Effectiveness of Failure Mode and Effect Analysis (FMEA) Method: An Application in a Mattress Factory

Javid Piraliyev

Submitted to the Institute of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

> Master of Science in Industrial Engineering

Eastern Mediterranean University February 2022 Gazimağusa, North Cyprus Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science in Industrial Engineering.

Assoc. Prof. Dr. Gökhan İzbırak Chair, Department of Industrial Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality as a thesis for the degree of Master of Science in Industrial Engineering.

Assoc. Prof. Dr. Sahand Daneshvar Supervisor

Examining Committee

1. Assoc. Prof. Dr. Sahand Daneshvar

2. Assoc. Prof. Dr. Adham Makkieh

3. Asst. Prof. Dr. Kehinde Adewale Adesina

ABSTRACT

In today's competitive environment companies use a variety of quality control methods to increase product quality and transparency, but selecting methods that are consistent with their principles may put additional power for sustainable development and profit.

FMEA is one of the easiest and effective risk assessment method that aims to eliminate or prevent the errors and failures which may occur in the future. This method can be very effective when combining with different efficiency measurement methods.

In this research FMEA is implemented to Bonnell-spring orthopedic mattress production factory to identify potential failure modes and find recommended solutions to increase customer satisfaction and construct a better workplace. Numerous calculations applied in order to arrange different failure modes and calculate their efficiencies using Data Envelopment Analysis (DEA) method. It has been found that the FMEA itself can be insufficient as using aggregated FMEA and calculating the efficiency by DEA changed the importance of some failures. DEA based FMEA was the first corresponding research related to mattress production industry.

Keywords: FMEA, DEA, DEA based FMEA

Günümüz rekabet ortamında şirketler ürün kalitesini ve şeffaflığını artırmak için çeşitli kalite kontrol yöntemleri kullanır, ancak ilkeleriyle tutarlı yöntemlerin seçilmesi, sürdürülebilir kalkınma ve kâr için ek güç sağlayabilir.

Hata Türleri ve Etkileri Analizi, mevcut durumda göze rahatlıkla çarpmayan ancak gelecekte oluşabilecek hataları ortadan kaldırmayı amaçlayan bir kalite kontrol yöntemidir. Bu yöntem, farklı verimlilik ölçüm yöntemleri ile birleştirildiğinde çok etkili olabilir.

Bu araştırmada, olası arıza türlerini belirlemek ve müşteri memnuniyetini artırmak ve daha iyi bir işyeri inşa etmek ve önerilen çözümler bulmak için bir bonel yaylı ortopedik yatak üretim fabrikasında HTEA uygulanmıştır. Veri Zarflama Analizi (VZA) kullanılarak farklı hata türlerinin verimliliklerini hesaplamakla beraber uygulama içerisinde çok sayıda hesaplama yapılmıştır. Çalışma sonucunda HTEA-nın tekbaşına yeterli olmadığı ve VZA uygulamasının hataların verimliliğini değiştirdiği saptanmıştır. VZA bazlı HTEA, yatak üretim endüstrisi ile alakalı ilk araştırmadır.

Anahtar Kelimeler: FMEA, DEA, DEA based FMEA

ACKNOWLEDGEMENT

I would like to thank my supervisor Assoc. Prof. Dr. Sahand Daneshvar, who did not hesitate to support me during the execution of this study with his soft explanations helped me to not stress myself throughout the study.

Thanks to Birol Turhan for the excellent working environment provided for me whenever I wanted and all the BRT CLASS workers for showing patience and enduring me during my hard work.

TABLE OF CONTENTS

ABSTRACTii
ÖZiv
ACKNOWLEDGEMENT
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
1 INTRODUCTION
1.1 Initial information
1.2 Problem definition
1.3 Significance of study
1.4 Thesis design
2 LITERATURE REVIEW
2.1 Review of FMEA
2.2 Review of DEA
2.3 Review of the FMEA-DEA synthesis
3 METHODOLOGY
3.1 FMEA
3.1.1 A brief history of the FMEA
3.1.2 Definition of FMEA
3.1.3 Types of FMEA
3.1.4 Sequence of FMEA18
3.1.5 Reason to perform failure modes and effects analysis
3.1.6 Advantages and drawbacks of FMEA

3.2 Data Envelopment Analysis (DEA)	22
3.2.1 Definition of DEA	22
3.2.2 Development of DEA	23
3.2.3 Principles of DEA technique	24
3.2.4 Primary CCR model hypotheses	25
3.2.5 RTS	26
3.2.6 The primary CCR model	27
3.2.6.1 Input-oriented CCR	27
3.2.6.2 Output-aligned model	28
3.2.7 Benefits and disadvantages of DEA	29
3.3 Mattress manufacturing system (description)	30
3.3.1 Sequence of the production	30
3.4 Productivity of FMEA by using DEA	32
3.5 Data collection	33
3.5.1 Failure modes (findings) of mattress production factory	34
4 RESULTS	35
4.1 Results of the conventional FMEA	35
4.1.1 Calculation of the RPN	35
4.1.2 FM categorization	39
4.1.2.1 Arranging the SFMs conforming to corresponding RPNs	39
4.1.2.2 Potential risk analysis	42
4.1.2.3 Interpretation of the results	44
4.2 Aggregation procedure	46
4.2.1 Aggregation procedure of FMs	46
4.2.2 Arrangement of the ranks (normalization procedure)	48

4.2.3 Simplification of the results	51
4.3 Measurement of the efficiencies by using DEA (with aggregation of SFM	As)54
4.3.1 Efficiency computation by applying DEA	56
4.3.2 Clarification of the results	59
4.4 Recommendations to prevent possible failures	62
5 CONCLUSION AND FUTURE STUDY	67
5.1 Conclusion	67
5.2 Future study	68
REFERENCES	69
APPENDICES	80
Appendix A: The DEA model settings applied in PIM DEA solver	81
Appendix B: The outputs of the CCR model	82
Appendix C: Initial O, S, D values	83
Appendix D: Failure modes of the mattress production factory	89

LIST OF TABLES

Table 1: Review of FMEA	6
Table 2: Review of DEA	9
Table 3: Review of combination FMEA-DEA	13
Table 4: Conventional RPNs	36
Table 5: Ranks of the Conventional RPNs	39
Table 6: Potential risk analysis	42
Table 7: Descendant ranking of RPNs	44
Table 8: Difference of minimum and maximum SFM in same FMs	46
Table 9: Ranks of the aggregated FMs	47
Table 10: Normalization procedure	49
Table 11: Ranking normalization scores by descending order	51
Table 12: Aggregated computation of S, O, D values	55
Table 13: DEA units	56
Table 14: New Ranks of each DMU	58
Table 15: Efficiency comparison of FMEA and DEA	60
Table 16: The most efficient failure modes	61
Table 17: Process control and recommendations	62

LIST OF FIGURES

Figure 1: Layers of Orthopedic Innerspring Mattress	2
Figure 2: Thesis scheme	4
Figure 3: Review of main FMEA history	16
Figure 4: Steps of FMEA Method	20
Figure 5: Late Failure Mode Discovery	21
Figure 6: Early Failure Mode Discovery	21
Figure 7: Main history of the DEA development	24
Figure 8: Production Possibility Borders	26
Figure 9: Orientations of DEA models	28
Figure 10: Input-Output-Aligned CCR Models	29
Figure 11: Mattress Factory plan	30
Figure 12: Bonnell spring coiling machine	31
Figure 13: DEA input/output model	33

LIST OF ABBREVIATIONS

AGD	Aggregated Detection
AGO	Aggregated Occurrence
AGRPN	Aggregated Risk Priority Number
AGS	Aggregated Severity
CRS	Constant Returns to Scale
DMU	Decision Making Unit
DRS	Decreasing Returns to Scale
ec	Input vector
IRS	Increasing Returns to Scale
MIL-P	Military Specification for Planned Maintenance
NASA	National Aeronautics and Space Administration
OECD	Organization for Economic Co-operation and Development
Р	Priority
Pe	Efficiency Priority
PPS	Production Possibility Set
Pr	Risk Priority
RTS	Returns to Scale
SFM	Sub Failure Mode
VRS	Variable Returns to Scale

z_d Output vector

Chapter 1

INTRODUCTION

1.1 Initial information

Products used in the world today result from human labor after a certain production process. Since the products result from human labor, they may have various defects or shortcomings, which may cause dissatisfaction of the customer who buys the product. This is one of the serious problems of today, which leads to the unreliability of the enterprise. Therefore, businesses need to consider customer satisfaction to both improve and increase production. Of course, they must add the risks that may occur during production to the major problems, but still, all the risks can lead to untimely delivery of the product to the buyer. Therefore, enterprises use various qualitative and quantitative methods to further improve the production process.

The mattress industry is one of the rapidly growing industries in the world. As people's health comes to the fore, so does the production of mattresses is being more attention requiring by manufacturers to stabilize their business. A mattress is a large pad for supporting a lying person. It is designed to be used as a bed with or without a bed frame. Mattresses consist of a quilted case, usually of heavy fabric, containing materials such as wadding, buckram, foam rubber, or a framework of metal springs.

Figure 1: Layers of Orthopedic Innerspring Mattress

1.2 Problem definition

Mattress production involves mixed processes, even if it looks very ordinary for most people. Mattress manufacturers encounter various problems during production. There may be different internal and external reasons for customer dissatisfactions or process failures that can seriously reduce the quality of work. For example, if the memory foam will be too soft, it can cause to loss of correct spinal alignment by sinking into the mattress. This does not mean that the situation is better when the foam is hard, but an additional problem arises, which is the lack of thermal conductivity of the mattress preventing comfortable sleep. To overcome such problems, it is necessary to identify the types of failures in mattress production and find suitable solutions.

There are countless studies in the literature about mattresses. Most of them are related to the optimization of the mattress production line and ergonomic assessments of orthopedic mattresses. Other studies were interested in the effect of firmness of mattress on back pain, also consisting researches related to the impact of the carbon footprint that mattresses cause(Colditz, Joy, & Dunster, 2002). The cost-oriented FMEA method was also used for improvement in cost management, reducing costs occurring because of failures(Meril Baby, 2014).

In this study, the failures of mattress production in an orthopedic mattress factory were discovered, comprehensively addressing all risky processes, including failures of the facility plan. Potential sources and the effects of each of these failures laid out in addition with help of individual expert opinions to calculate and rank the RPNs.

DEA method was applied to measure the effectiveness of the FMEA method, which was shown which failure mode should be considered more seriously.

1.3 Significance of study

Advantages of this study:

- ✤ Satisfying expert knowledge about the issue
- ✤ Average severity, occurrence and detection ratings of each failure mode
- Taking advantage of operator experience
- Suggesting recommended risk reduction activities for a better RPN

Disadvantages of this study:

- Requires serious attention on rating (FMEA doesn't like mistakes)
- Missed failure modes
- Disinformation

1.4 Thesis design

This thesis will be disunited into five different chapters, the first chapter will cover general information and the importance of the research, the second chapter will consist of information about FMEA and DEA methods and past corresponding researches, the third section will cover research methodology including information about conducting FMEA and DEA for the recent study, the fourth section will include analyzed research results consisting FMEA and DEA tables and the last chapter will be conclusion part including discussion and future study.

The scheme of this study is shown below:

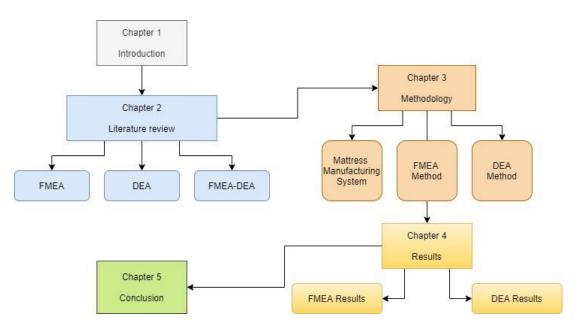


Figure 2: Thesis scheme

Chapter 2

LITERATURE REVIEW

2.1 Review of FMEA

FMEA is a systematic, proactive process assessment method for determining where and how it might fail, and for assessing the relative impact of different failures to identify the parts of the process that most need change.

FMEA method implemented in different areas, such as construction projects, safety ship operations, mine facilities, automotive industry, hospitals, pharmaceutical logistics industry, textile industry, including manufacturing sectors, and so on.

Many types of research focused on implementing FMEA to different sectors, pairing it with additional tools while some of them put new theories about improving the efficiency of the method.

A table was constructed consisting of a group of papers and publications related to FMEA and its implementation in different areas:

Table 1: Review of FMEA

	Publication Year	Торіс	Author	Summary
1	2000	Software FMEA techniques(Goddard, 2000)	P.L. Goddard	Software FMEA is used for embedded automotive platforms to minimize the cost of critical designs(Goddard, 2000)
2	2001	"Failure mode and effects analysis using grey theory"(C. L. Chang, Liu, & Wei, 2001)	Ching-Liang Chang, Ping-Hung Liu, Chiu-Chi Wei	Grey theory applied to FMEA, and it successfully detected several undetected failures in process steps(C. L. Chang et al., 2001)
3	2002	"Fuzzy assessment of FMEA for engine systems"(Xu, Tang, Xie, Ho, & Zhu, 2002)	K Xu, LC Tang, M Xie, SL Ho, ML Zhu	The fuzzy expert assessment was implemented to solve sharing of wrong information among experts from various sectors (Xu et al., 2002)
4	2002	"FMEA methodology design, implementation, and integration with HACCP system in a food company"(Scipioni, Saccarola, Centazzo, & Arena, 2002)	Antonio Scipioni, Giovanni Saccarola, Angela Centazzo, Francesca Arena	FMEA integrated with the HACCP system for improving the production cycle in a food company and the generated data can be useful. (Scipioni et al., 2002)
5	2003	"Using failure mode and effects analysis to improve patient safety"(Spath, 2003)	Patrice L. Spath	FMEA is used with a multiple- choice questionnaire to improve patient safety. Patient feedbacks helped to construct a systematic approach. (Spath, 2003)
6	2006	"Implementing FMEA in a collaborative supply chain environment"(Teng, Ho, Shumar, & Liu, 2006)	S. Gary Teng, S. Michael Ho, Debra Shumar, Paul C. Liu	Research has been done in a collaborative environment. This research will help companies to conduct FMEA in a collaborative supply chain environment. (Teng et al., 2006)
7	2008	"Development of a fuzzy FMEA based product design system"(Chin, Chan, & Yang, 2008)	Kwai-Sang Chin, Allen Chan, Jian-Bo Yang	A framework of a fuzzy FMEA helped to enhance the robustness of the production scheme by helping inexperienced users to perform quality improvements. (Chin et al., 2008)
8	2008	Failure mode and effects analysis (FMEA) in the context of risk management in new product development: A case study in an automotive company(Segismundo & Miguel, 2008)	André Segismundo, Paulo Augusto Cauchick Miguel	This study seeks to propose a systematization of risk management using the FMEA method to optimize the decision- making process in new product development (NPD). (Segismundo & Miguel, 2008)

	Publication Year	Торіс	Author	Summary
9	2009	"An alternative evaluation of FMEA: Fuzzy ART algorithm"(Keskin & Özkan, 2009)	Gülşen Aydın Keskin, Coşkun Özkan	FMEA method is used to make the correct decision based on the fuzzy Adaptive Resonance Theory (ART) algorithm to improve the correctness of clustering problems in artificial neural networks. (Keskin & Özkan, 2009)
10	2009	"FMEA: A model for reducing medical errors"(Chiozza & Ponzetti, 2009)	Maria Laura Chiozzaa, Clemente Ponzettib	FMEA technique applied in laboratory medicine. Acceptable reduction of the risk priority number (RPN) was obtained after applying FMEA to various testing procedures.(Chiozza & Ponzetti, 2009)
11	2011	"Risk analysis method: FMEA/FMECA in the organizations"(Lipol & Haq, 2011)	Lefayet Sultan Lipol, Jahirul Haq	Each method implemented and measured their efficiency to help companies to select the right production plan.(Lipol & Haq, 2011)
12	2011	"Application and improvement study on FMEA in the process of military equipment maintenance"(Li, Kang, Ma, & Li, 2011)	Yanliang Li, Rui Kang, Lin Ma, Lei Li	Analyzes equipment maintenance and investigates faults of military equipment. Research explores MP- FMEA to verify the sensitiveness of the method. (Li et al., 2011)
13	2012	"Applying of Method FMEA (Failure Mode and Effects Analysis) in the Logistics Process"(Šolc, 2012)	Marek Šolc	This research aims to develop a production process by solving low storage flexibility and unbalanced material handling. (Šolc, 2012)
14	2013	"Fuzzy FMEA application to improve purchasing process in a public hospital"(Kumru & Kumru, 2013)	Mesut Kumru, Pınar Yıldız Kumru	The fuzzy logic approach preferred to remove inaccurate numbering to improve purchasing system. (Kumru & Kumru, 2013)
15	2014	"A Case Study: A Process FMEA Tool to Enhance Quality and Efficiency of Manufacturing Industry"(Parsana & Patel, 2014)	Tejaskumar S. Parsana and Mihir T. Patel	FMEA method used to manage risks while manufacturing cylinder heads. (Parsana & Patel, 2014)
16	2015	"An application of failure mode and effect analysis (FMEA) to assess risks in the petrochemical industry in Iran"(Kangavari, Salimi, Nourian, & Askarian, 2015)	Mehdi Kangavari, Sajad Salimi, Rohallah Nourian, Leila omidi, Alireza Askarian	FMEA method combined with brainstorming techniques to plan correct failures in the welding process. Aggregated RPN for the welding process decreased from 120 to 96 after necessary acts. (Kangavari et al., 2015)

