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ABSTRACT

Inverse Problems is a research area dealing with inversion of models or data. An
inverse problem is a mathematical model that is used to obtain information about a
physical object or system from observed measurements. The solution to this problem
is useful because it generally provides information about a physical parameter that
we cannot directly observe or measure. These problems play a very important role in
many areas of science and engineering. In this thesis, we formulated a compact finite
difference scheme for a one dimensional parabolic inverse problem to determine the
solution ¢ (x, t) and control parameter c(t). The global existence and uniqueness of
the solution ¢ (x, t) was proved using the method of retardation of the time variable
along with an a priori estimation. Also, the existence of solution or solvability of the
formulated compact scheme was proved by employing the homogeneous system of the
tridiagonal system resulted from the formulated scheme. Some numerical results are
presented to show that the accuracy of the space and time directions are improved, and

computation time is shortened largely.

Keywords: Parabolic Inverse Problems, Control Parameter, Existence and

Uniqueness, Compact Difference Scheme.



Oz

Ters Problemler, modellerin veya verilerin ters ¢evrilmesi ile ilgilenen bir arastirma
alanidir. Ters problem, gozlemlenen Slgimlerden fiziksel bir nesne veya sistem
hakkinda bilgi elde etmek i¢in kullanilan matematiksel bir modeldir. Bu sorunun
¢oziimli yararhidir ¢linkii  genellikle dogrudan gozlemleyemedigimiz veya
6l¢emedigimiz bir fiziksel parametre hakkinda bilgi saglar. Bu sorunlar bilim ve
muhendisligin birgok alaninda ¢ok Onemli bir rol oynamaktadir. Bu tezde, ¢(x,t)
¢ozUmuna ve c(t) kontrol parametresini belirlemek icin tek boyutlu bir parabolik ters
problem i¢in kompakt sonlu bir fark semasi formiile edilmistir. ¢(x,t) ¢6zimUnin
kiiresel varligi ve benzersizligi, bir on tahmin ile birlikte zaman degiskeninin
geciktirme yontemi kullanilarak kanitlanmigtir. Ayrica, formiile edilmis kompakt
semanin ¢Oziimiinliin veya ¢oziilebilirliginin varligi, formiile edilen semadan elde
edilen homojen tridiyagonal sistemi kullanilarak kanitlanmistir. Uzay ve zaman
yonlerinin dogrulugunun gelistirildigini ve hesaplama sliresinin biiyiik Ol¢iide

kisaltildigin1 gostermek igin bazi sayisal sonuglar sunulmustur.

Anahtar Kelimeler: Parabolik Ters Problemler, Kontrol Parametresi, Varlik ve

Teklik, Kompakt Fark Semasi.
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Chapter 1

INTRODUCTION

Inverse problems constitute the most essential mathematical problems in science and
engineering, for reasons that they give us information about parameters that cannot be

measured directly.

In this work, we are interested in the problem of finding the solution ¢(x,t) and

control parameter c(t) in the one-dimensional parabolic inverse problem below:

f;_f:f:?+c(t)¢+¢(x,t), 0<x<1 0<t<T, (1.1a)

together with initial condition

¢(x,0) =y(x) (1.1b)
and boundary conditions

$(0,t) = zy(t), ¢p(1,t) =2z,(t), 0<t<T (1.1c)
Subject to the overspecification at a point in the space coordinate

¢(x*,t) = H(t), 0<t<T (1.1d)
where y(x), z,(t), z.(t), Y(x,t) and H(t) are known functions,
|H(t)] = Hy >0, x*€(0,1), while ¢(x,t) and c(t) are unknown functions.
Equation (1.1) could be regarded as a control problem of determining the control
parameter c(t) in which the inner restraint Equation (1.1d) is fulfilled, provided
¢ (x, t) stands for the temperature of the system. The objective of finding the solution

to the above inverse problem is to determine the control parameter c(t) which will



yield a desirable temperature at a specified location x*in the space direction, at each

time level ¢.

In applied mathematics, physics and medical sciences, the determination of the
parameter (i.e., control parameter or conductivity) in partial differential parabolic
equations with respect to overspecified data is of the essence. For example, parabolic
inverse problems are encountered in the study of vibration problems, chemical
diffusion, heat transfer processes, nuclear reactor dynamics, thermo-elasticity, control
theory, inverse problems, population dynamics, biochemistry, and certain biological
processes. To a great extent, the unknown properties of an extended spatial location of
the space coordinate can be ascertained using parameter determination method, by
measuring only data on the bounds of the region or a given point in the domain. An
example of such unknown properties; is conductivity, which oftentimes we cannot
measure directly, or it is too costly to be measured even though it plays a crucial role
to the physical process. There is rapidly increasing research interest in finding the

solution of parabolic PDE’s with a standardized boundary conditions [1-3].

Lately, there has been increasing interest towards the investigation of parabolic inverse
problems. In the past three decades or more, there has been increasing interest given
in research towards developing, analyzing, and implementing accurate techniques for
numerically finding the solutions of parabolic inverse problems. To obtain such
approximate solutions, a lot of different methods such as the finite difference, finite
volume, finite element and boundary element methods have been suggested, but little
investigation has been made towards the determination of approximate numerical

solution of parabolic PDE’s subject to over-specified boundary data. Apparently, in



recent years, we have seen that parabolic PDE’s with source control parameters can be

used to describe numerous natural processes [2,3].

In [3], inverse problems which involves identifying parameters were discussed as well
as some applications of inverse problems. Cannon and Lin in [1], proved that the
solution to these inverse problems exist and are unique, by making a transformation of
problems (1.1a) — (1.1d). Cannon, Lin and Xu in [6], proved the convergence of a
backward implicit finite difference method by first transforming the original problem.

The solution ¢ of the scheme was shown to have order of convergence of 0(z + h?),
while the parameter ¢ with order of convergence of O (11/2) when t = 0(h?). In [6],

Dehghan gave four different difference schemes for problems (1.1a) — (1.1d). These
includes 3-point FTCS method, 5-point explicit formula, 3-point BTCS method and
implicit (3,3) Crandall’s method. Two of these finite difference schemes; 3-point FTCS
method and 3-point BTCS method are second-order accurate, while the implicit (3,3)
Crandall’s method and the 5-point explicit method have fourth-order precision. In [7],
the authors presented a high-level order compact finite difference scheme for solving
a one dimensional parabolic equation of a coefficient inverse problem. The proposed
method is an efficient fourth order numerical method, founded on the Padé
approximation, the functional alteration, and the Richardson extrapolation. The
algorithm is used to find the solution ¢ (x, t) and the unidentified diffusion coefficient
a(t) which depends on time t, in the parabolic partial differential equation. Initially,
the new algorithm was second order accurate in the time trend and fourth order
accurate in the spatial domain, because it was developed from the Crank—Nicolson
algorithm. Thus, the algorithm was improved to fourth order accuracy in the time trend

using the Richardson’s extrapolation method. The newly formulated high order
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method can as well be applied to a more general response diffusion equation and is
proved to be unconditionally stable. In [7], Dehghan and Saadatmandi suggested for
problems (1.1a) — (1.1d) an estimation method known as tau method, that is founded
on Shifted Legendre tau theories. First, the method involves carrying out an expansion
of the estimate solution ¢(x,t) and c(t) as a shifted Legendre function with
unidentified coefficients, which reduces the problem to a system of algebraic
equations. So, to determine the unidentified coefficients of the Shifted Legendre
functions, the tau method in combination with matrices are used. Dehghan and Shakeri
in [8] presented a method of line technique for solving problems (1.1a) — (1.1d). The
idea was centered on making use of traditional finite difference approximations and
the Runge-Kutta technique. The process requires discretizing the spatial domain such
that an initial boundary value partial differential equation (PDEs) problem is reduced
to a set of ordinary differential equations (ODES) in time. Therefore, the subsequent
set of ordinary differential equations may then be solved with the use of a basic ODE
solver such as the Runge-Kutta method. In [9], a meshless method known as the
moving least square (MLS) method was applied in solving problems (1.1a) — (1.1d).
The method involves making use of the moving least square estimation, for the
discretization of both time and spatial variables. The solution ¢ (x, t) is considered as
a basis, and with the application of the collocation method, the control parameter c(t)
is recovered. Also, the approximation of moving least-square (MLS) has been used in
[9] for finding the solution of problems (1.1a) — (1.1d). The method is a meshless
method, which involves using the moving least-square approximation for discretizing
both the time and spatial variables. The solution ¢(x, t) is considered as a basis, and
the control parameter c(t) is obtained by the collocation method. In [10], a one

dimensional parabolic inverse problem together with source and Neumann boundary
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conditions was solved using finite volume technique. The method involves dividing
problems (1.1a) — (1.1d) into two separate problems, and the emerging problems are
solved, respectively. The first part is solved as a direct problem, by integrating Eqg.
(1.1a) using Green’s formula which results to a difference scheme that is
unconditionally stable. But a different difference scheme was developed for the second
part by means of right rectangle formula which results to a difference scheme that is
stable for || > 1. In [11], Wang et al. presented a general form of problems (1.1a) —
(1.1d). The inverse heat problem was solved by applying the technique of reproducing
kernel space. The method involved,; firstly, to redefine the inner products so that the
reproducing kernel space can be obtained. As a result, the cumulative inaccuracies are
decreased thereby improving the accuracy and decreasing the period of time for the
system to run; secondly, problems (1.1a) — (1.1d) is reduced to a set of linear equation,
thereby avoiding Gram Schmidt orthogonalization process. In [12], Kerimova and
Ismailov presented a parabolic inverse problem together with nonlocal boundary and
integral overspecification stipulations, with an investigation on how a time dependent
coefficient in the inverse problem can be recovered. The method involved reducing
problems (1.1a) — (1.1d) to an operator equation of the first kind, using Green’s
function method. The authors established that the solution of the inverse problem
exists and are unique, likewise the continuous dependence upon the information of the
solution, by means of the general Fourier method. In [13], Limin and Zongmin
presented a category of parabolic inverse problems with two or more dimensions,
which was solved by applying the Radial Basis Functions (RBFs) technique. The
Radial Basis Functions is among the widely used meshless techniques in contemporary
approximation concept. The technique of Radial Basis Functions approximation

