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ABSTRACT

Evolving network requirements have recently made the software defined networking

paradigm very popular. In a software defined network (SDN), the data and control

functions of network nodes such as routers and switches are separated. In particular, a

physically separate controller, which is implemented in software, computes and

distributes forwarding tables to routing devices. Such a separation requires an

analysis of packet delay performance to evaluate the tradeoffs of using controllers

versus a traditional networking architecture. Previous studies have employed

simulations and analytical models to evaluate the performance of SDNs before actual

deployment. However, these studies are limited to specific topologies, are based on

approximations, and cannot be easily extended to more general topologies.

The work presented in this thesis employs classed networks of queues to model

SDNs. First, a topology that consists of a single switch and a single controller is

analyzed using the proposed queueing model. Then, the topology is extended to

multiple switches and the methodology is applied to model the extended network.

Finally, the classed queueing network model is used to evaluate the deployment of

multiple controllers. The single-switch, single-controller topology results are in

agreement with previous studies that employ single-class queueing theoretic methods.

There is currently limited or no data available to benchmark classed queueing

network models of multiple-switch or multiple-controller topologies. Nevertheless,

the results give insights into the design and deployment of multiple switches or

controllers. For instance, the findings indicate that the power-delay performance is

improved when two half-capacity controllers are deployed instead of a single
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full-capacity controller. In addition, in case there are intermittent controller failures,

installing two controllers may be justified for large traffic loads.

Keywords: Classed network of queues, OpenFlow, Performance analysis, Queueing

theory, Software defined networks
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ÖZ

Gelişen ağ gereksinimleri, yazılım tanımlı ağ (SDN) yaklaşımlarını oldukça popüler

hale getirmiştir. SDN’lerde, yönlendirici ve anahtar gibi ağ düğümlerinde, veri ve

kontrol fonksiyonları birbirinden ayrılmıştır. Özellikle, yazılım olarak uygulanan ve

fiziksel ayrı bir kontrol birimi, gönderim tablolarını hesaplayıp yönlendirici cihazlara

dağıtır. Bu ayırım, geleneksel ağ mimarisinden farklı olduğundan, kontrol birimi

kullanmanın analiz edilmesini gerektirmektedir. Önceki çalışmalar, simülasyon ve

analitik modellerle kurulum öncesi SDN’lerin performansını değerlendirmiştir.

Ancak, bu çalışmalardaki metotlar bazı spesifik topolojilerle sınırlı olup,

yaklaştırmalara dayalıdır ve genel topolojilere genişletilmesi kolay değildir.

Bu tezde anlatılan çalışma, sınıflı kuyruklar ağlarını kullanıp SDN’leri modellemeyi

amaçlamaktadır. İlk olarak, bir anahtar ve bir kontrol biriminden oluşan topoloji

önerilen kuyruk modeliyle analiz edilmiştir. Daha sonra, topoloji birden fazla

anahtarla genişletilmiş ve metotlar bu topolojiye uygulanmıştır. Son olarak, sınıflı

kuyruklar ağ modeli, birden fazla kontrol biriminin kurulumunu değerlendirmek için

kullanılmıştır. Tek-anahtar, tek-kontrol biriminden oluşan topolojiyle elde edilen

sonuçlar daha önceki çalışmalarda elde edilen ve tek sınıflı kuyruk teorisi kullanan

metotlarla uyuşmaktadır. Şu anda, bu konuda çalışmalar ve sonuçlar sınırlı

olduğundan, birden fazla anahtar ve birden fazla kontrol birimi modellerinin verdiği

sonuçlar teyit edilememiştir. Ancak, buna rağmen sonuçların birden fazla anahtar ve

kontrol birimi içeren ağların tasarım ve kurulumuna yol göstereceği öngörülmektedir.

Örneğin, sonuçlara göre, güç-gecikme performansının, tek bir tam kapasite kontrol

birimi yerine iki tane yarım kapasiteli kontrol birimi kullanıldığında daha iyi olacağı
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beklenmektedir. Ayrıca, ara sıra devre dışı kalan kontrol birimleri olması durumunda,

iki kontrol birimi kurmanın, yüksek trafik yoğunluğunda tercih edilebileceği yönünde

bulgular elde edilmiştir.

Anahtar Kelimeler: Sınıflı kuyruklar ağı, OpenFlow, Performans analizi, Kuyruk

teorisi, Vazılım tanımlı ağlar
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Chapter 1

INTRODUCTION

1.1 Software Defined Networking

The rapid growth in network complexity as well as mobility and the wide use of

Internet of Things (IoT) and virtualization have made network management difficult.

Traditional networks require expert personnel to (re)configure and setup network

devices and appliances; this process is time consuming, costly and can become

unscalable in certain cases [1]. In addition, as the needs of users are increasing

sharply, developers and companies implement and develop new applications and

services in order to meet the customer requirements. Today’s data centers, campuses,

and enterprises need a more adaptable architecture, improve security and on demand

scaling. These challanges have led network researchers to rethink about new designs

of network architecture. The new designs should address the weaknesses in

traditional networks and make them compatible with the new requirements [2].

