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ABSTRACT 

Life Cycle Assessment (LCA) is a technique used in evaluation or assessing the 

environmental impact of a production processes from the extraction of raw material 

from earth, to production, development, and processing, manufacturing and final 

disposal. In this study, an integration of the (LCA) and Data Envelopment Analysis 

(DEA) is used for efficiency evaluation of mussel cultivation rafts operation. The 

inputs and outputs used for the efficiency evaluation is obtained using the LCA 

method, and the efficiency is evaluation is performed using the DEA technique. The 

sites are considered as a Decision-Making Units (DMU). 

Standard and modified models are utilized in the efficiency evaluation to give a better 

analysis of the rafts under evaluation. The modified models identify the weak efficient 

and highly inefficient rafts. Further analysis of the efficiency results presents 

interesting findings as to the factors important for the improvement of the mussel rafts 

operation. 

Keywords: Life Cycle Assessment; Data Envelopment Analysis; modified models 
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ÖZ 

Yaşam döngüsü değerlendirmesi yeryüzünden hammaddelerin özütlenmesinden 

başlayarak üretim, gelişim, işleme, imalat ve nihai tasfiye dahil üretim sürecine tesir 

eden çevresel etkilerin değerlendirilmesi amacı ile kullanılan bir teknikdir. Bu 

çalışmada yaşam döngüsü değerlendirilmesi (YDD) ve Veri Geliştirme Analizi (VGA) 

birleştirilerek yüzer su taşıtlarından biri olan salların yapımında midye yetiştiriciliği 

işleminin yeterliliğinin değerlendirilmesi için kullanılmıştır. İşlemlerin giriş ve 

çıkışlarının elde edilmesi ve yeterlilik oranının değerlendirilmesi adına yaşam döngüsü 

değerlendirme metodu kullanılmıştır. Bu sürecin verimliliği değerlendirmelerin veri 

geliştirme analizlerinin tekniklerine dayalı olmasıdır. İşlemlerin yapıldığı alanlar karar 

kabul eden birimler olarak nitelendirilir.  

Standart ve değiştirilmiş modeller yeterlilik değerlendirilmesinde değerlendirme 

aşamasında olan salların yapım işlemlerine kritik çözümlemeler vermek için 

kullanılmıştır. Değiştirilmiş modeller düşük ve yüksek verimli salları tanımlamaktadır. 

Verimlilik sonuçlarının geleceğe yönelik analizleri sal yapım sürecinin 

geliştirilmesinde önemli ve ilginc faktörlerin ortaya çıkmasına neden olmuştur.  

Anahtar kelimler: Yaşam Döngüsü değerlendirilmesi, Veri Geliştirme Analizi, 

değiştirilmiş modeller 
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Chapter 1 

INTRODUCTION 

1.1 Preamble 

The concepts of performance evaluation have been gaining a continuous and 

increasing attention in different organization sector. The idea has been to determine 

the performance measurement of business firms. In recent years, operational efficiency 

has gained popularity in terms of the growing competitive nature of the global market. 

Numerous firms have witnessed a large amount of new product introductions and 

services that is motivated by increasing consumer taste. Therefore, all business 

organizations require constant evaluation of processes and operations that has to do 

with products, marketing, services, etc. to improve on their performance. Performance 

evaluation is a well-known method that provides best practices needed to improve 

efficiency and improve productivity, with respect to the use of available resources like 

machines, energy, materials, labor etc.  

As the industrial environment is facing global competition on daily bases every 

business organization that wants to survive and meet up with standard of product 

quality, market quality and cost, must continuously evaluate its operation 

performances in order to identify the strengths and weaknesses of operations and 

processes or activities, satisfy its customers’ requirements, and find innovative ways 

to improve current operation and processes for better products and services. However, 

every production process and product produced, transported, used and disposed has a 
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certain contributions or negative effects on the corresponding environment. Not only 

must performance evaluation seek to improve the quality of product, market quality 

and cost to remain competitive in the global market, but must also address the 

environmental impacts associated with this improvement which may constitute a 

health hazards to the corresponding environment. This contribution or impact is 

characterized by the product design and process technology, material, energy utilized 

or consumed which are the major key determinants of the type of pollutants emitted, 

solid and hazardous waste generated within the product complete life cycle (Tsoulfas, 

G. T., & Pappis, C. P. 2006).  

Although operational efficiency and environmental impact still remains a debatable 

issue in numerous studies as regards to the hazardous emissions into the environment, 

at the of course of producing or offering a high degree of product variety. However, 

an efficient operation is considered when business firms make the best possible use of 

inputs or available resources to improve their output without compromising the natural 

state of surrounding environmental. 

Performance evaluation and benchmarking has been in existence for a long time and 

is recognized and accepted but to an extent limited, as it can only work with a single 

measurement at a time. This makes it difficult to evaluate the performance of a 

business organization with multiple sets of data related to operations and 

environmental impacts especially when the connections among the data sets are 

complex and increased numbers of entities are needed. Hence the use of Data 

Envelopment Analysis when combined with Life Cycle Assessment has been proposed 

as an important technique for performance evaluation and benchmarking in assessment 

of operational efficiency and environmental impacts of multiple units. According (ISO 
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14040, 2006), LCA is a good tool that helps in assessment of the environmental 

performance of products and processes as it takes into account the overall life cycle of 

a product. Environmental assessment using LCA is done by collecting the inputs and 

outputs data evaluates the potentials environmental impacts and interpret the results 

obtained from the inventory analysis (Iribarren, Diego, et al 2010). 

Data Envelopment Analysis is a better technique in evaluating the performance of 

business organizations and has been successfully implemented in different areas 

because of its accurate assessment of the DMUs. It is effective in comparing the 

performance of peer units known as DMUs to determine or identify the efficient 

frontiers that represent the best practice with directions for improvement. DEA has 

allowed its use in tackling certain cases that are resistant to other approaches because 

of its ability to evaluate multiple inputs and outputs involved in different activities.  

DEA been widely applied in so many forms to evaluating the performance of different 

entities such as schools, hospitals, banks, countries, cities, etc. has helped managers in 

taking relevant improvement decisions in their various organizations. 

1.2 Problem Statement 

The increasing demand for environmental solutions regarding operational 

inefficiencies and corresponding environmental impacts during product productions 

process has called for the full attention of researches to the joint use of life cycle 

assessment and data envelopment analysis for performance evaluation in various fields 

of operation. The use of LCA has shown a great advantage and proven suitable for 

assessment of environmental impacts associated with aquacultures production such as 

mussel cultivation in raft used as a case study. On the other hand, DEA as a 
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performance evaluation method has been extensively used to quantify and compare 

the productive efficiency of multiple entities known as DMU. 

In the case of this study, LCA and DEA were jointly used to determine the operational 

efficiency and environmental impacts from mussel cultivation in 62 studied rafts. The 

data were made available from the different mussel cultivation sites. LCA was 

performed on each raft and their corresponding environmental impact was estimated. 

Using CCR model of DEA on the inputs and outputs data the efficiency of each mussel 

raft is computed and appropriate efficiency target are set. The idea of using the CCR 

Model of DEA in the study proposes that whatever is given to the system is what comes 

out of it.  In other words, the amount of input used is directly proportional to the 

amount of output produced which in real life is not practical. And from the results of 

the CCR model of DEA, the efficiency scores show that out of the 62 DMUs, 24 are 

efficient. But in the case of this current study we tried to use a different model of DEA 

known as BCC model to evaluate the different 62 entities which contradict the idea of 

the CCR model. The BCC and ERM model is absolutely different from the CCR model 

in that it accepts the notion that when there is an increase in the amount of inputs it 

does not result to proportional increase in outputs all through the operation.  Although 

the same technique is applied in both models, the BCC result is compared with the 

result of the CCR so that a comprehensive policy and decision could be reached and a 

perfect and standard benchmark could be set for the improvement of the inefficient 

DMUs. 

The use of DEA as linear programming models for performance evaluation has its 

drawbacks and researchers have been working tirelessly to improve on these models. 

For instance, in a situation where by the required number of DMUs are not good 

enough when compared to the available inputs and outputs amounts, the DEA may not 
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be able to evaluate efficiently the DMUs which may alter a good decision making. 

Another important drawback of DEA is the problem of ranking order of the efficiency 

scores for each DMU. 

Considering these drawbacks on DEA a new methodology otherwise known as 

modified BCC and ERM model of DEA is used also in this study which enhanced the 

discrimination of efficient frontiers from the inefficient operating points and 

consequently identifies the hot-spots with the corresponding environmental 

improvement actions. The modified VRS models strongly investigate the weak line of 

the efficient frontier and the DMUs that derive their efficiency scores from this weak 

line is identified while the strong efficient DMUs are unchanged. 

