

Implementation, Experiments and Improvement of

Optimal Trust System Placement in Smart Grid

SCADA Networks

Faryad Abolhassani

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

February 2019

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Assoc. Prof. Dr. Ali Hakan Ulusoy

Acting Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science in Computer Engineering.

Prof. Dr. Hadi Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

Assoc. Prof. Dr. Alexander Chefranov

Supervisor

Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Assoc. Prof. Dr. Gürcü Öz

3. Assoc. Prof. Dr. Mehtap Kose Ulukok

https://cmpe.emu.edu.tr/en/about-us/staff/staff-detail?sid=216&n=hadi-isik-aybay
https://cmpe.emu.edu.tr/en/about-us/staff/staff-detail?sid=224&n=gurcu-oz

 iii

ABSTRACT

The aim of this thesis is to investigate the optimal Trust System Placement (TSP)

method for smart grid Supervisory Control And Data Acquisition (SCADA)

networks. At present, as SCADA networks are connected to the internet the scope of

cyber-security concerns becomes much wider. Trust Systems (TSs) are deployed to

provide the cyber-security of SCADA networks. TS are used to detect and block

malicious activities. Optimal TSP problem is used to minimize the cost and

maximize the security by selecting minimum number of TSs. Segmentation is the

main part of the optimal TSP problem. Segmentation is used to divide the SCADA

graph to small segments and ideal segmentation problem uniforms the size of the

segment. Linear Programming Problem (LPP) is used to assign the TSs to some

nodes among the bordering nodes and its constraint is that all inter-segment links are

connected to at least one trust node.

The experiments are conducted on five IEEE test system topologies. The IEEE test

system is categorized into small and large networks. The obtained results show that

by increasing the quantity of segments the required quantity of TSs increases and

small networks are more balanced than the large networks in size of segments.

In optimal TSP problem TS number per segments are not uniform over the segments.

It may deteriorate the security of the segments and more delays happened to the

inter-segment links. We propose optimal TSP uniformity problem to maximize the

security and minimize the operational expenditure by distributing TSs over the

segments.

 iv

After executing the optimal TSP uniformity on IEEE BUS 14, the distribution of TSs

over the segments is improved by 100% with 3 segments and 5 segments and it is

improved by 81% with 4 segments and it is improved by 35% with 6 segments.

Keywords: Smart grid Supervisory Control and Data Acquisition (SCADA)

network, cyber-security, trust node, Minimum Spanning Tree (MST), Linear

Programming Problem (LPP), segment, bordering node, uniformity problem.

 v

ÖZ

Bu tezin amacı, akıllı şebeke Denetleme Kontrolü ve Veri Toplama (DKVVT) ağları

için optimal Güven Sistemi Yerleştirme (GSY) yöntemini araştırmaktır. Şu anda,

DKVVT ağları internete bağlı olduğundan, siber güvenlik endişelerinin kapsamı

daha da genişlemektedir. DKVVT ağlarının siber güvenliğini sağlamak için Güven

Sistemleri (GS'ler) kullanılmaktadır. GS, kötü niyetli etkinlikleri tespit etmek ve

engellemek için kullanılır. En düşük GS sayısını seçerek maliyeti en aza indirmek ve

güvenliği en üst düzeye çıkarmak için en uygun GSY sorunu kullanılır.

Segmentasyon, optimum GSY probleminin ana parçasıdır. Segmentasyon, DKVVT

grafiğini küçük parçalara bölmek için kullanılır ve ideal segmentasyon sorunu,

segmentin boyutunu düzenler. Doğrusal Programlama Sorunu (DPS), GS'leri

sınırlayıcı düğümler arasındaki bazı düğümlere atamak için kullanılır ve

sınırlandırması, tüm bölümler arası bağlantıların en az bir güven düğümüne bağlı

olmasıdır.

Deneyler beş IEEE test sistemi topolojisi üzerinde gerçekleştirilmiştir. IEEE test

sistemi küçük ve büyük ağlara ayrılmıştır. Elde edilen sonuçlar, segmentlerin

miktarını artırarak, gerekli GS'lerin miktarının arttığını ve küçük ağların, segment

boyutundaki büyük ağlardan daha dengeli olduğunu göstermektedir.

Optimum GSY probleminde segment başına GS sayısı segmentler üzerinde aynı

değildir. Segmentlerin güvenliğini bozabilir ve bölümler arası bağlantılarda daha

fazla gecikme yaşanabilir. Güvenliği en üst seviyeye çıkarmak ve GS'leri

segmentlere dağıtarak işletme giderlerini en aza indirmek için optimal GSY

 vi

tekdüzelik problemi öneriyoruz.

IEEE BUS 14'te optimum GSY homojenliği uygulandıktan sonra, GS'lerin

segmentler üzerindeki dağılımı, 3 segment ve 5 segment 100%, 4 segment 81% ve 6

segment 35% arttırılmıştır.

Anahtar Kelimeler: Denetleme kontrolü ve veri toplama (DKVVT) ağı, siber

güvenlik, güven düğümü, Minimum yayılma ağacı (MYA), doğrusal programlama

sorunu (DPS), segment, sınırlayıcı düğüm, tekdüzelik sorunu.

 vii

ACKNOWLEDGMENT

I would like to record my gratitude to Assoc. Prof. Dr. Alexander Chefranov for his

supervision, advice, and guidance from the very early stage of this thesis as well as

giving me extraordinary experiences throughout the work. Above all and the most

needed, he provided me constant encouragement and support in various ways.

 viii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ..v

ACKNOWLEDGMENT .. vii

LIST OF TABLES ..x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS ..xvi

1 INTRODUCTION ...1

2 RELATED WORK AND PROBLEM DEFINITION ...3

2.1 Cyber-Security Terms and Notions for Smart Grid SCADA Networks3

2.2 Description of the Method of Optimal Trust Nodes Placement from [1]9

2.2.1 Sorting Algorithms ... 11

2.2.2 Disjoint-Set Algorithms .. 14

2.2.3 Kruskal Algorithm of MST Construction .. 22

2.2.4 Linear Programming Problem (LPP) in General .. 27

2.3 Definition of Optimal TSP Problem as LPP .. 28

2.3.1 Definition of Initial Tree Partitioning Problem (Segmentation) 29

2.3.2 Definition of Ideal Segmentation Problem .. 35

2.3.3 Definition of Optimal TSP Problem .. 41

2.4 Experimental Outcomes.. 47

2.5 Problem Definition ... 57

3 DESIGN, IMPLEMENTATION, AND TESTING OF OPTIMAL TSP SCHEME

 ... 59

3.1 Design and Implementation of Proposed TSP System in [1] 59

 ix

3.1.1 Design of Optimal TSP Scheme [1] .. 60

3.1.2 Implementation of optimal TSP scheme .. 61

3.2 Testing of Optimal TSP Program .. 73

3.3 Summary .. 75

4 IMPROVEMENT OF THE OPTIMAL TSP UNIFORMITY 77

4.1 Definition and Implementation of Uniformity of TS Distribution over Network

Segments .. 77

4.2 Testing Results ... 87

4.3 Summary .. 88

5 EXPERIMENTS ON IEEE TEST SYSTEM TOPOLOGIES 90

5.1 Experimental Results on Original TSP .. 91

5.2 Experimental Results on Comparison of Original and Proposed TSP 99

5.3 Summary .. 102

6 CONCLUSION.. 103

REFERENCES ... 105

APPENDICES .. 109

Appendix A: Source Codes .. 110

Appendix B: IEEE Test System Topologies Databases. 129

Appendix C: Experimental Results ... 132

 x

LIST OF TABLES

Table 1: Description of symbols [1] ..9

Table 2: Overview of experimental parameters [1] .. 47

Table 3: Structure of the IEEE test system topology BUS14.................................... 48

Table 4: First row of the remote node text file for BUS300. 68

Table 5: IEEE BUS14 branch data. ... 129

Table 6: IEEE BUS30 branch data. ... 129

Table 7: IEEE BUS57 branch data. ... 130

Table 8: IEEE BUS118 branch data. ... 130

Table 9: IEEE BUS300 branch data. ... 131

Table 10: IEEE BUS300 remote node data .. 131

 xi

LIST OF FIGURES

Figure 1: Three types of cyber-attacks on the electric grid through the internet [5]3

