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ABSTRACT 

Finite automata with translucent letters are extensions of the usual finite state automata 

allowing to proceed the input not strictly left to right manner. There are some letters 

which are translucent for each internal state such that the automaton cannot read them. 

These are finite state devices that are able to accept a class of languages that is a 

superset of the regular languages, moreover, it contains some non-context-free 

languages. The class is closed under union, concatenation, however, it is not closed 

under intersection with regular sets. There are three linguistically important non-

context-free languages: the multiple agreement, the cross dependencies and the 

marked copy. These languages cannot be accepted by finite automata with translucent 

letters.  

In this thesis an extension of the model is presented in which the input is preprocessed 

by a finite state transducer. The transduced input is given to the finite automata with 

translucent letters, and it decides on acceptance. This is named as T-inputFAwtl i.e. 

Transduced-Input Finite Automata with Translucent Letters. We prove that all the 

three mentioned languages are accepted by the deterministic variant of the new model 

i.e. T-inputDFAwtl. Because of this we say that T-inputFAwtl has more expressive 

power than original finite automata with translucent letters. We also presented some 

closure properties of the class of languages accepted by non deterministic variant of 

this model i.e. T-inputNFAwtl. We proved that the language class accepted by that T-

inputNFAwtl is closed under union (if the same transducer is used), and it is closed 

under intersection with regular languages.  
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Keywords: t-input automata, automata with translucent letters, Mealy automata, 

formal languages, finite state machines, transducers, finite state machines, closure 
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ÖZ 

Yarı saydam harflere sahip sonlu otomatlar, girişin kesinlikle sağdan sola doğru 

ilerlememesine izin veren olağan sonlu durum otomatının uzantılarıdır. Her iç durum 

için yarı saydam olan bazı harfler vardır, böylece otomat onları okuyamaz. Bunlar, 

normal dillerin bir üst kümesi olan bir dil sınıfını kabul edebilen sonlu durum 

aygıtlarıdır, ayrıca bazı bağlamsız diller içerir. Sınıf birleşme, yan yana koyma 

işlemleri altında kapalıdır, ancak düzenli kümelerle kesişme işlemi altında kapalı 

değildir. Dilsel açıdan önemli üç bağlamsız dil vardır: çoklu anlaşma, çapraz 

bağımlılıklar ve işaretli kopya. Bu diller yarı saydam harfli sonlu otomatlar tarafından 

kabul edilemez. 

Bu tezde, girdinin sonlu durum transdüseri tarafından önceden işlendiği modelin bir 

uzantısı sunulmaktadır. Dönüştürülen giriş yarı saydam harfli sonlu otomata verilir ve 

kabul etmeye karar verir. Buna T-inputFAwtl, yani Translucent Letters ile 

Transduced-Input Sonlu Otomata denir. Bahsedilen üç dilin hepsinin yeni modelin 

deterministik değişkeni, yani T-inputDFAwtl tarafından kabul edildiğini kanıtlıyoruz. 

Bu nedenle T-inputFAwtl'ın yarı saydam harflerle orijinal sonlu otomattan daha 

etkileyici bir güce sahip olduğunu söylüyoruz. Bu modelin deterministik olmayan 

değişken tarafından kabul edilen dil sınıfının bazı kapatma özelliklerini yani T-

inputNFAwtl de tezde sunduk, T-inputNFAwtl tarafından kabul edilen dil sınıfının 

birleşim altında (aynı dönüştürücü kullanılıyorsa) ve normal dillerle kesişme işlemleri 

altında kapalı olduğunu kanıtladık. 

Anahtar Kelimeler: t-girdi otomatları, yarı saydam harfli otomatlar, Mealy 
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otomatları, biçimsel diller, sonlu durum makineleri, dönüştürücüler, sonlu durum 

makineleri, kapalılık özellikleri 
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Chapter 1 

INTRODUCTION 

Automata theory and formal languages are bases of (theoretical) computer science and 

closely linked to each other. Automata theory is the theoretical study of abstract 

machines which help in solving real computational problems. Formal languages help 

to state the behavior of those abstract machines. With time complexity constraint these 

abstract machines are developed and introduced over time from simpler form to 

complex forms. They are analyzed and modeled with keeping the fact of limitations of 

computations. Major families of these models include Finite state machines, Push 

down automata, Linearly-bounded automata and Turing machines. These machines 

have some states for performing the transition function on the input which is taken in 

the form of strings. 

With ongoing development in this field, the main purpose of studying automata theory 

is to develop such computational models which are simple and have more expressive 

power than the ones which are already developed with about the same simplicity. With 

continues research, researchers are working to improve models which can help us in 

solving computational problems in more efficient way. That’s why this subject always 

has great opportunity for researching new concepts and ideas.  

Finite state machines have finite set of states and no additional storage possibilities 

hence these are the simplest automata. Finite state machines are further categorized 
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into two types i.e. acceptors/recognizers and transducers. Acceptors decides 

acceptance or rejection on an input, a transducer transduces an input and gives an 

output. Finite state acceptors or finite automata are used to recognize patterns. They 

have applied in various fields including designing compilers, spell checkers, text 

editors, and formal linguistics. In fact, due to the finite number of states and the 

relatively simple control they are very efficient in terms of time and space complexity. 

But for the same reason they are inadequate for complex scenarios due to their limited 

computational power. Finite automata have various extensions which are still finite 

state models, e.g., multihead finite automata, Watson-Crick finite automata and finite 

automata with translucent letters. 

In this thesis we have focused on this area of automata theory and introduced a new 

combo automaton using a further extension of finite automata. Our purpose is to 

achieve a better model for enhanced capability to characterize some class of languages 

which is beyond regular. Instead of developing a really new model, we combine two 

relatively simple finite-state machines i.e. Mealy machines and finite state automata 

with translucent letters, to obtain a still finite state model with a relatively large 

accepting power.  

Consequently, this thesis is divided into four chapters. This chapter 1 gives the overall 

introduction. In chapter 2 we recall definitions and notations. Chapter 3 gives the 

definition of the new model and proofs of its enhanced expressiveness and in chapter 

4 we have provided important normal form definitions and two closure properties. 

This chapter is divided into 2 more sections. Section 1.1 describes about the motivation 

of this research and brief history of finite automata and its extensions related to our 
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model. Section 1.2 talks about the finite automata and its variants regarding new 

model. 

1.1 A Brief History of Finite Automata 

Finite automata are used in text processing, formal linguistics, and hardware design.  

