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ABSTRACT 

Guided by the existence of a multiple number of gates in each ion channel, it was 

recently expected that the activity equations of the neuronal dynamics obtain a number 

of renormalization terms, which play important role in the membranes that are small in 

size (Güler 2006, 2007, 2008, 2011, 2013). In this thesis, it is attempted to look into the 

dissipative stochastic mechanics based neuron model under noisy input currents. 

Specifically, it is concentrated on the role of input noise with reference to the 

renormalization terms in the model. The investigation shows that the use of noise in the 

inputs can improve the spiking rates and the spike coherence values, especially in the 

presence of the renormalization terms. 
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ÖZ 

Nöron zarlarındaki ion kanallarının çoklu geçit içermesinden dolayı, küçük boyutlu sinir 

hücresi dinamiğinin renormalizasyon terimleri içermesi gerektiği son yıllarda ileri 

sürülmüştür (Güler 2006, 2007, 2008, 2011, 2013). Bu tezde, yukarıdaki kapsamda 

ortaya konulan disipatif stokastik mekanik nöron modeli gürültülü girdi akımları altında 

incelenmiştir. Renormalizasyon terimlerinin varlığının etkisi özellikle bu kapsamda 

irdelenmiştir. Ateşleme oranlarının ve uyumluluğunun renormalizasyon ile arttığı 

gözlenmiştir. 
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Chapter 1 

INTRODUCTION 

Neurons exhibit electrical action which is in nature known to be stochastic (Faisal 2008). 

The external noise from the synapses is the main cause for stochastic. Still the interior 

noise, which participates to the gating probabilistic nature of the ion channel, and also it 

can have important effects on the neuron's dynamic performance as displayed by the 

experimental studies (Kole 2006; Jacobson et al. 2005; Sakmann and Neher 1995) and 

by the numerical simulations or theoretical researches (Chow and White 1996; Fox and 

Lu 1994; Schmid et al. 2001; Schneidman et al. 1998). 

Neuronal dynamics under the effect of channel fluctuation is usually modeled with 

stochastic differential equations acquired by using some vanishing white-noise 

conditions into the fundamental deterministic equations (Fox and Lu 1994). The 

dissipative stochastic mechanics (DSM neuron) based neuron model raised by Güler 

(2006, 2007, 2013), is a special case of this. The DSM model has some forms of 

functionality named the renormalization terms, as well as some vanishing white-noise 

conditions in the activity equations. The DSM model has been studied in numerical 

detail for its time independent input current's dynamics (Güler 2008, 2013); it was 

established that the corrections of renormalization increases the changes in behavior 

from quiescence to spiking and from tonic firing to bursting. It was further established 
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that the existence of renormalization corrections can result in faster temporal 

synchronization of the electric coupled consecutive discharges of two neuronal units 

(Jibril and Güler 2009). In this thesis, the DSM model is investigated in the situation of 

noise fluctuating input currents and concentrates on what role the renormalization terms 

and noise could have on the spiking rates and the spike coherence values. 
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Chapter 2 

NEURON STRUCTURE 

2.1  Morphological and Structural 

Neurons are the brain’s most important blocks that are specialized in generating 

electrical signals due to the impact of chemical and other inputs, and pass them on to 

other cells. Neuron cells consist of two basic parts: dendrite and axon. Dendrite receives 

input signals from other neurons and carries them to the neural cell main body called 

soma. The axon then propagates the output of the neural to other cells. Dendrite 

structure is like a branch of a tree which increases the surface area of the cell, enhancing 

the neuron capability to receive inputs from many other neurons through synaptic 

connection. Figure (1) shows the structure of neurons and information flow. Single 

neuron's axon can propagate a large proportion of the brain or, in some cases, the whole 

body. 

It was shown that cortical neurons typically send out about 40 mm of axon and 4 mm of 

dendrite cable in their branches to dendritic trees (Dayan Abbot 2002). 
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Figure 1: Neuron information flow (Kolb and Whishaw 2009).Figure 1 
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2.1.1 Membrane Proteins   

Proteins embedded in cell membrane transport substance through it. Knowing how 

proteins work is necessary to comprehend the tasks of neurons. The protein’s job is an 

emergent property of its form or the capability to change its form .Three classes of 

membrane proteins can be described that help in passing substance on through the 

membrane. The three classes of protein are pumps, gates, and channels. 

2.1.1.1 Pumps 

In some cases, the membrane protein operates as a pump, a transporter molecule that 

requires energy to move substances across the membrane. For instance, one protein can 

transfers two kinds of ions by changing its shape to pump Na+ ions in one end and K+ 

ions in the other end. Many substances are transferred using protein pumps. 

