
Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics and Computer Science

Transduced-Input Finite Automata with Translucent

Letters

Madeeha Fatima

Eastern Mediterranean University

January 2020

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. Nazim Mahmudov

 Chair, Department of Mathematics

Prof. Dr. Benedek Nagy

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor

of Philosophy in Applied Mathematics and Computer Science.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Applied

Mathematics and Computer Science.

Examining Committee

1. Prof. Dr. Rashad Aliyev

2. Prof. Dr. Gergely Kovács

3. Prof. Dr. Benedek Nagy

4. Prof. Dr. Hasan Taseli

5. Asst. Prof. Dr. Müge Saadetoğlu

iii

ABSTRACT

Finite automata with translucent letters are extensions of the usual finite state automata

allowing to proceed the input not strictly left to right manner. There are some letters

which are translucent for each internal state such that the automaton cannot read them.

These are finite state devices that are able to accept a class of languages that is a

superset of the regular languages, moreover, it contains some non-context-free

languages. The class is closed under union, concatenation, however, it is not closed

under intersection with regular sets. There are three linguistically important non-

context-free languages: the multiple agreement, the cross dependencies and the

marked copy. These languages cannot be accepted by finite automata with translucent

letters.

In this thesis an extension of the model is presented in which the input is preprocessed

by a finite state transducer. The transduced input is given to the finite automata with

translucent letters, and it decides on acceptance. This is named as T-inputFAwtl i.e.

Transduced-Input Finite Automata with Translucent Letters. We prove that all the

three mentioned languages are accepted by the deterministic variant of the new model

i.e. T-inputDFAwtl. Because of this we say that T-inputFAwtl has more expressive

power than original finite automata with translucent letters. We also presented some

closure properties of the class of languages accepted by non deterministic variant of

this model i.e. T-inputNFAwtl. We proved that the language class accepted by that T-

inputNFAwtl is closed under union (if the same transducer is used), and it is closed

under intersection with regular languages.

iv

Keywords: t-input automata, automata with translucent letters, Mealy automata,

formal languages, finite state machines, transducers, finite state machines, closure

properties

v

ÖZ

Yarı saydam harflere sahip sonlu otomatlar, girişin kesinlikle sağdan sola doğru

ilerlememesine izin veren olağan sonlu durum otomatının uzantılarıdır. Her iç durum

için yarı saydam olan bazı harfler vardır, böylece otomat onları okuyamaz. Bunlar,

normal dillerin bir üst kümesi olan bir dil sınıfını kabul edebilen sonlu durum

aygıtlarıdır, ayrıca bazı bağlamsız diller içerir. Sınıf birleşme, yan yana koyma

işlemleri altında kapalıdır, ancak düzenli kümelerle kesişme işlemi altında kapalı

değildir. Dilsel açıdan önemli üç bağlamsız dil vardır: çoklu anlaşma, çapraz

bağımlılıklar ve işaretli kopya. Bu diller yarı saydam harfli sonlu otomatlar tarafından

kabul edilemez.

Bu tezde, girdinin sonlu durum transdüseri tarafından önceden işlendiği modelin bir

uzantısı sunulmaktadır. Dönüştürülen giriş yarı saydam harfli sonlu otomata verilir ve

kabul etmeye karar verir. Buna T-inputFAwtl, yani Translucent Letters ile

Transduced-Input Sonlu Otomata denir. Bahsedilen üç dilin hepsinin yeni modelin

deterministik değişkeni, yani T-inputDFAwtl tarafından kabul edildiğini kanıtlıyoruz.

Bu nedenle T-inputFAwtl'ın yarı saydam harflerle orijinal sonlu otomattan daha

etkileyici bir güce sahip olduğunu söylüyoruz. Bu modelin deterministik olmayan

değişken tarafından kabul edilen dil sınıfının bazı kapatma özelliklerini yani T-

inputNFAwtl de tezde sunduk, T-inputNFAwtl tarafından kabul edilen dil sınıfının

birleşim altında (aynı dönüştürücü kullanılıyorsa) ve normal dillerle kesişme işlemleri

altında kapalı olduğunu kanıtladık.

Anahtar Kelimeler: t-girdi otomatları, yarı saydam harfli otomatlar, Mealy

vi

otomatları, biçimsel diller, sonlu durum makineleri, dönüştürücüler, sonlu durum

makineleri, kapalılık özellikleri

vii

This thesis is dedicated: to Almighty Allah, the most Beneficent, the most Merciful,

the Omniscent, the All-Knowing, to His Beloved Prophet Mohammad Peace Be

Upon Him, my master, and a Mercy for all mankind, to my precious daughter Ayleen

Hussain.

viii

ACKNOWLEDGEMENT

First and foremost, I would like to be grateful to Allah SWT for bestowing me with an

opportunity to learn, to become who I am today. I know without His mercy and grace,

this work would have never become reality.

I owe a deep debt of gratitude and great admiration to my esteemed supervisor Prof.

Dr. habil. Benedek Nagy for his immense guidance, incredible patience, and support

throughout the research. I am really lucky to be his student and thankful for that I have

learnd a lot which wasn’t possible without his dedicated supervision. Also, I am really

thankful for my monitoring jury members, Asst. Prof. Dr. Müge Saadetoğlu and Prof.

Rashad Aliyev for their valuable suggestions during the past years.

I would like to express my sincerest grartitude and respect to my teacher, my mentor

Sir Armaghan Saqib for his motivation, undescribeable moral and psychological

support throughout my degree.

I would like to wholeheartedly thank all my beloved family, especially my Father, Mr.

Maqsood Ahmed Qureshi who trusted my abilities and encourged me to fly over the

unimaginable horizons and my lovely mother Mrs. Zohra Tabbasum for her never

ending prayers and unbounded love, my siblings for all their emotional and unconl

support, my friends for their kind words and well wishes.

Last but not the least, I owed profound gratitude to my husband, Atif Hussain, for his

immeasurable giving, great sacrifice, ultimate love and unquestioning support, to my

dearest daughter for simply being there and source of all love and contentment in me.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGEMENT .. viii

LIST OF FIGURES .. xi

1 INTRODUCTION .. 1

1.1 A Brief History of Finite Automata .. 3

1.2 Variants of Finite Automata Related to New Model ... 4

2 NOTATIONS AND DEFINITIONS .. 6

2.1 Deterministic Finite Automata .. 7

2.2 Non-Deterministic Finite Automata.. 8

2.3 Mealy Automata .. 9

2.4 Deterministic Finite Automata with Translucent Letters 9

2.5 Non-Deterministic Finite Automata with Translucent Letters 11

2.6 Mildly Context Sensitive Langugaes .. 12

3 TRANSDUCED-INPUT FINITE AUTOMATA WITH TRANSLUCENT

LETTERS .. 14

3.1 Accepting Mildly Context-Sensitive Languages .. 18

3.1.1 The Language of Multiple Agreements .. 18

3.1.2 The Language of Cross Dependencies ... 20

3.1.3 The Marked Copy Language ... 22

4 CLOSURE PROPERTIES .. 25

4.1 DNT-inputFAwtl Closure under Union Using Same Transducer 25

x

4.2 Dual Normal Form .. 26

4.3 DNT-inputFAwtl Closure under Intersection with Regular Languages 32

4.4 Examples ... 34

5 CONCLUSION ... 40

REFERENCES .. 41

xi

LIST OF FIGURES

Figure 1. The T-inputDFAwtl that accepts the language Lc. 16

Figure 2. The T-inputDFAwtl that accepts the language Labc. 19

Figure 3. The T-inputDFAwtl that accepts the language Labcd. 21

Figure 4. The T-inputDFAwtl that accepts the language Lww. 23

Figure 5. The T-inputNFAwtl for language Law. ... 27

Figure 6. Partial representation of the “last letter normal form” NFAwtl for the

language Law. .. 29

Figure 7. The DFA that accepts the language Ln. .. 35

Figure 8. The transducer T’ .. 35

Figure 9. Partial graphical representation of the dual normal form NFAwtl for the

language Law. .. 36

Figure 10. The T-inputDFAwtl that accepts the language Labbc. 38

Figure 11. The T-inputNFAwtl that accepts the language Labbc ∪ Labc. 39

file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357132
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357135
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357136
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357136
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357137
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357138
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357139
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357139
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357140
file:///D:/emu/thesis-phd-emu/thesis%20files/thesis-MadeehaFatima-updatedM5+07B(jan11)+1Ben.docx%23_Toc31357141

1

Chapter 1

INTRODUCTION

Automata theory and formal languages are bases of (theoretical) computer science and

closely linked to each other. Automata theory is the theoretical study of abstract

machines which help in solving real computational problems. Formal languages help

to state the behavior of those abstract machines. With time complexity constraint these

abstract machines are developed and introduced over time from simpler form to

complex forms. They are analyzed and modeled with keeping the fact of limitations of

computations. Major families of these models include Finite state machines, Push

down automata, Linearly-bounded automata and Turing machines. These machines

have some states for performing the transition function on the input which is taken in

the form of strings.

