet classes in the presented methodology are changed is
illustrated in Figure 2.5] Three different topologies are analyzed. First, we study a
simple topology which consists of one controller and one switch. Second, two more
switches are added (in series with the first one) to the data plane. Finally, two
controllers and one switch are used to build the network, where results are obtained

using different methods of packet dispatching.

Packet arrives
at switch i

|

IF
Packet is external
arrival into i
AND
Table-miss
event happens

Route packet
to next hop j

Route packet true
le———.
to controller

}

Make packet
internal and
change class
of packet to 0

]

Figure 2.5: Flowchart of proposed model

18

2.4.1 One Controller, One Switch Topology
Figure [2.6] shows a simple SDN topology which consists of one controller and one
switch. The external traffic arrival rate denoted by r;(1) reaches to the switch; this
traffic belongs to class (1). If there is no flow entry in the flow table for a packet,
the packet is encapsulated in a “PACKETIN” message, which is transferred to the
controller. This event is supposed to happen with a probability pHM

l,c
indices in the notation Pl(lc)(l)

. The lower
refer to the probability of sending the packet from the
switch (1) to the controller (c), while the upper indices in that notation refer to no class
change. This notation is applicable for all the following topologies. It is assumed that

after the controller updates the flow table, the packet class is changed from class (1)

(1)(0)

to class (0) and it is transmitted again to the switch with probability P.". Whenever
class (0) reaches the switch, it is directed outside the network with probability Pl(oo)bsg).
8 (1)(1)
pHO P
(1 (1)
> — P 1,out
g (0)(0)
P 1,0ut

Poisson(r1(1))

Figure 2.6: Simple OF network of proposed model

If there is a match in the flow table, the switch applies the actions and directs the

PO _{_ p()

L out = . > where the lower index

packet outside the network with probability

in Pl(lo)lgll) refers to the packet class (1) is leaving the network (out), and higher index

19

refers to no-change status in the class.

2.4.2 Extended Data Plane Topology

The data plane can be extended using multiple switches and one controller to build
the network. An example network configuration used in simulation is the network
shown in Figure In this network, three switches are connected in series, labeled
as switch 1, switch 2 and switch 3 with external arrivals tagged as class (1), class (2)
and class (3), respectively. The packets that visit the controller become class 0. The
communications between the controller and the switches are as follows: when a packet
reaches the switch with no predefined entry in the flow table, a “PACKETIN” message
is produced by the switch and it is sent to the controller. The controller determines
the forwarding path and distributes it to all the switches on the path in order to add an
entry in the flow tables. Therefore, if the flow has an entry on the table it is forwarded

directly to the next switch on the path.

4

(3)3)
P 3,0ut
—

(0)(0)
Pc‘l —_— !
i3 P(UUJ

PiU}IUJ

3,0ut

Paisson(ry(1))
Poisson(ry(3))

Figure 2.7: Extended data plane

If there is an entry for the class (1) flow, it is forwarded from “switch 17, to “switch 27,
“switch 37, and then outside the network. Therefore, when class (1) flow is received

by switch 1, where there is in no entry in the flow table, then it will be directed to

20

the controller; it is assumed that this event happens with probability Pl(lg) Then the
controller computes the path and a new entry is added to the flow tables in the switches.
Furthermore, the controller changes the packet class from class (1) to class (0), where
class (0) is treated as there is an entry matching and it is directed form switch 1 to 2
and 3. This discussion is under the assumption that, if there is a packet matching at
switch 1, then there will be a match at switches 2 and 3. Notice that if the flow has
different class (say class (2) or class (3)) then it will be treated similar to the scenario

of class (1) discussed above.

2.4.3 Topology with Multiple Controller

In single controller topology, there is a single point of failure. If failure happens in the
controller, the switches lose the communication with the controller and the network
will be down. As the network traffic increases, one controller cannot process huge
flow requests received from the switches due to its limited capacity. Thus, multiple
controller topology is suggested for real networks like data centers, and cloud
networking to improve the network reliability. Multiple controllers are better in
network load management. Also, the traffic load can be shared between the several
controllers, where the controllers keep consistent information in order to transmit
packets correctly. Moreover, multiple controller topology has redundancy which
reduces the chance of network failure. It is less likely to have two controllers failing
at the same time. Thus, the second controller carries on and controls the network. In

this respect, the multiple controller topology needs to be analyzed as well.

The network can be supplied with homogeneous controllers, where all controllers
have the same specifications in terms of buffer size, memory, and service rate [30].

Furthermore, the network may be supplied with heterogeneous controllers, where the

21

fle1) S — P1(1)

piy
P(U(O) Lo '
] Task assignment
(1)(0)
i iy
> ﬂl) > 1out
—_— \/ > P(O)(O)

Poisson(r(1))
Figure 2.8: Extended control plane

controllers have different specifications as in [31]]. Figure 2.8]shows the topology of
multiple homogeneous controllers. The external traffic reaches the switch with rate
ri(1) and is referred to as class(1). If there is no match in the flow table, a
“PACKETIN” message is created and sent to one of the controllers. This event is

H(1)

,Ci

, Where PYW s the probability that the

assumed to occur with probability Pl(e

packet is directed to the controller when there is no match in the flow table. When the
packet matches an entry, it directly applies the action field with probability
(1— Pl(,lc)i (1)). In order to choose one of controllers efficiently, we assumed that there is
a routing component or task allocator that chooses the controller, where a special
policy is used to determine to which controller the switch should interact. This policy
is called task assignment policy, and also known as load balancer or dispatcher [29].