2.1.1.2 Gates 

Some protein molecules have an important feature which is their capability to change 

shape. There are gates that function by changing shape when different chemicals bind to 

them. In these situations, the protein molecule that is embedded works as a lock. When a 

key matches the size and shape is inserted into the gate and turned, the locking device 

changes shape and will be activated. Other gates change shape under specific conditions 

in their environment, such as temperature change or electrical charge. 

2.1.1.3 Channels 

Some membrane proteins are shaped in such a way that they generate channels or holes, 

through which substance can move. Various types of proteins with different-size holes 

allow distinct substances to enter or leave the cell. Protein molecules that serve as 
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channels are usually calcium (Ca2), sodium (Na+), Potassium (K+), and chloride (Cl-) 

ions. 

Pumps, gates, channels perform significant roles in neuron's capability to transport 

information. 

2.1.2 Synapses 

Synapses are shaped in the form of a junction between two consecutive neurons when 

the axon of afferent neuron is connected to the efferent one and grants a way to carry the 

information to other cell axon’s end at the synapses. The voltage passing through the 

action potential opens ion channels creating a stream of Ca2+ that will cause a 

neurotransmitter to release. Receptors bind the neurotransmitter at the signal receiving 

or post synaptic side of the synapse leading to the opening of ion-conducting channels. 

Depending on the ion flow’s nature, the synapses can have inhibitory, depolarizing, or 

excitatory, typical hyper-polarizing, effects on the post synaptic neuron (Dayan and 

Abbot 2002). 

Synapses are not scattered randomly over the external surface of the dendrite. Generally, 

inhibitory synapses are proximally more than excitatory synapses, despite the fact that 

they also present at distal dendritic regions and when present on several spines in 

combination with an excitatory input (Segev in Bower and Beeman 2003). In many 

systems (e.g., Cerebellar Purkinje and pyramidal hippocampal cells), an input source 

given is preferential mapped onto a given region in the dendritic tree (Shepherd 1990), 



7 

rather than being randomly scattered over the external surface of the dendrite. Electron 

micrographic images of synapses in neurons are shown in figure (2). 

 
Figure 2: Synapses examples: (A) Electron micrograph of excitatory spiny synapses (s) 

shaped on the dendrites of a rodent hippocampal pyramidal cell. (B) An electron 

micrographic figure captured the synapse formed where the terminal bottom of one 

neuron meets a dendritic spine on a dendrite of another neuron (Kolb and Whishaw 

2009). 
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2.2 Membrane Potential and Neuron Electrical Activity 

Membrane potential is known as the difference in electrical potential between the 

interior and extracellular fluid of the neuron. Under resting situation, the potential of the 

cell membrane inside a neuron is approximately -70 mV relative to the surrounding area. 

That voltage, nevertheless, is traditionally assumed to be zero mV for convenience, and 

the cell state is said to be polarized. This potential is an equilibrium spot at which the 

ions that flow into the cell equal to those that flow out of the cell. This potential of the 

membrane difference is sustained by ion pumps located in the cell membrane by keeping 

concentration on gradients. An example of it, concentration of Na+ in the extracellular 

of a neuron is much more than inside it, and the K+ concentration in a neuron is 

significantly higher inside than in the surrounding fluid. As a result, the flow of ions 

goes in and out of a cell because of voltage and concentration gradients during the cell 

state of transition.  

Current, in the form of positively charged ions flowing out of the cell (or negatively 

charged ions flowing into the cell) through open channels makes the membrane potential 

more negative, a process called hyper-polarization. Current streaming inside the cell 

decreases the negativity of the membrane potential or even makes it positive values. 

This is known as de-polarization. The membrane potential will rise above a threshold 

level as a neuron de-polarization is large enough to rise, a process with positive feedback 

will begin and the neuron creates an action potential, which is nearly 100 mV fluctuation 

in the electric potential passing through the membrane cell that lasts for about 1ms. 

As soon as an action potential occurs, it may be impossible to trigger another spike 

directly after the earlier one, and this is called the absolute refractory period. The 
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importance of action potential is that unlike sub-threshold fluctuations that attenuate 

over distance of at most 1 millimeter they can propagate over large distances without 

attenuation along axon processes (Dayan and Abbot 2002). Figure (3) explains the 

neuron voltage dynamic while an action potential which is tuned by a corresponding ion 

channel activity. In this figure, the resting potential is in its real value of -70 mV. 

