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ABSTRACT

In the framework of the non-linear electrodynamics, we introduce a new Lagrangian

with Maxwell limit which admits a regular electric field and electric potential at the

origin. In static spherically symmetric spacetime we couple non-minimally the latter

Lagrangian with the gravity in 3, 4 and higher dimensions separately to find the black

hole solutions. We emphasize in this thesis that this new Lagrangian is easier to be

used in some practical cases such as hydrogen atom due to the simple form of the

electric potential of a point charge.

Keywords: Born-Infeld, NED, Non-linear Lagrangian, Black hole solution.
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ÖZ

Doǧrusal olmayan elektrodinamik kapsamında Maxwell limitine sahip, merkezde düzenli

elektrik ve potansiyel alan içeren yeni bir Lagrange fonksiyonu sunuluyor. Statik,

Küresel simetrik uzayda yerçekimine minimal olmayan şekilde baǧlanan 3 ve 4 boyutlu

uzaylarda karadelik çözümleri elde ediliyor. Sunduǧumuz modelin birçok bakımdan

örneǧin hidrojen atom model potansiyeli gibi, daha kullanışlı olacaǧına vurgu yapılıyor.

Anahtar Kelimeler: Born-Infeld, NED, Doǧrusal olmayan Lagrange fonksiyonu, Ka-

radelik çözümleri
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Chapter 1

INTRODUCTION

Maxwell’s standard electromagnetism is a linear theory. This simply means that su-

perposition of inputs corresponds to the superposition of the outputs. Alternatively the

EM waves of this theory pass through each other without being affected. If this is not

the case the transmission of radio and TV or any other broadcasting devices would

not be possible. Transmission of a station at a specified frequency is not interrupted

by others and vice versa, simply because the EM waves, or photons in the quantum

language, pass through each other. This is the nature of a linear theory. However, in

nature we have many examples of source theories that do not behave in this manner.

They are classified simply as non-linear theories because their propagating agents af-

fect each other, even more dramatically each wave of a non-linear theory interacts with

itself. Most of physical systems are categorized as non-linear and naturally these types

of theories are much more intricate than the linear ones. Einstein’s theory of general

relativity is the best example of non-linear theories which has been tested experimen-

tally and in the linear limit it recovers the Newton’s theory. No doubt the best example

of a linear gravitational theory is given by Newton’s theory in which if φ1 and φ2 are

two independent potentials due to different sources, the total potential αφ1 +βφ2 with

(α,β = constants) corresponds to the total source. In brief, the additive nature of po-

tentials, as the solution of Poisson’s equation, is the best justification for a theory to be
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linear. In Einstein’s general relativity theory on the other hand the Einstein’s equations

are non-linear partial differential equations, so that addition of two potentials does not

happen to be a potential solution. In simple language consider the classical Laplace

equation ∇2φ = 0 where ∇2 is the Laplacian operator while φ is a potential. If we have

two separate solutions φ1 and φ2 natrually we have ∇2φ1 = 0, ∇2φ2 = 0 and we obtain

∇2(φ1 +φ2) = 0 as a result provided the Laplacian operator ∇2 does not depend on φ1

and φ2. Precisely this is what happens in a non-linear theory: the Laplacian ∇2 itself is

dependent on φs so that the magic linear solution φ1 +φ2 as a solution does not work.

Similar is the Maxwell’s electromagnetism in both flat and curved spacetimes. Suppose

that the Maxwell’s equation ∇µFµν = 0 has two distinct solutions Fµν

1 and Fµν

2 . Then

automatically the superposed solution αFµν

1 + βFµν

2 , with α,β = constants, is also

a solution because the covariant derivative does not involve any trace of EM field.

The non-linear electromagnetics, however, has the form ∇µ(K(F)Fµν) = 0 where a

weight function K(F) which depends on the EM field tensor enters in the equation

and spoils the linearity. Now the addition αFµν

1 +βFµν

2 is no more a solution in such

a theory. We say that Fµν self-interacts with itself, scatters itself to the extent that it

focuses itself to the focal points. Let us add that the quantum theory of linear Maxwell

electrodynamics (i.e. Quantum Electrodynamics=QED) is also a non-linear theory. It

has experimentally been tested that a photon scatters itself in QED. This takes place in

the most abundant H-atom in nature and this scattering modifies the spectra of H-atom,

known as the Lamb shift.

The idea of non-linear electrodynamics (NED) is about a century old but it was made
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popular in 1930s by Born and Infeld[7] which came to be known as the Born-Infeld

(BI) theory. The main aim in this formalism was to eliminate the divergences in the

physical amplitudes that endangered electromagnetism. In practice, no singularity was

observed but the theory gave physical divergences such as ∼ 1
r as r→ 0. This was

totally unacceptable. To remedy this problem the non-linear BI theory modified the

Coulomb potential by 1
r →

∫ dr√
r4+1

which was not an easy task at all. But it worked,

and the singularity was removed. This turned out to create a new trend in electro-

magnetism which was to establish a non-linear version of the linear theory and get rid

of all singularities. Similar trend was extended to Einstein-Maxwell theory and the

non-linear EM amplitudes were exploited to eliminate the diverging gravitational am-

plitudes as well. This state of art has been partly successful because there are still a

number of problems to be overcome. Which NED?, for example. After all, the non-

linear extensions of linear Maxwell theory was not unique, there are many ways, even

some of them lack a linear Maxwell limit. If we expect that in some limit the NED

will converge in the linear Maxwell theory this puts constraints on the adopted NED

theory.