Software Defined Networking (SDN) was initiated at Stanford University [3] and

represents a new approach in computer networking. SDN provides network

management simplification, energy efficiency, and adaptive scalability. Moreover,

network resources can be installed, configured, and managed in a simple

manner [4, 5]. The core idea of this new paradigm is the decoupling of the control

plane (controller) and the data plane (switching devices). This decoupling allows
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flexible management of the network resources on the fly instead of manual

(re)configuration [6, 7]. The main contribution of the SDN is its ability to enable

flexible and centralized control of the network.

1.1.1 SDN Architecture

Figure 1.1 illustrates the logical structure of a typical SDN. As defined by [8] the

infrastructure layer, which includes the hardware devices like routers, switches, and

access points, lies at the bottom layer. Infrastructure layer, forwarding elements,

switching devices, network devices, and data plane all refer to the hardware devices in

SDN. Infrastructure layer is responsible for forwarding the incoming packets via

different ports based on flow table rules that are determined by the controller. It is

also responsible for collecting network traffic and network usage statistics [9].

Figure 1.1: SDN architecture [10]

The control layer (central layer) is a functional-based layer which is responsible for

switching, routing, mobility, and security. The network operating system (NOS) or

controller is a critical and key element in the SDN and is considered as the brain of

the network. The NOS has a global view of the network, determines the routes for
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the flows, and sets the forwarding rules at networking devices on a path. Nowadays,

there are different implementations of NOS available in the market using different

programming languages such as C++, Java, and Python.

Figure 1.2: Centralized controller [11]

NOS can be classified as a centralized or a distributed architecture as shown in

Figures 1.2 and 1.3, respectively. In centralized architecture, only one NOS masters

the switching devices in infrastructure layer. This model represents a single point of

failure, and has limited scalability. Whereas in a distributed architecture, there are

many controllers which manage the forwarding devices. In this architecture, all the

controllers should have the same topology information simultaneously with

redundancy mechanisms for any kind of failure which may occur in the network.

The communication protocol between the control plane and the data plane is realized

over the southbound application programming interface (API). One standard example

of the southbound API is the OpenFlow (OF) protocol, which is a combination of

specifications for setting the logical structure of a network. Moreover, OF can be
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Figure 1.3: Distributed controller [11]

considered as a documented protocol between SDN control and data plane [8]. Further

discussions about OF are given in Section 1.2.

Figure 1.4: General structure of SDN application plane functions [8]

The application layer includes all the necessary services and operations required by

the network. These applications determine, control, and monitor the network behavior

and resources. Utilizing application control interfaces, the controller communicates
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with the application layer in order to customize the behavior and the properties of the

network resources. Figure 1.4 shows a set of examples for SDN application plane

functions and interfaces. Interfaces can be local or remote, with one type used by the

user which is called the “user interface”, and the other coupled with the controller

which is called the “northbound interface (NBI)”. Variety of applications can be

executed by the application layer such as data center, wireless networking, traffic

engineering, and information centric networking (ICN).

1.2 OpenFlow (OF)

OpenFlow [12] is a protocol published by the Open Networking Foundation (ONF)

and is used to apply the concept of SDN in real network applications [13]. It is used to

interact between the controller(s) and the forwarding element(s). Initially, it was used

in scholastic grounds, but then it started to be employed in commercial applications

[12]. OpenFlow has different versions and it has special abilities: for instance, it is

used to investigate traffic performance by software, and to control numerous routers

from a master controller. Additionally, it has the ability to update the forwarding tables

automatically. These capabilities enable innovative applications which are more secure

and manageable. In this section, the discussion is based on the fundamental version of

OF (version 1.0) [14]. Currently, there are six versions of OF, where additional features

are added to the original protocol in order to improve performance and make it user-

friendly. For examle, version 1.1 has multiple flow table and group table compared to

version 1.0. Version 1.4 has a default port for the packets which can be sent if there is

no match in the flow table [15].

1.2.1 OpenFlow Overview

The main components of OpenFlow are: 1) OpenFlow controller, 2) OpenFlow

protocol, and 3) OpenFlow switch, as illustrated in Figure 1.5. In conventional
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networks, the router runs a routing algorithm in order to decide the route to a

particular destination. In OpenFlow, this is done by the controller which is

responsible for programming all the packet forwarding rules in the switch.

Figure 1.5: Connectivity between OF switch and controller [16]

The OF protocol defines the communication between the OpenFlow controller and

the switch. The connection between the controller and the switch is secured by the

secure sockets layer (SSL) or transport layer security (TLS) encryption protocols. The

OF switch contains one or multiple flow tables and one group table. Each flow table

contains flow entries, which consists of match fields, counters, and actions to be

applied on the matched packets. The main function for the switch is to check the flow

table entries to forward the packets.

Header Fields Counters Actions

Figure 1.6: Flow table entry for OF version 1.0.0.

Figure 1.6 shows the main components of the flow table entry which are listed as:
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• Header fields or match fields: These are used to compare incoming packets

header fields to decide if there is a match or not.

• Counters: These are used to keep track of statistics such as the number of

packets/bytes forwarded or dropped.

• Actions: These identify how to deal with the packets in the flow.

1.2.2 Packet Matching

The flow entries are handled in order. Once a match is discovered, no further matches

are made against that flow table. If all the flow tables are checked, but no match is

found, this status is called a table miss. When the packet arrives to the OF switch,

the header is examined against 12-tuple of match fields as shown in Figure 1.7. The

fields can be set to wildcards, which means that all the packets will match the entry.

If a packet match is found, the switch applies the actions and updates the statistics.