 

Figure 3: Phases of an action potential initiated by changes in voltage sensitive sodium 

and potassium channels, an action potential begins with a depolarization (gate 1 of the 

sodium channel opens and then gate 2 closes). The slower-opening potassium channel 

contributes on re-polarization and hyper-polarization until the resting membrane 

potential is restored (Kolb and Whishaw 2009).  
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Chapter 3 

MODELLING THE EXCITABILITY OF NEURON 

3.1 Introduction 

Over the years, scientists developed many models of neurons for various purposes. 

These models range from structurally realistic biophysical models, for example, the 

model of Hodgkin-Huxley (HH), to simpler models, such as the model of Hindmarsh-

Rose (HR) that is usually used in studying synchronization theories in the large 

ensembles of neurons. In different studies, depending on models biological 

characteristics such as complexity and implementation expenses, various models can be 

used. However, the methods of modeling neural excitability have been influenced 

greatly by Hodgkin and Huxley (1952) landmark work (Hodgkin and Huxley 1952). 

In this chapter, a brief summary on Hodgkin-Huxley (HH) and Hindmarsh-Rose’s (HR) 

models are presented. Following that, the dissipative stochastic mechanic (DSM) based 

neuron model will be elaborated that yields the dynamics of Hindmarsh-Rose model in a 

deterministic condition on which the present study and experiments were conducted. 
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3.2 The Hodgkin-Huxley Model 

Depending on experimental research done on an axon of giant squid using space clamp 

and voltage clamp techniques, Hodgkin and Huxley (HH) (1952) explained that the 

current passing through the axon of a squid has only two major ionic elements,     and 

   (sodium and potassium channel equivalent elements). The membrane potential    has 

influence on these currents significantly. Accordingly, they developed from their 

observation a mathematical model to create a model that is still one of the most 

important model and depending on it, scientists developed lots of realistic neural models 

(Hodgkin and Huxley 1952). 

In this model, section of nerve membrane had an electrical feature that can be sculptured 

by an equivalent circuit in such a way that current passing through the membrane has 

two major elements, the first one related with charging the membrane capacitance and 

the other one related to specific types of ion's movement through membrane. After that, 

the ionic current is also subdivided into three recognizable currents, sodium    , 

potassium   , and small leakage    that is mostly conveyed by chloride ions. 

The differential equation that corresponds to the electrical circuit is shown below: 

  
   
  

             

Where    is membrane capacitance,    is membrane potential, and      is the current 

that externally applied.      is ionic current passing through the membrane and can be 

calculated from the next equation: 
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    here indicates every ionic element that having related conductance    and reversal 

potential   . 

In the model of a giant squid axon, it has three kinds of currents (  ): sodium    , 

potassium   , and leakage    and that will give us this equation: 

                                               

The macroscopic   (    ,   ,   ) conductance starts from the united influence of a great 

amount of membrane microscopic ion channels. Ion channel can be considered as 

physical gates in a small number that manage the ions flow across the channel. When all 

the gates in an ion channel are in the permissive condition, ions can flow through the 

channel, and the channel is open. 

3.2.1 The Ionic Conductance 

Ions can pass through the channel and it is open when all of the gates for a particular 

channel are in the permissive state. The formal assumptions used to describe the 

potassium and sodium conductance empirically achieved by voltage clamp experiments 

are: 

       
  

         
   

where n, m and h are variable's dynamics of the ion channel gate that will be shown later 

on,     is a constant with the scales of conductance per     (remember that n is between 



13 

0 and 1, consequently, the maximum conductance value is needed (   ) to normalize the 

result). 

 The dynamics of n, m and h are shown below: 

 

  
  

  
                                                                 

    
  

  
             

  
  

  
             

where    and    are rate constants, that fluctuate with voltage but not with time, n is a 

non dimensional variable that can fluctuate between 0 and 1 and shows the individual 

gate probability of being in the permissive state. 

In experiment on voltage clamp, the membrane potential will start rest state at (   = 0), 

and then it is immediately moved to a new voltage clamp   =   . The answer to Eq.s (1) 

is a simple exponential shown below: 

                                       

                         (0) 

                            (  ) 

                        
   

where   represents time depending gating variables n, m and h .To simplify the formula, 

      and         denotes gating variables value at traditional rest state voltage 0 and 
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clamped voltage    .    stands for the constant time course to reach the steady-state 

value of        when the voltage clamped to    . 