With ongoing development in this field, the main purpose of studying automata theory

is to develop such computational models which are simple and have more expressive

power than the ones which are already developed with about the same simplicity. With

continues research, researchers are working to improve models which can help us in

solving computational problems in more efficient way. That’s why this subject always

has great opportunity for researching new concepts and ideas.

Finite state machines have finite set of states and no additional storage possibilities

hence these are the simplest automata. Finite state machines are further categorized

2

into two types i.e. acceptors/recognizers and transducers. Acceptors decides

acceptance or rejection on an input, a transducer transduces an input and gives an

output. Finite state acceptors or finite automata are used to recognize patterns. They

have applied in various fields including designing compilers, spell checkers, text

editors, and formal linguistics. In fact, due to the finite number of states and the

relatively simple control they are very efficient in terms of time and space complexity.

But for the same reason they are inadequate for complex scenarios due to their limited

computational power. Finite automata have various extensions which are still finite

state models, e.g., multihead finite automata, Watson-Crick finite automata and finite

automata with translucent letters.

In this thesis we have focused on this area of automata theory and introduced a new

combo automaton using a further extension of finite automata. Our purpose is to

achieve a better model for enhanced capability to characterize some class of languages

which is beyond regular. Instead of developing a really new model, we combine two

relatively simple finite-state machines i.e. Mealy machines and finite state automata

with translucent letters, to obtain a still finite state model with a relatively large

accepting power.

Consequently, this thesis is divided into four chapters. This chapter 1 gives the overall

introduction. In chapter 2 we recall definitions and notations. Chapter 3 gives the

definition of the new model and proofs of its enhanced expressiveness and in chapter

4 we have provided important normal form definitions and two closure properties.

This chapter is divided into 2 more sections. Section 1.1 describes about the motivation

of this research and brief history of finite automata and its extensions related to our

3

model. Section 1.2 talks about the finite automata and its variants regarding new

model.

1.1 A Brief History of Finite Automata

Finite automata are used in text processing, formal linguistics, and hardware design.

They are also called finite state acceptors. It is a mathematical model of a finite-state

computing device that recognizes a set of words over some alphabet; this set of words

is called the language accepted by the automaton. There is a path through the

automaton, for each word over the alphabet; if the path ends in a final or accepting

state, then that word is in the language accepted by the automaton [20]. There are two

classes of finite automata. These are Deterministic Finite Automata (DFA) and Non-

Deterministic Finite Automata (NFA).

The class of finite automata only accepts the class of regular languages. However,

there are various important languages that are not regular and some of them are not

even context-free. Various extensions of the finite automata exist in the literature, such

as pushdown automata and Turing machines.

In this research another model, the finite automata with translucent letters i.e. FAwtl

is considered which is a more powerful model [1] than the finite automata. In each

state of these automata some input letters may be translucent and the automaton can

read and erase the first visible letter of the input tape, in this sense, the model is closely

related to a kind of cooperative distributed systems of restarting automata [2,3]. The

accepted language class has some nice properties, e.g., it is closed under the regular

operations, union, concatenation and Kleene star and it contains all rational trace

languages [2,4]. Relation to linguistics is studied in [5,6]. The language class accepted

4

by FAwtl is a superset of regular languages including some non-context-free

languages.

There are three linguistically important non context-free languages, namely the

multiple agreement {anbncn}, the cross dependencies {anbmcndm} and the marked copy

{wcw | w{a,b}*}. These three languages are belonging to the classes of mildly

context-sensitive languages [7,8]. A brief overview is given later in the chapter 2.

Some examples of these languages are discussed in [21]. There are various

computational models that are motivated to have generating/accepting power

including all these three languages but, on the other hand, having moderate complexity

[9,10,11].

Here we study T-inputFAwtl, it is the extension of the computing model finite

automata with translucent letters. Mealy machines are finite-state machines

transforming the input to an output. In our model, first, the input is transduced and,

then, it is given to a deterministic or non-deterministic FAwtl for deciding the

acceptance.

1.2 Variants of Finite Automata Related to New Model

In this section we are recalling the informal definition of variants of finite automata.

For any detailed concepts one is referred to a standard textbook, e.g., [12,13,14,15].

– A deterministic finite automaton (DFA), has a finite set of states and a finite set of

input symbols. One state is selected the start state, and zero or more states are

accepting states. A transition function determines how the state is changes each

time an input symbol is processed [12]. Finite automata are usually represented by

their graphs [12,13,14,15].

5

– A non-deterministic finite automaton (NFA), differs from a DFA such that NFA

can have any number of transitions (including zero) to next states from a given

state by given input symbol [12].

– A finite state transducer (FST), a Mealy automaton [16], is finite automaton which

is transforming the input to output (and does not accept a language).

– A non-deterministic finite automaton with translucent letters (NFAwtl), does not

read its input strictly from left to right as in the traditional setting, but for each

of its internal states, certain letters are translucent, that is, in this state the

NFAwtl cannot see them. Accordingly, it may read (and erase) a letter from the

middle or the end of the given input [1,2,3,4,5,6].

– A deterministic finite automaton with translucent letters (DFAwtl), a variant of

NFAwtl and less expressive than the NFAwtl. [1,2,3,4,5,6].

6

Chapter 2

NOTATIONS AND DEFINITIONS

In this chapter we will show some formal definitions of the variants of finite automata

related to our new combo automata. Also, we will discuss the classes of languages that

are called Mildly Context Sensitive; three of its main important languages are accepted

by our new model. We recall some earlier definitions and fix our notation. Then in

next chapter we will give the definition of our new model.

Finite automata are good computational models with finitely limited memory. They

can do many useful things, we interact with such machines all the time e.g. think about

an automatic door which sense a person approaching and hold the door open for long

enough so one can pass through it [22].

Formal definitions are extremely important to state the ability and limitation of a

specific model. Formally, finite automaton has a set of states, an input alphabet, initial

state(s), accepting states, and rules for moving i.e. transition function. In every step of

the computation, the automaton reads an input letter and determines that what will be

the next state. There are two basic variants of finite automata. We write formal

definition below. The first variant is Deterministic Finite Automata (DFA) and the

other is Non-Deterministic Finite Automata (NFA) [22]. For more examples and

details one can go through the books [12, 14, 20, 22].

7

2.1 Deterministic Finite Automata

Formally,

A deterministic finite automaton, a DFA, is a 5-tuple. A = (Q, Σ, q
0
, F, δ), where,

Q is the finite set of internal states

Σ is the finite alphabet of input letters

q
0
 Q is the initial state

F ⊆ Q is the set of final (or accepting) states

δ is the transition function of the form Q × Σ → Q

It may happen that the transition function is partial, i.e., it is not defined for some of

the pairs (q, a) with q ∈ Q, a ∈ Σ.

The transition relation can be extended to words w Σ* in the usual way. A word w

is accepted by A if δ (q
0
, w) is defined and it is an accepting state. The set of all accepted

words form the accepted language L(A).