involves, to determine an estimated solution of the inverse problem by applying Radial
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Basis estimation in the spatial domain for each time t, while the Finite Difference
technique is applied in the time direction. The technique gives a global interpolation
formula for both the derivatives of the solution and the solution itself, and processes
high-level of accuracy. Therefore, for a category of inverse problem having a control
parameter, the RBFs technique provides a quick and accurate meshless method of
solution. Mohebbi and Dehghan in [14], presented a scheme with high-level accuracy
for finding the unidentified solution ¢(x,t) and unidentified control parameter c(t)
of parabolic inverse problems (1.1a) — (1.1d) together with overspecification at a
precise location in the space coordinate and integral overspecification. In the method,
the spatial domain was first approximated using fourth-order Compact Difference
technique, which reduced problems (1.1a) — (1.1d) to a set of Ordinary Differential
Equations (ODEs). The resulting set of ODEs is subsequently solved using Boundary
Value Method (BVM) of fourth-order. Thus, the suggested method possesses high
precision, i.e. it is fourth-order accurate in time coordinate as well as the spatial
domain. Ye and Sun in [15] proposed a numerical method which improves the result
obtained by Cannon and Lin in [4]. The authors following the idea in [4], formulated
a difference scheme for problems (1.1a) — (1.1d) by making a transformation of the
problem and as well proved that the proposed method is unique, completely stable and
convergent. The approximations of both the control parameter c(t) and the solution
¢ (x, t) have convergence orders of O(t + h?). In [16] Daoud and Subasi presented
a different approach for determining the control parameter c(t) and solution ¢ (x, y, t)
of inverse control problems of two of more dimensions. The new procedure proposed
is a predictor corrector parallel type of technique where the parallel splitting up
technique is used to define both the solution and the predictor and corrector methods.

The solution ¢(x,y,t) is updated by a non-repetitive method in a two or more

6



dimensions inverse control problem. The multiple dimensioned inverse problem is
split up into several one-dimensional problems, which are then discretized using finite
difference approximation. The algorithm is highly flexible in the sense that it allows
one to choose a unique grid spacing for different variables in the space domain. Also,
the authors proved that the method is unconditionally stable with high order of
accuracy. In addition, the local and global convergency of the method was established
to be second order and first order, respectively. In [2], Dehghan presented various
schemes that can be used to determine the unknown function c(t) in the problems

(1.1a) — (1.1c), dependent on the integral overdetermination along the space coordinate
1
f k(x)p(x,t)dx = H(t), 0<t<T,
0

Or the overdetermination condition on the space coordinate at a given spot
p(x*,t)=H(t), 0<t<T,

respectively. The numerical methods proposed for determining the solution of problem
(1.1a) — (1.1d) at the internal mesh points are; the 3-point second order forward time
centered space (Explicit) scheme, the 3-point second order backward time centered
space (Implicit) method, the Crank Nicolson (3,3) method, the Saulyev's method of
first and second kind. The various methods are used to find the approximate result to
the problem dependent on the over-specified data. The numerical approximations
proposed are employed in finding the unidentified function c(t), that is capable of
producing the required temperature dissemination at any instant along the space
coordinate, or the required energy dissemination along the space coordinate, at any
point in time. Different techniques were suggested for finding the approximate value
of c(t) by applying the heat overdetermination constraint, or the energy

overdetermination constraint.



Mohebbi and Abbasi in [3], proposed a scheme that has high accuracy for finding the
unknown solution ¢(x,t) along with unknown function c(t) of parabolic inverse
problems (1.1a) — (1.1d), subject to the overdetermination at a given position in the
space coordinate. A Compact difference scheme of high-level order of accuracy was
used to approximate the spatial domain in the new method formulated by the authors.
The new method was proved to be stable and convergent, with a convergence order of

0(1? + h*).

In this literature review, a number of the difference schemes proposed gives a method
with low-level order of precision [5,7,15] or have high order of accuracy with no
mention of how stable or convergent the scheme is [8,14].

Consider the nonnegative integers M and N. Let h = % T= % and r = % Define

th{xl'zih, OSLSM}, QT={tn|tn=nT, OS”SN}, Qh‘rzﬂhXQT'
Assuming we have an integer k, which implies x* = x; . This is feasible in real

applications as indicated in [9].

Given a mesh function {¢{'|10 < i < M, 0 < n < N} with respect to Q,, we present

the notations below:

1 1
1 n+1, 4n 1 n+i_,n n+1_ n-1
¢Tl+2 — ¢i +¢i 6 ¢n+2 — ¢i _¢i D: n _ ¢i _¢i
L 2’ t¥i T Ly 2T :
— n+1 n-1 n n n
P = P toi S2¢0 = Pii1=2¢i +Piyq
i — 2 Y XYVYi — h2 )

M-1 1,
||¢"||=[h2(¢>?)2] ;g = max |7
i=1



Denote the mesh functions
lnb{l =P (x;, tn), H™ = H(ty), (H')"™ = H'(t,), 0<i<sM,

0<n<N.

Dehghan in [5] suggested for problems (1.1a) — (1.1d) the subsequent implicit

Crandall’s scheme:

1

1 1
<5t¢ z 4 105t¢ "2 ¢>l"++1 > 52¢ 2 + gt + AL
1<i<M-1, 0<n<N-1, (1.2a)

1 , 1
e = [(HY™ = (Rt + 160 — 301 + 16001, —

puty,) — 1, 0<n<N-1, (1.2b)

y(x)[( N0 =y () = A ], (1.2¢)
o7 =y (x), 1<i<M-1, (1.2d)
¢(T)l = gO(tn)' d)lrllll = gl(tn)ﬂ 0 S n S N. (126)

Dehghan provided a reiterative approach for solving the scheme. Suppose
(p*1, ™17 is regarded as unidentified solution pair, then a linear algebraic system
can be developed from equations (1.2a) — (1.2e). The linearized scheme is responsible

for the accuracy of the time domain with an order of O(7) only.

This thesis is organized as follows: In chapter 2, we established the existence and
uniqueness of the solution of problems (1.1a) — (1.1d). This was achieved by firstly,
making a transformation of the original problem to obtain a parabolic equation that is
nonlocal and comparable to the original problem. Next, we established some a priori

estimations together with some assumptions and lemmas to establish the proof that the



solution of the problem exists and is unique. In chapter 3, we constructed a compact
finite different scheme for the one dimensional parabolic inverse problems (1.1a) —
(1.1d). The existence and uniqueness of the constructed scheme is as well presented.
In chapter 4, two numerical examples are presented and solved using the constructed
compact scheme to investigate or determine the accuracy and efficiency of the scheme,
this was done by presenting the errors for ¢(x,t) and c(t). Finally, conclusion and

observation are made for the experiment.
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Chapter 2

EXISTENCE AND UNIQUENESS OF SOLUTION

2.1 Introduction
In this chapter we intend to establish the existence and uniqueness of the solution of
problems (1.1a) — (1.1d). First, we shall begin by utilizing the following

transformations:

$(x,0) = g(x, ek cs (2.)
() = e Jo c)as (2.2)
9= 9(xt) = p(x,t)e o) (2.3)
cw="8 =20 (2.4

The transformation above, enables us to get rid of the term c(t)¢ from problem (1.1a),
So as to achieve a parabolic equation that is nonlocal and comparable to the original
problem given that a certain number of conditions that enables it to be compatible are
met. Next, the a priori estimations regarding the solution of the corresponding nonlocal
parabolic problem will be derived. Then employing the strong maximum principle in
conjunction with the compactness arguments, the solution of the problem is therefore
proved to exist uniquely. Lastly, making use of the inverse transformation (2.4), we
are able to establish that problems (1.1a) — (1.1d) has a global solution subject to

appropriate assumptions on the data.
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2.2 A Priori Estimate for Problems (1.1a) — (1.1d)
In this section we shall take into consideration the problem below, which arises from

b =Lp+c(O)p+P(x,t, P, ¢, c(®), 0<x<1l, 0<t<T (25a)

$(x,0) =y(x), x €Q (2.5b)
$(0,t) = zy(t), d(1,t) = z.(t), on dQ x (0, T], (2.5¢)
¢(x*,t) = H(t), x* €Q, 0<t<T (2.5d)

Where the linear elliptic operator L is given by

Lo = ) (000 by,

i,j=1
Equations (2.5a) — (2.5d) becomes

n

be= D Qi+ ) axi+ (O +P(x,t, 6, 0 c(0)
i=1

ij=1

0<x<1 0<t<T (2.6a)
o(x,0) =y(x), x€Q (2.6b)
¢(0,t) = z,(t), ¢(1,t) = z,(t), on a0 x (0,T], (2.6¢)
d(x*t) = H(t), x"€Q, 0<t<T (2.6d)

Where Q; = Q % (0,T],T > 0 and Q is an open bounded domain in R™ with smooth
boundary 90 € C?*%,(0 < a < 1). We also assume that G(t) c Q with smooth
boundary 0G(t) forall 0 <t < T [17]. Now, applying transformation (2.1) — (2.4) to

Equations (2.6a) — (2.6d), it’s easy to see that (¢, c) — (g, r), that we have:

9t = Z Qi,jGxix; + Z a;gx; t r)y (x, t, %) in Qr (2.7a)
L,j=1 i=1

g(x,0) = y(x), x € Q (2.7b)

g(0,t) =r(t)zy(t), g(1,t) =r(t)z,(t), onaQx (0,T], (2.7¢)

12



and

r(t) = % 0<t<T (2.7d)

Now, to develop a priori estimation for the solution pair (g, ), we shall assume that
r # 0 together with the assumptions on the data named below. Because the operator L
is linear, we have the liberty to utilize 1 + § type estimates to achieve the bounds on
(g.7).