The constants    and    are measured in Hodgkin and Huxley as functions of   as 

follows: 

   
     

     
 

    
       

     
 

As mentioned before   is a representative index for n, m, and h variables of the ion 

channel gate. Shown next the rate expressions of constants    and    that are concluded 

experimentally: 
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3.3 The Hindmarsh-Rose Model 

Despite the fact that Hodgkin-Huxley (HH) can explain neural dynamics of spiking 

neuron to a certain extent, the complexity of bursting model in HH can be seen in large 

models. Hodgkin-Huxley studied squid neuron and to be exact in the axon port of it that 

had Na and K conductance, while in the bursting model of HH there are other 

conductance kinds, which contribute in a certain role that will make the model slightly 

more complex. 

FitzHugh and Nagumo (FitzHugh R. 1961, Nagumo J. 1962) noticed separately in the 

Hodgkin-Huxley equations, that in equivalent time-scales the membrane potential V(t) 

and sodium activation m(t) developed during an action potential, where the change of 

sodium inactivation h(t) and potassium activation n(t) are similar, even though that's 

happened in slower time scales. Consequently, now we can represent the simulation 

spiking response of a model in the following equations: 

                                                                      

              

Where   indicates membrane potential and   denotes the recovery parameter.   (   is 

represented with cubic function,   ( ) with linear function, variables a and b are time 

constants and I( ) is the external current applied or clamping as time function t. 

Hindmarsh-Rose benefited from the FitzHugh-Nagumo model to enhance their model, 

which was a simplified version of the Hodgkin-Huxley equations and substituted the 

linear function g(x) with a quadratic function so that the model in a long interspaces 
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interval can accomplish rapid firing. Figure (4) displays the diagram of null-cline of the 

model of Hindmarsh-Rose in 1982 (Hindmarsh J.L. and Rose R.M 1982). 

 

Figure 4: The 1982 HR model phase plane representation. Null-clines   = 0,   = 0 (thin 

lines) and firing limit-cycle (thick line). The model has one equilibrium node (Steur 

2006). 

The HR model needed more than one equilibrium point to generate burst firing reaction. 

Basically, the state of Sub-threshold stable resting will have one point and one point 

inside the cycle of firing limit. To make the null-clines meet and bring additional points 

of equilibrium, a minor deformation was necessary. The controlling equations were 

altered to satisfy the requirements as shown in the following equations: 

                  

          

where in the simple image of HR model              and           . 

Analysis of the phase plane of the granted equations is shown next page in figure (5). 



17 

 

Figure 5: Hindmarsh-Rose model phase plane description. The equilibrium points A, B, 

and C are a stable node, an unstable saddle, and an unstable spiral, correspondingly, a 

humble form of f(x) is used in this equation as is indicated      null-cline shows (Steur 

2006). 

The steady point in the figure (5) is the node A that corresponds to the neuron’s resting 

state. By using current pulse de-polarizing that is large enough,      null-cline is to be 

lowered so that the nodes A and B meets and vanishes. Ending firing is impossible by 

just terminating the stimulus and the state will get out of the limit cycle only after 

applying a suitable hyper-polarizing pulse. Therefore, to terminate the firing state of the 

model the term z was inserted. The variable that has been additive stands for a slowly 

changed current, changing the inserted current I to the effective input I - z. When the 

neuron is in a firing state, the z value is required to be raised. After this modification, the 

general set of equations for HR model is as shown below: 
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It should be noted that the f(x) and g(x) are removed and substituted by their 

equivalents. Where x indicates membrane potential, y denotes the recovery parameter, 

and z stands for the current adaptation with time constant r. Parameter z rises up through 

fire state and goes down through the non-fire state what made the model able to show 

bursting, chaotic bursting and post-inhibitory rebound are variables h and r. (Hindmarsh 

and Rose 1984; Steur 2006). Figure (6) in the next page display the analysis of phase 

plane of the equation (4) applying more complex form of f(x) as suggested in 

(Hindmarsh and Rose 1984). 

 

 

Figure 6: Hindmarsh-Rose model phase plane analysis with the use of more complex 

form of f(x). The equilibrium nodes A, B, and C are a stable node, an unstable saddle, 

and an unstable spiral, correspondingly, unstable limit cycle is defined here (Hindmarsh 

and Rose 1984). 
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3.4 The Dissipative Stochastic Mechanics (DSM) Neuron Model 

The DSM based neuron special formulation comes from a point of view that ion 

channels conformational fluctuation are subjected to two distinct types of noise. These 

two noise types were formulated as the intrinsic noise and topological noise. The first 

one is the intrinsic noise which starts from gating particles voltage dependent movement 

between inner and outer of the membrane surfaces which is stochastic in nature. 

Accordingly, gates open and close in a probabilistic manner, this is the average number, 

not the precise number. Open gates in the membrane are defined by the voltage.  