An interesting case, unprecedented in a linear electromagnetic theory, for example, is

that an NED may admit “run-away solutions” in which the system self-propels itself.

This is exactly what we experience in cosmology: the universe self-repulses itself and

undergoes accelerated expansion. Although this has been attributed to dark-matter and

dark-energy these sources are yet to be seen. An alternative point of view may be that

the internal dynamics, by a non-linear mechanism encountered in non-linear theories,
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does produce the outward repulsion for the universe at large. These all remain to be

seen, of course, but the study of non-linear theories has always been much attractive

albeit difficult in physics.

In this thesis some features of the Born-Infeld electrodynamics were studied. In Chap-

ter 2 we focus our attention on their paper published in 1934[M. Born and L. Infeld,

Proc. R. Soc. London A 144, 425 (1934)] and try to derive the relations that they

obtained through another method. In particular, the electromagnetic field equations

are obtained through applying the variational principle considering the variation of the

vector potential. The connection between the macroscopic and microscopic fields are

also achieved in vector form by means of differential forms. To show the elimination

of singularity in this theory, the electrostatic field of a point charge is also obtained.

In chapter 3 a new Lagrangian will be introduced and coupled with general relativ-

ity. This results in a new metric function in a 4-D, (2+1)-D, and higher dimensional

spacetimes. Also a theorem regarding the existence of non-singular metrics with La-

grangians having Maxwell limit will be argued.

4



Chapter 2

BORN-INFELD ELECTRODYNAMICS

2.1 Modification of Lagrangian and Analogy with Relativistic Mechanics

In 1934 M. Born and L. Infeld[7] introduced a new field theory by replacing the La-

grangian underlying Maxwell’s field theory by a modified Lagrangian. Maxwell’s field

equations can be derived by applying the well known Lagrangian

L =
1
2
(B2−E2) , (2.1)

or in its covariant form1

L =
1
4

FµνFµν . (2.2)

where Fµν = ∂µAν− ∂νAµ and Minkowski metric tensor is applied to raise and lower

indices. The modified Lagrangian was put forward as

L = b2(

√
1+

1
b2 (B

2−E2)−1). (2.3)

where b has the dimension of a field strength and is called absolute field. Its value will

be discussed in section 2.7. We can show that this Lagrangian has the Maxwell limit if

1A different convention for the sign of the Lagrangian is adopted and widely used in contemporary
literature: L =− 1

4 FµνFµν
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b approaches zero. We will show that it has the limit as long as we consider the weak

field condition later in this chapter. Denoting F = B2−E2 we have

lim
b→0

L = lim
b→0

b2(

√
1+

1
b2 F−1)

= lim
b→0

b2(1+
1

2b2 F− ...−1)

=
1
2

F =
1
2
(B2−E2). (2.4)

One can think of the principle of finiteness as the physical idea which lies beneath this

modification[7]:

“. . . a satisfactory theory should avoid letting physical quantities become

infinite.”

Applying this requirement to velocity results in an upper limit for velocity, c, as well

as alteration of the Newton’s action function of a free particle 1
2mv2 to its relativistic

counterpart

L = mc2(1−
√

1− v2

c2 ) = b2(1−
√

1− 1
b2 mv2); b2 = mc2.

Similarly considering this principle for a field strenght leads to an upper limit for its

magnitude which turns out to be of very great order.

6



2.2 Principle of Invariant Action and Determination of Modified Lagrangian

According to the variational principle of least action

δ

∫
L dτ = 0 (2.5)

where L is the Lagrangian density and dτ = dx0dx1dx2dx3 is the volume element in

four-dimensional spacetime.

L should be determined in such a way that it satisfies this variational principle. As

it was suggested by Born and Infeld, an appropriate expression is L =
√∣∣aµν

∣∣ where

aµν is a covariant tensor field which can be separated into a symmetric tensor, gµν, and

an antisymmetric tensor, Fµν: aµν = gµν +Fµν, where Fµν is the electromagnetic field

tensor and gµν is the metric tensor. When it comes to the specific case of Minkowski

metric tensor the convention (+,−,−,−) should be applied throughout our calcula-

tions. Therefore L can be expressed as

L =
√
−
∣∣gµν +Fµν

∣∣+A
√
−
∣∣gµν

∣∣+B
√∣∣Fµν

∣∣ (2.6)

The minus sign is added for
∣∣gµν

∣∣< 0.

The next step is to determine the unknown coefficients of the Lagrangian density in

general coordinates. Since Fµν is the rotation of a vector potential (according to its

definition), the integral of the last term can be converted into a surface integral and

hence has no contribution to the integral of L over spacetime and therefore B = 0. To

determine A, one can apply the following restrictions:

7



• considering the calculation of L in Cartesian coordinates and

• field strength of small values

Applying these conditions will lead us to the case of linear expression 2.2. Knowing

the field tensor, Fµν, and the metric tensor, gµν, in matrix form, one can easily calculate

the value of the determinants in 2.6.

