
Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Investigation of Machine Learning Techniques for

Fault Diagnosis in the Semiconductor Manufacturing

Process

Abubakar Abdussalam Nuhu

Eastern Mediterranean University

February 2021

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. Hasan Hacisevki

 Chair, Department of Mechanical

Engineering

Assoc. Prof. Dr. Qasim Zeeshan

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science in Mechanical Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Mechanical

Engineering.

Examining Committee

1. Assoc. Prof. Dr. Shaban Ismael Albrka

2. Assoc. Prof. Dr. Qasim Zeeshan

3. Asst. Prof. Dr. Mohammed Bsher A. Asmael

 iii

ABSTRACT

Industries are going through the fourth industrial revolution (Industry 4.0), where

technologies like the Industrial Internet of Things (IIoT), Big Data Analytics and

Machine Learning (ML) are being extensively employed for improving the

productivity and efficiency of manufacturing systems. Recently, many researchers

have demonstrated the ability of ML algorithms to meet various challenges presented

by the next generation Smart Manufacturing Systems (SMSs). This work aims to

investigate the applicability of several machine learning techniques for early fault

diagnosis towards smart manufacturing process. Thus, in this thesis, we propose

several fault diagnosis ML models for SMSs applications. A case study has been

conducted on a dataset from a semiconductor manufacturing process. However, this

dataset contains missing values, redundant and noisy features, and class imbalance

problem. This imbalance problem makes it so difficult to accurately predict the

minority class, due to the majority class size difference. Therefore, this work proposes

and compares the effects of three synthetic data generation techniques to handle such

class imbalance problem. To handle issues related to missing values and redundant

features, we implemented and compared the performance of two missing values

imputation techniques and two feature selection techniques using three adopted data

synthetic generation techniques. We then developed and compared the performance of

ten predictive machine learning models against the abovementioned proposed

approaches. Experimental results across seven evaluation metrics of performance

obtained from these models were significant. These results and a comparative analysis

show the feasibility and validate the effectiveness of these proposed synthetic data

generation techniques and the proposed methodologies. Some among the proposed

 iv

methodologies could produce an accuracy in the range of 99.9% to 100%.

Furthermore, a comparative analysis has been conducted with similar models proposed

in the literature. Based on the results, our proposed models outpace those proposed in

the literature.

Keywords: Semiconductor Manufacturing Process, Fault Diagnosis, Imbalance

Dataset, Synthetic Data Generation, Machine Learning.

 v

ÖZ

Endüstriler, Endüstriyel Nesnelerin İnterneti (IIoT), Büyük Veri Analitiği ve Makine

Öğrenimi (ML) gibi teknolojilerin üretim sistemlerinin üretkenliğini ve verimliliğini

artırmak için yoğun bir şekilde kullanıldığı dördüncü endüstriyel devrimden (Endüstri

4.0) geçiyor. Son zamanlarda, birçok araştırmacı, ML algoritmalarının yeni nesil

Akıllı Üretim Sistemleri (SMS'ler) tarafından sunulan çeşitli zorlukları karşılama

becerisini göstermiştir. Bu çalışma, akıllı üretim sürecine yönelik erken arıza teşhisi

için çeşitli makine öğrenme tekniklerinin uygulanabilirliğini araştırmayı

amaçlamaktadır. Bu nedenle, bu tezde, SMS uygulamaları için çeşitli arıza teşhis ML

modelleri öneriyoruz. Yarı iletken üretim sürecinden bir veri seti üzerinde bir vaka

çalışması yapılmıştır. Bununla birlikte, bu veri kümesi eksik değerler, fazlalık ve

gürültülü özellikler ve sınıf dengesizliği problemini içermektedir. Bu dengesizlik

sorunu, çoğunluk sınıf büyüklüğü farkı nedeniyle azınlık sınıfını doğru bir şekilde

tahmin etmeyi çok zorlaştırıyor. Bu nedenle, bu çalışma, bu tür bir sınıf dengesizliği

sorununu ele almak için üç sentetik veri oluşturma tekniğinin etkilerini önermekte ve

karşılaştırmaktadır. Eksik değerler ve gereksiz özelliklerle ilgili sorunları ele almak

için, benimsenmiş üç veri sentetik oluşturma tekniğini kullanarak iki eksik değer

atama tekniğinin ve iki özellik seçim tekniğinin performansını uygulayıp

karşılaştırdık. Daha sonra on tahmine dayalı makine öğrenimi modelinin

performansını yukarıda belirtilen önerilen yaklaşımlarla geliştirip karşılaştırdık. Bu

modellerden elde edilen performansın yedi değerlendirme metriğine ilişkin deneysel

sonuçlar anlamlıydı. Bu sonuçlar ve karşılaştırmalı bir analiz, bu önerilen sentetik veri

oluşturma tekniklerinin ve önerilen metodolojilerin uygulanabilirliğini gösterir ve

etkililiğini doğrular. Önerilen metodolojilerden bazıları, % 99,9 ila% 100 aralığında

 vi

bir doğruluk sağlayabilir. Ayrıca, literatürde önerilen benzer modellerle karşılaştırmalı

bir analiz yapılmıştır. Sonuçlara göre, önerilen modellerimiz literatürde önerilenleri

geride bırakıyor.

Anahtar Kelimeler: Yarıiletken Üretim Süreci, Hata Teşhisi, Dengesizlik Veri Seti,

Sentetik Veri Üretimi, Makine Öğrenimi.

 vii

DEDICATION

Dedicated to my late beloved GRANDPARENTS; may

their souls Rest in JANNAH…

 viii

ACKNOWLEDGMENTS

This piece of work is made possible with the support and contribution of many

individuals. So much has been contributed by some that they have to be appreciated,

their names have to be mentioned, and they deserve recognition. Leading the list is my

supervisor and a ‘substitute father’ Assoc. Prof. Dr. QASIM ZEESHAN, that played

a prominent role during my time of studies, in my life at large, and in this work. Thanks

for the countless hours of counseling, guidance, and motivation. You have “turned us

on, turned us around, and boosted us up” to believe in ourselves, to believe that we

can do and achieve so much so in this life when we put ourselves to it. So much has

been learned from you. I am deeply grateful to you, endlessly I will be. Scholastically,

you are such a role model! JAZAKALLAH AL KHAIR. Many thanks to you,

ABDULLAHI ISMAIL, MSc. Without your support, this work would not have been

as great as it is. Thanks for the intro to the field of machine learning, I have learnt a

lot and you have given me the key to this field at large. I am deeply grateful.

I am also thankful to the department of mechanical engineering and its entire staff

members for granting me such an opportunity, a friendly and conducive environment

to carry out this study. Especially, Assoc. Prof. Dr. Qasim Zeeshan Assist. Prof. Dr.

Mohammad Bsher A. Asmael, Assist. Prof. Dr. Devrim Aydin, Depart. Chair Prof. Dr.

Hasan Hacisevki, and Assist. Prof. Dr. Babak Safaei.

I am acknowledging the members of my Jury including Assoc. Prof. Dr. Qasim

Zeeshan, Assist. Prof. Dr. Mohammad Bsher A. Asmael, and Assoc. Prof. Dr. Shaban

 ix

Ismael Albrka Ali for their comments and guidance that made this thesis greater. I am

extremely thankful.

A very special thanks to my wonderful colleagues for their support, guidance, and

advice over the years, most especially Mr. Omer A. Kalaf – you were such a great

brother and office mate, Mr. Mohammed Y. Alibar, Mr. Tauqir Nasir, and Mr. Hussain

Ali Faraj M., I am grateful in every possible way to you all. To my friends; Naziru

Aliyu (AH) – what a true friend and SA, Umar Lawan – DH, Yazid Mustapha, Abdul

Hakeem A. A. – you helped me so much during the time of my studies, Umar Saleh –

my proofreader, my great roomie Sani M. Ahmad – four years with you were just great,

and Sadisu Usman, I thank you all and deeply appreciate your presence and support in

my life.

Last but not the least, I thank my parents and family for your immeasurable love,

immense prayers, and endless support. I thank ALLAH for being part of you and

gifting me you in this gracious world. May HE the lord of the worlds grant you good

here and hereafter.

To all that I have acknowledged, please accept my earnest thanks. To all you whom I

have not mentioned, please just know that you are appreciated more than you could

imagine, even though you are not mentioned in this piece of work.

Hello Reader; the fact that you are reading this work deserves thanks. I thank you.

God Bless and have a Great Forever !

 x

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ v

DEDICATION ... vii

ACKNOWLEDGMENTS .. viii

LIST OF TABLES .. xiv

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS .. xvii

1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem statement .. 2

1.3 Scope and aim of the thesis .. 3

1.4 Thesis contributions ... 4

1.5 Thesis outline ... 5

1.6 Summary of the chapter ... 6

2 BACKGROUND INFORMATION ... 7

2.1 Machine learning (ML) .. 7

2.1.1 Machine learning types and classifications ... 8

2.1.1.1 Multi-layer perceptron (MLP) ... 9

2.1.1.2 Support vector machine (SVM) ... 10

2.1.1.3 Random forest (RF) ... 11

2.1.1.4 Logistic regression (LR) .. 12

2.1.1.5 Extreme gradient boosted trees (XGBoost) 12

2.1.1.6 Gradient boosting trees (GBT) ... 13

 xi

2.1.1.7 Decision tree (DT) ... 13

2.1.1.8 Linear discriminant analysis (LDA) .. 14

2.1.1.9 Adaptive boosting (AdaBoost)... 15

2.1.1.10 Naïve bayes (NB) ... 16

2.2 Smart manufacturing and machine learning .. 16

2.2.1 Semiconductor manufacturing process ... 17

2.2.1.1 SECOM dataset description ... 20

2.3 Summary of the chapter ... 22

3 LITERATURE REVIEW ... 24

3.1 ML techniques applied to SMSs .. 24

3.1.1 ML techniques applied to the semiconductor manufacturing process dataset

…………. ... 29

3.2 Summary of the chapter ... 33

4 RESEARCH METHODOLOGY .. 37

4.1 ML techniques development for classification .. 37

4.1.1 Proposed methodology .. 38

4.1.2 Dataset ... 41

4.1.3 Dataset preprocessing ... 41

4.1.3.1 Data cleaning.. 41

4.1.3.2 Data imputation .. 42

4.1.3.2.1 Mean data imputation ... 42

4.1.3.2.2 k-NN data imputation ... 42

4.1.3.3 Feature scaling or normalizing ... 43

4.1.3.4 Feature selection .. 43

4.1.3.4.1 Principal component analysis (PCA) .. 44

 xii

4.1.3.4.2 Univariate feature selection (UFS) ... 44

4.1.3.5 Synthetic data generation techniques (SDGT) 44

4.1.3.5.1 Synthetic minority oversampling technique (SMOTE) 45

4.1.3.5.2 Borderline-SMOTE SVM (BSMOTE-SVM) 46

4.1.3.5.3 Adaptive synthetic oversampling (ADASYN) 47

4.2 Predictive model selection, training and validation ... 48

4.2.1 Predictive model evaluation metrics ... 49

4.2.1.1 Confusion matrix.. 50

4.2.1.2 Accuracy performance metric .. 50

4.2.1.3 Sensitivity and specificity performance metrics 51

4.2.1.4 Precision, recall and F1_score performance metrics 51

4.3 Summary of the chapter ... 51

5 EXPERIMENTAL RESULTS .. 53

5.1 A case study on semiconductor manufacturing process 54

5.1.1 ML development using SECOM dataset .. 54

5.1.1.1 SECOM dataset cleaning ... 54

5.1.1.1.1 Model development using (MRD) modified raw dataset 54

5.1.1.1.2 Effect of datapoints imputation ... 55

5.1.1.1.3 Effect of datapoints imputation and features selection without

scaling …. .. 55

5.1.1.1.4 Effect of mean imputation, features scaling and selection 56

5.1.1.1.5 Effect of SMOTE, without features scaling and selection 57

5.1.1.1.6 Discussion on the results obtained .. 57

5.1.2 Proposed methodology with SMOTE ... 60

5.1.2.1 Mean imputation with SMOTE.. 61

 xiii

5.1.2.2 k-NN imputation with SMOTE.. 61

5.1.2.3 Discussion on the results obtained using SMOTE 62

5.1.3 Proposed methodology with Borderline-SMOTE SVM 66

5.1.3.1 BSMOTE-SVM with mean imputation ... 66

5.1.3.2 BSMOTE-SVM with k-NN imputation ... 67

5.1.3.3 Discussion on the results obtained using BSMOTE-SVM 67

5.1.4 Proposed methodology with ADASYN .. 70

5.1.4.1 ADASYN with mean imputation ... 70

5.1.4.2 ADASYN with k-NN imputation .. 71

5.1.4.3 Discussion on the results obtained using ADASYN 71

5.1.5 Discussion and comparison on the overall experimental results 74

5.1.5.1 Effects of MRD, dataset preprocessing and SMOTE-based proposed

methodology... 74

5.1.5.2 Overall results comparison within the proposed methodologies 75

5.1.6 Experimental results comparison with similar studies from the literature 79

5.2 Summary of the chapter ... 83

6 CONCLUSIONS and FUTURE WORKS .. 85

6.1 Conclusions .. 85

6.2 Future works .. 86

REFERENCES... 87

APPENDICES ... 106

Appendix A: Tabular supplementary experimental results 107

Appendix B: Codes .. 109

 xiv

LIST OF TABLES

Table 1: SECOM dataset description. .. 21

Table 2: Summary of the recent ML algorithms applied to SECOM dataset. 34

Table 3: Confusion Matrix for Predictive Model Evaluation. 50

Table 4: Dataset description before and after each step... 54

Table 5: Metrics of performance results obtained before and after each step. 59

Table 6: Datasets characteristic used for ML model development after preprocessing

with and without SDGT. .. 60

Table 7: Metrics of performance overall experimental results obtained using three

different SDGT. ... 73

Table 8: Results comparison with recent similar works form the literature. 81

Table 9: Accuracy-based results comparison amongst MRD, MRD with main data

preprocessing step effects, and PM using SMOTE.. 107

Table 10: Confusion matrix results obtained before and after each step. 107

Table 11: Confusion matrix of the overall experimental results obtained. 108

 xv

LIST OF FIGURES

Figure 1: Classifications within Machine Learning Techniques. 8

Figure 2: Main steps involved for ML model development. 9

Figure 3: Multi hidden layer MLP [24]. .. 10

Figure 4: Support vector machine algorithm. .. 11

Figure 5: Random forest. ... 12

Figure 6: Linear and logistic regression. .. 12

Figure 7: XGBoost algorithm tree. .. 13

Figure 8: Decision tree algorithm. ... 14

Figure 9: AdaBoost [49]. ... 15

Figure 10: A typical silicon semiconductor wafer [62] ... 18

Figure 11: Overview of the main steps involved in the SECOM process [61]. 19

Figure 12: Overview of the detailed and explanation of SECOM fabrication process,

adapted from [66]. .. 20

Figure 13: SECOM dataset description: (A) Instances distribution within the two

classes. (B) Missing vs observed datapoint values. ... 22

Figure 14: Application scenarios of ML applied to SMS [70]. 25

Figure 15: Overall framework of the proposed methodology for predictive ML

development. .. 40

Figure 16: Illustration of SMOTE data generation technique [65]. 47

Figure 17: Illustration of BSMOTE-SVM data generation technique [103]. 47

Figure 18: Results summary - (A) MI + PCA + SMOTE + 80|20 split. (B) MI + PCA

+ SMOTE + CV. (C) k-NNI + PCA + SMOTE + 80|20 split. (D) k-NNI + UFS +

 xvi

SMOTE +80|20 split. (E) k-NNI + PCA + SMOTE + CV. (F) k-NNI + UFS + SMOTE

+CV. ... 65

Figure 19: Results summary – (A) MI + PCA + BSMOTE-SVM + 80|20 split. (B) MI

+ PCA + BSMOTE-SVM + CV. (C) k-NNI + PCA + BSMOTE-SVM + 80|20 split.

(D) k-NNI + UFS + BSMOTE-SVM + 80|20 split. (E) k-NNI + PCA + BSMOTE-

SVM + CV. (F) k-NNI + UFS + BSMOTE-SVM + CV. .. 69

Figure 20: Results summary – (A) MI + PCA + ADASYN + 80|20 split. (B) MI + PCA

+ ADASYN + CV. (C) k-NNI + PCA + ADASYN + 80|20 split. (D) k-NNI + UFS +

ADASYN + 80|20 split. (E) k-NNI + PCA + ADASYN + CV. (F) k-NNI + UFS +

ADASYN + CV. .. 72

Figure 21: Results comparison – MRD, MRD + effects of data preprocessing steps,

and proposed methodology with SMOTE using 80|2-split. 75

Figure 22: Overall comparison of the experimental results; (A) MLP; (B) XGBoost;

(C) LR; (D) DT; (E) NB; (F) LDA; (G) RF; (H) SVC; (I) AdaBoost; (J) GBT. 80

file://///Users/Dantakara/Desktop/Thesis%20Writing%20-%20Master's/March%202021/AAN_%20-%2018500575_MASTERS-THESIS_%20-%20AFTER%20JURY%20-%20%2002MARCH2021%20-%204.docx%23_Toc65611758
file://///Users/Dantakara/Desktop/Thesis%20Writing%20-%20Master's/March%202021/AAN_%20-%2018500575_MASTERS-THESIS_%20-%20AFTER%20JURY%20-%20%2002MARCH2021%20-%204.docx%23_Toc65611758

 xvii

LIST OF ABBREVIATIONS

1NNC 1-Nearest Neighbor Classifier

ADASYN Adaptive Synthetic Oversampling

ANN Artificial Neural Network

BSMOTE-SVM Borderline-SMOTE SVM

CCPR Control Chart Pattern Recognition

CNN Convolutional Neural Network

CV Cross Validation

DT Decision Tree

FPR False Positive Rate

FS Feature Scaling

GBM Gradient Boosting Machine

k-NN k-Nearest Neighbour

k-NNI k-NN imputation

LDA Linear Discriminant Analysis

LR Logistic Regression

MI Mean imputation

MLP Multilayer Perceptron

MRD Modified Raw Dataset

PCA Principal Component Analysis

RF Random Forest

RFE Recursive Feature Elimination

SDGT Synthetic Data Generation Technique

sEMG Surface Electromyography

 xviii

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machines

TPR True Positive Rate

UFS Univariate Feature Selection

 1

Chapter 1

1 INTRODUCTION

1.1 Background

Due to the advancement in manufacturing and manufacturing technologies plus the

change of the global economic landscape, Smart Manufacturing Systems (SMSs) have

become a general solution for both developed and developing countries to upgrade

their manufacturing industries. Also, with the emergence of Industry 4.0 (I4.0), smart

systems, Machine Learning (ML), predictive model are being applied extensively in

manufacturing areas for monitoring the equipment status of industrial systems [1].

Moreover, the concept of prognostics and health management have become

unavoidable trends in the framework of industrial big data and SMSs. I4.0 gives a

reliable solution for monitoring equipment health status in industries.

Recent, many manufacturing systems are equipped with sensors, algorithms,

technologies, and advanced methods in order to facilitate real-time monitoring of the

production processes and to collect and extract data because they cannot anymore be

processed using traditional technologies. I4.0 and its key technologies play an essential

role in making industrial systems autonomous, hence enabling automatized big data

collection from industrial machines/components [1]. Production-state and equipment-

state sensors collect data that provides opportunity for efficient control and

optimization. Unfortunately, such measurements of variables data formats from

multiple sensors can be so overwhelming and poses a challenge for manufacturing data

 2

analysis, and timely detection of any fault during the production process can be

difficult [2]–[4].

Big data collected for ML contains very useful information and valuable knowledge

that can improve the whole productivity of manufacturing processes and system

dynamics. It can also be applied into decision support in several areas, such as

manufacturing, maintenance and health monitoring [5]. Based on a collected data, a

suitable ML models can be developed and be applied for automatic fault detection and

diagnosis. The enormously available data generated from industries, ML techniques

have been broadly applied in areas such as computer science, smart manufacturing

systems and processes, and predictive maintenance of industrial systems [5], [6].

These advancements facilitate the development of manufacturing contexts into

integrated networks of automation devices and allow the smart characteristics of being

self-sensing, self-adaptive, and self-organizing. However, obtaining such

advancements require addressing numerous challenges including data mining, data

quality, data volume and merging [7].

1.2 Problem statement

Due to the recent technological advancements, the manufacturing process of

semiconductor is becoming more complex, costly, and extremely interdisciplinary

processes that involve several of stages [7]–[10]. Therefore, the yield in a

semiconductor manufacturing process is affected greatly by several factors, most of

which are being monitored using sensors and quality inspections. Managing these

factors to enhance the yield has been an endless challenge in this manufacturing

process [8], [11]–[13]. Moreover, sensory datasets acquired from semiconductor

manufacturing process domain usually might contain outliers, missing values,

 3

redundant and noisy features, and class imbalance problem. This imbalance problem

makes it so difficult to accurately predict the minority class, due to the majority class

size difference. This imbalance exists as a result of very low rate of finding defective

products in manufacturing processes in practice. Also, handling and predicting the

quality of a product in a semiconductor manufacturing process is an imbalanced

problem. To handle such issue of imbalance, a suitable technique for handling

imbalanced dataset needs to be considered to enhance the predictive model

performance. To address the issues related to missing values and redundant features,

we implement and compare the performance of two missing values imputation

techniques and two feature selection techniques versus three propose data synthetic

generation techniques.

1.3 Scope and aim of the thesis

The scope of this thesis is within manufacturing systems that uses predictive models

for fault detection and diagnosis using machine learning algorithms. Also, this work

tends to investigate and improve the efficiency and effectiveness of the predictive

models within semiconductor manufacturing processes. The evaluation of the ML

algorithms has been conducted by using a case study from a distinctive manufacturing

domain using a real-world dataset from a semiconductor manufacturing process. The

performance of the developed predictive models has been compared with the existing

models in the literature to further analyze their accuracy and reliability. The outcomes

of the research have contributed in developing efficient and effective ML prediction

models for smart manufacturing processes.

Further exploration towards the applicability of ML algorithms in smart manufacturing

systems/processes is the main objective of this study. We achieved this by developing

 4

predictive models based on machine learning algorithms with special focus on

manufacturing process.

First, detailed literature review of the relevant studies describing the applications of

ML techniques in the field of smart semiconductor manufacturing process has been

conducted, to get a more profound knowledge in the analyzed contexts, and to examine

and highlight the gap in the existing studies, thus, create a firm foundation for further

research.

1.4 Thesis contributions

The semiconductor manufacturing processes are complex, costly, and extremely

interdisciplinary processes that involve several stages. Failures in the manufacturing

stages may result in faulty products [7]. Consequently, feature extraction and early

fault diagnosis are of great importance which can only be achieved through fully

investigating the production stages and mining significant manufacturing features

involved in the production line. Moreover, early fault diagnosis involves implementing

predictive ML model within the manufacturing process for feature extraction and

classification to improve the manufacturing process and productivity.

The key contributions of this thesis are as follows:

• Reviewing the applications of ML techniques towards semiconductor

manufacturing processes with a special focus on studies reported that utilized

the UCI machine learning repository semiconductor manufacturing process

dataset.

• Proposal of a methodology for ML predictive models’ development that

comprises data cleaning, missing datapoints imputation techniques, most

 5

potential features selection techniques, features normalizing technique,

synthetic data generation techniques, model training and validation techniques,

model development, and model performance evaluation.

• Adoption and comparison of two different missing datapoint imputation

techniques including mean and k-NN imputation techniques.

• Adoption and comparison of two different features selection techniques

including PCA and univariate features selection.

• Adoption and comparison of synthetic data generation techniques including

SMOTE, BSMOTE-SVM and ADASYN for synthetic data generation to

handle the class imbalance distribution of the dataset.

• Implementation and comparison of two different validation techniques for

evaluating the performance of the developed predictive models.

• An extensive comparisons analysis between the results obtained in this thesis

with those similar studies reported in the literature.

• Proposed methodologies and models evaluation on the UCI machine learning

repository SECOM dataset.

1.5 Thesis outline

The remainder of the thesis is organized as bellow:

Firstly, in Chapter 2, the state-of-the-art theories and general information behind each

topic considered in this thesis are presented. Focus is mainly on providing the state-

of-the-art definitions, of Smart Manufacturing; various techniques and types of ML,

alongside, their classifications and applications towards manufacturing systems.