	Publication Year	Торіс	Author	Summary
17	2016	"Applying UGF Concept to Enhance the Assessment Capability of FMEA"(Akbarzade Khorshidi, Gunawan, & Ibrahim, 2016)	Hadi Akbarzade Khorshidi, Indra Gunawan, M. Yousef Ibrahim	Universal Generating Function (UGF) technique used to improve the efficiency of grading FMEA scores. (Akbarzade Khorshidi et al., 2016)
18	2017	"An extension to Fuzzy Developed Failure Mode and Effects Analysis (FDFMEA) application for aircraft landing system"(Yazdi, Daneshvar, & Setareh, 2017)	Mohammad Yazdi, Sahand Daneshvar, Hashem Setareh	Contributed to aircraft landing system to concentrate on its risks and to take necessary actions. Traditional and Fuzzy Developed FMEA techniques used and compared to achieve an effective result. (Yazdi et al., 2017)
19	2017	"Comprehensive risk management using fuzzy FMEA and MCDA techniques in highway construction projects"(Ahmadi, Behzadian, Ardeshir, & Kapelan, 2017)	Mohsen Ahmadi, Kourosh Behzadian, Abdollah Ardeshir, Zoran Kapelan	SED index combined with FMEA for a better result to successfully cope with risky events with minimal deviation. (Ahmadi et al., 2017)
20	2019	"Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach"(Yazdi, 2019)	Mohammad Yazdi	Sensitivity analysis applied to analyze the effectiveness of RPN scores. Interactive fuzzy AHP and entropy methods are used to achieve better results. (Yazdi, 2019)
21	2020	"Automotive leaf spring design and manufacturing process improvement using failure mode and effects analysis (FMEA)"(Aized et al., 2020)	Tauseef Aized, Muhammad Ahmad, Muhammad Haris Jamal, Asif Mahmood, Syed Ubaid ur Rehman, Jagjit Singh Srai	Potential failures of automotive leaf spring manufacturing were found out using FMEA. Necessary computations were made for decreasing RPN numbers. (Aized et al., 2020)
22	2020	"Failure Mode and Effects Analysis (FMEA) for Immunogenicity of Therapeutic Proteins"(Chirmule, Khare, Khandekar, & Jawa, 2020)	Narendra Chirmule, Ravindra Khare, Atul Khandekar, Vibha Jawab	The multi-dimensional approach is used to verify potential risks of immunogenicity. FMEA is used for accurate measurements of drug development. (Chirmule et al., 2020)
23	2021	"Using QFD and FMEA to Improve Maintenance Effectiveness in a Petroleum Refinery"(Rahman, Said, Hassan, Yusoff, & Atmadyaya, 2021)	Fauzan Rahman, Mohamad Sazali Said, Azmi Hassan Mohd, Shahrizan Yusoff, Surya Atmadyaya	Quality Function Deployment (QFD) combined with FMEA to decrease maintenance and repair time. (Rahman et al., 2021)

2.2 Review of DEA

DEA is the main data analysis technique used to evaluate inter-unit activities. Researchers carry out different measurements to evaluate the performance of units in different fields, such as health, management, finance, manufacturing sectors.

Data Envelopment Analysis is mostly effective by combining it with other decisionmaking techniques. This is the reason researchers focus on applying different methods to construct a better system to evaluate correct measurements. They enhanced and expanded types of DEA using distinct approaches, and collaborate DEA with other techniques.

The table below contains a list of articles in the literature using the DEA method:

	Publication Year	Торіс	Author	Summary
1	2002	"On the Origins of Data Envelopment Analysis"(Førsund & Sarafoglou, 2002)	Finn R. Førsund, Nikias Sarafoglou	This research aims to provide forgotten development stages of DEA to the readers. Unexplored research ideas emphasized. (Førsund & Sarafoglou, 2002)
2	2003	"The efficiency of Australian universities: a data envelopment analysis"(Abbott & Doucouliagos, 2003)	Abbott, Malcolm, Chris Doucouliagos	Technical efficiency was analyzed in Australian universities using non- parametric techniques. Inputs and outputs mixed and found that there is balanced efficiency concerning the DEA model. (Abbott & Doucouliagos, 2003)

Table 2: Review of DEA

	Publication Year	Торіс	Author	Summary
3	2004	"Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis"(Dhungana, Nuthall, & Nartea, 2004)	Basanta R. Dhungana, Peter L. Nuthall, Gilbert V. Nartea	Nepalese rice farmers work inefficiency calculated using the DEA method. It has been found that inefficiency is mostly related to their ages and genders. (Dhungana et al., 2004)
4	2005	"Interval efficiency assessment using data envelopment analysis"(Wang, Greatbanks, & Yang, 2005)	Ying-Ming Wang, Richard Greatbanks, Jian-Bo Yang	This research aims to conduct an interval efficiency assessment using DEA in a fuzzy input-output-oriented base. A minimax regret-based approach (MRA) is introduced to compare and rank the efficiency intervals of DMU(Wang et al., 2005)
5	2006	"Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process"(Ramanathan, 2006)	Ramakrishnan Ramanathan	AHP method is considered a key success for DEA in this research and the new method is called DEAHP, which does not suffer from various alternatives. (Ramanathan, 2006)
6	2011	"Improving weak efficiency frontiers in the fuzzy data envelopment analysis models"(Khoshfetrat & Daneshvar, 2011)	Sahar Khoshfetrat, Sahand Daneshvar	A new method was conducted to improve weak efficiency scores of DMUs by applying the fuzzy CCR model. (Khoshfetrat & Daneshvar, 2011)
7	2012	"Fuzzy data envelopment analysis: A discrete approach"(Emrouznejad & Mustafa, 2012)	Emrouznejad, Ali, Adli Mustafa	"local α-level" was introduced to develop new multi-aim programming to assess the efficiency of DMUs under uncertainty from the intervals of the α- cut approach. (Emrouznejad & Mustafa, 2012)
8	2013	"A Review of Ranking Models in Data Envelopment Analysis"(Hosseinzadeh Lotfi et al., 2013)	F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, M. Khodabakhshi, M. Rostamy-Malkhlifeh, Z. Moghaddas, M. Vaez-Ghasemi	Applied different ranking methods and divided them into seven groups. The effectiveness of each ranking method is analyzed by putting them into an application.(Hosseinzadeh Lotfi et al., 2013)
9	2014	"A three-stage Data Envelopment Analysis model with application to the banking industry"(Ebrahimnejad, Tavana, Lotfi, Shahverdi, & Yousefpour, 2014)	Ali Ebrahimnejad, Madjid Tavana, Farhad Hosseinzadeh Lotfi, Reza Shahverdi, Mohamad Yousefpour	DEA model proposed with three stages. The first two stages are calculated parallel to pass into the third stage. Applicability was measured with a case study done in the banking industry to improve efficiency. (Ebrahimnejad et al., 2014)
10	2014	"COMPUTING THE BIENNIAL MALMQUIST INDEX USING MODIFIED VARIABLE RETURNS TO SCALE DEA MODEL" (DANESHVAR & IZBIRAK, 2014)	Sahand Daneshvar, Gokhan Izbirak	Malmquist productivity index calculated concerning output-oriented BCC and CCR models. Comparisons showed the model helped to stabilize the value of the Malmquist index after modifying the VRS frontier. (DANESHVAR & IZBIRAK, 2014)

	Publication Year	Торіс	Author	Summary
11	2015	"A Data Envelopment Analysis Application for Measuring Efficiency of University Departments"(Gökşen, Doğan, & Özkarabacak, 2015)	Yılmaz Gökşen, Onur Doğan, Bilge Özkarabacak	DEA input-output-oriented models applied to solve inefficiency problems in the departments of Dokuz Eylul University. (Gökşen et al., 2015)
12	2016	"Evaluating and ranking sustainable suppliers by robust dynamic data envelopment analysis"(Yousefi, Shabanpour, Fisher, & Saen, 2016)	Saeed Yousefi, Hadi Shabanpour, Ron Fisher, Reza Farzipoor Saen	Dynamic decision-making unit (DIDMU) approach was introduced to rank sustainable suppliers. Dynamic DMU helped to overcome shortcomings. (Yousefi et al., 2016)
13	2016	"Enhanced data envelopment analysis for sustainability assessment: A novel methodology and application to electricity technologies"(Galán- Martín, Guillén- Gosálbez, Stamford, & Azapagic, 2016)	Ángel Galán Martín, Gonzalo Guillén Gosálbez, Laurence Stamford, Adisa Azapagic	Alternatives ranked according to sustainability reasons. Inefficient alternatives become more accurate after applying the method. (Galán-Martín et al., 2016)
14	2017	"A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency"(Mardani, Zavadskas, Streimikiene, Jusoh, & Khoshnoudi, 2017)	Abbas Mardani, Edmundas Kazimieras Zavadskasb, Dalia Streimikienec, Ahmad Jusoha, Masoumeh Khoshnoudia	This research aimed to review DEA techniques concerning differences in energy efficiencies. The results showed DEA helps to solve efficiency issues in most sectors. (Mardani et al., 2017)
15	2018	"Efficiency Analysis of Healthcare System in Lebanon Using Modified Data Envelopment Analysis" (Mustapha D Ibrahim & Daneshvar, 2018)	Mustapha D. Ibrahim, Sahand Daneshvar	Modified DEA model developed to check the efficiency of the healthcare system in Lebanon. Researchers found that there is a significant improvement in efficiency and the recent improvement will continue if the healthcare system reform will be maintained. (Mustapha D Ibrahim & Daneshvar, 2018)
16	2019	"An Estimation of the Efficiency and Productivity of Healthcare Systems in Sub Saharan Africa: Health Centred Millennium Development Goal- Based Evidence" (Mustapha D Ibrahim, Daneshvar, Hocaoğlu, & Oluseye, 2019)	Mustapha D. Ibrahim, Sahand Daneshvar, Mevhibe B. Hocaoğlu, Olasehinde Williams, G. Oluseye	The efficiency of the healthcare systems of SSA was calculated with DEA concerning data from 2010 to 2015. Variations in the efficiency of SSA healthcare systems were observed via implementing DEA methodology and it has been found that the healthcare system has inefficient measurements concerning corrupted governments. (Mustapha D Ibrahim, Daneshvar, et al., 2019)
17	2018	"Modified variable return to scale back- propagation neural network robust parameter optimization procedure for multi- quality processes model"(Daneshvar & Adesina, 2018)	Sahand Daneshvar, Kehinde Adewale Adesina	A modified VRS-BPNN robust optimization framework was proposed for optimizing multi-quality response systems. Optimum parameters settings were achieved effectively. The largest anticipated improvement is set up with the proposed model.(Daneshvar & Adesina, 2018)

	Publication Year	Торіс	Author	Summary
18	2019	"Evaluating the sustainability of national logistics performance using Data Envelopment Analysis"(Rashidi & Cullinane, 2019)	Kamran Rashidi, Kevin Cullinane	Operational logistics performance of OECD nations evaluated using DEA approach, and a comparison made by Logistics Performance Index (LPI) measurement. (Rashidi & Cullinane, 2019)
19	2019	"Cost and Time Management Efficiency Assessment for Large Road Projects Using Data Envelopment Analysis"(Ahbab, Daneshvar, & Celik, 2019)	Changiz AHBAB, Sahand DANESHVAR, Tahir ÇELIK	This research filled the gap in the literature by conducting the DEA method referencing time and cost management issues in large construction projects and applying sensitivity analysis to examine causes of the poor management. (Ahbab et al., 2019)
20	2019	"Transnational resource generativity: Efficiency analysis and target setting of water, energy, land, and food nexus for OECD countries"(Mustapha D Ibrahim, Ferreira, Daneshvar, & Marques, 2019)	Mustapha D. Ibrahim, Diogo Cunha Ferreira, Sahand Daneshvar, Rui Cunha Marques	The corresponding research aims to analyze the efficiency of Water-Energy- Land-Food (WELF-Nexus) relief in OECD countries to check the reserves for the current and next generation. It has been found that correct policies will extend the WELF-Nexus sustainability. (Mustapha D Ibrahim, Ferreira, et al., 2019)
21	2020	"The origins, development, and future directions of the data envelopment analysis approach in transportation systems"(Mahmoudi, Emrouznejad, Shetab- Boushehri, & Hejazi, 2020)	Reza Mahmoudi, Ali Emrouznejad, Seyyed-Nader, Shetab-Boushehri, Seyed Reza Hejazia	Transportation systems applications are measured and classified using the DEA method. It has been found that DEA can help decision-makers to apply better transportation rules in a sustainable environment. (Mahmoudi et al., 2020)
22	2021	"Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries"(Kara, Ibrahim, & Daneshvar, 2021)	Sedef E Kara, Mustapha D Ibrahim, Sahand Daneshvar	The efficiency dimension of Renewable Energy was analyzed via the DEA method. Bioenergy, Hydro energy, and Wind energy had higher efficiencies than other energy sources. (Kara et al., 2021)
23	2020	"Target setting in data envelopment analysis: efficiency improvement models with predefined inputs/outputs"(Musta pha Daruwana Ibrahim, Daneshvar, Güden, & Vizvari, 2020)	Mustapha Daruwana Ibrahim, Sahand Daneshvar, Hüseyin Güden, Bela Vizvari	The efficiency of target setting measurements was analyzed by conducting CCR based DEA. Target setting helps managers to check the possibility of their desires.(Mustapha Daruwana Ibrahim et al., 2020)

2.3 Review of the FMEA-DEA synthesis

In this part, the techniques where the DEA approach was synthesized with the FMEA technique and several techniques was explored, like Grey Incidence Analysis, fuzzy FTA, exponential RPN, bounded approach; aircraft systems, manufacturing processes, and others. The table below contains research papers consisting combination of FMEA-DEA methods:

	Publication Year	Торіс	Author	Summary
1	2005	"A FUZZY DATA ENVELOPMENT ANALYSIS APPROACH FOR FMEA"(Garcia & Schirru, 2005)	P. A. A. GARCIA, R. SCHIRRU & P. F. FRUTUOSO E MELO	Some inference rules were bypassed. This study applied to PWR auxiliary feedwater system. DEA-APGF (profiling of severity efficiency) approach was implemented to compare the results.(Garcia & Schirru, 2005)
2	2007	"Application of FMEA- DEA (Failure Modes and Effect Analysis - Data Envelopment Analysis) to the air conditioning system of the control room of a nuclear power plant"(Barbosa & Gilberto, 2007)	Barbosa Junior, Gilberto Varanda	FMEA-DEA analysis applied to the nuclear power plant. The criticality of the failure modes analyzed with implementing DEA helping operators to manage efficient failure modes. (Barbosa & Gilberto, 2007)
3	2009	"Applying DEA to enhance assessment capability of FMEA"(D. S. Chang & Sun, 2009)	Dong-Shang Chang, Kuo-Lung Paul Sun	DEA applied to enhance the assessment capability of FMEA by exclusively investigating S, O, D levels to improve scale levels. (D. S. Chang & Sun, 2009)
4	2011	"Using Integrated FMEA-DEA Approach to Classify Purchasing Items Based on Kraljic's Model"(Arabzad & Ghorbani, 2011)	S. Mohammad Arabzad, Mazaher Ghorbani	This study was implemented in an aircraft manufacturing company to manage the supply environment using a combined FMEA-DEA approach. Supply bottleneck reduced and manufacturing power planned to be improved. (Arabzad & Ghorbani, 2011)

Table 3: Review of combination FMEA-DEA

	Publication Year	Торіс	Author	Summary
5	2012	"Failure Mode and Effects Analysis Using Data Envelopment Analysis"(HADI, Hejazi, Forghani, & Hejazi, 2012)	A. Hadi-Vencheh, S. Hejazi, A. Forghani, S. N. Hejazi	The bounded DEA model was proposed to measure the overall risk of the failure modes. (HADI et al., 2012)
6	2013	"Safety Risk Assessment in Mass Housing Projects Using Combination of Fuzzy FMEA, Fuzzy FTA, and AHP-DEA"(Ardeshir, Amiri, & Mohajeri, 2013)	A Ardeshir , M Amiri, M Mohajeri	This research was conducted in the construction industry to apply a safety risk assessment. It is approved that the methodology used in this research can help safety operators to identify and control the risks associated with the construction sector. (Ardeshir et al., 2013)
7	2014	"Developing a Method for Risk Analysis in Tile and Ceramic Industry Using Failure Mode and Effects Analysis by Data Envelopment Analysis"(Mirghafouri, Asadian Ardakani, & Azizi, 2014)	Seyyed Habibollah Mirghafouri, Faezeh Asadian Ardakani, Fatemeh Azizi	The fuzzy set theory was executed to evaluate S, O, D elements. The recommended suggestion was given to the company managers to execute necessary tasks. (Mirghafouri et al., 2014)
8	2016	"Integrated FMEA Approach for Supplier Selection Problem: The Case on Steel Manufacturing Company"(Parvez, Rakib, & Islam, 2016)	Nokib Parvez, Md. Golam Rakib, Sayed Islam	Analytic Hierarchy Process (AHP) and Fuzzy AHP are used effectively with the FMEA technique. The best supplier is selected from the supply chain sector. (Parvez et al., 2016)
9	2016	"Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis, and grey relational analysis" (Baghery, Yousefi, & Rezaee, 2018)	Majid Bagheri, Samuel Yousefi, Mustafa Jahangoshai Rezaee	Failure modes of manufacturing auto parts delivered with PFMEA technique. Interval based DEA and GRA combined to extract the criticality ratio (Baghery et al., 2018)
10	2020	"Fuzzy smart failure modes and effects analysis to improve the safety performance of the system: A case study of an aircraft landing system"(Daneshvar, Yazdi, & Adesina, 2020)	Sahand Daneshvar, Mohammad Yazdi, Kehinde A. Adesina	A case study was conducted by retrieving information on aircraft landing system accidents reported by Iranian airlines. Multi-expert opinions were adopted to apply into AHP weighted model to evaluate the efficiency by using the DEA method. (Daneshvar et al., 2020)
11	2019	"Stock Evaluation under Mixed Uncertainties Using Robust DEA Model"(Peykani, Mohammadi, & Seyed Esmaeili, 2019)	Pejman Peykani, Emran Mohammadi, Fatemeh Sadat Seyed Esmaeili	Stock efficiency measurement made by applying DEA models without CRS and VRS with information gathered from Tehran Stock Exchange (TSE). It has been found that this methodology can be applied to the banking and finance sector. (Peykani et al., 2019)
12	2020	"Failure Modes and Effects Analysis (FMEA) Method Based on Data Envelopment Analysis (DEA) Approach for the Efficiency Measurement of Radio Frequency Identification (RFID)"(Chnina, 2020)	Khaoula Chnina	Failure modes of RFID system assessed by experts' knowledges. Weighted AHP technique and CCR based DEA method was implemented to verify the effectiveness of the failures. (Chnina, 2020)

Many papers reviewed so far related to implementing FMEA and DEA conducted in different areas or systems. Concerning the rich information database, a lot of potentially sufficient data has been retrieved to perform an FMEA assessment on our case study related to mattress production. According to our research it has been found that the FMEA technique was not used comprehensively to find and inspect the cause and effects of the mattress production process. In this study, failures of the mattress production system and environment was found mostly concerning the failures causing customer dissatisfactions.