−
∣∣gµν +Fµν

∣∣= 1+(F23)
2+(F13)

2+(F12)
2− (F14)

2− (F24)
2− (F34)

2−
∣∣Fµν

∣∣ (2.7)

The last determinant is negligible due to the weak field condition. On the other hand

we can have

F = (F23)
2 +(F13)

2 +(F12)
2− (F14)

2− (F24)
2− (F34)

2 =
1
2

FµνFµν (2.8)

Therefore in Cartesian coordinates

L =
√

1+F +A (2.9)

Expanding the first term of 2.9 in series and neglecting terms of O(F2) and smaller

results in

L = 1+
1
2

F +A (2.10)

If A =−1 the Lagrangian becomes

L =
1
2

F =
1
4

FµνFµν = L

8



which is clearly the linear Lagrangian of the Maxwell’s field theory. Considering these

calculations, L in Cartesian coordinates becomes

L =
√

1+F−G2−1 (2.11)

where F = 1
2FµνFµν and G = F23F14 +F31F24 +F12F34. In general coordinates

L =
√
−
∣∣gµν +Fµν

∣∣−√− ∣∣gµν

∣∣. (2.12)

∣∣gµν +Fµν

∣∣ can also be written in terms of F and G. To obtain such an expression for

L , G also needs to be expressed in a more compact tensor form. Denoting
∣∣gµν

∣∣= g,

we will have

∣∣gµν +Fµν

∣∣= g+φ(gµν,Fµν)+
∣∣Fµν

∣∣= g(1+
φ

g
−
∣∣Fµν

∣∣
−g

) (2.13)

Calculating this determinant and obtaining the right-hand side of 2.13 is straightfor-

ward and the following expressions will be found

φ

g
= F =

1
2

FµνFµν

and

G2 =

∣∣Fµν

∣∣
−g

=
(F23F14 +F31F24 +F12F34)

2

−g
.

9



We write G = 1
4Fµ
∗
νFµν where ∗Fµν is the dual of the field tensor Fµν and is defined2

∗Fµν =
1
2

ε
µνκλFκλ (2.14)

where εµνκλ is the Levi-Civita symbol. Ultimately

∣∣gµν +Fµν

∣∣= g(1+F−G2) (2.15)

and the Lagrangian density in general coordinates is

L =
√
−g(

√
1+F−G2−1). (2.16)

2.3 Field Equations

In this section we find the field equations in tensor form and then express them by

2-form field equations. To find the homogeneous set of equations we start from the

identity

∂λ Fµν +∂µ Fνλ +∂νFλµ = 0 (2.17)

√
−g needs to be included in case we consider the field equations in a general coordi-

nate system. Using 2.17 and 2.14 we have

∂ν

√
−g∗Fµν = 0 (2.18)

2In their paper (1934), Born and Infeld defined[7] the dual tensor as ∗Fµν = jµνκλFκλ where jµνκλhas
the value ± 1

2
√
−g or zero. The sign rule is similar to the Levi-Civita symbol.
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Equation 2.18 gives the homogeneous set of Maxwell’s equations.

To obtain the inhomogeneous set of sourceless field equations we can apply the varia-

tional principle 3 . Introducing the BI Lagrangian as L =
√
−gL(F,G) and considering

the variation of the vector potential, A, we will have

δL =
√
−gδL =

√
−g(

∂L
∂F

δF +
∂L
∂G

δG). (2.19)

Then we should find the variations of F and G. Writing F and G in the forms below

F =
1
2

Fµν(∂µAν−∂νAµ) (2.20)

and

G =
1
4
∗Fµν(∂µAν−∂νAµ) (2.21)

we have then

δF = Fµν
δ(∂µAν−∂νAµ) (2.22)

and

δG =
1
2
∗Fµν

δ(∂µAν−∂νAµ) (2.23)

3Originally, In [7] these equations are stated to be obtained by defining the antisymmetric tensor
pµν = ∂L

∂Fµν
.
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and subsequently

δI =
∫

δL d4x = 2
∫ √
−g(

∂L
∂F

Fµν +
1
2

∂L
∂G
∗Fµν)∂µ(δAν)d4x = 0 (2.24)

we define an antisymmetric tensor pµν

pµν = 2
∂L
∂F

Fµν +
∂L
∂G
∗Fµν (2.25)

and through integrating by parts we obtain

δI =−
∫

∂µ(
√
−gpµν)δAνd4x = 0 (2.26)

Since equation 2.26 is valid for any arbitrary δAν, so

∂µ(
√
−gpµν) = 0 (2.27)

represents the inhomogeneous set of field equations. In fact these equations give the

fields in media with electric permittivity and magnetic permeability.

These equations can also be expressed by means of differential forms. The homoge-

neous set of equations will be shown as

dF = 0 (2.28)

where F = Fµνdxµ∧dxν is the 2-form electromagnetic field. And the inhomogeneous

12



set is

d(2∗FLF +FLG) = 0 (2.29)

where LF = ∂L
∂F and LG = ∂L

∂G .