They are also called finite state acceptors. It is a mathematical model of a finite-state 

computing device that recognizes a set of words over some alphabet; this set of words 

is called the language accepted by the automaton. There is a path through the 

automaton, for each word over the alphabet; if the path ends in a final or accepting 

state, then that word is in the language accepted by the automaton [20]. There are two 

classes of finite automata. These are Deterministic Finite Automata (DFA) and Non-

Deterministic Finite Automata (NFA).  

The class of finite automata only accepts the class of regular languages. However, 

there are various important languages that are not regular and some of them are not 

even context-free. Various extensions of the finite automata exist in the literature, such 

as pushdown automata and Turing machines. 

In this research another model, the finite automata with translucent letters i.e. FAwtl 

is considered which is a more powerful model [1] than the finite automata. In each 

state of these automata some input letters may be translucent and the automaton can 

read and erase the first visible letter of the input tape, in this sense, the model is closely 

related to a kind of cooperative distributed systems of restarting automata [2,3]. The 

accepted language class has some nice properties, e.g., it is closed under the regular 

operations, union, concatenation and Kleene star and it contains all rational trace 

languages [2,4]. Relation to linguistics is studied in [5,6]. The language class accepted 
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by FAwtl is a superset of regular languages including some non-context-free 

languages.  

There are three linguistically important non context-free languages, namely the 

multiple agreement {anbncn}, the cross dependencies {anbmcndm} and the marked copy 

{wcw | w{a,b}*}. These three languages are belonging to the classes of mildly 

context-sensitive languages [7,8]. A brief overview is given later in the chapter 2. 

Some examples of these languages are discussed in [21]. There are various 

computational models that are motivated to have generating/accepting power 

including all these three languages but, on the other hand, having moderate complexity 

[9,10,11].  

Here we study T-inputFAwtl, it is the extension of the computing model finite 

automata with translucent letters. Mealy machines are finite-state machines 

transforming the input to an output. In our model, first, the input is transduced and, 

then, it is given to a deterministic or non-deterministic FAwtl for deciding the 

acceptance.  

1.2 Variants of Finite Automata Related to New Model 

In this section we are recalling the informal definition of variants of finite automata. 

For any detailed concepts one is referred to a standard textbook, e.g., [12,13,14,15]. 

– A deterministic finite automaton (DFA), has a finite set of states and a finite set of 

input symbols. One state is selected the start state, and zero or more states are 

accepting states. A transition function determines how the state is changes each 

time an input symbol is processed [12]. Finite automata are usually represented by 

their graphs [12,13,14,15]. 
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– A non-deterministic finite automaton (NFA), differs from a DFA such that NFA 

can have any number of transitions (including zero) to next states from a given 

state by given input symbol [12].  

– A finite state transducer (FST), a Mealy automaton [16], is finite automaton which 

is transforming the input to output (and does not accept a language). 

– A non-deterministic finite automaton with translucent letters (NFAwtl), does not 

read its input strictly from left to right as in the traditional setting, but for each 

of its internal states, certain letters are translucent, that is, in this state the 

NFAwtl cannot see them. Accordingly, it may read (and erase) a letter from the 

middle or the end of the given input [1,2,3,4,5,6].  

– A deterministic finite automaton with translucent letters (DFAwtl), a variant of 

NFAwtl and less expressive than the NFAwtl. [1,2,3,4,5,6]. 
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Chapter 2 

NOTATIONS AND DEFINITIONS 

In this chapter we will show some formal definitions of the variants of finite automata 

related to our new combo automata. Also, we will discuss the classes of languages that 

are called Mildly Context Sensitive; three of its main important languages are accepted 

by our new model. We recall some earlier definitions and fix our notation. Then in 

next chapter we will give the definition of our new model. 

Finite automata are good computational models with finitely limited memory. They 

can do many useful things, we interact with such machines all the time e.g. think about 

an automatic door which sense a person approaching and hold the door open for long 

enough so one can pass through it [22].  

Formal definitions are extremely important to state the ability and limitation of a 

specific model. Formally, finite automaton has a set of states, an input alphabet, initial 

state(s), accepting states, and rules for moving i.e. transition function. In every step of 

the computation, the automaton reads an input letter and determines that what will be 

the next state. There are two basic variants of finite automata. We write formal 

definition below. The first variant is Deterministic Finite Automata (DFA) and the 

other is Non-Deterministic Finite Automata (NFA) [22]. For more examples and 

details one can go through the books [12, 14, 20, 22].  
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2.1 Deterministic Finite Automata 

Formally, 

A deterministic finite automaton, a DFA, is a 5-tuple.  A = (Q, Σ, q
0
, F, δ), where,  

Q is the finite set of internal states 

Σ is the finite alphabet of input letters 

q
0
 Q is the initial state 

F ⊆ Q is the set of final (or accepting) states 

δ is the transition function of the form Q × Σ → Q 

It may happen that the transition function is partial, i.e., it is not defined for some of 

the pairs (q, a) with q ∈ Q, a ∈ Σ.  

The transition relation can be extended to words w  Σ* in the usual way. A word w 

is accepted by A if δ (q
0
, w) is defined and it is an accepting state. The set of all accepted 

words form the accepted language L(A).  
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2.2  Non-Deterministic Finite Automata 

One can follow that in the literature there exist other definitions for NFA. For instance, 

from [22] we clearly know that DFA and NFA are differentiated in one significant way 

that is the transition function. In DFA transition function δ takes a state and an input 

symbol, and produces next state. In NFA transition function δ takes a state and an input 

symbol or the empty string, and produces the set of next possible states. But we use 

the definition stated below to continue to finite automata with translucent letters and 

also to our combo model i.e. we have no transition on empty word, but we have a set 

of initial states. 

Formally, 

A non-deterministic finite automaton, a NFA, is a 5-tuple A = (Q, Σ, I, F, δ), where, 

Q is the finite set of internal states 

Σ is the finite alphabet of input letters 

I ⊆ Q is the set of initial states 

F ⊆ Q is the set of final (or accepting) states 

δ is the transition relation of the form Q × Σ →2Q.  

If |I| = 1 and |δ(q, a)| ≤ 1 holds for all q ∈ Q, a ∈ Σ, then A is a deterministic finite 

automata, a DFA. The transition relation can be extended to words w  Σ* as usual. A 

word w is accepted by A if q
f
 δ(q

0
, w), where q

f
  F, q

0
  I, i.e., δ(q

0
, w) includes an 

accepting state. The set of all accepted words form the language L(A) accepted by A.  
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2.3 Mealy Automata 

In a Mealy machine, with each transition we get an output [16]. For better 

understanding the detailed concept of Mealy machine is given here with examples 

[12]. These are helping in various fields, few of them are detailed in [24, 25, 26]. 