1.3 Supposition 

The DMUs and their corresponding multiple input and output data are the key 

requirements needed for running the DEA. The data obtained must not be bias and 

should satisfy the interest of the observer or analyst. Efficiency evaluation is best when 

there is increased output and reduced input. The two-basic efficiency evaluation 

technique adopted in DEA is the input orientation and the output orientation. This 

research is carried out using the input oriented condition in which the input orientation 

aims at maximizing the output with same input. The WinQSB linear programming 

solver was used for the computations and analysis of the data and results obtained are 

presented in the Appendix.  

1.4 Organized Structure of the Thesis 

This thesis is organized into five chapters: Chapter one gives an overview of the thesis 

topic with detailed motivation of the study and introduces the problems to be 

addressed. Chapter two is made up of the literature review on the key concept of LCA 
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and DEA in operational efficiency and environmental impact. It also provides 

background introduction for application of Data Envelopment Analysis to the 

measurement of efficiency scores in some related topics. Chapter three explains in 

details the methodology employed, the definition of the units of assessment, 

framework and application of LCA and BCC model of DEA in the measurement of 

efficiency in this research study. Chapter four illustrates the use of modified BCC 

model using facet analysis to reevaluate the efficiency scores obtained in chapter three 

using normal BCC model of DEA. It also summarizes the results of this study and 

makes recommendations. And finally, chapter five consists of a summary of 

discussion, implications, the limitations and recommendation for further research. 

 
Figure 1: The structure and organization of the Thesis study 

 

 

 



7 
 

Chapter 2 

LITERATURE REVIEW 

2.1 Life Cycle Assessment and Data Envelopment Analysis 

The idea of LCA came up around 1969s, in which scientists concerned with the rapid 

breakdown of fossil fuels introduced it as an approach to evaluating the impacts of 

energy consumption. Its first well known application in environmental study was in 

Coca Cola Company in 1969, where the study compared beverage containers with 

environmental impacts to determine which one had the lowest environmental impacts 

with fewer demands for raw materials and energy (Sarkis, J., & Cordeiro, J. 2001). 

LCA emerged fully in the late 1980s as an impact assessment tool and has been 

accepted by increasing numbers of corporations and nonprofit organizations as an aid 

to understanding of product systems and the associated environmental impacts. 

LCA is technique is used to assess and or evaluate the environmental impacts 

associated with the production of a product from its extraction of raw materials from 

the earth to product development, processing and manufacturing, use and finally to 

disposal (ISO 14044, 2006). According to (Barjoveanu, George, et al., 2014), LCA is 

such evaluation instrument that allows the identification and quantification of 

environmental impact of a product by considering its entire life span in an exact 

manner. LCA promotes better understanding of information on the environmental 

aspects of a product or services from cradle to grave. It gives a clear view on the 

environmental concerns by: Assembling together inventory data from relevant energy 
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to environmental emissions. Examining the potential impacts associated with the 

products via LCIA and interpreting results for improvement on decision. The 

advantage of using LCA in the operational performance evaluation is that it presents a 

holistic knowledge of each inventory and the extent to which it contributes negatively 

into the environment. 

Eco-efficiency is normally assessed by using of data envelopment analysis (Cooper et 

al 2007). Data envelopment analysis was first introduced Charnes, Cooper and Rhodes 

in 1978 to measure the relative efficiency of business organization unit with multiple 

inputs and outputs, (Martić, M., Novaković, M., & Baggia, A. 2009, Cooper et al., 

2004) It is an established linear programming technique, for non-parametric estimation 

of relative efficiency of homogeneous units, known as Decision Making Units. 

(Iribarren, Diego, et al., 2010, Zhu, 2002). It is called a non-parametric method because 

it does not require an assumption like production function or regression equation. Data 

Envelopment Analysis from the beginning has shown remarkable credit in 

performance evaluation resistant to other techniques because of its ability to evaluate 

multiple inputs and outputs data. It is a well-known approach for assessing the relative 

performance of business entities as it enables to determine efficiency units and 

compares it with other units in the analysis. Apart from measuring the relative 

efficiency; it is capable of finding the sources and the extent of inefficiency from every 

input and its corresponding outputs. (Martić, M., Novaković, M., & Baggia, A. 2009). 

DEA is data-oriented because the results of evaluations and other conclusions emanate 

from the observed data with fewer assumptions. It determines a production possibility 

set (PPS) that contains the target operating points which are considered feasible. 

Furthermore, it formulates and solves through linear programming for each DMU and 

produces an efficiency score with the target operating points which forms the efficient 
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frontier. (Lozano, Sebastián, et al, 2009). According to (Thanassoulis, 2001). DEA can 

be said to be one of the evaluation methods in operations research and among many 

other fields of application.  

In the last few decades, the joint use of LCA and DEA has established extensively as 

a standard technique for operational and environmental performance analysis of 

similar decision making units (Vazquez-Rowe & Iribarren, 2015). They have been 

used in many research works to assess many specific systems such as in food 

production assessment, eco-efficiency assessment of products and processes, 

operational efficiency and environmental impacts, emission reductions etc. (e.g. 

Mohammadi, Ali, et al., 2015 Vazquez-Rowe, Ian, et al., 2012, Avadi, Angel., 2014, 

Iribarren, Diego, et al., 2015). Integrating LCA and DEA as a methodology have been 

used as standard evaluation for the operational environmental performance of 25 

sample wind farms in Spain where it was ascertained that four out of the 25 samples 

were deemed efficient, while the target input values of both the consumption and 

environmental impacts were set as standard for those inefficient DMUs (Iribarren, D., 

Martín-Gamboa, M., & Dufour, J. 2013). LCA &DEA approach has also been used to 

evaluate the operational performance of thermal power plant in Taiwan (Liu, C. H., 

Lin, S. J., & Lewis, C. 2010).  

LCA + DEA methodology was also applied for production of grape used for 

vilification in the Rias Baixs appellation  (NW Spain) in which the aim of the study 

was to find out the operational inefficient grapes, determine the standard target input 

consumption, estimate the economic gains from efficient operational practices, 

determine the values environmental gains of operational efficiency in growing vine, 

prove with evidence that inputs used reduces potential environmental impacts and 
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finally identify the best efficient frontier used as operational and environmental 

standard for the vineyards (Vázquez-Rowe, Ian, et al., 2012 ). Joint LCA and DEA 

application have also been used to evaluate the environmental effects for 82 rice paddy 

production in the summer and winter season using the super- efficiency analysis. 

According to the LCA results the spring paddy rice has a lower environmental impact 

compared to the summer rice paddy as a result of global warming, water depletion, 

eutrophication and acidification etc., while the DEA results shows that the number of 

efficient fields was lower for summer (21%) when compared with spring (46%) 

(Mohammadi, Ali, et al. 2015). 

2.2 DEA Background 

Data Envelopment Analysis (DEA) is an adopted linear programming method that is 

used for evaluating the relative performance of similar functional entities (DMU). This 

tool evaluates simultaneously multiple inputs and outputs by measuring the efficiency 

of the different units as the ratio of weighted sum of outputs to weighted sum of inputs. 

It tries to compare the available information from each unit or DMU with the aim of 

identifying the efficient frontiers or best practice frontiers. 

DEA originated in 1978 from a postgraduate dissertation that was done by Rhodes 

under the supervision of Cooper and Charnes (Anadol, B. 2000). Rhodes in his 

research examined how efficient New York City educational institutions would 

improve the development of disadvantaged children. The first model used was the 

CCR model which allows the computation of relative efficiencies on the units being 

evaluated. The CCR DEA model was a detailed work of Farrell’s 1957 which was 

modified by the introduction of BCC model by Banker 1984. (Anadol, B., 2000). The 

BCC model contains the convexity constraints that allows the DMUs to be evaluated 
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on a variable return to scale basis. Recently DEA has been used to study over 70 

business organizations such as banks, insurance, credit unions, capital budgeting 

projects, educational institutions etc. And over 1300 paper research works have been 

written by academicians under engineering, operations research and management. 

2.3 How Does DEA Work 

Efficiency is normally evaluated using inputs and output ratio. DEA works in such 

way that after evaluation of the inputs/outputs data, it forms a best practice frontier 

that recognizes the performance of some DMUs below optimum levels. Based on that 

each DMU is optimized against all other DMUs by assigning weights to the variables 

in such a manner that each of the DMU gives the best it can. The efficiency of DMU 

is simply the sum of the weights of outputs all over the sum of the weights of inputs.  