The controllers are assumed to imeediately feedback their status to the task allocator.

There are different ways to dispatch packets to the controllers: random, round robin
(RR), and join the shortest queue (JSQ). In the first type, the packet is directed to one

of the controllers randomly with equally likely probability. The aim of this policy is

22

to balance the number of packets at each controller. On the other hand, round robin
strategy distributes the packet from the switch to the controllers in a round robin form.
JSQ policy is also called shortest queue length, the packet joins the controller which

has the least number of packets in the queue.

2.4.4 Energy Performance Trade-off

In multiple controller topologies, a central problem is how to use efficient number
of controllers to extract the best performance under unpredictable traffic while not
wasting energy. In order to study the trade-off between the performance and the energy
consumed by the controller, we introduce a cost function to capture this trade-off,
where the energy consumed by the controller depends on its processing speed. At low
processing speeds, the performance of the system decreases, while at higher speeds,

more energy is consumed.

Based on [32,33]], the minimum power (P) needed by the processor is given by

P o< 1 2.7)

where u. is the service rate of the controller in (packets/second) and o is a parameter
which is typically chosen as 2 or 3. For digital electronic devices, the power-delay
product (PDP), which is the product of power consumption P and input-output delay.
Similarly, the concept of PDP is applied here for the network system, where the input-

output delay is the system response time (R). Thus, a cost function F' is defined as

F=7vxPxR. (2.8)
The constant 7y is a function of o and is y= S;‘]ﬁ; ', When @ = 2 the cost function is

23

given for one controller topology as
F=1>xRxY. (2.9)

For multiple controllers, the service rate for each controller is taken as the half of
that of the controller in one controller topology. It is important to point out that the
total power consumed by multiple controllers is found as the sum of the individual
controller. From (2.7), one may observe that the power of the controller depends on the
service rate. Thus, in case of two controllers, total power is given as (%)2 +(5

As a results, the cost function in case of double controllers is

2

F:%xﬁx% (2.10)

/. . . .
where R is the system response time in case of multiple controller.

Similarly, for the case when o = 3, the cost function of one controller is given as
F =1 xRxy, (2.11)

and for multiple controller is given as

S CO R Y
2.12)
_H

R x7.
1 R X

24

Chapter 3

RESULTS AND DISCUSSION

In order to verify our models, we simulated our topologies using Java Modeling Tool
(JMT) version V.1.0.2. JMT is a discrete event simulator which was developed at
Politecnico di Milano and Imperial College London to evaluate the performance of
queueing networks [[34]. The simulations were executed using a TOSHIBA laptop with
an Intel Core 17 processor. Each simulation runs until a 95% confidence is obtained
for the performance measure of interest with less than 3% maximum relative error
or the simulation has analyzed 1,000,000 samples. These stopping conditions ensure
that the performance indices of interest are reported with high precision as long as
the simulation time is not prohibitive. The simulations were executed considering the
following assumptions:

1. The controllers and the switches have infinite queues (assuming no packets

losses) [18,/19].

2. The service times at the controllers follow an exponential distribution with rate

uc and mean value of 240 us [18,/19].

3. The service times at the switches follow an exponential distribution with rate u

and mean value of 9.8 us [|18,/19].

4. All of the external traffic arriving into the network is assumed to be modeled as

a Poisson process.

25

3.1 One-Controller, One-Switch Topology

The performance of the network shown in Figure[2.6]is given in Figure[3.1] The figure
shows the relation between the system sojourn time and the controller utilization p,
where the sojourn time is defined as the average time spent by the packet in the network

from the moment the packet enters the network till it leaves it.

-3
45 x10 T T T T

—©O— Analytical Modified Jackson

4 —>— Simulation Modified Jackson

—H&— Multi Class Network

System Response Time [s]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Controller Utilization p_

Figure 3.1: Comparison of the proposed model to the modified Jackson model

The authors in [[19] validate their model using OMNeT++ packet-level discrete event
simulation results reported in [18]. The results obtained in this thesis are compared
with the results obtained in [19] and thus with the simulations in [18]. The analytical
modified Jackson and simulation modified Jackson in Figure [3.1] refers to the models
described in Section [2.2] which were validated with packet-level simulations in [[18]].

The multiclass network in Figure [3.]refers to the simulation results obtained from the

26

proposed model in Section [2.4.1] of this thesis.

The simulations were performed under different probability values Pl(}c)(l) for traffic
being directed to the controller. The range of external arrival rate is 2083.3 to 18750
pkus for P{X") = .2, 833.33 to 7500 pkt/s for P{'2") = .5, and 462.96 to 4166.7 pku's
for Pl(}g(l) =.9. It can be seen that the system response time grows exponentially with
increasing controller utilization. Also, when a single controller is used in the network,

the performance results of the proposed topology coincides with the analytical and

simulation results of modified Jackson model.