The FMEA method was harmonized with other techniques to boost its accuracy, like DEA. In conclusion, our FMEA approach with averaged O, S, D values and implementing the DEA method will be the first corresponding research related to the mattress industry, and the DEA technique will measure the efficiency of the findings.

Chapter 3

METHODOLOGY

3.1 FMEA

3.1.1 A brief history of the FMEA

The first proper use of FMEAs was by the United States Military at the end of the 1940s. They reduced variation of the sources and corresponding potential mistakes in the production of munitions by developing this technique (MIL-P-1929) and it proved a highly desirable tool. NASA accepted the FMEA as an important project planning technique, as it was validated that failure of manufacturing risk was reduced by the use of FMEA. It is proven that FMEA brought engineers to the success of the Apollo (1963) mission, as NASA accredited the success of moon landings to the use of FMEA. NASA used FMEA to identify single-point failures on the Apollo (1963) mission. After a while, it was erupted by Aerospace (1965) and Nuclear (1975) industries.

Figure 3: Review of main FMEA history

In the 1970s, the Ford automobile company implemented FMEA in their auto design process to eliminate potential manufacturing errors. In February 1993, an alternative approach was formalized for FMEA by the American Society for Quality Control (ASQC) and the Automotive Industry Action Group (AIAG). They explained it as: The FMEA is a comprehensive technique to point out the possible failures and mark them before they arise, intending to eliminate them or minimize the coherent risks. Some frequently used FMEA standards include ARP5580(non-automobile applications), SAE J1739(design assessment for manufacturing and assembly processes), AIAG (automotive supply chain processes), and Military-Standard-1629A. FMEA has become the main requirement in the QS9000 standard in the automotive sector(En.wikipedia.org, 2019). The FMEA is a qualitative risk analysis tool used in many branches of industry and it can be implemented in almost any process and system to manage and correct risky actions.

3.1.2 Definition of FMEA

FMEA is a technique used to find and eliminate root causes based on potential errors that may occur before, after, and during the assembly, design, or manufacturing phase of any product or process. It improves operational performance and reduces the resulting risk level by analyzing all potential errors of the applied system. Now, FMEA is widely used not only in advanced technology fields such as nuclear energy, aviation, electronics, and automotive but also in many service sectors, such as health and tourism, as well as the production sector, software/hardware sector. FMEA is group work, and it needs expert knowledge to apply the methodological rules correctly.

FMEA can be memorized as a brainstorming risk assessment technique.

3.1.3 Types of FMEA

• System FMEA

The System FMEA concerns the whole system. It can also contain associated interaction failures between sub-systems, including interaction with the environment.

• Process FMEA (PFMEA)

The Process FMEA focuses on the failures associated with the manufacturing and assembly processes.

• Design FMEA (DFMEA)

In Design FMEA, the focus is on sub-system and component failures. It has also an interaction between components and sub-systems, additionally failures which consent interaction with the environment.

Service FMEA

Service FMEA helps to eliminate wrong installation and operation of the process.

• Software FMEA

Software FMEA helps to improve the quality of the software products.

• Failure modes, effects, and criticality analysis (FMECA)

The only difference of FMECA is a calculation of RPN with exception of detection value, which can assess the criticality of the failure modes, respectively. In our research, the main associated design, process, and system failures of the mattress production were mostly concerned.

3.1.4 Sequence of FMEA

Before conducting an FMEA assessment, the corresponding process or system must be learned to apply the method in the right way. The FMEA method has 5 consecutive steps shown below: 1. Getting ready for failure analysis.

A. appointing the team members, discussing the detail of the analysis.

B. learning the functionality of the system and process, learning what can break down the system.

C. learning O, S, D scales.

D. constructing the FMEA table.

2. Analysis of failures of the system.

E. collective brainstorming and putting for all the failure modes of the components.

F. generating the causes of each failure mode.

G. defining the effects of failures.

3. Evaluation of the failures.

H. allocating occurrence rankings of each failure mode.

I. allocating severity rankings of failure modes.

J. allocating detection rankings of each failure.

K. calculation of RPN based on O, S, D points.

L. ranking all failures by an appropriate arrangement of the RPN marks.

M. showing RPN in matrix scheme.

N. checking the RPN value if it is below or more than the allowed value.

4. Finding necessary actions to optimize the risks.

O. recommending preventive, softener actions to decrease the potential risk value as much as possible considering each O, S, D value.

5. Executing and tracking recommended actions.

P. implementing the necessary action.

Q. monitoring and calculating the failure process for any improvements.

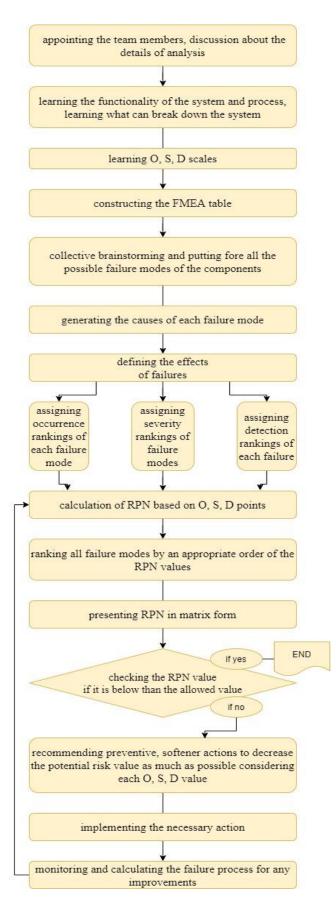


Figure 4: Steps of FMEA Method

3.1.5 Reason to perform Failure Modes and Effects Analysis

The sooner a failure is discovered, the cost of fixing it will not be heartbreaking. But if the failure is not discovered while on product development, the impact can be catastrophic. FMEA is a friendly tool helping us to discover failure mode at its early stages in product design. Discovering a failure before the manufacturing or processing of the product provides benefits of:

- a) Multiple options to ease the risk
- b) Reduced charge rate
- c) A better combination of design and process of the product

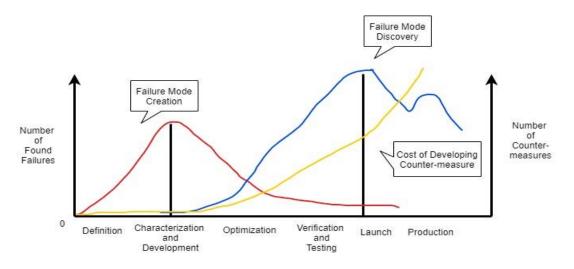


Figure 5: Late Failure Mode Discovery

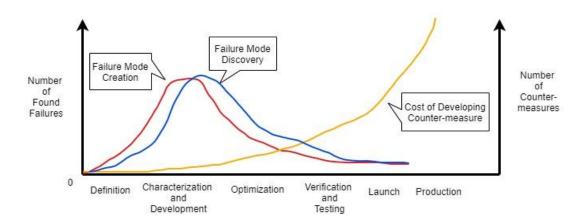


Figure 6: Early Failure Mode Discovery

3.1.6 Advantages and drawbacks of FMEA

Advantages:

- Provides better progress for system quality and safety
- Captures aggregated information of a team
- Minimizes the failures for the next applied process
- Efficiency of manufacturing increases
- Having a practical arrangement makes it easy to combine with different models

Drawbacks:

- Having less experienced team members
- The high expense of necessary actions
- System or process data must be learned strictly to apply the method correctly
- FMEA can't solve problems directly
- The study may remain uncompleted
- It is a tiresome method to solve deep and complicated problems.

3.2 Data Envelopment Analysis (DEA)

3.2.1 Definition of DEA

Data envelopment analysis (DEA) is a distribution-free process in operations research and economics for the evaluation of production frontiers(A. Charnes, 1978). It is used to analytically evaluate the productivity of decision-making units (DMUs). Although DEA has a powerful connection to production theory in economics, the technique is also used for testing in operations management, where a set of countable values is selected to test the performance of manufacturing operations. In contrast with parametric techniques that demand the forecasted details of a product function, nonparametric approaches differentiate feasible input and output synthesis based on the accessible data only(William W Cooper, Seiford, & Tone, 2007). DEA, as one of the most regularly used non-parametric methods, grants its name to its enveloping characteristic of the dataset's productive DMUs, where the pragmatically found out, most productive DMUs establish the production frontier in opposition to which all DMUs are correlated. DEA's reputation withstands from its relative shortage assumptions, capability to benchmark multi-proportioned inputs and outputs as well as computerized ease owing to it being specific as a linear program, regardless of aiming to calculate efficiency proportions(William W. Cooper, Seiford, & Zhu, 2011).

3.2.2 Development of DEA

Structuring on the opinions of Farrell(Farrell, 1957), the innovative work "Measuring the efficiency of decision-making units" by Charnes, Cooper, and Rhodes implements linear programming to evaluate a pragmatic production mechanism frontier for the first time(A. Charnes, 1978). The procedure was used earlier in Germany to evaluate the approximate efficiency of R&D investments and other various factors. Since then, a bulky number of journal articles have been written on implementing DEA on unique sets of problems.

Beginning with the CCR model by Charnes, Cooper, and Rhodes(A. Charnes, 1978), many developments to DEA have been initiated in the literature. The scope ranged from altering practical model assumptions such as input and output alignment, differentiating technical and designative efficiency(Fried, Lovell, Schmidt, & Schmidt, 2008), adding bounded disposability(William W Cooper, Seiford, & Zhu, 2000) of inputs and outputs or inconstant RTS(Banker, Charnes, & Cooper, 1984) to techniques that take advantage of DEA results and enhance them for more complex analyses such as cross-efficiency analysis(Sexton, Silkman, & Hogan, 1986).(wikipedia, 2019)

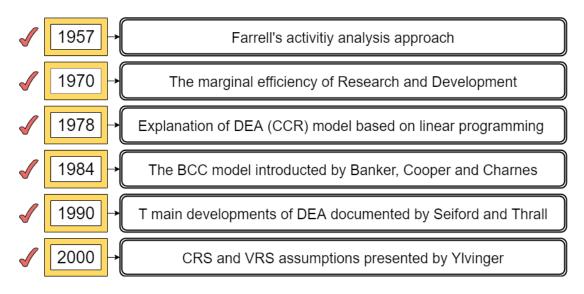


Figure 7: Main history of the DEA development

3.2.3 Principles of DEA technique

The concept of the DEA technique is to contrast the effectiveness of the DMU_L ('L' varies from 1 to g) with the effectiveness of all the other DMUs associated with the PPS, all corresponding DMUs should consume (a) inputs and generate (b) outputs. The belief is that if a DMU performs well, then perhaps the other corresponding DMU will perform better.

Consider we have a fixed number of f inputs, and h outputs, then the number of DMUs should be more than the summation of inputs and outputs multiplied by 3.

$$g \ge 3 \times (f+h)$$

For example, consider that our DMUs are fast-food companies, they are using bread, meat, cheese, and electricity (f=4) to produce burgers (h =1), then with corresponding data we should have at least 12 DMUs. ($e_c, c = 1, 2, ..., f$) and ($z_d, d = 1, 2, ..., h$) are

the weights of the input, output vectors. These weights can be conducted with different measures for inputs and outputs. The target of the DEA technique is to assess and calculate the relevant values for each input and output values that increase the impact amount for each DMU. The effectiveness is equal to virtual output divided by virtual input (WILLIAM W. COOPER, 2007).

Virtual input and the virtual output are equal to $\sum_{1}^{f} e_{c} a_{cq}$, $\sum_{1}^{h} z_{d} b_{dq}$ respectively. The DMU effectiveness (under monitoring) is equal: $\alpha = \frac{\sum_{1}^{h} e_{c} a_{cq}}{\sum_{1}^{f} z_{d} b_{dq}}$

The output and the input line for each DMU_i will be in the order given as:

$$a_m = (a_{1m}, a_{2m}, a_{3m}, a_{4m})$$
 and $b_m = (b_{1m})$

There are various models of DEA which we can use in our research. We preferred to use the CCR model but, any other model is also applicable.

3.2.4 Primary CCR model hypotheses

1: All the detected DMUs are the properties of the PPS.

$$DMU_m \in PPS for all m = 1, 2, ..., g$$

2: If $(a, b) \in PPS \rightarrow all actions (\bar{a}, \bar{b})$ having $\bar{a} \ge a$ and $\bar{b} \le b$, $(a, \bar{b}) \in PPS$.

3: CRS hypothesis

If $(a, b) \in PPS \rightarrow \forall x \ge 0$ we get, $(xa, xb) \in PPS$.

4: Clear linear synthesizes: If (a, b) and $(\bar{a}, \bar{b}) \in PPS \rightarrow \forall \beta \in [0,1]$,

 $[\beta(a, b) + (1 - \beta)(\overline{a}, \overline{b})] \in PPS$ will be obtained.

5: PPS is the minimal set fulfilling all the recent hypotheses.

$$PPS = (a, b), a \ge \sum_{m=1}^{g} \beta_m a_m \text{ and } b \le \sum_{m=1}^{g} \beta_m b_m \text{ , where } \beta_m \ge 0.$$

Efficient DMUs are always positioned on the borderline of the PPF.

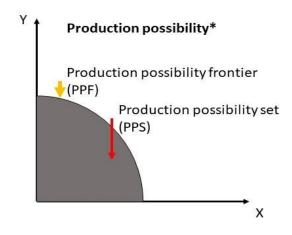


Figure 8: Production Possibility Borders

3.2.5 RTS

If $(a, b) \in PPS \rightarrow \forall p \ge 0$ we get: $(pa, pb) \in PPS$. Increasing or decreasing of inputs and outputs is proportional.

1-CRS:

$$f(a) = b$$
$$f(pa) = pb$$

2-IRS: RTS is increasing when inputs increasing the outputs are more than expectations.

$$f(a) = b$$
$$f(pa) > pb$$

3-DRS: RTS is decreasing when inputs increasing the outputs are less than expectations.

$$f(a) = b$$
$$f(pa) < pb$$

3.2.6 The primary CCR model

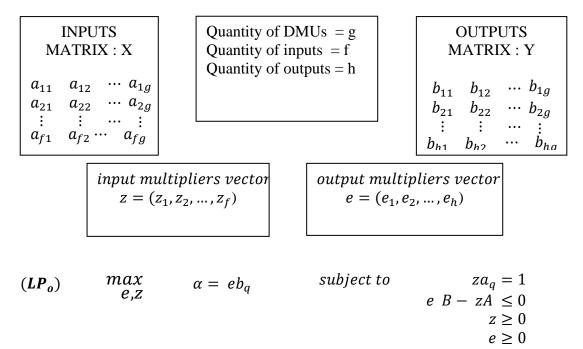
3.2.6.1 Input-oriented CCR

1- Fractional program form

$$(FP_o) \qquad \max_{e,z} \qquad \alpha = \frac{\sum_{1}^{h} e_d b_{dq}}{\sum_{1}^{f} z_c a_{cq}}$$

subject to

$$\begin{split} \frac{\sum_{1}^{h} e_{d} b_{dq}}{\sum_{1}^{f} z_{c} a_{cq}} &\leq 1, \ (m = 1, 2, \dots, g) \\ z_{c} &\geq 0, \ (c = 1, 2, \dots, f) \\ e_{d} &\geq 0, (d = 1, 2, \dots, h) \end{split}$$


2- Linear program form

2- Linear prog	ram form	h
(LP_o)	max e,z	$\alpha = \sum_{1}^{n} e_{d} b_{dq}$
subject to	$\sum_{1}^{h} e_d b_d$ $z_c \ge$	1, $(m = 1, 2,, g)$ $a_m - \sum_{1}^{f} z_c a_{cq} \leq 0$ ≥ 0 , $(c = 1, 2,, f)$ $\geq 0, (d = 1, 2,, h)$

Note : $FP_o \iff LP_o$

3-Multiplier form:

The matrices form for a system having:

4-Dual model:

$$(DLP_{o}) \qquad \begin{array}{c} \min & \alpha \\ \alpha, \beta \\ subject \ to \\ \beta \ge 0 \\ \beta \ge 0 \end{array}$$

Where $\alpha \in \mathbb{R}$, and $\beta \in \mathbb{R}_g^+$.