The second one is the topological noise that comes from multiple numbers of gates 

existences in the channels and contributes to the changes in the open gates topology, 

instead of the changes in the open gates number. 

Curiously, as gating particles during the dynamics do not follow a specific order for the 

occupation of the available closed gates, and the evacuation of the open gates, the 

membrane at two distinct times could have an equivalent number of gates being open 

but two various conductance values. The topological noise is contributed to the 

suspicion in the open channels numbers that occurs even if open gates numbers are 

precisely known. Therefore, in defining the dynamics of the voltage, all permits from the 

gates open topologies which should be well thought of. DSM neuron formula was 

developed based on Hindmarsh-Rose model (Hindmarsh and Rose 1984) and benefit 

from the Nelson’s stochastic mechanics (Nelson 1966 and 1967), in the dissipation 

existence, to model the ion channel noise impacts on the membrane voltage dynamics. 

The topological noise impact on the neuron dynamics gets to be more important in 
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membranes that are small in size. Accordingly, the DSM neuron functions like the 

Hindmarsh-Rose model when the membrane size is too large. 

The motion equations for both variables cumulants are resulted from the formalism of 

the DSM neuron. The second cumulants that depict the neuron's diffusive manners do 

not concern us in this thesis. The first cumulants develop in harmony with the dynamics 

below: 

           
 

      
  

 
   

  

 
                 

     
                   

             
  
 

 
           

  
 

 
  

 

 

                                                                                                                   
 

                                                                                                               
 

                          
 
         

 
                                               

 

where X indicates the membrane voltage value expected, and   matches to the expected 

value of a momentum-like operator. The additional variables y and z describe the fast 

and the slower ion dynamics, respectively. I stands for the exterior current inserted into 

the neuron, and m represents the capacitance of the membrane. The variables a, b, c, d, r, 

and h are constants. k is a mixing coefficient presented by k = 1/(1+r).    are constants 

as shown next:  
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Eq. (5) defines   value at the beginning time    in terms of the beginning values of the 

other dynamical parameters X, y and z, and the current I. Xeq(I) bows to the equation: 

    
          

                  

where    is a constant.    and    in Eqs. (3) and (4) are noises from the Gaussian white 

kinds with zero means and mean squares presented by: 

                         

 

and 

                          

 

are obtained by the fluctuation-dissipation classical theorem.   indicates a temperature-

like value. The renormalization terms are the conditions with the correction coefficients 

  
 

 ,  
 

,   
  and   

  that occur in the equations above. 

When the noise parameters    and    are neglected and setting all the correction 

coefficients to zero, the dynamics of the DSM works in the same way like the dynamics 

of Hindmarsh-Rose. All the model parameters, even time, are in dimensionless units. 

The original voltage time series of the membrane for Hindmarsh-Rose’s original model 
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is shown in the Figure (7) for some different constant current inputs. Hindmarsh-Rose 

model dynamical states are quiescence, bursting (rhythmic with a periodicity in high 

degree, or chaotic), and tonic firing. 

It was shown that the representation of intrinsic noise will get to be more important in 

small size membranes and it’s the same in case of fewer channels in DSM Neuron 

(Güler 2008). The intrinsic noise can be the source of spiking activity in quiet 

deterministic model and in large input current values bursting can be caused. In figure 

(8) the DSM Neuron dynamics in a small size membrane is demonstrated. Notice that 

renormalization corrections are equal to zero so that the result is studied regardless of 

the topological noise influence. 
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Figure 7: Membrane voltage time series of the deterministic Hindmarsh-Rose model 

applying the parameter values m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 and   

  =-1.6; for different constant inputs current values I, indicated in a parenthesis on the 

left of each plot (Güler 2008). 
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Figure 8: Time series of X when the DSM neuron is exposed just to the intrinsic noise 

applying the Hindmarsh-Rose m = 0.25, a = 0.25, b = 0.75, c = 0.25, d = 1.25, h = 1,    

r = 0.004 and   =-1.6 with the temperature T = 0.008. Schemes for different constant 

inputs current values 4I (scaled by the factor of four) (Güler 2008).  

Renormalization corrections are caused by the interaction between the topological and 

intrinsic noises. The existence of correction's parameters further increases the shift in 

behavior from quiescence to spiking and from tonic firing to bursting to a significant 

degree and with evidence to this, it causes the bursting activity to occur in a wider 

domain of input currents. Hence, in the existence of the correction terms, the spiking 

activity begins to occur at smaller input current values and the bursting activity is 

extended for higher input current values. The DSM neuron manner under the effect of 

corrections is displayed next page in figure (9). 
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Figure 9: Time series of X using the correction coefficients   
 
     ,   

 
    , 

  
        and   

        with the temperature T = 0.008. The Hindmarsh-Rose 

parameter are m = 1, a = 1, b = 3, c = 1, d = 5, h = 4, r = 0.004 and   =-1.6 (Güler 2008). 