8

2.2 Non-Deterministic Finite Automata

One can follow that in the literature there exist other definitions for NFA. For instance,

from [22] we clearly know that DFA and NFA are differentiated in one significant way

that is the transition function. In DFA transition function δ takes a state and an input

symbol, and produces next state. In NFA transition function δ takes a state and an input

symbol or the empty string, and produces the set of next possible states. But we use

the definition stated below to continue to finite automata with translucent letters and

also to our combo model i.e. we have no transition on empty word, but we have a set

of initial states.

Formally,

A non-deterministic finite automaton, a NFA, is a 5-tuple A = (Q, Σ, I, F, δ), where,

Q is the finite set of internal states

Σ is the finite alphabet of input letters

I ⊆ Q is the set of initial states

F ⊆ Q is the set of final (or accepting) states

δ is the transition relation of the form Q × Σ →2Q.

If |I| = 1 and |δ(q, a)| ≤ 1 holds for all q ∈ Q, a ∈ Σ, then A is a deterministic finite

automata, a DFA. The transition relation can be extended to words w Σ* as usual. A

word w is accepted by A if q
f
 δ(q

0
, w), where q

f
 F, q

0
 I, i.e., δ(q

0
, w) includes an

accepting state. The set of all accepted words form the language L(A) accepted by A.

9

2.3 Mealy Automata

In a Mealy machine, with each transition we get an output [16]. For better

understanding the detailed concept of Mealy machine is given here with examples

[12]. These are helping in various fields, few of them are detailed in [24, 25, 26].

Formally,

It is a system of T = (Q, Σ, q
0
, ∆, γ), where,

Q is the finite set of internal states

Σ is the finite alphabet of input letters

q
0
 Q is the initial state

∆ is the finite set of output symbols

γ is the transition function of the form Q × Σ to Q × ∆.

Originally T is in its initial state, the input tape contains an input word w ∈ Σ* and the

output tape is empty. When T reads a letter, it writes an output letter to the output tape

(concatenating it to the previously written letters if any) and changes its state

accordingly. By T(w) ∈ ∆* we denote the output produced by T on input w.

Mealy automata can also be represented by their graphs. You may note that the Mealy

machine, we formally defined above is deterministic, and we will use only this,

however, this concept can also be generalized to nondeterministic or even further. This

is discussed in [23] where details are given.

2.4 Deterministic Finite Automata with Translucent Letters

In the field of Natural languages and trace languages, Deterministic Finite Automata

with translucent letters or DFAwtl is more expressive than the regular DFAs. One can

10

see the definition of DFAwtl, other details and proofs of its expressiveness are shown

in [1-6].

Formally,

It is a septuple A = (Q, Σ, q
0
, F, $, τ, δ), where

Q is the finite set of internal states

Σ is the finite alphabet of input letters

q
0
 Q is the initial state

F ⊆ Q is the set of final (or accepting) states

$ ∉ Σ is a special symbol that is used as an end marker of the input

τ is the translucency mapping of the form Q → 2Σ

δ : Q × Σ → Q is the transition relation that satisfies the following condition:

∀q ∈ Q ∀ a ∈ τ(q): δ(q,a) = ∅. For each state q ∈ Q, the letters from the set τ(q) are

translucent for q and therefore there is no transition which reads that letter in the given

state.

The automaton A start from the initial state and the whole input w with end marker,

i.e., w$ is on the input tape. If A is in state q and its tape content is of the form uav$

such that u (τ(q))*, a τ(q), v Σ*, A erases the first occurrence of the non-

translucent letter a, obtaining the tape content uv$ and changing the state to δ(q,a).

Whenever, there is no transition is defined on letter a, A could not continue the

computation and rejects. Otherwise, if the tape content is u$ such that u (τ(q))* in a

state q, the input w is accepted if q F and rejected if q F. The set of accepted words

w is the accepted language L(A).

11

A DFAwtl may not process the input strictly from left to right and may accept a word

without reading/erasing all of its letters due to the translucency mapping. A DFAwtl

can also be given by its graph [1,5,6].

2.5 Non-Deterministic Finite Automata with Translucent Letters

Now we recall the concept of non-deterministic finite automaton with translucent

letters (NFAwtl) from [1-6].

Formally,

It is a septuple A = (Q, Σ, I, F, $, τ, δ), where,

 Q is the finite set of internal states

Σ is the finite alphabet of input letters

I ⊆ Q is the set of initial states

F ⊆ Q is the set of final (or accepting) states

$ ∉ Σ is a special symbol that is used as an end marker of the input

τ is the translucency mapping of the form Q → 2Σ

δ : Q × Σ → 2Q is the transition relation that satisfies the following condition:

∀q ∈ Q ∀ a ∈ τ(q): δ(q, a) = ∅. For each state q ∈ Q, the letters from the set τ(q) are

translucent for q.

A is called DFAwtl (deterministic FAwtl), if |I|=1 and |δ(q, a)| ≤ 1 holds for all q ∈

Q, a ∈ Σ.

The automaton A starts the process from the initial state and the whole input w with

end marker, i.e., w$ is on the input tape. If A is in a state q and its tape content is of

the form uav$ such that u (τ(q))*, a τ(q), v Σ*, A erases the first occurrence of

12

the non-translucent letter a, obtaining the tape content uv$ and changing the state to a

state in δ(q,a). Whenever, there is no transition is defined on letter a, A could not

continue the computation and rejects.

Otherwise, if the tape content is u$ such that u (τ(q))* in a state q, the input w is

accepted if q F and rejected if q F. The set of accepted words w is the accepted

language L(A).

An NFAwtl may not process the input strictly from left to right and may accept a word

without reading/erasing all of its letters due to the translucency mapping.

Deterministic and non-deterministic FAwtl can also be given by their graphs [5,6,1].

2.6 Mildly Context Sensitive Langugaes

As a step to simplify and formalize natural languages, Noam Chomsky provided a

framework named as Chomsky hierarchy. It has four levels of increasing complexity:

regular, context free, context sensitive, and recursively enumerable languages [27]. It

does not only help the linguists but also it opened the door for theoretical computer

science for grouping the abstract computational models according to the class of their

accepted languages. So, they can be descriptive, simplified hence understandable.

Over the time many researcher’s work exhibit the refined version of this hierarchy,

which was important to adhere the complexity of natural languages. Such a refinement

is the classes of mildly context sensitive languages.

The classes of mildly context languages come between context sensitive languages and

context free languages under set theoretical inclusion. We can say that they are proper

13

subclasses of the class of context sensitive languages but as they include all context

free languages, moreover they inherit some interesting properties of context free

languages thus we can also say that these classes are extended classes of the class of

context free languages. [27,28, 29].

Natural languages are not context free, and there are three widely known non-context

free languages that have patterns in natural languages defined below;

1. The language of cross dependencies; Labcd = {anbmcndm | m,n ≥ 1}

2. The marked copy language; Lww = {wcw | w ∈{a,b}*}

3. The language of multiple agreements; Labc = {anbncn | n ≥ 0}

Mildly context sensitive classes contain these specific languages [7]. [28] states

properties of the languages of these classes. For example, they have polynomial

parsing complexity among other properties.

14

Chapter 3

TRANSDUCED-INPUT FINITE AUTOMATA WITH

TRANSLUCENT LETTERS

Our models Transduced-input Finite Automata with translucent letter or T-inputFAwtl

is motivated by [17,18] where various types of pushdown automata had such a

preprocessed input.

Thus, in our combo model the input is preprocessed by a finite state transducer. The

transduced input is given to the finite automata with translucent letter, and it decides

on acceptance.

Following is a formal definition of our new combo automata.

Definition 1. Let A be FAwtl and T = (Q, Σ, ∆, q
0
, γ) be a Mealy machine such that

the output alphabet of T is the same as the input alphabet of A. Then, the pair (T, A)

is called a transduced-input finite automaton with translucent letters, T-inputFAwtl for

short. The language accepted by (T, A) is defined as

L(T, A) = {w ∈ Σ* | T(w) ∈ L(A)}.

15

The FAwtl and Mealy automaton, both can be deterministic or non-deterministic.