Figure 2: Trust system logo with capabilities summary [2].5

Figure 3: Trust system modes and configuration options [2]7

Figure 4: A simple example of a segmentation-based TSP11].8

Figure 5: An example of graph [1]. ... 14

Figure 6: An example of parent pointer definition in graph. 15

Figure 7: Four connected components of a graph [15]. .. 20

Figure 8: An illustrative example of Kruskal algorithm. .. 24

Figure 9: A graph G(V,E) of power grid system. ... 29

Figure 10: Minimum spanning tree of SCADA network of figure 9 [1]. 31

Figure 11: Links eliminations and segments identification [1]. 34

Figure 12: Updated segments of figure 11 obtained by algorithm 2.8 [1]. 40

Figure 13: Identifying inter-segment links and bordering nodes [1]. 44

Figure 14: Finding trust nodes by algorithm 2.10[1]. ... 44

Figure 15: Flowchart of the algorithm for solving optimal TSP problem [1]. 46

Figure 16 : IEEE BUS 14 test system. ... 49

Figure 17: Graph of IEEE BUS 14 test system topology presented in figure 16. 52

Figure 18: Relative standard deviation of the calculated segment sizes. 54

Figure 19: The average MST weight of the calculated segments.............................. 55

Figure 20: The needed number of trust systems. .. 56

Figure 21: Block diagram of process to implement the proposed TSP in smart grid

SCADA networks. .. 60

Figure 22: Main form of the program. ... 62

 xii

Figure 23: Flowchart of the algorithm providing input of graph via text file. 63

Figure 24: Manual graph input screen. .. 64

Figure 25: Flowchart of the algorithm allowing of manual graph creation. 66

Figure 26: Main form of the program. ... 73

Figure 27: Minimum spanning tree form that shows the MST graph and trust nodes

in each segment base on figure 8. .. 74

Figure 28: Distributing trust systems over segments by using Uniformity

optimization algorithm, algorithm 4.1. .. 78

Figure 29: Uniform Form that shows the trust nodes after uniformity problem solving

for the system on figure 14. ... 87

Figure 30: Number of trust systems in each segment. .. 87

Figure 31: Relative standard deviation of trust system number for 3 segments of

SCADA system in figure 14. The bar for improved version is not shown as equal to

zero. .. 88

Figure 32: Comparison of the summary of experimental parameters 91

Figure 33: Relative standard deviation of the calculated segments sizes for small

networks ... 92

Figure 34: Relative standard deviation of the calculated segments sizes for large

networks ... 93

Figure 35: The average MST weights for small networks .. 94

Figure 36: The average MST weights for large networks... 96

Figure 37: Required quantity of trust systems related to the quantity of segment for

small networks .. 97

Figure 38: Required quantity of trust systems related to the quantity of segment for

large networks .. 98

 xiii

Figure 39: The coefficient of variation of the size of the segments of trust systems in

BUS14. ... 101

Figure 40: Number of trust systems in each segment of BUS 14 divided into 3-

segments partitioning. ... 101

Figure 41: The experimental results on IEEE test system of BUS14 with 3 segments.

 ... 132

Figure 42: The experimental results on IEEE test system of BUS14 with 4 segments.

 ... 132

Figure 43: The experimental results on IEEE test system of BUS14 with 5 segments.

 ... 133

Figure 44: The experimental results on IEEE test system of BUS14 with 6 segments.

 ... 133

Figure 45: Experimental parameters for IEEE test system topology BUS30. 134

Figure 46: The experimental results on IEEE test system of BUS30 with 3 segments.

 ... 134

Figure 47: The experimental results on IEEE test system of BUS30 with 4 segments.

 ... 135

Figure 48: The experimental results on IEEE test system of BUS30 with 5 segments.

 ... 135

Figure 49: The experimental results on IEEE test system of BUS30 with 6 segments.

 ... 136

Figure 50: Experimental parameters for IEEE test system topology BUS57. 136

Figure 51: The experimental results on IEEE test system of BUS57 with 3 segments.

 ... 137

 xiv

Figure 52: The experimental results on IEEE test system of BUS57 with 4 segments.

 ... 137

Figure 53: The experimental results on IEEE test system of BUS57 with 5 segments.

 ... 138

Figure 54: The experimental results on IEEE test system of BUS57 with 6 segments.

 ... 138

Figure 55: The experimental results on IEEE test system of BUS118 with 5

segments. .. 139

Figure 56: The experimental results on IEEE test system of BUS118 with 10

segments. .. 139

Figure 57: The experimental results on IEEE test system of BUS118 with 15

segments. .. 140

Figure 58: The experimental results on IEEE test system of BUS118 with 20

segments. .. 140

Figure 59: The experimental results on IEEE test system of BUS118 with 25

segments. .. 141

Figure 60: The experimental results on IEEE test system of BUS118 with 30

segments. .. 141

Figure 61: The experimental results on IEEE test system of BUS300 with 5

segments. .. 142

Figure 62: The experimental results on IEEE test system of BUS300 with 10

segments. .. 142

Figure 63: The experimental results on IEEE test system of BUS300 with 15

segments. .. 143

 xv

Figure 64: The experimental results on IEEE test system of BUS300 with 20

segments. .. 143

Figure 65: The experimental results on IEEE test system of BUS300 with 25

segments. .. 144

Figure 66: The experimental results on IEEE test system of BUS300 with 30

segments. .. 144

 xvi

LIST OF ABBREVIATIONS

ACL Access Control List

ASCII American Standard Code for Information Interchange

IDS Intrusion Detection System

KV Kilo Volt

LPP Linear Programming Problem

MCA Monitor-Control Attack

MST Minimum Spanning Tree

MVAR Mega Volt Ampere Reactive

MW Mega Watt

PC Personal Computer

PMU Phasor Measurement Unit

PDC Phasor Data Concentrator

PKI Public Key Infrastructure

RSD Relative Standard Deviation

SCADA Supervisory Control And Data Acquisition

TS Trust System

TSP Trust System Placement

WAKE Wide Area Key Exchange

WAMS Wide Area Measurement System

WAN Wide Area Network

 1

Chapter 1

INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) systems are used to control and

monitor infrastructure of industries such as transmission and distribution networks of

electricity, refineries, nuclear power plants. At present, industrial control systems and

information technology (IT) systems merge together. As a consequence, SCADA and

its equipment are a vulnerable target of the intrusion [1].

To keep the integrity of information and avoid cyber intrusions, smart grids need to

deploy trust systems to monitor and control the input and output traffic. Trust

systems are a combination of firewall and/or intrusion detection systems [2].

In this thesis, we are going to address the optimal trust system placement problem by

focusing on discussion of its concepts, algorithms, and experimental results mainly

from [1], and implementation of the optimal trust system placement scheme [1],

experiments on IEEE test system topologies used in [1], and improvement of optimal

trust system placement in smart grid SCADA networks [1], [3] and [4].

Adding trust systems to all the nodes in the grid is expensive and increases the

processing time of the communication of nodes. In order to make it practical,

networks must be divided into small networks, known as segments [1], and the

selected bordering nodes [1] should be equipped by the trust systems. These nodes

 2

are called trust nodes. Inter-segment links are connected to the TS, hence, trust nodes

are able to monitor ingress and egress traffic. Segmentation problems are often

solved using mixed integer linear programming [5]. Uniformity of trust nodes among

the segments is used to keep the balancing of dispersion of the trust nodes among the

segments. As a consequence, the trust system is transferred from the oversized

segment to the undersized segment if there is a link between the trust node in the

oversized segment and the node that is not equipped by the trust system in the

undersized segment.

The rest of this thesis is organized as follows. Chapter 2 discusses the related work

mainly based on [1] and defines the problems of the thesis. Chapter 3 is about the

design and implementation of the trust system placement problem and testing of the

optimal trust system placement in smart grid of SCADA networks. Chapter 4 is

about the improvement of the optimal trust system placement program using

uniformity of trust systems distribution over network segments. Chapter 5 presents

our experiments on IEEE test system topologies in the conditions of [1]. Chapter 6 is

the conclusion. Appendix A shows the source codes of the program. Appendix B

shows the databases of the IEEE test system topologies used in the experiments.

Appendix C shows the screenshots of the experimental results on IEEE test system

topologies.

 3

Chapter 2

RELATED WORK AND PROBLEM DEFINITION

This chapter explains the terms related to trust system placement in smart grid

networks (Section 2.1) and describes a method of trust nodes placement from [1]

(Section 2.2). Thesis problems are defined in detail (Section 2.3).

2.1 Cyber-Security Terms and Notions for Smart Grid SCADA

Networks

If infrastructures of smart grid network have not appropriate security equipment, it

may result in vulnerabilities in power infrastructures. Power systems have three

different types of sectors: generation, distribution and control, and consumption that

may be the targets of the cyber-intrusion. Depending on the target, there can be three

different cyber-attacks [5] as shown in Figure 1.

Figure 1: Three types of cyber-attacks on the electric grid through the internet [5]

Type I cyber-intrusion targets generation which intruder tries for interrupting or

getting control of the operation of generators. Type II targets power distribution and

 4

control. In this type intruder makes failure in the supply of electricity or damaging

the network equipment. Type III attacks target the consumption part. It causes an

increment of load that damages the grids and it can bring down the grid. Password-

secured access, group key ciphering for multicast transmissions, private key

ciphering for unicast transmissions, user confirmation, message verification codes

and firewalling of SCADA data traffic are the defense mechanisms to those attacks

which are performed by trust systems.