Moreover, the chapter emphasizes the semiconductor manufacturing dataset issues and

descriptions used in developing and validating the developed classifier models.

 6

Secondly, Chapter 3 focuses on presenting some related works done in this field of

study. Moreover, the section is aimed at providing recent advancements of ML

techniques applied to SMSs found in literature from ample perspectives. The literature

studies have been conducted in those areas of interest to further determine and define

the current state-of-the-art knowledge, determine the feasibility of the research

questions, and the research methodologies that have been applied in this thesis.

Thirdly, Chapter 4 presents the research methodology for ML models selection,

development, and evaluation. Moreover, it emphasizes the descriptions of the datasets

used, the methodology for data cleaning, features selection techniques, and synthetic

data generation method. Then, in Chapter 5 discussions on the results obtained from

experimentation performed in this study are presented while highlighting main

contributions of this work. Finally, Chapter 6 presents the conclusions and future

outlooks.

1.6 Summary of the chapter

To conclude, in this chapter a brief background in the advancements within smart

manufacturing is presented followed by problem statements. Moreover, the main

objective, aims of this work, and the thesis contributions are outlined. Finally, thesis

structure is presented.

In the following section, the theories and general information regarding machine

learning, smart manufacturing, and semiconductor manufacturing process are

presented. Similarly, the issues and challenges within smart semiconductor

manufacturing process are drawn. Then, the chapter reports the issues and description

of the semiconductor manufacturing process dataset used in developing and validating

the proposed methodologies and models in this thesis.

 7

Chapter 2

2 BACKGROUND INFORMATION

This section provides the theories and general information regarding learning

algorithms, smart manufacturing, and semiconductor manufacturing process.

Furthermore, the issues and challenges within semiconductor manufacturing process

are described.

2.1 Machine learning (ML)

Lately, ML within the contexts of AI [14] has appeared to be one of the most powerful

tools that can be applied in several applications to develop intelligent predictive

algorithms. It has been developed into a wide field of research over the past decades.

ML can be defined as a technology by which the outcomes can be forecasted based on

a model prepared and trained on past or historical input data and its output behavior

[15]. ML approaches are known to have tremendous advantages, as they have the

ability in handling multivariate, high dimensional data and can extract hidden

relationships within data in complex, dynamic, and chaotic environments [6], [16],

[17]. Selecting the most appropriate, simple and the most efficient ML algorithm could

be of a great concern when building the predictive model. Similarly, when selecting

the algorithm to use for a particular problem, it is significant to know the difference

amongst ML categories and their types as well as their way of training and validation

techniques in order to be able to investigate and prepare the data of choice correctly.

 8

2.1.1 Machine learning types and classifications

ML algorithms are characterised into three different types including supervised,

unsupervised, and reinforcement learning [6], [18], [19]. As stated in [6], different

algorithms can be combined together in order to maximize the classification power.

To add on, some among the ML algorithms are both applicable to unsupervised and

supervised learning. Figure 1 shows the types and categorisation within ML

algorithms. Also, they are categorized into three categories including classification,

regression, and clustering.

Figure 1: Classifications within Machine Learning Techniques.

ML algorithms usually require collecting huge amount of data of the failure status

scenarios and the health conditions scenarios for model training. ML algorithm

development covers the historical dataset selection, dataset preprocessing, model

selection, training and validation, as shown in Figure 2.

Machine Learning

Supervised
Learning

Classification

SVM

Naive Bayes

Nearest
Neighbor

Discriminant
Analysis

Regression

SVR

ANN

Decision Tree

Linear Regression

GLM

GPR

Ensemble
Methods

Unsupervised
Learning

Clustering

Hierarchical

K-medoids, K-
Means, Fuzzy

C-Means

Hidden
Markov

Gaussian
Mixture

Neural
Network

Reinforcement
Learning

Simulated
Annealing

Estimated Value
Functions

Genetic
Algorithms

 9

Figure 2: Main steps involved for ML model development.

2.1.1.1 Multi-layer perceptron (MLP)

MLP network is a supervised learning algorithm and a common type of ANN. MLP is

one of the most common examples of feed-forward neural networks that has been

applied in several practical applications [20], [21] MLP is considered as an efficient

method of capturing non-linear relationships between the model parameters [21]. MLP

consists of three layers as can be seen from Figure 3. These layers include; Input layer,

Hidden layer, and Output layer [22]. MLP parameters including weight and bias values

determine its outputs. Training process of MLP has to do with the creation of

relationships between outputs the corresponding to inputs [23].

Data Collection

• Real, or

• Synthetic

Data Processing

• Cleaning, and

• Preprocessing

Model

• Selection, and

• Development

Model

• Training, and

• Performance
validation

 10

Figure 3: Multi hidden layer MLP [24].

2.1.1.2 Support vector machine (SVM)

SVM is a well-known ML technique which is widely used for both classification and

regression analysis, due to its high accuracy [17], [25], [26]. SVM is defined as a

statistical learning concept with an adaptive computational learning method. SVM

learning algorithm is presented in Figure 4. SVM learning technique employs input

vectors to map nonlinearly into a feature space whose dimension is high [27]–[29].

SVM is a supervised ML technique that can perform pattern recognition, classification,

and regression analysis.

 11

Figure 4: Support vector machine algorithm.

2.1.1.3 Random forest (RF)

RF was developed by Breiman, L. [30]. This is an ensemble learning algorithm made

up of several DT classifiers, and the output category is determined collectively by

these individual trees. When the number of trees in the forest increases, the fallacy in

generalization error for forests converges. There are also important benefits of the RF.

For example, it can manage high-dimensional data without choosing a feature; trees

are independent of each other during the training process, and implementation is fairly

simple; however, the training speed is generally fast and, at the same time, the

generalization functionality is good enough [5]. Random forest algorithm for machine

learning has tree predictions, and based on tree predictions, the RF provides random

forest predictions [31]. The RF model is visualized in Figure 5.

 12

Figure 5: Random forest.

2.1.1.4 Logistic regression (LR)

LR can be used to estimate the categorical variations with a given set of independent

variables [32]. Figure 6 graphically illustrates the working principal of LR.

Figure 6: Linear and logistic regression.

2.1.1.5 Extreme gradient boosted trees (XGBoost)

XGBoost was developed by Chen, T. & Guestrin, C. [33], a scalable tree boosting

system that is widely used by data scientists and provides state-of-the-art results on

 13

many problems. Figure 7 presents the XGBoost model tree. XGB classification trees

can be able to not only reveal the significant of dataset features but to also develop a

robust classification model. XGBoost involves the development of multiple ensemble

of weaker trees (small trees) [2].

Figure 7: XGBoost algorithm tree.

2.1.1.6 Gradient boosting trees (GBT)

Boosting algorithms are methods that repetitively add several simple classification

models known as weak learners to build a complex classification model with higher

accuracy [34][35]. GBM achieves this by using a gradient optimization algorithm to

reduce the loss function or extent of error [36]. The regression tree and the gradient

boosting are combined into decision trees, with appropriate trimming. The algorithm

consists of multiple decision trees, with each tree gradient down by learning from the

n – 1 number of trees [36].

2.1.1.7 Decision tree (DT)

Decision Tree is a network system composed primarily of nodes and branches, and

nodes comprising root nodes and intermediate nodes. The intermediate nodes are used

 14

to represent a feature, and the leaf nodes are used to represent a class label [27]. DT

can be used for feature selection [37]. DT algorithm is presented in Figure 8.

Figure 8: Decision tree algorithm.

DT classifiers have gained considerable popularity in a number of areas, such as

character identification, medical diagnosis, and voice recognition. More notably, the

DT model has the potential to decompose a complicated decision-making mechanism

into a series of simplified decisions by recursively splitting covariate space into

subspaces, thereby offering a solution that is sensitive to interpretation [39].

2.1.1.8 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a generalization of Fisher’s discriminant

method used in statistics, pattern recognition and machine learning to find a linear

combination of features that separates two or more classes of objects or events [40].

The resulting combination may be used as a linear classifier, or, more commonly, for

dimension reduction before classification. LDA is also closely related to principal

component analysis (PCA) and factor analysis in that they both look for linear

combinations of variables which best explain the data according to a defined objective

[41]. Linear Discriminate Analysis (LDA) is one of the robust machine learning

algorithms among the popular classifiers. The LDA projects the feature in the most

discriminative ways for identification process [42]. LDA is a pattern recognition

 15

method providing a classification model based on the combination of variables that

best predicts the category or group to which a given compounds belongs. The basic

theory of LDA is to classify the dependent by dividing an n-dimensional descriptor

space into two regions that are separated by a hyperplane defined by a linear

discriminant function [43]. The problem of finding the optimal be mathematically

represented as the following maximization problem [44].

2.1.1.9 Adaptive boosting (AdaBoost)

AdaBoost, short for "Adaptive Boosting", is one of the ensembles boosting classifiers.

AdaBoost is an iterative ensemble ML technique can that combine several ML

classifiers to increase the classifier prediction accuracy and performance (see Figure

9). Also, it produces a prediction model in the form of an ensemble of weak prediction

models, typically decision trees, with each new model attempting to correct for the

deficiencies in the previous model [45]. It has been widely used in classification and

regression for its capability to improve learning quality of weak learning algorithms

[46][47][48].

Figure 9: AdaBoost [49].

 16

2.1.1.10 Naïve bayes (NB)

Naïve Bayes (NB) is among the simplest classifiers. It is based on the Bayes’ theorem

with independence prediction [42], [50]. It estimates the most likely anticipated class

by analysing the probability of test features and it performs well at measuring the

density a dataset [42]. Mathematically Bayes’ theorem is stated as [51];

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐵)
 (1)

Where, P(A) is the probability of A, P(B) is the probability of B, P(A|B) is the

conditional probability of A given B, and P(B|A) is the conational probability of B

given A. When training naïve Bayes algorithm, the Bayes theorem provides a way of

determining the posterior probability, P(c|x), from P(c), P(x), and P(x|c). Naive Bayes

classifier assume that the effect of the value of a predictor (x) on a given class (c) is

independent of the values of other predictors. This assumption is called class

conditional independence [49].

 𝑃(𝐶|𝑥) =
𝑃(𝑥|𝐶)× 𝑃 (𝐶)

𝑃(𝑥)
 (2)

Where, P(c|x) is the posterior probability of class (target)

given predictor (attribute). P(c) is the prior probability of class. P(x|c) is the

likelihood which is the probability of predictor given class. P(x) is the prior

probability of predictor.

2.2 Smart manufacturing and machine learning

In most of the manufacturing processes, product quality, cost and the time to deliver

are the main key features for enterprises to attain long-term competition. Process

engineers must be able to point out abnormalities in peculiar products features during

the processes of manufacturing [4]. Nowadays, modern technologies in manufacturing

and smart manufacturing systems enable to collect data measurements from the

equipment sensors in real time process control, as it is very hard using traditional

 17

process control techniques to control or monitor hundreds of processing stages within

the manufacturing systems. With such high volume of data collected throughout the

manufacturing processes or systems, effective monitoring and optimal process control

can be carried-out by the process engineers by investigating and analyzing these

datasets so that the monitoring would be much easier.

SMSs are defined as fully-integrated systems and as collaborative manufacturing

systems that can respond in real-time to meet customers need, changing demands, and

conditions in the factory and supply network [52]. SMSs aim at integrating big data,

Industrial Internet of Things (IIoT), advanced analytics, and high-performance

computing, into conventional manufacturing processes and systems to produce highly

customizable products at very low cost and with higher quality, [53]. Moreover, the

synthesis of those advanced technologies and the manufacturing capabilities can

increase the he agility, productivity, and sustainability of SMSs [54]. The rapid

developing AI technologies, ML and DL in particular, are one of the promising tools

that further boost these SMSs industries [55]. In the environment of Internet of Things

(IoT), Industry 4.0, Big Data, cloud computing, and other advanced technology

provides great support in the growth of intelligent manufacturing [56]. Several

algorithms and techniques have been developed such as ML algorithms to learn

valuable information from the data produced in manufacturing sectors and to make the

manufacturing smarter [57].

2.2.1 Semiconductor manufacturing process

With no intention of completeness, this section describes the fabrication process of

semiconductor wafer. Interested reader is directed to [58] and a PhD thesis [59] for a

detailed description.

 18

The semiconductor industry is arguably at the forefront of the most cost intensive

technological advanced industries. The pervasive nature of the semiconductor devices

implies that they are widely used in every segment of our lives. With ever increasing

demand of semiconductor devices, addressing production related problems and

increasing output in the industry is getting more complex [60]. Over the past decades,

developments in semiconductor technology have made electronic devices smaller,

faster, cheaper, reliable and more advanced to handle huge amount of data with higher

degree of complexity[61]. Semiconductor is often referred to as integrated

circuit/microchip that is made from silicon/germanium. Semiconductor is a basic

building blocks that is used to make electronic devices [61]. Figure 10 shows a typical

silicon semiconductor wafer.

Figure 10: A typical silicon semiconductor wafer [62]

In the manufacturing of semiconductors, it entails numerous simultaneous processes

involving several inter-operating machineries [63], [64]. Typically, more than 500-

steps are required to fabricate each semiconductor wafer [65]. The sequence of

 19

semiconductor manufacturing process involves the following main steps (Figure 11):

the production of silicon wafers, integrated circuits fabrication onto the silicon wafers,

assembly by putting the integrated circuit inside a package to form a ready-to-use

product, and testing of the finished products/yield [4], [8], [12]. Semiconductor wafer

fabrication process involves numerous complicated processes, such as oxidation,

photolithography, cleaning, etching, and planarization, many among these processes

are executed repeatedly. These basic concepts of semiconductor wafer fabrication are

shown and explained in Figure 12.

Figure 11: Overview of the main steps involved in the SECOM process [61].

 20

Figure 12: Overview of the detailed and explanation of SECOM fabrication process,

adapted from [66].

2.2.1.1 SECOM dataset description

Equipment embedded with production sensors used in semiconductor fabrication

process generates immense amounts of data in real-time. The amount of generated data

is so overwhelming such that it makes preemptive detection of production faults is

difficult to achieve [60]. The SECOM dataset analyzed in this study is gotten from the

UCI machine learning repository [67]. The data has been analyzed with the

methodology proposed in the previous section.

Semiconductor Manufacturing (SECOM) dataset is a public dataset [68] that is

acquired from semiconductor manufacturing process. Hence, it has been used as a

benchmarking dataset for assessing predictive ML models in the context of smart

Materials Bonding & testing

Packaging

Final testing

Design

Photomasking (c) Photolithography (d) Etching

Wafer

(a) Thin film

processing
(b) Chemical &

mechanical polishing

(g) Metallization (f) Oxidation & Heat

treatment

(e) Diffusion & ion

implantation

Cleanroom production plant

(a): Using a physical of chemical means to perform deposition on thin film.

(b): the principle of polishing to flatten the even contours on the wafers.

(c): using photoresist for exposure and development
(d): Using chemical or physical means to remove materials from wafer surface not protected by photoresist

(e): to use physical phenomena of heat diffusion to change the semiconductor’s electrical conductivity, then ionize the

surface substance

(f): Reducing the damage that can occur during the ion implantation stage.

(g): Connecting metals

 21

manufacturing [2]. The data contains both semiconductor quality and manufacturing

operations datasets. The dataset represents a selection of process related data taken

from a production line. Within the production line there are several major checks

points for in house line testing to ensure product functionality [64].

The dataset contains 591 features, among these attributes/features there is one response

attribute that classifies the product as if it pass or fail the quality test. The data is

composed of 1567 instances, each instance is recorded after the product has been tested

as if it pass or fail the quality test using 590-sensor measurements, i.e., 1567 x 591

matrix. Amongst these 1567 instances, 104 where been classified as ‘fail class’

encoded as 1, whereas the rest have been classified as ‘pass class’ encoded as -1, see

Table 1 and Figure 13A.

Table 1: SECOM dataset description.

Raw data

Number of Features 590

Number of classes (pass and fail) 2

Number of ‘pass’ instances 1463

Number of ‘fail’ instances 104

Total number of instances 1567

The following insights have been drawn after analyzing the SECOM dataset:

• The class imbalance distribution among the two classes with a ratio of 1:14

(failed to passed classes) is of a great concern. Because, the imbalance is a big

issue when it comes to classification algorithms as some algorithms cannot

handle such issue, thus, this issue of data imbalance has to be dealt with in

order to develop a model that can classify the two classes without miss

classifying the minority class as the majority class.

 22

• Feature selection has to be carried out, because some of the recorded features

might not be useful in developing the predictive model as some recorded no

values and some have unique values.

• Approximately, 6.64% of the dataset are missing (see Figure 13B, the yellow

shaded parts). We could say this missingness in the dataset is unknown. It could

be due to the sensors or they were never measured. However, this missingness

has to be dealt with using appropriate methods as some of the algorithms do

not efficiently work with missing values.

Figure 13: SECOM dataset description: (A) Instances distribution within the two

classes. (B) Missing vs observed datapoint values.

2.3 Summary of the chapter

This chapter reports the general background info on machine learning, smart

manufacturing and semiconductor manufacturing processes. The definition of

machine learning, its types and the categories are discussed. Moreover, issues and

challenges in the semiconductor manufacturing processes are detailed. Lastly, the

chapter reported the issues and description of the semiconductor manufacturing

(A) (B)

 23

process dataset used in developing and validating the proposed methodologies and

models in this thesis.

The next chapter reports the recent advancements in smart manufacturing with a main

focus on semiconductor manufacturing processes. In the chapter, applications of

numerous different techniques of machine learning within smart semiconductor

manufacturing processes are reported and discussed. The chapter categorized the ML

algorithms based on the ML technique considered, data preprocessing technique

considered, feature selection technique considered, synthetic data generation

technique considered, the model validation technique considered, model evaluation

metrics considered, and the respective study key findings. The literature studies have

been conducted in those areas of interest to further determine and define the current

state-of-the-art knowledge, determine the feasibility of the research questions, and the

research methodologies that have been applied in this thesis.

 24

Chapter 3

3 LITERATURE REVIEW

From a comprehensive perspective, this thesis pinpointed and categorized the ML

algorithms based on the ML technique considered, data preprocessing technique

considered, feature selection technique considered, synthetic data generation

technique considered, the model validation technique considered, model evaluation

metrics considered, and the respective study key findings.

3.1 ML techniques applied to SMSs

SMSs, makes available of operational performance data that was previously not

available for performance management. At one time, such data when collected, was

used mostly for production control, or not collected at all [69]. Machine learning

techniques, as emerging techniques, are been explored for a broad range of SMSs

recently. They are been investigated widely in different stages of manufacturing

including concept, design, operation, production, evolution, and sustainment [70] as

shown in Figure 14. In this work, we have investigated the application of ML

techniques applied to ‘materials, processing and manufacturing’.

Many manufacturing problems belong to the class of classification problems where

the industrial domain experts are requested to assign a class to an object or dataset

according to the state of the parameters of that object. Based on the experience made

in this field, faults happen quite often in the process of production of any kind. Not

being able to detect and correct those faults means increase of production costs and it

 25

could even be a reason for production delay or complete standstill. These reasons led

to in-creased interest of industry for machine learning techniques as a most efficient

way to develop an expert knowledge-based system.

Figure 14: Application scenarios of ML applied to SMS [70].

In [71], data mining techniques and their applications to manufacturing are

investigated. The review covers the different categories of production processes,

operations, fault detection, maintenance, decision sup-port, and product quality

improvement [70]. Application schemes of ML in manufacturing are identified and

summarized in [72], where they introduce the data quality problem in the context of

supply chain management (SCM) and propose methods for monitoring and controlling

data quality. Evolution and future of manufacturing are reviewed in [73], where in the

study they highlighted the significance of data modelling and analysis in

manufacturing intelligence. A study on big data analytics modeling in metal cutting

industry has been reported in [74]. Major key technologies, overall concept of Smart

Manufacturing, the key system structure, and each key technology were investigated

 26

and reported in [75]. Moreover, the work identified and predicted the trends and future

of Smart Manufacturing by conducting various analyses on the application areas and

technology development levels. The advancements and development of machine

learning in smart manufacturing is reviewed in [76].A comparative study was reported

by [77] on ML algorithms for smart manufacturing (SM) of tool wear prediction using

RF. The study introduced a RF-based prognostic technique for prediction of a tool

wear, then the performance of the RF algorithms with feed-forward back propagation

(FFBP) were compared to the SVR and ANN algorithms. Results from the conducted

experiment have shown that, RF-algorithms outperformed SVR and FFBP ANNs with

single-hidden layer in tool wear prediction. The algorithms were evaluated with

experimental dataset collected from 315 milling tests, R-squared, training time, and

mean squared error were measures of the performance.

[78] reported a comprehensive review of machine learning techniques used in

manufacturing diagnosis. The study considered 20 articles published within the range

of 2007 to 2017. Moreover, they only focused on the applications of four machine

learning techniques applied to manufacturing diagnosis namely; ANN, Bayesian

networks, SVM, and hidden Markov model.

Anomaly detection algorithm was proposed by [79] that can be used successfully to

detect defects in nanofibrous materials. Conducted experiments on a sizable dataset

of scanning electron microscope (SEM) images confirmed that, effectively tiny defects

can be detected by the proposed algorithm, similarly, in a reasonable time the

algorithm can processes images. Therefore, the proposed algorithm can be applied in

SMS for nanofibrous material production, to control the quality of the produced

material by spot checks. These checks allow to adjust the production process

 27

parameters and, when regularly performed, to raise alerts when the production quality

falls below a desired standard, yielding both economic and environmental advantages.

The proposed method has been validated successfully over 45 images acquired from

samples produced by a prototype electrospinning machine [80] proposed a framework

for prognostics and health management applications toward SMS. In the study a

detailed survey was carried out to gather the existing studies that deal with

maintenance strategies and system failures in the field of SMS. Multi-agent

reinforcement learning, and Deep Q-network (DQN) a new reinforcement-learning

technique, have been proposed by [81] which can accommodate the characteristics of

SM marketplace.

A comparative study was reported by [82] on Deep Learning (DL) method of H20 ML

framework and another ML methods from Microsoft Azure where Letter Recognition

Data Set from UCI Machine Learning Repository was utilized. The aim was to present

the possibilities of DL algorithms and their applications in industrial environment.

Moreover, [83] reported a comprehensive review survey in SM of commonly used DL

algorithms and discussed their applications in that area. The evolvement of DL

technologies and their advantages over conventional ML algorithms was discussed.

Consequently, computational techniques based on DL are presented, particularly those

that aim to improve the system performance in SM sectors. They concluded that DL

provides advanced analytics and offers great potentials to SM in the age of big data.

Cost-sensitive CNN model was proposed by [84] for CCPR problem. The architecture

of the proposed model was tuned for several abnormal pattern recognition problems.

The model was compared with the standard/traditional and existing CNN models and

 28

discover the robustness of cost-sensitive CNN for highly-imbalanced problem.

Experimental studies were conducted using both real-world and simulated datasets.

A cost-effective SVM-based model has been developed by [85] for automated QMC

system and was installed at the door-trim manufacturing process using the kiosk. A

case study was performed and shows that the proposed methodology using the cost-

effective SVM-based model can efficiently evaluate the real-time product quality with

minimum number of defective parts by type-II errors. The proposed model can be

applied as a complementary or an alternative tool for the conventional/semi-

automated/manual QMC systems.

The effectiveness of application of the Statistical Learning Theory (SLT) to MS is

illustrated by aiming to develop a predictive model for quality forecasting of products

on an assembly line [86]. In their work they targeted to deliver a summary of the pros

and cons of the SLT framework. The proposed SVM with a linear formulation was

applied to a case study on an assembly line, where the model functions to provide a

binary value, in the smallest-time possible, which then gives an alert if the final

product fails to reach the required quality constraints. They concluded that SLT model

has proven to be an effective method in several other applications such as density

estimation, regression, multi-class classification, etc. Similarly, the proposed SLT

model can be applied to other settings of MS.

An extensive review on ML applications in manufacturing has been reported by [60].

Where in the study the main focused was on reviewing ML applications towards

SECOM production processes and assembly lines. In their paper relevant studies

 29

describing the applications of machine learning techniques in these fields of

manufacturing have been studied and reported.

3.1.1 ML techniques applied to the semiconductor manufacturing process dataset

Recently, modern technology in SECOM allows real time process control with the

measured data gained from the equipment sensors installed in the production line. This

recorded data of the entire manufacturing process, effective monitoring and optimal

process control by investigating and analyzing these data are difficult work for process

engineers. Traditional process control methodology like univariate and multivariate

control charts is no longer an efficient method to control manufacturing systems with

hundreds of processing stages. Instead, automatic and advanced process control

method are required, for instance machine learning and deep learning techniques.