Based on their determinism we can define four variants of T-inputFAwtl;

 DDT-inputFAwtl; The Mealy automaton and FAwtl both are deterministic.

 DNT-inputFAwtl; The Mealy automaton is deterministic and FAwtl is non-

deterministic.

 NDT-inputFAwtl; The Mealy automaton is non-deterministic and FAwtl is

deterministic.

 NNT-inputFAwtl; The Mealy automaton and FAwtl both are deterministic.

All these variants are further grouped accordingly if the combo automaton use same

transducer or not.

Below is a simple example to understand the behavior of the automata T-inputNFAwtl.

In the next section it is shown that combo automata accept three important non-

context-free languages where both the Mealy machine T and the FAwtl A are

deterministic.

Example 1. The language Lc = {cnwcnwcn | w ∈ {a,b}+ and n>0} is accepted by the T-

inputNFAwtl presented graphically in Figure 1. The figure shows the graphical

representation of the transducer T (up) and the NFAwtl A (bottom). The Mealy

automaton T has the following roles:

16

Figure 1. The T-inputDFAwtl that accepts the language Lc.

- It checks if the input is of the form c+(a+b)+c+(a+b)+c+; particularly if there are three

factors of letter c in the input word, moreover, they are separated by non-empty words

over {a,b}. Whenever the form of the input does not match, T puts at least one x to the

output tape noticing this fact.

- T rewrites the second and third blocks of c’s to d’s and g’s, respectively.

- It also rewrites the second block over {a,b} by the alphabetic morphism h(a) = e,

h(b) = f, in this way the original letters a and b are mapped to e and f, respectively, on

the output tape of T in this block.

At the NFAwtl A, the set of translucent letters is shown at each state. Observe that in

fact, A is also deterministic, it is a DFAwtl. It works as follows. In its initial state,

which is also the only final state, there is no translucent letter, thus it must read the

e
b

f

{a,b}
{a,b}

g

p4

p5

a/e

b/f

a/e

b/f

c/g

c/g

17

first letter of the word T passes to it. By the transitions of its first three states, it erases

a letter c, a letter d and a letter g, thus in this cycle it checks if the number of c’s and

d’s and g’s are the same. If in the original input the format was appropriate, and the

number of the c’s in each of the three blocks were the same, then and only then, all

c’s, d’s and g’s are erased by A. Otherwise, either it gets stuck (if there were more c’s

in the first block than in any of the other blocks) or some d’s and/or g’s are left (if the

first block of c’s was shorter than the other blocks). In the second phase of the

computation states q
0
, q

3
 and q

4
 are used (in an accepting run). A erases the first letter

of the remaining input, and depending on if it is an a or a b, q
3
 or q

4
 is reached. From

this state the original letters a and b are both translucent, and the first letter of the other

block, an e or an f is read such that it must fits to the previously read original letter.

Observe that A cannot read any letter x. Therefore, it follows that (T, A) accepts the

language Lc.

 For instance, the input word cabcabc is in the language Lc. T preprocesses it as follows.

The preprocessing starts at state p
0
. The first c is kept in the transduced input as c, and

state p
1
 is reached. Then the first a is kept in the transduced input as a, then b has also

been kept, and state p
2
 is reached. After that c is rewritten to d, and state p

3
 is reached.

Here, the next letter, a, is rewritten to e, similarly b is transformed to f, and state p
4
 is

reached. Then c is transduced to g, and p
5 is reached. Thus, the word cabdefg is

obtained and passed to A with the end marker $. In its initial state q
0
 nothing is

translucent, therefore first letter c is read and state q
1
 is reached with remaining input

abdefg$. Here a, b and c are translucent, thus A reads d (which is the image of the

second c) by changing its state to q
2 with remaining input abefg$. Here again a, b, c,

18

and also d, e, f are translucent, therefore A reads g (which in fact refers for the third

block of c’s) by changing its state back to q
0
 with remaining input abef$. Here nothing

is translucent, and now the first letter is a. A reads it and state q
3
 is reached with

remaining input bef$. Here a and b are translucent, thus, e is read from the remaining

input and A moves into the state q
0 with remaining input bf$. Here, there is no

translucent letter, b is read and state q
4
 is reached. Here a and b are translucent, the

last letter f is read and A moves into its accepting state q
0
 with a fully processed input.

Thus, the string cabcabc is accepted by (T, A).

 On the other hand, for example the input word abcabc is preprocessed by the Mealy

automaton T to xxxxxx. It is clearly not accepted by A. The word abcabc is not in the

language Lc. Observe that A cannot read any letter x because no transition is defined

with letter x. It is used as a kind of failure symbol.

3.1 Accepting Mildly Context-Sensitive Languages

In this section we will show that all the three important mildly context-sensitive

languages are accepted by our deterministic finite state model, i.e., we present

T-inputDFAwtl for each of them.

Let us start with the language of multiple agreements.

3.1.1 The Language of Multiple Agreements

Theorem 1. The language Labc = {anbncn | n ≥ 0} is accepted by a T-inputDFAwtl.

Proof: We present an FST T1 and a DFAwtl A1 such that the pair (T1, A1) accepts Labc.

T1 = ({p0, p1, p2, p3},{a,b,c},{a,b,c,x}, p0,γ) with γ(p0,a) = (p0,a), γ(p0,b) = (p1,b),

γ(p0,c) = (p3,x), γ(p1,a) = (p3,x), γ(p1,b) = (p1,b), γ(p1,c) = (p2,c), γ(p2,a) = γ(p2,b) =

19

(p3,x), γ(p2,c) = (p2,c) and γ(p3,a) = γ(p3,b) = γ(p3,c) = (p3,x). Further, let A1 =

({q0,q1,q2},{a,b,c,x},$,τ,q0, {q0},δ) with τ(q0)={}, τ(q1)={a,c}, τ(q2)={a,b} and δ(q0,a)

= q1, δ(q1,b) = q2, and finally, δ(q2,c) = q0.

Their graphical representations are shown in Figure 2. In fact, if the input is of the

form a*b+c+, T1 is copying it, otherwise at least one x will appear on its output. Then,

A1 accepts only words that contain the same number of a’s, b’s and c’s and do not

contain any x (observe that no transition is defined with letter x). Hence exactly the

following words are accepted: the empty word is accepted, if the input is nonempty,

then it must start with a, after some a’s, the same number of b’s and finally the same

number of c’s must follow, e.g., abc, aabbcc, aaaabbbbcccc.

T1 : A1 :

Let us consider the word aabbcc which is in the language. T1 starts with initial state

p0, it reads a, transduce it to a, then again reads an a and transduces in a and stay at

same state p0, then reads a b, and transduce it to b and reach to state p1, then again read

a b, transduce it to b by remaining in same state. Then T1 reaches to state p2 and by

p

p

p

p

a/a

b/b

b/b

c/c

c/c

a,b/x

a/x
c/x

a,b,c/x

{} {a,c}

q
0
 q

1
 q

2

a b

c

{a,b}

Figure 2. The T-inputDFAwtl that accepts the language Labc.

20

transducing first c to c, and transduce second c to c by remaining it in same state. The

output is aabbcc which is passed to A1. At its initial state q0 nothing is translucent, A1

reads first letter a of the input aabbcc$ and move to state q1 with remaining input

abbcc$. At this state a and c are translucent, it will skip the second b and will read first

b and move to state q2. Now a and b are translucent, A1 reads first c and go to state q0

with the remaining input abc$. At q0 we can see that nothing is translucent, A1 reads

first letter that is a and go to q1 with remaining input bc$ where a and c are translucent.

Here, we read b and reach to q2 with remaining input c$. Finally, we read the last letter

c and reach to accepting state q0 with $. It means that the word is accepted by T-

inputDFAwtl (T1,A1).

The word acb is not accepted by (T1,A1) since T1 transform is to axx and A1 gets stuck

on this.

The word aabcc is transformed to itself by T1, and then, A1 processes a cycle by erasing

an a, a b and a c, such that it is state q0 with remaining input ac. Now a is read and

erased, c is left, however, in q1 c is translucent, A1 reaches the end marker, but the state

q1 is not accepting, thus this input is rejected.