DEA constructs efficiency frontier and measures the efficiency score of each DMU 

according to its distance from the frontier. These efficiency scores indicate the amount 

of unit that can increase the outputs without consuming more input, and on the way 

round the proportion which it can decrease its inputs and still maintain its original 

level. 
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Figure 2: Data Envelopment Analysis Frontier 

The figure above shows the graphical representation of efficiency scores in the 

observed population which identifies the efficient DMUs together with the inefficient 

ones. The efficiency frontier is made up of the best practice units or DMUs as it is 

connected to each other while the inefficient DMUs are enveloped within the 

production possibility set (PPS). The theoretical frontier is above the efficiency 

frontier in which the human performance effort cannot reach even though there are 

chances of human improvement. All DMUs that falls below the efficiency frontier are 

considered inefficient and what the DEA does is to identify the cause and levels of the 

inefficiency for the inputs when comparing them with the reference units constructed 

from linear combination of efficient units. 
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2.4 Resource Identification 

DEA is a good tool for finding how effective and ineffective the performance a 

business organization could be, especially when multiple input and output data 

variables is involved. In formulating DEA model the first thing is to identify all the 

relevant or most significant resources that are to be utilized by the decision-making 

units. The inputs used to produce the outputs are the major resources and the outputs 

generally represent the proportion of goods and services produced by each DMU. 

Environmental impacts that are quantifiable and non-quantifiable also influence the 

model formation and thereby are assigned to a certain proxy and included into the 

analysis. In general, the idea of DEA formulation for management is to maximize 

outputs while minimizing inputs used in producing the outputs. 

2.5. Production Possibility Set 

All the set of inputs and outputs of DMUs such that the inputs can generate an output 

are known as the production possibility set of DEA. The production frontiers 

constructed by the linear programming model is the technique used by data 

envelopment analysis for assessing relative efficiency. When this efficiency 

envelopment surface is evaluated from the inputs and outputs of the DMUs, the ones 

that connect the frontier surface are known as the efficient DMUs while the ones lying 

below it are inefficient. The relative efficiency of the DMUs is clearly evaluated using 

production possibility set by data envelopment analysis models. The DEA models 

cannot give the efficient frontiers of production possibility set but it can determine the 

DMUs efficiency. The set of feasible points of the evaluated input and outputs data are 

referred to as PPS denoted by ‘’T’’. One of the component of each of the input and 

output vector must be positive while all data are assumed nonnegative. Characterizing 

this mathematically we refer it as semi positive given that the DMU uses input.  
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(2.1)        

The two major DEA models are the CCR and BCC models. The CCR is known as the 

constant return to scale (CRS) while the BCC model is referred to as variable returns 

to scale (VRS). Both models are input and output oriented depending on the objective 

given by management or organization. The input oriented model exists when the 

organization has a specific production standard for the DMUs, the ones that are 

inefficient can be efficient through reducing the utilized inputs and holding the output 

constant while the output oriented model is established when the organization has 

required amount of input resources available to the DMUs, the inefficient units can be 

made efficient by increasing in its outputs while holding input resources constant. The 

CCR model efficiency frontier starts from the origin while the BCC model does not 
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have to start from the origin. There are less efficient DMUs in the CCR model with 

smaller θ values and larger   values. The CCR input oriented model is converted to 

the BCC input oriented model by adding the convexity constraint 
j

 ≥ 1 to the primal 

model with the U0 to the dual model. Similarly, 
j

 and 
0

v is also added to the BCC 

output oriented model. 

Figure 3: CCR and BCC efficiency Frontier 

From the figure above the CCR efficiency frontier is the straight line that passes 

through point C through the origin. Observing carefully, it is seen that only point C is 

efficient. However, the efficient frontier of BCC is the line connecting A B E C D. 

2.5.1 CCR Ratio Model 

This ratio mode concentrates on calculating the overall efficiency of the DMUs under 

study. The efficiency determined is never absolute because it is always measured 
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relative to the field. It assumes that increasing the input will results to a proportional 

increase in the output. The CCR model identifies the sources or causes of inefficiency 

and estimates the potential strategic improvements relevant for the inefficient DMUs. 

The input and output oriented CCR model are the same in terms of the envelopment 

surface however different in the way the inefficient DMU is projected. The 

envelopment surface generated from the CCR model has a convex cone shape. The 

efficient DMUs fall on top of the frontier, and the inefficient ones are enveloped by 

the frontier. 

From equation (2.1) the envelopment form of CCR model which assumes that the 

production function exhibits constant return to scale is given as in the equation below;

C
Tts
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),(.
00

yx


 

The idea is simply, minimizing inputs and maintaining the given output level. 
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                                                                     (2.2)      

Using the duality in linear programming, the equivalent multiplier form of the above 

model can be formulated as follows; 
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                                                                     (2.3) 

2.5.2 BCC Ratio Model 

The BCC model was the modification of CCR model done by Banker, Charnes, and 

Cooper (Banker R. D. & Thrall R. M., 1992). This model has a concave and piecewise 

linear characteristic which leads to a variable return to scale. The BCC model 

contradicts the CCR model in that it accepts the notion that when there is an increase 

in the amount of inputs it does not result to proportional increase in outputs all through 

the operation. In other words, the addition of the convexity constraints is given by (

1
1




n

j
j

 ). BCC model differentiates between scale and technical inefficiencies 

through estimating the technical efficiency and identify if it increases, decreases, or 

constant returns to scale for additional exploitation. It interprets results of the DMU 

efficiency with an assumption that variable return to scale exists within the observed 

population. It also allows DMUs of different scale sizes to be compared in the same 

DEA analysis. BCC input oriented model focuses on reducing the inputs and 

maximizing the performance of the DMU or increasing the producing output with 

minimum resources.  

The production possibility set (PPS) of the model is written as PB in which the 

postulates are follows; j
x ( ij

x ... sj
x ) ≥ 0 j

y  ( ij
y … mj

y ) ≥ 0 

1. All the input and output observed ( j
x , j

y )  PB    j = 1…., n  
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2. If the inputs and outputs ( j
x , j

y )  PB then the convex combination of these 

data njyx
n

j
jj

n

j
jj

n

j
j

,1,0,,
111




 also belongs to PB 

3. Every inputs and outputs ( jj
yx , )PB  and for any combination of input and 

output )( y,x with ,x x  and y y  belongs to PB. 

4. All the linear combination of inputs and outputs in PBPB. 

The published BCC model of PPS is defined by Banker, Charnes & Cooper 1984 is 

given as  jyyxxyxP
j

n

j
jj

n

j
jj

n

j
jB

 


,0,1,,),(
111


          

(2.4) 

The input oriented BCC model evaluates the efficiency of DMUj (j = 1, … n) by 

solving the linear programming model of the envelopment form. From the above 

formulation (2.4) can be clearly considered as BCC input oriented envelopment side 

follows: 

B
Tts

Min

)(.
00

y,x


 

From the above formulation, our main objective is finding the value of   such that 

  is between 10   because we want to minimize our input and have same 

output. Therefore, regarding to the definition of PPS the above problem can be written 

as follows: 
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The duality of the multiplier model of the BCC is expressed by 
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                                                          (2.6) 

2.6 Essence of DEA Interpretation 

The DEA identifies the target operating points and gives the potential improvement 

for the inefficient DMUs. The results of the evaluation serve as a guide for policy 

making or other managerial decision in a business organization. It gives a good 

understanding of the efficiency and directs the management in creating a perfect 

benchmark for similar operations. With DEA, DMUs that have poor performance or 

inefficient are identified among their peers which guides the organization towards an 

effective management process. 
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Chapter 3 

LCA + DEA METHODOLOGY 

3.1 Introduction 

The operational efficiency and environmental impact performance evaluation was 

established by assessing of multiple input and output data of similar units with the help 

of combined application of LCA and DEA. This approach has been proven as a most 

valuable tool that ultimately avoids standard deviation as it provides a comprehensive 

operational and environmental evaluation of units. (Vázquez-Rowe, Ian, et a 2012, & 

Iribarren, 2010). It also provides an eco-efficiency technique for operational and 

environmental benchmarking of DMUs (Iribarren, D., Martín-Gamboa, M., & Dufour, 

J. 2013).  The approach is illustrated using a recent life cycle assessment (LCA) from 

mussel production raft in which the input and output data were made available from 

the different mussel cultivation sites (Iribarren et al, Lozano, Sebastián, et al submitted 

for publication). An evaluation analysis of the units was carried out which aid in 

identifying the operational inefficiencies and corresponding environmental impacts. 