Formally, 

It is a system of T = (Q, Σ, q
0
, ∆, γ), where, 

Q is the finite set of internal states 

Σ is the finite alphabet of input letters 

q
0
  Q is the initial state 

∆ is the finite set of output symbols  

γ is the transition function of the form Q × Σ to Q × ∆.  

Originally T is in its initial state, the input tape contains an input word w ∈ Σ* and the 

output tape is empty. When T reads a letter, it writes an output letter to the output tape 

(concatenating it to the previously written letters if any) and changes its state 

accordingly. By T(w) ∈ ∆* we denote the output produced by T on input w. 

 

Mealy automata can also be represented by their graphs. You may note that the Mealy 

machine, we formally defined above is deterministic, and we will use only this, 

however, this concept can also be generalized to nondeterministic or even further. This 

is discussed in [23] where details are given.   

2.4 Deterministic Finite Automata with Translucent Letters 

In the field of Natural languages and trace languages, Deterministic Finite Automata 

with translucent letters or DFAwtl is more expressive than the regular DFAs. One can 
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see the definition of DFAwtl, other details and proofs of its expressiveness are shown 

in [1-6].  

Formally, 

It is a septuple A = (Q, Σ, q
0
, F, $, τ, δ), where 

Q is the finite set of internal states 

Σ is the finite alphabet of input letters 

q
0
 Q is the initial state 

F ⊆ Q is the set of final (or accepting) states 

$ ∉ Σ is a special symbol that is used as an end marker of the input 

τ is the translucency mapping of the form Q → 2Σ  

δ : Q × Σ → Q is the transition relation that satisfies the following condition: 

∀q ∈ Q ∀ a ∈ τ(q): δ(q,a) = ∅. For each state q ∈ Q, the letters from the set τ(q) are 

translucent for q and therefore there is no transition which reads that letter in the given 

state.  

The automaton A start from the initial state and the whole input w with end marker, 

i.e., w$ is on the input tape. If A is in state q and its tape content is of the form uav$ 

such that u  (τ(q))*, a  τ(q), v  Σ*, A erases the first occurrence of the non-

translucent letter a, obtaining the tape content uv$ and changing the state to δ(q,a). 

Whenever, there is no transition is defined on letter a, A could not continue the 

computation and rejects. Otherwise, if the tape content is u$ such that u  (τ(q))* in a 

state q, the input w is accepted if q  F and rejected if q  F. The set of accepted words 

w is the accepted language L(A).  
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A DFAwtl may not process the input strictly from left to right and may accept a word 

without reading/erasing all of its letters due to the translucency mapping. A DFAwtl 

can also be given by its graph [1,5,6]. 

2.5  Non-Deterministic Finite Automata with Translucent Letters 

Now we recall the concept of non-deterministic finite automaton with translucent 

letters (NFAwtl) from [1-6].  

Formally, 

It is a septuple A = (Q, Σ, I, F, $, τ, δ), where, 

 Q is the finite set of internal states 

Σ is the finite alphabet of input letters 

I ⊆ Q is the set of initial states 

F ⊆ Q is the set of final (or accepting) states 

$ ∉ Σ is a special symbol that is used as an end marker of the input  

τ is the translucency mapping of the form Q → 2Σ  

δ : Q × Σ → 2Q is the transition relation that satisfies the following condition:  

∀q ∈ Q ∀ a ∈ τ(q): δ(q, a) = ∅. For each state q ∈ Q, the letters from the set τ(q) are 

translucent for q.  

A is called DFAwtl (deterministic FAwtl), if |I|=1 and |δ(q, a)| ≤ 1 holds for all q ∈ 

Q, a ∈ Σ.  

The automaton A starts the process from the initial state and the whole input w with 

end marker, i.e., w$ is on the input tape. If A is in a state q and its tape content is of 

the form uav$ such that u  (τ(q))*, a  τ(q), v  Σ*, A erases the first occurrence of 
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the non-translucent letter a, obtaining the tape content uv$ and changing the state to a 

state in δ(q,a). Whenever, there is no transition is defined on letter a, A could not 

continue the computation and rejects.  

Otherwise, if the tape content is u$ such that u  (τ(q))* in a state q, the input w is 

accepted if q  F and rejected if q  F. The set of accepted words w is the accepted 

language L(A).  

An NFAwtl may not process the input strictly from left to right and may accept a word 

without reading/erasing all of its letters due to the translucency mapping. 

Deterministic and non-deterministic FAwtl can also be given by their graphs [5,6,1].  

2.6  Mildly Context Sensitive Langugaes  

As a step to simplify and formalize natural languages, Noam Chomsky provided a 

framework named as Chomsky hierarchy. It has four levels of increasing complexity: 

regular, context free, context sensitive, and recursively enumerable languages [27].  It 

does not only help the linguists but also it opened the door for theoretical computer 

science for grouping the abstract computational models according to the class of their 

accepted languages. So, they can be descriptive, simplified hence understandable. 

 

Over the time many researcher’s work exhibit the refined version of this hierarchy, 

which was important to adhere the complexity of natural languages. Such a refinement 

is the classes of mildly context sensitive languages.  

 

The classes of mildly context languages come between context sensitive languages and 

context free languages under set theoretical inclusion. We can say that they are proper 



13 

 

subclasses of the class of context sensitive languages but as they include all context 

free languages, moreover they inherit some interesting properties of context free 

languages thus we can also say that these classes are extended classes of the class of 

context free languages. [27,28, 29].  

Natural languages are not context free, and there are three widely known non-context 

free languages that have patterns in natural languages defined below; 

1. The language of cross dependencies; Labcd = {anbmcndm | m,n ≥ 1}   

2. The marked copy language; Lww = {wcw | w ∈{a,b}*}  

3. The language of multiple agreements; Labc = {anbncn | n ≥ 0}  

Mildly context sensitive classes contain these specific languages [7]. [28] states 

properties of the languages of these classes. For example, they have polynomial 

parsing complexity among other properties.  
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Chapter 3 

TRANSDUCED-INPUT FINITE AUTOMATA WITH 

TRANSLUCENT LETTERS 

Our models Transduced-input Finite Automata with translucent letter or T-inputFAwtl 

is motivated by [17,18] where various types of pushdown automata had such a 

preprocessed input.  

Thus, in our combo model the input is preprocessed by a finite state transducer. The 

transduced input is given to the finite automata with translucent letter, and it decides 

on acceptance.  

Following is a formal definition of our new combo automata.  