3.1.2 The Language of Cross Dependencies

Theorem 2. The language Labcd = {anbmcndm | m,n ≥ 1} is accepted by a T-

inputDFAwtl.

Proof: We give a T-inputDFAwtl (T2, A2) that accepts Labcd in Figure 3. First, the

Mealy automaton T2 preprocesses the input by changing some letters to x if the input

is not in the form of a+b+c+d+. Then, the DFAwtl A2 is checking if the number of a’s

21

and c’s and the number of b’s and d’s match by accepting exactly those which are in

Labcd after the preprocessing phase.

Figure 3. The T-inputDFAwtl that accepts the language Labcd.

For instance, aabccd is in the language and T2 passes it unchanged to A2. In the initial

state q0 nothing is translucent, the automaton reads a, hence the input is shortened to

abccd and the automaton changes its state to q1. Here a and b are translucent, it will

read the first c letting the remaining input abcd and then it moves to state q2. Now a is

translucent and b is read, acd left, state q3 is approached. Letters a, b, c are translucent,

letter d is read, thus at q4 the input is reduced to ac. No translucent letter in this state,

acceptance goes only with fully processed input in this automaton, thus a is read, q5 is

reached. The last letter c is read and the accepting state q4 is reached. The word aabccd

is accepted.

Now consider the word abcdd. T2 transforms the word to itself abcdd and passes it to

A2. At the initial state nothing is translucent and A2 reads first a and go to state q1 with

22

remaining input bcdd$. At this state a and b are translucent. A2 reads c and move to q2

with remaining input word bdd$. Now we read b and move to state q3. The remaining

input word is dd$. We read a d and reach to q4. One can see that it’s an accepting state

but we still didn’t reach to end marker $ as the remaining input word still have d$ and

there is no transition to read this letter. Hence the input word is rejected.

The word abccdabd is not in the language. T2 transforms abccdabd to abccdxxx. A2

clearly has no transition for letter x, hence it is also not accepted by A2.

Finally, after, the language of cross dependencies, the copy language is considered.

3.1.3 The Marked Copy Language

Theorem 3. The language Lww = {wcw | w ∈{a,b}*} is accepted by a T-inputDFAwtl.

Proof: Figure 4 shows the graphical representation of the combo T-inputDFAwtl

(T3,A3). The Mealy automaton T3 has two roles: it checks if there is at most one letter

c in the input word, moreover, it rewrites the suffix of the input, after the (first) c in

such a way, that original letters a and b are mapped to d and e, respectively. A3 checks

and erases the first letter of the preprocessed input, and depending on if it is an a or a

b it erases the first letter after the c if it matches to the checked letter. Finally, when

the word starts with a c, it is processed, and if the preprocessed input is fully erased by

this time, it is accepted. Observe that A3 cannot read any letter x. It follows that (T3,A3)

accepts the language Lww.

23

Figure 4. The T-inputDFAwtl that accepts the language Lww.

For instance, abcab is in the language Lww and T3 preprocesses it as follows. The

preprocessing starts at state p0. The first a is kept in the transduced input as a, then b

has also been kept, after that c is kept, and state p1 is approached. Here, a is rewritten

as d and, similarly b is translated to e. Thus, the word abcde is obtained and passed to

A3. In its initial state q0 nothing is translucent, therefore a is read and state q2 is

approached with remaining input bcde. Here a,b and c are translucent, A3 reads d by

changing its state back to q0 with remaining input bce. Here nothing is translucent, b

is read and state q1 is approached. Here a,b,c are translucent, e is read and A3 moves

into state q0 with remaining input c. Here there is no translucent letter, c is read and A3

reach its accepting state q3 with a fully processed input. Thus, the string abcde is

accepted by (T3,A3).

The word bacba is in the language. T3 at its initial state p0 transduce the letters b, a, to

b, a, and stays in the same state. Then it transduces the c to c and reached to state p1.

T3 :

A3:

a,b,c/x

p2

p0 p1

a/a b/b

c/c

a/d b/e

c/x

{a,b,c} {a,b,c} {}

q
1
 q

0
 q

2

q
3

b a

d e c {}

24

At this state the letters b, a, are transduced to e, d, and the state is not changed. We get

an output word baced and passes it to A3. Initially nothing is translucent it reads first

letter b and move to state q1 by shortening the word to aced. q1 has translucent letters

a, b, c. A3 will skip those letters in the input word and will read an e, and will to move

to state q0. The remaining input word is now acd$. Again, nothing is translucent at this

stage, A3 will read first letter that is a and will go to state q2 with input cd$. Here again

letter a, b, and c are translucent. A3 will read now d by the shortening the input word

to c. A3 is now in its initial state and the remaining input is c$. It will read c and will

reach to endmarker $ with completely processed input which shows that this is

accepted by (T3, A3).

On the other hand, for example the input word abcabc is preprocessed by the Mealy

automaton T3 to abcdex which is not in the language Lww and it is clearly not accepted

by (T3, A3).

25

Chapter 4

CLOSURE PROPERTIES

In this section we present few closure properties of the language class accepted by

DNT-inputFAwtl. First, the regular operation union is studied, we show that the

language class accepted by T-inputNFAwtl is closed under union if the same

transducer is used independently if the transducer is deterministic or non

deterministic.

4.1 DNT-inputFAwtl Closure under Union Using Same Transducer

Theorem 4. Let (T, A1) and (T, A2) be two T-inputFAwtl. T is detreministic transducer

and A1, A2 are NFAwtl. The union of the languages accepted by (T, A1) and (T, A2) is

also accepted by a transduced-input non-deterministic finite automaton with

translucent letters with transducer T.

Proof: Given the T-inputNFAwtl (T, A1) and (T, A2), where T = (Q, Σ, ∆, q0, γ) is a

Mealy machine and A1 = (Q1, ∆, $, τ1, I1, F1, δ1), A2 = (Q2, ∆, $, τ2, I2, F2, δ2) are two

NFAwtl, we will construct the combined automaton (T, B), where B is an NFAwtl such

that L(T, A1) ∪ L(T, A2) = L (T, B).

Without loss of generality, we may assume that Q1 ∩ Q2 = Ø.

Then, let B= (Q1∪Q2, ∆, $, τ, I1∪I2, F1∪F2, δ), where

δ(q) = {
δ1(𝑞) if 𝑞 ∈ 𝑄1

δ2(𝑞) if 𝑞 ∈ 𝑄2

26

τ(q) = {
τ1(𝑞) if 𝑞 ∈ 𝑄1

τ2(𝑞) if 𝑞 ∈ 𝑄2

Since there is no interference between the computations done by A1 and A2 encoded in

B, each of the accepting (and non-accepting) computations of A1 and A2 has a one-to-

one correspondence with an accepting (non-accepting) computation of B, respectively.

Thus, L(B) = L(A1) ∪ L(A2), and therefore, L(T, A1) ∪ L(T, A2) = L(T, B).

The proof is finished. This is explained also with example 4 in Section 4.4

4.2 Dual Normal Form

To present another closure property result in section 4.3 first we need to recall that all

NFAwtl can be converted into “last letter normal form”. In [2] (Theorem 6.5) it is

proven that every NFAwtl A has an equivalent NFAwtl A’ accepting the same language

with special properties.

Definition 2. An NFAwtl A’ = (QA’, Σ, $, τA’, IA’, FA’, δA’) is in “last letter normal form”

if the following conditions hold;

1. In each state q ∈ QA’, there is exactly 1 letter for which transitions are allowed.

2. The last occurrence of each letter a Σ of the input word is erased in a transition

(from a state) such that the translucency mapping is empty at that state.

3. Every input letter is processed in an accepting computation i.e. the translucency

mapping assigns an empty set to any final state.

4. The automaton has exactly 1 accepting state qf ∈ FA’.

A kind of extension of the normal form is helpful to prove the closure property we will

show in the next section. Now let us consider an example.

27

Figure 5. The T-inputNFAwtl for language Law.