SECOM dataset is one of the most applied datasets in the context of manufacturing

systems, as it has been applied for the purpose of benchmarking the machine learning

algorithms developed in several fields of studies. Similarly, in this work, this dataset

is used as a benchmarking data in validating the performance of our proposed models.

A new data analytics frameworks model has been proposed in [2] for faults prediction

in a large-scale manufacturing process, and SECOM dataset was used in validating the

model. Where in their work the main focus is mainly on the approaches for identifying

the important features from the dataset, feature selection, and an updated framework

methodology and description. Two feature selection methods were used in the study

including embedded and wrapper methods. XGBoost algorithm for prediction was

developed and its performance has been compared with a RF-tree-based algorithm.

The framework developed was able to effectively recognized the key features

associated with product failure in each production line data.

 30

An experimental study has been proposed [87] that evaluates different approaches

including different levels for data imputation, data imbalance, feature selection, and

classification techniques for the SECOM dataset. Moreover, the study proposed a

novel process for data imputation that were inspired by image in-painting. Based on

the obtained results, they were able to identify the suitable tools and stages for

classifying the SECOM dataset. Results show that LR outperform the other

classification algorithms and “In-painting KNN-Imputation” for data imputation, for

synthetic data generation SMOTE was found to be the best and estimated false

discovery rate for feature selection. Munirathinam and Ramadoss [3] proposed ML

models including ANN, SVM, LR, NB, DT, and k-NN to automatically develop a

predictive model that can predict equipment failures during SECOM process. Also,

they constructed a decision model that helps in detecting equipment faults for

maintaining higher process yields in manufacturing. Four feature selection techniques

were considered including variable selection, correlation analysis, PCA, and average

Diff method.

Kerdprasop and Kerdprasop [4] proposed models including k-NN, LR, NB, and DT

that can automatically detect faults during wafer fabrication process. PCA, Gain ratio,

and MeanDiff feature selection techniques were compared. Rare Case Boosting

oversampling technique was used to handle the issue of imbalance in the dataset. The

developed models were evaluated using TPR, TNR, precision, and F1 score metrics of

performance. Experimental results show that right features selection and rare class

oversampling enhance the model performance accuracy. They added, Oversampling

technique applied to DT increase the performance of the model in terms of TPR.

 31

Lee et al. [65] proposed critical process steps selection for SECOM process. Where in

their work three data mining techniques were investigated under three missing value

rates deletion. They applied meanDiff technique for feature selection and 75% dataset

for training with the remaining 25 for testing the model. DR, LR, k-NN, and SVM

were the considered algorithms, in where they have been evaluated across five metrics

of performance including accuracy, precision, true positive rate (TPR), true negative

rate (TNR), and F1_score.

Performance of six machine learning models including k-NN, RF, LR, DT, MLP, and

AdaBoost is compared [88]. In the study, the algorithms were trained using dataset

with and without dimensionality reduction, where three different feature selection

techniques are considered including PCA, LDA, and SELECTFDR. They used

SMOTE to address the issue of class imbalance in the dataset. Mean cross validation

(CV) was used in training the algorithms with accuracy and ROC curve as the measure

of performance. Based on their experimental results obtained, LR gave best

performance with features selected using PCA.

Anghel et al. [89] proposed ML and DL techniques for error prediction in

manufacturing process. Where MARS and SVM feature selection techniques are

analyzed. The work developed and compares the performance of MARS + GBT and

SVM + NN models. In comparison, SVM + NN deep learning technique outperforms

MARS + GBT ML technique

A priori algorithm has been applied to SECOM dataset for mining the relations

between operation parameters and quality outcomes [90]. In the data preprocessing

stage, redundant features were discarded, PCA was used for important features

 32

selection, a boosting technique was considered in sampling the minority class of the

dataset. Some number of models are trained using 3:1 data split and their performance

was evaluated using five metrics of performance.

Moldovan et al. [91] applied PCA, MARS and Boruta feature selection techniques

while developing three machine learning models including RF, LR and GBT for fault

detection and diagnosis. Several dataset cleaning techniques were considered

involving removal of features with at least 55% missing values rates, missing values

replacement with mean; mean heuristic; nearest neighbor heuristic; and numerical

value. The performance of the models is analyzed under; unsampled dataset,

oversampled and under sampled using SMOTE. k-Fold CV technique was used while

training the models and five metrics of performance were considered to score the

models. ANN, RF, LR, and DT prediction classification models are developed using

30% dataset holdout for testing [92]. Performance of SMOTE and ransom under-

sampling techniques was compared using features selected from PCA. the models are

evaluated using several metrics of performance.

Ko and Fujita [93] proposed an evidential analytics to disclose buried information in

big data samples where UCI SECOM dataset is used as a case study. A framework

model is proposed for model search using machine learning [94]. The proposed

framework model was evaluated using two different datasets including SECOM

dataset. An MLP model is proposed [95] that can be used to classify products as faulty

or nonfaulty, the nodes of the algorithm were determined using Chicken Swarm

Optimization (CSP) algorithm. Two different datasets were considered including

SECOM and SETFI datasets to validate the proposed MLP+CSP model. Kim et al.

[96] proposed a particle swarm optimization–deep belief network (PSO-DBN) for

 33

minority classification where SECOM dataset was used in validating the model. Two

feature selection techniques including standard deviation and Euclidean distance were

used for selecting the most influential features from the dataset.

Table 2 gives a comprehensive summary of the most recent studies applied on the

SECOM dataset. While reviewing the literature it has been pointed out that, SECOM

dataset is one of the most widely explored public datasets in manufacturing domain,

as it has been used in benchmarking several studies in the literature. Therefore, in this

work, the aforementioned dataset has been implemented and trained ML algorithms

for faults diagnosis in semiconductor manufacturing process.

3.2 Summary of the chapter

This chapter reports the literature review on the applications of machine learning

techniques for smart semiconductor manufacturing processes. A special attention was

on reviewing the recent advancements of machine learning techniques for

semiconductor manufacturing processes, in where the reviewed studies are classified

and reported in Table 2. The studies are categorized based on on the ML technique

considered, data preprocessing technique considered, feature selection technique

considered, synthetic data generation technique considered, the model validation

technique considered, model evaluation metrics considered, and the respective study

key findings. Next chapter presents the research methodology.

 34

Table 2: Summary of the recent ML algorithms applied to SECOM dataset.
ML Algorithms Data Cleaning/Preprocessing Feature Selection Sampling Technique Validation

Technique

Metrics of

Evaluation

Key Findings Reference

k-NN, RF, LR,

DT, MLP and

AdaBoost

• With and without

dimensionality reduction

• PCA

• LDA

• SELECTFDR

• SMOTE • mean CV • ROC curve

• accuracy

• RF performs poorly due to the data

imbalance

• LR + PCA performs better

• LR + SELECTFDR is best suited for the

dataset

• Imbalance causes the models to deliver

worse performance

• SMOTE helps in RF performance

enhancement

• k-NN gave the highest mean-CV score

[88]

DT, LR, k-NN,

SVM

EM imputation.

3 σ rule

• 80%,

• 50%, and

• 20% deletion of the

dataset

• MeanDiff • SMOTE • 75|25 split • accuracy

• precision

• TPR

• FPR

• f-measure

• proposed critical process steps selection for

SECOM

• Implemented three data mining techniques

• Investigated the SECOM dataset under

three missing value rates

• proposed methods show good classification

performance

[65]

GBT and NN • Removal of features with

0 standard deviation

• Features with at least

55% missing values are

removed

• MARS

• SVM

• - • 80|20 split • Accuracy

• TPR

• FPR

• Precision

• F - measure

• Proposed ML and DL techniques for error

prediction in manufacturing process

• MARS and SVM features selection

techniques are analyzed

• MARS + GBT and SVM + NN models are

developed

• In comparison, SVM + NN deep learning

technique outperforms MARS + GBT ML

technique

[89]

Rough Set, SVM,

NB, ID3, CART,

C5.0, and A Priori

• Remove redundant

features

• PCA • Boosting • 3:1 split • Accuracy

• TPR

• Geometric

mean

• Balanced

error rate

• F1_score

• Introduced quality prediction modeling

framework for MMS environment

• A priori algorithm has been applied to

SECOM dataset for mining the relations

between operation parameters and quality

outcomes

• The methodology can help manufacturers to

obtain real time quality info of

manufacturing lines

• The framework can help in manufacturing

processes optimization

[90]

 35

SVM, KNN, RF

and LR

• Data pruning

• In-painting k-NN-

imputation

• UFS

• selecting from a model

• RFE

• PCA

• SMOTE • k-Fold CV • AUC

• TNR

• Proposed in-painting k-NN imputation

• Analyzed feature importance from the best

methodology perspective

• LR outperforms all other algorithms

• SMOTE was found to be the best for data

generation

• SELECTFDR features selection found to be

the best

• Proposed in-painting imputation technique

shows good performance

[87]

RF, LR, and GBT Features with at least 55%

missing values are removed.

Missing values replacement

with:

• mean

• mean heuristic

• nearest neighbor

heuristic

• numerical value

• Boruta

• MARS

• PCA

• SMOTE;

under-sampling and

oversampling

• Unsampled

• k-Fold CV • false positive

rate

• accuracy

• precision

• recall

• f-measure

• applied MARS and Boruta features

selection techniques

• results show that, best model performance

was obtained when the majority class are

under-sampled; under-sampled + Boruta +

RF

• better precision is obtained with Boruta and

MARS

• better accuracy is obtained with unsampled

data using RF and LR

[91]

ANN, RF, LR and

DT

Missing values removal. • PCA • SMOTE

• RUS (ransom

under-sampling)

• 70|30 split • accuracy

• precision

• sensitivity

• specificity

• f-measure

• applied SMOTE for data imbalance solving

• proposed methodology manages to solve

the imbalance between the two classes

[92]

RF and XGBoost • assign missing instances

with independent group

missing value replacement

with a unique value

• wrapper

• embedded

• SMOTE • k-Fold CV • accuracy

• sensitivity

• specificity

• f-measure

• proposed a new data analytics framework

for faults prediction

• focused on features selection and important

features identification

• XGBoost performance was compared with

RF’s

• Proposed framework identified influential

features successfully

[2]

ANN, SVM, LR,

NB, DT and KNN

Cleansing procedures to

discard missing values.

• variable selection

• correlation analysis

• PCA

• Average Diff method

• - • k-Fold CV • TPR

• FPR

• precision

• f-measure

• MCC, ROC-

area, PRC,

PRC-area

• recall

• proposed ML techniques to automatically

develop a predictive model that can predict

equipment failures during SECOM process

• constructed a decision model that helps in

detecting equipment faults for maintaining

higher process yields in manufacturing

[3]

k-NN, LR, NB,

and DT

• Features with single

values are removed

• PCA

• Gain ratio

• MeanDiff

• Rare Case

Boosting:

oversampling

• k-Fold CV • TPR

• FPR

• Precision

• Proposed models that can automatically

detect faults during wafer fabrication

process

[4]

 36

• Features with no value

entry are removed

• Features with at least

55% missing values are

removed

• • F1_score • Proposed methods of features selection and

oversampling

• Results show that right features selection

and rare class oversampling enhance the

model performance accuracy

• Developed NB model can classify the fault

cases with a high rate, similarly false alarm

rate

• Oversampling technique applied to DT

increase the performance of the model in

terms of TPR.

PCA: Principal component analysis; SELECTFDR: False discovery rate; SMOTE: Synthetic minority oversampling technique; CV: Cross validation; MARS: Multivariate adaptive regression spline; UFS: Univariate

feature selection; RFE: recursive feature elimination; EM: expectation Maximization;

 37

Chapter 4

4 RESEARCH METHODOLOGY

This section describes the thesis methodology and the stages that were followed in

detail for the prediction model development, and how each amongst these stages was

carried-out explicitly. As seen in Chapter 2, literature studies have been carried-out in

the areas of interest to determine and define the current state-of-the-art knowledge,

determine the feasibility of the research questions and the research methodologies that

have been applied in this thesis. This chapter comprises of three sections. First, section

4.1 presents the methodology for machine learning techniques development for

classification. Then, section 4.2 presents the process of model selection, the followed

model training and validation techniques. Finally, the concluding remarks of this

chapter are reported in section 4.3.

4.1 ML techniques development for classification

The proposed methodology for classification model’s development in this thesis is

summarized. The following summarizes the sequence of the methodology followed:

A. Data identification and collection.

B. Data preprocessing stage; this is the step that clean and process the data for

model training by performing:

a) Data cleaning

b) Feature selection

c) Feature scaling

C. Data sampling: oversampling the data if it’s imbalanced or highly imbalanced.

 38

D. Model selection and training

E. Model validation and performance metrics:

a) Confusion metrics.

b) Accuracy

c) Recall

d) Precision

e) Specificity

f) F1_score

4.1.1 Proposed methodology

All the steps in model development are implemented in Google Colab Environment

using Python Programming Language. Figure 15 shows the methodology framework

followed while training the predictive models for SECOM dataset classifier models

development.

The classification ML algorithms as mentioned in the previous subsection, namely;

MLP (ANN), XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost and GBT have been

selected, trained and validated, and their performance metrics have been evaluated and

compared. Moreover, while training the models, two approaches have been considered

as follows:

1. model training with training/testing data split (80|20 split) validation approach.

This technique of model training has been applied in [89], and [90].

2. model training with k-Fold cross validation approach. This methodology of

validation has been applied in [2], [3], [4], [87] and [91].

 39

Each of the approaches mentioned above has been considered in order to explore the

applicability of the two methods, and also to discover which among the algorithms

performs better against the two methods.

Firstly, for the model training, the dataset has been divided into training and testing

sets, 80% for training and 20% for testing as the first validation technique. Throughout

this work, all the algorithms considered are trained with the same ratio of data split.

Then, the models are trained using CV as the second validation technique. Six among

the trained models are trained with 7-Fold, namely, MLP, NB, LDA, RF, AdaBoost

and GBT. Two are trained with 3-Fold including LR and SVC. XGBoost is trained

with 13-Fold, and DT with 10-Fold. For each model, the different number of k-Fold is

selected because the model performs better with the selected number of k.

 40

Figure 15: Overall framework of the proposed methodology for predictive ML development.

 41

4.1.2 Dataset

As this work aims at further exploring the machine learning technologies applicable

to smart manufacturing domains. It is important to find the suitable and available

dataset to explore. While reviewing the literature, it has been pointed out that SECOM

dataset is one of the most widely explored public datasets in manufacturing process,

as it has been used in benchmarking several studies in the literature. Table 2

summarizes some of these studies that have utilized UCI SECOM dataset in

benchmarking their proposed models. Therefore, in this work, the SECOOM dataset

has been used to validate the proposed methodologies and to train ten ML algorithms

for faults diagnosis in semiconductor manufacturing process.

4.1.3 Dataset preprocessing

Dataset obtained from manufacturing domain can contain little or large amount of

redundant information that, if fed to the predictive ML model, can affect the

performance of the model and result in an unreliable result [2]. Similarly, it is of great

importance finding a suitable way on how to process the data or the dataset at hand

(data preprocessing) when developing a ML model. Thus, the ML predictive model

can be developed with that preprocessed data and evaluated.

4.1.3.1 Data cleaning

Data cleaning helps in handling data features like outliers and missing values so that a

faultlessly organized dataset could be obtained. The following steps were followed in

this work for the imbalanced datasets cleaning:

I. all features with empty/no values have been removed. Considered in [3].

II. all features with unique values have been removed. This method has been

implemented in [2] and [4].

 42

III. all features with less than half of their values have been removed. Applied in

[4] and [89].

4.1.3.2 Data imputation

After data cleaning, there were still some number of cells with missing data points,

thus, the cells with missing values had to be replaced and needed to be processed for

ML development. From the literature there are several different techniques proposed

that can be implemented to handle such cases of missingness. Removal of any feature

with a missing value is one of the techniques that could be used and as proposed in

some of the literatures. However, this approach will for certain remove some features

from the dataset that may have the highest impact on the predictive model performance

outcome. As a result, the efficiency of the model may be rendered. Similarly,

substitution of the missing values with ‘mean’ is one of the proposed approaches for

data imputation [87]. In this thesis, we adopted and applied mean and k-NN data

imputation techniques, as they have been implemented for the missing values

substitution.

4.1.3.2.1 Mean data imputation

Mean imputation is one of the most often used method for missing values imputation

[97]. For a given instance or attribute, the method uses mean to replace the missing

datapoint. This technique has been considered in [91].

4.1.3.2.2 k-NN data imputation

k-NN imputation [97]–[99] uses k-NN algorithm to estimate and substitute the

required missing attribute. The importance of k-NN imputation include the creation of

predictive model for each attribute with missing datapoints is not required, k-NN can

handle instances with several missing datapoints, and it can also predict both continues

 43

and discrete attributes. Moreover, k-NN algorithm can be used to get weighted vectors

for attributes in a dataset [99].

4.1.3.3 Feature scaling or normalizing

Feature scaling is a method that can be applied to dataset in order to normalize it. The

main goal of normalizing the data with the help of feature scaling is to transform the

continuous input and output data to a linear scale values that ranges from -1 to 1 or 0

to 1. -1 to 1 scaling method is considered in this work. Feature scaling help the model

to easily learn the important features from the data. This means that all the features are

normalized to the values ranging from -1 to 1. The standard scaling using mean and

standard deviation is implemented in this work. The standard score of a sample feature

is calculated using equation:

 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋− 𝑋𝑚𝑒𝑎𝑛

𝑋𝑠𝑡𝑑
 (3)

where x is the feature data to be normalized, xmean is the mean of the feature data or 0

if the data has no mean value, and xstd is the standard deviation of the training feature

data sample or 1 if it has no standard deviation.

4.1.3.4 Feature selection

Selection of the most crucial features is what helps the most when developing ML

predictive model. Therefore, it is important to use the most appropriate and best

method in selecting the features for model development as those features influence the

performance of the model having no features with missing data points as they have

been filled from the data imputation using ‘mean’ substitution of the feature columns.

The lack of missingness in the dataset allows us to proceed with feature selection.

Feature selection techniques applied in this work is Principal Component Analysis and

Univariate feature selection (SELECTFDR).

 44

4.1.3.4.1 Principal component analysis (PCA)

PCA is a multivariate technique that analyzes a data table in which observations are

described by several inter-correlated quantitative dependent variables. Its goal is to

extract the important information from the table, to represent it as a set of new

orthogonal variables called principal components, and to display the pattern of

similarity of the observations and of the variables as points in maps [100].

Mathematically, PCA relies upon the singular value decomposition of rectangular and

the eigen-decomposition of positive semi-definite matrices. Similarly, the technique

lessens the dimension of dataset by calculating the covariance and then perform eigen

value decomposition of the covariance matrix. In this work, the method of selecting

all the features with eigen values of at least greater than 1 is applied. This technique

has been applied in [3], [4], [88], [90], [87], [91] and [92].

4.1.3.4.2 Univariate feature selection (UFS)

This feature selection technique selects the best features with the highest score after

performing univariate statistical tests on the input dataset [87]. In this thesis the

scoring function used is estimated false discovery rate (SELECTFDR). This technique

is considered because it has been applied in [87] and has shown promising results. In

fact, it performed better than the other UFS selection techniques they considered in

their work.

4.1.3.5 Synthetic data generation techniques (SDGT)

In a dataset if there is any class or group with small or very large number of instances

compared to another class, that data is referred to as imbalanced dataset, and it is a

common problem in real data and data mining [65]. Most classification algorithms

provide poor metrics of performance when trained with an imbalanced dataset.

 45

Synthetic sampling data generation methods are applied in a wide range of studies to

solve such type of problem.

When a dataset has passed preprocessing - the stages of cleaning, data points

imputation (if it has missing values) and feature scaling and selection, then, if there is

an imbalance or a high imbalance between the desired output classes, the synthetic

data sampling generation method can be applied in order to generate synthetic data to

balance the imbalance within the two classes, so that the model could learn better from

the dataset.

Sampling method help in creating a synthetic data by oversampling the minority of the

desired output class. Synthetic Minority Oversampling Technique (SMOTE) [101] and

SMOTE with Selective Synthetic Sampling Generation are among the techniques used

in generating synthetic data for imbalanced classification problems. SMOTE has been

considered in several studies including [2], [65], [87], [88], [91] and [92]. To the best

of our knowledge, no one has reported a study on BSMOTE-SVM and ADASYN

using SECOM dataset.

Implementation of the aforementioned sampling techniques was applied to balance the

minority class, and to ensure that the minority class is as sufficient as the majority

class for the classification model to learn from, and to be able to classify the two

classes easily without misclassifying the minority class.

4.1.3.5.1 Synthetic minority oversampling technique (SMOTE)

SMOTE [101] uses k-NN to create new instances in order to maintain the balance

between the two classes [96]. Based upon the amount of data required to be over-

sampled randomly, neighbors from the k nearest neighbors are selected [101]. The

class with minority instances is oversampled by taking or considering each class in the

 46

minority sample and introducing synthetic examples along the line segments joining

any or all of the k minority class nearest neighbors. Figure 16 illustrates the procedure

involved in SMOTE data generation. SMOTE data generation consists of the

following steps:

a. A sample from the minority class will be selected at random

b. k number of nearest neighbors near to that selected minority sample will be

selected. Usually, k is set at 5.

c. Generation of the synthetic samples between the selected minority sample and

that 5 nearest neighbors’ samples. These steps will be repeated till the number

of minority samples equal to that of the majority samples.

Creating the synthetic data by oversampling the minority class helps in making the

minority class equal to the majority class, so that any classification algorithm that may

have difficulty handling the imbalanced class and learning from the data could easily

and efficiently classify the two classes. SMOTE increases the amount of data without

altering the variation or information of the data, or feeding new information or

variation to the learning model [102].

4.1.3.5.2 Borderline-SMOTE SVM (BSMOTE-SVM)

BSMOTE-SVM [103] uses a decision boundary to generate the synthetic data between

the two classes, unlike SMOTE that creates synthetic data at random. Also, BSMOTE-

SVM uses ensemble SVM algorithm to identify the misclassification and generate

more samples in the minority class. The technique uses SVMs to generate the samples

near the decision boundary. As shown in Figure 17, samples near decision boundary

can be roughly characterized from support hyperplane learned by the first SVM [103].

The generated synthetic minority sample tend to correct the skewness distribution

 47

within the two class samples finely, as the decision boundary skew towards the

minority. Simply put, it gives more attention to where the dataset is separated.

Figure 16: Illustration of SMOTE data generation technique [65].

Figure 17: Illustration of BSMOTE-SVM data generation technique [103].

4.1.3.5.3 Adaptive synthetic oversampling (ADASYN)

ADASYN [104] is an extension of SMOTE that generates synthetic data samples in

the minority class according to their weighted difference distribution. In regard to that,

 48

ADASYN focuses more on the minority class samples that are harder to learn than

those minority samples that are easier to learn. It helps in reducing the learning bias

introduced by the imbalance amongst the classes, and also it adaptively shifts the

decision boundary to focus on those minority samples that are difficult to learn.

4.2 Predictive model selection, training and validation

The selected algorithms to be trained are listed in the previous section (section 4.1.1).

These classifiers are selected, trained and validated in the Google Colab Environment

using Python Programming Language.

The technique for validating the selected classifiers used in this work is Cross

validation (CV) technique. Among the methods of cross validation, the one used in

this thesis is k-Fold cross validation [105] as it is the most commonly used method and

it is used for validating most of the classifier models. The main objective of applying

CV is to let the model learn from all the training data by dividing the dataset into a

number of k-subsets as k-Fold subsets. One subset is used for validation and the

remaining k-1 subsets are used in training the model [106], [107]. Moreover, CV helps

in increasing the performance of classifiers.

Note: Sometimes, k-Fold method is used in a situation where the training dataset

seems to be small or the number of attributes is insufficient for the classifier model to

learn from. Thus, k-Fold can be applied to divide the dataset into k number of subsets

and the model will take one subset from the k-number of subsets with which to test

itself after training from the rest of (k-1)-subsets. It will keep doing so until it train and

test itself on the k-number of divided subsets. For instance, say the number of k is 3.

This means 3-Fold. So, the classifier will be trained with 2 data subsets from the 3

 49

subsets and be tested on the remaining 1 data subset. Similarly, the same will be done

with the other two subsets, until it is done three times, with each subset being used as

a testing data and the rest for training.