%107

4.5 —>—— Proposed Model

w
a1
T

w
T
-
52
Il
o
/D
TN
/

POW — o5

System Response Time [s]
N b

=
a1
T

W
POW — 0.2

O I Il L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Controller Utilization Pe

Figure 3.2: Extended data plane with three switches

3.2 Extended Data Plane
Figure [3.2] shows the simulation results for extended data plane where there are three
switches. In the simulations, it is assumed that the external arrival rate is equal for

all switches (i.e: r1(1)=r2(2)=r3(3)). The range of external arrival rate is 694.43 to

27

6250 pkt/s for P\ =0.2,277.7 10 2500 pku/s for P{ 2" = 0.5, and 154.32 to 1388.9
pkt/s for Pl(}g(l) = 0.9. Simulations were performed at different probability values of
table miss occurrence in order to investigate the proposed topology. The probability of
table miss in all switches is assumed to be the same Pf}g(l):PZ(?C)(z) =P3(?C)(3). Also the
service rate at each switch is the same y;=uy=u3 = 9.8us. Comparing Figures and
[3.2] one can see that the response times with one switch and three switches are similar
when the total external arrival rates are the same. This can be attributed to the fact that
the controller is the bottleneck and is thus the limiting factor of performance.

3.3 Multiple Controller Topology

In case we have one switch and two controllers as discussed in Section [2.4.3] each
controller has half service rate (5) compared to the scenarios studied in Section m
and Section [2.4.2] for fair comparison. In multiple controller topology, it is required
to use either random, round robin or JSQ dispatchers in order to dispatch the packets
from the switch to the controller. A comparison is given between the three methods
in order to show the most effective method to be used in the multi-controller topology.
The comparison is done for three different probabilities of traffic going to the controller
(P1¢;=0.2,P1;=0.5and P; ., = 0.9) as shown in Figure@ It is clear from the figure
that the JSQ strategy has the fastest system response time compared to the round robin
and random strategies. The response times of the one-controller topology is provided in
Figure [3.3|in order to give a lower bound for the comparison, where the one-controller
topology has the fastest response time compared to multi-controllers approaches. An
important observation is that the response time for the random strategy is twice as
much the response time with one controller case. The results obtained for average

response times with two controllers are in agreement with the comparison of different

task assignment policies given in [29]. Since round-robin results in less variability in

28

2.5

=
o

System Response Time [s]
B

0.5

4.5

N
N 4] ©

System Response Time [s]
e
o

0.5

System Response Time [3]

<1072

——&—— One Controller
—¢—— Random

——%—— Round Robin (RR)
—&—— Join Shortest Queue (JSQ)

0.5 1 1.5
External arrival rate r [packets/s]

(a) Probability of table miss P\ = 0.2.

<1073

> 10

&N

——&—— One Controller
—¢—— Random

——#—— Round Robin (RR)
——©—— Join Shortest Queue (JSQ)

1000 2000 3000 4000 5000 6000
External arrival rate r [packets/s]

=0.

W

(b) Probability of table miss Pl(}c)(l)

<1073

—&—— One Controller

———— Random

———— Round Robin (RR)
——&—— Join Shortest Queue (JSQ)

. . . .
1000 1500 2000 2500 3000 3500
External arrival rate r [packets/s]

(1)

(c) Probability of table miss P, c = 0.9

1
4000 4

500

Figure 3.3: Comparison of different dispatching policies

29

inter arrival times at controllers compared to random task assignment, it is expected
to outperform random task assignment. JSQ, on the other hand, is a dynamic policy;
it attempts to equalize the instantaneous number of packets at each queue and reacts
quickly to changes. Hence, JSQ outperforms round-robin which tries to equalize the
average number of packets. Figure [3.4| further depicts the queue size for the three task
assignment policies which result in similar findings and trends as those obtained for

response times.

3.3.1 Energy Performance Trade-off

In the following, the cost function is evaluated using simulation for a wide range
of arrival rates at different probabilities of table miss. At each probability value, the
one-controller topology, random, RR and JSQ algorithms are compared, where the
one-controller topology can be seen to give an upper bound for the cost function value

compared to multiple controllers.

The analyses were conducted for the cases when o = 2 and o0 = 3 with Y= 1. Figure
[3.5] depicts the cost function (2.10) when o = 2 for two controllers and (2.9) for one
controller. The results clearly show that the cost function for one controller and random
dispatcher coincide for different probabilities of table-miss considered, and random
strategy is the highest cost compared to RR and JSQ, whereas the JSQ is the least
cost strategy. Figure [3.6]shows the cost function (2.11)) when o = 3. The figure shows
that the cost for one controller topology is twice higher than the random strategy for all
different probabilities. While the JSQ has the least cost function values compared to the
other policies. One may conclude that using multiple controllers is an effective strategy
from energy efficiency point of view compared to single controller. This advantage

promotes the multiple controller topology to be used in the market by the designers.

30

25

20

15

10

Queue size [packets]

25

20

15

10

Queue size [packets]

25

20

15

10

Queue size [packets]

—%—— Random
——— Round Robin (RR)

——©— Join Shortest Queue (JSQ)

o —=

N .
500 1000 1500 2000 2500 3000 3500 4000 4500
External arrival rate r [packets/s]

(a) Probability of table miss P\ = 0.2.

—¢—— Random
——— Round Robin (RR)

——©—— Join Shortest Queue (JSQ)

D
b
I

1000 2000 3000 4000 5000 6000 7000 8000
External arrival rate r [packets/s]

(b) Probability of table miss Pl(,lc)(l) =0.5

—¢—— Random
——#—— Round Robin (RR)

——&—— Join Shortest Queue (JSQ)

> = = — !
500 1000 1500 2000 2500 3000 3500 4000 4500

External arrival rate r [packets/s]

(c) Probability of table miss Pf}g“) —0.9.