Trust system validates input, identifies risks and bad data, and initiates appropriate

alerts. It then assigns data types for the good data elements in each packet. It next

determines if the recipient is authorized to read all of the data types in the message,

especially when the recipient is external to the company. If the message is not

authorized, the system sanitizes the parts of the message that are not allowed to be

passed to the recipient or it simply deletes the message. Finally, the good data

elements are transferred to database systems for archiving for historical and trend

analysis and then they are passed to intranet display. The data archived are viewable

and accessible by someone with appropriate privileges. A logo and summary for the

functions supported by trust systems is depicted in Figure 2.

 5

Figure 2: Trust system logo with capabilities summary [2].

In [2], four different types of trust system implementation were discussed. Type 1 is

the passive mode, type 2 is the half active mode, type 3 is the active mode, type 4 is

the tunnel (or gateway) mode. In our work, trust systems will be implemented in type

3, active mode.

In type 1, passive mode, a trust system is connected to the switch on the

communication link from the outside of the network. The advantage of passive mode

is that a failed trust system does not block the communications link because trust

system connected to the communication links from outside. The disadvantage is that

trust system can detect and report the malicious packets and it cannot block these

malicious packets. In type 2, half-active mode, implementation of passive mode is

updated to block the bad activities in such a way that trust system interacts with a

separate firewall or router Access Control List (ACL). The advantage is that it

monitors and controls the traffics from outside the networks and same as passive

mode if trust system is failed the communication links does not block. The

 6

disadvantage is that there will still be some chance that one or more bad activities

will reach to the destination. In type 3, active mode, trust system is in line with all of

the communication between the SCADA network and it can block bad data. The

advantage is that it can detect and block the malicious traffics. The disadvantage is

that if trust system fails the communication links is blocked. In type 4, tunnel or

gateway mode, trust systems or routers provide firewall and other security features

for the nodes behind them. The communications between them are secured by the

encryption gateway. The advantage is that traffic packets are encrypted and protected

when they are traveling from outside of the network. The disadvantage is that

encryption and decryption of the packets cause delays to the network. Figure 3

demonstrates these 4 types of trust system implementation.

 7

Figure 3: Trust system modes and configuration options [2]

In [6], a blackout reported that affected more than 50 million people in Italy. The

Midwest independent system operator had only non-real-time data to work with, and

they cannot identify the location of breaking lines.

In [7], a key management, wide area key exchange (WAKE), was employed to

provide security for wide area measurement system (WAMS). The WAMS has four

major hardware elements.

 8

1. Phasor measurement units (PMUs), devices which measure the electrical waves

on an electricity grid using a common time source for synchronization

2. Phasor data concentrators (PDCs)

3. Wide area network (WAN)

4. Real-time database and data archiver

To provide the security, WAKE uses public key infrastructure (PKI) [8]. PKI is an

industry-standard asymmetric-key cryptosystem, with standards including X.509 and

RFC 5280 [9].

In [10]- [12], SCADA networks are divided into small networks and trust systems

are installed to the appropriate nodes to monitor and control the ingress and egress

traffics. The links between segments are known as inter-segment links. Trust systems

monitor the traffic between segments; consequently, intersegments shall be

connected to at least one trust node which hosts trust system. Figure 4 demonstrates

an example of segmentation. Inter-segment links are shown by the dotted lines. Trust

systems are installed to the bordering nodes. Inter-segment links are connected to at

least one trust node.

Figure 4: A simple example of a segmentation-based TSP11].

https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/Grid_(electricity)

 9

In [10], centrality measurement, method of ranking node in a graph, is utilized to

improve the cyber protection of smart grid networks. The node degree, number of

links connected to the node, is the simplest definition of centrality. Bordering nodes

were considered for trust node placement.

In [11], the impact of latency was considered in selection of trust nodes because trust

nodes distribute the time critical messages. In [11], the number of segments depends

on the latency threshold.

In [12], link coverage and path tolerance deployment schemes were used to protect

the SCADA networks against the cyber-attacks. Link coverage refers to the number

of monitored links in a network and path tolerance refers to the maximum number of

consecutive non-monitoring nodes in a route. As a consequence, the maximum link

coverage and the least path tolerance were two ideal goals to protect the SCADA

network against cyber-attack.

2.2 Description of the Method of Optimal Trust Nodes Placement

from [1]

Table 1 describes symbols used in the algorithms, equations and formulas.

Table 1: Description of symbols [1]

Symbol Description

G(V, E) SCADA network graph. It is an undirected graph.

T(V, 𝐸𝑀𝑆𝑇) MST of a given network G(V, E).

V Node set of SCADA network.

 10

E Link set of the SCADA network.

N Size of the SCADA network in terms of node, |V|=N.

𝐸𝑀𝑆𝑇 MST link set of the SCADA network.

α,β Weighting factors for multiple objectives.

S Set of network segments.

K Total number of segments to be created, |S|=k.

e, s, b Index variables for links, segments and bordering nodes

respectively.

𝑒𝑢↔𝑣 Undirected link between node u and v.

𝑑𝑢
𝑀𝑆𝑇, 𝑑𝑣

𝑀𝑆𝑇 Degrees of node u and v in the MST.

𝑑𝑚𝑖𝑛
𝑀𝑆𝑇(𝑒𝑢↔𝑣) Minimum degree of the link between node u and node v

in the MST.

w(e) Weight of the link e in terms of propagation delay.

�̃�(𝑒) Normalized weight of the link e with respect to the

maximum link weight.

𝑋I(𝑙) Variable set for bordering nodes belonging to the inter-

segment link l.

𝐿𝑠𝑠′ Set of inter-segment links between segments S, S’.

B(s) Set of bordering nodes in the segment s.

Q Total number of trust systems required

M Number of available trust systems.

Y Vector for binary decision variables for MST link

elimination, Y=(𝑦𝑒)(𝑁−1)×1

X Vector for binary decision variables for trust node

selection, X=(𝑥𝑠𝑏)∑ |𝐵(𝑠)|×1𝑠∈𝑆
.

The section has the following structure. Algorithm of sorting (Bubble sort) is

 11

considered in Section 2.2.1. Bubble sort will be used for Disjoint-set algorithm in

Section 2.2.2. Disjoint-set algorithms are considered in section 2.2.2. It will be used

for initial tree partitioning problem in Section 2.3.1. Kruskal algorithm of minimum

spanning tree construction is considered in Section 2.2.3. It is necessary for initial

tree partitioning problem in Section 2.3.1.

2.2.1 Sorting Algorithms

As mentioned, segmentation is based on the MST graph and sorting algorithm is the

main part of the MST graph algorithm. In [13], types of sorting algorithms are

enlisted. In this section, Bubble sort algorithm [14] will be described.

Bubble sort algorithm starts at the beginning of the input array, A[0,,n-1] of data to

be sorted, and compares two neighboring elements. If the first one is greater than the

second one, it swaps them and continues doing this to the end of the array. Again,

and again, it starts from the beginning of the array and compares each pair of the

neighboring elements until there are no swaps. Bubble sort algorithm pseudocode is

as follows:

Algorithm 2.1: Pseudocode of bubble sort algorithm [14].

Bubble sort

1. Input: An unsorted array of numbers, A

2. Output: The sorted in increasing order array, A

3. Procedure BubbleSort (A)

4. n=length(A); swapped=true;

5. While (swapped ==true)

6. swapped=false;

7. for i=1 to n-1 do

 12

8. if A[i-1]>A[i] then

9. swap(A[i-1],A[i])

10. swapped=true

11. end if

12. end for

13. end while

14. end procedure

The input of the Algorithm 2.1 is the array of numbers that are not sorted, and the

output is the array of numbers sort from lowest number to greatest number. In Line 4

the variable n denotes the length of the array. Variable swapped locates in the while

loop (Lines 5-13) and the initial value of swapped is true. In lines 7-12 if the

condition in line 8 is true then the greatest value is swapped with the lowest value in

the pair (Line 9) and then the value of the swapped is changed to true. Lines 7-12

repeat n-1 times, where n is the length of the array. When the for loop is finished,

the value of the swapped is false if there were no swaps in the array (Lines 7-12),

and the while loop terminates (Line 5). After termination of the while loop, the

numbers in the array are sorted from lowest to the greatest value. An example of the

bubble sort work is given in Example 1.

Example 1. Application of Bubblesort to array A[5]= (5,1,4,2,8)

Input: Array of numbers: A[5]= (5,1,4,2,8)

n=5, length of the array

swapped=true;

(First iteration of while loop)

swapped=false; i=1;

 13

(5, 1, 4, 2, 8) → (1, 5, 4, 2, 8), here, algorithm compares the first two

elements, and swaps since 5 > 1.

swapped=true; i=2;

(1, 5, 4, 2, 8) → (1, 4, 5, 2, 8), swap since 5 > 4

Swapped=true; i=3;

(1, 4, 5, 2, 8) → (1, 4, 2, 5, 8), swap since 5 > 2

Swapped=true; i=4

(1, 4, 2, 5, 8) → (1, 4, 2, 5, 8), now, since these elements are already in

order (8 > 5), algorithm does not swap them.