The LCI data are available on similar DMUs; DEA was used to evaluate the efficiency. 

Where the inefficiencies are found in any of the DMUs, LCIA of their computed target 

is performed, and the result used to make a comparison with the current DMU. This 

enables the quantification of the different impact categories and the excess input 

utilized can be minimized. 
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3.2 Definition of Unit of Assessment 

The mussel cultivation sites are the unit under assessment or DMU. These DMUs 

under assessment or evaluation was studied, the operational efficiency will give idea 

of the environmental impact. The LCI data for the 62 mussel cultivation sites were 

made available with their corresponding quantities of production. The input and output 

data for the 62 sites are provided in the appendix below. Primary data acquisition was 

through questionnaires answered by a set of significant boat skippers within the area 

for mussel cultivation in Galicia. Operational aspects such as oil and diesel 

consumption, as well as capital goods were also considered. The emissions into the 

environment resulting from combustion are proportional to the amount of diesel 

utilized for powering the ship.  

When carrying out the LCAs for the 62 sites of mussel cultivation, the system 

considered different stages from obtaining the mussel seeds through processing it in 

factories, construction, operation and maintenance of the rafts including the boats used 

during operation. The LCAs data used was basically original data from mussel 

cultivation in Galicia rafts and eco invent database was used for background processes 

as a source of secondary data (Frischknechtet et al 2007; Vazquez-Rowe, Ian, et al., 

2001). SimaPro 7 was used as the specific software for life cycle inventory 

computations while CML 2000 was used for the environmental impacts assessment of 

the 10 impact categories taking into account. 
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The data from the 62 DMUs to be evaluated using the DEA are the most relevant 

primary data from the questionnaires. A total of fourteen inputs and one output were 

considered in the evaluation in which all are related mussel sites activities. In respects 

to the inputs, the emissions to air due to diesel combustion were not considered as a 

result of their direct proportion with the amounts of diesel consumed. Following as a 

result, while minimizing these inputs, we are minimizing the direct emissions from the 

     Mussel Sites 

DMU 

Construction inputs 

 Wood for 

Auxiliary boat 

 Concrete for 

anchoring blocks 

 Wood for raft 
 

Operational Inputs 

 Diesel  

 Lubricating oil 

 Tar oil 

Chemical Inputs 

 Paint 

 High density 

polyethylene 

(HDPE) for plastic 

pegs 

Other inputs 

 Nylon  

 Cotton 

 Energy 

(electricity) for 

capital goods 

Outputs 

 Mussel 

Production 

Metal Inputs 

 Iron for floats 

 Iron for 

shackles chain 

Water Inputs 

 Wastewater 

from 

Auxiliary 

boat 

Figure 4: LCA Elements Considered for each Sites 
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DMUs at the same time. The mussel production was considered as the only output 

data. 

Inputs Consumed                                                  Units 

Diesel                                                                     l/year 

Wastewater from auxiliary boat                             l/year 

Lubricating oil                                                        l/year 

Wood for auxiliary boat                                         kg/year 

Iron for floats                                                         kg/year 

High density polyethylene (HDPE) for 

Plastic pegs                                                             kg/year 

Concrete for anchoring block                                 kg/year 

Nylon                                                                      kg/year 

Cotton                                                                     kg/year 

Paint                                                                       l/year 

Tar oil                                                                     l/year 

Iron for shackle chain                                             kg/year 

Wood for raft kg/year 

Energy (electricity) for capital goods                    GJ/year 

Output                                                                  Units 

Production of mussel of commercial size              ton/year 

3.3 LCA + DEA Framework 

LCA and DEA were jointly applied for operational efficiency and environmental 

performance evaluation of mussel rafts. The LCA uses the relevant LCI data in order 

to carry out a complementary study of the DEA which will lead to efficiency 

evaluation that will aid to quantify eco efficiency. The LCA and DEA methodology 

used in operational efficiency and environmental impacts evaluation can be 

summarized into five steps (Mohammadi et al., 2013; Lozano et al. 2009, 2010). 
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Figure 5: Schematic Representation of LCA + DEA Framework 
 

1. The first step is the preparation of life cycle inventory (LCI) which involves 

collection of input and output flow of each mussel cultivation site. 

2. Performing the LCIA for each of the decision-making units (DMUs) based on 

the LCI developed in the previous step in other to determine the potential 

environmental impacts. 

3. The DEA is performed in the LCI data collected from the first step with 

computation of the target DMUs. In this case the target values for the 

inefficient DMUs refer to virtual units that utilize less input and produce more 

output, thereby creating an attainable operational benchmark. 

4. The performing of LCIA of the target DMUs from the LCI data in the first step 

and the potential impacts determine from the virtual DMUs. 

Step One 

DMUs LCI 

Step Two 

Environmental 

Characterization of Current 

DMUS 

Step Four 

Environmental 

Characterization of 

Target DMUS 

 

Step Five 

Interpretation of 

Eco Efficiency 

Verification 

Step Three 

Current DMUS DEA 

 



25 
 

5. Interpretation of results base on quantifying of the environmental impacts of 

operational inefficiencies. And then comparing between the potential 

environmental impact of the current DMUs and virtual DMUs will help to 

quantify the environmental impacts generated through inappropriate 

operational practices. 

3.4 Application of LCA + DEA Methodology 

As described previously joint LCA + DEA approach can be used to evaluate the 

operational efficiency and environmental impacts of Mussel cultivation rafts. In as 

much the extraction phase of this mussel production requires greater operational 

activities in terms of input and output, this methodology is useful and applicable. 

3.4.1 LCI Data Acquisition 

Making the data available or a thorough data collection is the key requirements in LCA 

+ DEA studying. The appendix (B.1) shows the inventory data collected for the 62 

mussel rafts used for analysis in this study.  

3.4.3 BCC Model Application 

When the input and output data are made available for the different DMUs, the 

immediate approach is DEA application for evaluation and determination of the 

production possibility set. Although DEA can be said to be a non-parametric approach, 

convexity and free disposability of inputs and outputs are assumed for the 

determination of the production possibility set. An input oriented BCC model of DEA 

with variable returns to scale was used in other to differentiate between the efficient 

and inefficient Mussel rafts (DMUs). Evaluating the efficiency of the DMU0 that 

belongs to the PPS is represented using the input oriented form of the linear 

programming model. 
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From the above formulation, our aim is to find the value of   in which   is between 

10   because we want to minimize our input and keep the corresponding output 

constant or have same output. Therefore, regarding to the definition of PPS as 

discussed in the previous chapter, the above problem can be written as follows: 

 

 

                                                                               (3.1) 

 

 

  

The dual of the mathematical problem above is given by the following linear 

programming model known as BCC input oriented multiplier side which is applied in 

the study. 
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The reason behind selecting the input oriented model is because our aim is to achieve 

an input minimization without altering the mussel production. The BCC model solver 

was used for running the DEA computation (Saitech, 2011; Vázquez-Rowe, Ian, et al., 

2010). The results obtained are presented on the tables 5.1 and 5.2 which is the 

efficiency scores for mussel production. 

3.4.4 ERM – VRS Model Application 

The non-radial model otherwise known as Russell Measure was introduced by Fare 

and Lovell in 1978 identifies DMUs as technically efficient when inputs and outputs 

do not contain slacks. Based on these (Pastor et al.,1999) extended the initial model 

and proposed a new measure called Enhanced Russell Measure (ERM) which was also 

applied in this study with the aim or objective to minimize the ratio of the average 

input reduction to average output increase for better interpretation about efficiency. It 

does not neglect the input and output slacks and therefore account for all sources of 

inefficiency. In addition, ERM consist of desirable properties, such as strong 

monotonicity of inputs and outputs, unit invariance. 
0
 =1 if only DMU

0
 is efficient. 