Otherwise, the packet (or part of the packet) in the flow is encapsulated and sent to

the controller to determine the status of the packet. The controller forwards the rule to

all routers and switches on the path of the packet. The complete process is shown in

Figure 1.8.

1.3 Thesis Motivation

SDNs are highly dynamic and scalable systems. They have to be evaluated under

different workloads for a variety of topologies and redundancy mechanisms. As a

result, neither real measurements nor packet level simulations will be fast enough and

cost-effective for exploring all the different parameters and cases that need to be

considered before deployment or reconfiguration of SDNs. This thesis aims to study

and model the performance of SDN switches and controllers based on queuing theory

and simulations in order to predict SDN-enabled network performance before actual
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Matching fields
Switch input port
VLAN ID
VLAN priority
Ethernet source address
Ethernet destination address
Ethernet frame type
IP source address
IP destination address
IP protocol
IP Type of Service (ToS) bits
TCP/UDP source port
TCP/UDP destination port

Figure 1.7: 12−tuples of matching fields.

Packet arrives
Extract

header fields

Match in
any table?

Apply ac-
tions,update

statistics

Encapsulate
and forward
to controller

no

yes

Figure 1.8: Packet matching process

deployment. Queueing models and simulations may rather rapidly provide designers

with useful performance predictions for evolving SDN requirements. This study is

reinforced by analytical solutions based on queuing theory in order to directly

compare the simulation and the analaytical results. There are only a few studies

evaluate the performance of SDN and OpenFlow networks. Among theses studies,

some are described in Section 1.4; many studies are very specific to special topologies

and for certain applications. Contrarily, the study provided in this thesis is more

general and can be applied to multiple switch and controller topologies. The

performance metric measured in the proposed model is the sojourn time of the

packets, which measures how much time a packet spends in the network. The sojourn
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time is measured in case of multiple controller and in case of multiple switch

scenarios.

1.4 Related Work

In this section, a review is provided about some of the previous research studies that

use queueing theory to evaluate controller-switch performance of SDN networks.

Queueing methodology [17] considers the average performance quantities in steady

state. In [18], an analytical study on OpenFlow network with Transmission Control

Protocol (TCP) traffic is described. The configuration consists of a single controller

and a switch, which is modeled as a feedback queuing system. The switch is modeled

as an M/M/1 queue with infinite buffer size. The expected value of the packet service

time is 9.8 µs and arrivals are modeled as a Poisson process. The proposed model is

verified using Nox controller. The NOS queue is modeled as an M/M/1-S queue with

capacity of 512 packets for exponentially distributed service times with different

means. Simulation results show the correlation between the network sojourn time and

controller service rate. Furthermore, the correlation of the switch service rate on the

packet payload size and the flow rules within the flow table is demonstrated through

simulations. The main drawbacks of the proposed model in [18] are: 1) the inability

to extend the model to a multi-switch framework; and 2) traffic coming to a switch

from the controller should not return to the controller again. The shortcoming in [18]

is adderessed in [19]; more details about the work is discussed in Chapter 2.

The approach used in [20, 21] focuses on measuring the performance of NOS. The

NOS is modeled as an M/G/1 queue and the switch as an M[X ]/M/1 queue. The

authors derive the sojourn time for “PACKETIN” messages which are sent form the

switch to the NOS when a table miss happens. Simulations using Floodlight with the

benchmark tool Cbench demonstrate that forwarding rate of packets in large networks
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depend on NOS processing capacity.

In [22], network elements are assumed to be M/Geo/1 queues with Poisson arrivals and

service times geometrically distributed. Yet, the authors do not consider the controller-

switch interaction. The results show the critical factors of mean response time as: 1)

number of flow table entries and their positions; and 2) packet arrival times.

Figure 1.9: Queuing model of simple network with an OpenFlow switch connected to
a single controller [23].

Figure 1.9 shows the OF network assumptions in [23], which consist of a single server

and a switch. It is assumed that the incoming traffic is Poisson and it is called class S.

The packets are looked up in the table; if there is a table miss, they are forwarded to

the controller with probability (β) and labeled as class C. Otherwise, the packets are

directed out of the network with probability (1 - β). When the packets are redirected

from the controller to the switch they are labeled as class F, where they have higher

priority than the newly arrived packets in the queue. The service times at the controller

is exponentially distributed and the controller has infinite buffer size. The switch has

a queue with finite size and geometrically distributed flow packet sizes. The authors

calculate the number of jobs, the packet loss probability for each of the three classes,
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and the average packet transfer delay in the system using a multi-dimensional Markov

Chain model. This model is more accurate, because there is differentiation between

the traffic from the controller and newly arriving traffic. Yet, the authors do not extend

the work to multiple nodes. Moreover, they employ a priority queue to separate the

packets into classes. The OF switches do not currently specify such separation.

The other strategy of analytical analysis is network calculus (NC), which considers the

worst case performance bounds in the network such as throughput, delay in the system,

and queue length [24]. The early performance studies of SDN network behaviour were

studied by [25]. In that work, the authors quantified the packet delay and queue length

bounds for the data plane and control plane. Their model represents a single node

in the data plane. On the contrary, in [26] the authors have used calculus method to

calculate the upper bound of the bandwidth, where latency is measured for a virtualized

SDN controller. As reported in [27], the model of the system is based on stochastic

network calculus with results obtained using Matlab. The authors proposed the lower

bounds for the switch-controller end-to-end delay systems. In addition, their model is

considered as the fastest tool used to measure the performance metric rather than using

time consuming benchmarking tools.