3.2.6.2 Output-aligned model

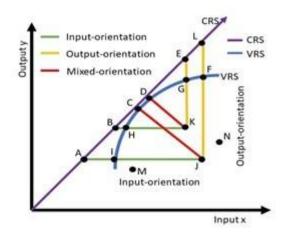


Figure 9: Orientations of DEA models

A-dual model or envelopment form:

$$\begin{array}{ccc} (\textit{DLPO}_o) & \max & \eta \\ & \gamma, \eta & \\ subject \ to & a_q - A\eta \geq 0 \\ & \gamma b_q - B\eta \leq 0 \\ & \eta \geq 0 \end{array}$$

Where $\gamma \in \mathbb{R}$, and $\eta \in \mathbb{R}_g^+$.

The relations of the efficient frontier of the output-aligned and the input-aligned model are:

 $\gamma^* = 1/\alpha^*$ and $\eta^* = \beta^*/\alpha^*$

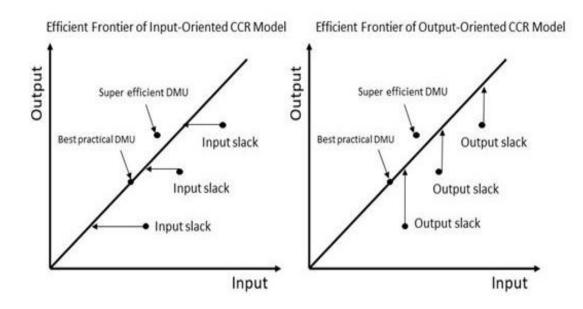


Figure 10: Input-Output-Aligned CCR Models

There are many different models proceeded from the basic CCR model. In this study, the basic input-oriented CCR model was used in the envelopment form because the case study satisfy in the CRS situation, this means that the increasing in the inputs is caused proportional increasing in outputs, but other models could be chosen too based on the aims of the research.

3.2.7 Benefits and disadvantages of DEA

Advantages:

- It does not care about the relationship between outputs and inputs
- Can be implemented in any type of research
- There is no need to construct any mathematical model
- CRS and VRS considered
- It can quantify each DMUs inefficiency sources

Disadvantages:

- It requires serious attention as the result is sensitive to inputs and outputs
- Collecting the right data can be complicated.

3.3 Mattress manufacturing system (description)

To conduct this research, all the information should be gathered about mattress production in case study. Figure 11 illustrates the factory plan:

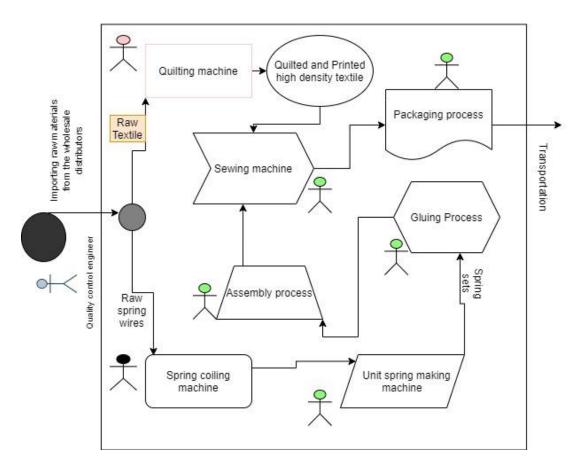


Figure 11: Mattress Factory plan

In Figure 11, the mattress production layout is presented where the case study was implemented. In the next section, the information was given about the production scheme of the orthopedic Bonnell spring mattress.

3.3.1 Sequence of the production

The choice of raw materials plays an important role in the production of mattresses. Before starting production, the quality control specialist must inspect the imported raw materials because of any problems in material. The primary materials of the Bonnell spring mattresses are steel wire, raw quality fabric, and quality foam that comprise chemical ingredients. The quality control specialist should carefully examine all raw materials as any wrong inspection can cause different serious problems, varying from manufacturing failures to irreparable customer dissatisfaction. As the raw materials are obtained, firstly, the operator of the Bonnell spring coiling machine (shown in figure 12) starts producing coil springs.

Figure 12: Bonnell spring coiling machine

After producing enough amount of coil springs, unit-spring coiling machine operator produces a unit-spring to set up a Bonnell-spring base. The production of the mattress continues with the quilting or printing process. This process is requiring some technical and mathematical skills to prevent unintended time and price-consuming material damages. The third step of the process is gluing process, which is very dangerous for the health of employees. The toxic emissions coming out of the sprayable can is the principal cause of this danger. In gluing process, the inner materials of the mattress are glued to the Bonnell-spring base using a professional spray gun.

The sewing process is the last primary operation after the gluing and assembling. The professional tape edge machines playing a big role in this operation but the operator should not stress him/herself in this operation because of the high working tension because high tension can cause mistakes that can harm the operator strictly.

Of course, these operations have different failures, even considering the facility layout failures that are included in point of interest in this study.

3.4 Productivity of FMEA by using DEA

The FMEA aims to find solutions to decrease the RPNs of each failure of the process. But sometimes, solving the FM with the highest RPN may not give the most effective result. In order to estimate the best set of RPNs for the evaluation, the DEA method was applied. The S, O, D indicators will be our input variables, while the RPN values will be the corresponding output variable.

Figure 13, illustrates inputs and outputs of each DMU i:

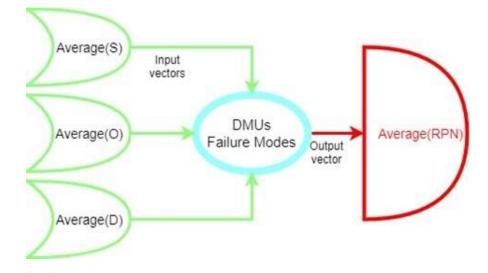


Figure 13: DEA input/output model

3.5 Data Collection

The data of this research was collected by expert opinions and, huge desire to conduct this research, helped us to design failures in a friendly environment. Firstly, all the information got about research area and the FMEA is conducted to find possible failures of the mattress production. 39 different failures were found with 55 causes of failures (sub failures). The S, O, D values assigned by all experts respectively and the average of all S, O, D and RPNs are calculated.

All experts were from the 'BRT YATAK' mattress production factory with enough experience and they shared all necessary information individually for conducting the method:

Expert 1. Birol Turhan- The founder of 'BRT YATAK' since the year of 1995.

Expert 2. Səid Ələkbərov- The experienced multi-operator of the factory having over 22 years of experience.

Expert 3. Dmitri Vorontsev- Another experienced operator and quality controller of the factory having over 19 years of experience in mattress industry.

The average of the given O, S, D values (Appendix C) by the experts are used in the next step of the procedure (Results chapter).

Initial values for each sub failure modes are shown in Appendix C.

Of course, there were some difficulties while assigning failure modes of the mattress production, as experts had opposing views related their point of view to the problem. In any case, almost all the dominant failure modes were included to the data sheet for implementing this research.

3.5.1 Failure modes (findings) of mattress production factory

Based on experts' suggestions and the researchers' view of issue, the failure mode table was constructed consisting failures of mattress production and other risky failures. Appendix D, consists of failure modes generated by our revisions.

Chapter 4

RESULTS

4.1 Results of the conventional FMEA

4.1.1 Calculation of the RPN

The FMEA method mentioned in figure 4 will be implemented in this section of the thesis. The failure modes and its risks were summarized on the table 4. The next step is to calculate different measures of RPN and S, O, D levels based on experts' opinions. As seen from **Appendix D**, that some failure modes that have more than one sub failure mode. Now it is time to calculate average values of each corresponding experts' opinions respectively by taking the average value of each FMs and SFMs (AHP method) with their RPNs: here are the first steps of our method:

a) Collection data of S, O, D failures from the l experts (j = 1, 2, ..., l) and draw a table for all f number of SFMs (i = 1, 2, 3, ..., f and f = 55)

b) calculation of Average S, O, D: average S, O, Dj = average (Sj, Oj, Dj,), j = 1, 2, 3

c) computing RPNs for each SFMs: RPNf = aveSf * aveOf * aveDf, f = (1..55).

d) Ranking all RPNs.

Tables 4 and 5 consists calculated data of the conventional FMEA with the corresponding rankings.

All the rankings are calculated by using MS Excel program software.

Tuor	ble 4: Conventional RPNs									
	Process type		Failure modes	SFM NO	SFMs		Аvе О	AveS	Ave D	RPN
1			The density of the polyurethane foam does not meet the requirements	1	Inspection failure		2	2.3	2.3	10.58
2			An unpleasant chemical smell coming from the polyurethane foam	2	Inspection failure		2.1	2	2.3	9.66
3	materials		Wadding fibers are not properly bonded	3	Inspection failure		3.3	1.7	2	11.22
4	Inspection of raw materials		Gaps on the surface of support buckram	4	Inspection failure		2	2.3	2.15	9.89
5	Inspecti		Uneven Dyeing/Printing/Dye marks on the surface of raw textile	5	Inspection failure		2.7	2	1.95	10.53
6			Random drop stitches appear in the fabric	6	6 Inspection failure		2	1.7	2.7	9.18
7			The inappropriate thickness of steel wire	7	7 Measurement failure		3	3.3	2.3	22.77
8	hine		Set of useless Bonnell springs during an operation	8	Using inferior starter coil		1.7	2.7	1	4.59
9	Spring making machine		Corrupt monitor interface	9	Voltage stabilizer stopped working because of high output voltage supply		1.6	2.7	2	8.64
10	Sprin		Machine overheating as the operator produces spring	10	Poorly lubricated particles		1.7	3.7	2	12.58
11			Spring units are not firmly attached	11	Rupture on the valves connecting the units		1.65	2	2.7	8.91
12	bly Machine		Incorrect twisting of wires	12	System block changed the operational state because of high working tension		2	2.35	2.3	10.81
13	Unit-Spring Assembly Machine		Hand injury of the worker	13	Momentary fault while assisting spring units with corresponding wire		2.3	4	3.7	34.04
14	Unit-		Electrical shock while cleaning the machine	14	Leaving the emergency shutdown system active		2.7	3.7	3.7	36.963

Table 4: Conventional RPNs

FM number	Process type	Failure modes	SFM NO	SFMs	Ave O	Ave S	Ave D	RPN
15	Unit-Spring Assembly Machine	Oil leakage from the springs	15	Excessive oiling the details	 2	2.3	2.85	13.11
16	Unit-S Assembly	The high temperature on the valve lines	16	Malfunction of temperature monitor	2	3	2.3	13.8
17		The felt does not adhere properly to the foam	17	Materials to be glued are not clean enough	2.7	1.7	1.7	7.803
18		Musty smell coming	18	Over spraying the surface of the materials	2.15	2.7	2	11.61
10		from the mattress	19	Insufficient ambient lighting	1.7	3.7	3.2	20.128
19		Eye and skin problems on the workers	20	The canister spray system is not spraying correctly and the spray pattern is inadmissible wide	1.6	2.7	1.7	7.344
		WOIKEIS	21	Inadequate ventilation	1.2	3.6	2.5	10.8
20	Gluing Process	Adhesive blocked the canister hose	22	The operator should ensure the value on the canister remained open	1.7	1.7	1.3	3.757
21	Juing	High pressure of compressed air	23	Pressure gauge failure	1.3	3.3	1.3	5.577
21	0	pumped into the tank	24	Compressor safety device malfunction	1	3.8	2.2	8.36
22		Too much glue spilling while spraying	25	The fluid knob of the spray gun is not working properly	1.7	2.3	1.7	6.647
			26	Deformation of containers during transportation	2.7	4	1.3	14.04
23		Glue containers left open	27	Deformation in containers during storage	3.2	4.1	1.9	24.928
			28	Insufficient ventilation	1.3	3.6	1.4	6.552
24		Compressor absorbs harmful toxic gas or dust	29	Insufficient ventilation	2.7	3.3	1.3	11.583
25	rocess	Misprinting, off printing, or absence of printing	30	Wrong leveling procedure by operator	2.3	1.7	1.3	5.083
26	broidery p	Twisted or knotted rope	31	Incorrect loading of fabric into the machine	2	2.3	1.7	7.82
27	inting / em	Crease marks on the fabric	32	Inadequate preparation, relaxation, or bulking of fabric	2.25	2.3	1.7	8.7975
28	Quilting / printing / embroidery process	Separation of the stitched materials	33	Having less highly compressed chemical fibers inside wadding	3	2	2.7	16.2

FM number	Process type	Failure modes	SFM NO	SFMs		Ave O	Ave S	Ave D	RPN
29	ocess	Stacking fabric	34	Short circuit or high voltage in the power line		2	3.3	2	13.2
27	oidery pr sss	very close to the electricity line	35	Leaving fabric material in front of the electrical panel		1.4	4.4	1.5	9.24
30	Quilting / printing / embroidery process Gluing Process	Roughness of the inner surface of	36	Residues adhering to the machine's inner surface		2.3	2.3	1.7	8.993
	g / printi Glu	the machine	37	Insufficient cleaning the inside of the machine		1.6	2.1	2.3	7.728
31	Quiltin	Failure of the conveyor chain system inside the machine	38	Loosening of chain links		2.7	2.3	2.3	14.283
32		Displacement on the bench during sewing	39	Mis-controlling the bench before sewing		2.3	4	1	9.2
	e	Skipping stitch	40	The needle bar position is not correct		2.7	2.3	2	12.42
33	nachin	during sewing operation	41	The bottom line is not tight		2.2	2.6	2.2	12.584
34	wing r	Broken line during the	42	The bottom line is too loose or too tight	2	2.15	1.7	2.3	8.4065
54	lge se	operation	43	The position of the looper is not correct		3.2	1.5	1.8	8.64
	Using tape edge sewing machine		44	Operator pulls or drags the mattress too roughly		2	1.7	1.3	4.42
35	Usin	Broken needle during the	45	The needle hits the needle plate		1.8	2.1	1.3	4.914
		operation	46	The crochet impact needle		1.4	2.4	3.1	10.416
			47	Needle quality is too bad		2.7	2.3	3.2	19.872
36	nanual ress iging	Elongated resistor	48	Heated resistors		2.7	3.3	2.3	20.493
37	Using manual mattress packaging	Gaps in packaging	49	Operator does not inspect the product after packaging		3.3	3.7	2.7	32.967
		Dreamf	50	Leakage in electrical installation		2	5	1.3	13
38	rials	Presence of electrical equipment in the	51	Overloading of electrical cables		1.6	4.2	2.4	16.128
	Storage of materials	warehouse	52	Short circuit		1.2	4.8	4.2	24.192
	je of		53	Faulty grounding Holes in solvent		1.7	3.3	5	28.05
	torag	Improper storage	54	containers		2.7	2.7	2.3	16.767
39	S	of solvents	55	Empty solvent Containers		1.7	2.2	1.5	5.61

4.1.2 FM categorization

4.1.2.1 Arranging the SFMs conforming to corresponding RPNs

Iuo		anks of the Conver				ı
FM number	Process type	FMs	SFM NO	SFMs	RPN value	Ranks
1		The density of the polyurethane foam does not meet the requirements	1	Inspection failure	10.58	28
2		An unpleasant chemical smell coming from the polyurethane foam	2	Inspection failure	9.66	32
3	materials	Wadding fibers are not properly bonded	3	Inspection failure	11.22	25
4	Inspection of raw materials	Gaps on the surface of support buckram	4	Inspection failure	9.89	31
5	Inspect	Uneven Dyeing/Printing/Dye marks on the surface of raw textile	5	Inspection failure	10.53	29
6		Random drop stitches appear in the fabric	6	Inspection failure	9.18	35
7		The inappropriate thickness of steel wire		Measurement failure	22.77	7
8	hine	Set of useless Bonnell springs during an operation	8	Using inferior starter coil	4.59	53
9	Spring making machine	Corrupt monitor interface	tor 9 Voltage stabilizer stopped working because of high output voltage supply		8.64	40
10	Sprin	Machine overheating as the operator produces spring	10	Poorly lubricated particles	12.58	21
11		Spring units are not firmly attached	11	Rupture on the valves connecting the units	8.91	37
12	bly Machine	Incorrect twisting of wires	12	System block changed the operational state because of high working tension	10.81	26
13	Unit-Spring Assembly Machine	Hand injury of the worker	13	Momentary fault while assisting spring units with corresponding wire	34.04	2
14	Unit	Electrical shock while cleaning the machine	14	Leaving the emergency shutdown system active	36.963	1