2.4 Energy-Momentum Tensor and Conservation Law

In this section we achieve canonical and symmetric energy-momentum tensor4 . The

canonical energy-momentum tensor[19] for the free non-linear electromagnetic La-

grangian is

Tαβ =
∂L

∂(∂αAλ)
∂βAλ−gαβL (2.30)

while

∂L
∂(∂αAλ)

=
∂L
∂F

∂F
∂(∂αAλ)

+
∂L
∂G

∂G
∂(∂αAλ)

(2.31)

We have

∂F
∂(∂αAλ)

=
1
2

gµρgνσ[2δ
ρ

αδ
σ

λ
Fµν +2δ

µ
αδ

ν

λ
Fρσ] = 2Fαλ (2.32)

therefore

∂F
∂(∂αAλ)

= 2gλµFαµ. (2.33)

4In [7] the symmetrized energy-momentum tensor was obtained through −2 ∂L
∂gµν =

√
−gTµν.
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To obtain the second term, we calculate

∂G
∂(∂αAλ)

=
1
8

ε
µνκηgµρgνσgκτgηγ[2δ

ρ

αδ
σ

λ
Fτγ +2δ

τ
αδ

γ

λ
Fρσ] =∗ Fαλ (2.34)

and

∂G
∂(∂αAλ)

= gλµ∗Fαµ (2.35)

Subsequently

Tαβ = gλµ[2LFFαµ +LG
∗Fαµ]∂βAλ−gαβL (2.36)

and using 2.25

Tαβ = gλµ pαµ∂βAλ−gαβL (2.37)

The above expression for the (canonical) energy-momentum tensor needs to be sym-

metrized. We replace ∂βAλ by −Fλβ +∂λAβ and then

Tαβ = gλµ pαµFβλ−gαβL+gλµ pαµ∂λAβ (2.38)

Denoting the last term by T ′αβ the symmetrized energy-momentum tensor will be

Θαβ = Tαβ−T ′αβ = gλµ pαµFβλ−gαβL (2.39)

14



and the mixed form will be

Θ
α

β
= pαλFβλ−δ

α

β
L (2.40)

To finalize this section we will achieve the conservation law through multiplying 2.17

by pαλ. In Cartesian coordinates

pαλ(∂βFαλ +∂αFλβ +∂λFβα) = 0 (2.41)

and due to 2.27 in the last two terms pαλ can be taken into differentiation and using

the fact pαλ = ∂L
∂Fαλ

in the first term, we get

−2∂α(pαλFβλ)+2
∂L
∂xβ

= 0 (2.42)

and by means of 2.40

∂αΘ
α

β
= 0 (2.43)

In general coordinates

∂α(
√
−gΘ

α

β
)− 1

2
√
−gΘ

µν
∂βgµν = 0 (2.44)

Equation below is used to obtain the conservation law in general coordinates

∂
√
−g

∂gµν
=−1

2
√
−ggµν. (2.45)
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2.5 Field Equations in Vector Space

Field equations 2.28 and 2.29 can be expressed in vector form. In achieving these

equations the relations between D and H with E and B will be revealed. The 2-form

field and its dual are

F =−Exdt ∧dx−Eydt ∧dy−Ezdt ∧dz+Bzdx∧dy+Bydz∧dx+Bxdy∧dz (2.46)

and

∗F = Bxdt ∧dx+Bydt ∧dy+Bzdt ∧dz+Ezdx∧dy+Eydz∧dx+Exdy∧dz (2.47)

Starting with 2.28 and replacing F by 2.46 we can have

(
∂Ey

∂x
− ∂Ex

∂y
+

∂Bz

∂t
)dt ∧dx∧dy+(

∂Ex

∂z
− ∂Ez

∂x
+

∂By

∂t
)dt ∧dz∧dx

+(
∂Ez

∂y
−

∂Ey

∂z
+

∂Bx

∂t
)dt ∧dy∧dz+(

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
)dx∧dy∧dz = 0 (2.48)

A couple of Maxwell’s equations emerge from equation 2.48

∇×E+
∂B
∂t

= 0 ; ∇.B = 0 (2.49)

The other two equations will be found through 2.29. Prior to the use of that equation

we need to calculate LF and LG.

LF =
∂L
∂F

=
1

2
√

1+F−G2
; LG =

∂L
∂G

=
−G√

1+F−G2
(2.50)
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Therefore

[
∂

∂x
(

Ex +GBx√
1+F−G2

)+
∂

∂y
(

Ey +GBy√
1+F−G2

)+
∂

∂z
(

Ez +GBz√
1+F−G2

)]dx∧dy∧dz

+[
∂

∂y
(

Bz−GEz√
1+F−G2

)− ∂

∂z
(

By−GEy√
1+F−G2

)− ∂

∂t
(

Ex +GBx√
1+F−G2

)]dy∧dt ∧dz

+[
∂

∂z
(

Bx−GEx√
1+F−G2

)− ∂

∂x
(

Bz−GEz√
1+F−G2

)− ∂

∂t
(

Ey +GBy√
1+F−G2

)]dz∧dt ∧dx

+[
∂

∂x
(

By−GEy√
1+F−G2

)− ∂

∂y
(

Bx−GEx√
1+F−G2

)− ∂

∂t
(

Ez +GBz√
1+F−G2

)]dx∧dt ∧dy = 0

(2.51)

The first bracket is known to be

∇.D = 0 (2.52)

and the last three terms represent

∇×H− ∂D
∂t

= 0 (2.53)

where D and H have relations with E and B in the forms below

D =
E+GB√
1+F−G2

(2.54)
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and

H =
B−GE√
1+F−G2

(2.55)

On this basis one can understand the meaning of non-linearity. In addition, these ex-

pressions for D and H can be obtained by means of the Lagrangian derivatives with

respect to E and B respectively.