Figure 3.4: Queue sizes for each of the two controllers under different dispatching

policies

31

Cost Function F

e .
oN MO B R N DO O N
T

Cost Function F

Cost Function F

PR oR R

=< 104

—&—— One Controller

—><— Random

— % Round Robin (RR)
—&—— Join Shortest Queue (IJSQ)

1.5 2

External arrival rate r [packets/s] < 104

(a) Probability of table miss P{)"

=< 104

=0.2.

—&—— One Controller

—>— Random

— % — Round Robin (RR)
—&—— Join Shortest Queue (JSQ)

o 2000 4000

6000 8000

External arrival rate r [packets/s]

(b) Probability of table miss PN —o5

1,C

=< 104

—&8—— One Controller

—>—— Random

7 | — s Round Robin (RR)
—&&—— Join Shortest Queue (JSQ)

o 1000 2000 3000

4000 5000

External arrival rate r [packets/s]

(c) Probability of table miss P{ ") = 0.9

Figure 3.5: Cost function when o0 = 2

32

Cost Function F

Cost Function F

Cost Function F
N

18

16

14

12

10

3.5

<107

—&—— One Controller

—><— Random

— % Round Robin (RR)
—&—— Join Shortest Queue (IJSQ)

S S—

h

o 0.5 1

1.5 2

External arrival rate r [packets/s] < 104

(a) Probability of table miss PV = 0.2

1,C

<107

—&—— One Controller

—>— Random

— % — Round Robin (RR)
—&—— Join Shortest Queue (JSQ)

o 2000 4000

6000

8000

External arrival rate r [packets/s]

(b) Probability of table miss PN —o5

1,C

= 108

—&—— One Controller
—>—— Random
— % —— Round Robin (RR)

—&— Join Shortest Queue (JSQ)

o 1000 2000 3000

4000 5000

External arrival rate r [packets/s]

(c) Probability of table miss Pl(}c)(”

=09

Figure 3.6: Cost function when o0 = 3

33

REesponse ume |s|

Response time [s]

2.25

1.75

=
o

1.25

0.75

4.5

3.5

N
o

Response time [s]
N

=
o

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

»<103

—&—— One controller ‘ ‘
—=4—— Two controllers i
15
10 1
L = 4
=
™~
=
L sl | 4
(o]
L o 0.5 1 1.5 2 i
External arrival rate r [packets/s} 104
o A—A
. . .
o 0.5 1 1.5 2
External arrival rate r [packets/s] =< 104
- . o)
(a) Probability of table miss P; ' = 0.2.
s
»<1072
—&—— One controller
—&—— Two controllers
L = 4
10 1
-
- : -
o~
—
5| 1
L o 4
o 2000 4000 6000 8000
External arrival rate r [packets/s]
(o] 1000 2000 3000 4000 5000 6000 7000 8000
External arrival rate r [packets/s]
J . 1)(1
(b) Probability of table miss Pl(Cl() = 0.5
S
—&—— One controller
—4—— Two controllers |
16
L 14 r 1 4
12t 1
L '__‘ 10 1 i
\N 8 f 4
—
. 6 - m
a4l 1
L > L | 4
o
L o 1000 2000 3000 4000 5000 i
External arrival rate r [packets/s]
[e] 500 1000 1500 2000 2500 3000 3500 4000 4500

External arrival rate r [packets/s]

(c) Probability of table miss Pl(}c)(l) =09

Figure 3.7: Controllers with intermittent failures
34

3.3.2 Effect of Redundancy with Intermittently Failing Controllers

Use of multiple SDN controllers may be necessary to prevent service outages and
delays when controllers experience intermittent failures. Increasing the number of
controllers however will increase capital and operational costs. Therefore, such
increases can be compensated by the corresponding reductions in packet delays. A
quantitative analysis of the decrease in delays when the number of controllers is

increased is necessary. In this work, the focus will be on using two controllers.

Service outages in SDN controllers can be due to hardware, software, or link failures.
Although recent research tries to characterize the nature of failure dynamics in SDN
controllers [[35}36]], there are still no well-established failure models. As such, a
relatively simple failure model of controllers is considered in this thesis. It is assumed
that the controllers intermittently fail. The failures are simulated by using the
following service time model: The time at controllers is assumed to be slotted and
each slot is 0.01 seconds. In each slot, the controllers fail with a probability of 0.05;
this failure case is simulated by choosing service times from an exponential
distribution with a mean of 0.24 seconds. The controllers work normally with a
probability of 0.95; here, the service times are chosen from an exponential
distribution with a mean of 240 microseconds. When there are two controllers, it is
also assumed that there is a routing component or task allocator that chooses the
controller with the fastest service (or the one that is not failing); this information is

supposed to be fed back to the task allocator.