Loop on I terminates

(Second iteration of while loop)

Swapped=false; i=1;

(1, 4, 2, 5, 8) → (1, 4, 2, 5, 8,)

i=2;

(1, 4, 2, 5, 8) → (1, 2, 4, 5, 8), swap since 4 > 2

Swapped=true; i=3;

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8)

i=4;

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8)

Now, the array is already sorted, but the algorithm does not know if it is

completed. The algorithm needs one iteration of while loop

without any swap to know it is sorted.

(Third iteration of while loop)

Swapped=false; i=1;

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8)

 14

i=2;

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8)

i=3;

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8)

i=4;

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8)

The value of the swapped does not change, hence, the iteration of while

loop is terminated, and the array is sorted.

Output: A[5]=(1, 2, 4, 5, 8).

2.2.2 Disjoint-Set Algorithms

Before going to describe the Disjoint-set algorithm, some definitions of the graph

need to be cleared. Figure 5 illustrates an example of small graph. A graph, G, is a

pair of sets, G(V, E), where V is set of vertices, G.V={1, 2, 3, 4, 5, 6, 7}, E is a set of

edges, G.E={(1,2), (2,3), (3,5), {4,5}, (5,6), (6,7)}. And edge, e, is a pair of vertices,

(a, b), that these vertices of the edge are known as end-vertices of the edge. A graph

in Figure 5 is a weighted graph, each edge has a weight. Weight of the edge is

denoted by w and the set of edge with weight is denoted by G.E.w={((1,2),4),

((2,3),10),((3,5),6), ((4,5),3),((5,6),4),((6,7),1)}.

67

5

432

1

4

3

10

4
6

1

Figure 5: An example of graph [1].

 15

The number of vertices defines by |G.V| and the number of edges of the graph, G,

defines by |G.E|. In Figure 5 the number of vertices is 7, |G.V|=7, and the number of

edges is 6, |G.E|=6.

Disjoint-set algorithm [15] is used to find the connected vertices of a graph and

creates a set of minimum spanning trees of a graph [16]. It plays a key role in

Kruskal algorithm [17] for finding the minimum spanning trees of a graph. Parent

pointer and rank value are the attributes of the elements of the disjoint-set forest. If

the parent pointer of an element does not point to another element, then the element

is the root of the tree and is the representative member of its set. If the parent pointer

of the element points to another element, it means that this element belongs to the

set, tree, and the set is identified the chain of parents upward until a representative

element is reached at the root of the tree. Figure 6 illustrates an example to show the

parent pointer.

Figure 6: An example of parent pointer definition in graph.

In Figure 6, vertices C and F point to themselves. It means that they are the root of

the trees. The vertex b points to another vertex, it means that this vertex belong to the

tree, and this vertex is not the root, it points to the vertex c. As a consequence, to find

 16

the tree that vertex b is belong to, vertex b follows a chain to up to find the vertex

that points to itself, root of the tree. In Figure 6, the set of left tree is {b,c,e,h} and the

set of right tree is {d,f,g}. Another attribute is rank which denotes the depth of the

tree. For example, both trees in Figure 6 have a rank of 2.

Disjoint-set algorithm contains three functions [15]. First one is Make-set(x)

function. The input of the Make-Set(x) is a vertex of the graph. This function creates

a new set for the input vertex and initialize the attributes of the vertex (parent pointer

points to itself and the value of the rank is 0). This function locates in a for loop to

create a new set for all vertices in a graph. Algorithm 2.1 shows the pseudocode of

the Make-Set function.

Algorithm 2.2: Pseudo code of the Make-Set function [15].

Make-Set

1. Input: x, vertex of graph.

2. Output: a set of disjoint-set tree with the initialized attributes.

3. Function Make-Set (x)

4. Begin

5. x.parent =x;

6. x.rank=0;

7. End

In Line 5, vertex x points to itself, create a tree that the root of the tree is itself, and

the rank value in Line 6 is 0 that means the depth of the tree is 0. As a result, a new

set for the x is created in the disjoint-set tree and the attributes of the vertex are

initialized.

 17

The second function is Find(x). The input of the Find function is a vertex of the tree.

The functionality of this function is to determine which set of the disjoint-set tree

contains a given vertex x. Algorithm 2.3 describes the pseudocode of the Find(x).

Algorithm 2.3: Pseudo code of the Find(x) function [15].

Find

1. Input: vertex x

2. Output: root of vertex x.

3. Function Find(x)

4. Begin

5. If x.parent !=x then

6. x.parent:=Find(x.parent)

7. End if

8. Return x.parent

The input of the function is a vertex of the graph. If the parent pointer of the vertex x

doesn’t point to itself (if point to itself, it means this is the root vertex) (Line 5) then

it goes up the tree till find the root vertex (Line 6). The output is the root of the input

vertex. Hence, the set of vertex x is identified because each set have only one

specific root.

The third function is Union (x, y). This function uses the Find function for vertex x

and y of the edge (x, y) to find the roots of trees that they belong to them. If the roots

of vertices x and y are different then the trees are combined by attaching the root of

one to the root of the other. This union function uses the rank value which means

 18

that the shorter tree will be attached to the root of the taller tree. Algorithm 2.7 shows

the pseudocode of the Union (x, y) algorithm.

Algorithm 2.4: Pseudo code of the Union function [15].

Union

1. Input: Edge of the graph

2. Output: Updating the structure of trees

3. Function Union(x, y)

4. Begin

5. xRoot:=Find(x)

6. yRoot:=Find(y)

7. If xRoot == yRoot then

8. Return

9. End If

10. If xRoot.rank < yRoot.rank then

11. xRoot, yRoot:=yRoot, xRoot. //swap xRoot and yRoot

12. yRoot.parent := xRoot

13. End If

14. If xRoot.rank==yRoot.rank then

15. xRoot.rank:= xRoot.rank+1

16. End If

17. End

Lines (5-6) use Find function to find the root of trees (xRoot and yRoot) that vertices

x and y are belong to them. If the roots of trees are same, then vertex x and y are in a

same set. If the roots of vertex x and y are different and the rank value of the vertex

 19

x is lower than the rank value of the vertex y then the value of the ranks for the

vertex x and y will be swapped (Lines 10-13). If their rank value of x and y are same

then, the rank value of the vertex x will be increase by 1 unit (Lines 14-16).

Algorithm 2.5 shows the pseudocode of Disjoint-set algorithm.

Algorithm 2.5: Pseudocode of Disjoint-set algorithm.

Disjoint-set

1. Input: Edges of the Graph, G, and N number of vertices in the graph,

|G.V|

2. Output: Collection of disjoint sets

3. Function Disjoint-set(G.E, N)

4. Begin

5. N=|G.V|;

6. For i=1 to N| do

7. Make-Set(Vi);

8. End For

9. For j=1 to |G.E| do

10. X=Find(Ej. e1)// first vertex of the edge Ej;

11. Y=Find(Ej. e2)// second vertex of the edge Ej;

12. Union(X,Y)

13. End For

14. End

The input of the Disjoint-set algorithm is a graph and the output is the set of trees.

Lines 6-7 executes the Make-Set function for each vertex of the graph, Vi, where V

 20

is the vertex and the index i denotes the vertex number from the set of the vertex of

the graph, G.V={V1,V2,…..,VN} and N is the number of vertexes in a graph,

N=|G.V| . Lines 8-12 is a for loop to check all the edges of the graph. In Lines 10-11

the Find function is called to find the parent of the endpoints of the edge,

(Ej.e1,Ej.e2), and store in variables X and Y. in Line 12 the function Union(X, Y) is

called to find the roots of the trees. Figure 7 shows the four connected partitions of a

graph that is used as an input for Disjoint-set algorithm. An example of Disjoint-set

work is given in Example 2.

Figure 7: Four connected components of a graph [15].

Example 2: Application of Disjoint-set to the graph G;

Input: Four connected graph G(V,E): G.V={a,b,c,d,e,f,g,h,I,j},

G.E={(a,b),(a,c),(c,b), (b,d),(e,f),(e,g),(h,i)}, |G.v|=10, Number of vertices,

|G.E|=7, Number of edges.

Starting the first loop to create the sets for each vertex in given graph

i=1;

Make-Set(a)={a}, here Make-Set algorithm create a set for vertex a.

i=2;

Make-Set(b)={b}, here Make-Set algorithm create a set for vertex b.

i=3;

Make-Set(c)={c}, here Make-Set algorithm create a set for vertex c.

i=4;

Make-Set(d)={d}, here Make-Set algorithm create a set for vertex d.