3.4.1 Noise in neuronal information processing 

Noise can enhance neuronal systems from signal transmission properties point of view 

under certain conditions. Sub-threshold oscillations in a neuron may have an important 

effect on the data coding in neurons when magnified by noise (Braun 1998). The perfect 

noise amount existence in the neuron system may have association with the input signal 

to enhance signal observation (Gerstner and Kistler 2002).  

There are two types of noise; the internal and external which have been explained within 

the DSM neuron approach model in the third chapter. In this study the noise is a white 
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Gaussian noise and considered to be one variable containing both the internal and the 

external noise.  

Gaussian noise is statistical noise that has its probability density function equal to that of 

the normal distribution, which is also known as the Gaussian distribution. In other 

words, the values that the noise can take on are Gaussian-distributed. A special case 

is white Gaussian noise, in which the values at any pairs of times are statistically 

independent (and uncorrelated). In applications, Gaussian noise is most commonly used 

as additive white noise to yield additive white Gaussian noise. 
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Chapter 4 

NUMERICAL EXPERIMENTS 

4.1 The Role Played by the Renormalization Terms and Noise in 

Computing Spiking Rate and Coherence 

Rather than investigating the role of the correction coefficients separately, we take the 

standard values of epsilons (renormalization terms) as follows (       ,       , 

         , and          ) and scale them to zero to have a benchmark of various 

sets of correction coefficients. We use the following periodic input current for the 

neuron: 

            

where       indicates the current and     are Gaussian white noise. 

The model’s behavior is studied in the context of spiking rate and coherence, within the 

following ranges of the parameters: the time will be measured mS, voltage will be 

measured in mV. We used noise variances values between 0 and 2 and will be measured 

in        and       values between 0.8 and 2.2 and will be measured in       . The 

spiking rate when the       values under 0.8 is small and after the       pass the values 

of 2.5 it become too large so in both cases we didn’t use that results in this thesis for 

comparison. Only the optimum result was taken in case of the lowest and highest spiking 

rate.  
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In the first set of experiments, the epsilon values and noise were set to zero and by 

changing       we obtained the results that are outlined in figure (10). After that, the 

epsilon values were set to the default values which are (  
 
     ,   

 
    ,   

  

      and   
       . The noise was not change and remained zero. The experiments 

were performed by changing       and the results are obtained and presented in figure 

(11).  

In the second set of experiments, the noise was changed to (0.8). As in previous 

experiments the renormalization terms were assigned value zero as in the first set of 

experiments, and when       value is changed, the results were as in figure (12). Then 

the default values of the epsilon values were used, the noise was fixed to the same value 

(0.8) and when       is changed until it reaches the last value. The results are shown in 

the figure (13).  

The difference of both sets in which the existence and the absence of epsilon value is 

shown in the figures (14, 15, 16 and 17). 

The effect of the renormalization terms appear in significant manner when the value of 

the       are below 0.5 and after       exceed this value the renormalization terms effect 

will be reduce dramatically and the noise will have the most effect on the neuron 

behavior as shown in figures (18, 19, 20 and 21). 
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4.2 Technologies used in this thesis 

The DSM neuron model has been developed by Prof. Marifi Güler and some parts have 

been changed like the main equation in the models in order to make it possible to do the 

experiments of this thesis. The model has been written by the C++ language. The 

GnuPlot program was used to plot the results and voltage time series. 
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Figure 10: Voltage time series of the membrane deterministic using DSM model for the 

parameter values m=1, a=1, b=3, c=1, d=5,        , r=0.004, h=4, T=0.04 and the  

epsilon values and noise variances are set to be zero using various constant input current 

values as shown between the parentheses in the lift side of the figure. 

In the figure (10) above the experiment was done by fixing the renormalization terms 

values and the noise variance values to zero. And by changing the       we get the result 

shown in the figure above. When the value of       is small there is no spiking action 
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and after increasing the value of       the neuron spiking rate start to increase in a rapid 

manner and the experiments have a low coherence. 