Example 2: The Language Law={anw | w ∈ {b,c}* and |b|=|c|=n ≥0} is accepted by the

T-inputDFAwtl.

Figure 5 shows the graphical representation of the combo automata T-inputDFAwtl

(T, A). T preprocesses input in form of a* w. Otherwise we will have an x in input word.

We can clearly see from A that there is no transition for letter x. Thus, all those words

which contains x will be clearly not accepted by A.

T: A:

Now A is already fulfilling condition 1, 3, and 4 from Definition 2 stated above. It

means first, there is only 1 letter for which transition is allowed for each state. A has

exactly one accepting state q0 and it is processing every input letter in an accepting

computation. Now, to fulfill the remaining condition 2, we need to modify DFAwtl A

into “last letter normal form” A’ such that when A’ reads last letter then there is no

translucency mapping.

a, b, c/x

1 2 3

4

a/a

a/a

c/c

b/b

c/c

b/b

b, c/x a/x

{}

q0 q1 q2

{a,c} {b,a}

a b

c

28

To incorporate this important point in, we will index all the states QA’ by the set of n-

tuples from the set IND= {(i1,…, in)| i1,…, in ∈ {2,1,0,d}}.

With a word w ∈ Σ* we associate an index vector IND(w)= (i1,…, in) by taking

ij = {

2 if |𝑤|𝑎𝑗
≥ 2 i. e. 𝑤 contains atleast two occurences of letter 𝑎𝑗

1 if |𝑤|𝑎𝑗
= 1 i. e. 𝑤 contains exactly one occurrence of letter 𝑎𝑗

0 if |𝑤|𝑎𝑗
= 0 i. e. letter 𝑎𝑗doesn′toccur in word 𝑤

for all j = 1,…,n. As a first general rule A’ cannot erase a letter as if is = 0 or is = d

holds.

On input w∈ Σ*, A’ guesses a tuple IND’ (w)= (i1,…, in) ∈ {2,1,0}n for one of the initial

state of automata q0 ∈ QA’. It attempts to erase the left most occurrence of letter as,

changing the state to a state qi in δA’(q, a) for all i=1,…,n. δA’ is a transition relation

for A’ where q ∈ QA’. For instance, Law is a language over three letters a, b, and c. For

initial state q0 in Figure 5, it will associate an index 222 with an input word w which

corresponds to the at least two occurrences of a, b, c in that state when the computation

starts. A will read the leftmost occurrence of letter as such that is ≠0 and will move to

next state according to transition relation. Moreover, if is =2, then A’ transforms the

word w = w1 as w2 into the word w1w2. Now, IND(w1w2) either coincides with IND(w)

or it is obtained from IND(w) by replacing is by the value i’s = 1. For, instance in Figure

6 after reading a from state 𝑞0
222, if there are at least 2 a’s left in input word than this

state will correspond to 𝑞1
222 otherwise it will correspond to 𝑞1

122 by replacing the

index of a from 2 to 1. If is =1, then A’ transforms the word w = w1 as w2 into the word

w1w2. Here |𝑤1𝑤2|𝑎𝑠
 = 0. For, instance in Figure 6 after reading a from state 𝑞0

111, it

will move to next state 𝑞1
011 by replacing index from 1 to 0.

29

Figure 6. Partial representation of the “last letter normal form” NFAwtl for the

language Law.

After reading the last occurrence of a letter as, automaton moves to the next state -

during a computation of certain input word w, the remaining input word now may have

a leftmost last occurrence of letter bs which we cannot read because of translucency

mapping in original automata A. But in the “last letter normal form”, we have no

translucency at the said step and we read that letter on that state by using indicator d

in index. Indicator “d” means that the current word w contains a single occurrence of

the letter bs, but it is already read in the corresponding to original computation.

q0 q1

{a,c} {b,a}

q2

{}

222
a b

c

222 222

q1
122

q2

q2

112

122

q0
112

q0
111

q1
011

q2
0d1

q2
001

q1
0d0

q0
000

a

b

b

c c

a a

b c

c
b

q0
121

q0
122

q1
021

q1
022

q2
011

q2
021

q0
020

q0
010

c

c

c

a

a

b

b

c

b

q2
022

q2
012

q0
011

q0
012

q0
022

q0
021

b

b

c

c

c

c

q2
212

q0
211

c

c
q0

212

q1
112

q1
212

q1
111

q1
211

q2
101

q0
100

q2
201

q0
200

q2
102

q2
202

b

a

a

a

a

b

b

b

b

c

c

q0
221

q1
121

q1
221

c
a

a

{a,c}

{b,a}

{b,a}

{}

{}
{}

{}

{}

{}

{}

{}

{c}

{}

b

q2
01d {}

q0
00d

b

c

q1
000

{b}

{}

{}

{}

{c}

{b}

{b}

{}

{}

{}

{}

{}

{b,a}

{}

{}

{}

{}

{c,a}

{a}

{c,a}

{c,a}

{a}

{a}

{}

{}

{a,c}

{a,c}

30

Let us consider the word acb. In original automata (Figure 5) at initial state q0, DFAwtl

A will read the first letter a and then move to next state q1 with remaining word cb$.

At q1, c is translucent and A will read b and reach to state q2 with remaining input c$.

At state q2, A will read last c.

Now, consider this word acb computation on NFAwtl in Figure 6 which is “last letter

normal form” of A. At initial state 𝑞0
111 the automaton will read the first letter a, and

goes to next state 𝑞2
0d1 where nothing is translucent and automaton has to read c. This

specific step of computation is not possible in original automaton A because c becomes

translucent after reading a. But in its last letter normal form, to read c, automaton will

reach to state 𝑞2
0d1 after reading a and considering that letter b is already read by

replacing its index 1 with d. Later in that computation d is replaced with 0 to show that

the input is completely processed.

Please note that there is only one accepting state 𝑞0
000. All other states with empty input

word end in non-accepting computations e.g. 𝑞1
000.

Figure 6 is a partial graphical representation of “last letter normal form”. All the paths

which ends in a state with darker base color, it means that the specific path will end in

a failed computation. Only one such complete path (which will end in failed

computation) is shown to understand the automaton’s expected process in this case.

For example, the path for word aabbbcc is from 𝑞0
222 to 𝑞1

000 but this word is not in

language Law and 𝑞1
000 is not an accepting state. Hence, this ends in rejecting the word

aabbbcc.

31

Now we further modify A’ in such a way that it also fulfills some additional properties

which are very important to prove next property, closure under intersection with

regular languages. We will call this form dual normal form.

Definition 3. An NFAwtl A” = (Q, Σ, $, τ, I, F, δ) is in dual normal form if it fulfills

the following conditions.

1. There is an NFAwtl A= (QA, ΣA, $, τA, IA, FA, δA) in “last letter normal form” such

that L(A)= L(A”), moreover

2. The alphabet Σ of A is doubled. Formally, Σ = ΣA ∪ Σ’A where Σ’A = {b’| b ∈ Σ𝐴}

and ΣA ∩ Σ’A = ∅

3. The states of A are doubled, there is a state for transitions for an original input letter

and there is also a copy with transitions of its marked version. Formally,

Q = QA∪ Q’A ,where Q’A = {q’| q ∈ QA} and QA∩ Q’A=∅.

This condition is not applicable on the accepting (final) state, as we will always

have only one accpeting state (Condition 4 in Definition 2).

4. The translucency mapping for each state contains both the original and the marked

version of the given letters. Formally,

a, a’∈τ (q) if a∈τA (q)

a, a’∈τ (q’) if a∈τA (q)

5. The last input letter a’ for every input word w will only belong to Σ’A. Therefore,

no duplication is allowed for the states through which we read last letter.

That is, in the dual normal form, in the NFAwtl, all accepting computations erase the

entire input word and one can also be sure when the last letter of the input is processed.