Table 5: Ranks of the Conventional RPNs

FM number	Process type	FMs	SFM NO	SFMs	RPN value	Ranks	
15	Unit-Spring Assembly Machine	Oil leakage from the springs	15	Excessive oiling the details	13.11	18	
16	Unit-? Assembly	The high temperature on the valve lines	16	Malfunction of temperature monitor	13.8	16	
17		The felt does not adhere properly to the foam	17	Materials to be glued are not clean enough	7.803	44	
18		Musty smell coming from the mattress	18	Over-spraying the surface of the materials	11.61	23	
		from the mattress	19	Insufficient ambient lighting	20.128	9	
19		Eye and skin problems on the workers	20	The canister spray system is not spraying correctly and the spray pattern is inadmissible wide	7.344	46	
			21	Inadequate ventilation	10.8	27	
20	Gluing Process	Adhesive blocked the canister hose	3.757	55			
21	Gluing	High pressure of compressed air pumped	23	Pressure gauge failure	5.577	50	
21		into the tank	24	Compressor safety device malfunction	8.36	42	
22		Too much glue spilling while spraying				47	
			26	Deformation of containers during transportation	14.04	15	
23		Glue containers left open	Glue containers left open	27	Deformation in containers during storage	24.928	5
			28	Insufficient ventilation	6.552	48	
24		Compressor absorbs harmful toxic gas or dust	29	Insufficient ventilation	11.583	24	
25	Seese	Misprinting, off printing, or absence of printing	30	Wrong leveling procedure by operator	5.083	51	
26	oidery pro	Twisted or knotted rope	31	Incorrect loading of fabric into the machine	7.82	43	
27	nting / embr	Crease marks on the fabric	32	Inadequate preparation, relaxation, or bulking of fabric	8.7975	38	
28	Quilting / printing / embroidery process	Separation of the stitched materials	33	Having less highly compressed chemical fibers inside wadding	16.2	12	

FM number	Process type	FMs	SFM NO	SFMs	RPN value	Ranks
29	ocess	Stacking fabric very close to the	34	Short circuit or high voltage in the power line	13.2	17
29	oidery pr ss	electricity line	35	Leaving fabric material in front of the electrical panel	9.24	33
30	inting / embroid Gluing Process	Roughness of the inner surface of the	36	Residues adhering to the machine inner surface	8.993	36
30	Quilting / printing / embroidery process Gluing Process	machine	37	Insufficient cleaning the inside of the machine	7.728	45
31	Quiltin	Failure of the conveyor chain system inside the machine	38	Loosening of chain links	14.283	14
32		Displacement on the bench during sewing	39	Mis-controlling the bench before sewing	9.2	34
33	e	Skipping stitch during sewing	40	The needle bar position is not correct	12.42	22
	nachir	operation	41	The bottom line is not tight	12.584	20
24	ving n	Broken line during	42	The bottom line is too loose or too tight	8.4065	41
34	ge sev	the operation	43	The position of the looper is not correct	8.64	39
	Using tape edge sewing machine		44	Operator pulls or drags the mattress too roughly	4.42	54
35	Usin	Broken needle during the operation	45	The needle hits the needle plate	4.914	52
		during the operation	46	The crochet impact needle	10.416	30
			47	Needle quality is too bad	19.872	10
36	nanual ress iging	Elongated resistor	48	Heated resistors	20.493	8
37	Using manual mattress packaging	Gaps in packaging	49	Operator does not inspect the product after packaging	32.967	3
			50	Leakage in electrical installation	13	19
38	srials	Presence of electrical equipment	51	Overloading of electrical cables	16.128	13
	Storage of materials	in the warehouse	52	Short circuit	24.192	6
	ige of		53	Faulty grounding	28.05	4
39	Stora	Improper storage of	54	Holes in solvent containers	16.767	11
		solvents	55	Empty solvent containers	5.61	49

The rankings shown above were used to differentiate conventional FMEA with Criticality Analysis ranks.

4.1.2.2 Potential risk analysis

		Potential	risk analysis	Ranks of	of RPNs
FM	SFM	(Criticality =	ACTION	RPN	RPN
NO	NO	O×S)			RANK
1	1	4.6	Low risk	10.58	28
2	2	4.2	Low risk	9.66	32
3	3	5.61	Medium risk	11.22	25
4	4	4.6	Low risk	9.89	31
5	5	5.4	Medium risk	10.53	29
6	6	3.4	Low risk	9.18	35
7	7	9.9	Medium risk	22.77	7
8	8	4.59	Low risk	4.59	53
9	9	4.32	Low risk	8.64	40
10	10	6.29	Medium risk	12.58	21
11	11	3.3	Low risk	8.91	37
12	12	4.7	Low risk	10.81	26
13	13	9.2	Medium risk	34.04	2
14	14	9.99	Medium risk	36.963	1
15	15	4.6	Low risk	13.11	18
16	16	6	Medium risk	13.8	16
17	17	4.59	Low risk	7.803	44
18	18	5.805	Medium risk	11.61	23
18	19	6.29	Medium risk	20.128	9
19	20	4.32	Low risk	7.344	46
19	21	4.32	Low risk	10.8	27
20	22	2.89	Low risk	3.757	55
21	23	4.29	Low risk	5.577	50
21	24	3.8	Low risk	8.36	42
22	25	3.91	Low risk	6.647	47
23	26	10.8	High risk	14.04	15
23	27	13.12	High risk	24.928	5
23	28	4.68	Low risk	6.552	48
24	29	8.91	Medium risk	11.583	24
25	30	3.91	Low risk	5.083	51
26	31	4.6	Low risk	7.82	43
27	32	5.175	Medium risk	8.7975	38

Table 6: Potential risk analysis

		Potential	risk analysis	RANKs	of RPNs
FM NO	SFM NO	(Criticality = O×S)	ACTION	RPN	RPN RANK
28	33	6	Medium risk	16.2	12
29	34	6.6	Medium risk	13.2	17
29	35	6.16	Medium risk	9.24	33
30	36	5.29	Medium risk	8.993	36
30	37	3.36	Low risk	7.728	45
31	38	6.21	Medium risk	14.283	14
32	39	9.2	Medium risk	9.2	34
33	40	6.21	Medium risk	12.42	22
33	41	5.72	Medium risk	12.584	20
34	42	3.655	Low risk	8.4065	41
34	43	4.8	Low risk	8.64	39
35	44	3.4	Low risk	4.42	54
35	45	3.78	Low risk	4.914	52
35	46	3.36	Low risk	10.416	30
35	47	6.21	Medium risk	19.872	10
36	48	8.91	Medium risk	20.493	8
37	49	12.21	High risk	32.967	3
38	50	10	Medium risk	13	19
38	51	6.72	Medium risk	16.128	13
38	52	5.76	Medium risk	24.192	6
38	53	5.61	Medium risk	28.05	4
39	54	7.29	Medium risk	16.767	11
39	55	3.74	Low risk	5.61	49

In the above table criticality analysis applied and it is seen that there are some failures affected by their detection values. In the next table results are ranked and interpreted in details.

4.1.2.3 Interpretation of the results

1 4010	/ Dese	Potential risk a	al risk analysisRANKs of FACTIONRPNMedium risk36.963Medium risk34.04High risk32.967Medium risk28.05Medium risk24.928Medium risk24.192Medium risk20.493Medium risk20.493Medium risk20.128Medium risk19.872Medium risk16.767Medium risk16.23Medium risk16.23Medium risk16.128Medium risk14.04Medium risk13.8Medium risk13.2Low risk13.11		RPNs
FM NO	SFM NO	(Criticality = O×S)	ACTION	RPN	RPN RANK
14	14	9.99	Medium risk	36.963	1
13	13	9.2	Medium risk	34.04	2
37	49	12.21	High risk	32.967	3
38	53	5.61	Medium risk	28.05	4
23	27	13.12	High risk	24.928	5
38	52	5.76	Medium risk	24.192	6
7	7	9.9	Medium risk	22.77	7
36	48	8.91	Medium risk	20.493	8
18	19	6.29	Medium risk	20.128	9
35	47	6.21	Medium risk	19.872	10
39	54	7.29	Medium risk	16.767	11
28	33	6	Medium risk	16.2	12
38	51	6.72	Medium risk	16.128	13
31	38	6.21	Medium risk	14.283	14
23	26	10.8	High risk	14.04	15
16	16	6	Medium risk	13.8	16
29	34	6.6	Medium risk	13.2	17
15	15	4.6	Low risk	13.11	18
38	50	10	Medium risk	13	19
33	41	5.72	Medium risk	12.584	20
10	10	6.29	Medium risk	12.58	21
33	40	6.21	Medium risk	12.42	22
18	18	5.805	Medium risk	11.61	23
24	29	8.91	Medium risk	11.583	24
3	3	5.61	Medium risk	11.22	25
12	12	4.7	Low risk	10.81	26
19	21	4.32	Low risk	10.8	27

Table 7: Descendant ranking of RPNs

		Potential risk a	nalysis	RANKs of	RPNs
FM NO	SFM NO	(Criticality = O×S)	ACTION	RPN	RPN RANK
1	1	4.6	Low risk	10.58	28
5	5	5.4	Medium risk	10.53	29
35	46	3.36	Low risk	10.416	30
4	4	4.6	Low risk	9.89	31
2	2	4.2	Low risk	9.66	32
29	35	6.16	Medium risk	9.24	33
32	39	9.2	Medium risk	9.2	34
6	6	3.4	Low risk	9.18	35
30	36	5.29	Medium risk	8.993	36
11	11	3.3	Low risk	8.91	37
27	32	5.175	Medium risk	8.7975	38
34	43	4.8	Low risk	8.64	39
9	9	4.32	Low risk	8.64	40
34	42	3.655	Low risk	8.4065	41
21	24	3.8	Low risk	8.36	42
26	31	4.6	Low risk	7.82	43
17	17	4.59	Low risk	7.803	44
30	37	3.36	Low risk	7.728	45
19	20	4.32	Low risk	7.344	46
22	25	3.91	Low risk	6.647	47
23	28	4.68	Low risk	6.552	48
39	55	3.74	Low risk	5.61	49
21	23	4.29	Low risk	5.577	50
25	30	3.91	Low risk	5.083	51
35	45	3.78	Low risk	4.914	52
8	8	4.59	Low risk	4.59	53
35	44	3.4	Low risk	4.42	54
20	22	2.89	Low risk	3.757	55

In order to apply sensiticity analysis(Criticality analysis) detection values excluded from the literation. As seen from the tables 6 and 7 some failure modes lose their ranks while others won noticeably huge ranks because of the occurrence and the severity values were very high for those failures. Failures had less than 5 value coloured with green as they have lesser risk than others. Failures valued between 5 and 10 had the medium risk coloured with yellow and the red ones are the failures grouped in the high risk level having more than 10 value(Chnina, 2020). The results in tables 6 and 7 show that there is no stable relation between the conventional RPN and the criticality analysis. Here there is need to enhance sub failure modes capabilities by calculating of SFMs to check its effect in ranks.

F-Mode	18	19	21	23	29	30	33	34	35	38	39
Min SF-Mode rank	9	27	42	5	17	36	20	39	10	4	4
Max SF-Mode rank	23	46	50	48	33	45	22	41	54	19	49
GAP	14	19	8	43	16	9	2	2	44	15	45

 Table 8: Difference of minimum and maximum SFM in same FMs

From the table 8 it is seen that there are high gaps between the SFMs of one FM.

Now it is clarified that a weak failure mode consisting subfailures can be serious too. With this reason all subfailures were aggregated in the next section.

4.2 Aggregation procedure

4.2.1 Aggregation procedure of FMs

In order to apply aggregation procedure to SFMs of each FM, the RPN for each FM were computed. This weighted average prioritized the SFM having minimum or maximum RPN number:

a) Computing the aggregate *RPNi* for each Failure *i* with having m_i SFM_k, with the formula below:

$$AGRPN_{i} = \frac{\sum_{k=1}^{n_{i}} b_{ik} \times RPN_{k}}{\sum_{k=1}^{n_{i}} b_{ik}}$$

b) Giving a rank (R_{ik}) to the aggregated FMs on descending order of AGRPNi

Table 9: Ranks of the aggregated FMs							
FM NO	SFM NO	Common RPNs	a _{ij} rank	Aggregated RPNs	Aggregated rank c _{ij}		
1	1	10.58	28	10.58	22		
2	2	9.66	32	9.66	26		
3	3	11.22	25	11.22	19		
4	4	9.89	31	9.89	25		
5	5	10.53	29	10.53	23		
6	6	9.18	35	9.18	28		
7	7	22.77	7	22.77	4		
8	8	4.59	53	4.59	38		
9	9	8.64	40	8.64	31		
10	10	12.58	21	12.58	15		
11	11	8.91	37	8.91	29		
12	12	10.81	26	10.81	21		
13	13	34.04	2	34.04	2		
14	14	36.963	1	36.963	1		
15	15	13.11	18	13.11	12		
16	16	13.8	16	13.8	11		
17	17	7.803	44	7.803	34		
18	18	11.61	23	15.869	8		
18	19	20.128	9	13.809	0		
19	20	7.344	46	12.744	14		
19	21	10.8	27	12.744	14		
20	22	3.757	55	3.757	39		
21	23	5.577	50	6.9685	35		
21	24	8.36	42	0.9085			
22	25	6.647	47	6.647	36		
23	26	14.04	15				
23	27	24.928	5	15.1733333	9		
23	28	6.552	48				
24	29	11.583	24	11.583	17		

Table 9: Ranks of the aggregated FMs

FM NO	SFM NO	Common RPNs	a _{ij} rank	Aggregated RPNs	Aggregated rank c _{ij}
25	30	5.083	51	5.083	37
26	31	7.82	43	7.82	33
27	32	8.7975	38	8.7975	30
28	33	16.2	12	16.2	7
29	34	13.2	17	11.22	19
29	35	9.24	33		
30	36	8.993	36	12.857	13
30	37	7.728	45		
31	38	14.283	14	14.283	10
32	39	9.2	34	9.2	27
33	40	12.42	22	10 500	16
33	41	12.584	20	12.502	10
34	42	8.4065	41	8.52325	32
34	43	8.64	39	8.32323	32
35	44	4.42	54		
35	45	4.914	52	9.9055	24
35	46	10.416	30	9.9055	24
35	47	19.872	10		
36	48	20.493	8	20.493	5
37	49	32.967	3	32.967	3
38	50	13	19		
38	51	16.128	13	20.3425	
38	52	24.192	6	20.3425	6
38	53	28.05	4		
39	54	16.767	11	11.1885	20
39	55	5.61	49	11.1005	20

From the table 9, it is seen that only one SFM of corresponding FM can break its efficiency. For example, FM 38 has 4 different SFMs and each of them has different ranks too. SFM 53 and SFM 52 plays an important role about the efficiency of this failure.

4.2.2 Arrangement of the Ranks (Normalization procedure)

For comparing the conventional results with the aggregated one, the ranks of each mode were normalized. So, the effects of each SFMs to the efficiency were determined by normalization. This leads to know the importance of each SFM individually. The ranks in the conventional FMEA were between 1 and 55 (55 SFMs), and after

considering the aggregated FMEA, these ranks stood between 1 and 39 (39 FMs). Thus, to compare the results, the ranks for each method should be normalized. The percentage of priority was considered, for example if a SFM ranked in the first place this means it has the highest priority among other SFMs, so the percentage of any other SFM having more efficiency than the initial one will be 0%. By this way all the ranks were between 0% and 100% (Chnina, 2020).

The results delivered by applying the equations shown below:

- a) Priority percentage of SFM_k: $P_{1k} = 100 (a_{ik} / 55 * 100)$
- b) Priority percentage of FM_i: $P_{2i} = 100 (c_{ik} / 39 * 100)$
- c) Progress ranks: $P = P_{2extended} P_1$

P_{2extended} is a vector consisting 55 entries.

Table 10 summarizes the rank normalization computations solved via Microsoft Excel.