Assumption H1: ([17]) y =0, z;(i = 0,1) > 0,y = 0, H > 0, and for some

0<a<l,

y € CTHa(Q), z € %0 x [0,T]), H € C1*%2([0,T]).
Then meas {G(t)} and meas {dG (t)} are smooth functions on [0, T1].

Assumption H2: ([17]) ¥ = ¥(x, t, ¢, ¢,, q) is a smooth function in regard to every
one of its variables, 1 = 0 and |Y(x,t,¢,c,q)| < 6lq| + C(|¢p| + |c| + 1), where

6 > 0 is such that

0 <6 =6 max {H‘l(t) o (x, t)dx} <1

0<t<T G(t)
Assumption H3: ([17]) aij, Aijx, € C*(Qr), y € R™, ag,Ag >0

n

aolyl* < Z a;jyiyj < Aolyl?
ij=1

With the assumption that the data satisfies the basic compatibility condition, i.e., Eq.
(2.6¢) is satisfied on 0Q x {0} by the data.
Assumption H4: ([17]) Assume the data a;;, a;, ¥, z; and H satisfies the equivalent

statements in H1 — H3.
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Assumption H5: ([17]) ¥ = ¥(x,t,¢) = 0 is a smooth function [(x,t, ¢)| <
C(1 + |¢]), and the condition that makes it compatible is satisfied on dQ x {0} by the
data and y(x,) = H(0) > 0.

Lemma 2.1: ([17]) Suppose that equations (2.7a) — (2.7d) has a classified solution g

with g(x*,t) # 0. Then there exists a positive constant M > 0 that depends just on

the data such that
(rrtl)aex lg(x, t)| + maxlr(t)l <M (2.8)
Proof: Let

glx,t) = w(x.t) exp {6Z(xi —x/)%+ ,Bt}

We realize by computations that w satisfies

_ esw
wy = Z @jjWyx +Za wy, +(@—pw +r(t)e” S (x t, (t)) in Qg
i,j=1 i=1

w(0,) = exp{=8 X1, (x; — x)3 28 g(x",6)  On8Qx(0,T]

H(t)
w(l,t) = eXp{—6 Z(xi —x;)? 21((;) g(x*,t)
i=1

n
w(x, 0) = exp {—6 Z(xi — x{‘)z}y(x), x €N
i=1
Where:
n
§=6) (u—x)P+pt
i=1
and

_ 1, ifi=]j,
a; = q; + 26 Z?=1(aij + aji), 61] = {0 l;l ij (29)
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n n

a=26 2 a;(x; —x;) + Z a;j (5ij + 28 (x; — x;‘)(xj - xj‘)) (2.10)

i=1 ij=1
Since x* € Q we see that d = dist(x*,dQ) > 0. It follows that if we take § > 0 large

enough such that

e 2.0
exp{=ond’} max =5

<!
2

We will find that [w(x, t)| cannot reach Its maximum on the boundary aQ x [0, T].
Assuming at this point that w reaches its positive maximum at (x’,t") in the interior.

Thus, it follows that:

eSw(x', t"
r(t") >

(B—alx, t))w(x',t") <r(the 5y <x’, t',
< K(w(x',t") + r(t’)e‘f(x"t'))
< K(w(x',t") + Pt exp{8 T, (x] — x7)* —
ptIw(x', tYH' (L))
< (K + exp{én diam(Q)?}H  Hw(x',t") (2.11)
Here we have used r(t) = ¢ (x*, t)H~1(t) and H, = infH(t). If we take g > 0 large
enough such that:

B — (K + exp{6n diam(Q)?}H; 1) — r%axlﬁl >0 (2.12)
T

Clearly w can not attain its maximum positive point in the interior. Likewise, if we
consider S to be sufficiently large, then we can prove that w can not reach its minimum
negative point in the interior. Hence, w is bounded and, therefore, g and r are also

bounded. m

Lemma2.2: ([17]) There exists C = C(M) >0 and 0 < a < 1 such that in the

Holder space we have,

15



lgllc™*@z) + lIrlIc*“/2([0,T]) < € (M)

Proof: Take g = w! + w?, such that w? satisfy

wi = A(x, twt + r(0)y (x, 0, %) in Qr

wl(0,t) = r(t) H((g wi(1,t) = r(t) H((; on a0 x [0, T]

wl(x,0) =uy(x), x€Q

and w? satisfies

wé = ACx, Ow? + (@0 (x,t,2) = r(0)p (x,0, %) in Qr

w2(0,t) =0, w?(1,t) =0, on Q. x [0,T]
w?(x,0) = 0. x € Q.

Where:

n

n
A(x,t)w = z AjjWyx; + Z a;Wy,
i=1

i,j=1

(2.13)

(2.14)

(2.15)

Therefore, from Lemma 2.1 and Schauder’s interior estimations [17] we realize that

there exists 0 < a < 1 so that
Iw2lIC*+*(Qr) < C(M)

and

lw?||C***(Qr) < Cmax |r1/) (x, t,%) —r(0)y (x, 0,%)| < Cc(M)

Thus from Eq. (2.16) and Assumption H4 we have
lg e )IC*2([0,T]) < (M)

16
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Therefore, according to the general theory [17] and Eq. (2.14) we have
IwIc**2(Qr) < c(M)
Therefore,

lgllc™*(@r) < C(M) m
Then from Equations (2.7a) — (2.7d), (2.13) and [17] we realize that there exists

C =C(M,r,) > 0 such that:

lgllc***(@r) < CM,1), n =inf{lr(®||t € [0,T]} (2.19)
2.3 Existence and Uniqueness

To establish the existence and uniqueness of the solution, we intend to employ the
technique of retardation of the time variable along with the a priori estimation gotten
in the preceding section to show the existence and uniqueness of the solution for the

problems (1.1a) — (1.1d).

Theorem 2.1: ([17]) Regarding assumptions H4 and H5, there exists a unique solution
pair (g, r) for the problem (2.7a) — (2.7d) which is continuously dependent upon the
data.

Proof: Take 8 > 0 to be a small parameter, we define g by

6 6
0 _ 0 r gvH(t)\ -
ge =Ag +;¢(x:t’r—9)1 In Qr

g%(x,0) = y(x), x € Q

0 _ 2 9

g°(1L,t) = %rﬂ(f:), on a0 x [0, T]. (2.20)

Where r?(0) = H(0) > 0, and
17



y(x,), 0<t<#6

o= {gﬁ(x*, t—9), 0<t<T (2.21)

With respect to the classical theory of parabolic equations, it results that g exists in
0<t<6andr?(t)=g%x,,t) > 0 by the strong maximum principle [17]. From
(2.21) it can be seen that g? exists for all 0 < t < T and r? > 0. We find that there

exists 0 < a < 1 when the a priori estimations (2.13) and (2.19) are applied, such that

lg®llct** @) + [|r8||c* ([0, TD < C (2.22)
and

lgllc*e@p) < c(xf), 8 = inf{r®(®)|t € [0,T1} (2.23)
From the compactness we have that there exists a g = g(x,t) € C'**(Q;) and a
subsequence of g?, as well designated by itself, such that

-9, r-ogQ,D) asf > 0 (2.24)

Besides, g converges uniformly in C**8(Q) x Cﬁ/Z([O, T]) forany 0 < B < a.
Firstly, we have to establish that there exists a r, > 0 such that 78 (¢) > r, > 0 for all
6 small, so that we can take the limitas & — 0 forall 0 < t < T. Since the solution g
converges uniformly, its therefore enough to prove that r(t) >0 forall 0 <t <T.
Take t, € (0,T) to be expressed by

to =inf{r(t) =0|t € (0,T)} >0 (2.25)
Hence, we apparently see that the limit g(and r(t) = g(x.,t)) becomes the local
solution in Q X [0, t,) for the problems (2.7a) — (2.7d) if we let 8 — 0. However, with
the strong maximum principle [17] along with the assumptions, we get

r(to) = glx., to) >0 (2.26)
Which is a contradiction to (2.25). Therefore, we have been able to prove that the limit
function r(t) > 0 forall 0 < t < T, is an implication that the lower bound . > 0 is

18



not dependent on 6. Now taking the limitas 8 — 0 in (2.20) - (2.21) we find that g is

a global solution of (2.7a) — (2.7d) in [0, T].

To show that the solution is unique and continuously depend upon the data, assume
g¥ to be the solutions with the data y*, H*, zF, ¥*, k =1,2, i = 1,2, it therefore
results from Lemma 2.1 and 2.2 that we have C(M) > 0 which implies
1g“IIC** (@) + lIr*llc™**([0,T]) < C (M), k=12 (2.27)
Where M > 0 is only dependent on the data. With related arguments to the proof of
the a priori estimations of Lemma 2.1 and 2.2, we have that for some positive constant
C=C(M)>0,we get
lg* — g*IC™** (@) + lIr* = r2[IC™+*([0, T])
< C(lly* = y2lc+=@) + IH* = H2[IC* ([0, T]))
+(llzi* = z2IC** (0 x [0,T]) + ! = Y*IL* (@7 x [-N,N]))
(2.28)

for some 0 < a < 1, where N > 0 is such that |§| < N forall (x,t) € Q; m

19



Chapter 3

A LINEARIZED COMPACT FINITE DIFFERENCE

SCHEME

3.1 Introduction

In this chapter, we shall construct a compact finite difference scheme proposed by Ye
and Sun in [18] for the one dimensional parabolic inverse problems (1.1a) — (1.1d).
The compact difference scheme constructed is a linearized high ordered scheme,
having a truncation error of order O(z? + h*). Hence, the constructed scheme retains
a high-level order of precision. In the last section, we shall establish the existence of

solution of the constructed scheme.

Given the nonnegative numbers M and N. Let h = % designate the step size of the

space domain, x, and T = % designate step size for the time direction, t, whereas L =

1 and T is the terminal point in time.
Let’s define the mesh points (x;, t,) by
x;=ih, i=012,..,M
t,=nt, n=0,12,..,N
Where solutions of the exact and estimate solution at the point (x;, t,,) is designated

by ¢ and ¢]' respectively.
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3.2 Construction of the Compact Scheme

Constructing the compact finite difference scheme below, basically revolves around
the application of Taylors expansion to problems (1.1). The process involves some
computation using the Taylors expansion and a few assumptions on the data, as well
as applying the notations in Chapter 1.