Figure shows that with only one controller, the packet response times grow
exponentially with increasing arrival rates. The packet response times are greatly

improved if two controllers are employed, especially at high arrival rates. The

35

throughput of packets can be defined as the inverse of response times (with units of
packets per second). Denoting the throughput with one controller as 77 and with two
controllers as T, one can calculate the ratio 75/7 to illustrate the throughput gain
when two controllers are employed. The insets of the figures show 75> /7). Note that
one can find that the gain exceeds 2 when the external arrival rates are roughly larger
than 10,000, 3,500, and 2,000 packets/second when p. is 0.2, 0.5, and 0.9,
respectively; these all correspond to a controller utilization of approximately 50% in
the one controller scenario. Finally, Figure compares all the cases considered in
this section. It can be seen that Py ., greatly affects the response times for a given

arrival rate.

0.01
—4— One controller

0.009
—H&—Two controllers

0.008

0.007

Response time [s]
o o
o o
o o
a1 [«

°
o
S
e

P =05
0.003
0.002
0.001
iy ==t s ==
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
External arrival rate r [packets/s] «10%

Figure 3.8: Failure all scenarios

3.3.3 Benefits of Employing Multiple Controllers
Simulation results shown in Figures [3.5]and [3.6) and the statistical details provided in

the Appendix indicate that the power-delay performance is improved when two

36

half-capacity controllers are deployed instead of a single full-capacity controller. In
addition, in case there are intermittent controller failures, installing two controllers
may be justified for large traffic loads as illustrated in Figure with statistical

details reported in the Appendix.

37

Chapter 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

In this thesis, the SDN networks is modeled using classed queueing network. The
proposed network model is considered as a simple model which can be generalized
to multiple switch and controller topologies. The basic concept of classes is explained
and it is used as the core idea of the proposed model. The key idea behind the proposed
model is the usage of classes, where the packet is directed to the controller if there is
table-miss in the switch. The controller changes the packet’s class and forwards it to
the switch again. Thus, the switch distinguishes between the newly arriving packets

and the packets which are coming from the controller.

The proposed model is used to model three different topologies, namely, single
controller, extended data plane and multiple controllers topology. The presented work
is compared with previous work and gives very close results in the sojourn time of the
packets when there is one controller and one switch. By adding two additional

switches, we extend the data plane, simulating a more realistic SDN scenario.

It is shown that multiple controller topology is more effective and powerful than one
controller topology. The use of multi-controllers increases the network’s redundancy
in case of controller failures, compared to one controller topology where the system

completely fails. Additionally, a cost function is employed to analyze the system for

38

energy consumption and best performance. The results show that the multiple
controller topology has less cost in terms of power delay product when compared to a
single controller topology.

4.2 Future Work

By looking to the future, we are looking forward to validating the proposed model
experimentally. Indeed, the experimental validation will show the network limitations
in terms of hardware validation and other constraints which may arise in practice.
Note, however, that experimental validation of the models can prove difficult since
SDN is not very widely implemented yet. There is currently only limited research
work that use actual SDN measurement data for performance analysis. Moreover, the
work presented here is based on Markovian arrival assumption. As a future work, one
may extend the application of the proposed model so that different arrival distributions

which are more suitable for modeling computer network traffic are employed.

39

[1]

[5]

[6]

REFERENCES

S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? Implementation

challenges for software-defined networks,” IEEE Communications Magazine,

vol. 51, no. 7, pp. 3643, July 2013.

M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little,
J. Van Reijendam, P. Weissmann, and N. Mckeown, “Maturing of OpenFlow
and Software-Defined Networking through deployments,” Computer Networks,

vol. 61, pp. 151-175, 2014.

K. Greene, “MIT Tech Review 10 Breakthrough Technologies: Software-
Defined Networking,” |http://www2.technologyreview.com/article/412194/

tr10-software-defined-networking/, 2009.

S. Shenker, M. Casado, T. Koponen, N. McKeown et al., “The future of
networking, and the past of protocols,” Open Networking Summit, vol. 20, pp.

1-30, 2011.

N. McKeown, “How SDN will shape networking,” Open Networking Summit,

2011.

D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig, “Software-Defined Networking: A comprehensive survey,’

40

http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/

Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[7] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” IEEE Communications Surveys & Tutorials, vol. 16,

no. 3, pp. 1617-1634, 2014.

[8] W. Stallings, Foundations of modern networking: SDN, NFV, QoE, IoT, and

Cloud. Addison-Wesley Professional, 2015.

[9] L. E. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic
engineering in SDN-OpenFlow networks,” Computer Networks, vol. 71, pp. 1-

30, 2014.

[10] D. Hoang, “Software defined networking shaping up for the next disruptive step,’

https://telsoc.org/ajtde/2015-12-v3-n4/a28, 2019, accessed: 2019-5-5.

[11] P. Chhikara, “Centalized/distributed control,”

https://www.slideshare.net/PallaviChhikara/sdn-ppt, accessed: 2018-11-11.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,

pp. 6974, 2008.

[13] M. HOWARD, “Open networking foundation,”

41

https://www.opennetworking.org/, accessed: 2018-9-11.

[14] O. S. Specification, “Version 1.0. 0 (Wire Protocol 0x01),” Open Networking

Foundation, 2009.

[15] C. Ching-Hao and Y.-D. Lin, “Openflow version roadmap,” 2015.

[16] P. Goransson, C. Black, and T. Culver, Software defined networks: a

comprehensive approach. Morgan Kaufmann, 2016.

[17] L. Kleinrock, Queueing systems, volume 2: Computer applications. wiley New

York, 1976, vol. 66.