The ERM efficiency value is a one figure that shows the ratio of the reduced average 

inputs to the increased output. The Enhanced Russell Measure (ERM) model is 

represented as follows; 
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The dual model of the ERM – VRS Model can be expressed as follows; 
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                                                                     (3.4) 

The reason behind using the Enhanced Russell Model is because undesirable outputs, 

like smoke and waste are normally generated with desirable outputs at the course of 

mussel production processes. The traditional DEA model is not applicable for 

performance evaluation of DMUs with undesirable outputs. Base on the explanations 

above the ERM approach is applied by taking into account the undesirable output 

which is required to ascertain the environmental efficiency of mussel production. 
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Chapter 4 

MODIFICATION OF BCC AND ERM MODEL USING 

FACET ANALYSIS 

4.1 Introduction 

In this section, the modified BCC is applied on LCA + DEA approach to show an 

overall operational performance of the mussel production and to identify specific 

standard and practical target for the underperforming ones in terms of their 

environment impacts. In BCC model, weak part of the frontier sometimes house 

DMUs and place them without bias as efficient DMUs. In avoiding the comparison of 

strong efficient Decision Making Units (DMUs) with DMUs that falls on weak part of 

efficient frontier of BCC model, as result of the nature of its graphical orientation a 

non-Archimedean infinitesimal is adopted as a lower bound. These bounds slightly 

change the weak parts of the frontier and in this situation the weak parts of the DMUs 

will be observed and it will take a value less than 1 which makes it inefficient.  

The variation in U0 takes the feasibility form of the delineating problem which is the 

major reason why the DMUs under consideration are inefficient. These bounds are 

defined in BCC model as 
i

v and 
r

u  which corresponds to the inputs and outputs 

weights. Similarly, in other to evaluate the real efficiency value of DMUs that fell on 

the weak parts of frontier we compare with these parts of frontier.  According to 

(Daneshvar S., 2009) the modified DEA model attempt to fix the weak part of the 
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efficient frontier that gives a bias efficiency score to DMUs that fall on it, thus giving 

a true efficiency score to the DMUs at the target region. 

The modified BCC model applied in this study is presumed to; 

 Modify the PPS by restrain within bound the free variable. 

 Given the true efficiency score for weak efficient DMUs or DMUs that fall in 

the weak efficient frontier. 

 Give a recommendation to the DMU under evaluation either by increasing 

input by some units or decreasing output so that efficiency of the DMU can be 

improved sharply. 

4.2 Non-Archimedean Infinistimal Element 

The introduction of non-Archimedean infinitesimal element into data envelopment 

analysis is to use it to differentiate between positive and non-negative values (charnes 

et al, 1978). There is a problem when evaluating a weak efficient DMU as an efficient 

DMU. Therefore (Ali & Seiford, 1993) concluded that the   should be used as the 

upper bound to make sure feasibility on the multiplier side and bounded for the BCC 

model envelopment side. Exploring  in the BCC model presents the following 

model:   As noted initially what does is to change the weak part of the frontier 
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4.3 Facet Analysis 

Facet analysis was introduced first in DEA by Chug & Guh (Bessent, A., et al 1988) 

in CCR model. It said to be the analysis of facets defined by hyper plane. When the 

production function estimates the efficiency, frontier using the input and output, 

especially in more than two-dimensional space it takes the shape of a diamond edges 

and facet analysis anchors on the hyper planes of the PPS frontier for DEA classic 

models. In this case the frontier which is constructed by the hyper plane supports the 

efficient DMUs in the PPS. (Charnes et al., 1978) developed the facet structure of CCR 

model, while (Banker et al., 1884) modified the CCR model to BCC model. Similarly, 

(Daneshvar., 2009) introduced the use of facet analysis in modified VRS through BCC 

model. 

4.3.1 Importance of Facet Analysis 

In evaluating the efficiency of DEA, facet analysis is an important element used to 

achieve the true evaluated efficiency scores. It gives detailed information about the 

hyper planes. It gives room for the observer to ascertain areas of improvement base on 

either to reduce the input and with same amount of output or increase the amount of 

output and keep the amount of input constant. 
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Figure 6: Evaluating the Efficiency Score of DMUs 

The facet is an important part of frontier that determines the efficiency scores and 

therefore managers and analyst rely on it to make decision as illustrated in the 

figure4.1. For instance, in the figure DMU2could be evaluated using facet from DMU1 

to DMU3 and same is applicable to DMU3 to DMU5 which can be used as a benchmark 

for evaluating DMU4. The efficiency of DMU2 can be improved in these ways, by 

maintaining the same input and increase the output to point B or reducing the input 

and keeping the same output at point A. Same operation can also be applicable to 

DMU4 

4.3.2 Facet Analysis on Variable Return to Scale 

(Charnes et al., 1978) developed the facet structure of CCR model, while (Banker et 

al., 1884) developed the same for BCC model. Similarly, (Daneshvar., 2009) 

introduced the use of facet analysis in modified VRS through BCC model. He extended 
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and generated a stable region for DMUs which are placed on the intersection of 

efficient and weak efficient frontier. 

If we say (X0 ,Y0) is the efficient DMU to be evaluated, then considering the 

intersection of the production possibility set and the plane, P is given by ; 

 0,,,/),(
00

  YYXYXP (4.2)    we can present this 

mathematical formulation as follows;
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Considering the new axes   and  in the plane (P) in figure 4.2 below the equivalent 

equation is rewritten as follows: 
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          (4.4) 

If we say 
*

0

** , uandVU   is an optimal solution for the BCC model, the efficient point

1*   and therefore  1*

0

* tt UYU
0

* XV  which is the supporting hyper plane 

in the input and output spaces passes through (
00

,YX ) point. 

Definition 4.1 A hyper plane of PPS is a strongly defined if and only if it is supporting 

and at least m+s strong efficient DMUs of PPS is lying on it. Its vector gradient 

components corresponding with output vector are non-negative and components 

corresponding with input vector are non-positive (Daneshvar S., 2009) 
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Figure 7: The PPS of two input one output space BCC Model 

Banker and Thrall (1988) noted that the production possibility set may have more than 

one supporting hyper planes at any one of its efficient points. Typical illustration, as 

seen in Figure4.1, there are many binding hyper planes in A. Thus, with respect to 

normal vectors for these hyper planes the 
*

0
u  value is not unique at such points. The 

upper and lower bounds of free variables of all supporting hyper planes that pass 

through such points in and   space can be calculated respectively, as follows 

 

 

                                                                  (4.5) 
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We denote 


0
u and



0
u , as the optimal solution for (model 4.5) and (model 4.6) 

respectively.  Observe that, 


0
u may likely move to  . Therefore, any optimal 

solution ,U V  and 
*

0
u  for classical BCC model, the following inequalities hold:

uuu
*

0

*

0

*    

Definition 2 The supporting hyper planes produced by 
*u which satisfy the inequalities 

uu
t

u
*

0

*

0

* 
 and pass through (

00
,YX ). i.e. )0(

0

**

00

*  XvUYU tt
) are 

called admissible supporting hyper planes for Tv. (Daneshvar S., 2009). By restricting 

the free variable 
0

u the modified variable return to scale model is achieved. This can 

be illustrated using the input orientation case of the BCC model. (Daneshvar et al., 

2014). By using the model equation (4.5) for all the efficient DMUs and obtaining the 

maximum values excluding one, we assign the values as the upper bound for the free 

variable in the BCC model. The restriction on this free variable which causes the value 

of 0u  in optimal solutions to be strictly  1, can change the weak efficient frontier in 

PPS. The restriction is defined in such a way that admissible supporting hyper planes 

are replaced by constructed hyper planes of weak frontier and no changes in other parts 
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of the frontier. Considering the model (4.6) for all efficient DMUs then   is defined 

as follows; 

 DMUsefficientforuuMax 0/
0
                                               

(4.7) 

 Is considered as the upper bound for free variable of classic BCC model, which is 

modified as follows: 
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Theorem 4.1 Model (4.4) does not affect the efficiency value of strong efficient DMUs, 

but rather observed on efficiency value of weak efficient DMUs. See Daneshvar 

(2009).  

4.4 Modified ERM – VRS Model Application 

The modification is stands on the supposition that the technical efficient DMUs 

evaluated by using the regular ERM - VRS model is the DMUs that lie on the weak 

part of the frontier which get their scores at the weak frontier, however the efficiency 

score of the strong efficient DMUs remain the same. The production possibility set of 

the modified BCC and ERM- VRS model is same with the regular BCC model because 

it is the foundation of the modified BCC method. 

The upper bound on free variable used for the modified BCC model is also applied to 

the ERM – VRS model which also considered the weak part of the frontier by giving 

the DMUs that falls on it their real efficiency score.  
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 is considered as the upper bound for free variable of ERM – VRS model, which is 

modified as follows: 

 

 

 

 

                                                                      (4.9) 

 

 

The dual model of the modified ERM – VRS model can be written as follows; 
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Applying the above ERM – VRS model for all the DMUs would estimate a new 

efficient value. The new values provide us with the new modified ERM -VRS frontier 

for efficiency evaluation and with the weakly efficient frontier modified, it would be 

reflecting the real efficiencies of the DMUs that fall on the frontier. 
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Chapter 5 

EMPIRICAL ANALYSIS AND FINDINGS 

5. 1 Introduction 

In this chapter the results of the study from Data Envelopment Analysis is presented. 