 21

i=5;

Make-Set(e)={e}, here Make-Set algorithm create a set for vertex e.

i=6;

Make-Set(f)={f}, here Make-Set algorithm create a set for vertex f.

i=7;

Make-Set(g)={g}, here Make-Set algorithm create a set for vertex g.

i=8;

Make-Set(h)={h}, here Make-Set algorithm create a set for vertex h.

i=9;

Make-Set(i)={i}, here Make-Set algorithm create a set for vertex i.

i=10;

Make-Set(j)={j}, here Make-Set algorithm create a set for vertex j.

The first for loop is finished.

Starting the second for loop. This loop iterates for the size of the edge,

|G.E|=7.

j=1;

X=Find(a); //X={a};

Y=Find(b);// Y={b};

Union(a,b);// sets {a},{b} are combined and create one set, {a,b};

j=2;

X=Find(a); //X={a,b};

Y=Find(c);// Y={c};

Union(a,c);// sets {a,b},{c} are combined and create one set, {a,b,c};

j=3;

X=Find(c); //X={a,b,c};

 22

Y=Find(b);// Y={a,b,c};

Union(c,b);// they are in same set;

j=4;

X=Find(b); //X={a,b,c};

Y=Find(d);// Y={d};

Union(b,d);// sets {a,b,c},{d} are combined and create one set, {a,b,c,d};

j=5;

X=Find(e); //X={e};

Y=Find(f);// Y={f};

Union(e,f);// sets {e},{f} are combined and create one set, {e,f};

j=6;

X=Find(e); //X={e,f};

Y=Find(g);// Y={g};

Union(e,g);// sets {e,f},{g} are combined and create one set, {e,f,g};

j=7;

X=Find(h); //X={h};

Y=Find(i);// Y={i};

Union(h,i);// sets {h},{i} are combined and create one set, {h,i};

End of second for loop;

Output: {a,b,c,d}, {e,f,g}, {h,i};

2.2.3 Kruskal Algorithm of MST Construction

Given a weighted graph, MST is a graph connecting all the vertices of the graph

without any cycle between the vertices and also with minimum possible edge weight

[16]. In [17], the Kruskal algorithm is used to obtain the MST graph. Pseudocode

below presents the Kruskal algorithm.

 23

Algorithm 2.6: Pseudo code of Kruskal algorithm [17].

MST-Kruskal (G(V,E))

1. Input: An undirected graph having vertices, G.V={V1,V2,….,VN},

and edges, G,E, with weights G.E.w for each e from

G.E={G.E1,G.E2…..G.EM}.

2. Output: An undirected graph without any cycle between vertices

(Minimum Spanning Tree).

3. A=∅; // A is a minimum spanning tree; N=|G.V|;// Number of vertices

4. For i=1 to N do

5. Make-Set(Vi);

6. End For

7. BubbleSort(G.E.w); //Sort the edges of G.E into non-decreasing order

by weight w;

8. For j=1 to |G.E| do// |G.E| denotes the number of edges in graph,G;

9. If Find-Set(Ej.e1) ≠ Find-Set(Ej.e2) // Ej denotes the edge in graph in

position j; e1 and e2 are endpoints of the edge

10. A=A ∪ {G.Ej};

11. Union (u, v);

12. Return A;

13. End If

14. End For

Input of the Kruskal algorithm is an undirected graph and the output is a minimum

spanning tree. Line 3 initialize an empty set of minimum spanning tree and N, is the

number of vertices. In line 5, Make-set, Algorithm 2.2, function creates a set of

 24

trees. In this set, all vertices in the input graph is a separate tree. Line 7 executes the

BubbleSort function, Algorithm 2.1, to sort the set of edge into increasing order by

weight of the edge. In line 8, first element from the set of the edge is selected. The

functionality of Find-Set(u) and Find-Set(v) is to find the set of trees that contain

vertices u and v of the edge (u, v), Algorithm 2.3. If selected edge connects two

different trees (Line 9), their parents are different, then adds this edge to the

minimum spanning tree set A (Line 10). In Line 10, union (u, v) combines two trees

that contain vertices u and v. Line 12 returns the minimum spanning tree of the input

graph.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: An illustrative example of Kruskal algorithm. a) edge AD removed from

input graph and added to minimum spanning tree. b) edge CE removed and added to

minimum spanning tree .c) edge DF removed and added to minimum spanning tree.

d)edge AB added to minimum spanning tree, edge BD form a cycle. e) edge BE

added to MST. f) last edge EG is removed from input graph and added to MST [17].

Figure 8(a) shows the input graph. The edge AD with minimum weight is selected to

remove from input graph and add to the minimum spanning tree (MST), it is shown

 25

by the green line. In Figure 8(b), the next edge CE with minimum weight is removed

from the input graph and added to the MST. Figure 8(c) shows the next selected edge

AB. Edge BD cannot be added to the MST because it forms a cycle ADB. The edges

with red line demonstrate the cycle, hence, they cannot be added to MST. Finally, the

MST is shown by green line in Figure 8(f). An example of MST-Kruskal work is

given in Example 3.

Example 2: Application of MST-Kruskal to the graph G;

Input: Graph G.// G.V={A,B,C,D,E,F,G};

G.E.w={((A,B),7),((B,C),8),((A,D),5),((B,D),9),((B,E),7),((C,E),5),((D,E),1

5),((D,F),6),((F,G),11),((E,F),8),((E,G),9)}; N=|G.V|=7, number of vertices;

|G.E|=11 is number of edges

Starting the first for loop to create the sets for each vertex in given graph

i=1;

Make-Set(A)={A}, here Make-Set algorithm create a set for vertex A.

i=2;

Make-Set(B)={B}, here Make-Set algorithm create a set for vertex B.

i=3;

Make-Set(C)={C}, here Make-Set algorithm create a set for vertex C.

i=4;

Make-Set(D)={D}, here Make-Set algorithm create a set for vertex D.

i=5;

Make-Set(E)={E}, here Make-Set algorithm create a set for vertex E.

i=6;

Make-Set(F)={F}, here Make-Set algorithm create a set for vertex F.

 26

i=7;

Make-Set(G)={G}, here Make-Set algorithm create a set for vertex G.

End of first for loop

BubbleSort(G.E.w)={((A,D),5),((C,E),5),((D,F),6),((A,B),7),((B,E),7),((B,C

),8),((E,F),8),((B,D),9),((E,G),9),((F,G),11),((E,D),15)}

Starting of second for loop// it iterates 11 times for the edges of the graph G

j=1;

Find(A)≠Find(D)

A.E.w={((A,D),5)}

Union(A,D);// sets {A} and {D} are combined,{A,D};

j=2;

Find(C)≠Find(E)

A.E.w={((A,D),5),((C,E),5)}

Union(C,E);// sets {C} and {E} are combined,{C,E};

j=3;

Find(D)≠Find(F)

A.E.w={((A,D),5), ((C,E),5), ((D,F),6)}

Union(D,F);// sets {A,D} and {F} are combined,{A,D,F};

j=4;

Find(A)≠Find(B)

A.E.w={((A,D),5), ((C,E),5), ((D,F),6), ((A,B),7)}

Union(A,B);// sets {A,D,F} and {B} are combined,{A,D,F,B};

j=5;

Find(B)≠Find(E)

A.E.w={((A,D),5) , ((C,E),5), ((D,F),6), ((A,B),7),((B,E),7)}

 27

Union(B,E);// sets {A,D,F,B} and {C,E} are combined,{A,B,C,D,E,F};

j=6;

Find(B)=Find(C)// they are in same set, and cannot be added to A because

they make a cycle

j=7;

Find(E)=Find(F)// they are in same set, and cannot be added to A because

they make cycle

j=8;

Find(B)=Find(D)// they are in same set, and cannot be added to A because

they make cycle

j=9;

Find(E)≠Find(G)

A.E.w={((A,D),5),((C,E),5), ((D,F),6), ((A,B),7),((B,E),7), ((E,G),9)}

Union(E,G);// sets {A,B,C,D,E,F} and {G} are combined,{A,B,C,D,E,F,G};

j=10;

Find(F)=Find(G) // they are in same set, and cannot be added to A because

they make cycle

j=11;

Find(E)=Find(D) // they are in same set, and cannot be added to A because

they make cycle

Output: A={((A,D),5),((C,E),5), ((D,F),6), ((A,B),7),((B,E),7), ((E,G),9)}

2.2.4 Linear Programming Problem (LPP) in General

Linear programming is a method to achieve the best outcome (such as maximum

profit or lowest cost) with the special conditions and with certain restrictions. Linear

programming is a special case of mathematical programming (also known as the

 28

mathematical optimization). In [18,19], linear programming problem is discussed. In

our application, we used Matlab program to solve the LPP. Linear programming

problem can be expressed as below.

optimize
x

 . CT x (2.1)

subject to

a11x1 + a12x2 + ⋯ + a1nxn< b1

a21x1 + a22x2 + ⋯ + a2nxn< b2

 .