4.2.1 Predictive model evaluation metrics

The classifiers have to be evaluated with the right evaluation metrics in order to avoid

bias in the model performance. Thus, if you choose the wrong metric in evaluating the

classifier models, it is most likely that you could be misled about the expected

performance of your classifier model. Figure 15 shows the schematic process of the

classifier models development.

Selecting an appropriate classifier for your model could be challenging in in general.

Similarly, when dealing with an imbalanced dataset, problems, particularly

classification problems involving imbalanced dataset, tend to be tedious to handle in

terms of evaluating the classifier. Because most of the standard metrics used assume a

balanced class distribution, and of course not all the classes are distributed equally, not

all the performance metrics for evaluation could be useful for imbalanced

classification. Classification accuracy and error are among the most widely applied

standard metrics for evaluating classification models. However, these metrics evaluate

the classifiers considering the classes as equally important. If the dataset is

imbalanced, then the accuracy matric will not be used for evaluation. Hence, precision

and recall metrics must be used in this case in order to have non bias evaluation.

Such metrics might be needed as give a focus on the minority class, because it is from

the minority class that we lack enough features required to train and get an effective

predictive model. There are tens of evaluation metrics from which to choose in order

to evaluate or measure the performance of the classifier model. To mention a few,

 50

classifier models can be assessed with the use of standard statistical metrics including

accuracy, specificity, sensitivity, precision, etc. [2].

4.2.1.1 Confusion matrix

These performance measure evaluation metrics would best understand with the help

of a confusion matrix. Confusion matrix gives more insight into the performance of a

predictive ML model. Similarly, the matrix identifies and tells which classes are being

correctly and incorrectly predicted and classified. Table 3 below shows the summary

on how confusion matrix is and how each cell in the table has a specific and well-

understood name.

Table 3: Confusion Matrix for Predictive Model Evaluation.
 Predicted Class

Positive Prediction Negative Prediction

True Class Positive Class (Pass) True Positive (TP) False Negative (FN)

Negative Class (Fail) False Positive (FP) True Negative (TN)

The cells in the confusion matrix could be defined as follows; TP refers to true positive

or the number of fail classes that are identified accurately as fail classes, FP refers to

false positive or the number of pass class that are identified incorrectly as fail class,

FN refers to false negative or the number of fail classes that are misclassified as pass

classes, and TN refers to true negative or the number of pass classes that are classified

correctly as pass classes.

4.2.1.2 Accuracy performance metric

Accuracy is the most widely used threshold metric. However, this metric may not

generally be appropriate for imbalanced classification. Because, a high accuracy from

a model could be achieved by only predicting the majority class without being able to

predict the minority class. Accuracy is defined as correct predictions divide by the total

number of predictions.

 51

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4)

4.2.1.3 Sensitivity and specificity performance metrics

Sensitivity-Specificity and Precision-Recall metrics are the two metrics groups that

are considered in this work plus the accuracy of the predictive model. Sensitivity

means the true positive rate and states how well the positive class is predicted;

whereas, specificity is the true negative rate, and it summarizes how well the negative

class is predicted. Note that sensitivity is more preferred over specificity for

imbalanced problems classification.

 Specificity =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (5)

 Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

4.2.1.4 Precision, recall and F1_score performance metrics

Precision gives summary of the fraction between examples of the positive class that

belong to the positive class. Recall tells how well the examples of the positive class

were predicted. Sensitivity gives the same measurements as recall. On the other hand,

F1_score incorporates both precision and recall to balance the tradeoff [108].

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7)

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8)

 F1_score =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (9)

4.3 Summary of the chapter

Throughout this chapter, methodologies followed in this thesis have been presented.

These methodologies comprise data cleaning, missing datapoints imputation

techniques, most potential features selection techniques, features normalizing

 52

technique, synthetic data generation techniques, model training and validation

techniques, model development, and model performance evaluation.

Firstly, two missing datapoints imputation techniques were presented: missing

datapoints imputation using mean and using k-NN, followed with a feature

normalizing technique. Secondly, two feature selection known as dimensionality

reduction techniques were presented: principal component analysis and univariate

feature selection. Thirdly, three synthetic data oversampling techniques were proposed

including SMOTE and its two variants: Borderline-SMOTE SVM and ADASYN.

These techniques were proposed so as to handle the issue of class imbalance in the

semiconductor manufacturing dataset, investigate their feasibility, and compare their

performance in the semiconductor manufacturing processes. Then, two model

validation techniques were considered; 80|20 split and k-Fold cross validation. Finally,

seven metrics of performance evaluation were presented so as to measure the

performance of the proposed methodologies using the proposed algorithms. The next

chapter reports the experimental results. In the chapter, a case study has been

conducted using dataset from a semiconductor manufacturing process.

 53

Chapter 5

5 EXPERIMENTAL RESULTS

The experimental results using the proposed methodologies are reported in this

chapter. The chapter contains two sections, section 5.1 and 5.2.

Section 5.1 reports the experimental results on a case study conducted using a dataset

from semiconductor manufacturing process. The section is divided into six

subsections. First, section 5.1.1 presents the analysis, results, and influence of the main

steps from the proposed methodologies on the considered predictive models using the

SECOM dataset. These steps include the investigation of: starting from the effect of

data cleaning, the effect of datapoints imputation techniques, the effect of datapoints

imputation techniques with feature selection, the effect of mean imputation technique

and feature normalizing and selection using PCA, then the effect of synthetic minority

oversampling technique on the SECOM modified raw dataset. Second, section 5.1.2

presents the experimental results obtained using the overall proposed methodologies

using SMOTE. Third, section 5.1.3 reports the general experimental results obtained

using Borderline-SMOTE SVM on the proposed methodologies. Fourth, section 5.1.4

reports ADASYN experimental results using the proposed methodologies. Then,

section 5.1.5 reports the experimental results general comparison analysis considering

several perfectives. Lastly, section 5.1.6 gives the comparative analysis between our

experimental results obtained and similar studies reported experimental results.

Section 5.2 reports the concluding remarks of this chapter.

 54

5.1 A case study on semiconductor manufacturing process

This section analyzes the semiconductor manufacturing process dataset by applying

the proposed methodologies from the previous chapter using ten machine learning

algorithms for fault detection in the semiconductor manufacturing processes.

5.1.1 ML development using SECOM dataset

5.1.1.1 SECOM dataset cleaning

Dataset obtained from manufacturing domain can contain some amount of redundant

information, that if fed to the predictive ML model, can affect the performance of the

model and result in an unreliable outcome, as stated above. At first, we explore the

dataset, thus, some features have been removed, because some of them contain no

data-points, unique value, or little number of data-points. Amongst 590 features about

140 were deleted, see Table 4.

Table 4: Dataset description before and after each step.

#number of: Raw data MRD MRD + MI + PCA MI+ S + PCA MRD + MI + SMOTE

features 590 450 17 221 450

‘pass’ instances 1463 1463 1463 1463 1463

‘fail’ instances 104 104 104 104 1463

instances 1567 1567 1567 1567 2926

MRD: Modified raw dataset; MI: Mean imputation; S: Scaling;

5.1.1.1.1 Model development using (MRD) modified raw dataset

In this section, ten machine learning algorithms are selected for the predictive models’

development. 80|2 split validation technique was used for training and building the

models. That is, 80% of the dataset is used for model development and the remaining

is used to validate the performance of the proposed models. Confusion matrix of the

experimental results obtained is shown in Table 10. Only XGBoost was able to

generate results whereas, rest of the models failed to generate any. This happens

because the dataset is noisy as it contains missing values. Similarly, Table 5 shows the

 55

performance measures obtained when the four models are trained with raw and

modified dataset.

5.1.1.1.2 Effect of datapoints imputation

This section analyzes the effect of data points imputation on the modified raw data.

Two imputation methods have been adopted and their effect on the prediction models’

performance has been evaluated. These imputation techniques include mean and k-NN

missing datapoints imputation techniques, and their experimental results are shown in

Table 10 and Table 5. Note that, the same number of features from previous section is

used to train the models, that is 450 features.

As clearly seen from the results, all the developed models were able to generate some

results when the missing datapoints in the dataset are substituted using those

imputation techniques, unlike in the previous section. However, most of the models

(including XGBoost, LR, RF, SVC, and GBT) were not able to classify the fail class

with an exception of MLP, DT, NB, LDA, and AdaBoost, each of which managed to

classify few when trained using dataset with missing datapoints mean imputation.

XGBoost, RF, and SVC produce similar performance using both techniques of

imputation. GBT managed to classify the fail class correctly 2 times when trained with

dataset using k-NN imputation.

5.1.1.1.3 Effect of datapoints imputation and features selection without scaling

Then, we tried to analyze the effect of features selection (using PCA) on the modified

raw dataset in this section, but we did not perform any normalizing on the features.

Also, only mean imputation is considered in this section. After PCA, 17 features were

selected from 450, see Table 4. The parameter setting of PCA are set to select features

with 0.99 variance. As a result, 17 features were selected from those 450 features. That

 56

happened because the dataset is noisy and had missing values and it had not been

normalized. Table 5 shows the experimental results obtained when the models were

trained with the 17 features selected using PCA. Results obtained clearly show that

feature selection has no or has little effect on the models’ performance, because similar

results are obtained in the previous section (5.1.1.1.2), but slightly different.

5.1.1.1.4 Effect of mean imputation, features scaling and selection

To increase the efficiency and accuracy of the proposed classifier models, in this

section we analyzed the effect of features scaling and feature selection. Moreover,

these features are real values and the feature interval values differ from one another.

Thus, there is a need for feature normalization called feature scaling. Standard scaler

is used to normalize the features to a range of around -1 to 1. All the features are

normalized by subtracting the mean of the feature value and dividing it by standard

deviation of the feature values, and thus, they range between -1 to 1. PCA was used

for features selection. As a result, 221 features were selected by PCA as the most

important features. Refer to Table 4 to see the description of the dataset used in this

section. Moreover, features with 0.99 variance are selected (using PCA). Normalizing

increases the number of features selected by PCA technique when compared with 17

features that are selected when the dataset has not been normalized. Then, these

features with mean imputation are considered in developing the ML models.

The results obtained are shown in Table 10 and Table 5. Similar results were obtained

as in previous sections (5.1.1.1.2 and 5.1.1.1.3). This shows that, features scaling has

no or little impact on the models’ performance. However, features normalizing helps

PCA to select a greater number of features for the model trained.

 57

5.1.1.1.5 Effect of SMOTE, without features scaling and selection

In this section, SMOTE has been applied in order to generate more synthetic data

within the minority class to equal the distribution between the two classes as they have

a ratio of 1:14. This technique has been applied in order to solve this problem of

imbalance between the two classes and to determine its effect on the model’s

performance. Also, it has been applied to the whole dataset, not just the training subset

as what many researchers have considered. After implementing SMOTE, the two

classes are balanced and now the models training stage can be carried out. See Table

4 for the dataset description used in this section.

Table 10 and Table 5 report the results of the performance metrics obtained when the

algorithms are trained using the modified raw dataset with SMOTE synthetic data

generation, and shows the confusion matrix results obtained. The tables clearly show

how the performance of the models is improved as they were able to classify the fail

class. RF outperforms all the developed models followed by XGBoost. SVC delivers

least metrics of performance in comparison to the other models, because it is sensitive

to unnormalized data.

5.1.1.1.6 Discussion on the results obtained

This section discusses and compares the results obtained from the previous sections

(5.1.1.1.1 to 5.1.1.1.5). First, we tried to analyze the effect of each step in the

preprocessing stage. We did so in order to verify and figure out the step that has the

main impact on the performance of the proposed models. It has been clearly seen from

this analysis that, most of the steps have no or little impact on the model development

when trained with imbalanced dataset. However, the performance of the algorithms

significantly increases when trained with dataset after SMOTE implementation.

 58

Consequently, the imbalance of the dataset has the greatest impact on the models’

performance. Table 5 reports the comparison amongst the experimental results

obtained in this section.

 59

Table 5: Metrics of performance results obtained before and after each step.
Methods: Accuracy Recall Precision Specificity F1_score

MRD MRD

+ MI

MRD

+ k-

NNI

MRD

+ MI

+ PCA

MRD

+ MI

+ FS +

PCA

MRD +

MI +

SMOTE

MRD MRD

+ MI

MRD

+ k-

NNI

MRD

+ MI

+ PCA

MRD

+ MI

+ FS +

PCA

MRD +

MI +

SMOTE

MRD MRD

+ MI

MRD

+ k-

NNI

MRD

+ MI

+ PCA

MRD

+ MI

+ FS +

PCA

MRD +

MI +

SMOTE

MRD MRD

+ MI

MRD

+ k-

NNI

MRD

+ MI

+ PCA

MRD

+ MI

+ FS +

PCA

MRD +

MI +

SMOTE

MRD MRD

+ MI

MRD

+ k-

NNI

MRD

+ MI

+ PCA

MRD

+ MI

+ FS +

PCA

MRD +

MI +

SMOTE

MLP NAN 0.7293 0.9140 0.9268 0.9268 0.9215 NAN 0.2500 0.0000 0.0000 0.0500 0.9486 NAN 0.0667 0.0000 0.0000 0.3333 0.8994 NAN 0.7619 0.9762 0.9898 0.9932 0.8946 NAN 0.1053 0.0000 0.0000 0.0870 0.9233

XGBoost 0.9363 0.9363 0.9363 0.9299 0.9299 0.9676 0.0000 0.0000 0.0000 0.0000 0.0000 0.9589 NAN NAN NAN 0.0000 NAN 0.9756 1.0000 1.0000 1.0000 0.9932 1.0000 0.9762 0.0000 0.0000 0.0000 0.0000 0.0000 0.9672

LR NAN 0.9299 0.9299 0.9363 0.9363 0.7235 NAN 0.0000 0.0000 0.0000 0.2500 0.7329 NAN 0.0000 0.0000 NAN 0.2500 0.7181 NAN 0.9932 0.9932 1.0000 0.9490 0.7143 NAN 0.0000 0.0000 0.0000 0.2500 0.7254

DT NAN 0.8885 0.8949 0.8503 0.8503 0.9078 NAN 0.1500 0.2500 0.0000 0.1500 0.9589 NAN 0.1429 0.2174 0.0000 0.1364 0.8696 NAN 0.9388 0.9388 0.9082 0.9354 0.8571 NAN 0.1463 0.2326 0.0000 0.1429 0.9121

NB NAN 0.2070 0.1815 0.9013 0.9013 0.5734 NAN 0.7000 0.7500 0.0500 0.0500 0.9623 NAN 0.0545 0.0562 0.0769 0.0588 0.5404 NAN 0.1735 0.1429 0.9592 0.9456 0.1871 NAN 0.1011 0.1045 0.0606 0.0541 0.6921

LDA NAN 0.9108 0.9204 0.9236 0.9236 0.9147 NAN 0.4500 0.4000 0.0000 0.2000 1.0000 NAN 0.3462 0.3810 0.0000 0.3333 0.5838 NAN 0.6422 0.9558 0.9864 0.9728 0.8299 NAN 0.3913 0.3902 0.0000 0.2500 0.9211

RF NAN 0.9363 0.9363 0.9363 0.9363 0.9846 NAN 0.0000 0.0000 0.0000 0.0000 0.9726 NAN NAN NAN NAN NAN 0.9965 NAN 1.0000 1.0000 1.0000 1.0000 0.9966 NAN 0.0000 0.0000 0.0000 0.0000 0.9844

SVC NAN 0.9363 0.9363 0.9363 0.9363 0.6775 NAN 0.0000 0.0000 0.0000 0.0000 0.7979 NAN NAN NAN NAN NAN 0.6419 NAN 1.0000 1.0000 1.0000 1.0000 0.5578 NAN 0.0000 0.0000 0.0000 0.0000 0.7115

AdaBoost NAN 0.9236 0.9299 0.9236 0.9236 0.9266 NAN 0.0500 0.2000 0.0000 0.0000 0.9349 NAN 0.1667 0.4000 0.0000 0.0000 0.9192 NAN 0.9830 0.9796 0.9864 0.9762 0.9184 NAN 0.0769 0.2667 0.0000 0.0000 0.9270

GBT NAN 0.9331 0.9299 0.9331 0.9331 0.9642 NAN 0.0000 0.1000 0.0000 0.0000 0.9589 NAN 0.0000 0.3333 0.0000 0.0000 0.9689 NAN 0.9966 0.9864 0.9966 0.9898 0.9694 NAN 0.0000 0.1538 0.0000 0.0000 0.9639

MRD: Modified raw data; MI: Mean imputation; FS: Features scaling;

 60

5.1.2 Proposed methodology with SMOTE

In this section, the overall proposed methodology is analyzed considering the

implementation of SMOTE synthetic data generation technique. Refer back to

RESEARCH METHODOLOGY and Figure 15 to see the overall methodology.

Moreover, the effect of mean (5.1.2.1) and k-NN (5.1.2.2) imputation techniques are

considered separately in the following subsections. Table 6 reports the description of

the dataset used while training the models. Two validation techniques are considered

including 80|20 split and k-Fold cross validation. All the ten models are trained using

80|20 split validation technique. However, different number of k is considered while

training using k-Fold cross validation technique. 7-Fold is considered for MLP, NB,

LDA, RF, SVC, AdaBoost, and GBT; 13-Fold for XGBoost; 3-Fold for LR and 10-

Fold for DT.

Table 6: Datasets characteristic used for ML model development after preprocessing

with and without SDGT.

#number of:

Methods:

MI + PCA -

without SDGT

UFS - without

SDGT

MI + PCA - with

SDGT

k-NNI + PCA -

with SDGT

k-NNI + UFS -

with SDGT

features 221 38 221 219 38

‘pass’ instances 1463 1463 1463 1463 1463

‘fail’ instances 104 104 1463 1463 1463

instances 1567 1567 2926 2926 2926

SDGT: Synthetic data generation technique; MI: Mean imputation; k-NNI: k-NN imputation;

Six methodologies are proposed including MI + PCA + SMOTE + 80|20 split, MI +

PCA + SMOTE + CV, k-NNI + PCA + SMOTE + 80|20 split, k-NNI + UFS + SMOTE

+80|20 split, k-NNI + PCA + SMOTE + CV, and k-NNI + UFS + SMOTE +CV. Ten

machine learning for fault diagnosis models are trained using these proposed

methodologies. The respective results obtained from the experimentation are reported

in the following subsections.

 61

5.1.2.1 Mean imputation with SMOTE

First, we consider training the models by substituting the missing datapoints using

mean imputation technique together with selecting the most important features using

PCA. The experimental results obtained are shown in Table 11 (confusion metric

results) and Table 7 (metrics of performance). These tables report the results obtained

when the models are trained with 80|20 – split validation technique and the results

obtained when the models are trained with CV technique. Moreover, Figure 18 A and

B graphically illustrate the summary of the experimental results.

5.1.2.2 k-NN imputation with SMOTE

Then, we consider training the models by substituting the missing datapoints using k-

NN imputation technique together with selecting the most important features using

PCA and UFS. Table 6 shows the characteristic of the dataset used after preprocessing

and feature selection.

Table 7 summarizes the results obtained when the models are trained with PCA and

UFS features selection techniques when the models are trained with 80|20 – split

validation technique. Similarly, the same table reports the results obtained when the

models are trained with CV technique. Figure 18 C, D, E, and F show the results

obtained using this method versus two considered feature selection techniques and two

considered validation techniques. As can be seen from Table 11 and Table 7, the

models performed better when trained with features selected using PCA because, PCA

selects 219 as important features, whereas UFS selects 38. Thus, the reduction of the

features selected caused a huge impact on the performance of the models. Possibly

most important features that the models learn from are discarded when UFS is applied.

From the classifiers considered, almost all the models performed better when validated

with k-Fold cross validation technique. For instance, XGBoost plus PCA features

 62

selection, where the model classifies the two classes (pass and fail) way better than it

performed when trained with 80|20 split validation technique.

5.1.2.3 Discussion on the results obtained using SMOTE

Table 11 and Table 7 summarize the results obtained using two different features

selection techniques as well as the comparison between the two validation techniques.

Likewise, the comparison of these models has been reported based on which model

among the models handled the dataset well in giving better performance. Figure 18

shows the summary of the achieved results from the developed classifier models using

six proposed methodologies: MI + PCA + SMOTE + 80|20 split, MI + PCA + SMOTE

+ CV, k-NNI + PCA + SMOTE + 80|20 split, k-NNI + UFS + SMOTE +80|20 split,

k-NNI + PCA + SMOTE + CV, and k-NNI + UFS + SMOTE +CV.

Based on the results obtained, a drastic performance decrement was observed when

the models are trained with the features selected using UFS (SELECTFDR) (Figure

18 D and F), with the exception of MLP, in which the model performs equally in terms

of recall using 80|20 split technique, and in terms of specificity and precision using

CV technique. SVC and RF performed really well considering both validation

techniques with a slight difference in their metrics of performance.

Amongst all the models trained, NB failed to deliver good performance metrics when

the model is trained using features selected from PCA features selection plus 80|20

split technique. Similarly, it failed to deliver good results when trained with features

selected from UFS, but with a better performance only in terms of specificity of

0.9422.

 63

It is observed that, SVC and RF are the best performing models developed from both

validation techniques considered when features are selected using PCA features

selection technique. GBT and AdaBoost gave an approximate similar trend

performance in all the four approaches examined (PCA + 80|20 split PCA + CV, UFS

+ 80|20 split UFS + CV). However, GBT outperforms AdaBoost in all the cases.

Moreover, Figure 18 shows the results comparison. From the figure it can be clearly

seen that almost all the models performed when trained with features selected from

PCA. RF, MLP XGBoost and GBT. RF and MLP outperformed all the other models

trained than any other model on the four techniques considered. This shows that the

two models can be trained with features selected from both PCA and UFS. Since there

is no much differences in their performance metrics measures.

However, SVC, LR, LDA and NB tend to show differences in their metrics of

performance as the models are trained with different features selected from the two

features selection techniques. Similarly, the performance metrics of SVC + PCA

excelled the performance of SVC + UFS in both two validation techniques. Thus, we

could conclude that SVC is more compatible with the features selected using PCA, as

it performs better with those features selected than with the features selected using

UFS. DT and AdaBoost models performed moderately better on the four techniques

followed.

Table 7 reports the overall summary of the results obtained using SMOTE synthetic

data generation technique against six different methodologies. These methodologies

include MI + PCA + SMOTE + 80|20 split; MI + PCA + SMOTE + CV; k-NNI + PCA

+ SMOTE + 80|20 split; k-NNI + UFS + SMOTE + 80|20 split; k-NNI + PCA +

 64

SMOTE + CV; and k-NNI + UFS + SMOTE + CV. Th accuracy metric of performance

tells the overall score of a developed classification model. From Table 7, in terms of

accuracy, RF outpaces all the other developed models considering all the six

methodologies considered. However, with an exception of ‘k-NNI + PCA + SMOTE

+ 80|20 split’ technique, where SVC slightly performs better than RF with a score of

0.9983. NB records the least performance in all cases (all six methodologies).

MLP, XGBoost RF, and GBT performed best with MI + PCA + SMOTE + 80|20 split

technique and least with k-NNI + UFS + SMOTE + CV. A reduction in performance

is experienced the moment CV validation technique was applied in all the case rather

than with 80|20 split validation technique, and a further reduction when UFS features

selections was used. In contrast to MI, k-NN produces worse results when MLP was

trained. This shows that, MLP learns better with features that are preprocessed with

mean imputation.

LR, DT, NB, LDA, SVC, and AdaBoost performed best with k-NNI + PCA + SMOTE

+ 80|20 split technique and least with k-NNI + UFS + SMOTE + CV technique. This

means that, these models learn better from the features preprocessed using k-NN

imputation and selected using PCA and when trained with 80|20 split validation

technique rather with CV. k-NN imputation works better for these models, 80|20 split

works better compared to CV and PCA for features selection.

 65

Figure 18: Results summary - (A) MI + PCA + SMOTE + 80|20 split. (B) MI + PCA + SMOTE + CV. (C) k-NNI + PCA + SMOTE + 80|20

split. (D) k-NNI + UFS + SMOTE +80|20 split. (E) k-NNI + PCA + SMOTE + CV. (F) k-NNI + UFS + SMOTE +CV.