The proposal studied in [28] measures the end-to-end delay in the network. The

experimental results were obtained using switches of type OVS and controllers of

POX type. Simulations were performed using OpenFlow on three different platforms;

Mininet emulator, GENI, and OF@TEIN. The results show that M/G/1 models the

end-to-end delay in OpenFlow enabled networks more accurately than M/M/1

models.
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1.5 Main Contributions

The main contributions of this thesis are:

• Proposal of a class-based queueing network model to evaluate SDN network

performance;

• Evaluation of the performance of the OpenFlow networks in different realistic

scenarios;

• Extension of the existing analytical and simulation based studies to multiple

controller and switch topologies;

• Use of a cost function that can be used for analysis of the performance and the

energy consumption in the SDN;

• Presentation of a numerical analysis which justifies the effectiveness of having

multi-controllers in scenarios with intermittent controller failures.

1.6 Thesis Structure

The remaining parts of this thesis are organized as follows: Chapter 2 presents the

proposed model. Simulation results are discussed in Chapter 3. Conclusions and future

work are given in Chapter 4.
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Chapter 2

MODELS AND METHODS

2.1 Jackson Network Model of SDN

The Jackson queueing network is considered as the simplest model of packet routing

in a computer network. In a Jackson queueing network, there are k nodes. In each

node the service time is exponentially distributed with rate µi and there is an infinite

buffer. In Jackson networks, each node can be viewed as an independent M/M/1 queue.

Moreover, external arrivals to a node are considered as a Poisson process with rate ri.

The arrivals are served as first-come-first-served (FCFS). The routing of packets is

probabilistic. Each packet finishing at node i will be sent to node j with probability Pi j,

or will leave the network with likelihood Pi,out = 1−∑ j Pi j [29].

Pi,j

Pi,k

Pi,out

Pk,i

Pk,out

Pjk

Pj,out

Poisson (ri)

Poisson (rj)

Poisson (rk)

µi µk

µj

Figure 2.1: An example Jackson queueing network model [29].

Although it is now widely accepted that Poisson packet arrival and exponentially

distributed packet size assumptions are not very realistic in modeling computer

networks, these Markovian assumptions provide simple tractable analytical models
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that enable designers to quickly understand how performance measures of interest

vary as a function of certain parameters. This understanding is key to conducting

more detailed empirical or experimental performance studies.

µc

Γ1

qjack1 Γ1

µ1

qjack1 Γ1

λ1
Γ1

(1 − qjack1 )Γ1

Figure 2.2: Jackson queueing network model applied to SDN [19]

Figure 2.2 shows the original configuration of Jackson network when applied to SDN

which consists of one controller and one switch as described in [19]. The packets

arrive at a switch with arrival rate λ1. When a table miss happens in the flow table,

the switch redirects the packet (or part of the packet) in the flow to the controller. This

event is captured by probability qJack
1 . Then, when the packet reaches to the controller,

the controller finds the route for the packet installs the route into the switch, and the

packet is redirected again to the switch. The net input to the controller Γc is equal to

Γc = qJack
1 Γ1, (2.1)

where Γ1 is the net input to the switch which is the summation of the controller output
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and the outside traffic:

Γ1 = λ1 +qJack
1 Γ1. (2.2)

The main shortcoming in Jackson network to model OpenFlow networks is that the

processed packet (the packet which is returned from the controller) and the newly

arrived packet from outside are treated identically by the switch. In other words, there

is no differentiation between a newly arrived packet and a processed packet. In reality,

traffic arriving at a switch that comes from the controller should not be redirected again

to the controller; since the packet should now find a match in the flow table.

2.2 Modified Jackson Network

In order to avoid the shortcoming in Jackson network model in [19], the authors have

modified the model of Jackson network in order to separate the traffic flow from the

switch to the controller and vice versa correctly. The modified Jackson network is

assumed to be a better representation of OF-based SDN network, and more accurately

represents the OpenFlow operation rule. Figure 2.3 depicts the topology of the

modified Jackson network.

µc

qnf1 λ1

µ1

qnf1 λ1

λ1
λ1

Figure 2.3: Modified Jackson model [19]
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The net input to the controller Γc is now

Γc = qn f
1 λ1, (2.3)

where qn f
1 is the probability that the packet is forwarded to the controller when a table

miss occurs. The probability qJack
1 described in Section 2.1 needs some modification

to model OF correctly when the net input to two models are the same. Therefore,

Γ1 = λ1 +qn f
1 λ1, (2.4)

and

qJack
1 Γ1 = qn f

1 λ1, (2.5)

so that

qJack
1 =

qn f
1

1+qn f
1

. (2.6)

The authors in [19] thus propose an approximate solution to overcome the shortcoming

of Jackson network by deriving the probability value when a table-miss occurs. Yet,

by the nature of the Jackson networks, their model still fails to distinguish between

the newly arrived packet and the processed packet by the controller. Moreover, their

model is not easily to extendable to multiple node in control plane.

In the following sections, a model is proposed to overcome the difficulty in

distinguishing between the newly arrived packets and the processed ones. A classed

queuing network is suggested as an alternative model the SDN switch and the

controller.