Definition 1. Let A be FAwtl and T = (Q, Σ, ∆, q
0
, γ) be a Mealy machine such that 

the output alphabet  of T is the same as the input alphabet of A. Then, the pair (T, A) 

is called a transduced-input finite automaton with translucent letters, T-inputFAwtl for 

short. The language accepted by (T, A) is defined as  

L(T, A) = {w ∈ Σ* | T(w) ∈ L(A)}.  
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The FAwtl and Mealy automaton, both can be deterministic or non-deterministic. 

Based on their determinism we can define four variants of T-inputFAwtl; 

 DDT-inputFAwtl; The Mealy automaton and FAwtl both are deterministic. 

 DNT-inputFAwtl; The Mealy automaton is deterministic and FAwtl is non- 

deterministic. 

 NDT-inputFAwtl; The Mealy automaton is non-deterministic and FAwtl is 

deterministic. 

 NNT-inputFAwtl; The Mealy automaton and FAwtl both are deterministic. 

All these variants are further grouped accordingly if the combo automaton use same 

transducer or not. 

 

Below is a simple example to understand the behavior of the automata T-inputNFAwtl. 

In the next section it is shown that combo automata accept three important non-

context-free languages where both the Mealy machine T and the FAwtl A are 

deterministic.  

Example 1. The language Lc = {cnwcnwcn | w ∈ {a,b}+ and n>0} is accepted by the T-

inputNFAwtl presented graphically in Figure 1. The figure shows the graphical 

representation of the transducer T (up) and the NFAwtl A (bottom). The Mealy 

automaton T has the following roles:  
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Figure 1. The T-inputDFAwtl that accepts the language Lc. 

- It checks if the input is of the form c+(a+b)+c+(a+b)+c+; particularly if there are three 

factors of letter c in the input word, moreover, they are separated by non-empty words 

over {a,b}. Whenever the form of the input does not match, T puts at least one x to the 

output tape noticing this fact.   

- T rewrites the second and third blocks of c’s to d’s and g’s, respectively.   

- It also rewrites the second block over {a,b} by the alphabetic morphism h(a) = e, 

h(b) = f, in this way the original letters a and b are mapped to e and f, respectively, on 

the output tape of T in this block. 

At the NFAwtl A, the set of translucent letters is shown at each state. Observe that in 

fact, A is also deterministic, it is a DFAwtl. It works as follows. In its initial state, 

which is also the only final state, there is no translucent letter, thus it must read the 
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first letter of the word T passes to it. By the transitions of its first three states, it erases 

a letter c, a letter d and a letter g, thus in this cycle it checks if the number of c’s and 

d’s and g’s are the same. If in the original input the format was appropriate, and the 

number of the c’s in each of the three blocks were the same, then and only then, all 

c’s, d’s and g’s are erased by A. Otherwise, either it gets stuck (if there were more c’s 

in the first block than in any of the other blocks) or some d’s and/or g’s are left (if the 

first block of c’s was shorter than the other blocks). In the second phase of the 

computation states q
0
, q

3
 and q

4
 are used (in an accepting run). A erases the first letter 

of the remaining input, and depending on if it is an a or a b, q
3
 or q

4
 is reached. From 

this state the original letters a and b are both translucent, and the first letter of the other 

block, an e or an f is read such that it must fits to the previously read original letter. 

Observe that A cannot read any letter x. Therefore, it follows that (T, A) accepts the 

language Lc.  

 For instance, the input word cabcabc is in the language Lc. T preprocesses it as follows. 

The preprocessing starts at state p
0
. The first c is kept in the transduced input as c, and 

state p
1
 is reached. Then the first a is kept in the transduced input as a, then b has also 

been kept, and state p
2
 is reached. After that c is rewritten to d, and state p

3
 is reached. 

Here, the next letter, a, is rewritten to e, similarly b is transformed to f, and state p
4
 is 

reached. Then c is transduced to g, and p
5 is reached. Thus, the word cabdefg is 

obtained and passed to A with the end marker $. In its initial state q
0
 nothing is 

translucent, therefore first letter c is read and state q
1
 is reached with remaining input 

abdefg$. Here a, b and c are translucent, thus A reads d (which is the image of the 

second c) by changing its state to q
2 with remaining input abefg$. Here again a, b, c, 
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and also d, e, f are translucent, therefore A reads g (which in fact refers for the third 

block of c’s) by changing its state back to q
0
 with remaining input abef$. Here nothing 

is translucent, and now the first letter is a. A reads it and state q
3
 is reached with 

remaining input bef$. Here a and b are translucent, thus, e is read from the remaining 

input and A moves into the state q
0 with remaining input bf$. Here, there is no 

translucent letter, b is read and state q
4
 is reached. Here a and b are translucent, the 

last letter f is read and A moves into its accepting state q
0
 with a fully processed input. 

Thus, the string cabcabc is accepted by (T, A).  

 On the other hand, for example the input word abcabc is preprocessed by the Mealy 

automaton T to xxxxxx.  It is clearly not accepted by A. The word abcabc is not in the 

language Lc. Observe that A cannot read any letter x because no transition is defined 

with letter x. It is used as a kind of failure symbol. 

3.1 Accepting Mildly Context-Sensitive Languages 

In this section we will show that all the three important mildly context-sensitive 

languages are accepted by our deterministic finite state model, i.e., we present                

T-inputDFAwtl for each of them.  

Let us start with the language of multiple agreements. 

3.1.1 The Language of Multiple Agreements 

Theorem 1. The language Labc = {anbncn | n ≥ 0} is accepted by a T-inputDFAwtl.  

Proof: We present an FST T1 and a DFAwtl A1 such that the pair (T1, A1) accepts Labc. 

T1 = ({p0, p1, p2, p3},{a,b,c},{a,b,c,x}, p0,γ) with γ(p0,a) = (p0,a), γ(p0,b) = (p1,b), 

γ(p0,c) = (p3,x), γ(p1,a) = (p3,x), γ(p1,b) = (p1,b), γ(p1,c) = (p2,c), γ(p2,a) = γ(p2,b) = 
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(p3,x), γ(p2,c) = (p2,c) and γ(p3,a) = γ(p3,b) = γ(p3,c) = (p3,x). Further, let A1 = 

({q0,q1,q2},{a,b,c,x},$,τ,q0, {q0},δ) with τ(q0)={}, τ(q1)={a,c}, τ(q2)={a,b} and δ(q0,a) 

= q1, δ(q1,b) = q2, and finally, δ(q2,c) = q0. 