[18] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-
Gia, “Modeling and performance evaluation of an OpenFlow architecture,” in
Proceedings of the 23rd International Teletraffic Congress. International

Teletraffic Congress, 2011, pp. 1-7.

[19] K. Mahmood, A. Chilwan, O. N. @sterbg, and M. Jarschel, “On the modeling
of OpenFlow-based SDNs: The single node case,” Proceedings of Computer

Science and Information Technology (CS & IT), vol. 4, pp. 207-217, 2014.

[20] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evaluation
of OpenFlow-based software-defined networks based on queueing model,”

Computer Networks, vol. 102, pp. 172—-185, 2016.

42

[21]

[22]

[23]

[24]

[25]

[26]

B. Xiong, X. Peng, and J. Zhao, “A Concise Queuing Model for Controller
Performance in Software-Defined Networks.” JCP, vol. 11, no. 3, pp. 232-237,

2016.

K. Sood, S. Yu, and Y. Xiang, “Performance analysis of software-defined network
switch using M/Geo/1 model,” IEEE Communications Letters, vol. 20, no. 12, pp.

2522-2525, 2016.

Y. Goto, H. Masuyama, B. Ng, W. K. Seah, and Y. Takahashi, “Queueing analysis
of software defined network with realistic OpenFlow—based switch model,” in
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2016 IEEE 24th International Symposium on. 1EEE, 2016, pp.

301-306.

J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deterministic
queuing systems for the internet. Springer Science & Business Media, 2001,

vol. 2050.

S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and
D. Simeonidou, “An analytical model for software defined networking: A

network calculus-based approach,” in Global Communications Conference

(GLOBECOM), 2013 IEEE. 1EEE, 2013, pp. 1397-1402.

A. G. Osgouei, A. K. Koohanestani, H. Saidi, and A. Fanian, “Analytical
performance model of virtualized SDNs using network calculus,” in Electrical

Engineering (ICEE), 2015 23rd Iranian Conference on. 1EEE, 2015, pp. 770-

43

[27]

[28]

[29]

[30]

[31]

[32]

[33]

774.

C. Lin, C. Wu, M. Huang, Z. Wen, and Q. Zheng, “Performance evaluation for
SDN deployment: An approach based on stochastic network calculus,” China

Communications, vol. 13, no. Supplement 1, pp. 98-106, 2016.

A. Igbal, U. Javed, S. Saleh, J. Kim, J. S. Alowibdi, and M. U. Ilyas, “Analytical
modeling of end-to-end delay in openflow based networks,” IEEE Access, vol. 5,

pp. 68596871, 2017.

M. Harchol-Balter, Performance modeling and design of computer systems:

queueing theory in action. Cambridge University Press, 2013.

Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia, “On the controller placement
for designing a distributed SDN control layer,” in Networking Conference, 2014

IFIP. 1EEE, 2014, pp. 1-9.

M. Mendonca, K. Obraczka, and T. Turletti, “The case for software-defined
networking in heterogeneous networked environments,” in Proceedings of the

2012 ACM conference on CoNEXT student workshop. ACM, 2012, pp. 59-60.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU
energy,” in Foundations of Computer Science, 1995. Proceedings., 36th Annual

Symposium on. 1EEE, 1995, pp. 374-382.

M. Andrews, S. Antonakopoulos, and L. Zhang, “Energy-aware scheduling

44

[34]

[35]

algorithms for network stability,” in INFOCOM, 2011 Proceedings IEEE. 1EEE,

2011, pp. 1359-1367.

M. Bertoli, G. Casale, and G. Serazzi, “JMT: performance engineering tools for
system modeling,” SIGMETRICS Perform. Eval. Rev., vol. 36, no. 4, pp. 10-15,

2009.

T. A. Nguyen, T. Eom, S. An, J. S. Park, J. B. Hong, and D. S. Kim, “Availability
modeling and analysis for software defined networks,” in 2015 IEEE 21st Pacific
Rim International Symposium on Dependable Computing (PRDC). 1EEE, 2015,

pp. 159-168.

P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and C. M. Machuca,
“Characterization of failure dynamics in sdn controllers,” in 2017 9th
International Workshop on Resilient Networks Design and Modeling (RNDM).

IEEE, 2017, pp. 1-7.

45

APPENDIX

46

Statistical Details of Results for Multiple Controller Topologies
The values in the shaded cells were not computed with the required precision of 95%
confidence level and 3% maximum relative error; i.e., the simulations stopped after

1,000,000 samples were processed.
Power-Delay Product Cost Function Results for o =3,y=1