16



2.3 Classed Networks of Queues

In classed queueing networks there are k nodes and l classes of jobs (customers or

packets). It is assumed that service time at each node is exponential with rate µi and

an there is infinite buffer space. Hence, each node is viewed as an independent M/M/1

queue. Jobs at a node are served in FCFS manner. Each node may receive traffic from

outside or inside the network. The outside traffic is a Poisson process with arrival rate

ri and follows a specific route depending on its class. The outside traffic can be from

specific class (n). When the job is served by the node i, it will be transferred to node

j with probability P(n)(n
′
)

i j , or it may leave the network P(n)(n
′
)

i,out . The lower indices in

the notation P(n)(n
′
)

i j refer to sending the jobs from the node i to node j, while the upper

indices in that notation refer to a customer class change from class n to class n
′
. In this

type of networks, jobs can change the class, visit the node multiple times, and each

class can have different priorities [29]. Figure 2.4 shows a simple class based queuing

network.

P
(n)(n′)
i,j

P
(n)(n′′)
i,k

P
(n)(n)
i,out

P
(n′′)(n)
k,i

P
(n′′)(n′′)
k,out

P
(n′)(n′′)
jk

P
(n′)(n′)
j,out

Poisson (ri(n))

Poisson (rj(n
′))

Poisson (rk(n
′′))

µi µk

µj

Figure 2.4: Simple classed network of queues
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2.4 Proposed Model for SDN Using Classed Networks of Queues

The proposed model is derived based on classed queueing networks where different

classes are assigned to the processed packet and the newly arrived packet. In the

following discussion, the packets that visit the controller will be designated as class 0

packets. Thus, the switch can discriminate between different types of packets based

on their class. How packet classes in the presented methodology are changed is

illustrated in Figure 2.5. Three different topologies are analyzed. First, we study a

simple topology which consists of one controller and one switch. Second, two more

switches are added (in series with the first one) to the data plane. Finally, two

controllers and one switch are used to build the network, where results are obtained

using different methods of packet dispatching.

Start

Packet arrives
at switch i

IF
Packet is external

arrival into i
AND

Table-miss
event happens

Route packet
to controller

Make packet
internal and
change class
of packet to 0

Route packet
to next hop j

End

falsetrue

Figure 2.5: Flowchart of proposed model
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2.4.1 One Controller, One Switch Topology

Figure 2.6 shows a simple SDN topology which consists of one controller and one

switch. The external traffic arrival rate denoted by r1(1) reaches to the switch; this

traffic belongs to class (1). If there is no flow entry in the flow table for a packet,

the packet is encapsulated in a “PACKETIN” message, which is transferred to the

controller. This event is supposed to happen with a probability P(1)(1)
1,c . The lower

indices in the notation P(1)(1)
1,c refer to the probability of sending the packet from the

switch (1) to the controller (c), while the upper indices in that notation refer to no class

change. This notation is applicable for all the following topologies. It is assumed that

after the controller updates the flow table, the packet class is changed from class (1)

to class (0) and it is transmitted again to the switch with probability P(1)(0)
c,1 . Whenever

class (0) reaches the switch, it is directed outside the network with probability P(0)(0)
1,out .

µc

P
(1)(1)
1,c

µ1

P
(1)(0)
c,1

Poisson(r1(1))

P
(0)(0)
1,out

P
(1)(1)
1,out

Figure 2.6: Simple OF network of proposed model

If there is a match in the flow table, the switch applies the actions and directs the

packet outside the network with probability P(1)(1)
1,out = 1−P(1)(1)

1,c , where the lower index

in P(1)(1)
1,out refers to the packet class (1) is leaving the network (out), and higher index
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refers to no-change status in the class.

2.4.2 Extended Data Plane Topology

The data plane can be extended using multiple switches and one controller to build

the network. An example network configuration used in simulation is the network

shown in Figure 2.7. In this network, three switches are connected in series, labeled

as switch 1, switch 2 and switch 3 with external arrivals tagged as class (1), class (2)

and class (3), respectively. The packets that visit the controller become class 0. The

communications between the controller and the switches are as follows: when a packet

reaches the switch with no predefined entry in the flow table, a “PACKETIN” message

is produced by the switch and it is sent to the controller. The controller determines

the forwarding path and distributes it to all the switches on the path in order to add an

entry in the flow tables. Therefore, if the flow has an entry on the table it is forwarded

directly to the next switch on the path.

µc

P
(1)(1)
1,c

P
(2)(2)
2,c

P
(3)(3)
3,c

µ1 µ2 µ3

P
(0)(0)
c,1

P
(0)(0)
c,2 P

(0)(0)
c,3

Poisson(r1(1))
Poisson(r2(2)) Poisson(r3(3))

P
(1)(1)
1,2

P
(2)(2)
2,3 P

(3)(3)
3,out

P
(0)(0)
3,out

P
(0)(0)
1,2

P
(0)(0)
2,3

P
(1)(1)
2,3

P
(1)(1)
3,out

P
(2)(2)
3,out

Figure 2.7: Extended data plane

If there is an entry for the class (1) flow, it is forwarded from “switch 1”, to “switch 2”,

“switch 3”, and then outside the network. Therefore, when class (1) flow is received

by switch 1, where there is in no entry in the flow table, then it will be directed to
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the controller; it is assumed that this event happens with probability P(1)(1)
1,c . Then the

controller computes the path and a new entry is added to the flow tables in the switches.