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(C)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(D)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(E)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(F)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(A)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(B)

F1_score Specificity Precision Recall Accuracy

 66

5.1.3 Proposed methodology with Borderline-SMOTE SVM

In this section, the overall proposed methodology is analyzed considering the

implementation of Borderline SMOTE SVM synthetic data generation technique.

Also, the effect of mean and k-NN imputation techniques are discussed separately in

the following subsections. Table 6 reports the dataset descriptions used in this section.

Similarly, like from the previous section (section 5.1.2), in this section too, two

validation techniques are considered including 80|20 split and k-Fold cross validation.

All the ten models are trained using 80|20 split validation technique. However,

different number of k is considered while training using k-Fold cross validation

technique. 7-Fold is considered for MLP, NB, LDA, RF, AdaBoost, and GBT; 13-Fold

for XGBoost; 3-Fold for LR and SVC using PCA; 7-Fold using UFS and 10-Fold for

DT. The methodologies proposed and studied in this section involve MI + PCA +

BSMOTE-SVM + 80|20 split, MI + PCA + BSMOTE-SVM + CV, k-NNI + PCA +

BSMOTE-SVM + 80|20 split, k-NNI + UFS + BSMOTE-SVM + 80|20 split, k-NNI

+ PCA + BSMOTE-SVM + CV, and k-NNI + UFS + BSMOTE-SVM + CV.

5.1.3.1 BSMOTE-SVM with mean imputation

First, we used mean imputation to replace the missing values then applied the proposed

methodologies and then, trained the models. Table 6 reports the dataset descriptions

used. PCA is used in selecting the most important features and for synthetic data

generation within the minority class, borderline SMOTE-SVM is used. The models

are using 80|20 slip validation technique and k-Fold CV technique. Confusion matrix

and performance metrics of the results obtained are shown in Table 11and Table 7,

respectively. Figure 19 A and B illustrate the models’ metrics of performance results

using mean imputation.

 67

5.1.3.2 BSMOTE-SVM with k-NN imputation

Then, the effects of k-NN missing datapoints imputation is analyzed alongside

BSMOTE-SVM, and PCA and UFS features selection techniques using both two

validation techniques involving 80|20 split and k-Fold CV. The dataset characteristics

used is reported in Table 6. Ten classifier models were developed and analyzed

including MLP, XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost, and GBT.

Confusion matrix obtained from the experiments are given in Table 11 and Table 7

report the experimental results of 80|20 – split validation technique and k-Fold CV.

Figure 19 C – F graphically show the experimental results obtained using k-NNI and

BSMOTE-SVM synthetic datapoints generation technique.

5.1.3.3 Discussion on the results obtained using BSMOTE-SVM

Table 7 and Figure 19 report the overall summary of the results obtained using

BSMOTE-SVM synthetic data generation technique against five different

methodologies. These methodologies include MI + PCA + BSMOTE-SVM + 80|20

split; k-NNI + PCA + BSMOTE-SVM + 80|20 split; k-NNI + UFS + BSMOTE-SVM

+ 80|20 split; k-NNI + PCA + BSMOTE-SVM + CV; and k-NNI + UFS + BSMOTE-

SVM + CV. Contrary to the performance of the developed models, NB failed to deliver

good performance in all five considered techniques, as it gave worst performance in

all cases, like from the previous section.

SVC was found to be the best performing algorithm with overall accuracy score of

1.0000 when trained using k-NNI + UFS + BSMOTE-SVM + CV technique. It also

outpaces all other algorithms in terms of accuracy when ‘MI + PCA + BSMOTE-SVM

+ 80|20 split’ and ‘k-NNI + PCA + BSMOTE-SVM + 80|20 split’ techniques are

considered. RF outperformed all other algorithms when k-NNI + UFS + BSMOTE-

SVM + 80|20 split technique was applied. MLP and RF performed equally with an

 68

overall accuracy score of 0.9639 using k-NNI + UFS + BSMOTE-SVM + CV

technique. Similarly, they outperformed the other algorithms. MLP, XGBoost, LR,

LDA, RF, and GBT produced worse performance when trained with k-NNI + UFS +

BSMOTE-SVM + CV technique. NB, SVC, and AdaBoost deliver worst performance

with k-NNI + UFS + BSMOTE-SVM + 80|20 split, and DT with k-NNI + PCA +

BSMOTE-SVM + 80|20 split.

 69

Figure 19: Results summary – (A) MI + PCA + BSMOTE-SVM + 80|20 split. (B) MI + PCA + BSMOTE-SVM + CV. (C) k-NNI + PCA +

BSMOTE-SVM + 80|20 split. (D) k-NNI + UFS + BSMOTE-SVM + 80|20 split. (E) k-NNI + PCA + BSMOTE-SVM + CV. (F) k-NNI + UFS +

BSMOTE-SVM + CV.

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(C)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(D)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(E)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(F)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(A)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(B)

F1_score Specificity Precision Recall Accuracy

 70

5.1.4 Proposed methodology with ADASYN

In this section the effects of ADASYN synthetic data generation are investigated.

Similarly, the effects of two different features selection techniques on this method of

synthetic data generation are investigated as in the previous sections. Table 6 shows

the dataset characteristics used in training the classifier models in this section.

Similarly, the same approach was followed as in the previous sections (section

5.1.2and 5.1.3). Two validation techniques are considered including 80|20 split and k-

Fold cross validation. All the ten models are trained using 80|20 split validation

technique. For k-Fold CV, different number of k is considered while training the

models. 7-Fold is considered for MLP, NB, LDA, RF, SVC, AdaBoost, and GBT. 13-

Fold for XGBoost, 3-Fold for LR, and 10-Fold for DT. These algorithms are trained

using six proposed methodologies including MI + PCA + ADASYN + 80|20 split, MI

+ PCA + ADASYN + CV, k-NNI + PCA + ADASYN + 80|20 split, k-NNI + UFS +

ADASYN + 80|20 split, k-NNI + PCA + ADASYN + CV, and k-NNI + UFS +

ADASYN + CV.

5.1.4.1 ADASYN with mean imputation

First, the effects of ADASYN are investigated using mean imputation technique. Table

6 shows the dataset characteristic used in training the classifier models. Moreover,

PCA was used to select the most important features. Table 11 shows results of the

confusion matrix obtained. Table 7 reports the performance metrics of the developed

models. It is clearly shown that, the models performed well with ADASYN synthetic

data generation. Where, SVC and RF performed significantly well and equally, and

then followed by MLP, XGBoost, and GBT. Figure 20 A and B graphically compare

and show how these three models and the other seven performed.

 71

5.1.4.2 ADASYN with k-NN imputation

Lastly, the effects of k-NN missing datapoints imputation were analyzed alongside

ADASYN synthetic data generation, and PCA and UFS features selection techniques

using 80|20 split and CV validation techniques. The dataset characteristics used is

reported in Table 6. Ten classifier models were developed and analyzed including

MLP, XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost, and GBT. Experimental

results are reported in Table 11 and Table 7, including the confusion matrix and the

performance metrics of the developed models. Figure 20 C to F graphically illustrate

the comparison of the results obtained from the developed models using these

techniques.

5.1.4.3 Discussion on the results obtained using ADASYN

Table 7 reports the overall summary of the results obtained using ADASYN synthetic

data generation technique against six different methodologies proposed in this section.

From Table 7, SVC reports an overall accuracy of 1.000 when trained with k-NNI +

PCA + ADASYN + 80|20 split technique followed by RF with k-NNI + UFS +

ADASYN + 80|20 split technique. Similarly, in this section NB fails to deliver good

performance.

 72

Figure 20: Results summary – (A) MI + PCA + ADASYN + 80|20 split. (B) MI + PCA + ADASYN + CV. (C) k-NNI + PCA + ADASYN +

80|20 split. (D) k-NNI + UFS + ADASYN + 80|20 split. (E) k-NNI + PCA + ADASYN + CV. (F) k-NNI + UFS + ADASYN + CV.

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(D)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(A)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(C)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(B)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(E)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(F)

F1_score Specificity Precision Recall Accuracy

0 0.2 0.4 0.6 0.8 1

MLP

XGBoost

LR

DT

NB

LDA

RF

SVC

AdaBoost

GBT

(C)

F1_score Specificity Precision Recall Accuracy

 73

Table 7: Metrics of performance overall experimental results obtained using three different SDGT.
 Accuracy Recall Precision Specificity F1_score

SDGT Models

MI +

PCA +

80|20

split

MI +

PCA +

CV

k-NNI

+ PCA

+

80|20

split

k-NNI

+ UFS

+

80|20

split

k-NNI

+ PCA

+ CV

k-NNI

+ UFS

+ CV

MI +

PCA +

80|20

split

MI +

PCA +

CV

k-NNI

+ PCA

+

80|20

split

k-NNI

+ UFS

+

80|20

split

k-NNI

+ PCA

+ CV

k-NNI

+ UFS

+ CV

MI +

PCA +

80|20

split

MI +

PCA +

CV

k-NNI

+ PCA

+

80|20

split

k-NNI

+ UFS

+

80|20

split

k-NNI

+ PCA

+ CV

k-NNI

+ UFS

+ CV

MI +

PCA +

80|20

split

MI +

PCA +

CV

k-NNI

+ PCA

+

80|20

split

k-NNI

+ UFS

+

80|20

split

k-NNI

+ PCA

+ CV

k-NNI

+ UFS

+ CV

MI +

PCA +

80|20

split

MI +

PCA +

CV

k-NNI

+ PCA

+

80|20

split

k-NNI

+ UFS

+

80|20

split

k-NNI

+ PCA

+ CV

k-NNI

+ UFS

+ CV

SMOTE MLP 0.9829 0.9808 0.9812 0.9710 0.9760 0.9639 1.0000 0.9615 1.0000 1.0000 0.9519 0.9279 0.9669 1.0000 0.9637 0.9450 1.0000 1.0000 0.9660 1.0000 0.9626 0.9422 1.0000 1.0000 0.9832 0.9804 0.9815 0.9717 0.9754 0.9626

XGBoost 0.9744 0.9688 0.9625 0.9164 0.9775 0.9148 0.9795 0.9464 0.9829 0.9486 0.9640 0.8661 0.9695 0.9907 0.9441 0.8907 0.9907 0.9604 0.9694 0.9911 0.9422 0.8844 0.9910 0.9640 0.9744 0.9680 0.9631 0.9187 0.9772 0.9108

LR 0.8976 0.9107 0.9164 0.7901 0.9117 0.7669 0.9726 0.8419 0.9795 0.7877 0.8419 0.7639 0.8452 0.9762 0.8693 0.7904 0.9785 0.7686 0.8231 0.9795 0.8537 0.7925 0.9815 0.7700 0.9045 0.9041 0.9211 0.7890 0.9051 0.7662

DT 0.8532 0.8767 0.9061 0.8976 0.8767 0.8801 0.9110 0.8356 0.9555 0.9247 0.8356 0.8425 0.8160 0.9104 0.8692 0.8766 0.9104 0.9111 0.7959 0.9178 0.8571 0.8707 0.9178 0.9178 0.8608 0.8714 0.9103 0.9000 0.8714 0.8754

NB 0.7696 0.7938 0.8106 0.5631 0.7861 0.5444 0.7979 0.7500 0.8151 0.1815 0.7692 0.9426 0.7540 0.8211 0.8068 0.7571 0.7960 0.5253 0.7415 0.8373 0.8061 0.9422 0.8029 0.1442 0.7754 0.7839 0.8109 0.2928 0.7824 0.6747

LDA 0.8771 0.8822 0.8942 0.7901 0.8846 0.7572 0.9623 0.8077 0.9795 0.8014 0.8029 0.7596 0.8216 0.9492 0.8363 0.7826 0.9598 0.7560 0.7925 0.9567 0.8095 0.7789 0.9663 0.7548 0.8864 0.8727 0.9022 0.7919 0.8743 0.7578

RF 0.9983 0.9976 0.9949 0.9744 0.9976 0.9663 0.9966 1.0000 0.9897 0.9863 1.0000 0.9567 1.0000 0.9952 1.0000 0.9632 0.9952 0.9755 1.0000 0.9952 1.0000 0.9626 0.9952 0.9760 0.9983 0.9976 0.9948 0.9746 0.9976 0.9660

SVC 0.9966 0.9949 0.9983 0.8686 0.9959 0.8347 1.0000 0.9918 1.0000 0.9144 0.9938 0.8049 0.9932 0.9979 0.9966 0.8370 0.9979 0.8559 0.9932 0.9979 0.9966 0.8231 0.9979 0.8645 0.9966 0.9949 0.9983 0.8740 0.9959 0.8296

AdaBoost 0.8720 0.8822 0.8925 0.8669 0.8801 0.8438 0.8733 0.8558 0.9075 0.8938 0.8702 0.8221 0.8703 0.9036 0.8804 0.8474 0.8873 0.8593 0.8707 0.9087 0.8776 0.8401 0.8900 0.8654 0.8718 0.8790 0.8938 0.8700 0.8786 0.8403

GBT 0.9761 0.9736 0.9795 0.9232 0.9760 0.9161 0.9932 0.9567 0.9829 0.9452 0.9615 0.8750 0.9603 0.9900 0.9762 0.9049 0.9901 0.9529 0.9592 0.9904 0.9762 0.9014 0.9904 0.9569 0.9764 0.9731 0.9795 0.9246 0.9756 0.9123

BSMOTE-

SVM

MLP 0.9710 0.9736 0.9812 0.9676 0.9808 0.9639 0.9760 0.9712 1.0000 0.9932 0.9615 0.9279 0.9661 0.9758 0.9637 0.9446 1.0000 1.0000 0.9660 0.9760 0.9626 0.9422 1.0000 1.0000 0.9710 0.9735 0.9815 0.9683 0.9804 0.9626

XGBoost 0.9744 0.9732 0.9744 0.9215 0.9775 0.9148 0.9555 0.9911 0.9795 0.9521 0.9640 0.8661 0.9929 0.9569 0.9695 0.8968 0.9907 0.9604 0.9932 0.9554 0.9694 0.8912 0.9910 0.964 0.9738 0.9737 0.9744 0.9236 0.9772 0.9108

LR 0.9181 0.9158 0.9147 0.7577 0.9159 0.7668 0.9623 0.8706 0.9863 0.7295 0.8510 0.7692 0.8836 0.9571 0.8623 0.7717 0.9779 0.7656 0.8741 0.9610 0.8435 0.7857 0.9808 0.7644 0.9213 0.9118 0.9201 0.7500 0.9100 0.7674

DT 0.8874 0.9031 0.8669 0.8993 0.8763 0.8801 0.9041 0.8828 0.9178 0.9178 0.8425 0.8425 0.8742 0.9209 0.8323 0.8845 0.9044 0.9111 0.8707 0.9236 0.8163 0.8810 0.9103 0.9178 0.8889 0.9014 0.8730 0.9008 0.8723 0.8754

NB 0.8123 0.8702 0.7765 0.5410 0.7861 0.5444 0.6233 0.9808 0.7568 0.1370 0.7692 0.9426 1.0000 0.8031 0.7565 0.7018 0.7960 0.5253 1.0000 0.7596 0.7959 0.9422 0.8029 0.1442 0.7679 0.8831 0.7714 0.2292 0.7824 0.6747

LDA 0.9078 0.9161 0.9778 0.9625 0.8846 0.7572 0.9281 0.8852 1.0000 0.9863 0.8029 0.7596 0.8914 0.9439 0.9574 0.9412 0.9598 0.7560 0.8878 0.9471 0.9558 0.9388 0.9663 0.7548 0.9094 0.9136 0.9782 0.9632 0.8743 0.7578

RF 0.9710 0.9784 0.9898 0.9727 0.9976 0.9639 0.9418 1.0000 0.9795 0.9760 1.0000 0.9519 1.0000 0.9587 1.0000 0.9694 0.9952 0.9754 1.0000 0.9567 1.0000 0.9694 0.9952 0.9760 0.9700 0.9789 0.9896 0.9727 0.9976 0.9635

SVC 0.9846 0.9805 0.9983 0.8208 1.0000 0.8465 0.9692 0.9959 1.0000 0.8288 1.0000 0.8125 1.0000 0.9661 0.9966 0.8148 1.0000 0.8711 1.0000 0.9651 0.9966 0.8129 1.0000 0.8804 0.9843 0.9808 0.9983 0.8217 1.0000 0.8408

AdaBoost 0.8993 0.9159 0.8771 0.8276 0.8801 0.8438 0.9178 0.9087 0.8836 0.8082 0.8702 0.8221 0.8845 0.9220 0.8716 0.8399 0.8873 0.8593 0.8810 0.9231 0.8707 0.8469 0.8900 0.8654 0.9008 0.9153 0.8776 0.8237 0.8786 0.8403

GBT 0.9727 0.9760 0.9659 0.9215 0.9736 0.9161 0.9486 0.9856 0.9726 0.9452 0.9615 0.8750 0.9964 0.9670 0.9595 0.9020 0.9852 0.9529 0.9966 0.9663 0.9592 0.8980 0.9856 0.9569 0.9719 0.9762 0.9660 0.9231 0.9732 0.9123

ADASYN MLP 0.9815 0.9787 0.9812 0.9659 0.9762 0.9617 1.0000 0.9567 1.0000 0.9897 0.9519 0.9231 0.9645 1.0000 0.9637 0.9444 1.0000 1.0000 0.9628 1.0000 0.9626 0.9422 1.0000 1.0000 0.9819 0.9779 0.9815 0.9666 0.9754 0.9600

XGBoost 0.9782 0.9693 0.9746 0.9215 0.9777 0.9022 0.9967 0.9464 0.9931 0.9521 0.9550 0.8571 0.9613 0.9907 0.9565 0.8968 1.0000 0.9412 0.9595 0.9914 0.9571 0.8912 1.0000 0.9469 0.9787 0.9680 0.9744 0.9236 0.9770 0.8972

LR 0.9345 0.9100 0.9171 0.7577 0.9134 0.7646 0.9900 0.8378 0.9757 0.7295 0.8419 0.7577 0.8916 0.9761 0.8700 0.7717 0.9809 0.7672 0.8784 0.9801 0.8614 0.7857 0.9838 0.7714 0.9382 0.9017 0.9198 0.7500 0.9061 0.7624

DT 0.8840 0.8847 0.8646 0.8959 0.8776 0.8836 0.9231 0.8414 0.9201 0.9144 0.8356 0.8552 0.8571 0.9173 0.8230 0.8812 0.9104 0.9051 0.8446 0.9267 0.8119 0.8776 0.9189 0.9116 0.8889 0.8777 0.8689 0.8975 0.8714 0.8794

NB 0.7966 0.7825 0.7902 0.5410 0.7976 0.5431 0.8395 0.7308 0.7986 0.1370 0.7596 0.9471 0.7747 0.8085 0.7770 0.7018 0.8187 0.5225 0.7534 0.8326 0.7822 0.9422 0.8349 0.1429 0.8058 0.7677 0.7877 0.2292 0.7880 0.6735

LDA 0.8941 0.8863 0.8985 0.7543 0.8860 0.7530 0.9732 0.7933 0.9861 0.7329 0.7990 0.7308 0.8410 0.9706 0.8353 0.7643 0.9653 0.7638 0.8142 0.9766 0.8152 0.7755 0.9717 0.7751 0.9023 0.8730 0.9045 0.7483 0.8743 0.7469

RF 0.9966 0.9976 0.9932 0.9693 0.9976 0.9617 0.9967 1.0000 0.9861 0.9726 1.0000 0.9471 0.9967 0.9952 1.0000 0.9660 0.9952 0.9752 0.9966 0.9953 1.0000 0.9660 0.9953 0.9762 0.9967 0.9976 0.9930 0.9693 0.9976 0.9610

SVC 0.9966 0.9960 1.0000 0.8208 0.9969 0.8311 1.0000 0.9918 1.0000 0.8288 0.9938 0.7741 0.9934 1.0000 1.0000 0.8148 1.0000 0.8727 0.9932 1.0000 1.0000 0.8129 1.0000 0.8878 0.9967 0.9959 1.0000 0.8217 0.9969 0.8205

AdaBoost 0.8807 0.8771 0.8646 0.8276 0.8857 0.8489 0.8863 0.8558 0.8646 0.8086 0.8612 0.8173 0.8775 0.8900 0.8586 0.8399 0.9045 0.8718 0.8750 0.8977 0.8647 0.8469 0.9100 0.8804 0.8819 0.8725 0.8616 0.8237 0.8824 0.8437

GBT 0.9748 0.9740 0.9763 0.9232 0.9762 0.9019 0.9933 0.9519 0.9896 0.9452 0.9569 0.8558 0.9581 0.9950 0.9628 0.9049 0.9950 0.9418 0.9561 0.9953 0.9637 0.9014 0.9953 0.9476 0.9754 0.9730 0.9760 0.9246 0.9756 0.8967

SDGT: Synthetic data generation technique; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; UFS: Univariate features selection; 80|20 split: 80|20 split validation technique; CV: k-Fold cross validation technique;

 74

5.1.5 Discussion and comparison on the overall experimental results

In this work, ten prediction machine learning classifiers have been developed, namely;

MLP (ANN), XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost, and GBT.

Semiconductor manufacturing process dataset was used to evaluate and validate the

proposed diagnosis models. Moreover, this section discusses and compares the results

obtained from different perspectives. Note that, this section discusses and compares

the performance of the developed models only based on their accuracy. This is

because, accuracy tells the overall performance of a prediction classifier.

5.1.5.1 Effects of MRD, dataset preprocessing and SMOTE-based proposed

methodology

Table 9 reports an accuracy-based results comparison amongst MRD, MRD with main

steps effects of dataset preprocessing, and proposed methodology using SMOTE and

80|20 split validation technique. For better visualization, Figure 21 graphically shows

how the performance of the models is affected with each and every step of data

preprocessing starting from when trained with modified raw data. At first, when the

algorithms were trained with raw and modified raw datasets, they failed to deliver any

result, as the dataset contained missing values, however, with exception of XGBoost

that managed to deliver some performance. Second, all the algorithms managed to

deliver some performance when the missing values were substituted using missing

values imputation methods. Third, the effect of features selection technique using PCA

was analyzed on the modified raw dataset. However, the results obtained were similar

with those obtained from previous steps. That is, at this moment PCA has no

significant effect on the developed models’ performance. This is due to the dataset

containing imbalanced classes. Consequently, the trained algorithms in the

aforementioned steps failed to classify the minority classes. Later, the effect of

 75

synthetic data generation was analyzed. SMOTE was applied in order to generate

synthetic data within the minority class, so as to balance this problem of imbalance.

As a result, changes were observed in the models’ performance. Refer to section

5.1.1.1.1 through 5.1.1.1.5 to see the overall results and analysis. In terms of accuracy

(Table 9 and Figure 21), MLP, XGBoost, SVC, and RF are the best examples that

clearly show the effect of each and every step together with their accuracy metric of

performance.

Figure 21: Results comparison – MRD, MRD + effects of data preprocessing steps,

and proposed methodology with SMOTE using 80|2-split.

5.1.5.2 Overall results comparison within the proposed methodologies

Table 7 and Table 11 report the comparison summary of the experimental results

obtained using SMOTE, BSMOTE-SVM and ADASYN respectively. Based on the

results obtained from these tables (Table 7 and Table 11), Figure 22 was developed.

The figure reports the overall comparison amongst six considered methodologies

0

0.2

0.4

0.6

0.8

1

MLP XGBoost LR DT NB LDA RF SVC AdaBoost GBT

A
cc
u
ra
cy

MRD MRD + MI MRD + MI + PCA MRD + MI + SMOTE

PM: - MI + PCA + 80|20 split PM: - k-NNI + PCA + 80|20 split PM: - k-NNI + UFS + 80|20 split

 76

versus three adopted synthetic data generation techniques (including SMOTE,

BSMOTE-SVM, and ADASYN) on ten ML models.

The overall results of MLP are shown in Figure 22A. The model performs best with

MI + PCA + 80|20 split using SMOTE followed by ADASYN. However, with the

same training technique, a drastic performance decrement was seen when BSMOTE-

SVM technique was applied. All the three synthetic data generation techniques

performed equally with ‘k-NNI + PCA + 80|20 split’ that produced an accuracy score

of 0.9812. With k-NNI + UFS + 80|20 split technique, ADASYN produced least score

of 0.9659 followed by BSMOTE-SVM. SMOTE gave the best performance with the

same technique. Surprisingly, BSMOTE-SVM outpaces SMOTE with k-NNI + PCA

+ CV by producing an accuracy score of 0.9808 and 0.976 for SMOTE. SMOTE and

BSMOTE-SVM performed equally with k-NNI + UFS + CV.