Consider the equation below

o0p 82¢
=01 ()¢ +Px ) (3.9)
Let’s take
32¢

Then Eq. (3.1) becomes

w=22—c(t)p+pxD), (3.3)
Describe the mesh functions as follows
P = P (x;, ty), Wit = w(xg, tn), C™ = c(ty),
0<i<M 0<n<N (3.4)
Eq. (3.3) at the point (x;, t,,), becomes
Wi, tn) = 22 (i, ta) = c(tn) (i, ta) = P, ),
0<i<M 0<n<N (3.5)
Putting Eq. (3.4) into Eqg. (3.5) we have
Wit =22 (x;, t,) — Chf = 7, 0<i<M, 0<i<N (36)

Applying Taylors expansion, that is:
i . . h? . h3 i h* .
¢l+1 =¢'+ hoy + ;d))lcx + ;d))lcxx + Zd):v + O(hs) (3.7)

i-1 i L R Y h* i 5
¢ =¢ _h¢x+;¢xx_§¢xxx+z¢iv+0(h) (38)
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i+1 _ i i o h? R i Rt 5
x d)x +h¢xx+z¢xxx +§¢iv+z¢v +0(h )
i-1 _ i i L h Ry h* o 5
x ¢x _h¢xx+z¢xxx _;¢iv+z¢v +0(h )
i+1 _ i i h? i R R 5
XX _¢xx+h¢xxx+z¢iv+;¢v+z¢vi+0(h)

i-1 i i h? g RP o Rt 5
xx :(pxx_hd)xxx-l'z(piv_;d)v-l'z(pvi+O(h)

(3.9)

(3.10)

(3.11)

(3.12)

Multiplying Equations (3.7) with r, (3.8) with s, (3.9) with ch and (3.10) with dh

PO = g+ Thk + el + Tl + 1, + O(R)

spi = sp! — shol + gl — gL+ T gl + 0(hS)

chpirt = chl + ch2Pl + Dl + 2 ol + L bt + O(h5)

dhgit = dhl — dh2l, + 2 gt — D g+ U i 4 O (h5)
Add Equations (3.13), (3.14), (3.15) and (3.16)

eI+ s + chpitt + dhit = (r + ) + (r — 5 + ¢ + d)hpl

h2 ) h3 .
(0 ts+2c—2d) oo dar + (= s+ 30+ 3d) o7 brr

+(r+ s+ dc — 4d) T, + (e + d) L g
Collecting terms, we have
r¢l + s = (r+5)pt =0
ch¢pt +dh¢pi™* = (r—s+c+ d)hel
cpitl —(r—s+c+d)ep.+dpit =K

Assume that.

4
(r—s+c+d)=—g

Then Eq. (3.18) becomes

O Aoty =

22

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)



Similarly, multiplying Eq. (3.11) by eh? and Eq. (3.12) by fh?, we have
e Bl = el + eh Py + Bl + L Bl + L2 Gl + O (1)
FRRIEY = FR2 L = FH3 Gl + 10k, = L+ L2+ 0(h)

Adding Equations (3.17), (3.20) and (3.21)

T+ sp™ + chdtt + dhy Tt + eh? it + fRPGET = (r + 5)¢!

+(r—s+c+d)h¢;;+(r+s+2c—2d+2e+2f)';—f¢>};x+---

Collecting terms

r¢t + st = (r +5)pt =0

chdft + dh¢pi™t = (r —s + ¢+ d)hopt
Equations (3.23) and (3.24) has been considered before

(r+s+2c—2d+2e+2f)
2

eh? ¢! + fhPgis" = P2

(r+s+2c—-2d+2e+2f)

et - . Pa+ fbl' = L

Assume that.

(r+s+2c-2d+2e+2f) 10
2 12

Equation (3.25) becomes
1 i 10 , 4 1 [—
SOt F Pt P =L

f(x+ih)— Zf (x)+f(x ih)

— (Pl + 100k, + i) = = 527
Therefore, the above equation can be written as

827 = — (Wit + 10W, + W) + 0 (h%)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Thus, applying the result of the Taylors expansion Eq. (3.26) to Eq. (3.6) we have
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1 a 0
8207 = [ (22 (in ta) — €M1y — i) + 10 (22 (i) — Chop — y7) +

ad
(a_(f (X410, tn) — CT @y — 1/)1n+1)] (3.27)

d 0
d) (xl 1, n) + 10 ¢ (xl' n) + d) (xl+11 n)

5’%"’?:12[

— (€M@ +10C7 ] +C9y) = (Vs + 1097 + k)|

(3.28)
Thus, this becomes

1 (3¢ ap 99 1
o (g (-1, tn) + 10 2= (x5, 1) + - (X, tn)) =639 + 5 C"(piq + 1097 +

PR+ =L, + 1097 + Yy, 1<i<M-1,1<n<N-1 (329
Using Taylors expansion again

— (DiplLy + 10D} + DyoplYy) = 827 +—C(pLy + 1007 + ¢, +

L@, +10YP + YR )+ (e)f, 1<i<M—1, 1<n<N-L (330)

Where c; is such that
|(e))}] < ¢y (72 + h?), 1<i<M-1, 1<n<N-1

From Eq. (3.1) we have that

c®p=2-22_ 1)

at  oxZ
ct) =~ % - 227‘5 —P(x, t)] (3.31)

Where the overspecification is given as ¢p(x*,t) = H(t) = H™", a¢ = (H")".
Suppose that there is an integer k, such that x* = x,, , where C™ = ¢(t,). Eq. (3.31)

becomes

c(ty) = # [(H’)” - ‘;27‘2 (kg tn) — zp,’go], 1<n<N, (332
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. . . 9%¢ :
Now we derive the differential formula for, — (kg tn):

Consider the Taylors expansions below:

, _ P R LTI Sy LR Al
¢(l+h)—¢i+h¢i+;¢i t5 00 b ot e (3.33)

. r R R RY g RS g, RS
¢(i—h) =¢; — ho; t5 b bt bt o (3.34)
Adding Equations (3.33) and (3.34)

P +R)+ (i —h) = 20, + B2} +2 ¥ + o ¥ 4o (3.35)

Also consider

, r, 4h% ., 8R3 ., | 16R* 32h® 64h% |
(i +2h) = ¢y +2h; + —- ¢ + - +— =" + -7 +— 7 +

(3.36)
B = 2h) = §; = 2h] + - pi' — By + S g — g + gy
(3.37)

Adding Equations (3.36) and (3.37)
(i +2h) + p(i — 2h) = 2, + 4h2P} + 2 + 2 pr’ 4 . (3.38)

Multiply Eq. (3.35) by 16

16h* | 1y

16¢(i +h) + 164(i — h) = 32¢; + 162! + 2= g + 2 gv' 1 ... (3.39)

Subtract Eq. (3.38) from (3.39)
—¢(i — 2h) +16¢(i — h) + 16¢ (i + h) — (i + 2h) = 30¢; + 12h%¢) + 0(h®)
(3.40)

12h%¢p]" = —¢p(i — 2h) + 16¢(i — h) —30¢; + 16¢p(i + h) — ¢(i + 2h) + 0(h®)

1

¢i' = —= (=@ — 2h) + 16¢ (i — h) —30¢; + 16¢ (i + h) — (i + 2h)) +

0(h*)
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Therefore, we can write

32¢ _ 1 n n n n n 4
5oz (kg tn) = 5 (PR -2 + 1607 1 — 3098, + 167 41 — D 42) + O(h*)
(3.41)

Putting Eq. (3.41) in (3.32), we obtain

1 , 1
" =T = — (~oF _; + 160F, 1 — 308 + 16% 11 — Pl 4z) —

l/);’éo] + ()", 1<n<N (3.42)
Where c, is such that
|(e2)"| < ¢ h?, 1<n<N

Once more we consider the Taylors expansion

Recall that;

o 092
= = a2 T+, t)

ol =0 +1 (Z—"’ +e(O +(x, t)) +0(?)

From the initial condition, we have that ¢? = y(x;) and t = 0.

¢F =y +Tly" () + Co () + Y1+ (es), 1<i<M—-1  (343)
Where c; is such that
|(e3)"| < cs7?, 1<is<M-1

From Eq. (3.32), for n = 0, we can write

€ =5 [HD° =y () = uR,) (3.44)

v(

Neglecting error terms in Equations (3.30), (3.42) and (3.43), we formulate for

problems (1.1a) — (1.1d), the compact difference scheme below:
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1 7, 1 i i i
— (Di¢fy + 1007 + Didfy) = 827 + - CM(pLy + 107 + pFi) +

— @R, +10YP +Y,), 1<i<M-1, 1<n<N-1 (3.45)

1 , 1
" =2 = — (=oF —; + 160F, 1 — 308 + 16% 11 — Pl 1z) —

IMJO] 1<n<N (3.46)
€0 = [HD° —y" () — v, ) (3.47)
of =y(x) +Tly" ) + o) +9)] 1<isM-1 (3.48)
¢ =y(x), 1<isM-1, (3.49)
o8 = zo(t), Pl =z(t,), 0Sn<N (3.50)

Above difference scheme, Equations (3.45) — (3.50) is a three-level linearized scheme.
{¢?, $10 < i < M}U{c® '} can be easily obtained from (3.46) — (3.50).