L =
√

1+F−G2−1 ; F =
1
b2 (B

2−E2) ; G =
1
b2 (B.E)

H = b2 ∂L
∂B

; D =−b2 ∂L
∂E

. (2.56)

2.6 Static Field of a Point Charge

In this section we consider the electrostatic field of a point charge for which B = H = 0

and E and D are time independent. From 2.49 we have

∇×E = 0 (2.57)

and therefore

E =−∇Φ. (2.58)

For the case of spherical symmetry 2.52 becomes

d
dr

(r2Dr) = 0 (2.59)
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which has the solution

Dr =
e
r2 (2.60)

and through 2.54 we have

Dr =
Er√

1− 1
b2 E2

r

(2.61)

Therefore

Er =
e

r2
0

√
1+( r

r0
)4

; r0 =

√
e
b

(2.62)

One can clearly see that Dr is singular at r = 0 whereas Er is finite everywhere. We

can also find the potential of a point charge. Replacing Er by −Φ′(r) in 2.61 we have

e
r2 =

−Φ′(r)√
1− 1

b2 Φ′2(r)
(2.63)

This leads us to

Φ(r) =
e
r2

0
f (

r
r0
) (2.64)

f (x) =
∫

∞

x

dy√
1+ y4

(2.65)

This is the potential of a point charge e. Substituting x = tan β

2 integral 2.65 becomes

f (x) =
1
2

∫
π

β

dβ√
1− 1

2sin2(β)
= f (0)− 1

2
F(β,

1√
2
) (2.66)
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where β(x) = 2arctanx. F(β, 1√
2
) is the elliptic function of the first kind[1] and

f (0) = F(
π

2
,

1√
2
) = 1.8541 (2.67)

At r = 0

Φ(0) =
e
r2

0
(1.8541). (2.68)

2.7 On the Absolute Field Constant

To conclude this chapter we briefly discuss the value of the absolute field constant b.

In order to obtain its value we consider the electrostatic case of an electron. We can

find the energy density of its field provided we either have the Hamiltonian or the time

component of the energy-momentum tensor (We already found this tensor). One can

show that

T 00 = 4πU = D.E+b2L = b2H (2.69)

Where U is the energy density. The total energy is the volume integral of U and its

value is

E =
∫

Udv = 1.2361
e2

r0
(2.70)

On the other hand E = m0c2, hence

r0 = 2.28×10−13cm
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r0 can be considered as the radius of electron and

b =
e
r2

0
= 9.18×1015e.s.u.

Other attempts to obtain a value for the absolute field constant are worth mentioning

here. H. Carley et. al.[10] found the value of the absolute field constant (denoted by

β in their paper) through studying the effect of the Born-Infeld-based potential on the

spectrum of the hydrogen atom. In their work they expressed β in terms of α, the

fine structure constant (≈ 1/137.036). In a similar attempt S. H. Mazharimousavi and

M. Halilsoy[23] found the BI parameter (formerly called absolute field constant) by

inserting a Morse-type potential in the Schrödinger’s equation. Table 2.1 shows the

obtained values for the BI parameter.

Table 2.1:Born-Infeld Parameter

αβ

Ref.[24] 1.65820

Ref.[10] 1.83297

Born’s proposal 1.2361
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Chapter 3

A NEW MODEL OF NON-LINEAR ELECTRODYNAMICS

3.1 Introduction

In this chapter a non-linear field theory will be developed based on a Lagrangian pro-

posed by S. H. Mazharimousavi in the form

L =− 2
α4 ln(1−α

2
√
|F |+α2G2)− 2

√
|F |+α2G2

α2 (3.1)

where F = FµνFµν and G = Fµν
∗Fµν and α plays a similar role to that of the Born’s

parameter added to imply the Maxwell limit as it approaches zero. This fact will

be elaborated later in this section. The main objective of the chapter is to consider

general relativity minimally coupled with non-linear electrodynamics with the above

Lagrangian. In particular, we scrutinize the case G = 0 when we have the electric

charge in a static spherically symmetric spacetime. A singularity-free field will be the

outcome of applying the field equation 2.29 to this case.

In the first instance, we consider the problem of coupling in 4-dimensional spacetime.

Our study will be followed in 2+ 1 dimensions as well as higher dimensions. The

following examines the above-mentioned Lagrangian having Maxwell limit while α

approaches zero. Recalling the Lagrangian underlying the Maxwell’s equations, G
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must be zero in order to show that limit. Thus the Lagrangian becomes

L =− 2
α4 ln(1−α

2
√
|F |)−

2
√
|F |

α2 (3.2)

We can expand the first term like the Taylor expansion of ln(1− x). Thereby

lim
α→0

L = lim
α→0

[− 2
α4 (−α

2
√
|F |− 1

2
α

4|F |− ...)−
2
√
|F |

α2 ] = |F |=−F. (3.3)

3.2 Electrostatic Spherically Symmetric Field of a Point Charge

The electric field of a point charge at rest is given by the 2-from field

F =−E(r)dt ∧dr (3.4)

and its dual is

∗F = E(r)r2 sin θdθ∧dφ (3.5)