FM NO	SFM NO	Conve ntional RPN RANK a _{ij}	Aggre gate RPNs RAN K c _{ij}	% of SFM <i>P</i> ₁	% of FM P _{2extended}	Progress-P
1	1	28	22	49.09	43.58	-5.5
2	2	32	26	41.81	33.33	-8.48
3	3	25	19	54.54	51.28	-3.26
4	4	31	25	43.63	35.89	-7.74
5	5	29	23	47.27	41.02	-6.25
6	6	35	28	36.36	28.20	-8.16
7	7	7	4	87.27	89.74	2.47
8	8	53	38	3.63	2.56	-1.07
9	9	40	31	27.27	20.51	-6.76
10	10	21	15	61.81	61.53	-0.28
11	11	37	29	32.72	25.64	-7.08
12	12	26	21	52.72	46.15	-6.57
13	13	2	2	96.36	94.87	-1.49
14	14	1	1	98.18	97.43	-0.74
15	15	18	12	67.27	69.23	1.96
16	16	16	11	70.90	71.79	0.88

 Table 10: Normalization procedure

FM NO	SFM NO	Conventio nal RPN RANK a _{ij}	Aggregat e RPNs RANK c _{ij}	% of SFM P_1	% of FM P _{2extended}	Progress-P
17	17	44	34	20	12.82	-7.18
10	18	23	8	58.18	79.48	21.3
18	19	9	8	83.63	79.48	-4.14
10	20	46	14	16.36	64.1	47.74
19	21	27	14	50.9	64.1	13.19
20	22	55	39	0	0	0
21	23	50	35	9.09	10.25	1.16
21	24	42	35	23.63	10.25	-13.38
22	25	47	36	14.54	7.69	-6.85
	26	15	9	72.72	76.9	4.19
23	27	5	9	90.9	76.9	-13.98
	28	48	9	12.72	76.9	64.19
24	29	24	17	56.36	56.41	0.05
25	30	51	37	7.27	5.12	-2.14
26	31	43	33	21.81	15.38	-6.43
27	32	38	30	30.9	23.07	-7.83
28	33	12	7	78.18	81.05	3.87
29	34	17	19	69.09	51.28	-17.8
	35	33	19	40	51.28	11.28
	36	36	13	34.54	66.66	32.12
30	37	45	13	18.18	66.66	48.5
31	38	14	10	74.54	74.35	-0.18
32	39	34	27	38.18	30.76	-7.41
33	40	22	16	60	58.97	-1.02
	41	20	16	63.63	58.97	-4.66
34	42	41	32	25.45	17.94	-7.5
J -1	43	39	32	29.09	17.94	-11.15
	44	54	24	1.81	38.46	36.64
35	45	52	24	5.45	38.46	33
	46	30	24	45.45	38.46	-7
	47 48	10	24	81.81	38.46	-43.4
36	-10	8	5	85.45	87.18	1.72
37	49	3	3	94.54	92.3	-2.23
	50	19	6	65.45	84.61	19.16
38	51 52	13 6	6 6	76.36	84.61	8.25 -4.47
	52	6 4	6	89.09	84.61	
		4	20	92.72 80	84.61 48.71	-8.11 -31.3
39	54 55	49	20	10.9	48.71	-31.3

As seen from the table 10, normalization procedure helped to observe the positive and negative progresses of each SFM. For example, the FM 35 has 2 SFMs that one of them gained huge progress while other one lost huge amount of progress.

4.2.3 Simplification of the results

Table 11 consolidates the computations initiated in table 10.

FM NO	SFM NO	% of SFM P_1	% of FM P_2	Progress-	Specification of SFM	
23	28	12.72	76.9	64.19	Insufficient ventilation	
30	37	18.18	66.6	48.5	Insufficient cleaning the inside of the machine	
19	20	16.36	64.1	47.74	The canister spray system is not spraying correctly and the spray pattern is inadmissible wide	
39	55	10.9	48.71	37.8	Empty solvent Containers	
35	44	1.81	38.46	36.64	Operator pulls or drags the mattress too roughly	anks
35	45	5.45	38.46	33	The needle hits the needle plate	
30	36	34.54	66.66	32.12	Residues adhering to the machine inner surface	
18	18	58.18	79.48	21.3	Over-spraying the surface of the materials	Sub Failure modes that won ranks
38	50	65.45	84.61	19.16	Leakage in electrical installation	ire m
19	21	50.9	64.1	13.19	Inadequate ventilation	Failu
29	35	40	51.28	11.28	Leaving fabric material in front of the electrical panel	Sub
38	51	76.36	84.61	8.25	Overloading of electrical cables	
23	26	72.72	76.9	4.19	Deformation of containers during transportation	
28	33	78.18	81.05	3.87	Having less highly compressed chemical fibers inside wadding	
7	7	87.27	89.74	2.47	Spring Machine malfunction	

Table 11: Ranking normalization scores by descending order

FM NO	SFM NO	% of SFM P_1	%e of FM P_2	Progress- P	Specification of SFM	
15	15	67.27	69.23	1.96	Excessive oiling the details	
36	48	85.45	87.18	1.72	Heated resistors	
21	23	9.09	10.25	1.16	Pressure gauge failure	
16	16	70.90	71.79	0.88	Malfunction of temperature monitor	
24	29	56.36	56.41	0.05	Insufficient ventilation	lce
20	22	0	0	0	The operator should ensure the value on the canister remained open	balan
31	38	74.54	74.35	-0.18	Loosening of chain links	Its
10	10	61.81	61.53	-0.28	Poorly lubricated particles	ept
14	14	98.18	97.43	-0.74	Leaving the emergency shutdown system active	at k
33	40	60	58.97	-1.02	The needle bar position is not correct	SFMs that kept Its balance
8	8	3.63	2.56	-1.07	Using inferior starter coil	SFN
13	13	96.36	94.87	-1.49	Momentary fault while assisting spring units with corresponding wire	
25	30	7.27	5.12	-2.14	Wrong leveling procedure by operator	
37	49	94.54	92.3	-2.23	Operator does not inspect the product after packaging	
3	3	54.54	51.28	-3.26	Inspection failure	
18	19	83.63	79.48	-4.14	Insufficient ambient lighting	
38	52	89.09	84.61	-4.47	Short circuit	ranks
33	41	63.63	58.97	-4.66	The bottom line is not tight	lost
1	1	49.09	43.58	-5.5	Inspection failure	Sub Failure modes that lost rai
5	5	47.27	41.02	-6.25	Inspection failure	ode
26	31	21.81	15.38	-6.43	Incorrect loading of fabric into the machine	
12	12	52.72	46.15	-6.57	System block changed the operational state due to high working tension	
9	9	27.27	20.51	-6.76	Voltage stabilizer stopped working due to high output voltage supply	
22	25	14.54	7.69	-6.85	The fluid knob of the spray gun is not working properly	
35	46	45.45	38.46	-7	The crochet impact needle	

FM NO	SFM NO	% of SFM P_1	%e of FM P_2	Progress-P	Specification of SFM	
11	11	32.72	25.64	-7.08	Rupture on the valves connecting the units	
17	17	20	12.82	-7.18	Materials to be glued are not clean enough	S
32	39	38.18	30.76	-7.41	Miscontrolling the bench before sewing	nk
34	42	25.45	17.94	-7.5	The bottom line is too loose or too tight	c ra
4	4	43.63	35.89	-7.74	Inspection failure	ost
27	32	30.9	23.07	-7.83	Inadequate preparation, relaxation, or bulking of fabric	Sub Failure modes that lost ranks
38	53	92.72	84.61	-8.11	Faulty grounding	s tł
6	6	36.36	28.20	-8.16	Inspection failure	dea
2	2	41.81	33.33	-8.48	Inspection failure	no
34	43	29.09	17.94	-11.15	The position of the looper is not correct	[e]
21	24	23.63	10.25	-13.38	Compressor safety device malfunction	ilu
23	27	90.9	76.9	-13.98	Deformation in containers during storage	
29	34	69.09	51.28	-17.8	Short circuit or high voltage in the power line	
39	54	80	48.71	-31.3	Holes in solvent containers	S
35	47	81.81	38.46	-43.4	Needle quality is too bad	

What is learned so far is that aggregation of failure modes gives more genuine scores different than common one. The last findings showed that when we consider Sub-failures, the ranking priority of a sub failure mode also changes significantly, thus prioritization of the FMs is reliable. But, the impact of the Failure modes can vary under different conditions. As an example, FM₃₈ has 4 different sub failure modes, but only 2 of them are serious failures with corresponding progresses of 19.16 and 8.25. But the other sub failures of FM₃₈ have negative progresses of -4.47 and -8.11. This means that hidden sub failures can break the system if they are not measured in details. Table 11 shows the details of each SFMs. In the first category, the ranks of SFMs differ from conventional and aggregated approaches. As the categorizing continues, the results remaining same with corresponding approaches.

Until now, the RPNs of the Mattress Production calculated with different measurements, but the question arises with which FMs it can be more productive to deal with? That's why in the following step, the efficiency of each failure measured by implementing fixed method.

4.3 Measurement of the efficiencies by using DEA (with aggregation of SFMs)

The DEA method will be applied in this section of paper, which is explained in chapter 3. Also, the aggregated failure modes will be considered instead of sub failures.

We benefit from the rank b_{ik} acquired by the aggregation technique, as the DEA model will pay attention the maximum numbers of RPNs the rank b_{ik} helps to prioritize SFMs having maximum RPN numbers.

In order to apply the DEA method, all FMs should be aggregated by using a_{ik} ranks from the conventional method:

$$AGS_{i} = \frac{\sum_{k=1}^{n_{i}} S_{ik} \times a_{ik}}{\sum_{k=1}^{n_{i}} a_{ik}}$$
$$AGO_{i} = \frac{\sum_{k=1}^{n_{i}} O_{ik} \times a_{ik}}{\sum_{k=1}^{n_{i}} a_{ik}}$$
$$AGD_{i} = \frac{\sum_{k=1}^{n_{i}} D_{ik} \times a_{ik}}{\sum_{k=1}^{n_{i}} a_{ik}}$$

RPN will be the multiplication of each Aggregated S, O, D measured.

 $AGGRPN_i = AGGS_i \times AGGO_i \times AGGD_i$ (*i* = 1,2,...,39 and *j* = 1,2,...,55)

aik is the rank of Sfailurek of the FMi, and ni is the number of SFMj of each failure FMi.

		utation of 5, 0, 1		
Failure mode <i>FM</i> _i	AGO _i	AGS_i	AGD_i	Agg. RPN AGGRPN _i
1	2	2.3	2.3	10.58
2	2.1	2	2.3	9.66
3	3.3	1.7	2	11.22
4	2	2.3	2.15	9.89
5	2.7	2	1.95	10.53
6	2	1.7	2.7	9.18
7	3	3.3	2.3	22.77
8	1.7	2.7	1	4.59
9	1.6	2.7	2	8.64
10	1.7	3.7	2	12.58
11	1.65	2	2.7	8.91
12	2	2.35	2.3	10.81
13	2.3	4	3.7	34.04
14	2.7	3.7	3.7	36.963
15	2	2.3	2.85	13.11
16	2	3	2.3	13.8
17	2.7	1.7	1.7	7.803
18	2.0234375	2.98125	2.3375	14.100672
19	1.452054795	3.032876712	1.995890411	8.78970811
20	1.7	1.7	1.3	3.757
21	1.163043	3.528261	1.71087	7.020589
22	1.7	2.3	1.7	6.647
23	1.748529	3.725	1.414706	9.214364
24	2.7	3.3	1.3	11.583
25	2.3	1.7	1.3	5.083
26	2	2.3	1.7	7.82
27	2.25	2.3	1.7	8.7975
28	3	2	2.7	16.2

Table 12: Aggregated computation of S, O, D values

Failure mode <i>FM_i</i>	AGO_i	AGS_i	AGD_i	Agg. RPN <i>AGGRPN</i> _i
29	1.604	4.026	1.67	10.78437
30	1.911111	2.188889	2.033333	8.50586
31	2.7	2.3	2.3	14.283
32	2.3	4	1	9.2
33	2.461905	2.442857	2.095238	12.60093
34	2.661875	1.6025	2.05625	8.771252
35	1.853425	2.027397	1.765753	6.635045
36	2.7	3.3	2.3	20.493
37	3.3	3.7	2.7	32.967
38	1.733333	4.561905	2.407143	19.034
39	1.29	1.365	1.106667	1.948674

Aggregated S, O, D and RPN values were used while applying DEA method.

4.3.1 Efficiency computation by applying DEA

Table 13 summarizing the variables of each DMU found by the DEA program software. CRS based CCR aligned model used in the envelopment form.

]	INPUT va	lues	OUTPUT values	RESULTS
DMU NO	Aggregated 0	Aggregated S	Aggregated D	RPN value	Efficiency value
1	2	2.3	2.3	10.58	46
2	2.1	2	2.3	9.66	48.3
3	3.3	1.7	2	11.22	66.1
4	2	2.3	2.15	9.89	44.2
5	2.7	2	1.95	10.53	53.2
6	2	1.7	2.7	9.18	54.1
7	3	3.3	2.3	22.77	81.1

Table 13: DEA units

]	INPUT value	OUTPUT values	RESULTS	
DMU NO	Aggregated O	Aggregated S	Aggregated D	RPN value	Efficiency value
8	1.7	2.7	1	4.59	37.6
9	1.6	2.7	2	8.64	41.9
10	1.7	3.7	2	12.58	59.7
11	1.65	2	2.7	8.91	44.6
12	2	2.35	2.3	10.81	46.4
13	2.3	4	3.7	34.04	100
14	2.7	3.7	3.7	36.963	100
15	2	2.3	2.85	13.11	57.1
16	2	3	2.3	13.8	56.5
17	2.7	1.7	1.7	7.803	45.9
18	2.0234375	2.98125	2.3375	14.100672	56.9
19	1.452054795	3.032876712	1.995890411	8.78970811	44.2
20	1.7	1.7	1.3	3.757	24.4
21	1.163043	3.528261	1.71087	7.020589	42.6
22	1.7	2.3	1.7	6.647	34.9
23	1.748529	3.725	1.414706	9.214364	53.3
24	2.7	3.3	1.3	11.583	73
25	2.3	1.7	1.3	5.083	33
26	2	2.3	1.7	7.82	38.3
27	2.25	2.3	1.7	8.7975	42.7
28	3	2	2.7	16.2	81.1
29	1.604	4.026	1.67	10.78437	58.5
30	1.911111	2.188889	2.033333	8.50586	40
31	2.7	2.3	2.3	14.283	62.2

	II	NPUT valu	es	OUTPUT values	RESULTS
DMU NO	Aggregated O	Aggregated S	Aggregated D	RPN value	Efficiency value
32	2.3	4	1	9.2	75.3
33	2.461905	2.442857	2.095238	12.60093	54.8
34	2.661875	1.6025	2.05625	8.771252	54.8
35	1.853425	2.027397	1.765753	6.635045	34.5
36	2.7	3.3	2.3	20.493	74.3
37	3.3	3.7	2.7	32.967	100
38	1.733333	4.561905	2.407143	19.034	79.7
39	1.29	1.365	1.106667	1.948674	15.5

As it is seen, the efficiency value of several DMUs is same with the same ranking. In order to solve this problem, DMUs were ranked according their corresponding aggregated RPN numbers shown in table 9. Table 14 shows new ranks for each DMU.

DMU	Eff. value	Eff. Ranks	Ag. RPN rank	New Eff. rank
DMU13	100	1	2	2
DMU14	100	1	1	1
DMU37	100	1	3	3
DMU28	81.1	2	7	5
DMU07	81.1	2	4	4
DMU38	79.7	3	6	6
DMU32	75.3	4	23	7
DMU36	74.3	5	5	8
DMU24	73	6	14	9
DMU03	66.1	7	15	10
DMU31	62.2	8	8	11
DMU10	59.7	9	13	12
DMU29	58.5	10	17	13
DMU15	57.1	11	10	14
DMU18	56.9	12	9	15
DMU16	56.5	13	10	16
DMU33	54.8	14	12	17

Table 14: New Ranks of each DMU

DMU	Eff. value	Eff. Ranks	Ag. RPN rank	New Eff. rank
DMU34	54.8	14	28	18
DMU06	54.1	15	24	19
DMU23	53.3	16	22	20
DMU05	53.2	17	19	21
DMU02	48.3	18	21	22
DMU12	46.4	19	16	23
DMU01	46	20	18	24
DMU17	45.9	21	32	25
DMU11	44.6	22	25	26
DMU04	44.2	23	20	27
DMU19	44.2	23	27	28
DMU27	42.7	24	26	29
DMU21	42.6	25	33	30
DMU09	41.9	26	29	31
DMU30	40	27	30	32
DMU26	38.3	28	31	33
DMU08	37.6	29	37	34
DMU22	34.9	30	34	35
DMU35	34.5	31	35	36
DMU25	33	32	36	37
DMU20	24.4	33	38	38
DMU39	15.5	34	39	39

What is seen in the table 14, there are some failure modes changed their efficiency after applying the DEA method. For example failure mode 28 has became in the 5st place in terms of efficiency after applying DEA method, but its aggregated FMEA rank was 7. This means that applying DEA method can easily change FMs rank priority.

4.3.2 Clarification of the results

Let's define the % of hazard priority of failure mode with $P_2=P_r$ found in table 10. The ranks of table 14 normalized as follows:

 $P_e = 100 - ((\frac{new \ efficiency \ rank}{39}) \times 100)$

 $P = P_e - P_r$ is the progress of difference between the DEA ranks and the aggregated FMEA. Failure modes that won ranks, lost ranks and kept same rank symbolized by the red, green and white colors respectively. Results are presented in Table 15.