We put forward an empirical analysis, based on the data extracted from the work of 

(lozano et al 2008). The approach of the analysis is to evaluate the performance of 

mussel production raft simply because we are interested in knowing the changes in 

efficiency score on the prevalent modified DEA efficiency frontier. Here we tried to 

make a comparison between the model used in the primary article which is the ERM 

model and the proposed Modified ERM Model. Furthermore, we make comparison 

between the standard BCC model of Banker et al 1984 and the modified DEA model 

of Daneshvar (2014). We aimed to see if the ERM model used exaggerate the efficient 

score of the DMUs and compare it with the exaggeration of the BCC model.  

5.2. Findings 

The data in appendix (B.1) shows the data set used for the evaluation, 14 inputs and 

one output is considered. Table 1 presents the results of the BCC model and Modified 

DEA model in column two and six respectively. Table 2 shows the efficient score of 

the ERM model and modified ERM model in column two and six respectively. 

As can be seen from the table 1, 51 DMUs out of the 62 DMUs are efficient for the 

BCC model, and 11 are inefficient. However, 29 DMUs are efficient and 22 are 

inefficient for the modified DEA model. Comparing the number of Efficiency scores 

among the efficient 51 DMUs in the standard BCC model that changed after applying 
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the modified DEA model show that 29 DMUs are strongly efficient since there is no 

change in their efficiency scores. This implies that these 29 DMUs performances are 

perfectly exaggerated by the standard BCC model. Therefore 21 weak efficient DMUs 

shows off their real efficiency value or detected using the modified model.  

Table 1: Efficiency scores for standard BCC and Modified DEA Model 

DMUs BCC Eff. 

Score 

Mod.BCC Eff. 

Score 

DMUs BCC Eff. 

Score 

Mod.BCC 

Eff. Score 

1 100 99.91 32 100 99.76 

2 100 99.27 33 100 95 

3 100 97.47 34 100 100 

4 100 96.81 35 100 100 

5 100 97.07 36 100 100 

6 100 94.75 37 100 100 

7 100 100 38 100 99.99 

8 100 100 39 100 99.99 

9 100 100 40 100 100 

10 100 100 41 100 100 

11 100 99.97 42 100 100 

12 100 1 43 99.95 98.87 

13 100 99.99 44 100 100 

14 99.98 99.38 45 100 99.92 

15 100 100 46 100 99.92 

16 100 100 47 100 99.82 

17 100 99.96 48 99.95 99.37 
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18 100 99.95 49 99.96 99.65 

19 99.93 99.86 50 100 100 

20 99.93 99.88 51 100 100 

21 100 99.63 52 100 100 

22 100 99.67 53 100 100 

23 100 99.94 54 100 100 

24 100 99.67 55 100 100 

25 100 100 56 100 100 

26 100 100 57 100 99.89 

27 100 99.82 58 100 100 

28 100 99.87 59 100 99.36 

29 100 99.28 60 100 100 

30 99.98 99.46 61 100 100 

31 99.95 99.49 62 100 99.98 

   Total 6199.5 6073.62 

 

Total BCC eff. Score = 6199.5      Average = 99.99 

Total Mod. BCC eff. Score = 6073.62        Average = 97.96 

Looking critically at the changes in the modified BCC model, it could be observed that 

DMUs 4 and 33 shows significant changes in their efficiency values which indicate 

that they strongly placed at weak efficiency frontier. These indicates that most of the 

DMUs that falls in the weak part of the PPS frontier with bias efficiency values are 

corrected using the modified BCC model. A total BCC efficiency value of 6199.5 is 
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observed with an average of 99.99% while a total efficiency value of the modified 

BCC is 6073.62 with an average score of 97.97%. 

Table 2: Efficiency scores for ERM-VRS and Modified ERM Model 

DMUs ERM Modified 

ERM 

DMUs ERM Modified 

ERM 

1 67.1 51.96 32 52.82 50.72 

2 75.97 74.32 33 60.12 46.82 

3 53.99 50.25 34 58.76 56.43 

4 55.96 55.42 35 99.4 48.19 

5 50.89 50.44 36 93.8 49.14 

6 53.28 53.14 37 88.18 50.51 

7 65.43 65.43 38 80.82 52.5 

8 68.14 68.14 39 77.97 53.22 

9 70.71 70.71 40 74.58 54.39 

10 99.4 67.34 41 72.88 55.26 

11 100 99.4 42 71.4 55.96 

12 99.4 99.4 43 53.09 39.9 

13 91.86 89.26 44 64.62 35.38 

14 89.15 82.81 45 63.56 47.26 

15 92.3 92.3 46 61.64 51.65 

16 100 100 47 62.77 56.19 

17 65.12 59.98 48 45.7 40.41 

18 63.26 59.14 49 49.7 48.23 

19 53.62 50.5 50 100 68.28 



42 
 

20 54.09 51.27 51 99.4 80.81 

21 56.5 43.21 52 100 100 

22 53.96 42.96 53 99.4 99.4 

23 56.5 57.9 54 92.3 92.3 

24 50.17 49.99 55 99.4 77.48 

25 74.3 57.64 56 99.4 99.4 

26 71.68 63.55 57 72.28 65.23 

27 69.93 65.05 58 92.3 92.3 

28 74.97 72.29 59 50.92 31.02 

29 53.01 43.39 60 99.16 51.64 

30 50.21 46.81 61 99.4 99.4 

31 49.06 47.01 62 99.4 77.19 

Total 2123.62 1987.35 Total 2208.524 1908.1023 

 

Total ERM eff. Score = 4332.144                             Average = 69.873 

Total Mod. ERM eff. Score = 3895.4523                 Average = 62.8298 

The efficiency table 5.2 for the ERM model comparisons shows that 4 DMUs are 

efficient for the ERM model and 2 DMUs are efficient for the modified ERM model. 

A critical observation show that 47 DMUs though inefficient from the standard ERM 

– VRS model changed their efficiency score after applying the modified ERM model 

which indicates that the 47 DMUs are at the weak part of the frontier or are evaluated 

using the weak part of the efficiency frontier. DMUs 10, 35, 34, 37 and38 shows a 

dramatic change in their efficiency values. The rest of remaining 42 indicates slight 

changes in their efficiency values. Again DMUs 8, 9, 53, 54, 58 and 61 indicates no 
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change at in the standard ERM model and modified ERM model which ascertain 

perfect exaggeration of their efficient scores by the two models. A total ERM 

efficiency value of 4332.15 is observed with an average of 69.87% while a total 

efficiency value of the modified BCC is 3895.45 with an average score of 62.83%. An 

efficiency average of 99.99% for the BCC model and 97.96% for the modified DEA 

model is observed. In addition, an efficiency average of 69.87% and 62.83% is 

observed for the ERM and modified-ERM model respectively. Based on the efficiency 

averages and number of DMUs that changed their efficiency scores, it can be 

concluded that the ERM models, specifically the modified-ERM model is more 

sensitive than the BCC and modified DEA models. 

When we look at the weight distribution average of the variables considered for the 

efficiency evaluation. Appendix (B) of the weight distribution shows that input 4, input 

6, input 9, input 10, which are (wastewater from auxiliary boats, Iron for floats, Nylon 

and Cotton) contributes the most to the efficiency of the rafts which is believed to be 

the major source of environmental degradation. However other inputs such as input 1, 

input 2, input 3, input 5, input7, input 8, input 11, input 12, input 13 and 14 contributes 

less to the efficiency of the raft. Therefore, since the input orientation models were 

considered for the efficiency evaluation, the operators should improve these inputs (4, 

6, 9, 10) by reducing their amount in order to improve the rafts performance. To make 

an analysis into the performances of the 62 rafts considered as DMUs, and provide a 

recommendation of improvement to the operators. We used the modified ERM model, 

since it is more sensitive than other models. Finally, despite the performance of the 

proposed approach, it should be noted that all the systems and processes have some 

certain differences that cannot be modeled (e.g. local conditions differences). This may 

require a more detailed approach and process models to understand them better. 
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Chapter 6 

CONCLUSION AND FUTURE STUDY 

6.1 Conclusion 

In this thesis research the operational efficiency was determined which ensures the 

maximum use of production resources while reducing wastes as well as other 

unproductive inputs. DEA was used in measuring the efficiency and determining the 

performances of the DMUs. Due to its good sensitive features ERM- VRS DEA model 

is best proposed approach in this research. Other tools used like the LCA was 

systematically for assessing the whole life cycle of the inputs consumptions which 

strongly determine the quality of data used in the analysis. In this case where the 

number of assessed rafts is high, the interpretation of results using the joint use of LCA 

and DEA tools has proved helping to improve the discussion and interpretations of 

results. 