Their graphical representations are shown in Figure 2. In fact, if the input is of the 

form a*b+c+, T1 is copying it, otherwise at least one x will appear on its output. Then, 

A1 accepts only words that contain the same number of a’s, b’s and c’s and do not 

contain any x (observe that no transition is defined with letter x). Hence exactly the 

following words are accepted: the empty word is accepted, if the input is nonempty, 

then it must start with a, after some a’s, the same number of b’s and finally the same 

number of c’s must follow, e.g., abc, aabbcc, aaaabbbbcccc. 

T1 :                                                                      A1 : 

 

 

 

 

 

 

 

Let us consider the word aabbcc which is in the language. T1 starts with initial state 

p0, it reads a, transduce it to a, then again reads an a and transduces in a and stay at 

same state p0, then reads a b, and transduce it to b and reach to state p1, then again read 

a b, transduce it to b by remaining in same state. Then T1 reaches to state p2 and by 
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Figure 2. The T-inputDFAwtl that accepts the language Labc. 
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transducing first c to c, and transduce second c to c by remaining it in same state. The 

output is aabbcc which is passed to A1. At its initial state q0 nothing is translucent, A1 

reads first letter a of the input aabbcc$ and move to state q1 with remaining input 

abbcc$. At this state a and c are translucent, it will skip the second b and will read first 

b and move to state q2. Now a and b are translucent, A1 reads first c and go to state q0 

with the remaining input abc$. At q0 we can see that nothing is translucent, A1 reads 

first letter that is a and go to q1 with remaining input bc$ where a and c are translucent. 

Here, we read b and reach to q2 with remaining input c$. Finally, we read the last letter 

c and reach to accepting state q0 with $. It means that the word is accepted by T-

inputDFAwtl (T1,A1).  

The word acb is not accepted by (T1,A1) since T1 transform is to axx and A1 gets stuck 

on this.  

The word aabcc is transformed to itself by T1, and then, A1 processes a cycle by erasing 

an a, a b and a c, such that it is state q0 with remaining input ac. Now a is read and 

erased, c is left, however, in q1 c is translucent, A1 reaches the end marker, but the state 

q1 is not accepting, thus this input is rejected. 

3.1.2 The Language of Cross Dependencies  

Theorem 2. The language Labcd = {anbmcndm | m,n ≥ 1} is accepted by a T-

inputDFAwtl.  

Proof: We give a T-inputDFAwtl (T2, A2) that accepts Labcd in Figure 3. First, the 

Mealy automaton T2 preprocesses the input by changing some letters to x if the input 

is not in the form of a+b+c+d+. Then, the DFAwtl A2 is checking if the number of a’s 
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and c’s and the number of b’s and d’s match by accepting exactly those which are in 

Labcd after the preprocessing phase.  

Figure 3. The T-inputDFAwtl that accepts the language Labcd. 

For instance, aabccd is in the language and T2 passes it unchanged to A2. In the initial 

state q0 nothing is translucent, the automaton reads a, hence the input is shortened to 

abccd and the automaton changes its state to q1. Here a and b are translucent, it will 

read the first c letting the remaining input abcd and then it moves to state q2. Now a is 

translucent and b is read, acd left, state q3 is approached. Letters a, b, c are translucent, 

letter d is read, thus at q4 the input is reduced to ac. No translucent letter in this state, 

acceptance goes only with fully processed input in this automaton, thus a is read, q5 is 

reached. The last letter c is read and the accepting state q4 is reached. The word aabccd 

is accepted.  

Now consider the word abcdd. T2 transforms the word to itself abcdd and passes it to 

A2. At the initial state nothing is translucent and A2 reads first a and go to state q1 with 
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remaining input bcdd$. At this state a and b are translucent. A2 reads c and move to q2 

with remaining input word bdd$. Now we read b and move to state q3. The remaining 

input word is dd$. We read a d and reach to q4. One can see that it’s an accepting state 

but we still didn’t reach to end marker $ as the remaining input word still have d$ and 

there is no transition to read this letter. Hence the input word is rejected. 

The word abccdabd is not in the language. T2 transforms abccdabd to abccdxxx. A2 

clearly has no transition for letter x, hence it is also not accepted by A2. 

Finally, after, the language of cross dependencies, the copy language is considered. 

3.1.3 The Marked Copy Language 

Theorem 3. The language Lww = {wcw | w ∈{a,b}*} is accepted by a T-inputDFAwtl.  

Proof: Figure 4 shows the graphical representation of the combo T-inputDFAwtl 

(T3,A3). The Mealy automaton T3 has two roles: it checks if there is at most one letter 

c in the input word, moreover, it rewrites the suffix of the input, after the (first) c in 

such a way, that original letters a and b are mapped to d and e, respectively. A3 checks 

and erases the first letter of the preprocessed input, and depending on if it is an a or a 

b it erases the first letter after the c if it matches to the checked letter. Finally, when 

the word starts with a c, it is processed, and if the preprocessed input is fully erased by 

this time, it is accepted. Observe that A3 cannot read any letter x. It follows that (T3,A3) 

accepts the language Lww.  
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Figure 4. The T-inputDFAwtl that accepts the language Lww. 

For instance, abcab is in the language Lww and T3 preprocesses it as follows. The 

preprocessing starts at state p0. The first a is kept in the transduced input as a, then b 

has also been kept, after that c is kept, and state p1 is approached. Here, a is rewritten 

as d and, similarly b is translated to e. Thus, the word abcde is obtained and passed to 

A3. In its initial state q0 nothing is translucent, therefore a is read and state q2 is 

approached with remaining input bcde. Here a,b and c are translucent, A3 reads d by 

changing its state back to q0 with remaining input bce. Here nothing is translucent, b 

is read and state q1 is approached. Here a,b,c are translucent, e is read and A3 moves 

into state q0 with remaining input c. Here there is no translucent letter, c is read and A3 

reach its accepting state q3 with a fully processed input. Thus, the string abcde is 

accepted by (T3,A3).  

The word bacba is in the language. T3 at its initial state p0 transduce the letters b, a, to 

b, a, and stays in the same state. Then it transduces the c to c and reached to state p1. 

T3 : 
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At this state the letters b, a, are transduced to e, d, and the state is not changed. We get 

an output word baced and passes it to A3. Initially nothing is translucent it reads first 

letter b and move to state q1 by shortening the word to aced. q1 has translucent letters 

a, b, c. A3 will skip those letters in the input word and will read an e, and will to move 

to state q0. The remaining input word is now acd$. Again, nothing is translucent at this 

stage,  A3 will read first letter that is a and will go to state q2 with input cd$. Here again 

letter a, b, and c are translucent. A3 will read now d by the shortening the input word 

to c. A3 is now in its initial state and the remaining input is c$. It will read c and will 

reach to endmarker $ with completely processed input which shows that this is 

accepted by (T3, A3).  