F- mode FM _i	P,	P_{e}	d
1	43.58	38.46	-5.12
2	33.33	43.59	10.26
3	51.28	74.36	23.08
4	35.89	30.77	-5.12
5	41.02	46.15	5.13
6	28.20	51.28	23.08
7	89.74	89.74	0
8	2.56	12.82	10.26
9	20.51	20.51	0
10	61.53	69.23	7.7
11	25.64	33.33	7.69
12	46.15	41.02	-5.13
13	94.87	94.87	0
14	97.43	97.43	0
15	69.23	64.1	-5.13
16	71.79	58.97	-12.82
17	12.82	35.89	23.07
18	79.48	61.53	-17.95
19	64.1	28.2	-35.9
20	0	2.56	2.56
21	10.25	23.07	12.82
22	7.69	10.25	2.56
23	76.9	48.71	-28.19
24	56.41	76.92	20.51
25	5.12	5.12	0
26	15.38	15.38	0
27	23.07	25.64	2.57
28	81.05	87.17	6.12
29	51.28	66.66	15.38
30	66.66	17.95	-48.71
31	74.35	71.8	-2.55
32	30.76	82.05	51.29
33	58.97	56.41	-2.56
34	17.94	53.84	35.9
35	38.46	7.69	-30.77
36	87.18	79.49	-7.69
37	92.3	92.3	0
38	84.61	84.61	0
39	48.71	0	-48.71

Table 15: Efficiency comparison of FMEA and DEA

What can be seen from the table 15, applying DEA method shows different rankings than FMEA method in terms of efficiency. More than half of the failures have remained in same priority after applying DEA method and this means, in terms of efficiency FMEA method can perform very well regarding these failure modes but almost half of the failures won or lost ranks in terms of efficiency and this means solving these problems just using FMEA, can be inefficient under real world. For example, let's choose the most efficient failure mode after applying DEA method. For example, the FM number 32 was placed in the last rows in FMEA, but after applying DEA is prioritized over 51% of the FMs, the logic is, it has very high seriousness level but with low occurrence and high detectability which makes it lose ranks when applying FMEA and if this failure will not be detected as important one, it can harm working environment. Here, our DEA method works very well with the correct evaluation of failure modes.

F- mode <i>FM</i> _i	P_r	P_e	Ρ
14	97.43	97.43	0
13	94.87	94.87	0
37	92.3	92.3	0
7	89.74	89.74	0
28	81.05	87.17	6.12
38	84.61	84.61	0
32	30.76	82.05	51.29
36	87.18	79.49	-7.69
24	56.41	76.92	20.51
3	51.28	74.36	23.08
31	74.35	71.8	2.55
29	51.28	66.66	15.38
10	61.53	69.23	7.7
15	69.23	64.1	-5.13
18	79.48	61.53	17.95

 Table 16: The most efficient failure modes

In table 16, Failure modes with the most efficiency scores were listed. Most of them did not change their ranks even after applying DEA method but, for example failure mode 32 gained more than 51 efficiency score which made it very important to solve.

4.4 Recommendations to prevent Possible Failures

In the last section of result chapter deliver enough information was delivered about preventing failures with the probability of decreasing the occurrence value for each failure mode. All information got with collective brainstorming, using expert's suggestions and thanks to enormous internet database.

Failure mode FM _i	Current Control	Recommended Action	
1	Permission must be obtained from the distributor for more accurate measurement of thickness	Using the thickness measurement device will decrease wrong inspection risk	
2	Engineer must ensure that odorous gases are removed from the foam	The choice of foam made from better quality chemicals can greatly reduce the risk of odor	
3	No current control	This is the most common case on producing wadding and the best recommendation is to select the most reliable distributor	
4	No current control	It is not always possible to detect issues on buckram and the best case is to select the mos reliable distributor after several checks	
5	No current control	Engineer must ensure that the raw textile distributor is maintaining the correct pH level and using an appropriate dying agent in order to keep the quality of its products	

Table 17: Process control and recommendations

Failure mode FM _i	Current Control	Recommended Action	
6	Engineer and the operator should check the fabric carefully before stitching it using quilting machine	Engineer should get necessary information about producing the current raw textile before importing	
7	Engineer / Operator must check the wires carefully in order to prevent	Engineer / Operator must check the wires carefully in order to prevent enormous production queue	
8	Operator should make a point of duty to check the status of the starter coil before doing anything	Buying authentic starter coils will be the best choice even if they are more expensive than inferior coils	
9	Operator should turn of the entire system in order to prevent additional failures	Operator should check the stabilizer every hour for any loading or heating issues	
10	Operator must turn off the machine	Several particles of the machine are rotating and rubbing off one another so, adequately oiling these particles will lead machine to not overheat while producing springs	
11	Stopping production until new valves are maintained	Operator must ensure that the temperature of the valves did not exceed the recommended peak temperature	
12	Machine termination	As demand increases in time it is expected that the occurrence of this failure may almost reach to peak point. So, it is recommended to use another spring assembly machine in order to prevent the failure	
13	Immediate first aid	Even if the operator is well educated It does not mean he will not take injury during working phase. Operator should rest enough after certain work time or if he feels exhausted	
14	Shutting down the system in order to prevent possible failures	Operator training is necessary and the mistake is almost unforgivable	
15	Operator should bring the machine to idle working phase in order to stabilize the oil on details	Operator should check the oiling on details before putting the springs inside the machine	

Failure mode FM _i	Current Control	Recommended Action
16	Temperature gauge must be corrected	In case of high temperature, an automation system with a signaled high temperature alarm should be installed
17	Operator training	Operator should keep the felt materials on the dry and clean place in order to prevent material loss
18	Operator training	Operator should adjust the spray gun correctly / Ambient lighting should be well balanced in order to prevent mistakes during gluing process
19	Operator training	Operator should set up the compressor tank to automatically stop at 120 PS
20	Operator training	Operator should ensure that canister cap stood open after each gluing session
21	Operator training	Periodic control should be done by the authorized operator once a year \ Compressor pressure tests should be carried out at 1.5 times the maximum allowable pressure
22	Operator training	Operator should check the fluid needle for any deformations on each working phase
23	Done local ventilation using air extractors to decrease the risk	Adhesive chemicals should be checked by the operator on daily basis \ An automatic ventilation system should be installed
24	Local ventilation done	Compressor should be kept away from chemical components
25	Operator training	Operator must place the fabric parallel to the laser plates of the machine

Failure mode FM _i	Current Control	Recommended Action	
26	Operator training	Operator should not start process without removing the wrinkles on the surface of the fabric / Operator should maintain proportion at right and left distances when placing the fabric	
27	No current control	Hanging the raw fabric instead of laying it on the ground will dramatically decrease the creasing	
28	Operator training	Operator should check the part of used wadding carefully before starting to stitch it together with fabric	
29	Layout of power lines is not suitable for the working environment	When stacking fabric rolls, they should be stacked in the safe area so that they are not near the electrically active area	
30	Deep cleaning	The inner surface of the machine should be cleaned after the operations	
31	No current control	The maintenance of the carrier system inside the machine should be done periodically	
32	Operator should check the bench at each sewing stage	Getting more advanced sewing machine will be the best choice for preventing this failure	
33	Operator training	Operator should adjust the needle to make it 11.1 cm from the needle plate while it is at its highest position / Operator should adjust upper and lower wire clamp to adjust the line tight	
34	Operator training	While crochet moves forward at the same time the needle should move upward from the lowest point / Bottom line should be properly tightened	
35	Operator should slowly pull the mattress in place	Tightening the fastening screw, adjusting the position of crochet correctly and buying quality needles will decrease the risk	

Failure mode FM _i	Current Control	Recommended Action
36	Operator should release the contact button in less than 5 seconds	
37	No current control	Double packaging may eliminate this failure with a big chance
38	No current control	Electrical equipment should be taken out of the warehouse and electrical devices should be prevented from being brought into the warehouse
39	No current control	Solvents should be stored in suitable stainless- steel cabinets and fireproof containers for explosives / Empty containers should never be kept in the work area, additional solvent may remain in the containers

Chapter 5

CONCLUSION AND FUTURE STUDY

5.1 Conclusion

Through this research, enough information retrieved related to mattress production in details, with respect to our specialists it was possible to get enough data about possible failures and effects of mattress production in a practical way. In the first part, FMEA explained to the specialists in an easy way to conduct the study more reliable and to get soft data in order to achieve better solution.

In a second part, the FMEA approach was utilized to achieve possible failure modes in mattress factory by gathering important data from experts after completion internet search to avoid possible missing failures can be found after the research. The RPN was computed for each failure modes, prioritized the effects of each failure mode and used aggregated approach to improve reliability of the methodology.

In a third part, the FMEA approach was combined with DEA method in order to achieve more successful result and to understand how DEA can change the failure priority. In order to apply DEA method, the SFMs (failure effects) were aggregated in the first phase, by calculating the aggregated severity, detection and occurrence to get new aggregated RPN numbers(ranked). After that, a CCR based DEA model was used to calculate the efficiency of resolving each of the FMs. Initial RPN values were the output values and the inputs were the aggregated occurrence, detection and severity respectively. Failure modes were listed according to their RPN numbers as some of FMs had same efficiencies. It has been found that after implementing DEA the new efficiency ranks were more reliable than the FMEA alone. It is also found that each working sector has its own efficient and inefficient failures. It has been figured that the choice of above methods without any doubt gave us the best results.

This research can shed the light for the researchers to conduct a better study related to combined FMEA-DEA approach and to gather necessary information about mattress production.

5.2 Future study

This is the first research conducted in mattress factory by applying multiple risk assessment and efficiency methods. In a forthcoming study, the research method can be enhanced to find much more reliable findings related to mattress production, including different sectors too. Aggregated RPN was used as output, but the research can be improved also, including time and cost variables(Chnina, 2020).

Some other DEA and FMEA models can be used; modified DEA BCC models, fuzzy FMEA as well as using different inputs and outputs can lead to improved reliability of the study.

Mattress manufacturing is developing day after day as other manufacturing sectors and this research may help other researchers to conduct better studies about mattress manufacturing.

REFERENCES

- Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: a data envelopment analysis. *Economics of Education review*, 22(1), 89-97.
- Ahbab, C., Daneshvar, S., & Celik, T. (2019). Cost and time management efficiency assessment for large road projects using data envelopment analysis. *Teknik Dergi*, 30(2), 8937-8959.
- Ahmadi, M., Behzadian, K., Ardeshir, A., & Kapelan, Z. (2017). Comprehensive risk management using fuzzy FMEA and MCDA techniques in highway construction projects. *Journal of Civil Engineering and Management*, 23(2), 300-310.
- Aized, T., Ahmad, M., Jamal, M. H., Mahmood, A., Ubaid ur Rehman, S., & Srai, J.
 S. (2020). Automotive leaf spring design and manufacturing process improvement using failure mode and effects analysis (FMEA). *International Journal Of Engineering Business Management, 12*, 1847979020942438.
- Akbarzade Khorshidi, H., Gunawan, I., & Ibrahim, M. Y. (2016). Applying UGF concept to enhance the assessment capability of FMEA. *QUality and reliability engineering international*, 32(3), 1085-1093.
- Arabzad, S. M., & Ghorbani, M. (2011). Using integrated FMEA-DEA approach to classify purchasing items based on Kraljic's model'. *International Journal of Business and Social Science*, 2(21), 253-257.

- Ardeshir, A., Amiri, M., & Mohajeri, M. (2013). Safety risk assessment in mass housing projects using combination of Fuzzy FMEA, Fuzzy FTA and AHP-DEA. *Iran Occupational Health*, 10(6), 78-91.
- Baghery, M., Yousefi, S., & Rezaee, M. J. (2018). Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis. *Journal of Intelligent Manufacturing*, 29(8), 1803-1825.
- Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. *Management science*, 30(9), 1078-1092.
- Barbosa, J., & Gilberto, V. (2007). Application of FMEA-DEA (Failure Modes and Effect Analysis-Data Envelopment Analysis) to the air conditioning system of the control room a nuclear power plant.
- Chang, C. L., Liu, P. H., & Wei, C. C. (2001). Failure mode and effects analysis using grey theory. *Integrated Manufacturing Systems*.
- Chang, D. S., & Sun, K. L. P. (2009). Applying DEA to enhance assessment capability of FMEA. *International Journal of Quality & Reliability Management*.
- Charnes A., William W., E. Rhodes. (1978). Measuring the efficiency of decision making units. *European Journal of Operational Research*, 2(Issue 6), 429-444. doi:https://doi.org/10.1016/0377-2217(78)90138-8.

- Chin, K.-S., Chan, A., & Yang, J.-B. (2008). Development of a fuzzy FMEA based product design system. *The International Journal of Advanced Manufacturing Technology*, 36(7-8), 633-649.
- Chiozza, M. L., & Ponzetti, C. (2009). FMEA: a model for reducing medical errors. *Clinica chimica acta*, 404(1), 75-78.
- Chirmule, N., Khare, R., Khandekar, A., & Jawa, V. (2020). Failure Mode and Effects Analysis (FMEA) for Immunogenicity of Therapeutic Proteins. *Journal of Pharmaceutical Sciences*, 109(10), 3214-3222.
- Chnina, K. (2020). Failure Modes and Effects Analysis (FMEA) Method Based on Data Envelopment Analysis (DEA) Approach for the Efficiency Measurment of Radio Frequency Identification (RFID). Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ),
- Colditz, P., Joy, G., & Dunster, K. (2002). Rebreathing potential of infant mattresses and bedcovers. *Journal of paediatrics and child health*, *38*(2), 192-195.
- Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software (Vol. 2): Springer.
- Cooper, W. W., Seiford, L. M., & Zhu, J. (2000). A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA. *Socio-Economic Planning Sciences*, 34(1), 1-25.

- Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Data Envelopment Analysis: History, Models, and Interpretations. *164*, 1-39. doi:10.1007/978-1-4419-6151-8_1
- Daneshvar, S., & Adesina, K. A. (2018). Modified variable return to scale backpropagation neural network robust parameter optimization procedure for multiquality processes. *Engineering Optimization*.
- Daneshvar, S., & Izbirak, G. (2014). Computing the Biennial Malmquist Index using Modified Variable Returns to Scale DEA Model. *Data Envelopment Analysis* and Performance Measurement, 85.
- Daneshvar, S., Yazdi, M., & Adesina, K. A. (2020). Fuzzy smart failure modes and effects analysis to improve safety performance of system: Case study of an aircraft landing system. *QUality and reliability engineering international*, 36(3), 890-909.
- Dhungana, B. R., Nuthall, P. L., & Nartea, G. V. (2004). Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis. *Australian Journal of Agricultural and Resource Economics*, 48(2), 347-369.
- Ebrahimnejad, A., Tavana, M., Lotfi, F. H., Shahverdi, R., & Yousefpour, M. (2014). A three-stage data envelopment analysis model with application to banking industry. *Measurement*, 49, 308-319.
- Emrouznejad, A., & Mustafa, A. (2012). Fuzzy data envelopment analysis: A discrete approach. *Expert Systems with Applications*, *39*(3), 2263-2269.

- Failure mode and effects analysis. Retrieved from En.wikipedia.org(2019).https://en.wikipedia.org/wiki/Failure_mode_and_effe cts_analysis
- Farrell, M. J. (1957). The Measurement of Productive Efficiency. *Journal of the Royal Statistical Society*. doi: http://dx.doi.org/10.2307/2343100
- Førsund, F. R., & Sarafoglou, N. (2002). On the origins of data envelopment analysis. Journal of Productivity Analysis, 17(1), 23-40.
- Fried, H. O., Lovell, C. K., Schmidt, S. S., & Schmidt, S. S. (2008). *The measurement of productive efficiency and productivity growth*: Oxford University Press.
- Galán-Martín, Á., Guillén-Gosálbez, G., Stamford, L., & Azapagic, A. (2016). Enhanced data envelopment analysis for sustainability assessment: A novel methodology and application to electricity technologies. *Computers & Chemical Engineering*, 90, 188-200.
- Garcia, P. A., & Schirru, R. (2005). A fuzzy data envelopment analysis approach for FMEA. Progress in Nuclear Energy, 46(3-4), 359-373.
- Goddard, P. L. (2000). Software FMEA techniques. Paper presented at the Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No. 00CH37055).

- Gökşen, Y., Doğan, O., & Özkarabacak, B. (2015). A data envelopment analysis application for measuring efficiency of university departments. *Procedia Economics and Finance*, 19, 226-237.
- Hadi, V. A., Hejazi, S., Forghani, A., & Hejazi, S. (2012). Failure Mode and Effects Analysis Using Data Envelopment Analysis.
- Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Khodabakhshi, M., Rostamy-Malkhlifeh,M., Moghaddas, Z., & Vaez-Ghasemi, M. (2013). A review of ranking modelsin data envelopment analysis. *Journal of Applied Mathematics*, 2013.
- Ibrahim, M. D., & Daneshvar, S. (2018). Efficiency analysis of healthcare system in Lebanon using modified data envelopment analysis. *Journal of healthcare* engineering, 2018.
- Ibrahim, M. D., Daneshvar, S., Güden, H., & Vizvari, B. (2020). Target setting in data envelopment analysis: efficiency improvement models with predefined inputs/outputs. *OPSEARCH*, *57*(4), 1319-1336.
- Ibrahim, M. D., Daneshvar, S., Hocaoğlu, M. B., & Oluseye, O.-W. G. (2019). An estimation of the efficiency and productivity of healthcare systems in sub-Saharan Africa: health-centred millennium development goal-based evidence. *Social Indicators Research*, 143(1), 371-389.

- Ibrahim, M. D., Ferreira, D. C., Daneshvar, S., & Marques, R. C. (2019). Transnational resource generativity: efficiency analysis and target setting of water, energy, land, and food nexus for OECD countries. *Science of the Total Environment*, 697, 134017.
- Kangavari, M., Salimi, S., Nourian, R., & Askarian, A. (2015). An application of failure mode and effect analysis (FMEA) to assess risks in petrochemical industry in Iran. *Iranian journal of health, safety and environment, 2*(2), 257-263.
- Kara, S. E., Ibrahim, M. D., & Daneshvar, S. (2021). Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries. *Sustainability*, 13(13), 7401.
- Keskin, G. A., & Özkan, C. (2009). An alternative evaluation of FMEA: fuzzy ART algorithm. *QUality and reliability engineering international*, 25(6), 647-661.
- Khoshfetrat, S., & Daneshvar, S. (2011). Improving weak efficiency frontiers in the fuzzy data envelopment analysis models. *Applied mathematical modelling*, 35(1), 339-345.
- Kumru, M., & Kumru, P. Y. (2013). Fuzzy FMEA application to improve purchasing process in a public hospital. *Applied Soft Computing*, *13*(1), 721-733.