These together show the field in 4-dimensional spherically symmetric spacetime. On

the other hand, derivative of the Lagrangian with respect to F , the electromagnetic

invariant, is

LF =
F

|F |(1−α2
√
|F |)

(3.6)

where F =−2E2(r). Now we consider equation 2.29.

d(
−E(r) r2 sin θ

1−α2
√

2E2(r)
dθ∧dφ) = 0 (3.7)
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Thus

−E(r) r2

1−
√

2α2|E(r)|
= Q ; Q = constant. (3.8)

And having |E(r)|=−E(r) we get

|E(r)|= Q
r2 +
√

2α2Q
. (3.9)

Since |E|> 0, therefore Q > 0. Thus we can write E(r) in the form below

E(r) =± Q
r2 +
√

2α2Q
; Q > 0 (3.10)

or considering a2 =
√

2α2Q, we have

|E(r)|= Q
r2 +a2 . (3.11)

It is clear that E(r) is finite everywhere. The electric potential is obtained

V −Vre f =−
∫

E(r)dr =−
∫ Q

r2 +a2 dr =
Qπ

2a
− Q

a
arctan(

r
a
)

3.2.1 The Energy-Momentum Tensor

Enroute to our goal of coupling GR with NED(Non-linear Electrodynamics) we need

to obtain the energy-momentum tensor of the source in question. The energy-momentum

tensor is given by

T ν
µ =

1
2
(Lδ

ν
µ−4FµλFνλLF) (3.12)
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Substituting L and LF from 3.2 and 3.6, respectively, we get

T ν
µ = (− 1

α4 ln(1−α
2
√

2E2)−
√

2E2

α2 )δν
µ +

2FµλFνλ

1−α2
√

2E2
(3.13)

Knowing Frt =−E(r) it becomes

T t
t = T r

r =− 1
α4 ln(1−α

2
√

2E2)−
√

2E2

α2(1−α2
√

2E2)
(3.14)

and

T θ

θ
= T φ

φ
=− 1

α4 ln(1−α
2
√

2E2)−
√

2E2

α2 (3.15)

Replacing |E(r)| by 3.11 one can get

T t
t = T r

r =− 1
α4 [ln(

r2

r2 +a2 )+
a2

r2 ] (3.16)

and

T θ

θ
= T φ

φ
=− 1

α4 [ln(
r2

r2 +a2 )+
a2

r2 +a2 ] (3.17)

3.2.2 Metric Function of a Static Spherically Symmetric 4-D Spacetime

We now consider the gravitational field equation with the obtained energy-momentum

tensor (3.16, 3.17) of an electric point charge.

Gν
µ +

1
3

Λδ
ν
µ = T ν

µ (3.18)
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where Gν
µ = Rν

µ− 1
2Rδν

µ is the Einstein tensor and Λ is the cosmological constant. The

following are the components of the Einstein tensor.

Gt
t = Gr

r =
(d f

dr )r−1+ f (r)
r2 and Gθ

θ
= Gφ

φ
=

1
2

2(d f
dr )+ r(d2 f

dr2 )

r
(3.19)

f (r) is the required metric function in the line element

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dθ

2 + r2 sin2
θdφ

2 (3.20)

Substituting 3.16, 3.17, and 3.19 in 3.18, we get

equation− I :
1
r

d f
dr

+
1
r2 f (r)+

1
α4 ln(

r2

r2 +a2 )+(
a2

α4 −1)
1
r2 +Λ = 0 (3.21)

equation− II :
1
2

d2 f
dr2 +

1
r

d f
dr

+
1

α4 ln(
r2

r2 +a2 )+
1

α4 (
a2

r2 +a2 )+Λ = 0 (3.22)

One can multiply equation-I by r2 and consider the first two terms as d
dr (r f ) and find

the metric function.

f (r) = 1− 2Q2

3a2 −
2M− 2Q2π

3a
r

− 1
3

Λr2 +
2Q2r2

3a4 ln(1+
a2

r2 )−
4Q2

3ar
arctan(

r
a
) (3.23)

limit of the metric as a approaches zero is5

lim
a→0

f (r) = 1− 2M
r
− 1

3
Λr2 +

Q2

r2 (3.24)

5Reissner-Nordström metric: ds2 = B(r)dt2−B−1(r)dr2− r2dΩ2 where B(r) = 1− 2m
r + Q2

r2
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and when a approaches infinity we expect the metric function approaches the Schwarzschild

limit.

lim
a→∞

f (r) = 1− 2M
r
− 1

3
Λr2

3.3 Point Charge in (2+1)-dimensional Static, Spherically Symmetric

Spacetime

Now we consider the electric field of a point charge in a (2+1)-dimensional spacetime.

As usual we aim to find the metric function while we expect to obtain a singularity-free

electric field.