On the other hand, for example the input word abcabc is preprocessed by the Mealy 

automaton T3 to abcdex which is not in the language Lww and it is clearly not accepted 

by (T3, A3). 
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Chapter 4 

CLOSURE PROPERTIES  

In this section we present few closure properties of the language class accepted by 

DNT-inputFAwtl. First, the regular operation union is studied, we show that the 

language class accepted by T-inputNFAwtl is closed under union if the same 

transducer is used independently if  the transducer is deterministic or non 

deterministic. 

4.1 DNT-inputFAwtl Closure under Union Using Same Transducer 

Theorem 4. Let (T, A1) and (T, A2) be two T-inputFAwtl. T is detreministic transducer 

and A1, A2 are NFAwtl. The union of the languages accepted by (T, A1) and (T, A2) is 

also accepted by a transduced-input non-deterministic finite automaton with 

translucent letters with transducer T.  

Proof: Given the T-inputNFAwtl (T, A1) and (T, A2), where T = (Q, Σ, ∆, q0, γ) is a 

Mealy machine and A1 = (Q1, ∆, $, τ1, I1, F1, δ1), A2 = (Q2, ∆, $, τ2, I2, F2, δ2) are two 

NFAwtl, we will construct the combined automaton (T, B), where B is an NFAwtl such 

that L(T, A1) ∪ L(T, A2) = L (T, B). 

Without loss of generality, we may assume that Q1 ∩ Q2 = Ø. 

Then, let B= (Q1∪Q2, ∆, $, τ, I1∪I2, F1∪F2, δ), where  

δ(q) = {
δ1(𝑞)         if 𝑞 ∈ 𝑄1

δ2(𝑞)         if 𝑞 ∈ 𝑄2
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τ(q) = {
τ1(𝑞)         if 𝑞 ∈ 𝑄1

τ2(𝑞)         if 𝑞 ∈ 𝑄2
 

 

Since there is no interference between the computations done by A1 and A2 encoded in 

B, each of the accepting (and non-accepting) computations of A1 and A2 has a one-to-

one correspondence with an accepting (non-accepting) computation of B, respectively.  

Thus, L(B) = L(A1) ∪ L(A2), and therefore, L(T, A1) ∪ L(T, A2) = L(T, B).  

The proof is finished. This is explained also with example 4 in Section 4.4 

4.2 Dual Normal Form 

To present another closure property result in section 4.3 first we need to recall that all 

NFAwtl can be converted into “last letter normal form”. In [2] (Theorem 6.5) it is 

proven that every NFAwtl A has an equivalent NFAwtl A’ accepting the same language 

with special properties. 

Definition 2. An NFAwtl A’ = (QA’, Σ, $, τA’, IA’, FA’, δA’) is in “last letter normal form” 

if the following conditions hold; 

1. In each state q ∈ QA’, there is exactly 1 letter for which transitions are allowed. 

2. The last occurrence of each letter a  Σ of the input word is erased in a transition 

(from a state) such that the translucency mapping is empty at that state.  

3. Every input letter is processed in an accepting computation i.e. the translucency 

mapping assigns an empty set to any final state.  

4. The automaton has exactly 1 accepting state qf ∈ FA’. 

A kind of extension of the normal form is helpful to prove the closure property we will 

show in the next section. Now let us consider an example. 
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Figure 5. The T-inputNFAwtl for language Law. 

Example 2: The Language Law={anw | w ∈ {b,c}* and |b|=|c|=n ≥0} is accepted by the 

T-inputDFAwtl.  

Figure 5 shows the graphical representation of the combo automata T-inputDFAwtl 

(T, A). T preprocesses input in form of a* w. Otherwise we will have an x in input word. 

We can clearly see from A that there is no transition for letter x. Thus, all those words 

which contains x will be clearly not accepted by A. 

T:      A: 

 

 

 

 

 

Now A is already fulfilling condition 1, 3, and 4 from Definition 2 stated above. It 

means first, there is only 1 letter for which transition is allowed for each state.  A has 

exactly one accepting state q0 and it is processing every input letter in an accepting 

computation. Now, to fulfill the remaining condition 2, we need to modify DFAwtl A 

into “last letter normal form” A’ such that when A’ reads last letter then there is no 

translucency mapping.  
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To incorporate this important point in, we will index all the states QA’ by the set of n-

tuples from the set IND= {(i1,…, in )| i1,…, in ∈ {2,1,0,d}}. 

With a word w ∈ Σ* we associate an index vector IND(w)= (i1,…, in) by taking  

ij = {

2 if |𝑤|𝑎𝑗
≥ 2  i. e. 𝑤 contains atleast two occurences of letter 𝑎𝑗   

1 if |𝑤|𝑎𝑗
= 1 i. e. 𝑤 contains exactly one occurrence of letter 𝑎𝑗    

0  if  |𝑤|𝑎𝑗
= 0 i. e. letter 𝑎𝑗doesn′toccur in word 𝑤                           

 

for all j = 1,…,n. As a first general rule A’ cannot erase a letter as if is = 0 or is = d 

holds.  

On input w∈ Σ*, A’ guesses a tuple IND’ (w)= (i1,…, in) ∈ {2,1,0}n for one of the initial 

state of automata q0 ∈ QA’. It attempts to erase the left most occurrence of letter as, 

changing the state to a state qi in δA’(q, a) for all i=1,…,n. δA’ is a transition relation 

for A’ where q ∈ QA’. For instance, Law is a language over three letters a, b, and c. For 

initial state q0 in Figure 5, it will associate an index 222 with an input word w which 

corresponds to the at least two occurrences of a, b, c in that state when the computation 

starts. A will read the leftmost occurrence of letter as such that is ≠0 and will move to 

next state according to transition relation. Moreover, if is =2, then A’ transforms the 

word w = w1 as w2 into the word w1w2. Now, IND(w1w2) either coincides with IND(w) 

or it is obtained from IND(w) by replacing is by the value i’s = 1. For, instance in Figure 

6 after reading a from state 𝑞0
222, if there are at least 2 a’s left in input word than this 

state will correspond to 𝑞1
222 otherwise it will correspond to 𝑞1

122 by replacing the 

index of a from 2 to 1. If is =1, then A’ transforms the word w = w1 as w2 into the word 

w1w2. Here |𝑤1𝑤2|𝑎𝑠
 = 0. For, instance in Figure 6 after reading a from state 𝑞0

111, it 

will move to next state 𝑞1
011 by replacing index from 1 to 0.  