Table A.1: Probability of table-miss=.2

Two controllers with random policy
) ; One controller topology
of dispatching
Arrival rate | Awverage Upper Lower Average Upper Lower
(packets’s) | (PDP) conjlﬁdlence conj?tdlence ®DP) conj?ldlence Ct}ﬂ.ﬁdlﬂnc& compare®
limit limit lirmit lirmit
46296 2.01E+06| 2.06EH)6| 197E+06|4.52E+06| 4.64E+H06| 440EH06| TRUE
874 487 130E+06| 235E+06| 2.24E+06|4.90E+06| 4.99E+06| 4.80E+06| TRUE
1286.013| 2.57E+06| 262E+06| 2.53E+05|5356E+06| S5.71E+06| 542E+06| TRUE
1697.65| 2.93E+06| 3.00E+06| 2.87E+06|6.33E+06| G49E+06| 6.17E+06| TRUE
2109.067| 340E+06| 345E+06| 3.33E+05|7.23E+06| 7.38E+06| 7.09E+06| TRUE
2520.593| 416E+06| 4.28E+06| 4.05E+05|890E+06| 9.19E+06| 868E+06| TRUE
293212 530E+06| 5.48E+D6| 5.10E+06|1.09E+07| 1.11E+07| 1.06E+07| TRUE
3343.647| 737EH06| T.61E+06| T.12E+H05|145E+07| 1.51E+07| 140E+07| TRUE
3755.173| 117E+07| 126E+07| 1.08E+07(240E+07| 2.60E+07| 220E+07| TRUE
41667 392E+07| 439E+H07| 343E+07|738E+07| 8 354E+H07| 623E+07| TRUE
*Lower confidence limit with one cortroller > Upper confidence limit with random policy?

47

Table A.2: Probability of table-miss=.5

Two l:ull:ltruller.s with t:am:lum One controller topology
policy of dispatching

Arrival rate | Average Upper Lower Average Upper Lower .
(packetss) | (PDP) ccrn.ﬁdf:nce ccrn.ﬁdf:nce (PDP) ccrmfid?nce ccrnﬁdjcnce compare

limit limit limit limit
833.33 4 90E+06| S5.01E+06| 4.77E+06| 9.98E+06| 1.02E+07| 9.77E+06| TRUE
1574.071 5.30E+06| S540E+06| 5.19E+06| 1.11E-07| 1.14E+07| 1.09E+07| TRUE
2314.812 5.98E+06| 6.15E+06| 5.80E+06| 1.27E+07| 1.29E+07| 124E+07| TRUE
3055.553 6.81E+06| 7.00E+06| 6.63E+06| 1 40E+07| 143E+07| 1.36E+07| TRUE
3796.294 | 8.12E+06| 8.28E+06| 7.95E+06| 1.65E+07| 1.69E+07| 1.61E+07| TRUE
4537.036 1.O0OE+07| 1.03EH07| 9.80E+06| 2.06E+07| 2.10E-07| 2.02E+07| TRUE
5277.777 1.27EH07| 1.29EH07| 1.24E+07| 2.57E+07| 2.63E07| 2.51E+07| TRUE
6018.518 1.78E+07| 1.81EH07| 1.74E+07| 3.64E+07| 3.73E+07| 3.36E+07| TRUE
6759.259 [3.02E+07| 3.15E+07| 2.87E+07| 5.80E+07| 6.00E+07| 5.61E+07| TRUE
7500 S 4IEH07| 935E+07| T4TEHNT| 1.61E+08| 1.79E+0§(1.45E+08| TRUE

*Lower confidence limit with one controller > Upper confidence limit with random

policy?

Table A.3: Probability of table-miss=.9

Two controllers with random
policy of dispatching

One controller topology

Arrival rate
(packets/s)

Average

(PDP)

Upper
confidence

lirmit

Lower
confidence

limit

Average

(PDP)

Upper
confidence

lirnit

Lower
confidence

limit

compare®

462.96

8.50E+06

8.64E+06

8.35E+06

1.7TEHDT

1.82E+07

1.72E+)7

TRUE

874 487

9. 47EH)6

9. 71E+0§

9.24E+)6

1.99E+07

2.03EHT

1.95E+07

TRUE

1286.013

1.06E+D7

1.09E+07

1.04E+)7

221E-T

225E+H0T

2 18E-07

TRUE

1697.65

1.26E+07

1.29E+07

1.22E+07

2 54EHT

2.60E+07

2 ATEHT

TRUE

210%.067

1 48E+07

1.52E+07

1 45E+)T

2 99E-T

3.06E07

2.92E-7

TRUE

2520.593

1.81E+07

1.84E+07

1L TTE+)T

15TEHT

3.65E+07

IA9EHT

TRUE

2932.12

2. 26E+17

231EH0T

221E-T

4 48E-07

4 58E+07

4 38E-0T

TRUE

3343.647

322E+T

3.28E+T

3 15ET

§.27EHT

§44E-07

6. 10E+07

TRUE

3755173

5.33EH)Y

5.60EH0T

5.08EH)T

1.10E+)8

1.14E+08

1.06E+)8

TRUE

4166.7

1.66E+)8

1.86E+08

1 47E+)8

31 24E+08

3.65E+08

2 B4E-08

TRUE

*Lower confidence limit with one controller > Upper confidence limit with random

policy?