Furthermore, the controller changes the packet class from class (1) to class (0), where

class (0) is treated as there is an entry matching and it is directed form switch 1 to 2

and 3. This discussion is under the assumption that, if there is a packet matching at

switch 1, then there will be a match at switches 2 and 3. Notice that if the flow has

different class (say class (2) or class (3)) then it will be treated similar to the scenario

of class (1) discussed above.

2.4.3 Topology with Multiple Controller

In single controller topology, there is a single point of failure. If failure happens in the

controller, the switches lose the communication with the controller and the network

will be down. As the network traffic increases, one controller cannot process huge

flow requests received from the switches due to its limited capacity. Thus, multiple

controller topology is suggested for real networks like data centers, and cloud

networking to improve the network reliability. Multiple controllers are better in

network load management. Also, the traffic load can be shared between the several

controllers, where the controllers keep consistent information in order to transmit

packets correctly. Moreover, multiple controller topology has redundancy which

reduces the chance of network failure. It is less likely to have two controllers failing

at the same time. Thus, the second controller carries on and controls the network. In

this respect, the multiple controller topology needs to be analyzed as well.

The network can be supplied with homogeneous controllers, where all controllers

have the same specifications in terms of buffer size, memory, and service rate [30].

Furthermore, the network may be supplied with heterogeneous controllers, where the
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Figure 2.8: Extended control plane

controllers have different specifications as in [31]. Figure 2.8 shows the topology of

multiple homogeneous controllers. The external traffic reaches the switch with rate

r1(1) and is referred to as class(1). If there is no match in the flow table, a

“PACKETIN” message is created and sent to one of the controllers. This event is

assumed to occur with probability P(1)(1)
1,ci

, where P(1)(1)
1,ci

is the probability that the

packet is directed to the controller when there is no match in the flow table. When the

packet matches an entry, it directly applies the action field with probability

(1−P(1)(1)
1,ci

). In order to choose one of controllers efficiently, we assumed that there is

a routing component or task allocator that chooses the controller, where a special

policy is used to determine to which controller the switch should interact. This policy

is called task assignment policy, and also known as load balancer or dispatcher [29].

The controllers are assumed to imeediately feedback their status to the task allocator.

There are different ways to dispatch packets to the controllers: random, round robin

(RR), and join the shortest queue (JSQ). In the first type, the packet is directed to one

of the controllers randomly with equally likely probability. The aim of this policy is
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to balance the number of packets at each controller. On the other hand, round robin

strategy distributes the packet from the switch to the controllers in a round robin form.

JSQ policy is also called shortest queue length, the packet joins the controller which

has the least number of packets in the queue.

2.4.4 Energy Performance Trade-off

In multiple controller topologies, a central problem is how to use efficient number

of controllers to extract the best performance under unpredictable traffic while not

wasting energy. In order to study the trade-off between the performance and the energy

consumed by the controller, we introduce a cost function to capture this trade-off,

where the energy consumed by the controller depends on its processing speed. At low

processing speeds, the performance of the system decreases, while at higher speeds,

more energy is consumed.

Based on [32, 33], the minimum power (P) needed by the processor is given by

P ∝ µα
c (2.7)

where µc is the service rate of the controller in (packets/second) and α is a parameter

which is typically chosen as 2 or 3. For digital electronic devices, the power-delay

product (PDP), which is the product of power consumption P and input-output delay.

Similarly, the concept of PDP is applied here for the network system, where the input-

output delay is the system response time (R). Thus, a cost function F is defined as

F = γ×P×R. (2.8)

The constant γ is a function of α and is γ = secα−1

pktα . When α = 2 the cost function is
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given for one controller topology as

F = µ2
c×R× γ. (2.9)

For multiple controllers, the service rate for each controller is taken as the half of

that of the controller in one controller topology. It is important to point out that the

total power consumed by multiple controllers is found as the sum of the individual

controller. From (2.7), one may observe that the power of the controller depends on the

service rate. Thus, in case of two controllers, total power is given as (µc
2 )

2
+(µc

2 )
2
=

µ2
c

2 .

As a results, the cost function in case of double controllers is

F =
µ2

c
2
×R

′× γ, (2.10)

where R
′
is the system response time in case of multiple controller.

Similarly, for the case when α = 3, the cost function of one controller is given as

F = µ3
c×R× γ, (2.11)

and for multiple controller is given as

F =

{
(
µc

2
)

3
+(

µc

2
)

3
}
×R

′× γ

=
µ3

c
4
×R

′× γ.

(2.12)
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Chapter 3

RESULTS AND DISCUSSION

In order to verify our models, we simulated our topologies using Java Modeling Tool

(JMT) version V.1.0.2. JMT is a discrete event simulator which was developed at

Politecnico di Milano and Imperial College London to evaluate the performance of

queueing networks [34]. The simulations were executed using a TOSHIBA laptop with

an Intel Core i7 processor. Each simulation runs until a 95% confidence is obtained

for the performance measure of interest with less than 3% maximum relative error

or the simulation has analyzed 1,000,000 samples. These stopping conditions ensure

that the performance indices of interest are reported with high precision as long as

the simulation time is not prohibitive. The simulations were executed considering the

following assumptions:

1. The controllers and the switches have infinite queues (assuming no packets

losses) [18, 19].