29 

 

Figure 6. Partial representation of the “last letter normal form” NFAwtl for the 

language Law. 

After reading the last occurrence of a letter as, automaton moves to the next state -

during a computation of certain input word w, the remaining input word now may have 

a leftmost last occurrence of letter bs which we cannot read because of translucency 

mapping in original automata A. But in the “last letter normal form”, we have no 

translucency at the said step and we read that letter on that state by using indicator d 

in index. Indicator “d” means that the current word w contains a single occurrence of 

the letter bs, but it is already read in the corresponding to original computation. 
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Let us consider the word acb.  In original automata (Figure 5) at initial state q0, DFAwtl 

A will read the first letter a and then move to next state q1 with remaining word cb$. 

At q1, c is translucent and A will read b and reach to state q2 with remaining input c$. 

At state q2, A will read last c. 

Now, consider this word acb computation on NFAwtl in Figure 6 which is “last letter 

normal form” of A. At initial state 𝑞0
111 the automaton will read the first letter a, and 

goes to next state 𝑞2
0d1 where nothing is translucent and automaton has to read c. This 

specific step of computation is not possible in original automaton A because c becomes 

translucent after reading a. But in its last letter normal form, to read c, automaton will 

reach to state 𝑞2
0d1 after reading a and considering that letter b is already read by 

replacing its index 1 with d. Later in that computation d is replaced with 0 to show that 

the input is completely processed. 

Please note that there is only one accepting state 𝑞0
000. All other states with empty input 

word end in non-accepting computations e.g. 𝑞1
000.  

Figure 6 is a partial graphical representation of “last letter normal form”. All the paths 

which ends in a state with darker base color, it means that the specific path will end in 

a failed computation. Only one such complete path (which will end in failed 

computation) is shown to understand the automaton’s expected process in this case. 

For example, the path for word aabbbcc is from 𝑞0
222 to 𝑞1

000 but this word is not in 

language Law and 𝑞1
000 is not an accepting state. Hence, this ends in rejecting the word 

aabbbcc. 
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Now we further modify A’ in such a way that it also fulfills some additional properties 

which are very important to prove next property, closure under intersection with 

regular languages. We will call this form dual normal form. 

Definition 3. An NFAwtl A” = (Q, Σ, $, τ, I, F, δ) is in dual normal form if it fulfills 

the following conditions. 

1. There is an NFAwtl A= (QA, ΣA, $, τA, IA, FA, δA) in “last letter normal form” such 

that L(A)= L(A”), moreover 

2. The alphabet Σ of A is doubled. Formally, Σ = ΣA ∪ Σ’A where Σ’A = {b’| b ∈ Σ𝐴} 

and ΣA ∩ Σ’A = ∅ 

3. The states of A are doubled, there is a state for transitions for an original input letter 

and there is also a copy with transitions of its marked version. Formally,  

Q = QA∪ Q’A ,where Q’A = {q’| q ∈ QA} and QA∩ Q’A=∅.  

This condition is not applicable on the accepting (final) state, as we will always 

have only one accpeting state (Condition 4 in Definition 2). 

4. The translucency mapping for each state contains both the original and the marked 

version of the given letters. Formally,  

a, a’∈τ (q) if a∈τA (q) 

a, a’∈τ (q’) if a∈τA (q) 

5. The last input letter a’ for every input word w will only belong to Σ’A. Therefore, 

no duplication is allowed for the states through which we read last letter. 

That is, in the dual normal form, in the NFAwtl, all accepting computations erase the 

entire input word and one can also be sure when the last letter of the input is processed. 
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Figure 9 shows the modified version of NFAwtl from Example 2 which is now in dual 

normal form NFAwtl. We have marked the copied states and input letters with a dash 

(‘) to distinguish the copy from the original states and input letters of A.  Other points 

we need to keep in mind are that every marked letter as well as original letter must 

have a similar or analogous computation from one state to another reading an original 

letter and its marked version. For instance, if there is a transition from a state p to q 

reading letter a, then there must be a transition from p to q’ reading letter a, and from 

p’ to q’ or p’ to q reading its marked version a’. 

Now, all the states of Q will be indexed by n-tuple and Q = Q×IND as we did in “last 

letter normal form” stated above. 

In Figure 9 those paths are removed which end in failed computation. Consider the 

path from 𝑞0
222 to 𝑞1

000 in Figure 6 which we removed in the dual normal form for the 

said reason.  

Now we turn to another interesting closure property, namely we study intersection by 

regular languages.  

4.3  DNT-inputFAwtl Closure under Intersection with Regular 

Languages  

Theorem 5. The language class accepted by DNT-inputFAwtl is closed under 

intersection with regular languages.   

Proof: Let T be a deterministic transducer, A is an NFAwtl, and B is a DFA. We need 

to consturct DNT-inputFAwtl (T’, A’) which accepts the intersection of the languages 

accepted by the NFAwtl (T,A) and by B. First, the “intersection” of T and B is 
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constructed, i.e., the transducer T’ and then, its output is forwarded to A’ which is 

based on the dual normal form of the NFAwtl A.  

The intersection of the two finite state automata T and B is done by the usual cross-

product method, however, here one of the automaton is an accepting device while the 

other, and as well as the resulted automata, are transducers. In what follows, the 

accepting states of B must be encoded in the output allowing the NFAwtl A’ to check 

also this condition. Thus, the output alphabet of T is doubled, and whenever, B is in 

accepting state (which is clearly identified since B is a DFA) in its process, a marked 

output letter (such as a’) is written in the output tape (instead the original output letter 

a) allowing to distinguish the positions where the prefix of the input is also in the 

regular language defined by B or not. 

However, since NFAwtl may proceed the input in a not usual left-to-right way, we 

need to be careful how to know that the input is in both of the languages of (T,A) and 

of B. This point is satisfied with condition 2 definded in Definition 2 Section 4.2. In 

this way the condition to be in the language L(B) can also be checked by A’. To ensure 

all these points, we built dual normal form A’.  

Formally, let 

T = (QT, Σ, ∆T, q0, γT)  

A= (QA, ∆T, $, τA, IA, FA, δA)  

B= (QB, Σ, qi, FB, δB) be given. 