In the figure (11) next, the result is gotten by fixing the renormalization terms values to 

(  
 
     ,  

 
    ,  

        and   
       ) and the noise variance values to zero 

and when changing the       the number of spikes in the experiments will increase in 

slow manner instead of the fast increasing as in the experiments shown in the figure (10) 

and the coherence will be high in this experiments contrary to the experiments in the 

figure (10). 
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Figure 11: Voltage time series of the membrane deterministic using DSM model for the 

parameter values m=1, a=1, b=3, c=1, d=5,        , r=0.004, h=4, T=0.01 and the  

epsilon values are   
 
     ,   

 
    ,   

        and   
        using various 

constant input current values as shown between the parentheses in the lift side of the 

figure, and the noise variances is set to zero in all the experiments. 
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Figure 12: Voltage time series of the membrane deterministic using DSM model for the 

parameter values m=1, a=1, b=3, c=1, d=5,        , r=0.004, h=4, T=0.04 and the  

epsilon values are equal to zero and the noise variances is 0.8 applying various constant 

input current values as shown between the parentheses in the lift side of the figure. 

In the figure (12) above the experiment was done by fixing the renormalization terms 

values to zero and the noise variance values to 0.8. And by changing the       we get the 

result shown in the figure above. When the value of       is changing the neuron will 
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start spiking from the beginning and the increase will be much better than the result 

gotten when the noise was zero as in figure (10). The experiments have a much better 

coherence compare to the result in the figure (10) but it still low. 

In the figure (13) next, the result is gotten by fixing the renormalization terms values to 

(  
 
     ,  

 
    ,  

        and   
       ) and the noise variance values to 0.8 

and when changing the       the number of spikes in the experiments will increase in 

much better and slower manner instead of the fast increasing as in the experiments done 

before that and the coherence will be higher in this experiments contrary to the other 

experiments as in figures (10, 11, 12). 
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Figure 13: Voltage time series of the membrane deterministic using DSM model for the 

parameter values that are the same as in figure (12) and the epsilon values are as in 

figure (11) applying various constant input current values as shown between the 

parentheses in the lift side of the figure, and the noise variances is set to be equal to 0.8 

in all the experiments. 
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In the figure (14) next, the comparison done between the results done earlier which are 

shown in the figures (10, 11). We got the result as shown below while using the 

renormalization terms in the first experiments and will take the blue color in the figure 

and the second experiments will take the red color in the figure and the renormalization 

terms are set to zero and the noise variance is set zero. The difference is very large 

between them.    

 

Figure 14: Shows the difference between the two experiments. In the first experiment 

epsilon values are set to   
 
     ,   

 
    ,   

        and   
       . In the 

second experiment, it is set to 0.       as shown below in the figure, and the noise 

variances is set to zero. 
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In the figure (15) next, we got the result as shown below while using the renormalization 

terms in the first experiments and will take the blue color in the figure and the second 

experiments will take the red color in the figure and the renormalization terms are set to 

zero and the noise variance is set 0.2. The difference is smaller between them then the 

old comparison in figure (14). 

Figure 15: Shows the difference between the two experiments. In the first experiment 

epsilon values are set to   
 
     ,   

 
    ,   

        and   
       . In the 

second experiment, it is set to 0.       as shown below in the figure, and the noise 

variances is set to (0.2). 

 

 

 



38 

In the figure (16) next, we got the result as shown below while using the renormalization 

terms in the first experiments and will take the blue color in the figure and the second 

experiments will take the red color in the figure and the renormalization terms are set to 

zero and the noise variance is set 0.5. The difference is smaller than the comparison 

done in figure (15). 

Figure 16: Shows the difference between the two experiments. In the first experiment 

epsilon values are set to   
 
     ,   

 
    ,   

        and   
       . In the 

second experiment, it is set to 0.       as shown below in the figure, and the noise 

variances is set to (0.5). 
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In the figure (17) next, the comparison done between the results done earlier which are 

shown in the figures (12, 13). We got the result as shown below while using the 

renormalization terms in the first experiments and will take the blue color in the figure 

and the second experiments will take the red color in the figure and the renormalization 

terms are set to zero and the noise variance is set 0.8. The difference is very small 

between them compare to the other results as in figures (14, 15, 16). As the noise 

variance increases the difference between the existence and the absence of 

renormalization terms will decrease but until the last experiments it didn’t vanish. 

Figure 17: Shows the difference between the two experiments. In the first experiment 

epsilon values are set to   
 
     ,   

 
    ,   

        and   
       . In the 

second experiment, it is set to 0.       as shown below in the figure, and the noise 

variances is set to (0.8). 
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In the next figure (18) the renormalization terms was fixed to (  
 
     ,   

 
    , 

  
        and   

       ) and the       is fixed to 0.8 and by changing the noise 

variance as shown in the figure (18) below. We got the result as in the figure next. 