3.3.1 Electric Field and the Exact Electric Potential

The 2-form field and its dual in 3 dimensions are

F = E(r)dt ∧dr ; ∗F = E(r)rdθ (3.25)

and F = FµνFµν =−2E2(r). Using 2.29 and 3.6 one can get

d(− rE(r)
1−α2

√
2|E|

dθ) = 0 (3.26)

which results in

r|E|
1−α2

√
2|E|

= Q (3.27)
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Therefore

|E|= Q
r+α2

√
2Q

=
Q

r+a
; a =

√
2α

2Q (3.28)

which is finite at r = 0. The electric potential can be found through E:

V −Vre f =−
∫

Edr =−
∫ Q

r+a
dr = Q ln(

1
r+a

) (3.29)

3.3.2 Energy-Momentum Tensor and the Metric Function

The static, circularly symmetric line element is given by

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dφ

2 (3.30)

The energy-momentum tensor is found through 3.14 and 3.15

T t
t = T r

r =− 1
α4 [ln(

r
r+a

)+
a
r
] (3.31)

T φ

φ
=− 1

α4 [ln(
r

r+a
)+

a
r+a

] (3.32)

The non-zero components of Gν
µ are given by[17]

Gν
µ = diag[

f ′

2r
,

f ′

2r
,

f ′′

2
] (3.33)
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This renders the metric function via 3.18.

f ′

2r
+

Λ

3
=− 1

α4 [ln(
r

r+a
)+

a
r
]

thus

f (r) =− 1
α4{−a2 ln(

a
r+a

)+ ln(
r

r+a
)r2 +ar−a2}− Λ

3
r2 +C (3.34)

Now we can examine the limits of f (r) as α approaches zero and infinity.

lim
α→0

f (r) = lim
α→0
{Q2 +2Q2[ln(−

√
2Q
r

)+2lnα]− Λ

3
r2 +C+O(α)} (3.35)

Taking C =−2Q2[ln(−
√

2Q)+2ln(α)] and M =−Q2 it becomes

lim
α→0

f (r) =−M−Q2 ln(r2)+
r2

l2 (3.36)

which is called BTZ metric (It is a black hole metric for (2+1)-dimensional spacetime

with a negative cosmological constant.) with 1
l2 = −Λ

3 . For α approaches infinity one

can find

lim
α→∞

f (r) =−M+
r2

l2 (3.37)

which happens when we solve 3.18 for T ν
µ = 0 with the components of Gν

µ given earlier.
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3.4 Electrostatic Field of a Point Charge in Higher Dimensions

Following our study on coupling the electromagnetic field with gravitation we now

consider the problem in d-dimensional spacetime. The same procedure as we did in

previous sections will be applied except for the metric function that we will find the

integral solution instead of an exact one.

3.4.1 Electric Field of a Point Charge

The 2-form electromagnetic field and its dual are given by

F = E(r)dt ∧dr (3.38)

and

∗F = E(r)rd−2
φ(θi)dθ1∧dθ2...dθd−2 (3.39)

Knowing the electromagnetic invariant F =−2E2(r), from 3.6 and 2.29 we have

d(
−E(r)rd−2

1−α2
√

2|E(r)|
φ(θi)dθ1∧dθ2...dθd−2) = 0 (3.40)

therefore

|E|rd−2

1−α2
√

2|E|
=C ; (C = constant) (3.41)

and

|E|= C
rd−2 +Cα2

√
2

(3.42)
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The Maxwell limit implies C = Q hence

|E|= Q
rd−2 +ad−2 ; ad−2 = Q

√
2α

2 (3.43)

3.4.2 The Energy-Momentum Tensor

Using 3.14 and 3.15 the energy-momentum tensor components become

T t
t = T r

r =− 1
α4 [ln(

rd−2

rd−2 +ad−2 )+(
a
r
)d−2] (3.44)

and

T θi
θi

=− 1
α4 [ln(

rd−2

rd−2 +ad−2 )+
ad−2

rd−2 +ad−2 ] (3.45)

3.4.3 The Metric Function

The line element of a spherically symmetric d-dimensional spacetime is given by[22]

ds2 =−A(r)dt2 +
dr2

A(r)
+ r2dΩ

2
d−2 (3.46)

where

dΩ
2
d−2 = dθ

2
1 +

d−2

∑
i=2

i−1

∏
j=1

sin2
θ jdθ

2
i

with

0≤ θd−2 ≤ 2π , 0≤ θi ≤ π , 1≤ i≤ d−3
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The Ricci scalar in d dimensions is given by[22]

R =−A′′−2(d−2)
A′

r
− (d−2)(d−3)

(A−1)
r2 (3.47)

and the Ricci tensor components are

Rt
t = Rr

r =−
1
2

A′′− (d−2)
2

A′

r
(3.48)

and

Rθi
θi
=−A′

r
− (d−3)

(A−1)
r2 (3.49)

Therefore the components of Einstein tensor are

Gν
µ = Rν

µ−
1
2

Rδ
ν
µ

Gt
t = Gr

r =
1
2
(d−2)

A′

r
+

1
2
(d−2)(d−3)

(A−1)
r2 (3.50)

and

Gθi
θi
=

1
2

A′′+(d−3)
A′

r
+

1
2
(d−3)(d−4)

(A−1)
r2 (3.51)

The set of gravitational field equations reads

1
2
(d−2)

A′

r
+

1
2
(d−2)(d−3)

(A−1)
r2 +

1
3

Λ
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=− 1
α4 [ln(

rd−2

rd−2 +ad−2 )+(
a
r
)d−2] (3.52)

and

1
2

A′′+(d−3)
A′

r
+

1
2
(d−3)(d−4)

(A−1)
r2 +

1
3

Λ

=− 1
α4 [ln(

rd−2

rd−2 +ad−2 )+
ad−2

rd−2 +ad−2 ] (3.53)