Further, let 

T’= (Q’, Σ, ∆, (q0, qi) , γ) where, 

Q’= QT×QB 
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∆ = ∆T∪∆’   where ∆’ = {b’| b ∈ ∆T} and ∆T∩∆’=∅    

If (p’, x) = 𝛾T (p, a) and q’= δB (q, a) then γ ((p, q), a) = ((p’, q’), y) where, 

 p∈ QT , q ∈  QB , a ∈ Σ , and y = {
𝑥 if q ∉ 𝐹𝐵

𝑥′ if q ∈ 𝐹𝐵
  

Without loss of generality, we assume that A was given in “last letter normal form” 

and now we show the construction of A’ in dual normal form. 

A’= (Q, ∆, $, τ, I, F, δ) 

Q= QA∪Q’A where Q’A = {q’| q ∈ QA} 

∆ as described for T’ 

I= IA∪I’A where I’A = {q’i| qi ∈ I}  

a, a’∈τ (q) if a∈τA (q) 

a, a’∈τ (q’) if a∈τA (q) 

F= {qf} the only accepting state where  qf∈FA 

 δ: Q×∆→2Q 

p, p’   ∈ δ (q, a) if p∈ δA(q, a) 

p, p’   ∈ δ (q’, a’) if p∈ δA(q, a)               

In this way, (T’, A’) is a T-inputNFAwtl and L(T,A) ∩ L(B) = L(T’, A’).  

The proof is finished. 

4.4 Examples 

This section provides the examples of  intersetion with regular language and closure 

under union. First in Example 3 the intersection with regluar languages is explained 

and then the closure under union is explained in Example 4.  
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Example 3: Let us consider the lanuage Law={anw | w ∈ {b,c}* and |b|=|c |= n≥0} is 

accepted by the T-inputNFAwtl, from Example 2 and language Ln = a*b*c* is accepted 

by a DFA. Figure 5 shows the graphical representation of DNT-inputFAwtl. We 

present the graphical representation of DFA of Ln and transducer T’ of combo 

automaton that accept the intersection of Law with Ln in Figure 7, and Figure 8 

respectively.  

B:  
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Figure 7. The DFA that accepts the language Ln. 

Figure 8. The transducer T’ 
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Now from Figure 9 we can clearly see how the dual normal form is working. It shows 

that we have set of initial states I = {q0, q’0}, with associating index we expand this set 

to I ={𝑞0
222, 𝑞0

111, 𝑞′0
222, 𝑞′0

111, 𝑞0
000}. Thus, the input word may only have one 

occurrence of each letter a, b, and c then the initial state will be 𝑞0
111 and if it has 2 or 

more occurrences of each letter in the input word then the initial state will be 𝑞0
222. 

Both initial states 𝑞0
222an𝑑 𝑞0

111 are copied to  𝑞′0
222an𝑑 𝑞′0

111 to allow to read the 

marked letter a’ initially if T’ provided such output.  

Figure 9. Partial graphical representation of the dual normal form 

NFAwtl for the language Law. 
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Further, as we already discussed in Definition 3 that if the original state, let say 𝑞0
222 

has a transition to read a letter a to state 𝑞1
122 and marked state 𝑞′0

222 have transition 

for a’ to 𝑞′1
122 then there will also be a transition, for letter a from state 𝑞0

222 to state 

𝑞′1
122 and for letter a’ from 𝑞′0

222 to state 𝑞1
122 as well. 

Let us consider the input word aabbcc is in the language. T’ in Figure 5 will start 

transducing the input at state 1A, the letter a will be transduced to a’ and state 2A will 

be reached. Then next a will be transduced to a’ and it will remain on the same state. 

Then letter b will be transduced to b’ and state 3B will be reached and again b will be 

transduced to b’ and state will not be changed. From there letter c is transduced to c’ 

and reached to 3C. By staying in the same state T’ transduced next c to c’ and produced 

an output a’a’b’b’c’c’.  

Thus, the word a’a’b’b’c’c’ is obtained and passed to A’ with the end marker $. In the 

initial state 𝑞′0
222 nothing is translucent. A’ will erase the first letter a’ and after 

updating the index of a’ it will move to next state 𝑞′1
122 with remaining input word 

a’b’b’c’c’$. At this state {a, a’, c, c’}, are translucent, A’ will erase first b’ and will 

move to state 𝑞′2
112 by updating the index of b. 

The remaining input is a’b’c’c’$. Now at this state 𝑞′2
112, {a’, b’} are translucent. A’ 

will now read first c and will move to state  𝑞′0
111 with remaining input is a’b’c’$. 

At this state as we are reading last occurrences of a’, b’ and c’, translucency mapping 

is empty. A’ reads first letter i.e. a’ and come to state 𝑞′1
011 with remaining input b’c’$. 

A’ will now read first b’ and will reach to state 𝑞2
001 with remaining input c’$. Then 
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finally reading last input letter c and reaches to accepting state 𝑞0
000 with $ end marker. 

It means that the word a’a’b’b’c’c’ is completely processed and accepted. 

Let us consider another word acabbc. T’ transduced this word as a’c’xxxx. This world 

clearly will not be accepted by A’. The word acabbc is not in the language L(T’, A’). 

Observe that A' cannot read any letter x because no transition is defined with letter x 

which we used as a failure symbol and this input word will be discarded. 

Example 4: Let us consider the language Labc = {anbncn | n ≥ 0} is accepted by a T-

inputDFAwtl from theorem 1 and the language Labbc = { an b2ncn | n ≥ 0} is accepted 

by T-inputDFAwtl is given in Figure 10. Then Figure 11 shows the graphical 

representation of union of Labc and Labbc.  

T4:      A4: 

Figure 10. The T-inputDFAwtl that accepts the language Labbc. 
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T:      B: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 11 it is shown that the T-inputNFAwtl accepts the union of the langugages 

Labc and Labbc when same transducer is used. There is no intefrence of computations 

done by of A1 and A4 encoded in NFAwtl B presented  in Figure 11, each of the 

accepting (and non-accepting) computations of A1 and A4 has a one-to-one 

correspondence with an accepting (non-accepting) computation of B, respectively.  

 

  

Figure 11. The T-inputNFAwtl that accepts the language Labbc ∪ Labc. 
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Chapter 5 

CONCLUSION 

We have shown that a combination of deterministic finite state machines is very 

powerful, all the three important non-context-free mildly context-sensitive languages 

are accepted by this model. The language classes defined by these new models are 

interesting and we have stated some closure properties. Particularly, we have shown 

that the language class accepted by T-inputNFAwtl is closed under union with same 

signatures (where same signature means that the same transducer is used for 

preprocessing). Also, it was shown that the language class of T-inputNFAwtl is closed 

under intersection with regular languages. Further we intend to work on investigation 

of other closure properties with other cases of deterministic/non-deterministic versions 

of T-inputFAwtl with and without assuming the same signatures. 
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