 

Figure 18: Shows the change in the number of spikes when the            , the 

epsilons value are set to their default values as in figure (11) and the noise variance is 

changed as in the figure. 
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In the next figure (19) the renormalization terms was fixed to (  
 
     ,   

 
    , 

  
        and   

       ) and the       is fixed to 1.2 and by changing the noise 

variance as shown in the figure (19) below. We got the result as in the figure next which 

shows that the renormalization terms have all the effect on the neuron around 0.5 and 

after the value of the noise variance pass the 0.5 limit the noise variance will have 

almost all the effect on the neuron and the renormalization terms effect will be much 

smaller. 

 

Figure 19: Shows the change in the number of spikes when the           , the epsilons 

value is set to the default as in figure (11) and the noise variance is changed as in the 

figure. 
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In the next figure (20) the renormalization terms was fixed to (  
 
     ,   

 
    , 

  
        and   

       ) and the       is fixed to 1.4 and by changing the noise 

variance as shown in the figure (20) below. We got the result as in the figure next which 

shows that the renormalization terms have all the effect on the neuron around 0.5 and 

after the value of the noise variance pass the 0.5 limit the noise variance will have 

almost all the effect on the neuron and the renormalization terms effect will be much 

smaller. 

 

Figure 20: Shows the change in the number of spikes when the           , the epsilons 

value is set to the default as in figure (11) and the noise variance is changed as in the 

figure. 
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In the next figure (21) the renormalization terms was fixed to (  
 
     ,   

 
    , 

  
        and   

       ) and the       is fixed to 2.2 and by changing the noise 

variance as shown in the figure (21) below. We got the result as in the figure next which 

shows that the renormalization terms have all the effect on the neuron around 0.5 and 

after the value of the noise variance pass the 0.5 limit the noise variance will have 

almost all the effect on the neuron and the renormalization terms effect will be much 

smaller and as the       value increase with the noise variance the effect of the 

renormalization terms will be reduce in much faster manner and almost vanish. 

 

Figure 21: Shows the change in the number of spikes when the           , the epsilons 

value is set to the default as in figure (11) and the noise variance is changed as in the 

figure. 
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Chapter 5 

CONCLUSION 

In this Thesis, the DSM neuron model was investigated from a numerical point of view 

when exposed to input current that is noisy and periodic in nature. The impacts of both 

the epsilon values and noise variances on the spiking rates and coherence were checked. 

Correction coefficients were used as an effective measure of renormalization corrections 

to the model. It should be considered that these renormalization corrections appear from 

the dilemma of being in doubt of how many open ion-channel numbers there are, even if 

we know the exact number of open gates. 

DSM model neurons appear to be more complex than other models. It shows quicker 

synchronizing between two DSM neurons (Jibril and Güler 2009), dynamics of the 

models under constant input currents (Güler 2008) and in addition, its ability in 

detecting signals under noise varying and periodic input currents, that have been 

inspected during this study, are all the model benefits that deserve tolerating the 

complexity of it. Furthermore, it should be taken into consideration that this model is 

extremely capable of handling the small membrane sizes of the neurons. 

The experiments show that the epsilon values play an important role. The absence of the 

epsilon values makes the neuron generate spikes at the beginning of the experiment in 
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slow manner and after a while the spikes generation will rise in a rapid way as shown in 

figures (10,12).  

The existence of the epsilon values when the noise variance is under 0.5 makes the 

neuron spiking smother from the beginning to the end of the experiment without any 

large differences between any two consecutive experiments and increases the neuron 

spiking stability and coherence as shown in figures (11,13). The difference between the 

absence and existence of the epsilon values is also shown in a compared matter in the 

figures (14, 15). 

 But the figures from (18) to (21) shows that after the noise variances across the value 

0.5, the effect of the epsilons values will be smaller, and the noise variances will have 

the most significant effects on the neuron spiking behavior and how it reacts. In 

addition, the noise variance almost takes all the roles played by the epsilon values from 

smothering the spike rates and coherence and increasing the neuron stability. 

The existence of epsilon values increases the coherence in the neuron and the absence of 

the epsilon values reduces the coherence of the neuron. As for the noise variance using it 

increases the coherence of the DSM neuron model. 

The results reveal that the neurons are extremely able to make a complicated and 

advantageous use of the channel noise in handling signals. From a technological point of 

view, the study shows that the DSM model has promising potential for signal detection. 
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5.1 Future work 

As future work, we suggest an investigating in the DSM neuron model to be done on the 

      values between 0 and 1 while changing the renormalization terms and the noise 

variance or investigate the DSM neuron model under noisy input current and using 

various values of amplitude or frequency. 
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