Solving the Einstein field equations with the aforementioned energy-momentum tensor

and the Einstein tensor leads us to the following metric

A(r) = (d2−5d +6)[
1

(d−2)rd−3

∫
rd−4dr]− 2

3(d−2)
Λ

rd−3

∫
rd−2dr

− 1
α4

2ad−2

(d−2)
1

rd−4 +
C

rd−3 − (
1

α4
2

(d−2)
1

rd−3 )
∫

rd−2 ln(
rd−2

rd−2 +ad−2 )dr (3.54)

so

A(r) = 1− (
1

α4
2

(d−2)
1

rd−3 )
∫

rd−2 ln(
rd−2

rd−2 +ad−2 )dr

− 1
α4

2ad−2

(d−2)
1

rd−4 −
2Λr2

3(d−1)(d−2)
+

C
rd−3 (3.55)
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3.5 Existence of the Globally Regular Metrics-NED with Maxwell Limit

In this section we discuss a theorem on the relation between the existence of a metric

with a regular center and a NED Lagrangian L(F) having Maxwell asymptotic at weak

field limit (F → 0). The problem arises in coupling general relativity to NED with

the aforesaid limiting condition on the Lagrangian underlying it. Being valid, the

theorem does not permit a nonsingular metric to come to light under the condition of

this theorem with electric point charge. Here follows the statement of the theorem and

its proof.[8, 9]

Theorem. The Lagrangian L(F),(F = FµνFµν), with Maxwell asymptotic at small F,

i.e. L∼ F and LF = dL
dF → constant, coupled to R, the scalar curvature, does not lead

us to a static, spherically symmetric metric with a regular pole and a nonzero electric

charge.

Proof. The Ricci tensor for such a metric is diagonal, hence the invariant RµνRµν =

Rν
µRµ

ν is a sum of squares; therefore each Rµ
µ is finite at a regular point so does the

energy-momentum tensor, T ν
µ . The Latter follows from the field equation.

−Gν
µ = T ν

µ =−2LFFµαFνα +
1
2

δ
ν
µL,

For an electric point charge, this implies that

−2E2(r)LF < ∞

Replacing −2E2 by F , the EM invariant of the case in question, one gets

FLF < ∞ ; (LF → cons. ; F → 0)
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On the other hand

d(∗FLF) = 0

thus

∗FLF =C

and

r2E(r)LF =C

One can consider C = Q hereafter, so

E(r)LF =
Q
r2

and

E2(r)L2
F =

Q2

r4

Multiplying both sides by −2 we have

FL2
F =−2

Q2

r4

Now let r→ 0 and consequently FL2
F → ∞. With Fapproaching zero, the last conclu-

sion implies that LF → ∞ which is a non-Maxwell behavior at small F .

35



Starting with the assumption that we can have a metric with a regular pole in the

presence of an electric point charge, we come to a non-Maxwell feature while we

considered the Maxwell limit of any suggested Lagrangian L(F) coupled to R. This

apparent contradiction leads us to reach the conclusion that with a nonzero electric

charge we cannot have a metric with a regular pole while L ∼ F ; F → 0. The same

theorem is valid when the electric charge and magnetic charge are both present.
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Chapter 4

CONCLUSION

The non-linear electrodynamics is one of the highly non-linear theories in physics

which has attracted for almost 3-quarters of a century many physicists in different

fields such as String Theory, High Energy Physics, Classical and Quantum Gravity

and General Relativity. The premier purpose for considering this non-linear theory was

to remove the singularity in the Maxwell theory of electrodynamics. As the standard

Maxwell theory yields an electric field E = Q
r2 r̂ for a point charge Q located at the

origin the natural question would be “what happens at the origin?”. The BI non-linear

theory has changed the picture of the problem by introducing a new Lagrangian which

is known as BI-Lagrangian. Based on this theory the electric field of the same charge

at the same point is given by E = Q√
r4+β4

r̂ in which β is a constant to be found in

experiments. In this theory it is very clear that the origin is no longer a distinct point

and the electric field at the origin is regular. The other applications for this theory have

been found very recently after that a similar Lagrangian has been used in string theory.

Nowadays hundreds of papers are published in non-linear electrodynamics in flat or

curved space by using the BI Lagrangian or some other forms of Lagrangians.

In this thesis first of all in Chapter 2 we have studied the historical paper of Born and

Infeld and with much details we have shown that how the non-linear electrodynamics

has been developed. In this line we repeated all the way gone by the first constructors
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of the theory and in some parts we added other contributions too. After that in Chapter

3 we have introduced a new non-linear electrodynamic theory with a new Lagrangian

3.1. The main difference between this new theory and the one introduced by Born and

Infeld turns back to the form of the electric field and the electric potential of a point

charge at a distance r from the charge. Actually in our theory the electric field of a

point charge located at the origin at a point of distance r from the charge is given by

E = Q
r2+a2 r̂ in which a is a free parameter to be found empirically. The form of the

electric potential also reads

φ(r) =
Qπ

2a
− Q

a
arctan(

r
a
).

In contrast with the BI theory the closed form of the latter fields are simpler and more

feasible to be applied for the cases such as hydrogen atom. This theory has been

developed in 3+1 dimensions in a large number of details and also a black hole solution

based on this Lagrangian coupled minimally with gravity has been found. After 4

dimensions we extended our work in lower and higher dimensions too.
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