If {71, ¢|0 < i < M} U{c"} has been obtained, then from (3.45) and (3.50) we

get:
—(Dedy + 10007 + Dedfiy) = 6267 +—C(pLy + 1097 + BJL) +
— @, +10YR +9,), 1<isM-1, (3.51)
pott = 2o (ts), =z (thy), (3.52)

So, we need to solve the tridiagonal system above to obtain {¢*'|0 <i < M}.
Afterwards ¢™*1 is obtained from Eq. (3.46).
3.3 Local Truncation Error and Consistency
From equation (3.45), we have the equation below
5 Dedty + 10D + Dipfh) = 52T + 5 C(P1y + 10T + BFh,) +

— @R, +10YR +Y,), 1<i<M-1, 1<n<N-1 (3.53)
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We have the following notations below

+1 1 _ +1 -1
¢ ¢:l ¢Il ¢n — ¢? +¢{L 62(;[) ¢l 1 2¢l +¢L+1
t'¥i 27 J [ 2 J i h2

Applying the above notations to Eqg. (3.53) above, we get

n+1 (1 _L__) n+1( +i_5cn)+ n+1( _L_Q)_
i-1 (24‘r 22 24 t¢ 127 Piv 2nZ 24

n-1 1 (5 _ 1, st I e
i-1 (241 + 2h2 + 24) + ¢ (121 n2 ) + ¢‘+1 (241’ + 2h2 + ) +
— @, + 1Y +YY,), 1<i<M-—1 (3.54)

Let’s take

1 1 cn (5 1 5C" _ (1
A= (3m—55) B=(gtm33) AA= (Gt + 5
5 1 5Cc™" 1
BB = (E_ﬁ"'?)v D == ity + 1097 + ¥ii),
Factorizing, Eq. (3.54) becomes
A(PIM + ™MD + Bt = AA(PME + o) + BB + D (3.55)

We have the following Taylors expansion

m h? 72 h3 h?t
¢Ln h¢x + T¢t + 7¢xx - hk¢xt + ?‘ptt - gquxx + Td)xxt

ht? 73 h* h3t h?t?
- T d)xtt + g d)ttt + ﬁ d)xxxx - T d)xxxt + T d)xxtt

ht3 Tt
- ?‘pxttt + ﬁ‘f)tttt +

2 2 h3 hZ
n+1 T T
i+1 — ¢i,n + hoy + 1, + ) Gxx + "ty + 2 b + 6 Drxx + > Dxt

72 73 h* h3t h?t?
+ T d)xtt + Z ¢ttt + ﬁ ¢xxxx + ? ¢xxxt + T ¢xxtt

3 4
+ ?‘l’xttt + ﬁd)tttt +
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1 h? 72 h3 h?t
-1 = ¢i,n —h¢y — 1 + 7¢xx + hte, + ?(ptt - Ed)xxx - Td)xxt
ht? h* h3t h?t?
X (pxtt d)ttt d)xxxx +— d)xxxt +— d)xxtt
2 6 4
73 4
+ Td)xttt + ﬁd)tttt +
h? T2 h3 h?t
l+1 ¢Ln + h¢x - T¢t d)xx - hT¢xt + ?(ptt + zd)xxx - Td)xxt
ht? h* h3t h?t?
+ T (pxtt d)ttt 24 d)xxxx 6 d)xxxt + T d)xxtt
ht3 4
- Td)xttt + ﬁd)tttt +
n+1 T’ 7 *
in t tt tee + tttt
= i+ e + 5 Pu 5 beee + 57 Puuwe +
72 3 4
= ¢i,n —T¢: + ?d)tt - Ed)ttt + ﬁd)tttt +

Equation (3.55) becomes
Ln _ A(¢n+1 + (pl +1) + B¢n+1

Substituting the Taylors expansion above

h2 2
A|bin — hpy + Ty + = brx — hTae + = bee —

ht? 73 h*
T d)xtt + z(pttt + Z ¢xxxx -

h3t ¢ + h2t
6 xxxt 4

AA(PTT + 1) — BB

into Eq. (3.56) we get:
h3
? d)xxx +

2
¢xxtt

—D (3.56)

h?t
T d)xxt -

ht3 T4
=~ Pxeee T o5 Preee + Gin t+

h? 72 h3
h(px + T¢t + 7¢xx + hr(pxt + 7¢tt + ?(pxxx

¢xxtt + 2

Z ¢xxxx ¢xxxt +

3 4
%¢ttt + ;_4¢tttt + ) — AA [Cbi,n - hd)x

h3 h2t ht?

? d)xxx - T ¢xxt - T ¢xtt -
ht3 T4 h?2
T‘l’xttt + Zgbtttt + ¢in + hpy — T, + 7¢xx

29

T3 h*
; d)ttt + Z ¢xxxx

d)xxt + d)xtt + d)ttt

¢xttt +— ¢tttt] +B (d)m + ¢, +Z ¢tt

hZ2 T2
— T + 7¢xx + hty + ?(ptt -

d)xxxt + d)xxtt +

T2 h3
- hT¢xt + ?d)tt + ?¢xxx -



h4 h3 h2 2 h 3
d)xxt + ¢xtt ¢ttt + Z ¢xxxx - ?T ¢xxxt + TT ¢xxtt - %d)xttt +
4 2 3 4

;_4¢tttt] — BB (¢i,n - T¢t + %(ptt - %(pttt + ;_4¢tttt + ) —D (3-57)

Cancelling out like terms we have:
Ti_n = (2A+ B — 24AA — BB)qbi,n + (2A+ B+ 2AA+ BB)Tgbt + (A -

2
AAY? G + (2A+ B — 244 — BB) =y + (A + AAR? T + (2A+ B +
24A + BB) (,bm + (A - AA) quxxx +(A4- AA) quxtt + (2A+ B —2AA —
‘L'4'
BB) Zﬁbtttt —-D (3.58)
But we have that

(2A+B—2AA—BB)=[2

(A_AA)=[(L_L_Q)_(L+L+Q =(_i_c_n)

24t 2h? 24

Uran = (G- -5) + Gatmet 5

Putting the above results into Eq. (3.60) we get
Tin = (—Cbgn + (2) 10 + (= 5 = S) K2 + (=C) = +

()bt Q)2 (- ) e (-5

12 xxt 6 ttt hz 12/ 12 XXXX hz 12 12 xxtt

ny T
(-p )Z(Ibtttt -D
CTth C?’l 2 h2 2 h2

Ti,n = _Cn¢i,n + dr — Pox — Td)xx - qubtt + E(pxxt + %(pttt - E(pxxxx -

c™h* C™h27? nr
144 ¢xxxx ¢xxtt d)xxtt 24 d)tttt -D
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C™h? cnr? h? T2
T, = (q—')t = Prx — Cn¢i,n - D) - Td)xx - Td)tt + Ed)xxt +z¢ttt -

hZ Cnh4 CnhZ 2

Equxxx 144 ¢xxxx ¢xxtt ¢xxtt 24 ¢tttt (359)
Where from Eq. (3.59), we have that

(d)t = Pux — Cn¢i,n - D) =0

C™h? c"r? h? 72 h? C"h*
Ti,n = _T¢xx - T‘Ptt + E(Pxxt + z()bttt - E(bexxx 144 ¢xxxx

CT‘LhZ 2

72 chrt
?d)xxtt (pxxtt 24 d)tttt (360)
From the main problem we have that
brx =P —C"P— Y (3.61)
Taking the fourth derivative of Eq. (3.61) w.r.t x, we have

Grxxx = Prxt — C"Pxx — Pxx (3.62)

Putting Eqg. (3.62) into Eq. (3.60) we have

Tin = CT;ZZ Drx — %‘[2 Gee + }11_: GDrxt + %‘Pttt - ’11_; (Pxxt = C"Pxx — Yx) —
C;T Drexxexe — ¢xxtt C’lL“ Gxte — C:j Dreee

Tin = _%;zd)xx - %Tqutt + ;l_zd)xxt + %d)ttt - fll_quxxt + %sz)xx + ;l_:lpxx -
O

Cancelling out like terms we have

CTL 2 Cnhz 2

.[4
Ti,n ¢tt + ¢ttt 144 ¢xxxx ¢xxtt ¢)xxtt 24 d)tttt +

h2

= Wxx (3.63)

12

Therefore, the principal part of the local truncation error is

C"t? C"h*
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Hence,

Tin = 0(12) + 0(h*)

From Eqg. (3.63), we see that

As T,h —»0 then T;,, —»0

Therefore, the scheme is CONSISTENT.

3.4 Existence of Solution of the Compact Scheme

In this section, we shall employ the homogeneous system of the tridiagonal system
above, together with the notations in Chapter 1, to establish the existence of solution

of the compact difference scheme constructed.

Lemma 1: ([18]) Let z={z|0<i< M} be a mesh function on 2, =

{xi|x; =ih, 0 <i <M, Mh = 1} and satisfy z, = 0, z, = 0, then

hEit gt < hph, (B

Theorem 1: ([18]) Supposing {¢"~*, ¢'|0 < i < M} U{c™} has been obtained. Then,
{p™*1]0 < i < M}U{c™*1} can be uniquely determined from the difference scheme

(3.45) — (3.50) when c™ < 6,0rc™ > 6and t < 1/(c" —6)

Proof: Given the homogeneous system of (3.51) and (3.52)
o OFS + 1007+ + @I = S 6201 + ™SI + 1097 + pFH),
1<is<M-1, (3.64)
n+l =, nl — (3.65)
If we Multiply both sides of Eq. (3.64) by 2h¢*** and sum up for i from 1to M — 1,

we obtain
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o —h Z (¢Zl+1 + 10¢ln+1 + ¢Zl++11) ¢n+1 h Z (52 +1)¢n+1

+_Cnh z (¢n+1 + 10¢:l+1 + ¢l +1)¢n+1

Applying the boundary condition of Eq. (3.65), we get

2
h Z (d) n+1 + 10¢)Zl+1 + d)L +1) ¢n+1 (6)(; ‘.n_+11>

+—Cnh Z (¢ln+1 + 10¢{1+1 + ¢l +1)¢n+1

Now applying lemmal to the above equation and simplifying the terms we get

E(__ c ) Z((blrwl + 10¢ln+1 + ¢l +1) ¢n+1 + 6”¢n+1”2 <0

Where:

M-1 1/2
21 = [h > <¢>z‘)]

So, we can write:
”¢n+1”2 < —h Z (¢z1+11 + 10¢)Zl+1 + ¢Zl++11) ¢n+1 < ||¢n+1”2

When %— p™ =0, we have

2

1
2(Z= ") ™12 + 6llg™ 1% < 0
Thus, lp™+ 1l =0

When %— c™ <0, wehave:

6llp™ 1% < (3= c*) g™+ |12

(6—cm+2)llg™11> < 0
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Ifc"<6,0orc™ >6andt < 1/(Cn _g)y We have:

g™t =0

So, in any case we have:
llp™ 1l =0

That is:

p"tl =0, 1<i<M-1

Thus, the homogeneous system (3.64) and (3.65) has only a trivial solution.
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Chapter 4

NUMERICAL RESULTS AND DISCUSSION

In this chapter, we shall present two examples of numerical solutions of problems
(1.1a) — (1.1d). The two model problems to be considered will be solved using the
compact scheme of equations (3.45) — (3.50) proposed by Ye and Sun in [18]. For
convenience of discussion, we shall present our results in tables and figures in other to
give a clear overview of the method, and how it improves the accuracy of the time and

space directions.