- Li, Y., Kang, R., Ma, L., & Li, L. (2011). Application and improvement study on FMEA in the process of military equipment maintenance. Paper presented at the The Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety.
- Lipol, L. S., & Haq, J. (2011). Risk analysis method: FMEA/FMECA in the organizations. *International Journal of Basic & Applied Sciences*, 11(5), 74-82.
- Mahmoudi, R., Emrouznejad, A., Shetab-Boushehri, S.-N., & Hejazi, S. R. (2020). The origins, development and future directions of data envelopment analysis approach in transportation systems. *Socio-Economic Planning Sciences*, 69, 100672.
- Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A., & Khoshnoudi, M. (2017). A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. *Renewable and Sustainable Energy Reviews*, 70, 1298-1322.
- Meril Baby, S. G. M. (2014). Cost Oriented FMEA In A Mattress Industry. International Journal of Emerging Technology & Research, 28-33.
- Mirghafouri, S. H., Asadian Ardakani, F., & Azizi, F. (2014). Developing a method for risk analysis in tile and ceramic industry using failure mode and effects analysis by data envelopment analysis. *Iranian Journal of Management Studies*, 7(2), 343-363.

- Parsana, T. S., & Patel, M. T. (2014). A case study: A process FMEA tool to enhance quality and efficiency of manufacturing industry. *Bonfring International Journal of Industrial Engineering and Management Science*, 4(3), 145-152.
- Parvez, N., Rakib, M., & Islam, S. (2016). Integrated FMEA Approach for Supplier Selection Problem: The Case on Steel Manufacturing Company. Paper presented at the Proceedings of 14th Asian Business Research Conference.
- Peykani, P., Mohammadi, E., & Seyed Esmaeili, F. S. (2019). Stock evaluation under mixed uncertainties using robust DEA model. *Journal of Quality Engineering* and Production Optimization, 4(1), 73-84.
- Rahman, F., Said, M. S., Hassan, A., Yusoff, M. S., & Atmadyaya, S. (2021). Using QFD and FMEA to Improve Maintenance Effectiveness in a Petroleum Refinery. Paper presented at the Proceedings of the 2nd International Conference on Experimental and Computational Mechanics in Engineering.
- Ramanathan, R. (2006). Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process. *Computers & Operations Research*, 33(5), 1289-1307.
- Rashidi, K., & Cullinane, K. (2019). Evaluating the sustainability of national logistics performance using Data Envelopment Analysis. *Transport Policy*, 74, 35-46.

- Scipioni, A., Saccarola, G., Centazzo, A., & Arena, F. (2002). FMEA methodology design, implementation and integration with HACCP system in a food company. *Food control*, 13(8), 495-501.
- Segismundo, A., & Miguel, P. A. C. (2008). Failure mode and effects analysis (FMEA) in the context of risk management in new product development: A case study in an automotive company. *International Journal of Quality & Reliability Management*.
- Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New Directions for Program Evaluation, 1986(32), 73-105.
- Solc, M. (2012). Applying of Method FMEA (Failure Mode and Effects Analysis) in the logistics process. ARSA-5th Advanced Research in Scientific Areas. EDIS-Publishing Institution of the University of Zilina, 1906-1911.
- Spath, P. L. (2003). Using failure mode and effects analysis to improve patient safety. *AORN journal*, 78(1), 15-37.
- Teng, S. G., Ho, S. M., Shumar, D., & Liu, P. C. (2006). Implementing FMEA in a collaborative supply chain environment. *International Journal of Quality & Reliability Management*.
- Wang, Y.-M., Greatbanks, R., & Yang, J.-B. (2005). Interval efficiency assessment using data envelopment analysis. *Fuzzy sets and Systems*, *153*(3), 347-370.

- wikipedia. (2019). Data envelopment analysis. Retrieved from https://en.wikipedia.org/wiki/Data_envelopment_analysis
- William W. Cooper, L. M. S., Kaoru Tone. (2007). Data Envelopment Analysis (Second Edition ed.): springer.
- Xu, K., Tang, L. C., Xie, M., Ho, S. L., & Zhu, M. (2002). Fuzzy assessment of FMEA for engine systems. *Reliability Engineering & System Safety*, 75(1), 17-29.
- Yazdi, M. (2019). Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. *International Journal on Interactive Design and Manufacturing (IJIDeM)*, 13(2), 441-458.
- Yazdi, M., Daneshvar, S., & Setareh, H. (2017). An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. *Safety science*, 98, 113-123.
- Yousefi, S., Shabanpour, H., Fisher, R., & Saen, R. F. (2016). Evaluating and ranking sustainable suppliers by robust dynamic data envelopment analysis. *Measurement*, 83, 72-85.

APPENDICES

Appendix A: The DEA Model Settings Applied in PIM DEA Solver

Name	CCRin			
Description				
Orientation	Input Orient	ed		
Return to Scale	CRS			
MPSS & Ident. RTS	Disabled			
Super Efficiency	Disabled			
Malmquist Index	Disabled			
Bootstrapping	Disabled			
Input Variables	Index1	Index2	Index3	
Output Variables	Index4			
Selected Periods	Sheet2			
DMU Selections	NO			
Categorical Selections	NO			
Weight Restrictions	Disabled			

Appendix B: The Outputs of the CCR Model

Name	Efficiency
DMU1	46
DMU2	48.3
DMU3	66.1
DMU4	44.2
DMU5	53.2
DMU6	54.1
DMU7	81.1
DMU8	37.6
DMU9	41.9
DMU10	59.7
DMU11	44.6
DMU12	46.4
DMU13	100
DMU14	100
DMU15	57.1
DMU16	56.5
DMU17	45.9
DMU18	56.9
DMU19	44.2
DMU20	24.4
DMU21	42.6
DMU22	34.9
DMU23	53.3
DMU24	73
DMU25	33
DMU26	38.3
DMU27	42.7
DMU28	81.1
DMU29	58.5
DMU30	40
DMU31	62.2
DMU32	75.3
DMU33	54.8
DMU34	54.8
DMU35	34.5
DMU36	74.3
DMU37	100
DMU38	79.7
DMU39	15.5

Appendix C: Initial O, S, D values

Birol Turhan]		
SFM	Occurrence	Severity	Detection
1	1.5	2.3	1.4
2	2	3	2.4
3	3.4	1.6	2.1
4	2.5	2.9	1
5	2.6	2.8	1
6	2.5	1.5	2.8
7	2.5	3	1.5
8	1	3	1
9	1	3.5	1.5
10	1	4.2	1.8
11	2.4	2.5	2
12	2	2	2.5
13	2.2	5	4.1
14	2.6	4	4
15	1.5	1.9	1.6
16	1.7	3	2.5
17	3.6	1	1
18	1.5	3.1	1.5
19	1.2	4	3
20	1.4	4.2	1
21	1	5	1.5
22	1.3	1.7	1
23	1	1	1
24	1	4	1.8
25	1.6	2	1.6
26	2.3	5	1
27	1.8	5	1.3
28	1	4	1
29	2	1	1
30	1.5	1	1
31	2	2.4	1.9
32	1.6	3	1.7
33	3.5	2	3.1
34	1.5	3.5	2.5
35	1	4.7	1.3
36	1.7	2.9	1.5
37	1	2	2.3

Birol Turhan]		
SFM	Occurrence	Severity	Detection
38	2	2	2.5
39	2	5	1
40	2	1.5	2.5
41	1.5	3.3	1
42	1.6	1.7	2.85
43	2	2.5	2
44	1	1	1.35
45	1.3	2	1
46	1.2	2.2	2.8
47	2.6	1.8	3.7
48	2	3.9	2.5
49	2.4	5	2.5
50	1.8	5	1.3
51	1.2	5	2
52	1.3	5	4.3
53	1.3	4	5
54	2.4	1	2.4
55	1.7	1.2	1.3

Səid Ələkbərov			
SFM	Occurrence	Severity	Detection
1	2	2.6	3
2	2.3	1.5	2.5
3	4	2	2.9
4	1.5	2.5	2.7
5	2.8	2.2	2.35
6	1.5	2	2.8
7	3	3.4	3.9
8	2.4	2.1	1
9	1.8	3	2
10	1.5	4.3	2
11	1.3	2	3
12	2	2.55	1.9
13	2.3	3.8	3.5
14	2.5	3.5	3.8
15	2.5	3	3.8
16	1.5	3	2.5
17	2.5	2	2.1
18	2.65	3	1.5
19	2	3.6	3.5
20	2.2	2.2	1.9
21	1.2	2.8	3
22	2	1.4	1.9
23	1.4	4.5	1.2
24	1	3.6	2.6
25	2	2.2	1.8
26	2.8	3.5	1.45
27	4	3.4	1.8
28	1.7	3.2	1.7
29	3.1	5	1.35
30	2.8	2.1	1.6
31	2	3	1.4
32	2.25	1.8	1.8
33	2.5	2	2
34	1.8	3.5	1.6
35	1.7	4	1.8
36	2.8	2	1.65
37	2	1.8	1.6

-

Səid Ələkbərov			
SFM	Occurrence	Severity	Detection
38	3.1	2.9	2.1
39	2.4	3.7	1
40	3	1.3	1
41	3	2	3
42	2.35	1.7	1
43	4	1	1.8
44	2.5	1.8	1.2
45	2.6	2.2	1.4
46	1.6	2.7	3
47	3	2.8	2.8
48	3.5	3	1.95
49	3.7	3	2.1
50	2.2	5	1.6
51	1.75	3.2	2.5
52	1.1	4.5	4.5
53	2.1	2.8	5
54	1.8	3.7	2.3
55	1.9	2.9	1.65

Dmitri]		
Vorontsev			
SFM	Occurrence	Severity	Detection
1	2.5	2	2.5
2	2	1.5	2
3	2.5	1.5	1
4	2	1.5	2.75
5	2.7	1	2.5
6	2	1.6	2.5
7	3.5	3.5	1.5
8	1.7	3	1
9	2	1.6	2.5
10	2.6	2.6	2.2
11	1.25	1.5	3.1
12	2	2.5	2.5
13	2.4	3.2	3.5
14	3 2	3.6	3.3
15	2	2	3.15
16	2.8	3	1.9
17	2	2.1	2
18	2.3	2	3
19	1.9	3.5	3.1
20	1.2	1.7	2.2
21	1.4	3	3
22	1.8	2	1
23	1.5	4.4	1.7
24	1	3.8	2.2
25	1.5	2.7	1.7
26	3	3.5	1.45
27	3.8	3.9	2.6
28	1.2	3.6	1.5
29	3	3.9	1.55
30	2.6	2	1.5
31	2	1.5	1.8
32	2.9	2.1	1.6
33	3	2	3
34	2.7	2.9	1.9
35	1.5	4.5	1.4
36	2.4	2	1.95
37	1.8	2.5	3

Dmitri Vorontsev			
SFM	Occurrence	Severity	Detection
38	3	2	2.3
39	2.5	4.3	1
40	3.1	3.8	2.5
41	2.1	2.5	2.6
42	2.5	1.7	3.05
43	3.6	1	1.7
44	2.5	2.3	1.35
45	1.5	2.1	1.5
46	1.4	2.3	3.5
47	2.5	2.3	3.1
48	2.6	3	2.45
49	3.8	3.1	3.5
50	2	5	1
51	1.85	4.4	2.7
52	1.2	4.9	3.8
53	1.7	3.1	5
54	3.9	3.4	2.2
55	1.5	2.5	1.55

Appendix D: Failure modes of the mattress production factory

	Process type	Failure modes	SFM	Cause of failure (Sub Failure modes)	Effects of failure
1		The density of the polyurethane foam does not meet the requirements	1	Inspection failure	Customers might feel overheat while using mattress
2		An unpleasant chemical smell coming from the polyurethane foam	2	Inspection failure	Customer dissatisfaction
3	materials	Wadding fibers are not properly bonded	3	Inspection failure	Bearding on the surface of the mattress
4	Inspection of raw materials	Gaps on the surface of support buckram	4	Inspection failure	High water permeability
5	Inspecti	Uneven Dyeing/Printing/Dye marks on the surface of raw textile	5	Inspection failure	Customer dissatisfaction
6		Random drop stitches appear in the fabric	6	Inspection failure	Work delays
7		The inappropriate thickness of steel wire	7	Measurement failure	Machine malfunction
8	ine	Set of useless Bonnell springs during an operation	8	Using inferior starter coil	Material loss
9	Spring making machine	Corrupt monitor interface	9	Voltage stabilizer stopped working because of high output voltage supply	Operator can not transfer digital information to the computer
10	Spring	Machine overheating as the operator produces spring	10	Poorly lubricated particles	Serious damage to the machine
11		Spring units are not firmly attached	11	Rupture on the valves connecting the units	Poor quality of the mattress
12	ly Machine	Incorrect twisting of wires	12	System block changed the operational state because of high working tension	Poor quality of the mattress
13	Unit-Spring Assembly Machine	Hand injury of the worker	13	Momentary fault while assisting spring units with corresponding wire	Work delays
14	Unit-S	Electrical shock while cleaning the machine	14	Leaving the emergency shutdown system active	System malfunction

FM number	Process type	FMs	SFM NO	SFMs	Effects of failure		
15	Unit-Spring Assembly Machine	Oil leakage from the springs	15	Excessive oiling the details	Customer dissatisfaction		
16	Unit-J Assembly	The high temperature on the valve lines	16	Malfunction of temperature monitor	Risk of damage to the springs with thermal expansion		
17		The felt does not adhere properly to the foam	17	Materials to be glued are not clean enough	Loss of materials		
18		Musty smell coming from the mattress	18	Over-spraying the surface of the materials	Customer dissatisfaction		
		from the mattress	19	Insufficient ambient lighting			
19	19 Eye and skin problems on the workers	20	The canister spray system is not spraying correctly and the spray pattern is inadmissible wide	Work delays			
					21	21	Inadequate ventilation
20	rocess	Adhesive blocked the canister hose	22	The operator should ensure the value on the canister remained open	Work delays		
21	21	High pressure of compressed air	23	Pressure gauge failure	When compressed air rises above the set pressure, the engine continues to		
21		G	pumped into the tank	24	Compressor safety device malfunction	run and excess pressure can cause an explosion	
22		Too much glue spilling while spraying	25	The fluid knob of the spray gun is not working properly	Material loss		
	23				26 containers durir transportation	Deformation of containers during transportation	Accumulation of used adhesive in
23		Glue containers left open	27	Deformation in containers during storage	the environment may cause explosion and fire		
					28	Insufficient ventilation	
24		Compressor absorbs harmful toxic gas or dust	29	Insufficient ventilation	Contact of gases in the compressor with different substances may cause fire and explosion		
25	cess	Misprinting, off printing, or absence of printing	30	Wrong leveling procedure by operator	Patterns are completely or partially missing		
26	oidery prc	Twisted or knotted rope	31	Incorrect loading of fabric into the machine	Loss of materials		
27	ing / embrc	Crease marks on the fabric	32	Inadequate preparation, relaxation, or bulking of fabric	Laser needle failure		
28	Quilting / printing / embroidery process	Separation of the stitched materials	33	Having less highly compressed chemical fibers inside wadding	Loss of materials		

FM number	Process type	FMs	SFM NO	SFMs	Effects of failure
29	 20 2	Stacking fabric very close to the electricity line	34	Short circuit or high voltage in the power line	Work delays
			35	Leaving fabric material in front of the electrical panel	Fire risk because of fabrics catching fire
30	inting / embroid Gluing Process	Roughness of the inner surface of the machine	36	Residues adhering to the machine inner surface	Damage the texture of the fabric
30	/ printing Gluir		37	Insufficient cleaning the inside of the machine	Loss of material
31	Quilting	Failure of the conveyor chain system inside the machine	38	Loosening of chain links	Failure of the machine
32		Displacement on the bench during sewing	39	Mis-controlling the bench before sewing	Finger injury
33	chine	Skipping stitch during sewing operation	40 41	The needle bar position is not correct The bottom line is not tight	Loss of material
34	sewing ma	Broken line during the operation	42 43	The bottom line is too loose or too tight The position of the	Loss of material
	33 A Constrained and the serving machine and the serv	Broken needle during the operation	44	looper is not correct Operator pulls or drags the mattress too roughly	
35			45 46	The needle hits the needle plate The crochet impact	Machine stitching failure
			47	needle Needle quality is too bad	
36	anual ckaging ne	Elongated resistor	48	Heated resistors	Resistor breakage
37	Using manual mattress packagi machine	Gaps in packaging	49	Operator does not inspect the product after packaging	High level of humidity, smell of the mattress
	Storage of materials	Presence of electrical equipment in the warehouse	50	Leakage in electrical installation Overloading of	The presence of electrical equipment and panels in the
38			51 52 53	electrical cables Short circuit Faulty grounding	warehouse may trigger sparks, fire and explosion may occur in the warehouse
	Storage of	ت ق ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت	54	Holes in solvent containers	Solvent vapors can spread in the environment and create an explosive atmosphere
39			55	Empty solvent Containers	