As illustrated in Figure 22B, k-NNI + PCA + 80|20 split with SMOTE reported least

result when XGBoost was trained, where, with the same technique, BSMOTE-SVM

and ADASYN reported a score of 0.9744 and 0.9746, respectively, in where they

outperformed SMOTE. BSMOTE-SVM and ADASYN performed equally and

outpaced SMOTE with k-NNI + UFS + 80|20 split. SMOTE and BSMOTE-SVM

performed equally with k-NNI + PCA + CV and k-NNI + UFS + CV techniques. In

contrast, XGBoost performed best with k-NNI + PCA + CV technique using both

SMOTE and BSMOTE-SVM.

Figure 22C shows the overall experimental results comparison for LR. The algorithm

performed best with k-NNI + PCA + 80|20 split technique, in where all the three

synthetic data generation techniques produced excellent performance with a slight

 77

difference in their overall accuracy score. SMOTE reports best score with k-NNI +

UFS + 80|20 split, while BSMOTE-SVM and ADASYN produced lower results and

performed equally with the same technique. Similarly, similar results were produced

with k-NNI + UFS + CV using SMOTE and BSMOTE-SVM.

The overall results of DT are shown in Figure 22D. Best score was obtained when

SMOTE was applied using k-NNI + PCA + 80|20 split. When DT was trained with k-

NNI + UFS + 80|20 split, BSMOTE-SVM performed best, then SMOTE, followed by

ADASYN. With k-NNI + PCA + CV, both SMOTE and BSMOTE-SVM slightly

performed differently, and performed equally with k-NNI + UFS + CV.

Figure 22E shows the overall results of NB. SMOTE with k-NNI + PCA + 80|20 split

gave the best performance, while k-NNI + UFS + 80|20 split with BSMOTE-SVM and

ADASYN gave the least performance. BSMOTE-SVM and ADASYN produced equal

result with k-NNI + PCA + CV, and also with k-NNI + UFS + CV. However, in

comparison with k-NNI + PCA + CV, both synthetic data generation techniques

produce lower accuracy with k-NNI + UFS + CV technique. In summary, SMOTE

gave better performance when the algorithm was trained with these techniques of

synthetic data generation. Moreover, BSOMTE-SVM performed equally with

SMOTE using k-NNI + PCA + CV. NB experienced an increase in its performance

when trained with features selected from UFS.

Figure 22F illustrates the overall experimental results obtained when LDA was trained.

Amazingly, with LDA, BSMOTE-SVM outpaces SMOTE and ADASYN using k-

NNI + PCA + 80|20 split and k-NNI + UFS + 80|20 split techniques. Least

performance was obtained when ADASYN was used with k-NNI + UFS + 80|20 split.

 78

With k-NNI + PCA + CV technique, both SMOTE and BSMOTE-SVM performed

equally with an accuracy overall score of 0.8846. Likewise, they performed equally

with k-NNI + UFS + CV, but, with lower accuracy score of 0.7572. based on the

results, BSMOTE-SVM works better for LDA and managed to outpace all the other

techniques considered while training the algorithm for fault diagnosis using SECOM

dataset.

Comparison of the results illustration of RF is shown in Figure 22G. From the figure,

it is clearly shown that, MI + PCA + 80|20 split with SMOTE works best for RF,

followed by k-NNI + PCA + CV with SMOTE and BSMOTE-SVM where both

techniques performed the same. With the implementation of MI + PCA + 80|20 split,

BSMOTE-SVM produced least accuracy score. Similarly, BSMOTE-SVM produced

lower score with k-NNI + UFS + CV technique compared to SMOTE.

Figure 22H shows the results comparison of SVC. SMOTE and ADASYN performed

the dame with MI + PCA + 80|20 split followed by BSMOTE-SVM. Using k-NNI +

PCA + 80|20 split technique provides the highest accuracy score, with a slight

difference in the overall accuracy score of the three synthetic data generation

technique. ADASYN produced the best performance with k-NNI + PCA + 80|20 split

and BSMOTE-SVM with k-NNI + PCA + CV, where they generate an accuracy of

1.0000. Both BSMOTE-SVM and ADSYN produced least performance with k-NNI +

UFS + 80|20 split. With k-NNI + UFS + CV, BSMOTE-SMOTE generates better

performance compared to SMOTE.

Least performance was generated when AdaBoost was trained with k-NNI + UFS +

80|20 split using BSMOTE-SVM and ADASYN, see Figure 22I. The best accuracy

 79

score was achieved when k-NNI + PCA + 80|20 split was applied using SMOTE.

Equal performance was achieved from both SMOTE and BSMOTE-SVM using k-

NNI + PCA + CV and k-NNI + UFS + CV techniques.

Lastly, Figure 22J shows GBT experimental results. Best performance was achieved

with k-NNI + PCA + 80|20 split using SMOTE, and least using BSMOTE-SVM.

Considering k-NNI + PCA + CV, SMOTE slightly performs better than BSMOTE-

SVM. Worse results were obtained with k-NNI + UFS + CV suing SMOTE and

BSMOTE-SVM, where both synthetic data generation techniques performed equally.

5.1.6 Experimental results comparison with similar studies from the literature

Comparison between results obtained from this work with similar works from the

literature has been summarized, tabulated and reported in Table 8. Best models with

highest performance metrics were selected from the literature and are compared with

similar models from this thesis. It can clearly be seen that, from the table, our proposed

models outsmart the proposed classifiers from the literature in terms of accuracy

metric of performance. Based on the comparative analysis, RF and SVC turned out to

be the best developed classifiers models, as they beat all the proposed models in this

work and also when compared with recent studies from the literature.

 80

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

P CA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-N NI +

PCA + CV

K -NN I +

UF S + C V

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
80 |2 0

SP L IT

K-NN I +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

P CA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-N NI +

PCA + CV

K -NN I +

UF S + C V

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
80 |2 0

SP L IT

K-NN I +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.85

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.85

0.9

0.95

1

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.85

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.85

0.9

0.95

1

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.7

0.8

0.9

1

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.7

0.8

0.9

1

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.7

0.8

0.9

1

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.7

0.8

0.9

1

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.75

0.85

0.95

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.75

0.85

0.95

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.75

0.85

0.95

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.75

0.85

0.95

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.1

0.5

0.9

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.1

0.5

0.9

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.1

0.5

0.9

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.1

0.5

0.9

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.7

0.85

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.7

0.85

1

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.7

0.85

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.7

0.85

1

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.9

0.95

1

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.9

0.95

1

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.9

0.95

1

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.8

0.9

1

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.8

1

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.8

0.9

1

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.8

0.9

1

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.8

0.83

0.86

0.89

0.92

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.8

0.83

0.86

0.89

0.92

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.8

0.83

0.86

0.89

0.92

M I + PCA

+ 80| 20
SPL IT

MI + PCA

+ CV

K-NN I +

PCA +
80 |2 0

SPL IT

K-N NI +

U FS +
80| 20

S PL IT

K-NNI +

PCA + CV

K -N N I +

UF S + C V

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.8

0.83

0.86

0.89

0.92

MI + PC A

+ 8 0| 20
S P L IT

M I + PCA

+ CV

K -N N I +

PC A +
80| 20

S PL IT

K-N NI +

UF S +
8 0|2 0

SPL IT

K - NNI +

PCA + C V

K- NNI +

UFS + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

0.8

0.9

1

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

A
C
C
U
R
A
C
Y

SMOTE BSMOTE-SVM ADASYN

0.8

0.9

1

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

R
EC
A
LL

SMOTE BSMOTE-SVM ADASYN

0.8

0.9

1

M I + PCA

+ 80 |20
SPL IT

MI + PCA

+ C V

K-N N I +

PCA +
80| 20

S PL IT

K-N NI +

UF S +
8 0| 20

S PL IT

K-N NI +

P CA + CV

K-NN I +

UFS + CV

P
R
EC
IS
IO
N

SMOTE BSMOTE-SVM ADASYN

0.8

0.9

1

MI + PC A

+ 8 0| 20
SPL IT

MI + PCA

+ CV

K-NNI +

PCA +
8 0| 20

S PL IT

K- NN I +

UF S +
80 |2 0

SPL IT

K-NN I +

PCA + CV

K-NN I +

UF S + CV

SP
EC
IF
IC
IT
Y

SMOTE BSMOTE-SVM ADASYN

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J)

Figure 22: Overall comparison of the experimental results; (A) MLP; (B) XGBoost; (C) LR; (D) DT; (E) NB; (F) LDA; (G) RF; (H) SVC; (I) AdaBoost; (J) GBT.

 81

Table 8: Results comparison with recent similar works form the literature.
Classifier Model Reference Validation

Technique

Imputation Features Selection SDGT Accuracy Recall Precision Specificity F1_score

LR [87] 10-Fold In-painting SELECTFDR SMOTE 0.7441 0.6538 0.1570 0.7505 -

[88] 5-Fold - - SMOTE 0.8469 - - - -

[3] 3-Fold - PCA - 0.7100 0.3100 1.0000 1.0000 0.4600

[4] 10-Fold - PCA Rare case boosting - 1.0000 0.3010 0.3350 0.4630

this work 3-Fold k-NN PCA SMOTE 0.9117 0.8419 0.9785 0.9815 0.9051

this work 80|20 split k-NN PCA SMOTE 0.9164 0.9795 0.8693 0.8537 0.9211

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9147 0.9863 0.8623 0.8435 0.9201

this work 7-Fold k-NN PCA BSMOTE-SVM 0.9159 0.8510 0.9779 0.9808 0.9100

this work 80|20 split k-NN PCA ADASYN 0.9171 0.9757 0.8700 0.8614 0.9198

this work 80|20 split k-NN SELECTFDR ADASYN 0.7577 0.7295 0.7717 0.7857 0.7500

SVM [87] 10-Fold In-painting SELECTFDR SMOTE - 0.6442 0.1572 0.7546 -

[3] 3-Fold - PCA - 0.4400 0.2300 0.6200 0.7700 0.3400

[90] train|test split - PCA Boosting 0.6830 0.7120 - - 0.6590

this work 80|20 split k-NN PCA SMOTE 0.9983 1.0000 0.9966 0.9966 0.9983

this work 3-Fold k-NN PCA SMOTE 0.9959 0.9938 0.9979 0.9979 0.9959

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9983 1.0000 0.9966 0.9966 0.9983

this work 7-Fold k-NN PCA BSMOTE-SVM 1.0000 1.0000 1.0000 1.0000 1.0000

this work 80|20 split k-NN PCA ADASYN 1.0000 1.0000 1.0000 1.0000 1.0000

this work 80|20 split k-NN SELECTFDR ADASYN 0.8208 0.8288 0.8148 0.8129 0.8217

RF [87] 10-Fold In-painting SELECTFWE SMOTE - 0.4615 0.1337 0.7874 -

[92] 70|30 split - - SMOTE 0.8930 0.2330 0.2060 0.9380 0.2190

[88] 5-Fold - - SMOTE 0.9439 - - - -

this work 80|20 split k-NN PCA SMOTE 0.9949 0.9897 1.0000 1.0000 0.9948

this work 7-Fold k-NN PCA SMOTE 0.9976 1.0000 0.9952 0.9952 0.9976

this work 80|20 split mean PCA BSMOTE-SVM 0.9710 0.9418 1.0000 1.0000 0.9700

this work 7-Fold k-NN PCA BSMOTE-SVM 0.9976 1.0000 0.9952 0.9952 0.9976

this work 80|20 split k-NN PCA ADASYN 0.9932 0.9861 1.0000 1.0000 0.9930

this work 80|20 split mean PCA ADASYN 0.9966 0.9967 0.9967 0.9966 0.9967

DT [3] 3-Fold - PCA - 0.8600 0.4700 1.0000 1.0000 0.6400

[4] 10-Fold - PCA Rare case boosting - 1.0000 0.4720 0.1610 0.6410

this work 10-Fold k-NN PCA SMOTE 0.8767 0.8356 0.9104 0.9178 0.8714

this work 80|20 split k-NN PCA SMOTE 0.9061 0.9555 0.8692 0.8571 0.9103

this work 80|20 split k-NN PCA BSMOTE-SVM 0.8669 0.9178 0.8323 0.8163 0.8730

this work 80|20 split k-NN SELECTFDR BSMOTE-SVM 0.8993 0.9178 0.8845 0.8810 0.9008

this work 80|20 split k-NN PCA ADASYN 0.8646 0.9201 0.8230 0.8119 0.8689

this work 80|20 split k-NN SELECTFDR ADASYN 0.8959 0.9144 0.8812 0.8776 0.8975

NB [3] 3-Fold - PCA - 0.6600 0.2300 0.7500 0.9500 0.3600

[90] train|test split - PCA Boosting 0.6810 0.6970 - - 0.6650

[4] 10-Fold - PCA Rare case boosting - 0.7460 0.2340 0.3520 0.3560

 82

this work 80|20 split k-NN PCA SMOTE 0.8106 0.8151 0.8068 0.8061 0.8109

this work 7-Fold k-NN PCA SMOTE 0.7861 0.7692 0.7960 0.8029 0.7824

this work 80|20 split k-NN PCA BSMOTE-SVM 0.7765 0.7568 0.7565 0.7959 0.7714

this work 7-Fold k-NN PCA BSMOTE-SVM 0.7861 0.7692 0.7960 0.8029 0.7824

this work 80|20 split k-NN PCA ADASYN 0.7902 0.7986 0.7770 0.7822 0.7877

this work 80|20 split k-NN SELECTFDR ADASYN 0.5410 0.1370 0.7018 0.9422 0.2292

MLP (ANN) [88] 5-Fold - - SMOTE 0.8893 - - - -

this work 80|20 split k-NN PCA SMOTE 0.9812 1.0000 0.9637 0.9626 0.9815

this work 7-Fold k-NN PCA SMOTE 0.9760 0.9519 1.0000 1.0000 0.9754

this work 80|20 split mean PCA BSMOTE-SVM 0.9710 0.9760 0.9661 0.9660 0.9710

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9812 1.0000 0.9637 0.9626 0.9815

this work 80|20 split k-NN PCA ADASYN 0.9812 1.0000 0.9637 0.9626 0.9815

this work 80|20 split k-NN SELECTFDR ADASYN 0.9659 0.9897 0.9444 0.9422 0.9666

NN [109] 80|20 split - SVM - 0.9360 0.9180 0.9970 0.0810 0.957

GBT [109] 80|20 split - MARS - 0.9000 0.9000 0.8840 0.7080 0.8910

this work 80|20 split k-NN PCA SMOTE 0.9795 0.9829 0.9762 0.9762 0.9795

this work 7-Fold k-NN PCA SMOTE 0.9760 0.9615 0.9901 0.9904 0.9756

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9659 0.9726 0.9595 0.9592 0.9660

this work 7-Fold k-NN SELECTFDR BSMOTE-SVM 0.9161 0.8750 0.9529 0.9569 0.9123

this work 80|20 split k-NN PCA ADASYN 0.9763 0.9896 0.9628 0.9637 0.9760

this work 80|20 split k-NN SELECTFDR ADASYN 0.9232 0.9452 0.9049 0.9014 0.9246

PSO-DBN [96] 70|30 split - MEDSD SMOTE 0.8659 0.9831 - 0.8485 -

SDGT: Synthetic data generation technique;

 83

5.2 Summary of the chapter

The experimental results obtained in this work using 18 proposed methodologies are

reported in this chapter. The proposed methodologies are: MI + PCA + 80|20 split, MI

+ PCA + CV, k-NNI + PCA + 80|20 split, k-NNI + UFS + 80|20 split, k-NNI + PCA

+ CV, and k-NNI + UFS +CV versus three SDGT (including SMOTE, BSMOTE-

SVM, and ADASYN). Before the ML predictive models’ development, the dataset has

gone through stages of preprocessing, missing data points imputation, feature

selection, feature normalization and data sampling technique of oversampling the

minority class (fail class). Moreover, 80|20 holdout-split and k-Fold cross validation

were applied to evaluate the performance of the developed models.

Firstly, the effect of each proposed data preprocessing step is analyzed. Section 5.1.1

reported the experimental results. Table 5 showed the detailed results obtained in that

section. Secondly, section 5.1.2 presented the experimental results obtained using

SMOTE on the six proposed methodologies. Thirdly, section 5.1.3 reported the general

experimental results obtained using Borderline-SMOTE SVM on the six proposed

methodologies. Fourthly, section 5.1.4 reported ADASYN experimental results using

the proposed methodologies. Then, section 5.1.5 reported the experimental results

general comparison analysis considering several perfectives. Lastly, section 5.1.6 gave

the extensive comparative analysis between our obtained experimental results and

similar studies reported experimental results (Table 8).

Overall, this work shows the feasibility of the two variants of synthetic minority

oversampling technique (SMOTE) using 18 different methodologies on ten fault

diagnosis machine learning models in the semiconductor manufacturing processes.

 84

Moreover, the performance of these models developed using both SDGT techniques

(BSMOTE-SVM and ADASYN) has been compared with the models developed using

6 different methodologies with the utilization of SMOTE. See Table 7 and Figure 22.

From the extensive results obtained and the models’ performance, similar trends have

been observed within these three adopted minority oversampling techniques, however

with some little differences from some of the proposed models and methodologies.

The next chapter presents the conclusions and the future directions of this work.

 85

Chapter 6

6 CONCLUSIONS and FUTURE WORKS

6.1 Conclusions

In this work, machine learning-based methodologies for fault diagnosis towards noisy,

and imbalanced dataset within smart manufacturing systems for the semiconductor

manufacturing process were proposed. These proposed methodologies consider the

effects of missing values, redundant and noisy features, and class imbalance problem.

The key contribution of this work relies on the implementation and comparison of two

different missing datapoint imputation techniques including mean and k-NN

imputation techniques; implementation and comparison of two different features

selection techniques including PCA and univariate feature selection; and;

implementation and comparison of three synthetic data generation techniques

including SMOTE, BSMOTE-SVM, and ADASYN for synthetic data generation to

handle the class imbalance distribution of the dataset. Ten prediction machine learning

classifiers have been developed, namely; MLP (ANN), XGBoost, LR, DT, NB, LDA,

RF, SVC, AdaBoost, and GBT. Their performance has been validated and compared

on 18 different proposed methodologies using two different validation techniques

involving 80|20-split and k-Fold cross-validation.

SECOM dataset was used as a case study to investigate the influence of these proposed

methodologies and models. Experimental results across seven evaluation metrics of

performance obtained from these models and methodologies were significant.

 86

Moreover, the extensive experimental results obtained from this work were compared

with recent similar studies reported from the literature to further validate the feasibility

of these proposed models and methodologies. Based on the extensive results obtained

and the analysis of the comparison, it has been proven that the methodologies and

models proposed in this work outperformed the methodologies and models proposed

from similar studies.

6.2 Future works

For future research directions, the following are suggested:

• Some of the developed machine learning models require hyperparameters

tuning based on the results obtained from these models, as they produced very

low performance. However, we could not do so due to some limitations

regarding computational resources. To improve the performance of some of

the models proposed like DT and NB, etc. Hyperparameter-tuning could be

implemented using optimization-based techniques like random and grid search

algorithms, genetic algorithm, particle swamp optimization, and simulated

annealing.

• The influence of some other different techniques of datapoint imputation and

feature selection techniques on both BSMMOTE-SVM and ADASYN could

be investigated to further validate the robustness of these synthetic data

generation techniques on the SECOM dataset, similarly, on any dataset from

any domain with similar problem.

• These suggested methodologies could be extended further to analyze their

feasibility on various redundant, noisy, and imbalanced datasets from any

domain, particularly, smart manufacturing domains.

 87

REFERENCES

[1] Z. M. Çinar, A. A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, and B. Safaei,

“Machine learning in predictive maintenance towards sustainable smart

manufacturing in industry 4.0,” Sustain., vol. 12, no. 19, 2020, doi:

10.3390/su12198211.

[2] C. M. Carbery, R. Woods, and A. H. Marshall, “A new data analytics

framework emphasising preprocessing of data to generate insights into complex

manufacturing systems,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol.

233, no. 19–20, pp. 6713–6726, 2019, doi: 10.1177/0954406219866867.

[3] S. Munirathinam and B. Ramadoss, “Predictive Models for Equipment Fault

Detection in the Semiconductor Manufacturing Process,” Int. J. Eng. Technol.,

vol. 8, no. 4, pp. 273–285, 2016, doi: 10.7763/ijet.2016.v8.898.

[4] K. Kerdprasop and N. Kerdprasop, “A data mining approach to automate fault

detection model development in the semiconductor manufacturing process,”

Int. J. Mech., vol. 5, no. 4, pp. 336–344, 2011.

[5] W. Zhang, D. Yang, and H. Wang, “Data-Driven Methods for Predictive

Maintenance of Industrial Equipment: A Survey,” IEEE Syst. J., vol. 13, no. 3,

pp. 2213–2227, 2019, doi: 10.1109/jsyst.2019.2905565.

[6] T. Wuest, D. Weimer, C. Irgens, and K. D. Thoben, “Machine learning in

 88

manufacturing: Advantages, challenges, and applications,” Prod. Manuf. Res.,

vol. 4, no. 1, pp. 23–45, 2016, doi: 10.1080/21693277.2016.1192517.

[7] M. Ghahramani, Y. Qiao, M. C. Zhou, A. O. Hagan, and J. Sweeney, “AI-based

modeling and data-driven evaluation for smart manufacturing processes,”

IEEE/CAA J. Autom. Sin., vol. 7, no. 4, pp. 1026–1037, 2020, doi:

10.1109/JAS.2020.1003114.

[8] S. Kang, D. An, and J. Rim, “Incorporating virtual metrology into failure

prediction,” IEEE Trans. Semicond. Manuf., vol. 32, no. 4, pp. 553–558, 2019,

doi: 10.1109/TSM.2019.2932377.

[9] A. J. Su, J. C. Jeng, H. P. Huang, C. C. Yu, S. Y. Hung, and C. K. Chao,

“Control relevant issues in semiconductor manufacturing: Overview with some

new results,” Control Eng. Pract., vol. 15, no. 10 SPEC. ISS., pp. 1268–1279,

2007, doi: 10.1016/j.conengprac.2006.11.003.

[10] C. A. Mack, “FiftyYears of Moore ’ s Law,” IEEE Fellow, vol. 24, no. 2, p.

2008, 2011.

[11] N. Kumar, K. Kennedy, K. Gildersleeve, R. Abelson, C. M. Mastrangelo, and

D. C. Montgomery, “A review of yield modelling techniques for semiconductor

manufacturing,” Int. J. Prod. Res., vol. 44, no. 23, pp. 5019–5036, 2006, doi:

10.1080/00207540600596874.

 89

[12] C. K. Shin and S. C. Park, “A machine learning approach to yield management

in semiconductor manufacturing,” Int. J. Prod. Res., vol. 38, no. 17, pp. 4261–

4271, 2000, doi: 10.1080/00207540050205073.

[13] C. F. Chien, W. C. Wang, and J. C. Cheng, “Data mining for yield enhancement

in semiconductor manufacturing and an empirical study,” Expert Syst. Appl.,

vol. 33, no. 1, pp. 192–198, 2007, doi: 10.1016/j.eswa.2006.04.014.

[14] N. Amruthnath and T. Gupta, “A research study on unsupervised machine

learning algorithms for early fault detection in predictive maintenance,” 2018

5th Int. Conf. Ind. Eng. Appl. ICIEA 2018, no. August 1993, pp. 355–361, 2018,

doi: 10.1109/IEA.2018.8387124.

[15] V. Mathew, T. Toby, V. Singh, B. M. Rao, and M. G. Kumar, “Prediction of

Remaining Useful Lifetime (RUL) of turbofan engine using machine learning,”

IEEE Int. Conf. Circuits Syst. ICCS 2017, vol. 2018-Janua, no. Iccs, pp. 306–

311, 2018, doi: 10.1109/ICCS1.2017.8326010.

[16] M. C. Testik, “Expert Systems with Applications A review of data mining

applications for quality improvement in manufacturing industry,” vol. 38, pp.

13448–13467, 2011, doi: 10.1016/j.eswa.2011.04.063.

[17] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto,

and S. G. S. Alcalá, “A systematic literature review of machine learning

methods applied to predictive maintenance,” Comput. Ind. Eng., vol. 137, no.

 90

September, p. 106024, 2019, doi: 10.1016/j.cie.2019.106024.