48

Table A.4: Probability of table-miss=.2

Response Time Results with Intermittently Failing Controllers

One controller with

intermittent failures

Two controllers with
intermittent failures

Arrival rate | Average Upper Lower Average Uppet Lower
(packets/s) s) conflidzlence conflidtlence s) conflidzlence conflidzlence compare*
limit limit limit limit
20833 1.31E-04| 135E-04| 1.28E-04|9.09E-05| 9.32E-05| 8.87E-05| TRUE
3935156 |145E-04| 152E-04| 139E-04|8.52E-05| 8.66E-05| 8.37E-05| TRUE
5787.011 |1.61E-04| 168E-04| 154E-04|8.90E-05| 9.10E-05| 8.69E-05| TRUE
7638.867 |1.77E-04 1.87E-04| 1.67E-04|922E-05| 949E-05| 8.95E-05| TRUE
9490722 |223E-04| 238E-04| 2.07E-04|997E-05| 1.03E-04| 9.65E-05| TRUE
11342578 | 143E-04| 1.57E-04| 21.28E-04|1.09E-04| 1.13E-04| 1.04E-04| TRUE
13194.433 | 3.22E-04| 347E-04| 297E-04|1.10E-04| 1.15E-04| 1.05E-04| TRUE
15046.289 | 4.50E-04| 4.97E-04| 4.02E-04|1.21E-04| 1.26E-04| 1.15E-04| TRUE
16898.144 | 6.98E-04| 8.05E-04| 5.90E-04|137E-04| 146E-04| 127E-04| TRUE
18750 2.09E-03| 2Z4B8E-03| 1.71E-03|143E-04| 1.50E-04| 1.36E-04| TRUE

* Lower confidence limit with one controller = Upper confidence limit with two
controllers?

Table A.5: Probability of table-miss=.5

One controller with intermittent

Two controllers with

failures intermittent failures
Arrival rate | Average Upper Lower Average Upper Lower .
(packets’s) | (9 conﬁdm.ence con.ﬁdmlence © con.ﬁdmlence con.ﬁdmlence compare

it limt limt limit
833.33 J0ZE-04) 3. 10E-04) 294E-04) 2.09E-04| Z2.14E-04| 2.03E-04| TRUE
1374.071 33TE-04) 340E-04) 328E-04) 2.04E-04| Z2.08E-04| 2.00E-04| TRUE
2314812 J.B0E-04| 395E-04) 3.66E-04) 2.09E-04 2.13E-04| 2.05E-04| TRUE
3055.553 4 49E-04| 4067E-04| 431E-04| 2 16E-04| 222E-04| 211E-4| TRUE
3796.294 4 98E-04| 523E-04| 477E-04| 223E-04| 228E-04| 218E-04| TRUE
4537.036 5.85E-04| 6.18E-04| 5352E-04) 242E-04| 248E-04| 2.36E-04| TRUE
5277.777 7.50E-04| §.41E-04| 7.39E-04| 2.60E-04| 2.68E-04| 2.53E-04| TRUE
6018518 1.08E-03| 1.16E-03| 1.03E-03| 2. 80E-04| 239E-04 272E-04| TRUE
6759.259 1.84E-03| 2.05E-03| 1.64E-03| 3.06E-04(3.18E-04(293E-04 TRUE
1500 4 41E-03| 5.17E-03| 3.64E-03| 335E-04) 349E-04) 321E-4] TRUE

*Lower confidence limit with one controller > Upper confidence limit with two

controllers?

49

Table A.6: Probability of table-miss=.9

One controller with intermittent

Two controllers with

failures intermittent failures

Arrival rate | Average Upper Lower Average Upper Lower .
(packets's) | (9) coﬂﬁdtﬁnce con.ﬁdz.ence © con.ﬁdz.ence conﬁdjcnce compare

lirmit it it limit
462.96| 5.37E-04| 5.52E-04| 5.22E-04| 3.70E-04| 3.81E-04| 3.60E-04] TRUE
374487 6.10E-04| 6.22E-04| 597E-04 356E-04| 3.64E-04| 348E-04| TRUE
1286.013| 6.50E-04| 7.07E-04| 6.72E-04| 357E-04| 3.66E-04| 343E-04) TRUE
1697.65| 7.77E-04| 7.59E-04| 755E-04| 391E-04| 402E-04| 3.79E-04| TRUE
2105.067| 9.23E-04| 9.57E-04| B.88E-04| 4.06E-04| 417E-04| 3.54E-04| TRUE
2520.593] 1.14E-03| 1.18E-03| 1.10E-03| 4.29E-04| 440E-04] 4.18E-04| TRUE
2932.12| 143E-03| [150E-03| 137E-03| 467VE-04] 4.80E-04| 434E-04| TRUE
3343.647| 192E-03| 203E-03| 181E-03| 524E-04| 539E-04| 5.08E-04| TRUE
3755.173| 3.05E-03| 327E-03| 282E-03| 548E-04| 5.63E-04| 532E-04| TRUE
4166.7| 8.93E-03| 1.07E-02| 7.18E-03| 5.95E-04| 6.13E-04| 5.7/E-04| TRUE

* Lower confidence limit with one controller > Upper confidence limit with two

controllers?

50

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENT
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	INTRODUCTION
	Software Defined Networking
	SDN Architecture

	OpenFlow (OF)
	OpenFlow Overview
	Packet Matching

	Thesis Motivation
	Related Work
	Main Contributions
	Thesis Structure

	MODELS AND METHODS
	Jackson Network Model of SDN
	Modified Jackson Network
	Classed Networks of Queues
	Proposed Model for SDN Using Classed Networks of Queues
	One Controller, One Switch Topology
	Extended Data Plane Topology
	Topology with Multiple Controller
	Energy Performance Trade-off

	RESULTS AND DISCUSSION
	One-Controller, One-Switch Topology
	Extended Data Plane
	Multiple Controller Topology
	Energy Performance Trade-off
	Effect of Redundancy with Intermittently Failing Controllers
	Benefits of Employing Multiple Controllers

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work

	REFERENCES
	APPENDIX