2. The service times at the controllers follow an exponential distribution with rate

µc and mean value of 240 µs [18, 19].

3. The service times at the switches follow an exponential distribution with rate µ1

and mean value of 9.8 µs [18, 19].

4. All of the external traffic arriving into the network is assumed to be modeled as

a Poisson process.
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3.1 One-Controller, One-Switch Topology

The performance of the network shown in Figure 2.6 is given in Figure 3.1. The figure

shows the relation between the system sojourn time and the controller utilization ρc,

where the sojourn time is defined as the average time spent by the packet in the network

from the moment the packet enters the network till it leaves it.
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Figure 3.1: Comparison of the proposed model to the modified Jackson model

The authors in [19] validate their model using OMNeT++ packet-level discrete event

simulation results reported in [18]. The results obtained in this thesis are compared

with the results obtained in [19] and thus with the simulations in [18]. The analytical

modified Jackson and simulation modified Jackson in Figure 3.1 refers to the models

described in Section 2.2 which were validated with packet-level simulations in [18].

The multiclass network in Figure 3.1 refers to the simulation results obtained from the
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proposed model in Section 2.4.1 of this thesis.

The simulations were performed under different probability values P(1)(1)
1,C for traffic

being directed to the controller. The range of external arrival rate is 2083.3 to 18750

pkt/s for P(1)(1)
1,C = .2, 833.33 to 7500 pkt/s for P(1)(1)

1,C = .5, and 462.96 to 4166.7 pkt/s

for P(1)(1)
1,C = .9. It can be seen that the system response time grows exponentially with

increasing controller utilization. Also, when a single controller is used in the network,

the performance results of the proposed topology coincides with the analytical and

simulation results of modified Jackson model.
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Figure 3.2: Extended data plane with three switches

3.2 Extended Data Plane

Figure 3.2 shows the simulation results for extended data plane where there are three

switches. In the simulations, it is assumed that the external arrival rate is equal for

all switches (i.e: r1(1)=r2(2)=r3(3)). The range of external arrival rate is 694.43 to
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6250 pkt/s for P(1)(1)
1,C = 0.2, 277.7 to 2500 pkt/s for P(1)(1)

1,C = 0.5, and 154.32 to 1388.9

pkt/s for P(1)(1)
1,C = 0.9. Simulations were performed at different probability values of

table miss occurrence in order to investigate the proposed topology. The probability of

table miss in all switches is assumed to be the same P(1)(1)
1,C =P(2)(2)

2,C =P(3)(3)
3,C . Also the

service rate at each switch is the same µ1=µ2=µ3 = 9.8µs. Comparing Figures 3.1 and

3.2, one can see that the response times with one switch and three switches are similar

when the total external arrival rates are the same. This can be attributed to the fact that

the controller is the bottleneck and is thus the limiting factor of performance.

3.3 Multiple Controller Topology

In case we have one switch and two controllers as discussed in Section 2.4.3, each

controller has half service rate (µc
2 ) compared to the scenarios studied in Section 2.4.1

and Section 2.4.2 for fair comparison. In multiple controller topology, it is required

to use either random, round robin or JSQ dispatchers in order to dispatch the packets

from the switch to the controller. A comparison is given between the three methods

in order to show the most effective method to be used in the multi-controller topology.

The comparison is done for three different probabilities of traffic going to the controller

(P1,ci = 0.2,P1,ci = 0.5 and P1,ci = 0.9) as shown in Figure 3.3. It is clear from the figure

that the JSQ strategy has the fastest system response time compared to the round robin

and random strategies. The response times of the one-controller topology is provided in

Figure 3.3 in order to give a lower bound for the comparison, where the one-controller

topology has the fastest response time compared to multi-controllers approaches. An

important observation is that the response time for the random strategy is twice as

much the response time with one controller case. The results obtained for average

response times with two controllers are in agreement with the comparison of different

task assignment policies given in [29]. Since round-robin results in less variability in
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Figure 3.3: Comparison of different dispatching policies
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inter arrival times at controllers compared to random task assignment, it is expected

to outperform random task assignment. JSQ, on the other hand, is a dynamic policy;

it attempts to equalize the instantaneous number of packets at each queue and reacts

quickly to changes. Hence, JSQ outperforms round-robin which tries to equalize the

average number of packets. Figure 3.4 further depicts the queue size for the three task

assignment policies which result in similar findings and trends as those obtained for

response times.

3.3.1 Energy Performance Trade-off

In the following, the cost function (2.8) is evaluated using simulation for a wide range

of arrival rates at different probabilities of table miss. At each probability value, the

one-controller topology, random, RR and JSQ algorithms are compared, where the

one-controller topology can be seen to give an upper bound for the cost function value

compared to multiple controllers.