Chapter 2 comprehensively presents the review of DEA and LCA and some of the 

previous research that has been done using these tools. In the chapter 3 the application 

of DEA was explained in details with its mathematical formulations and robust 

technique in measuring efficiency. Chapter 4 is the bases of the research in which the 

concept of facet analysis was introduced and used to ascertain the true efficiency score 

of the evaluated DMU through reduction of inputs and keeping the same amount 

output. 
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It is clear that the four models used (BCC, Modified DEA, ERM and Modified ERM) 

distinctively shows the performances of the 62 rafts considered. However, this thesis 

infers that models used in evaluating performances of rafts are also imperative. It can 

be concluded that the ERM models is more sensitive than the BCC model and modified 

DEA. However, the modified ERM model tends to be more sensitive and detailed 

conclusion can be made using the modified ERM model.  

6.2 Recommendation 

Although DEA has been proved a suitable tool for evaluating efficiency of multiple 

inputs and outputs DMUs, there are also a number of limitations. Therefore, DEA users 

should be aware of the specific models capabilities in measuring efficiency of entities 

because misguided inferences may cause poor DEA model use and greatly influence 

the results.  

A good number of factors may influence the numerical strength of the efficient and 

efficient DMUs; therefore, sensitivity of the model used should also be investigated.  

For the ERM model used in this study proved to be more sensitive than standard BCC 

model and modified DEA model.  DEA is data driven that is the amount of data 

collected has the potential of altering the results positively. 

The proposed BCC modification method is input oriented however an output 

orientation can be considered in the future. Again, the efficiency scores were only 

evaluated without specific recommendation of the best performing DMUs base on this 

ranking is also recommended in future as it is a very important aspect of DEA which 

focuses on helping in improving the performance evaluation. 
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Appendix A: Optimal Coding Solutions of Modified ERM – VRS Model 

Summarized in Table 5.2 (model 4.9) 

1 

 

2 

 

 



51 
 

3 

 

4 

 

 



52 
 

5 

 

6 

 

 



53 
 

7 

 

8 

 

 



54 
 

9 

 

10 

 

 

 



55 
 

11 

 

12 

 

 



56 
 

13 

 

14 

 

 



57 
 

15 

 

16 

 

 

 



58 
 

17 

 

18 

 

 



59 
 

19 

 

20 

 

 

 



60 
 

21 

 

22 

 

 



61 
 

23 

 

24 

 

 



62 
 

25 

 

26 

 

 



63 
 

27 

 

28 

 

 



64 
 

29 

 

30 

 

31 



65 
 

 

32 

 

 

 



66 
 

33 

 

34 

 

 

 



67 
 

35 

 

36 

 

 



68 
 

37 

 

38 

 

 



69 
 

39 

 

40 

 

 



70 
 

41 

 

42 

 

 

 



71 
 

43 

 

44 

 

 



72 
 

45 

 

46 

 

 



73 
 

47 

 

48 

 

 



74 
 

49 

 

50 

 

 



75 
 

51 

 

52 

 

 

 



76 
 

53 

 

54 

 

 



77 
 

55 

 

56 

 

 



78 
 

57 

 

58 

 

 



79 
 

59 

 

60 

 

 



80 
 

61 

 

  62 

 



81 
 

Appendix B: Optimal weights of the Modified ERM-VRS Model  

 

DMUs Y1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 

1 0 0 0 0 0 0 0 0 0 0 0 0 0.0001 0 0 

2 0.0095 0.0476 0.0007 -
0.002 

0.0035 0.0146 -0.1997 0.0198 0.1619 0.027 0.0028 0.0095 0.06207 0.0051 0.0257 

3 0 0 0 0 0 0 0 0 0 0 0 0 0.0001 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0.0002 0 0 

5 0 0 0 0 0 0 0.0001 0 0 0 0 0 0.0002 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 -0.0001 0 0 

7 0 0 0 0 0 0 0 0 -
0.0001 

0 0 0   0 0 

8 0 0 0 0 0 0 0 0   0 0 0 -0.0001 0 0 

9 0 0 0 0 0 0 0.0001 0 0.0001 0 0 0   0 0 

10 0 0 0 0 0 0 -0.0001 0 0 0 0 0 -0.0001 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0   0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0   0 0 

13 0 0 0 0 0 0 0.0001 0 0.0011 0 0 0 0.0001 0 0 

14 -
0.0001 

0.0026 0 0 0.0001 0 0.0011 -
0.0001 

0 -0.0003 0 -
0.0001 

0.0035 0 0.0026 

15 0 0 0 0 0 0 1383000 0 0 0 0 0   0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0.0001 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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20 -
0.0001 

-
0.0009 

0 0 0 0.0001 0.0061 0.0001 0.0005 0.0001 0 0 0.0019 0 0.0002 

21 0 0 0 0 0 0 0 0 0   6.3876 0 0.0001 0 0 

22 0 0 0 0 0 0 0 0 0   8.364 0   0 0 

23 0 0 0 0 0 0 0 0 0 0.0001 146138 0 0.0001 0 0 

24 0 0 0 0 0 0 0.0001 0 0 0 0 0 -0.0002 0 0 

25 0 0 0 0 0 0   0 0 0 0 0 -0.0001 0 0 

26 0.0183 0.2689 -
0.0017 

-
0.001 

-0.009 -0.04 -1.8929 -
0.0187 

-
0.1707 

-0.032 -0.0045 -
0.0108 

-0.5884 0.0036 0.0494 

27 0 0 0 0   0 0 0 0 0 0 0 -0.0002 0 0 

28 -
0.0001 

0 0 0 7.8326 0 0 0 0 0 0 0   0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0.0001 0 0 

30 -
0.0001 

0 0 0 0 0 0 0 0 0 0 0   0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 -0.0002 0 0 

32 0 0 0 0 0 0 0 0 -
0.0001 

0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 169,350 0 0 0 0 

34 0 0 0 0 0 0 -0.0001 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40 -
0.0001 

0 0 0 0 0 0   0   0 0 0 0 0 

41 -
0.0001 

0 0 0 0.0001 0 0.0012 -
0.0001 

0.01 0.0003 0 0.0001 0.0036 0 0.0026 
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42 0 0 0 0 0 0 0 0   0 0 0 0 0 0 

43 0 0 0 0 0 0 0 0   0 0 0 0.0001 0 0 

44 0 0 0 0 0 0 0 0 0.0001 0 0 0 0.0002 0 0 

45 0 0 0 0 0 0 0 0 0 0 0 0   0 0 

46 0 0 0 0 0 0 0 0 0 0 0 0 0.0001 0 0 

47 -
0.0001 

0 0 0 0 0 0 0 0 0 0 0 0.0001 0 0 

48 0 0 0 0 0 0 0 0 0 0 0 0 0.0001 0 0 

49 0 0 0 0 0 0 0 0 0 0 0 0 -0.0001 0 0 

50 0 0 0 0 0 0 0 0 0 0 0 0   0 0 

51 0 0 0 0 0 0 0 0 0 0 0 0 -0.0001 0 0 

52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

54 0 0 0 0 0 0 0 0 0 3932000 0 0 0 0 0 

55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

56 0 0 0 0 0 0 0 0 0 0 0 0   0 0 

57 0 0 0 0 0 0 0 0 0 0 0 0 -0.0001 0 0 

58 0 0 0 0 506000 0 0 0 0 0 0 0 0 0 0 

59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

62 -
0.0001 

0 0 0 0 0 -0.0001 0 0 0   0 0 0 0 

Total 0.027 0.3182 -0.001 
-

0.003 506008 -0.025 1382998 0.001 0.0028 3932000 315503 
-

0.0013 -0.5169 0.0087 0.0805 
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Appendix C: The evaluated fourteen input and one output data 

                                                                                                   

DMU 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 67.3 600 15 22.5 69.4 306.2 838.7 83 800 221.7 23 109.6 2414.3 26.9 181.7 

2 112.2 1000 25 37.5 115.6 510.3 838.7 83 800 369.5 38.3 109.6 2414.3 26.9 302.9 

3 74.5 750 10.4 10.4 38.5 170.1 1718.2 172.9 1575.8 245.4 25.5 150 5160.5 26.9 201.1 
4 82.6 825 11.5 11.5 42.4 187.1 1718.2 172.9 1575.8 272 28.2 150 5160.5 26.9 222.9 