Firstly, we shall employ the notations presented in Chapter 1, to rewrite the tridiagonal
system (3.51) and (3.52) obtained in Chapter 3, in algebraic form and thereafter

represent them in matrix form.

From equations (3.51) and (3.52) we have.

1 n 1 n n n
73 (Dedis + 1007 + Dedlh) = 5297 + 1 C"($1y + 1007 + Bk ) +

1 ,
S Wi +1097 +9Y), 1<isM-1, (4.1)
0*t = 2(tn4n), Wt =21 (tne), (4.2)

Applying the following notations to Eq. (4.1)

n+1 n-1 — n+1 n-1 n n n
Dl = ¢ —9: P = ¢ to: S2¢n = Pi1—20i +Pixq
tYi — 27 J i~ 2 ’ xX¥i h2

)
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We get:

L[(BEE) g g (R0 | (eiloelity] _ (oh2eliok)

Len [(¢?:?Z¢?:f) 110 (¢>?“+¢>?‘1) N (¢?++11+¢{‘+‘11)] LR, + 107 YR

2 2

n+1 n—1 n+1 n-—1 n+1 n-1 n+1 n—1 n+1 n—1
$ir i n 5¢; " 5¢; n Fivt _ Pivr _ 1 [(¢i—1 +Pi g ) _9 (¢i +é;
241 241 127 127 241 2471 h2 2 2

n+1 n+1 n+1 n-1 n+1 n-—1
(¢l+1 +¢l+1 )] + CTL (d)l 1 + ¢l 1 + 5¢L + 5¢L + ¢l+1 + ¢l+1 ) + % (.‘p:l_l +

2 12
n n
101/)1 + l/)i+1)l
n+1 n+1 n+1 n—1 n—1 n-1 n+1 n+1 n+1 n—1
$i_y | 5¢; Pir:  $iln 5 T iy iy 29 biv: , Piii
+ + - 2 2 + 2 + 2
24 121 241 241 121 247 2h 2h 2h 2h

-1 +1 +1 +1 +1
2¢‘1’.1 + ¢l+1 + Cn(p-{l 1 + 5Cn¢‘{l + Cn¢{t+1 + Cn(l)l 1 + 5Cn¢{1 + Cn¢l+1 +
2h2 2h2 12 24 12 24

1
Ly + 1097 +ylLy),

Then we have:
n+1 L_L__) n+1( 1 ) n+1( _L_ﬁ):
i-1 (241 2h2 +é 127 | h? + i 2hZ 24
n1( Ly L il b )
i-1 (241 t 2h2 + ) + o (121’ n? ) t ¢l+1 ( 2h2 t 24 +

— @R, + 1Y +9,), 1<i<M-1
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[/ 5 1 5C" 1 1 (e Tren+1
b G o I

12: T T 12 241 2R 24
£l+1
(1 1 C") (5 +1 SC") (1 1 C“) 0 0
241 2h? 24 127 h?z 12 24t 2h2 24) 7 _
0 )
0 .
(1 1 cn) (5+1 scn) (1 1 C”) 0
24t 2h? 24 127 h2 12 241 2h? 24 -
M-2
0 0 (1 1 C") (5+1 SC") )
e — — — — — — — — — n+
24T 2h2 24 127 ' hz 12 )1¥Pm-1
n+1(L_L_C_“)
0 \247 2n2 24
0
+ =
0
n+1(i_i_c_n)
M \247 2h2 24
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1

'(5 1+5C") (1 N +C”)
12t h%2 12 24t 2h% 24

1 1 5 1 1 1

0
(1 4 1 +C”) (5 1
247 2h%2 24 12t  h?
0 0 ( ! + !
2471
n—l( 1 4 1 +C”)
O \247 " 2h2 " 24
0
+
0
n—l( 1 4 1 +C")
"M \247 ' 2n2 " 24/

4.1 Numerical Example 1

e @) Gt
24t 2n% 24 12t h? 12 24t 2h?

cn

+5C”) (1 4
12 24t

+C"> (5
2h% 24 127

1
o3 W+ 1097 + i),

Consider the parabolic problem with control parameter in [18]:

0
1 +C”)
2h% 24

1 SC")

1

% = 327(2 +c(O)¢ + [1% = (¢t + 1)?]e " [cos(mx) + sin (mx)],
0<x<1l 0<t<
¢(x,0) = cos(mx) + sin (1x), 0<x<1,
$(0,t) = e’ p(L,t)=—e"t", 0<t<T1,
$(0.25,t) = \2e ", 0<t<1,
The exact solution of the above problem is:
b (x, t) = e~t*[cos(mx) + sin (mx)], c(t) =1+ t2.
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Define:

Es(h,T) = max

We apply the difference scheme of equations (3.45) — (3.50) to solve equations (4.3) —
(4.6). Table 1 gives the comparison of the maximal errors of the numerical solution
¢ (x, t) for the implicit Crandall’s scheme in Equations (1.2a) — (1.2e) and the present
scheme (the Compact finite difference scheme). While Table 2 gives the comparison
of the maximal errors of the numerical solution c(t) for the implicit Crandall’s scheme

in Eq. (1.2) and the present scheme. The accuracy of the present method is tested by

max ¢ — o7}

0<isM

: Fo(h,7) = max [C™ —c"|.

solving the above problem with several values of h and t at the final time T = 1.

Table 1: Comparison of absolute error in ¢(x, 1) for different methods

Crandall Present Method
M N E.(h7) E,(h 1)
40 80 7.2100 x 1072 2.4000 x 1073
80 320 2.6400 x 1072 3.1350 x 107*
160 1280 7.6000 x 1073 7.7472 x 107°
320 5120 2.0000 x 1073 1.9428 x 1075
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Table 2: Comparison of absolute error in c(t) for different methods

M N Crandall Present Method
F(h 1) F.(h, 1)
40 80 1.8139 8.3100 x 1072
80 320 6.7380 x 1071 1.8000 x 1072
160 1280 1.9410 x 1071 3.7000 x 1073
320 5120 5.0500 x 1072 9.0301 x 10~*
8 %10 Absollute error for‘u(x,1) . - 4 %1073 Maximum error of p for eqch time Ievgl
7 \ 7 35
6 \ 3
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5r \ E 2.5 \
4 é 2
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05 T
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\\
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Figure 1: Graphs of Problem 1 with h = 1/, (s and 7t = 1/, .64
Using the Compact Difference Scheme
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%10 Absolute error for u(x,1) Maximum error of p for each time level
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0.14 | 1
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Figure 2: Graphs of Problem 1 with h = 1/160 and 7 = 1/1280' Using the Implicit
Crandall’s scheme
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u(x,t)

5 X 108 Absolute error for u(x,1) y %1073 Maximum error of p for each time level
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Figure 3: Graphs of Problem 1 with h = 1/320 and t = 1/5120
Using the Compact Difference Scheme
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%107 Absolute error for u(x,1)
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Figure 4: Graphs of Problem 1 with h = 1/160 and 7 = 1/1280' Using the Implicit

Crandall’s scheme

As we see from Tables 1 and 2, and the Figures above, the results of the present method

improve the accuracy of the space and time directions. Figures 1 and 3 shows the

maximum error obtained for ¢ (x, t) and c(t) for different values of h and 7 using the

present method. While Figures 3 and 4 shows the maximum errors for ¢ (x, t) and c(t)

obtained using the implicit Crandall’s method.
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4.2 Numerical Example 2

Consider the second inverse problem below:

¢ (x,t) = et[x + cos(mx) + m2cos (mx)] — et (1 + t?)[x + cos (7x)]

0<x<1 0<t<1 (4.7)
¢(x,0) = cos(mx) + x, 0<x<1, (4.8)
¢(0,t) = et, ¢(1,t) =0, 0<t<1, (4.9)
E(t) = et[cos(mx*) + x*], 0<t<1 (4.10)

With the exact solution of the problem given as:

¢(x,t) = et[cos(mx) + x], c(t) =1+ t2.

Again, we apply the difference scheme of equations (3.45) — (3.50) to solve equations
(4.7) — (4.10). Table 3 gives the comparison of the maximal errors of the numerical
solution ¢ (x, t) for the implicit Crandall’s scheme in Equations (1.2a) — (1.2e) and the
present method. While Table 4 gives the comparison of the maximal errors of the
numerical solution c(t) for the implicit Crandall’s scheme in Eq. (1.2) and the present

scheme.