. (2.2)

 .

am1x1 + am2x2 + ⋯ . . + amnxn< bm

𝑥𝑖 ∈ {0,1} (2.3)

where x is the vector of variables, the value of the variable must be 0 or 1, that must

be determined, C and b are vectors of (known) coefficients, and (.)𝑇 is the matrix

transpose, and A is an m×n matrix of real numbers, a. (2.1) is called objective

function that can be minimized or maximized. The inequalities (2.2) and (2.3) are the

constraints which specify a convex polytope over which the objective function, f(x),

is to be optimized. The output of the linear programming problem is a vector, x, that

optimize, minimize or maximize, the given objective function, f(x).

2.3 Definition of Optimal TSP Problem as LPP

In [1], an electric power grid system is considered as an undirected graph, in which

nodes correspond to power grid buses, generator or load, and links correspond to the

power grid branches, transformer or transmission lines, and the weight of the links

denotes the propagation delay or distance between two endpoints of the link. Figure

9 shows an example of a power grid system with 9 power grid buses and 12 power

 29

grid branches.

Figure 9: A graph G(V,E) of power grid system. with G,V={V1...V9} power grid

buses (nodes) and G.E={G.E1,..,G.E12} power grid branches (links) [1]. Each edge

has weight, propagation delay between two endpoints of the link or distance between

them, marking it, e.g., w(G.E1(v1,v2))=4.

The definition of optimal TSP problem is divided into 3 parts presented in Sections

2.3.1-2.3.3. Section 2.3.1 presents a problem of segmentation to initialize the

partitions, Section 2.3.2 presents a problem of local search to update the partitions

optimally, and Section 2.3.3 describes the problem of optimal trust node selection

from the bordering nodes of the partitions.

Figures 10-14 illustrate the results of the initial tree partitioning, ideal segmentation,

and trust node selection problems solving for SCADA network from Figure 9.

2.3.1 Definition of Initial Tree Partitioning Problem (Segmentation)

As I mentioned in the introduction, SCADA networks are distributed geographically,

the distance between nodes in SCADA networks maybe hundreds or thousands of

miles. The initial tree partitioning problem (Segmentation) is used to divide the

SCADA networks to segments. MST is the main part of the segmentation. The MST

of a SCADA network is obtained by the Kruskal algorithm, Algorithm 2.6. The

partitions of the SCADA networks include the nodes that the distance between them

is minimal because partitions are in MST form.

 30

Linear programing problem (LPP1) is used to construct the primary partitions by

removing links from the SCADA network, G(V,E). By removing K-1 links from the

SCADA network, this network will be divided into K segments. The MST of the

SCADA network contains N-1 links, where N denotes the quantity of SCADA

nodes, |G.V|. Totally, N-K edges must be left from the SCADA network to achieve

the K partitions.

LPP1 is initial tree partitioning that eliminates K-1 MST links to obtain segments

regarding their normalized weights and lowest degrees. Node’s degree is the number

of links connected to that node. Leaf nodes degree is one. The minimum degree of

the link is defined as follows [1]:

dmin
MST(eu↔v) = min(du

MST, dv
MST) , (2.4)

where 𝑑𝑢
𝑀𝑆𝑇 is the degree of the node u, that is, the number of links that are

connected to the node u. In (2.4), the lowest degree of the edge of the MST graph is

obtained by selecting the minimum degree of the nodes that are connected to that

link. Figure 10 depicts by rectangles the minimum degree of the links of the SCADA

network in Figure 9.

 31

Figure 10: Minimum spanning tree of SCADA network of figure 9 [1].

In LPP1, two weighting factors (α, β) are normally set to α=1 and β=0.5. Normalized

weight (2.7), sets the weight of the links in a same range when they are not in the

same range. For example, in Figure 10 the link (7, 8) has the maximum value in the

MST SCADA network and it is equal to 17. To obtain the normalized weights,

weights of all the links are divided by 17. The normalized weight of link (1, 2) is

equal to
4

17
= 0.2352. The decision variable in LPP1 is, Y=(𝑦𝑒)(𝑁−1)×1, such that

[1]:

ye = {
1,
0,

 if e∈EMST is selected for elimination;
otherwise.

 (2.5)

Initial tree partitioning problem (LPP1) is described as follows [1]:

max
Y

∑ (αdmin
MST(e) + βw̃(e)) ye ,e∈EMST (2.6)

where

w̃(e) =
w(e)

max
e∈E

 w(e)
, ∀e ∈ E , (2.7)

subject to

 32

 ∑ yee∈EMST = K − 1 , (2.8)

 ye − dmin
MST(e) < 0, ∀e ∈ EMST , (2.9)

 ye ∈ {0,1}, ∀e ∈ EMST , (2.10)

The objective function is presented in (2.6) and the normalization weight is defined

in (2.7). Constraint (2.8) is the quantity of the links that must be removed, and this is

equal to K-1 which means that if the quantity of segments K is equal to 3 the number

of eliminated links shall be equal to 2. Constraint (2.9) ensures that each segment has

at least two nodes that are connected. Algorithm 2.7 gives the pseudo code of the

initial tree partitioning problem [1].

Algorithm 2.7: Pseudocode of initial tree partitioning (segmentation)

algorithm [1].

Initial tree partitioning

Input: G (V, E), SCADA network, with weights, G.E.w; K, number of

target segments;

Output: S= {s1, s2, s3, …, sK}, K segments obtained;

1. Begin

2. Ess = ∅, N = |G. V|, ks = ⌈
N

K
⌉ ; // N is number of nodes in graph G; Ess

is the set of links left after eliminating N-K links; ks is a limitation

variable that the size of segments must not exceed from this variable.

3. T(V, EMST) ← MST − 𝐊𝐫𝐮𝐬𝐤𝐚𝐥(G(V, E)); // MST graph, T, is

calculated by the Algorithm 2.6.

4. For all e∈ EMST do

 33

5. Calculate the lowest degree dmin
MST(e) by (2,4);

6. Calculate the normalized weight w̃(e) by (2.7);

7. End for

8. EI ←

𝐋𝐏𝐏𝟏(𝐢𝐧𝐩𝐮𝐭𝐬: objective function, (2.6), and the constraints, (2.8) −

(2.10); 𝐎𝐮𝐭𝐩𝐮𝐭: the vectore Y that maximize the objective function))

(2.5)-(2.10); // EI, vector Y, is the set of links that need to be

eliminated. LPP1 will choose the (K-1) edges that shall be removed to

make the primary tree partition.

9. ESS = {EMST\EI}; // Remove EIfrom the links of MST and store the

remain links in ESS. Size of ESS is N-K.

10. 𝐫𝐞𝐭𝐮𝐫𝐧 S = {s1, s2, … . , sK} ← 𝐃𝐢𝐬𝐣𝐨𝐢𝐧𝐭 − 𝐬𝐞𝐭(𝐄𝐒𝐒, 𝐍); //initial

partition set defined by using Disjoint-set algorithm, Algorithm 2.5.

Inputs of Disjoint-set algorithm are edges, ESS, and number of nodes

in the graph G, N.

The input of the Algorithm 2.7 is the graph G (V, E) which G.V and G.E, vertices

and edges of G, and G.E.w, weights of the edges, G.E, and the number of segments,

K. The output of the Algorithm 2.7 is the set of the segments. Line 2 is the

initialization part and the set of the links left after elimination (𝐸𝑠𝑠) by the LPP1 is

empty, number of nodes (N) set to the number of nodes in the input graph and

variable 𝑘𝑠 = ⌈
𝑁

𝐾
⌉. In fact, the variable 𝑘𝑠 is the limitation variable and it means that

the number of nodes in segments must not exceed this value. In line 3, the minimum

spanning tree, T(V, 𝐸𝑀𝑆𝑇) is computed by the Kruskal algorithm. The input of the

Kruskal algorithm is the original graph, G (V, E), and edges weights, and the output

 34

of the Kruskal algorithm is the MST graph, T(V, 𝐸𝑀𝑆𝑇). The number of links in the

MST is equal to N-1. Lines 4-6 compute the minimum degree and normalized weight

for all links in the MST. K-1 links are eliminated by the LPP1 in line 8 and the set of

the eliminated links of the MST is returned, 𝐸𝐼, by the LPP1. In line 9, the remaining

set of links after elimination are placed in 𝐸𝑠𝑠, set of links after elimination. Line 10

returns the initial set of segments. Disjoint-set algorithm, Algorithm 2.5, identifies

the segments. The inputs of the Disjoint-Set algorithm are set of edges and number of

nodes in the graph, G, and the output is the collection of disjoint sets, S. Figure 11

illustrates the primary segments that obtained by the Algorithm 2.7.