[18] M. E. Centre, “Machine-learning techniques and their applications in

manufacturing,” vol. 219, pp. 395–412, 2005, doi: 10.1243/095440505X32274.

[19] L. Monostori, “AI and machine learning techniques for managing complexity,

changes and uncertainties in manufacturing,” in Engineering Applications of

Artificial Intelligence, 2003, vol. 16, no. 4, pp. 277–291, doi: 10.1016/S0952-

1976(03)00078-2.

[20] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A.

P. Sheth, “Machine learning for internet of things data analysis: a survey,”

Digit. Commun. Networks, vol. 4, no. 3, pp. 161–175, 2018, doi:

10.1016/j.dcan.2017.10.002.

[21] B. Mohammadi et al., “Developing Novel Robust Models to Improve the

Accuracy of Daily Streamflow Modeling,” Water Resour. Manag., vol. 34, no.

10, pp. 3387–3409, 2020, doi: 10.1007/s11269-020-02619-z.

[22] B. Mohammadi, Y. Guan, R. Moazenzadeh, and M. J. S. Safari,

“Implementation of hybrid particle swarm optimization-differential evolution

algorithms coupled with multi-layer perceptron for suspended sediment load

estimation,” Catena, no. October, p. 105024, 2020, doi:

10.1016/j.catena.2020.105024.

 91

[23] B. Turkoglu and E. Kaya, “Training multi-layer perceptron with artificial algae

algorithm,” Eng. Sci. Technol. an Int. J., no. xxxx, 2020, doi:

10.1016/j.jestch.2020.07.001.

[24] S. A. Kalogirou, “Artificial neural networks in renewable energy systems

applications: A review,” Renewable and Sustainable Energy Reviews, vol. 5,

no. 4. pp. 373–401, 2000, doi: 10.1016/S1364-0321(01)00006-5.

[25] T. Sexton, M. P. Brundage, M. Hoffman, and K. C. Morris, “Hybrid datafication

of maintenance logs from AI-assisted human tags,” Proc. - 2017 IEEE Int. Conf.

Big Data, Big Data 2017, vol. 2018-Janua, pp. 1769–1777, 2017, doi:

10.1109/BigData.2017.8258120.

[26] C. C. Chang and C. J. Lin, “LIBSVM: A Library for support vector machines,”

ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011, doi:

10.1145/1961189.1961199.

[27] W. M. T. W. Ahmad, N. L. A. Ghani, and S. M. Drus, “Data mining techniques

for disease risk prediction model: A systematic literature review,” Adv. Intell.

Syst. Comput., vol. 843, pp. 40–46, 2019, doi: 10.1007/978-3-319-99007-1_4.

[28] U. B. Parikh, B. Das, and R. Maheshwari, “Fault classification technique for

series compensated transmission line using support vector machine,” Int. J.

Electr. Power Energy Syst., vol. 32, no. 6, pp. 629–636, 2010, doi:

10.1016/j.ijepes.2009.11.020.

 92

[29] DataFlair Team, “Support Vector Machines Tutorial – Learn to implement

SVM in Python,” Data Flair, 2019.

[30] L. Breiman, Random forests. 2001.

[31] S. Polamuri, “How Does the Random Forest Algorithm Work in Machine

Learning,” 2017. .

[32] ODSC, “Logistic Regression with Python,” 2019. .

[33] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proc.

ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785–

794, 2016, doi: 10.1145/2939672.2939785.

[34] J. Friedman, “Greedy Function Approximation : A Gradient Boosting Machine

Author (s): Jerome H . Friedman Source : The Annals of Statistics , Vol . 29 ,

No . 5 (Oct ., 2001), pp . 1189-1232 Published by : Institute of Mathematical

Statistics Stable URL : http://www,” Ann. Stat., vol. 29, no. 5, pp. 1189–1232,

2001.

[35] S. Asante-Okyere, C. Shen, Y. Y. Ziggah, M. M. Rulegeya, and X. Zhu, “A

Novel Hybrid Technique of Integrating Gradient-Boosted Machine and

Clustering Algorithms for Lithology Classification,” Nat. Resour. Res., vol. 29,

no. 4, pp. 2257–2273, 2020, doi: 10.1007/s11053-019-09576-4.

[36] Y. C. Chang, K. H. Chang, and G. J. Wu, “Application of eXtreme gradient

 93

boosting trees in the construction of credit risk assessment models for financial

institutions,” Appl. Soft Comput. J., vol. 73, pp. 914–920, 2018, doi:

10.1016/j.asoc.2018.09.029.

[37] V. Sugumaran, V. Muralidharan, and K. I. Ramachandran, “Feature selection

using Decision Tree and classification through Proximal Support Vector

Machine for fault diagnostics of roller bearing,” Mech. Syst. Signal Process.,

vol. 21, no. 2, pp. 930–942, 2007, doi: 10.1016/j.ymssp.2006.05.004.

[38] S. Rasoul and L. David, “A Survey of Decision Tree Classifier Methodology,”

IEEE Trans. Syst. Man. Cybern., vol. 21, no. 3, pp. 660–674, 1991.

[39] R. Silipo, “From a Single Decision Tree to a Random Forest,” Towar. Data Sci.,

2019.

[40] A. Lasisi and N. Attoh-Okine, “Principal components analysis and track quality

index: A machine learning approach,” Transp. Res. Part C Emerg. Technol.,

vol. 91, no. July 2017, pp. 230–248, 2018, doi: 10.1016/j.trc.2018.04.001.

[41] A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 23, no. 2, pp. 228–233, 2001, doi: 10.1109/34.908974.

[42] J. Too, A. R. Abdullah, and N. M. Saad, “Classification of Hand movements

based on discrete wavelet transform and enhanced feature extraction,” Int. J.

Adv. Comput. Sci. Appl., vol. 10, no. 6, pp. 83–89, 2019, doi:

 94

10.14569/ijacsa.2019.0100612.

[43] Y. Ren, H. Liu, C. Xue, X. Yao, M. Liu, and B. Fan, “Classification study of

skin sensitizers based on support vector machine and linear discriminant

analysis,” Anal. Chim. Acta, vol. 572, no. 2, pp. 272–282, 2006, doi:

10.1016/j.aca.2006.05.027.

[44] Y. Lu and Q. Tian, “Discriminant subspace analysis: An adaptive approach for

image classification,” IEEE Trans. Multimed., vol. 11, no. 7, pp. 1289–1300,

2009, doi: 10.1109/TMM.2009.2030632.

[45] G. Wang, T. Xu, H. Wang, and Y. Zou, “AdaBoost and Least Square Based

Failure Prediction of Railway Turnouts,” Proc. - 2016 9th Int. Symp. Comput.

Intell. Des. Isc. 2016, vol. 1, pp. 434–437, 2016, doi:

10.1109/ISCID.2016.1107.

[46] P. Tavallali, M. Yazdi, and M. R. Khosravi, “Robust cascaded skin detector

based on AdaBoost,” Multimed. Tools Appl., vol. 78, no. 2, pp. 2599–2620,

2019, doi: 10.1007/s11042-018-6385-7.

[47] F. Wang, D. Jiang, H. Wen, and H. Song, “Adaboost-based security level

classification of mobile intelligent terminals,” J. Supercomput., vol. 75, no. 11,

pp. 7460–7478, 2019, doi: 10.1007/s11227-019-02954-y.

[48] R. E. Schapire, “Explaining adaboost,” Empir. Inference Festschrift Honor

 95

Vladimir N. Vapnik, pp. 37–52, 2013, doi: 10.1007/978-3-642-41136-6_5.

[49] D. S. Sayad, “Naive Bayesian,” pp. 1–4, 2010, Accessed: Nov. 24, 2020.

[Online]. Available: https://www.saedsayad.com/naive_bayesian.htm.

[50] M. H. Jopri, M. R. Ab Ghani, A. R. Abdullah, T. Sutikno, M. Manap, and J.

Too, “Naïve bayes and linear discriminate analysis based diagnostic analytic of

harmonic source identification,” Indones. J. Electr. Eng. Comput. Sci., vol. 20,

no. 3, pp. 1626–1633, 2020, doi: 10.11591/ijeecs.v20.i3.pp1626-1633.

[51] G. H. John and P. Langley, “Estimating Continuous Distributions in Bayesian

Classifiers,” pp. 338–345, 1995.

[52] P. Zheng and A. S. Sivabalan, “A generic tri-model-based approach for product-

level digital twin development in a smart manufacturing environment,” Robot.

Comput. Integr. Manuf., vol. 64, no. August 2019, p. 101958, 2020, doi:

10.1016/j.rcim.2020.101958.

[53] D. Wu, C. Jennings, J. Terpenny, R. Gao, and S. Kumara, “Data-driven

prognostics using random forests: Prediction of tool wear,” ASME 2017 12th

Int. Manuf. Sci. Eng. Conf. MSEC 2017 collocated with JSME/ASME 2017 6th

Int. Conf. Mater. Process., vol. 3, pp. 1–9, 2017, doi: 10.1115/MSEC2017-

2679.

[54] M. Helu and T. Hedberg, “Enabling Smart Manufacturing Research and

 96

Development using a Product Lifecycle Test Bed,” Procedia Manuf., vol. 1, no.

Wolf 2009, pp. 86–97, 2015, doi: 10.1016/j.promfg.2015.09.066.

[55] W. Tao, Z. H. Lai, M. C. Leu, and Z. Yin, “Worker Activity Recognition in

Smart Manufacturing Using IMU and sEMG Signals with Convolutional

Neural Networks,” Procedia Manuf., vol. 26, pp. 1159–1166, 2018, doi:

10.1016/j.promfg.2018.07.152.

[56] J. Wang and D. Li, “Adaptive computing optimization in software-defined

network-based industrial internet of things with fog computing,” Sensors

(Switzerland), vol. 18, no. 8, 2018, doi: 10.3390/s18082509.

[57] K. Nagorny, P. Lima-Monteiro, J. Barata, and A. W. Colombo, “Big Data

Analysis in Smart Manufacturing: A Review,” Int. J. Commun. Netw. Syst. Sci.,

vol. 10, no. 03, pp. 31–58, 2017, doi: 10.4236/ijcns.2017.103003.

[58] M. Quirk and J. Serda, “Semiconductor Manufacturing Technology [slides],”

2001, [Online]. Available:

http://jupiter.math.nctu.edu.tw/~weng/courses/IC_2007/PROJECT_MATH_C

LASS3/device/integrated circuit technique/integrated circuit

technique/%A5b%BE%C9%C5%E9%BBs%B5%7B2%A4%B64.pdf%5Cnpa

pers3://publication/uuid/DC7DF81C-A448-4E9D-9DEE-93953E3ADF8C.

[59] G. A. Susto, “Statistical Methods for Semiconductor Manufactureing,” 2013.

 97

[60] D. Stanisavljevic and M. Spitzer, “A review of related work on machine

learning in semiconductor manufacturing and assembly lines,” CEUR

Workshop Proc., vol. 1793, 2017.

[61] “State of semiconductor industry - Blogs - Televisory.”

https://www.televisory.com/blogs/-/blogs/state-of-semiconductor-industry

(accessed Feb. 28, 2021).

[62] “File:12-inch silicon wafer.jpg - Wikimedia Commons.”

https://commons.wikimedia.org/wiki/File:12-inch_silicon_wafer.jpg (accessed

Feb. 28, 2021).

[63] T. Pfingsten, D. J. L. Herrmann, T. Schnitzler, A. Feustel, and B. Schölkopf,

“Feature selection for troubleshooting in complex assembly lines,” IEEE Trans.

Autom. Sci. Eng., vol. 4, no. 3, pp. 465–469, 2007, doi:

10.1109/TASE.2006.888054.

[64] M. Mccann, Y. Li, L. Maquire, and A. Johnston, “Causality Challenge:

Benchmarking relevant signal components for effective monitoring and process

control,” J. Mach. Learn. Res. Work. Conf. Proc., vol. 6, no. February, pp. 277–

288, 2010, [Online]. Available:

http://www.causality.inf.ethz.ch/data/SECOM.zip%5Cnhttp://jmlr.csail.mit.ed

u/proceedings/papers/v6/.

[65] D. H. Lee, J. K. Yang, C. H. Lee, and K. J. Kim, “A data-driven approach to

 98

selection of critical process steps in the semiconductor manufacturing process

considering missing and imbalanced data,” J. Manuf. Syst., vol. 52, no. May,

pp. 146–156, 2019, doi: 10.1016/j.jmsy.2019.07.001.

[66] J. C. Chien, M. T. Wu, and J. Der Lee, “Inspection and classification of

semiconductor wafer surface defects using CNN deep learning networks,” Appl.

Sci., vol. 10, no. 15, pp. 1–13, 2020, doi: 10.3390/APP10155340.

[67] “UCI Machine Learning Repository: SECOM Data Set.”

https://archive.ics.uci.edu/ml/datasets/SECOM (accessed Jan. 17, 2021).

[68] M. Mccann, Y. Li, L. Maquire, and A. Johnston, “Causality Challenge:

Benchmarking relevant signal components for effective monitoring and process

control,” J. Mach. Learn. Res. Work. Conf. Proc., vol. 6, pp. 277–288, 2010,

[Online]. Available:

http://www.causality.inf.ethz.ch/data/SECOM.zip%5Cnhttp://jmlr.csail.mit.ed

u/proceedings/papers/v6/.

[69] D. Kibira, K. C. Morris, and S. Kumaraguru, “Methods and tools for

performance assurance of smart manufacturing systems,” J. Res. Natl. Inst.

Stand. Technol., vol. 121, pp. 282–313, 2016, doi: 10.6028/jres.121.013.

[70] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning for smart

manufacturing: Methods and applications,” J. Manuf. Syst., vol. 48, pp. 144–

156, 2018, doi: 10.1016/j.jmsy.2018.01.003.

 99

[71] J. A. Harding, M. Shahbaz, Srinivas, and A. Kusiak, “Data mining in

manufacturing: A review,” J. Manuf. Sci. Eng. Trans. ASME, vol. 128, no. 4,

pp. 969–976, 2006, doi: 10.1115/1.2194554.

[72] B. T. Hazen, C. A. Boone, J. D. Ezell, and L. A. Jones-Farmer, “Data quality

for data science, predictive analytics, and big data in supply chain management:

An introduction to the problem and suggestions for research and applications,”

Int. J. Prod. Econ., vol. 154, pp. 72–80, 2014, doi: 10.1016/j.ijpe.2014.04.018.

[73] B. Esmaeilian, S. Behdad, and B. Wang, “The evolution and future of

manufacturing: A review,” J. Manuf. Syst., vol. 39, pp. 79–100, 2016, doi:

10.1016/j.jmsy.2016.03.001.

[74] S. J. Shin, J. Woo, and S. Rachuri, “Predictive analytics model for power

consumption in manufacturing,” Procedia CIRP, vol. 15, pp. 153–158, 2014,

doi: 10.1016/j.procir.2014.06.036.

[75] H. S. Kang et al., “Smart manufacturing: Past research, present findings, and

future directions,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 3, no. 1,

pp. 111–128, 2016, doi: 10.1007/s40684-016-0015-5.

[76] M. Sharp, R. Ak, and T. H. Jr, “A survey of the advancing use and development

of machine learning in smart manufacturing,” J. Manuf. Syst., vol. 48, pp. 170–

179, 2018, doi: 10.1016/j.jmsy.2018.02.004.

 100

[77] D. Wu, C. Jennings, J. Terpenny, R. X. Gao, and S. Kumara, “A Comparative

Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear

Prediction Using Random Forests,” J. Manuf. Sci. Eng. Trans. ASME, vol. 139,

no. 7, pp. 1–9, 2017, doi: 10.1115/1.4036350.

[78] E. Mora, P. Gaiardelli, B. Resta, and D. Powell, “A Review of Current Machine

Learning Techniques Used in Manufacturing Diagnosis,” APMS 2017 Adv.

Prod. Manag. Syst. Path to Intelligent, Collab. Sustain. Manuf., vol. 513, no. ii,

pp. 127–134, 2017, doi: 10.1007/978-3-319-66923-6.

[79] D. Carrera, F. Manganini, G. Boracchi, and E. Lanzarone, “Defect detection in

SEM images of nanofibrous materials,” IEEE Trans. Ind. Informatics, vol. 13,

no. 2, pp. 551–561, 2017, doi: 10.1109/TII.2016.2641472.

[80] I. Shin et al., “A Framework for Prognostics and Health Management

Applications toward Smart Manufacturing Systems,” Int. J. Precis. Eng. Manuf.

- Green Technol., vol. 5, no. 4, pp. 535–554, 2018, doi: 10.1007/s40684-018-

0055-0.

[81] M. Moghaddam, A. Jones, and T. Wuest, “Design of Marketplaces for Smart

Manufacturing Services,” Procedia Manuf., vol. 39, no. 2019, pp. 194–201,

2019, doi: 10.1016/j.promfg.2020.01.312.

[82] M. Miškuf and I. Zolotová, “Comparison between multi-class classifiers and

deep learning with focus on industry 4.0,” 2016 Cybern. Informatics, K I 2016

 101

- Proc. 28th Int. Conf., pp. 1–5, 2016, doi: 10.1109/CYBERI.2016.7438633.

[83] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning for smart

manufacturing : Methods and applications,” J. Manuf. Syst., vol. 48, pp. 144–

156, 2018, doi: 10.1016/j.jmsy.2018.01.003.

[84] D. Fuqua and T. Razzaghi, “A cost-sensitive convolution neural network

learning for control chart pattern recognition,” Expert Syst. Appl., vol. 150,

2020, doi: 10.1016/j.eswa.2020.113275.

[85] Y. G. Oh, M. Busogi, K. Ransikarbum, D. Shin, D. Kwon, and N. Kim, “Real-

time quality monitoring and control system using an integrated cost effective

support vector machine,” J. Mech. Sci. Technol., vol. 33, no. 12, pp. 6009–6020,

2019, doi: 10.1007/s12206-019-1145-9.

[86] L. Oneto, I. Orlandi, and D. Anguita, “Performance assessment and uncertainty

quantification of predictive models for smart manufacturing systems,” Proc. -

2015 IEEE Int. Conf. Big Data, IEEE Big Data 2015, pp. 1436–1445, 2015,

doi: 10.1109/BigData.2015.7363904.

[87] M. Salem, S. Taheri, and J.-S. Yuan, “An Experimental Evaluation of Fault

Diagnosis from Imbalanced and Incomplete Data for Smart Semiconductor

Manufacturing,” Big Data Cogn. Comput., vol. 2, no. 4, p. 30, 2018, doi:

10.3390/bdcc2040030.

 102

[88] A. Chazhoor, Y. Mounika, M. Vergin Raja Sarobin, M. V Sanjana, and R.

Yasashvini, “Predictive Maintenance using Machine Learning Based

Classification Models,” IOP Conf. Ser. Mater. Sci. Eng., vol. 954, p. 012001,

2020, doi: 10.1088/1757-899x/954/1/012001.

[89] I. Anghel, T. Cioara, D. Moldovan, I. Salomie, and M. M. Tomus, “Prediction

of Manufacturing Processes Errors: Gradient Boosted Trees Versus Deep

Neural Networks,” Proc. - 16th Int. Conf. Embed. Ubiquitous Comput. EUC

2018, pp. 29–36, 2018, doi: 10.1109/EUC.2018.00012.

[90] H. A. Kao, Y. S. Hsieh, C. H. Chen, and J. Lee, “Quality prediction modeling

for multistage manufacturing based on classification and association rule

mining,” MATEC Web Conf., vol. 123, 2017, doi:

10.1051/matecconf/201712300029.

[91] D. Moldovan, T. Cioara, I. Anghel, and I. Salomie, “Machine learning for

sensor-based manufacturing processes,” Proc. - 2017 IEEE 13th Int. Conf.

Intell. Comput. Commun. Process. ICCP 2017, pp. 147–154, 2017, doi:

10.1109/ICCP.2017.8116997.

[92] J. Kim, Y. Han, and J. Lee, “Data Imbalance Problem solving for SMOTE

Based Oversampling: Study on Fault Detection Prediction Model in

Semiconductor Manufacturing Process,” vol. 133, pp. 79–84, 2016, doi:

10.14257/astl.2016.133.15.

 103

[93] Y. C. Ko and H. Fujita, “An evidential analytics for buried information in big

data samples: Case study of semiconductor manufacturing,” Inf. Sci. (Ny)., vol.

486, pp. 190–203, 2019, doi: 10.1016/j.ins.2019.01.079.

[94] Y. Takahashi, M. Asahara, and K. Shudo, “A Framework for Model Search

Across Multiple Machine Learning Implementations,” arXiv, 2019.

[95] D. Moldovan, V. Chifu, C. Pop, T. Cioara, I. Anghel, and I. Salomie, “Chicken

Swarm Optimization and Deep Learning for Manufacturing Processes,” Proc. -

17th RoEduNet IEEE Int. Conf. Netw. Educ. Res. RoEduNet 2018, pp. 18–23,

2018, doi: 10.1109/ROEDUNET.2018.8514152.

[96] J. K. Kim, Y. S. Han, and J. S. Lee, “Particle swarm optimization–deep belief

network–based rare class prediction model for highly class imbalance

problem,” Concurr. Comput. , vol. 29, no. 11, 2017, doi: 10.1002/cpe.4128.

[97] G. E. A. P. A. Batista and M. C. Monard, “A study of k-nearest neighbour as an

imputation method,” Front. Artif. Intell. Appl., vol. 87, no. June, pp. 251–260,

2002.

[98] O. Troyanskaya et al., “Missing value estimation methods for DNA

microarrays,” Bioinformatics, vol. 17, no. 6, pp. 520–525, 2001, doi:

10.1093/bioinformatics/17.6.520.

[99] H. De Silva and A. S. Perera, “Missing data imputation using Evolutionary k-

 104

Nearest neighbor algorithm for gene expression data,” 16th Int. Conf. Adv. ICT

Emerg. Reg. ICTer 2016 - Conf. Proc., pp. 141–146, 2017, doi:

10.1109/ICTER.2016.7829911.

[100] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley Interdiscip.

Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, 2010, doi: 10.1002/wics.101.

[101] W. P. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, “SMOTE:

synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, pp.

321–357, 2002, [Online]. Available:

https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.com/horrors/insect

s/telamonia.asp.

[102] “5 SMOTE Techniques for Oversampling your Imbalance Data | by Cornellius

Yudha Wijaya | Towards Data Science.” https://towardsdatascience.com/5-

smote-techniques-for-oversampling-your-imbalance-data-b8155bdbe2b5

(accessed Dec. 27, 2020).

[103] Q. Wang, Z. Luo, J. Huang, Y. Feng, and Z. Liu, “A Novel Ensemble Method

for Imbalanced Data Learning,” Comput. Intell. Neurosci., vol. 2017, pp. 1–11,

2017.

[104] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic sampling

approach for imbalanced learning,” Proc. Int. Jt. Conf. Neural Networks, no. 3,

pp. 1322–1328, 2008, doi: 10.1109/IJCNN.2008.4633969.

 105

[105] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model

selection,” Stat. Surv., vol. 4, pp. 40–79, 2010, doi: 10.1214/09-SS054.

[106] C. Hu, B. D. Youn, P. Wang, and J. Taek Yoon, “Ensemble of data-driven

prognostic algorithms for robust prediction of remaining useful life,” Reliab.

Eng. Syst. Saf., vol. 103, pp. 120–135, 2012, doi: 10.1016/j.ress.2012.03.008.

[107] A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation

modeling for aircraft engine run-to-failure simulation,” 2008 Int. Conf. Progn.

Heal. Manag. PHM 2008, 2008, doi: 10.1109/PHM.2008.4711414.

[108] Y. Zhou, T. A. Mazzuchi, and S. Sarkani, “M-AdaBoost-A based ensemble

system for network intrusion detection,” Expert Syst. Appl., vol. 162, no.

August, p. 113864, 2020, doi: 10.1016/j.eswa.2020.113864.

[109] I. Anghel, T. Cioara, D. Moldovan, I. Salomie, and M. M. Tomus, “Prediction

of Manufacturing Processes Errors: Gradient Boosted Trees Versus Deep

Neural Networks,” Proc. - 16th Int. Conf. Embed. Ubiquitous Comput. EUC

2018, no. February 2020, pp. 29–36, 2018, doi: 10.1109/EUC.2018.00012.

 106

APPENDICES

 107

Appendix A: Tabular supplementary experimental results

Table 9: Accuracy-based results comparison amongst MRD, MRD with main data preprocessing step effects, and PM using SMOTE.