The analyses were conducted for the cases when α = 2 and α = 3 with γ = 1. Figure

3.5 depicts the cost function (2.10) when α = 2 for two controllers and (2.9) for one

controller. The results clearly show that the cost function for one controller and random

dispatcher coincide for different probabilities of table-miss considered, and random

strategy is the highest cost compared to RR and JSQ, whereas the JSQ is the least

cost strategy. Figure 3.6 shows the cost function (2.11) when α = 3. The figure shows

that the cost for one controller topology is twice higher than the random strategy for all

different probabilities. While the JSQ has the least cost function values compared to the

other policies. One may conclude that using multiple controllers is an effective strategy

from energy efficiency point of view compared to single controller. This advantage

promotes the multiple controller topology to be used in the market by the designers.
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Figure 3.4: Queue sizes for each of the two controllers under different dispatching
policies
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Figure 3.5: Cost function when α = 2
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Figure 3.6: Cost function when α = 3
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Figure 3.7: Controllers with intermittent failures
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3.3.2 Effect of Redundancy with Intermittently Failing Controllers

Use of multiple SDN controllers may be necessary to prevent service outages and

delays when controllers experience intermittent failures. Increasing the number of

controllers however will increase capital and operational costs. Therefore, such

increases can be compensated by the corresponding reductions in packet delays. A

quantitative analysis of the decrease in delays when the number of controllers is

increased is necessary. In this work, the focus will be on using two controllers.

Service outages in SDN controllers can be due to hardware, software, or link failures.

Although recent research tries to characterize the nature of failure dynamics in SDN

controllers [35, 36], there are still no well-established failure models. As such, a

relatively simple failure model of controllers is considered in this thesis. It is assumed

that the controllers intermittently fail. The failures are simulated by using the

following service time model: The time at controllers is assumed to be slotted and

each slot is 0.01 seconds. In each slot, the controllers fail with a probability of 0.05;

this failure case is simulated by choosing service times from an exponential

distribution with a mean of 0.24 seconds. The controllers work normally with a

probability of 0.95; here, the service times are chosen from an exponential

distribution with a mean of 240 microseconds. When there are two controllers, it is

also assumed that there is a routing component or task allocator that chooses the

controller with the fastest service (or the one that is not failing); this information is

supposed to be fed back to the task allocator.

Figure 3.7 shows that with only one controller, the packet response times grow

exponentially with increasing arrival rates. The packet response times are greatly

improved if two controllers are employed, especially at high arrival rates. The

35



throughput of packets can be defined as the inverse of response times (with units of

packets per second). Denoting the throughput with one controller as T1 and with two

controllers as T2, one can calculate the ratio T2/T1 to illustrate the throughput gain

when two controllers are employed. The insets of the figures show T2/T1. Note that

one can find that the gain exceeds 2 when the external arrival rates are roughly larger

than 10,000, 3,500, and 2,000 packets/second when pc is 0.2, 0.5, and 0.9,

respectively; these all correspond to a controller utilization of approximately 50% in

the one controller scenario. Finally, Figure 3.8 compares all the cases considered in

this section. It can be seen that P1,ci greatly affects the response times for a given

arrival rate.
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Figure 3.8: Failure all scenarios

3.3.3 Benefits of Employing Multiple Controllers

Simulation results shown in Figures 3.5 and 3.6 and the statistical details provided in

the Appendix indicate that the power-delay performance is improved when two
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half-capacity controllers are deployed instead of a single full-capacity controller. In

addition, in case there are intermittent controller failures, installing two controllers

may be justified for large traffic loads as illustrated in Figure 3.7 with statistical

details reported in the Appendix.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

In this thesis, the SDN networks is modeled using classed queueing network. The

proposed network model is considered as a simple model which can be generalized

to multiple switch and controller topologies. The basic concept of classes is explained

and it is used as the core idea of the proposed model. The key idea behind the proposed

model is the usage of classes, where the packet is directed to the controller if there is

table-miss in the switch. The controller changes the packet’s class and forwards it to

the switch again. Thus, the switch distinguishes between the newly arriving packets

and the packets which are coming from the controller.

The proposed model is used to model three different topologies, namely, single

controller, extended data plane and multiple controllers topology. The presented work

is compared with previous work and gives very close results in the sojourn time of the

packets when there is one controller and one switch. By adding two additional

switches, we extend the data plane, simulating a more realistic SDN scenario.

It is shown that multiple controller topology is more effective and powerful than one

controller topology. The use of multi-controllers increases the network’s redundancy

in case of controller failures, compared to one controller topology where the system

completely fails. Additionally, a cost function is employed to analyze the system for
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energy consumption and best performance. The results show that the multiple

controller topology has less cost in terms of power delay product when compared to a

single controller topology.

4.2 Future Work

By looking to the future, we are looking forward to validating the proposed model

experimentally. Indeed, the experimental validation will show the network limitations

in terms of hardware validation and other constraints which may arise in practice.

Note, however, that experimental validation of the models can prove difficult since

SDN is not very widely implemented yet. There is currently only limited research

work that use actual SDN measurement data for performance analysis. Moreover, the

work presented here is based on Markovian arrival assumption. As a future work, one

may extend the application of the proposed model so that different arrival distributions

which are more suitable for modeling computer network traffic are employed.
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Statistical Details of Results for Multiple Controller Topologies

The values in the shaded cells were not computed with the required precision of 95%

confidence level and 3% maximum relative error; i.e., the simulations stopped after

1,000,000 samples were processed.

Power-Delay Product Cost Function Results for α = 3,γ = 1

Table A.1: Probability of table-miss=.2
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Table A.2: Probability of table-miss=.5

Table A.3: Probability of table-miss=.9
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Response Time Results with Intermittently Failing Controllers

Table A.4: Probability of table-miss=.2

Table A.5: Probability of table-miss=.5
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Table A.6: Probability of table-miss=.9
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