5 96.9 975 13.5 13.5 50.1 221.1 1718.2 172.9 1575.8 319.3 33.1 150 5160.5 26.9 261.7 

6 105 1050 14.6 14.6 54 238.1 1718.2 172.9 1575.8 345.9 35.9 150 5160.5 26.9 283.5 
7 115 1680.6 10.7 7.6 56.5 249.5 1397.9 138.3 1260.7 272 28.2 80 4345.7 26.9 310.5 
8 125 1833.3 11.7 8.3 61.7 272.1 1397.9 138.3 1260.7 295.6 30.7 80 4345.7 26.9 337.5 
9 135 1986.1 12.6 9 66.8 294.8 1397.9 138.3 1260.7 319.3 33.1 80 4345.7 26.9 364.5 

10 68.4 571.4 3.9 4.1 15.1 50 1397.9 138.3 1166.7 168.5 17.5 200 4345.7 26.9 184.7 
11 85.2 714.3 4.8 5.1 18.9 62.5 1397.9 138.3 1166.7 209.9 21.8 200 4345.7 26.9 230 
12 103.2 857.1 5.8 6.1 22.7 75 1397.9 138.3 1166.7 254.2 26.4 200 4345.7 26.9 278.6 
13 120 1000 6.8 7.1 26.4 87.5 1397.9 138.3 1166.7 295.6 30.7 200 4345.7 26.9 324 
14 136.8 1142.9 7.8 8.2 30.2 100 1397.9 138.3 1166.7 337 35 200 4345.7 26.9 369.4 
15 154.8 1285.7 8.7 9.2 34 112.5 1397.9 138.3 1166.7 381.4 39.6 200 4345.7 26.9 418 
16 171.6 1428.6 9.7 10.2 37.8 125 1397.9 138.3 1166.7 422.8 43.8 200 4345.7 26.9 463.3 
17 77.4 1140.6 22.8 5.7 34.2 206.3 1164.9 115.3 972.2 228.3 23.3 200 3621.4 22.4 208.8 
18 82.5 1218.8 24.4 6.1 36.6 220.4 1164.9 115.3 972.2 243.3 24.8 200 3621.4 22.4 222.6 
19 88.4 1296.9 25.9 6.5 38.9 234.5 1164.9 115.3 972.2 307.5 31.9 200 3621.4 26.9 238.7 
20 91.8 1343.8 26.9 6.7 40.3 243 1164.9 115.3 972.2 319.3 33.1 200 3621.4 26.9 247.9 
21 60.3 1333.3 16.7 2.5 30.8 102.7 1164.9 159.6 1923.1 198.1 20.5 50 5014.2 26.9 162.8 
22 64.8 1444.4 18.1 2.7 33.4 111.3 1164.9 159.6 1923.1 212.9 22.1 50 5014.2 26.9 175 

23 115.2 2555.6 31.9 4.8 59.1 196.9 1164.9 159.6 1923.1 378.4 39.2 50 5014.2 26.9 311 

24 119.7 2666.7 33.3 5 61.7 205.5 1164.9 159.6 1923.1 393.2 40.8 200 5014.2 26.9 323.2 
25 80 2000 20 20 60 246.6 838.7 83 600 173.8 17.4 200 2607.4 19 216 
26 90 2250 22.5 22.5 67.5 277.4 838.7 83 600 195.6 19.5 200 2607.4 19 243 
27 107 2666.7 26.7 26.7 80 328.8 838.7 83 600 316.3 32.8 200 2607.4 26.9 288.9 
28 123 3083.3 30.8 30.8 92.5 380.1 838.7 83 600 363.6 37.7 200 2607.4 26.9 332.1 
29 72.9 1895.8 21.7 21.7 89.4 191.4 1497.7 148.2 1071.4 185.1 18.6 100 4656.1 20.2 196.8 
30 93.6 2420.8 27.7 27.7 114.1 244.5 1497.7 148.2 1071.4 272.5 27.9 100 4656.1 23.5 252.7 
31 103.5 2683.3 30.7 30.7 126.5 271 1497.7 148.2 1071.4 340 35.3 100 4656.1 26.9 279.5 
32 90 2000 50 50 60 328.8 698.9 103.8 1500 250 25.6 200 3054.1 22.4 243 
33 66.4 1250 12.5 8.3 77.1 340.2 1075.3 106.4 897.4 245.4 25.5 20 3342.8 26.9 179.3 
34 93.6 1750 17.5 11.7 107.9 476.3 1075.3 106.4 897.4 345.9 35.9 20 3342.8 26.9 252.7 
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35 40 1200 20 4 18.5 98 559.1 83 1600 236.5 24.5 12.5 1000 26.9 108 
36 42 1260 21 4.2 19.4 102.9 559.1 83 1600 248.3 25.8 12.5 1000 26.9 113.4 
37 45 1350 22.5 4.5 20.8 110.2 559.1 83 1600 266.1 27.6 12.5 1000 26.9 121.5 
38 50 1500 25 5 23.1 122.5 559.1 83 1600 295.6 30.7 12.5 1000 26.9 135 
39 52 1560 26 5.2 24.1 127.4 559.1 83 1600 307.5 31.9 12.5 1000 26.9 140.4 
40 55 1650 27.5 5.5 25.4 134.7 559.1 83 1600 325.2 33.7 12.5 1000 26.9 148.5 

41 57 1710 28.5 5.7 26.4 139.6 559.1 83 1600 337 35 12.5 1000 26.9 153.9 

42 59 1770 29.5 5.9 27.3 144.5 559.1 83 1600 348.8 36.2 12.5 1000 26.9 159.3 

43 60.1 466.7 29.1 20 61.7 272.1 1374.6 138.3 1260.7 198.1 20.5 109.6 4023.8 26.9 162.3 

44 119.4 933.3 58.2 40 123.3 544.3 1374.6 138.3 1260.7 393.2 40.8 109.6 4023.8 26.9 322.2 
45 64 800 48 32 24 163.3 1048.4 103.8 650 236.5 24.5 100 3319.6 26.9 172.8 
46 80 1000 60 40 30 204.1 1048.4 103.8 650 295.6 30.7 100 3319.6 26.9 216 
47 96 1200 72 48 36 244.9 1048.4 103.8 650 354.8 36.8 100 3319.6 26.9 259.2 
48 83 2177.1 41.7 41.7 77.1 340.2 1397.9 138.3 1260.7 245.4 25.5 109.6 4345.7 26.9 224.1 
49 117 3047.9 58.3 58.3 107.9 476.3 1397.9 138.3 1260.7 345.9 35.9 109.6 4345.7 26.9 315.9 
50 50 250 3.5 10 18.5 76.8 1048.4 103.8 850 141.9 14.7 50 3259.3 26.9 135 
51 80 400 5.6 16 29.6 122.9 1048.4 103.8 850 174.4 18.1 50 3259.3 26.9 216 
52 125 500 7 20 37 153.7 1233.4 122.1 1000 351.8 36.5 50 3834.4 26.9 337.5 
53 137.5 600 8.4 24 44.4 184.4 1233.4 122.1 1000 384.3 39.9 50 3834.4 26.9 371.3 
54 140 750 10.5 30 55.5 230.5 1397.9 138.3 1133.3 393.2 49.8 50 4345.7 26.9 378 
55 80 598.3 17.1 8.5 15.8 96.3 838.7 83 600 307.5 31.9 100 2400 26.9 216 
56 120 897.4 25.6 12.8 23.7 144.5 838.7 83 600 369.5 38.3 100 2400 26.9 324 
57 100 1196.6 34.2 17.1 31.6 192.7 838.7 83 720 384.3 39.9 100 2800 26.9 270 
58 160 1914.5 54.7 27.4 50.6 308.3 838.7 83 720 473 49.1 100 2800 26.9 432 
59 50 2393.2 68.4 34.2 63.2 385.4 1352.8 133.9 774.2 192.2 19.9 200 3871 26.9 135 
60 50 833.3 8.3 4.2 30 102.1 815.4 69.2 630.3 198.1 20.5 109.6 1666.7 26.9 135 
61 100 1666.7 16.7 8.3 60 204.1 815.4 69.2 630.3 263.1 27.3 109.6 1666.7 26.9 270 
62 100 2500 25 123 90 306.6 815.4 69.2 500 393.2 40.8 109.6 1666.7 26.9 270 

TOTAL 5685 88,825 1485 1020 3145 13400 70,616 7226 70,143 18161 1,880 6966 210,109 1628 
15,35

1 

 

 