32

Figure 9 shows the modified version of NFAwtl from Example 2 which is now in dual

normal form NFAwtl. We have marked the copied states and input letters with a dash

(‘) to distinguish the copy from the original states and input letters of A. Other points

we need to keep in mind are that every marked letter as well as original letter must

have a similar or analogous computation from one state to another reading an original

letter and its marked version. For instance, if there is a transition from a state p to q

reading letter a, then there must be a transition from p to q’ reading letter a, and from

p’ to q’ or p’ to q reading its marked version a’.

Now, all the states of Q will be indexed by n-tuple and Q = Q×IND as we did in “last

letter normal form” stated above.

In Figure 9 those paths are removed which end in failed computation. Consider the

path from 𝑞0
222 to 𝑞1

000 in Figure 6 which we removed in the dual normal form for the

said reason.

Now we turn to another interesting closure property, namely we study intersection by

regular languages.

4.3 DNT-inputFAwtl Closure under Intersection with Regular

Languages

Theorem 5. The language class accepted by DNT-inputFAwtl is closed under

intersection with regular languages.

Proof: Let T be a deterministic transducer, A is an NFAwtl, and B is a DFA. We need

to consturct DNT-inputFAwtl (T’, A’) which accepts the intersection of the languages

accepted by the NFAwtl (T,A) and by B. First, the “intersection” of T and B is

33

constructed, i.e., the transducer T’ and then, its output is forwarded to A’ which is

based on the dual normal form of the NFAwtl A.

The intersection of the two finite state automata T and B is done by the usual cross-

product method, however, here one of the automaton is an accepting device while the

other, and as well as the resulted automata, are transducers. In what follows, the

accepting states of B must be encoded in the output allowing the NFAwtl A’ to check

also this condition. Thus, the output alphabet of T is doubled, and whenever, B is in

accepting state (which is clearly identified since B is a DFA) in its process, a marked

output letter (such as a’) is written in the output tape (instead the original output letter

a) allowing to distinguish the positions where the prefix of the input is also in the

regular language defined by B or not.

However, since NFAwtl may proceed the input in a not usual left-to-right way, we

need to be careful how to know that the input is in both of the languages of (T,A) and

of B. This point is satisfied with condition 2 definded in Definition 2 Section 4.2. In

this way the condition to be in the language L(B) can also be checked by A’. To ensure

all these points, we built dual normal form A’.

Formally, let

T = (QT, Σ, ∆T, q0, γT)

A= (QA, ∆T, $, τA, IA, FA, δA)

B= (QB, Σ, qi, FB, δB) be given.

Further, let

T’= (Q’, Σ, ∆, (q0, qi) , γ) where,

Q’= QT×QB

34

∆ = ∆T∪∆’ where ∆’ = {b’| b ∈ ∆T} and ∆T∩∆’=∅

If (p’, x) = 𝛾T (p, a) and q’= δB (q, a) then γ ((p, q), a) = ((p’, q’), y) where,

 p∈ QT , q ∈ QB , a ∈ Σ , and y = {
𝑥 if q ∉ 𝐹𝐵

𝑥′ if q ∈ 𝐹𝐵

Without loss of generality, we assume that A was given in “last letter normal form”

and now we show the construction of A’ in dual normal form.

A’= (Q, ∆, $, τ, I, F, δ)

Q= QA∪Q’A where Q’A = {q’| q ∈ QA}

∆ as described for T’

I= IA∪I’A where I’A = {q’i| qi ∈ I}

a, a’∈τ (q) if a∈τA (q)

a, a’∈τ (q’) if a∈τA (q)

F= {qf} the only accepting state where qf∈FA

 δ: Q×∆→2Q

p, p’ ∈ δ (q, a) if p∈ δA(q, a)

p, p’ ∈ δ (q’, a’) if p∈ δA(q, a)

In this way, (T’, A’) is a T-inputNFAwtl and L(T,A) ∩ L(B) = L(T’, A’).

The proof is finished.

4.4 Examples

This section provides the examples of intersetion with regular language and closure

under union. First in Example 3 the intersection with regluar languages is explained

and then the closure under union is explained in Example 4.

35

Example 3: Let us consider the lanuage Law={anw | w ∈ {b,c}* and |b|=|c |= n≥0} is

accepted by the T-inputNFAwtl, from Example 2 and language Ln = a*b*c* is accepted

by a DFA. Figure 5 shows the graphical representation of DNT-inputFAwtl. We

present the graphical representation of DFA of Ln and transducer T’ of combo

automaton that accept the intersection of Law with Ln in Figure 7, and Figure 8

respectively.

B:

T’:

A D B

C

a

b

b

a

a, b, c

c
a, b

c

c

3B 1A 2A 4D

4C 4B 3C 3D

a/a’

a/a’

b/b’

b/b’

a/x

c/x b/x

c/c’ c/c’ a/x

a/x

a,b,c/x

b/b

c/c

b/b b/x

c/c’

c/x

a,b/x

a/x
c/x

Figure 7. The DFA that accepts the language Ln.

Figure 8. The transducer T’

36

q0 q1 q2

{}

222
a b

c

222 222

q1
122

q2
112

111

q1
011

q2
0d1

q2
001

q1
0d0

q0
000

a

b

c

a
a

b

c’
b’

{}
{}

{} {}

q0
{}

c
c’

a

a

c

b

a
b c

a
q0 q1 q2

{}

‘222
a’ b’

c’

‘222 ‘222

q1
‘122

q2
‘112

‘111

q1
‘011

q2
‘0d1

a’

b’

c’

a’

b’

{} {}

q0
{}

{a,c,a’,c’} {b,a,b’,a’}

a’ a’

c’

b’

a’

a’
b’

c’
{b,a,b’,a’} {a,c,a’,c’}

{a,c,a’,c’}
{a,c,a’,c’}

{b,a,b’,a’} {b,a,b’,a’}

a’

A’:

Now from Figure 9 we can clearly see how the dual normal form is working. It shows

that we have set of initial states I = {q0, q’0}, with associating index we expand this set

to I ={𝑞0
222, 𝑞0

111, 𝑞′0
222, 𝑞′0

111, 𝑞0
000}. Thus, the input word may only have one

occurrence of each letter a, b, and c then the initial state will be 𝑞0
111 and if it has 2 or

more occurrences of each letter in the input word then the initial state will be 𝑞0
222.

Both initial states 𝑞0
222an𝑑 𝑞0

111 are copied to 𝑞′0
222an𝑑 𝑞′0

111 to allow to read the

marked letter a’ initially if T’ provided such output.

Figure 9. Partial graphical representation of the dual normal form

NFAwtl for the language Law.

37

Further, as we already discussed in Definition 3 that if the original state, let say 𝑞0
222

has a transition to read a letter a to state 𝑞1
122 and marked state 𝑞′0

222 have transition

for a’ to 𝑞′1
122 then there will also be a transition, for letter a from state 𝑞0

222 to state

𝑞′1
122 and for letter a’ from 𝑞′0

222 to state 𝑞1
122 as well.

Let us consider the input word aabbcc is in the language. T’ in Figure 5 will start

transducing the input at state 1A, the letter a will be transduced to a’ and state 2A will

be reached. Then next a will be transduced to a’ and it will remain on the same state.

Then letter b will be transduced to b’ and state 3B will be reached and again b will be

transduced to b’ and state will not be changed. From there letter c is transduced to c’

and reached to 3C. By staying in the same state T’ transduced next c to c’ and produced

an output a’a’b’b’c’c’.

Thus, the word a’a’b’b’c’c’ is obtained and passed to A’ with the end marker $. In the

initial state 𝑞′0
222 nothing is translucent. A’ will erase the first letter a’ and after

updating the index of a’ it will move to next state 𝑞′1
122 with remaining input word

a’b’b’c’c’$. At this state {a, a’, c, c’}, are translucent, A’ will erase first b’ and will

move to state 𝑞′2
112 by updating the index of b.

The remaining input is a’b’c’c’$. Now at this state 𝑞′2
112, {a’, b’} are translucent. A’

will now read first c and will move to state 𝑞′0
111 with remaining input is a’b’c’$.

At this state as we are reading last occurrences of a’, b’ and c’, translucency mapping

is empty. A’ reads first letter i.e. a’ and come to state 𝑞′1
011 with remaining input b’c’$.