Figure 11: Links eliminations and segments identification [1].

The inputs of the initial tree partitioning algorithm, Algorithm 2.7, are the weighted

graph, G, in Figure 9 and the number of target segments, K, which is 3. The variables

𝐸𝑠𝑠, set of remain links after eliminating the links, number of nodes, N=|G.V|=9, and

𝑘𝑠 = 3, limitation variable, are initialized. In line 3 the MST, T, is obtained by the

MST-Kruskal algorithm. The MST is represented by Figure 10. Lines 4-7 compute

the minimum degree of the links (2.4) and normalized the weight of the MST links

(2.7). Figure 10 represents the minimum degree of the links. By solving the linear

 35

programming problem 1, LPP1, the number of links that must be eliminated is

returned and stored in 𝐸𝐼, 𝐸𝐼 = {(2,3), (6,7)} ,. The input of LPP1 are objective

function and the constraints (2.6)- (2.10). the output is the vector Y that the decision

variable is denoted in (2.5). In line 9, set of the elimination links, 𝐸𝐼, is removed

from the set of the MST links, 𝐸𝑀𝑆𝑇 , and the remain links of the MST are stored in

𝐸𝑆𝑆, 𝐸𝑆𝑆 = {((1,2), 4), ((3,6), 6), ((6,4), 3)((4,5), 2), ((9,7), 1)((7,8), 17)}. The

set of 3 segments, S={s1,s2,s3}, is returned by Disjoint-Set algorithm, S=

{{1,2},{3,4,5,6,},{7,8,9}}, Line 10.

2.3.2 Definition of Ideal Segmentation Problem

The objective of ideal segmentation problem is to reduce the sum of the minimum

spanning tree weights of all partitions in SCADA networks and it is acquired when

the MST weight of any partition is minimized. Ideal segmentation problem is

described as follows [1]:

min
S

∑ τs
mst

s∈S , (2.11)

where

τs
mst = ∑ w(es)eϵMSTs , ∀s ∈ S , (2.12)

subject to

 ⋃ Vs
s∈S = V , (2.13)

 Vs ∩ Vs′
= ∅, ∀s ≠ s′ and s, s′ ∈ S , (2.14)

 |Vs| ≤ ⌈
N

K
⌉ , (2.15)

where V is set of the SCADA nodes, S is set of the segments; for each segment ,

s ∈ S, τs
mst is the MST’s weight of the segment s and Vs is the set of segment’s

nodes, MSTs is the minimum spanning tree in segment s and w(es)denotes the link’s

 36

weight in segment s. Expression (2.11) is the objective function that minimizes the

sum of the weights of the MST graph in the segments. Equation (2.12) defines the

sum of the weights of the MST graph in the segment s. Constraint (2.13) ensures that

the entire network is segmented, i.e. the union of all segments returns the whole

network. Constraint (2.14) shows that intersection of any two segments is empty, in

other words, it shows that each node belongs to only one segment. Constraint (2.15)

limits the number of nodes for one segment. Algorithm 2.8 describes the local search

algorithm to provide the ideal segments size.

Algorithm 2.8: Pseudo code of local search algorithm.

Local search

Input: G(V, E), K, S // G is the original graph, K is number of target

segments and S is the set of segments that returns by the Algorithm 2.7;

Output: Set of segment sets after repartitioning;

15. Begin

16. Phi=0, N=|G.V|, ks=⌈
N

K
⌉ ; ∆min =∅//initialization

17. 𝐰𝐡𝐢𝐥𝐞 phi < 1 do

18. Count=0;

19. For i=1 to K do

20. For j=1 to K do

21. If |si>ks and |sj |<ks then

22. ∆min=Find∆min(𝐬𝐢, 𝐬𝐢, 𝐓) // The inputs of the Find∆min

algorithm, Algorithm 2.9, are oversized segment, 𝐬𝐢, and

undersized segment, 𝐬𝐣, and MST graph, T, the output is the

 37

minimum sub-segment, ∆min, belonging to si that is adjacent to

sj.

23. If ((|ks − |si||) + (|ks − |sj||) > ((|ks − |si| + |∆min||) +

(|ks − |sj| − |∆min||)) then

24. si = {si\∆min} and sj = {sj ∪ ∆min};// Updates the MST

partitions

 count=count+1;// It checks for balancing segment sizes

25. End if

26. End if

27. End for //j

28. End for //i

29. If (count==0) then

30. Phi=1;//termination condition

31. End if

32. End while

33. Return s={s1,s2,…., sK}

34. End

The inputs of the Algorithm 2.9 are complete graph of the SCADA network, G(V,E),

number of segments, K, and the set of segment sets, S. Output contains updated

segment set. In line 2 the value of 𝑘𝑠, 𝑘𝑠=⌈
𝑁

𝐾
⌉, is the limitation variable, ideal

segmentation size (2.15), and it means that the number of nodes in segments must

not exceed this value. The variable phi is set to zero, this variable is used by the

while loop (Lines 3-20) implementing the local search. This loop searches for the

oversized, 𝑠𝑖, (|𝑠𝑖| > 𝑘𝑠) and the undersized, 𝑠𝑗, (|𝑠𝑗| < 𝑘𝑠) segments, and for each

 38

pair of oversized and undersized segments that are adjacent, computes sub set, ∆min,

of the oversized segment, Algorithm 2.9, (Line 9). Line 10 checks that the sum of

sizes of oversized and undersized segments after updating (removing the subset,

computed by ∆min algorithm, from the oversized segment, 𝑠𝑖, and adding this subset

to the undersized segment, 𝑠𝑗) is less than it was originally. If the condition in line 10

is true, then the ∆min set is removed from the oversized segment and added to the

undersized segment (Line 11). ∆min is computed in algorithm 2.9. This loop will be

finished when the adjacent oversized and undersized segments are not exist, after that

the value of the counting variable sets to one (phi=1). Line 20 returns the segment

set.

Algorithm 2.9: Pseudo code of ∆min finding algorithm.

Find ∆min

Input: si, sj and T(V, EMST),// si is the oversized segment set, sjis the

undersized segment set, T is the minimum spanning tree;

Output: Collection of nodes of the oversized segment;

1. Begin numbered list?

2. If{e(u,v)|u ∈ si, v ∈ sj}∩ EMST = ∅ then// Edge e is the adjacent

edge between oversized segment, si, and undersized segment, sj,

and endpoint u of edge e is a node that belongs to oversized

segment and endpoint v of edge e is a node that belong to

undersized segment,

3. ∆min=∅;

4. Else

5. δsize = ∅, δset = ∅ , n=0;//Initialization

 39

6. EPsi = ⋃ {e(a, b)|e(a, b) ∈ EMST}a,b∈si

7. For all e∈ EPsi do

8. EPsi = {EPsi\e(u, z)}; //Cutting the edge e(u,z) where endpoint u

of edge e is a node that connected to undersized segment by the

edge e(u,v) in line 2 and endpoint z of node e is the other endpoint

of the edges belong to oversized segment.

9. {∆u, ∆z} ← 𝐃𝐢𝐬𝐣𝐨𝐢𝐧𝐭 − 𝐬𝐞𝐭(𝐄Psi, |𝐓. 𝐕|);// After cutting the edge

u two segments ∆u and ∆z are obtained by the Disjoint-Set

algorithm. One segment having node adjacent node, u, that is

called ∆u the other one is ∆z that is not used.

10. n=n+1;

11. δset(n) = ∆u;

12. δsize(n) = |∆u|;

13. EPsi = {EPsi ⋃ eu↔z};//Restoring

14. End for

15. n*=arg minn δsize(n);

16. ∆min=δset(n ∗);

17. End if

18. Return ∆min

19. End

Algorithm 2.9 is utilized to calculate ∆min subset for the oversized segment in

algorithm 2.8. The inputs of the Algorithm 2.9 are oversized segment, 𝑠𝑖 , and

undersized segment, 𝑠𝑗, and the minimum spanning tree, T. Line 2 checks the

neighboring of the segments. If they are not neighbor, the ∆min set is empty. If the

 40

segments are neighbor, these segments are connected by a link, line 5 initializes the

size of segment set, 𝛿𝑠𝑖𝑧𝑒, and the segment set , 𝛿𝑠𝑒𝑡, and the variable n. Line 6

returns the set 𝐸𝑃𝑠𝑖of links belonging to oversized segment, 𝑠𝑖. The link that

contains node the adjacent node, u, and this node belongs to the oversized segment

cuts from the 𝐸𝑃𝑠𝑖 set (Line 8). After cutting, the oversized segment is divided into

two segments. Disjoint-set function, Algorithm 2.5, returns these segments (Line 9).