 Methods:

Accuracy:

MRD +

80|20 split

MRD + MI + 80|20

split

MRD + MI + FS+

PCA+ 80|20 split

MRD + MI + SMOTE +

80|20 split

PM: - MI + PCA + SMOTE +

80|20 split

PM: - k-NNI + PCA + SMOTE +

80|20 split

PM: - k-NNI + UFS + SMOTE +

80|20 split

MLP NAN 0.7293 0.9268 0.9215 0.9829 0.9812 0.9710

XGBoost 0.9363 0.9363 0.9299 0.9676 0.9744 0.9625 0.9164

LR NAN 0.9299 0.9363 0.7235 0.8976 0.9164 0.7901

DT NAN 0.8885 0.8503 0.9078 0.8532 0.9061 0.8976

NB NAN 0.2070 0.9013 0.5734 0.7696 0.8106 0.5631

LDA NAN 0.9108 0.9236 0.9147 0.8771 0.8942 0.7901

RF NAN 0.9363 0.9363 0.9846 0.9983 0.9949 0.9744

SVC NAN 0.9363 0.9363 0.6775 0.9966 0.9983 0.8686

AdaBoost NAN 0.9236 0.9236 0.9266 0.8720 0.8925 0.8669

GBT NAN 0.9331 0.9331 0.9642 0.9761 0.9795 0.9232

MRD: Modified raw dataset; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; 80|20 split: 80|20 split validation technique; PM: Proposed methodology;

Table 10: Confusion matrix results obtained before and after each step.
 MRD MRD + MI MRD + k-NNI MRD + MI + PCA MRD + MI + FS + PCA MRD + MI + SMOTE

TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

MLP - - - - 224 5 70 15 287 0 7 20 291 0 3 20 292 1 2 19 263 277 31 15

XGBoost 294 0 0 20 294 0 0 20 294 0 0 20 292 0 2 20 294 0 0 20 287 280 7 12

LR - - - - 292 0 2 20 292 0 2 20 294 0 0 20 279 5 15 15 210 214 84 78

DT - - - - 276 3 18 17 276 5 18 15 267 0 27 20 275 3 19 17 252 280 42 12

NB - - - - 51 14 243 6 42 15 252 5 282 1 12 19 278 1 16 19 55 281 239 11

LDA - - - - 277 9 17 11 281 8 13 12 290 4 0 20 286 4 8 16 244 292 50 0

RF - - - - 294 0 0 20 294 0 0 20 294 0 0 20 294 0 0 20 293 284 1 8

SVC - - - - 294 0 0 20 294 0 0 20 294 0 0 20 294 0 0 20 164 233 130 59

AdaBoost - - - - 289 1 5 19 288 4 6 16 290 0 4 20 287 0 7 20 270 273 24 19

GBT - - - - 293 0 1 20 290 2 4 18 293 0 1 20 291 0 3 20 285 280 9 12

MRD: Modified raw dataset; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; TP: True positive; TN: True negative; FP: False positive; FN: False negative;

 108

Table 11: Confusion matrix of the overall experimental results obtained.
 MI + PCA + 80|20-split MI + PCA + CV k-NNI + PCA + 80|20-split k-NNI + UFS + 80|20-split k-NNI + PCA + CV k-NNI + UFS + CV

SDGT Model TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

SMOTE MLP 284 292 10 0 200 209 0 8 283 292 11 0 277 292 17 0 198 209 0 10 193 208 0 15

XGBoost 285 286 9 6 106 111 1 6 277 287 17 5 260 277 34 15 107 110 1 4 97 107 4 15

LR 242 284 52 8 410 477 10 77 251 286 43 6 233 230 61 62 410 478 9 77 372 375 112 115

DT 234 266 60 26 125 133 12 21 252 279 42 13 256 270 38 22 122 134 12 24 123 134 12 23

NB 218 233 76 59 156 175 34 52 237 238 57 54 277 53 17 239 160 167 41 48 197 30 178 12

LDA 233 281 61 11 168 199 9 40 238 286 56 6 229 234 65 58 167 201 7 41 158 157 51 50

RF 294 291 0 1 208 207 1 0 294 289 0 3 283 288 11 4 208 207 1 0 199 203 5 9

SVC 292 292 2 0 483 486 1 4 293 292 1 0 242 267 52 25 484 486 1 3 392 421 66 95

AdaBoost 256 255 38 37 178 189 19 30 258 265 36 27 247 261 47 31 181 186 23 27 171 180 28 37

GBT 282 290 12 2 199 206 2 9 287 287 7 5 265 276 23 16 200 206 2 8 182 200 9 26

BSMOTE-SVM MLP 284 285 10 7 202 203 5 6 283 292 11 0 277 290 17 2 200 209 0 8 193 203 0 15

XGBoost 292 279 2 13 111 107 5 1 285 286 9 6 262 278 32 14 107 110 1 4 97 107 4 15

LR 257 281 37 11 424 468 19 63 248 288 46 4 231 213 63 79 177 204 4 31 160 159 49 48

DT 256 264 38 28 128 133 11 17 240 268 54 24 259 268 35 24 123 132 13 23 123 134 12 23

NB 294 182 0 110 204 158 50 4 234 221 60 71 277 40 17 252 160 167 41 48 197 30 178 12

LDA 261 271 33 21 185 197 11 24 281 292 13 0 276 288 18 4 167 201 7 41 158 157 51 50

RF 294 275 0 17 209 199 9 0 294 286 0 6 285 285 9 7 208 207 1 0 198 203 5 10

SVC 294 283 0 9 485 470 17 2 293 292 1 0 239 242 455 50 208 208 0 0 169 184 25 39

AdaBoost 259 268 35 24 189 192 16 19 256 258 38 34 249 236 45 56 181 186 23 27 171 180 28 37

GBT 293 277 1 15 205 201 7 3 282 284 12 8 264 276 30 16 200 205 3 8 182 200 9 26

ADASYN MLP 285 299 11 0 199 215 0 9 283 292 11 0 277 289 17 3 198 212 0 10 192 210 0 16

XGBoost 284 298 12 1 106 115 1 6 290 286 13 2 262 278 32 14 106 113 0 5 96 107 6 16

LR 260 296 36 3 408 492 10 79 261 281 42 7 231 213 63 79 410 487 8 77 369 378 112 118

DT 250 276 46 23 122 139 11 23 246 265 57 23 258 267 36 25 122 136 12 24 124 134 13 21

NB 223 251 73 48 152 179 36 56 237 230 66 58 277 40 252 17 158 177 35 50 197 30 180 11

LDA 241 291 55 8 165 209 5 43 247 284 56 4 228 214 66 78 167 206 6 42 152 162 47 56

RF 295 298 1 1 208 214 1 0 303 284 0 4 284 284 10 8 208 211 1 0 197 205 5 11

SVC 294 299 2 0 483 502 0 4 302 288 1 0 239 242 55 50 484 495 0 3 377 435 55 110

AdaBoost 259 265 37 34 178 193 22 30 262 249 41 39 249 236 45 56 180 192 19 29 170 184 25 38

GBT 283 297 13 2 198 214 1 10 292 285 11 3 265 276 29 16 200 210 1 9 178 199 11 30

SDGT: Synthetic data generation technique; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; UFS: Univariate features selection; 80|20 split: 80|20 split validation technique; CV: k-Fold cross validation technique; TP:

True positive; TN: True negative; FP: False positive; FN: False negative;

 109

Appendix B: Codes

Libraries used
from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import SGDClassifier

from sklearn.metrics import accuracy_score, confusion_matrix, precision_

score, recall_score

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from xgboost import XGBClassifier

import pandas as pd

from tensorflow import keras

import numpy as np # linear algebra

import seaborn as sns

from sklearn.decomposition import PCA

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import OneHotEncoder

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import cross_val_score, cross_val_predict

from mlxtend.plotting import plot_confusion_matrix

from sklearn.metrics import confusion_matrix, accuracy_score, f1_score,

precision_score, recall_score, classification_report

from keras.utils import to_categorical

Secom Data Exploration
Data = pd.read_csv('/content/uci-secom_v2.csv')

displaying the dataset

Data.head()

#checking for any missing datapoints

Data.isnull().any().any()

#reclassifying the classes with 0 and 1, pass and fail class respectivel

y

Data = Data.drop(['Time'], axis=1)

Data.loc[(Data['Pass/Fail'] == -1),'Pass/Fail'] = 0

Data.head()

#Dropping the output column

features = Data.drop(['Pass/Fail'],axis=1)

features_labels = Data['Pass/Fail']

features.shape

Get the counts for each class

alabel_count = Data['Pass/Fail'].value_counts()

print(alabel_count)

Plot the results

plt.figure(figsize=(10,8))

sns.barplot(x=alabel_count.index, y= alabel_count.values)

plt.title('Number of labels', fontsize=14)

plt.xlabel('label type', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.xticks(range(len(alabel_count.index)), ['Fail', 'Pass'])

plt.show()

Missing datapoints vs Observed

import seaborn as sns

 110

import matplotlib.pyplot as plt

sns.heatmap(Data.isnull(),yticklabels=False,cbar=False,cmap='viridis')

plt.title('Observed vs Missing datapoints', fontsize=12)

plt.xlabel('Features', fontsize=12)

plt.ylabel('Instances', fontsize=12)

#plt.xticks(range(len(alabel_count.index)), ['Features'])

plt.show()

SECOM Data Preprocessing
finding missing and categorical values

col_missing_values = [col for col in features.columns

 if features[col].isnull().any() and features[col].d

type]

col wit numerical values which is null in this project

col_numerical_values = [col for col in features.columns if features[col]

.dtype in ['int64', 'float64']]

col with categorical values

col_categorical_values = [col for col in features.columns

 if features[col].dtype == 'object']

#missing values cout per col

missing_val_count_by_column = (features.isnull().sum())

print(missing_val_count_by_column[missing_val_count_by_column > 0])

print(col_categorical_values)

print(col_numerical_values)

Imputation
#Data imputation using KNN

from sklearn.impute import KNNImputer

imputer = KNNImputer()

imputed_features = pd.DataFrame(imputer.fit_transform(features))

Fill in the lines below: imputation removed column names; put them bac

k

imputed_features.columns = features.columns

features = imputed_features

features.head()

#Checking for any missing cell value

features.isnull().any().any()

#Importing features to csv file

features.to_csv('features.csv')

features_labels.to_csv('features_labels.csv')

Feature scaling and selection

PCA
Feature scaling using mean

Scaler =StandardScaler()

features =Scaler.fit_transform(features)

Feature selection using Principal Component Analysis (PCA)

pca = PCA(n_components=0.99, whiten=True)

Conduct PCA

features = pca.fit_transform(features)

 111

Show results

print("Original number of features:", Data.shape[1])

print("Reduced number of features:", features.shape[1])

Dataset dimension visualization

features.shape

features

UFS
Feature selection using UFS

from sklearn.feature_selection import SelectFdr

from sklearn.feature_selection import f_classif , chi2

Create a UFS

UFS = SelectFdr(score_func=f_classif)

features = UFS.fit_transform(features, features_labels)

Show results

print("Original number of features:", Data.shape[1])

print("Reduced number of features:", features.shape[1])

Feature scaling using mean

Scaler = StandardScaler()

features = Scaler.fit_transform(features)

Model evaluation
def get_Evaluation_matrics(preds, orig_test_labels):

 # Get the confusion matrix

 cm = confusion_matrix(orig_test_labels, preds)

 plt.figure()

 plot_confusion_matrix(cm,figsize=(12,8), hide_ticks=True,cmap=plt.cm.B

lues)

 plt.xticks(range(2), ['Fail', 'Pass'], fontsize=16)

 plt.yticks(range(2), ['Fail', 'Pass'], fontsize=16)

 plt.show()

 # Calculate the metrics

 tn, fp, fn, tp = cm.ravel()

 Accuracy = (tp+tn)/(tp+tn+fp+fn)

 precision = tp/(tp+fp)

 recall = tp/(tp+fn)

 specificity = tn/(tn+fp)

 F1_score = 2*tp/(2*tp+fp+fn)

 print("Accuracy of the model is {:.4f}".format(Accuracy))

 print("Recall of the model is {:.4f}".format(recall))

 print("Precision of the model is {:.4f}".format(precision))

 print("specificity of the model is {:.4f}".format(specificity))

 print("F1_score of the model is {:.4f}".format(F1_score))

Model prediction
def get_Model_prediction(model, test_data, test_labels):

 import numpy as np

 # # Evaluation on test dataset

 # test_loss, test_score = model.evaluate(test_data, test_labels, batch

_size=32)

 # print("Loss on test set: ", test_loss)

 112

 # print("Accuracy on test set: ", test_score)

 preds = model.predict(test_data, batch_size=16)

 preds = np.argmax(preds, axis=-1)

 # orig_test_labels = np.argmax(test_labels, axis=-1)

 print(test_labels)

 print(preds)

 return preds, test_labels

Plotting model accuracy
def plot_Model_Accuracy(History, epoch):

 history_dict2 = History.history

 acc_values2 = history_dict2['accuracy']

 val_acc_values2 = history_dict2['val_accuracy']

 epochs = range(1, epoch + 1)

 plt.plot(epochs, acc_values2, 'b-', label='training Accuracy')

 plt.plot(epochs, val_acc_values2, 'r-', label='validation Accuracy')

 plt.title('trainin/validation Accuracy')

 plt.xlabel('Epochs')

 plt.ylabel('Accuracy')

 plt.legend()

 plt.rcParams['axes.facecolor'] = 'white'

 plt.rcParams['axes.edgecolor'] = 'white'

 plt.rcParams['axes.grid'] = True

 plt.rcParams['grid.alpha'] = 1

 plt.rcParams['grid.color'] = "#cccccc"

 plt.show()

Model building using SMOTE data generation technique

80|20 - split validation technique

ANN
early_stopping_cb = keras.callbacks.EarlyStopping(patience=5,

 restore_best_weights=T

rue)

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

train_data, valid_data, train_labels, valid_labels = train_test_split(tr

ain_data, train_labels, train_size = 0.85, random_state = 123)

train_data = np.array(train_data)

valid_data = np.array(valid_data)

test_data = np.array(test_data)

train_labels = np.array(train_labels)

valid_labels = np.array(valid_labels)

 113

test_labels = np.array(test_labels)

y.iloc[:,0].value_counts()

from tensorflow.keras import models

from tensorflow.keras import layers

from imblearn.over_sampling import SMOTE

model = models.Sequential()

model.add(layers.Dense(1024, input_shape = (219,), activation='relu'))

model.add(layers.Dense(128, activation='relu'))

model.add(layers.Dense(512, activation='relu'))

model.add(layers.BatchNormalization())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dropout(0.5))

model.add(layers.Dense(2, activation='softmax'))

model.compile(optimizer='rmsprop',

 loss='binary_crossentropy',

 metrics=['accuracy'])

model_history = model.fit(train_data,

 train_labels,

 epochs=30,

 batch_size=16,

 validation_data=(valid_data, valid_labels),

 callbacks=None

)

Evaluating my model using CM, precsion, and recal

preds, original_test_labels = get_Model_prediction(model, test_data, tes

t_labels)

get_Evaluation_matrics(preds, original_test_labels)

KNN
from sklearn.neighbors import KNeighborsClassifier as kNN

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = kNN(leaf_size=10)

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

MLP
from sklearn.neural_network import MLPClassifier as MLP

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

 114

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = MLP()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

XGBOOST
from xgboost.sklearn import XGBClassifier

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = XGBClassifier()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

LR
from sklearn.linear_model import LogisticRegression as LR

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = LR(max_iter=100)

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

DT
from sklearn.tree import DecisionTreeClassifier as DT

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

 115

model = DT()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

NB
from sklearn.naive_bayes import GaussianNB as NB

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = NB()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

LDA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as

LDA

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = LDA()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

RF
from sklearn.ensemble import RandomForestClassifier as RF

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = RF()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

 116

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

SVC
from sklearn.svm import SVC

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = SVC()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

ADABOOST
from sklearn.ensemble import AdaBoostClassifier as ADB

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = ADB()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

GBT
from sklearn.ensemble import GradientBoostingClassifier as GBT

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

X, y = oversample.fit_sample(features, features_labels)

X = pd.DataFrame(X)

y = pd.DataFrame(y)

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123)

model = GBT()

model.fit(train_data, train_labels)

preds = model.predict(test_data)

get_Evaluation_matrics(preds, test_labels)

plotting the AUC for all my classes

get_model_ROC_AUC_curve(preds, test_labels)

k-FOLD cross validation (CV)

 117

from sklearn.model_selection import KFold, cross_val_score, cross_val_pr

edict, cross_validate

from sklearn.pipeline import make_pipeline

features, features_labels = oversample.fit_resample(features, features_l

abels)

Create standardizer

standardizer = StandardScaler()

Create logistic regression object

from sklearn.svm import SVC

logit = SVC()

Create a pipeline that standardizes, then runs logistic regression

pipeline = make_pipeline(standardizer, logit)

Create k-Fold cross-validation

kf = KFold(n_splits=7, shuffle=True, random_state=1)

Conduct k-fold cross-validation

cv_results = cross_val_score(logit, # Pipeline

 features, # Feature matrix

 features_labels, # Target vector

 cv=kf, # Cross-validation technique

 scoring="precision", # Loss function

 n_jobs=-1) # Use all CPU scores

Calculate mean

cv_results.mean()

k-Fold CV metrics of performance
tp = 0

tn = 162

fp = 0

fn = 162

Accuracy = (tp+tn)/(tp+tn+fp+fn)

#precision = tp/(tp+fp)

recall = tp/(tp+fn)

specificity = tn/(tn+fp)

F1_score = 2*tp/(2*tp+fp+fn)

print("Accuracy of the model is {:.4f}".format(Accuracy))

print("Recall of the model is {:.4f}".format(recall))

#print("Precision of the model is {:.4f}".format(precision))

print("specificity of the model is {:.4f}".format(specificity))

print("F1_score of the model is {:.4f}".format(F1_score))

print("")

MLP
from sklearn.neural_network import MLPClassifier as MLP

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = MLP()

conf_matrix_list_of_arrays = []

 118

kf = KFold(7, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

XGBOOST
from xgboost.sklearn import XGBClassifier

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = XGBClassifier()

conf_matrix_list_of_arrays = []

kf = KFold(13, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

 119

LR
from sklearn.linear_model import LogisticRegression as LR

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = LR(max_iter=200)

conf_matrix_list_of_arrays = []

kf = KFold(3, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal(

mean_of_conf_matrix_arrays.T

DT
from sklearn.tree import DecisionTreeClassifier as DT

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = DT()

conf_matrix_list_of_arrays = []

kf = KFold(10, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

 120

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

NB
from sklearn.naive_bayes import GaussianNB as NB

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = NB()

conf_matrix_list_of_arrays = []

kf = KFold(7, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

LDA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as

LDA

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = LDA()

 121

conf_matrix_list_of_arrays = []

kf = KFold(7, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

RF
from sklearn.ensemble import RandomForestClassifier as RF

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = RF()

conf_matrix_list_of_arrays = []

kf = KFold(7, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

SVC

 122

from sklearn.svm import SVC

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = SVC()

conf_matrix_list_of_arrays = []

kf = KFold(3, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

ADBOOST
from sklearn.ensemble import AdaBoostClassifier as ADB

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = ADB()

conf_matrix_list_of_arrays = []

kf = KFold(7, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 123

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

GBT
from sklearn.ensemble import GradientBoostingClassifier as GBT

from sklearn.model_selection import KFold

from museotoolbox.charts import PlotConfusionMatrix

from imblearn.over_sampling import SMOTE

oversample = SMOTE()

train_data, train_labels = oversample.fit_resample(features, features_la

bels)

#Create algorithm object

model = GBT()

conf_matrix_list_of_arrays = []

kf = KFold(7, shuffle=True, random_state=123)

for train_index, test_index in kf.split(train_data):

 train_data1, test_data1 = train_data[train_index], train_data[test_in

dex]

 train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index]

 model.fit(train_data1, train_labels1)

 conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

))

 conf_matrix_list_of_arrays .append(conf_matrix)

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16)

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth

pltCM.add_text()

pltCM.add_f1()

pltCM.color_diagonal()

mean_of_conf_matrix_arrays.T

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Background
	1.2 Problem statement
	1.3 Scope and aim of the thesis
	1.4 Thesis contributions
	1.5 Thesis outline
	1.6 Summary of the chapter

	2 BACKGROUND INFORMATION
	2.1 Machine learning (ML)
	2.1.1 Machine learning types and classifications
	2.1.1.1 Multi-layer perceptron (MLP)
	2.1.1.2 Support vector machine (SVM)
	2.1.1.3 Random forest (RF)
	2.1.1.4 Logistic regression (LR)
	2.1.1.5 Extreme gradient boosted trees (XGBoost)
	2.1.1.6 Gradient boosting trees (GBT)
	2.1.1.7 Decision tree (DT)
	2.1.1.8 Linear discriminant analysis (LDA)
	2.1.1.9 Adaptive boosting (AdaBoost)
	2.1.1.10 Naïve bayes (NB)

	2.2 Smart manufacturing and machine learning
	2.2.1 Semiconductor manufacturing process
	2.2.1.1 SECOM dataset description

	2.3 Summary of the chapter

	3 LITERATURE REVIEW
	3.1 ML techniques applied to SMSs
	3.1.1 ML techniques applied to the semiconductor manufacturing process dataset

	3.2 Summary of the chapter

	4 RESEARCH METHODOLOGY
	4.1 ML techniques development for classification
	4.1.1 Proposed methodology
	4.1.2 Dataset
	4.1.3 Dataset preprocessing
	4.1.3.1 Data cleaning
	4.1.3.2 Data imputation
	4.1.3.2.1 Mean data imputation
	4.1.3.2.2 k-NN data imputation

	4.1.3.3 Feature scaling or normalizing
	4.1.3.4 Feature selection
	4.1.3.4.1 Principal component analysis (PCA)
	4.1.3.4.2 Univariate feature selection (UFS)

	4.1.3.5 Synthetic data generation techniques (SDGT)
	4.1.3.5.1 Synthetic minority oversampling technique (SMOTE)
	4.1.3.5.2 Borderline-SMOTE SVM (BSMOTE-SVM)
	4.1.3.5.3 Adaptive synthetic oversampling (ADASYN)

	4.2 Predictive model selection, training and validation
	4.2.1 Predictive model evaluation metrics
	4.2.1.1 Confusion matrix
	4.2.1.2 Accuracy performance metric
	4.2.1.3 Sensitivity and specificity performance metrics
	4.2.1.4 Precision, recall and F1_score performance metrics

	4.3 Summary of the chapter

	5 EXPERIMENTAL RESULTS
	5.1 A case study on semiconductor manufacturing process
	5.1.1 ML development using SECOM dataset
	5.1.1.1 SECOM dataset cleaning
	5.1.1.1.1 Model development using (MRD) modified raw dataset
	5.1.1.1.2 Effect of datapoints imputation
	5.1.1.1.3 Effect of datapoints imputation and features selection without scaling
	5.1.1.1.4 Effect of mean imputation, features scaling and selection
	5.1.1.1.5 Effect of SMOTE, without features scaling and selection
	5.1.1.1.6 Discussion on the results obtained

	5.1.2 Proposed methodology with SMOTE
	5.1.2.1 Mean imputation with SMOTE
	5.1.2.2 k-NN imputation with SMOTE
	5.1.2.3 Discussion on the results obtained using SMOTE

	5.1.3 Proposed methodology with Borderline-SMOTE SVM
	5.1.3.1 BSMOTE-SVM with mean imputation
	5.1.3.2 BSMOTE-SVM with k-NN imputation
	5.1.3.3 Discussion on the results obtained using BSMOTE-SVM

	5.1.4 Proposed methodology with ADASYN
	5.1.4.1 ADASYN with mean imputation
	5.1.4.2 ADASYN with k-NN imputation
	5.1.4.3 Discussion on the results obtained using ADASYN

	5.1.5 Discussion and comparison on the overall experimental results
	5.1.5.1 Effects of MRD, dataset preprocessing and SMOTE-based proposed methodology
	5.1.5.2 Overall results comparison within the proposed methodologies

	5.1.6 Experimental results comparison with similar studies from the literature

	5.2 Summary of the chapter

	6 CONCLUSIONS and FUTURE WORKS
	6.1 Conclusions
	6.2 Future works

	REFERENCES
	APPENDICES
	Appendix A: Tabular supplementary experimental results
	Appendix B: Codes