Table 3: Comparison of absolute error in ¢(x, 1) for different methods

Crandall Present Method
M N E.(h 1) E(h 1)
40 80 9.9400 x 1072 1.7100 x 1072
80 320 2.5500 x 1072 4.2000 x 1073
160 1280 6.4000 x 1073 1.1000 x 1073
320 5120 1.6000 x 1073 2.6601 x 1074
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Table 4: Comparison of absolute error in c(t) for different methods

M N Crandall Present Method
F.(h,1) F.(h,1)
40 80 5.9110 x 1071 1.3600 x 1071
80 320 1.5030 x 1071 2.9800 x 1072
160 1280 3.7500 x 1072 6.0000 x 1072
320 5120 9.4000 x 1073 1.5000 x 1073
12 <107 Abso!ute error for‘u(x,1) . «1072 Maximum errlor of p for egch time Ievgl
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Figure 5: Graphs of Problem 2 with h = 1/160 and t = 1/1280 Using the Compact
Difference Scheme
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Figure 8: Graphs of Problem 1 with h = 1/160 and 7 = 1/1280' Using the Implicit
Crandall’s Scheme

Again, we see from Tables 3 and 4, and the Figures of problem 2 above, that the results
of the present method improve the accuracy of the space and time directions. Figures
5 and 7 shows the maximum error obtained for ¢ (x, t) and c(t) for different values of
h and t using the present method. While Figures 6 and 8 shows the maximum errors

for ¢(x, t) and c(t) obtained using the implicit Crandall’s method.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this thesis, we constructed a linearized compact difference scheme for determining
unknown control parameter and unknown solution of a one dimensional parabolic
inverse problem with overspecification at a point in the spatial domain. In the
constructed scheme, we approximated the time and space directions to two and four
order accuracy respectively. The existence and consistence of the constructed scheme
was proved as well. We stated two test problems and presented some numerical results
which were compared with the implicit Crandall’s scheme given by Dehghen to
confirm the efficiency of the method in this thesis. The numerical results show that the
linearized compact difference scheme improve the accuracy of the time and space
directions. Therefore, the linearized compact difference scheme is reasonably
satisfactory. For further work, the method in this thesis can also be applied to two-
dimensional inverse problem, whereby a splitting up algorithm is applied to split the
two-dimensional problem into one-dimensional problems which can then be solved

using the linearized compact difference scheme formulated in this thesis.
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Appendix A: Matlab Code for Numerical Example 1

% LINEARIZED COMPACT FINITE DIFFERENCE FOR PARABOLIC INVERSE

PROBLEM

% PROBLEM 1

% U_t(x,t) = U_xx(X,t)+p(t)U(x,t)+Q(x,t)

% Initial condition : %U(X,0)=cos(pi*x)+sin(pi*x)

% Boundary conditions : U0 = eN(-)()™2) , UL = -e™N(-)[1)2)%
Overspecification condition :

% E()=U(X"*,t) = e™((-)(t)*2)*(cos(pi*x *)+sin(pi*x"*))

% Exact Solution :U(x,t) = e™((-)(t)2)*(cos(pi*x)+sin(pi*x))

cle, clear all;

M = 40; %NUMBER OF SPACE STEPS
N = 80; %NUMBER OF TIME STEPS
T=1,

t=T/N; % CHANGE IN TIME T

h =1/M; % CHANGE IN X VARIABLE
X0 =0.25;

k0 = (x0/h);

h2 = h*h;
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fori=1:N
tn = (i-1)*t;
u(L,i) = exp(-tn*2);
u(M-1,i) = -exp(-tn*2);

end

fori=1:M-1
XX = i*h;
u(i,1) = cos(pi*xx)+sin(pi*xx);

end

F = cos(pi*x0)+sin(pi*x0);
FF = 1/F;
PO = FF*(0+((pi"2)*F)-((pi"2)-1)*F);

P(1) = p0;



fori=1:M-1

Il =i*h;

fx = cos(pi*ii)+sin(pi*ii);
f2x = (-1%(pir2))*fx;

fp = ((pi"2)-(t0+1)"2)* (exp(-(t0)"2));
ax = fp*fx;

u(i,2) = fx+H(t(F2x+p0*Fx+gx));

end

for k =2:N % TIME LOOP. THIS IS THE MAIN LOOP
% LOOP FOR RHS TRIDIAGONAL MATRIX'B'
fori=1:M-1
for j=1: M-1
ifi==j+1
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B(i,))= ((1/(24*t))+(1/(2*n2))+(P(k-1)/24)); % LOWER DIAGONAL
elseif i == |
B(i,j) = ((5/(12*1))-(1/(h2))+(5*P(k-1)/12)); % MAIN DIAGONAL
elseif i == j-1
B(i,j)) = ((1/(24*1))+(1/(2*h2))+(P(k-1)/24)); % UPPER DIAGONAL
end
end

end

z = (k-2)*t;
r= k*;

CLk-1) = (1/(24*t)+1/(2*h2)+P(Kk-1)/24)*exp(-(22))-(1/(24*t)-1/(2*2)-P (k-
1)/24)*(exp(-r"2));

C(M-1k-1) = (L/(24%t)+1/(2*2)+P(k-1)/24)*(-exp(-(2"2)))-(1/(24*1)-1/(2*h2)-
P(k-1)/24)*(-exp(-r"2));

C(2:M-2,k-1) = 0;

CC = C(1:M-1,k-1);

Qfmmmmmmmmmmmmmmmmmmmmmmmmmmm e mmm e e
tv = (k-1)*t;
fori=1:M-1

X =1*h;
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D(i k-1) = (pi"2-(tv+1)"2)*(exp(-(tv)"2)*(cos(pi*x)+sin(pi*x)));
end
EE(1k-1) = (pin2-(tv+1)"2)*(exp(-(tv)"2));  %EE IS A COLUMN MATRIX
EE(2:M-2,k-1) = 0;
EE(M-1k-1) = (pi"2-(tv+1)"2)*(exp(-(tv)"2))*(cos(pi)+sin(pi));

GG(1:M-1,k-1) = ((1/12)*TM)*(D(1:M-1,k-1))+EE(1:M-1,k-1);

1d1 = ((L/(24*1))-(1/(2*2))-(P(k-1)/24));
md1 = ((5/(12*1))+(L/(h2))-(5*P(k-1)/12));

udl = ((1/(24*t))-(L/(2*h2))-(P(k-1)/24));

fori=1:M-1

Id(i) = 1d1;
end
fori=1:M-1

md(i) = md1,
end
fori=1M-1

ud(i) = udi;
end

UU = u(1:M-1,k-1);

RHS = B*UU+CC+GG(1:M-1,k-1);

V = M-1,

ud(1) = ud(1)/md(1) ; RHS(1) = RHS(1)/md(1) ;
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fori=2:V-1
temp = md(i)-1d(i)*ud(i-1);
ud(i) = ud(i)/temp;
RHS(i) = (RHS(i)-l1d(i))*RHS(i-1))/temp;
end
RHS(V) = (RHS(V)-1d(V)*RHS(V-1))/(md(V)-1d(V)*ud(V-1));
AA(V) = RHS(V);
% NOW BACK SUBSTITUTION
fori=V-1:-1:1
AA(i) = RHS(i)-ud(i)*AA(i+1);
end
u(l:M-1,k+1) = AA; % NEXT TIME COLUMN OF U CALCULATED
SSUM = (-u(k0-2,k+1)+16*u(k0-1,k+1)-30*u(k0,k+1)+16*u(k0+1,k+1)-
u(k0+2,k+1)); %THIS IS THE SUM IN THE BRACKET OF PA(N+1) FORMULA
r = k*t;
E = sqrt(2)*exp(-(n)"2);  %OVERSPECIFICATION
EE = 1/E;
E_p = -2*r*sqrt(2)*exp(-("2); %DERIVATIVE OF OVERSPECIFICATION
Phi = (pi*2-(r+1)"2)*exp(-(r)*2)*(cos(pi*x0)+sin(pi*x0)); %PHI AS GIVEN IN
THE NUMERICAL EXAMPLE
P(k) = EE*(E_p-(1/(12*h2))*(SSUM)-Phi); %THE VALUES OF P2, P3,...P79

end
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forj=1:N

fori=1:M-1
t e=(-1)*t;
X_e =1*h;

u_exact(i,j) = (exp(-(t_e)*2)*(cos(pi*x_e)+sin(pi*x_e)));
end

end

fori=1:N
t e=(i-1)*t;
p_exact(i) = 1+(t_e)"2;

end

O
forj= LN
fori=1M-1
Maxerr(i.j) = (abs( u(i,j)-u_exact(i.)));
Abs_error(i,N) = (abs( u(i,N)-u_exact(i,N)));
end

maxuerr = max(Maxerr);
Max_error_U = max(maxuerr);

Abso_error = max(Abs_error);
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Absolute_error = max(Abso_error);

end

fori=1:N
Maxerrp = (abs(P(i)-p_exact(i)));
erp(i) = Maxerrp;

end

Max_error_P = max(erp);

%FIGURE 1,

figure;

x = linspace(0,1,N);

y1 = maxuerr(:);

plot( x,y1,'b-");

title('Maximum error of u for each time level’);
xlabel('t'); ylabel("Maximum Error");

disp(' Press any key to continue...")

pause



%FIGURE 2;

figure;

x = linspace(0,1,M-1);

y1 = Abs_error(:,N);

plot( x,y1,'b-";

title('Absolute error for u(x,1)");
xlabel('t);

disp(' Press any key to continue...")

pause

%FIGURE 3;

figure;

x = linspace(0,1,N);

yl=erp();

plot(x,y1,'b-");

title('Maximum error of p for each time level’);
xlabel('t'); ylabel("Maximum Error");

disp(' Press any key to continue...")

pause
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%FIGURE 4;

figure;

xv = linspace(0,1,M-1);

yyl =u_exact(:,N);

yy2 = u(1:M-1,N);

plot(xv,yyl,'b-",xv,yy2,'r-);

title("Uexact and Uapprox. at T=1");
legend('Uexact’,'Uapprox.','location’,'southwest');
xlabel('x’); ylabel('u(x,t)";

disp(' Press any key to continue...")