A’ will now read first b’ and will reach to state 𝑞2
001 with remaining input c’$. Then

38

finally reading last input letter c and reaches to accepting state 𝑞0
000 with $ end marker.

It means that the word a’a’b’b’c’c’ is completely processed and accepted.

Let us consider another word acabbc. T’ transduced this word as a’c’xxxx. This world

clearly will not be accepted by A’. The word acabbc is not in the language L(T’, A’).

Observe that A' cannot read any letter x because no transition is defined with letter x

which we used as a failure symbol and this input word will be discarded.

Example 4: Let us consider the language Labc = {anbncn | n ≥ 0} is accepted by a T-

inputDFAwtl from theorem 1 and the language Labbc = { an b2ncn | n ≥ 0} is accepted

by T-inputDFAwtl is given in Figure 10. Then Figure 11 shows the graphical

representation of union of Labc and Labbc.

T4: A4:

Figure 10. The T-inputDFAwtl that accepts the language Labbc.

p

p

p

p

a/a

b/b

b/b

c/c

c/c

a,b/x

a/x
c/x

a,b,c/x

{} {a,c}

q
0
 q

1
 q

2

a b

c

{a,c}

q
3

b

{a,b}

39

T: B:

In Figure 11 it is shown that the T-inputNFAwtl accepts the union of the langugages

Labc and Labbc when same transducer is used. There is no intefrence of computations

done by of A1 and A4 encoded in NFAwtl B presented in Figure 11, each of the

accepting (and non-accepting) computations of A1 and A4 has a one-to-one

correspondence with an accepting (non-accepting) computation of B, respectively.

Figure 11. The T-inputNFAwtl that accepts the language Labbc ∪ Labc.

p

p

p

p

a/a

b/b

b/b

c/c

c/c

a,b/x

a/x
c/x

a,b,c/x

{} {a,c}

s
0
 s

1
 s

2

a b

c

{a,c}

s
3

b

{a,b}

{} {a,c}

q
0
 q

1
 q

2

a b

c

{a,b}

40

Chapter 5

CONCLUSION

We have shown that a combination of deterministic finite state machines is very

powerful, all the three important non-context-free mildly context-sensitive languages

are accepted by this model. The language classes defined by these new models are

interesting and we have stated some closure properties. Particularly, we have shown

that the language class accepted by T-inputNFAwtl is closed under union with same

signatures (where same signature means that the same transducer is used for

preprocessing). Also, it was shown that the language class of T-inputNFAwtl is closed

under intersection with regular languages. Further we intend to work on investigation

of other closure properties with other cases of deterministic/non-deterministic versions

of T-inputFAwtl with and without assuming the same signatures.

41

REFERENCES

[1] Nagy B., F. Otto (2011): Finite-State Acceptors with Translucent Letters. In Proc.

BILC 2011: 1st Int. Workshop on AI Methods for Interdisciplinary Research in

Language and Biology, 3-13.

[2] Nagy B., F. Otto (2012): On CD-systems of stateless deterministic R-automata

with window size one. J. Computer and System Sci. 78 (2012), 780-806.

[3] Nagy B., F. Otto (2013): On Globally Deterministic CD-Systems of Stateless R-

Automata with Window Size One. Int. J. Computer Mathematics 90 (2013), 1254-

1277.

[4] Nagy B., F. Otto (2010): CD-Systems of Stateless Deterministic R(1)-Automata

Accept all Rational Trace Languages. In Proc. LATA 2010: 4th Int. Conf.

Language and Automata Theory and Applications, LNCS 6031 (2010), 463-474.

[5] Nagy B., L. Kovács (2013). Linguistic Applications of Finite Automata with

Translucent Letters. In Proc. ICAART 2013: 5th International Conference on

Agents and Artificial Intelligence, Barcelona, vol. 1, 461-469.

[6] Nagy B., L. Kovács (2014). Finite Automata with Translucent Letters applied in

Natural and Formal Language Theory. LNCS Transactions on Computational

Collective Intelligence 17, LNCS-TCCI XVII, LNCS 8790, 107-127.

42

[7] Jäger G., J. Rogers (2012). Formal language theory: refining the Chomsky

hierarchy. Philos Trans R Soc Lond B Biol Sci. 367(1598): 1956-1970.

[8] Morawietz F. (2003). Two-Step Approaches to Natural Language Formalism.

Studies in Generative Grammar 64. De Gruyter, Berlin.

[9] Gazdar G. (1982). Natural languages and context-free languages. Linguist. Philos.

4, 469-473.

[10] Kornai A. (1985). Natural languages and the Chomsky hierarchy. In

Proceedings of EACL’85, 1-7.

[11] Wintner S. (2002). Formal language theory for natural language processing. In

Proceedings of ACL’02, 71-76.

[12] Hopcroft J.E, R. Motwani, J.D Ullman (2006). Introduction to Automata

Theory, Languages, and Computation. 3rd Edition. Addison-Wesley, Boston, MA,

USA.

[13] Horváth, G., B. Nagy (2014). Formal Languages and Automata Theory,

Typotex, Budapest, Hungary.

[14] Linz P. (2011) An Introduction to Formal Languages and Automata. 5th

Edition, Jones & Bartlett Learning, USA.

43

[15] Yu S. (1997). Regular languages (Chaper 2). In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Languages. vol. 1, pp. 41-110. Springer, Berlin.

[16] Mealy G.H. (1955). A Method for Synthesizing Sequential Circuits. Bell

System Technical Journal 34, 1045-1079.

[17] Kutrib M., A. Malcher, M. Wendlandt (2015). Tinput-Driven Pushdown

Automata. In Proc. MCU 2015: 7th Int. Conf. Machines, Computations, and

Universality, LNCS 9288, 94-112.

[18] Kutrib M., A. Malcher, M. Wendlandt (2017). Tinput-Driven Pushdown,

Counter, and Stack Automata. Fundam. Inform. 155(1-2): 59-88.

[19] Nagy B., M. Fatima (2020). Transduced-input automata with translucent

letters. Comptes rendus de l’Académie bulgare des Sciences, Vol 73, No1, pp.33-

39.

[20] Carroll J., D.E. Long Darrell (1989). Theory of Finite Automata with an

Introduction to Formal Languages, Prentice-Hall, Inc., New Jersey.

[21] Angyal D., B. Nagy (2017). An extension of the LR parsing algorithm for two-

head pushdown automata, NCMA 2017: Ninth Workshop on Non-Classical

Models of Automata and Applications, Prague, 71-86.

[22] Sipser M. (1996). Introduction to the Theory of Computation (1st ed.).

International Thomson Publishing. USA.

44

[23] McDermid J.A. (1991). Software Engineer's Reference Book. Butterworth-

Heinemann, Newton, MA, USA.

[24] Khalili A., T. Armando (2014). Learning Nondeterministic Mealy Machines.

International Conference on Grammatical Inference, in PMLR. 34:109–123.

[25] Mehdi M., A. Khan (2016). DNA Pattern Analysis using FA, Mealy and Moore

Machines. International Journal of Computer Science and Information Security.

14:235-243.

[26] Bonsangue M., J. Ruten, A. Silva (2008). Coalgebraic Logic and Synthesis of

Mealy Machines. Communications of The ACM. 231-245.

[27] Chomsky N. (1956). Three models for the description of language. IRE

Transactions on Information Theory 2: 113–124.

[28] Joshi, A.K. (2010) Mildly Context-Sensitive Grammars. Technical Report;

http://www.kornai.com/MatLing/mcsfin.pdf (12.11.2010)

[29] Mery, B., M. Amblard, I. Durand, C. Retor ́e (2006): A Case Study of the

Convergence of Mildly Context-Sensitive Formalisms for Natural Language

Syntax: from Minimalist Grammars to Multiple Context-Free Grammars. Rapport

de recherche, nr.6042, INRIA Futurs, Parc Club Orsay Universit ́e, Orsay.

https://en.wikipedia.org/wiki/Noam_Chomsky
https://chomsky.info/wp-content/uploads/195609-.pdf