pause

%FIGURE 5;

figure;

x = linspace(0,1,N);

yl = p_exact(’);

y2=P();

plot(x,y1,'b-"x,y2,'r-");

title('Pexact and Papprox. for each time level');
legend('Pexact’,'Papprox.’,'location’,'southeast’);
xlabel('t"); ylabel('u(x,t)");

disp(’ Press any key to continue’)

pause
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%FIGURE 6;

figure;

t = linspace(0,1,N+1); x=linspace(0,1,M-1);
[T,X] = meshgrid(t,x); mesh(X,T,u(1:M-1,));
title('Approximate Solution');

xlabel('x’); ylabel('t); zlabel('u(x,t)");
disp(' Press any key to continue’)

pause

%FIGURE 7,

figure;

t = linspace(0,1,N); x = linspace(0,1,M-1);
[T,X] = meshgrid(t,x); mesh(X,T,u_exact);
title('Exact Solution’);

xlabel('x’); ylabel('t); zlabel('u(x,t)").
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Appendix B: Matlab Code for Numerical Example 2

% LINEARIZED COMPACT FINITE DIFFERENCE FOR PARABOLIC INVERSE

PROBLEM

% PROBLEM 2

% U_t(x,t) = U_xx(X,t)+p(t)U(x,t)+Q(x,t)

% Initial condition : U(x,0) = cos(pi*x)+x

% Boundary conditions  : U(0,t) = en(t) , U(1,1)=0
% Overspecification condition :

% E(t) = U t) = e™(t)*(cos(pi*x"*)+x*)

% Exact Solution :U(x,t) = e®(t)*(cos(pi*x)+x)

cle, clear all;

M = 40; %NUMBER OF SPACE STEPS
N = 80; %NUMBER OF TIME STEPS
T=1,

t=T/N; % CHANGE IN TIME T

h =1/M; % CHANGE IN X VARIABLE
X0 =0.25;

k0 = (x0/h);

h2 = h*h;

65



fori=1:N
Kk = (i-1)*t;
u(L,i) = exp(kk);
u(M-1,i) = 0;

end

fori=1:M-1
XX = i*h;
u(i,1) = cos(pi*xx)+xx;

end

fs = cos(pi*x0)+x0;

fsl = 1/fs;

sh = 1/sqrt(2);

ED = exp(t0)*(x0+sh);

f2 = -1*(pi*2)*(cos(pi*x0));

s¢ = (X0+cos(pi*x0)+((pi*2)*cos(pi*x0)));
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sd = (1+(t0"2))*(x0+cos(pi*x0));
gf = exp(t0)*(sc-sd);
p0 = fs1*(ED-f2-qf);

P(1) = p0;

fori=1:M-1
Il =1*h;
t0 =0;
f = cos(pi*ii)+ii;
f2 = (-1*(pi"2))*cos(pi*ii);
sc = (ii+cos(pi*ii)+((pi*2)*cos(pi*ii)));
sd = 1+(t0"2);
sd1 = ii+cos(pi*ii);
sa = sd*sd1,;
qgf = exp(t0)*(sc-sa);
gfl = t*(f2+(p0*f)+qf);
u(i,2) = f+gfl;

end

67



for k=2:N % TIME LOOP. THIS IS THE MAIN LOOP
% LOOP FOR RHS TRIDIAGONAL MATRIX'B'
fori=1:M-1
forj=1: M-1
if i ==j+1
B(i,j) = ((1/(24*t))+(1/(2*h2))+(P(k-1)/24)); % LOWER DIAGONAL
elseifi ==
B(i,j) = ((5/(12*t))-(1/(h2))+(5*P(k-1)/12)); % MAIN DIAGONAL
elseifi ==j-1
B(i,j) = ((1/(24*t))+(1/(2*h2))+(P(k-1)/24)); % UPPER DIAGONAL
end
end

end

z = (k-2)*t;

r = k*t;
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CLk-1) =  (L/(24*t)+1/(2*h2)+P(k-1)/24)*(exp(z))-(1/(24*t)-1/(2*h2)-P (k-
1)/24)*(exp(r));

C(M-1,k-1) = ((1/(24%t)+1/(2*2)+P(K-1)/24)*0)-(1/(24*t)-1/(2*N2)-P(k-1)/24)*0;

C(2:M-2,k-1) = 0;

CC = C(L:M-1,k-1);

tv = (k-1)*t;
fori=1:M-1
XX = 1*h;
f =exp(tv);
fp = cos(pi*xx);
D(i,k-1) = F*(xx+fp+(pin2)*fp)-F*(L+(tv2))* (xx+fp):
end
EE(L,k-1) = exp(tv)*(0+1+(pi"2)*1)-(exp(tv)*(1+(tv"2)*(0+1)));  %EE IS A
COLUMN MATRIX
EE(2:M-2,k-1) = 0;
EE(M-1k-1) = exp(tv)*(1+(-1)+(pi"2)*(-1))-(exp(tv)*(1+(tv"2)*(1+(-1))));

GG(L:M-1,k-1) = ((1/12)*TM)*(D(1:M-1,k-1))+EE(1:M-1,k-1);

Id1 = ((1/(24*t))-(L/(2*h2))-(P(k-1)/24));
md1 = ((5/(12*t))+(1/(h2))-(5*P(k-1)/12)):;
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udl = ((1/(24*t))-(1/(2*h2))-(P(k-1)/24));

fori=1M-1

Id(i) = 1d1;
end
fori=1M-1

md(i) = md1,
end
fori=1:M-1

ud(i) = ud1;
end

UU = u(1:M-1,k-1);
RHS = B*UU+CC+GG(1:M-1,k-1);
V =M-1;
ud(1) = ud(1)/md(1) ; RHS(1) = RHS(1)/md(1) ;
fori=2:V-1
temp = md(i)-1d(i)*ud(i-1);
ud(i) = ud(i)/temp;
RHS(i) = (RHS(i)-1d(i)*RHS(i-1))/temp;
end
RHS(V) = (RHS(V)-Id(V)*RHS(V-1))/(md(V)-1d(V)*ud(V-1));
AA(V) = RHS(V);
% NOW BACK SUBSTITUTION
fori=V-1:-1:1
AA(i) = RHS(i)-ud(i)*AA(+1);
end
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u(l:M-1,k+1) = AA; % NEXT TIME COLUMN OF U CALCULATED

SSUM = (-u(k0-2,k+1)+16*u(k0-1,k+1)-30*u(k0,k+1)+16*u(k0+1,k+1)-
u(k0+2,k+1)); %THIS IS THE SUM IN THE BRACKET OF PA(N+1) FORMULA

r = k*t;

sb = 1/sqrt(2);

E = exp(r)*(x0+sh); %OVERSPECIFICATION

EE = 1/E;

E_p = exp(r)*(x0+sb); %DERIVATIVE OF OVERSPECIFICATION

f=exp(r);

fp = cos(pi*x0);

Phi = f*(x0+fp+(pi"2)*fp)-f*(1+(r"2))*(x0+fp); %PHI AS GIVEN IN THE
NUMERICAL EXAMPLE

P(k) = EE*(E_p-(1/(12*h2))*(SSUM)-Phi); % THE VALUES OF P2, P3,...P80

end

forj=1:N
fori=1:M-1
t e=(-1)*t;
X_e =1*h;
u_exact(i,j) = exp(t_e)*((cos(pi*x_e)+x_e));
end

end
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% P EXACT
1
fori=1:N

t e=(i-1)*t;
p_exact(i) = 1+(t_e)"2;

end

forj=1:N
fori=1:M-1
Maxerr(i,j) = (abs( u(i,j)-u_exact(i,j)));
end
maxuerr = max(Maxerr);
Max_error_U = max(maxuerr);

end

forj= LN
fori=1M-1
Maxerr(i.j) = (abs( u(i.j)-u_exact(i.j)));
Abs_error(i,N) = (abs( u(i,N)-u_exact(i,N)));
end
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maxuerr = max(Maxerr);
Max_error_U = max(maxuerr);
Abso_error = max(Abs_error);
Absolute_eeror = max(Abso_error);

end

fori=1:N
Maxerrp = max(abs(P(i)-p_exact(i)));
erp(i) = Maxerrp;

end

Max_error_P = max(erp);

%FIGUREL,

figure;

x = linspace(0,1,N);

y1 = maxuerr(:);

plot( x,y1,'b-");

title('Maximum error of u for each time level’);
xlabel('t"); ylabel('Maximum Error’);

disp(’ Press any key to continue...")

pause
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%FIGUREZ2,

figure;

x = linspace(0,1,M-1);

y1 = Abs_error(;,N);

plot( x,y1,'b-";

title('Absolute error for u(x,1)");
xlabel('t);

disp(' Press any key to continue...")

pause

%FIGURES;

figure;

x = linspace(0,1,N);

yl=erp();

plot(x,y1,'b-");

title('Maximum error of p for each time level’);
xlabel('t"); ylabel('Maximum Error’);

disp(’ Press any key to continue...")

pause
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%FIGURE 4;

figure;

xv = linspace(0,1,M-1);

yyl = u_exact(:,N);

yy2 = u(1:M-1,N);

plot(xv,yy1l,'b-",xv,yy2,'r-;

title("Uexact and Uapprox. at T=1");
legend('Uexact’,'Uapprox.','location’,'southwest');
xlabel('x'); ylabel('u(x,t)";

disp(' Press any key to continue...")

pause

%FIGURE 5;

figure;

x = linspace(0,1,N);

y 1= p_exact(’);

y2=P();

plot(x,y1,'b-"x,y2,'r-");

title('Pexact and Papprox. for each time level’);

legend('Pexact’,'Papprox.’,'location’,'southeast’);
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xlabel('t"); ylabel('u(x,t)");
disp(’ Press any key to continue’)

pause

%FIGURE 6;

figure;

t = linspace(0,1,N+1); x = linspace(0,1,M-1);
[T,X] = meshgrid(t,x); mesh(X,T,u(1:M-1,));
title('Approximate Solution');

xlabel('x’); ylabel('t); zlabel('u(x,t)");
disp(' Press any key to continue’)

pause

%FIGURE 7,

figure;

t = linspace(0,1,N); x = linspace(0,1,M-1);
[T,X] = meshgrid(t,x); mesh(X,T,u_exact);
title("Exact Solution’);

xlabel('x’); ylabel('t); zlabel('u(x,t));
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