One of these sub segments contains adjacent node, u. This segment is qualified for

segment modification. The sets 𝛿𝑠𝑖𝑧𝑒 and 𝛿𝑠𝑒𝑡 are updated (Lines 11-12). This loop is

continued for all links of the 𝐸𝑃𝑠𝑖 that contains adjacent node, u. Line 15 returns the

minimum size of 𝛿𝑠𝑖𝑧𝑒. Finally, in line 16 the corresponding node set ∆min is

computed. Figure 12 illustrates the updated segment obtained by Algorithm 2.9.

Figure 12: Updated segments of figure 11 obtained by algorithm 2.8 [1].

The node 3 in Figure 11 which is located in the oversized segment, {3,4,5,6} is

shown by green color in Figure 11, is identified by the Algorithm 2.9. The inputs of

Algorithm 2.9 are oversized segment, {3,4,5,6}, and undersized segment, {1,2}, and

minimum spanning tree, T, the adjacent link is e (3,6) and the adjacent node is u=3.

In line 6 the set of links belongs to oversized segment is initialized, 𝐸𝑝𝑠𝑖 =

{(3,6), (6,4), (4,5)}. The link (3,6) is the only link that contains adjacent node, 3,

 41

from 𝐸𝑝𝑠𝑖 as a consequence, the for loop in Line 7 iterates only one time. In Line 8

the link (3,6) is cut from the 𝐸𝑝𝑠𝑖 set and in line 9 two segments are returns by the

Disjoint-set algorithm, Algorithm 2.5, these set are {3}and {4,5,6}. The set that

contains the adjacent node, {3}, is returned by the Find ∆min algorithm. This node is

adjacent to the undersized segment, {1,2} shown by blue color in Figure 11.

Algorithm 2.8 receives the ∆min set, {3}, from the Algorithm 2.9 and then checks

the balancing condition in Line 10. In Line 11, node 3 is removed from oversized

segment and added to undersized segment. The output of the Algorithm 2.8 is the

updated set of segments, S= {{1,2,3},{4,5,6},{7,8,9}}.

2.3.3 Definition of Optimal TSP Problem

After the segments are initialized by the Algorithm 2.7 using LPP1, and repartitioned

by the Algorithms 2.8, 2.9 solving ideal segmentation problem, the optimal trust

nodes must be selected. The LPP2 is the optimal trust node computation problem that

is described by (2.16)-(2.19) [1]:

min
X

∑ ∑ xsbb∈B(s) s∈S (2.16)

subject to

∑ xI ≥ 1xI∈XI(l) , ∀ l ∈ Lsś; ∀s, s′ ∈ S , (2.17)

 xsb ∈ {0,1}, ∀s ∈ S and ∀b ∈ B(s), (2.18)

where

XI(l) = {xsb, xs′b′}, b ∈ B(s), b′ ∈ B(s′), s ≠ s′, l = (b, b′), (2.19)

where B(s) denotes the collection of bordering vertexes, 𝐿𝑠�́� denotes the set of inter-

segment links between segment s and 𝑠′, and 𝑋𝐼(𝑙) is the parameter set for bordering

vertexes relevant to the inter-segment link, 𝑙.The output of the LPP2 is the quantity

 42

of trust nodes that the system needs to be protected against the attacks. The decision

binary variable is 𝑋 = (𝑥𝑠𝑏)∑ |𝐵(𝑠)|×1𝑠∈𝑆 , where b∈B(s),

xsb = {
1,
0,

 if b∈B(s)is selected, s∈S;
otherwise

 . (2.20)

The objective function is given in (2.16) and inequality (2.17) ensures that all inter-

segment links are covered by at least one trust system.

Algorithm 2.10: Pseudo code of trust node selection algorithm.

Optimal trust nodes placement algorithm

Input: S= {s1, s2, ….., sK}, G (V, E)

Output: VTrust;

1. Begin

2. For all s∈ S do

3. B(s)=∅;//Initialize bordering node sets

4. End for

5. For all s≠s’ and s,s’∈ S do

6. Lss′ = ∅;//Initialize inter-segment link sets

7. End for

8. For all e(u,v)∈ E do

9. Find the segment x having node u;

10. Find the segment y having node v;

11. If x≠y then

12. Lxy = {Lxy ∪ e}; // Updating inter-segment link set by adding link

e(u,v);

 43

13. B(x) = {B(x) ∪ u}; // adding node u to bordering node set x;

14. B(y) = {B(y) ∪ v}; // adding node v to bordering node set y;

15. 𝐞𝐧𝐝 𝐢𝐟

16. End for

17. VTrust ←

Solve LPP2(inputs: the objective function and constraints (2.16) −

(2.19), outputs: The vector X for binary decision variables)//This

will select the trust node set

18. Return VTrust

19. End

Algorithm 2.10 is used to identify the bordering nodes and select the trust nodes. The

input of the algorithm 2.10 is a set of segments S which is the output of the algorithm

2.8 and the original graph. G (V, E). The output of the algorithm 2.10 is the selected

trust nodes. Lines 2-7 are the initialization part of the algorithm. In this part the set of

bordering nodes, B(s), per segment is initialized (Lines 2-4). For each pair of

segments, the inter-segment link set, 𝐿𝑠𝑠′, is initialized in Lines 5-7. For all links,

e(u,v), in original graph, the segment, x, is identified that contains node u of the link

e(u,v) and segment y is identified that contains node v of the link e(u,v) (Lines 9-10).

If these segments are different, this link is known as an inter-segment link. Lines (12-

14) update the bordering node set and inter-segment link sets. By using LPP2 the

trust nodes are selected (Line 17). Figure 13 illustrates the intersegment links. These

links are shown by the dotted line in Figure 13.

 44

Figure 13: Identifying inter-segment links and bordering nodes [1].

Figure 13 illustrates the inter-segment links set, Algorithm 2.10 identifies the sets of

the inter-segment links, Lss’, and the set of bordering nodes, B(s), as follows:

Ls1s2 = {(3,4), (3,6)} and Ls1s3 = {(1,9), (2,9), (3,7)} and Ls2s3 = {(6,7)}.

B(s1)={1,2,3}, B(s2)={4,6}, B(s3)={7,9}.

After initializing the bordering node sets and inter-segment links, the trust nodes,

𝑉𝑇𝑟𝑢𝑠𝑡, are obtained by the LPP2 in line 17. The inputs of the LPP2 are the objective

function (2.16) and the constraints (2.16)- (2.19). The output is the vector X, 𝑋 =

(𝑥𝑠𝑏)∑ |𝐵(𝑠)|×1𝑠∈𝑆 , where b∈B(s). The selected trust nodes in Figure 14 are 3, 7 and 9.

Figure 14: Finding trust nodes by algorithm 2.10[1].

 45

Figure 15 depicts the flowchart of the optimal TSP problem solution algorithm. This

flowchart has 5 blocks except starting and ending blocks. In block 1, SCADA

network graph. G (V, E), and number of segments, K, are inputs of the Algorithm

2.7. In block 2, primary segments are computed by the Algorithm 2.7 (Segmentation

problem); the output of the Algorithm 2.7 is the set of segments, S, and this is used

as an input for the Algorithm 2.8 in block 3. Block 3 is about the local search process

in Algorithm 2.8 to find the oversized, 𝑠𝑖, and undersized, 𝑠𝑗, segments. This block

implements the ideal segmentation problem. Algorithm 2.9 is part of the Algorithm

2.8. The inputs of the Algorithm 2.9 are oversized, 𝑠𝑖, and undersized, 𝑠𝑗, segments

and minimum spanning tree, T, ant the output is the set of sub-partition, ∆min, of the

oversized segment. The functionality of the Algorithm 2.9 is to find the set of nodes

from the oversized segments. The output of the block 3 is the updated set of

segments. Algorithm 2.10 implements the trust node selection problem (Block 4).

The inputs of the Algorithm 2.10 in block 4 are output of Algorithm 2.9, set of

segments, and the input graph in block 1, G(V,E). Output of the block 5 is the

selected trust nodes set (Block 5).

 46

Figure 15: Flowchart of the algorithm for solving optimal TSP problem [1].

 47

2.4 Experimental Outcomes

Case studies are conducted in [1] for the IEEE test system topologies [20]. The IEEE

test cases represent the part of the American Electric Power Systems. Table 2

illustrates the overview of experimental parameters.

Table 2: Overview of experimental parameters [1]

The topologies are divided into two parts on the base of the network size: large

networks and small size networks. BUS 118 and BUS 300 are members of large

networks. BUS 14, BUS 30, and BUS 57 are members of the small networks.

Databases of the IEEE test system topologies include: bus number, load flow area,

loss zone, circuit, branch resistance, branch reactance, base KV (Kilo Volt), load

MVAR (Mega Volt Ampere Reactive), load MW (Mega Watt), minimum voltage

and maximum voltage. Databases are stored as text files. The first seven fields of the

first record of the IEEE test system topology of the BUS14 is shown in Table 3.

 48

Table 3: Structure of the IEEE test system topology BUS14.

1 2 3 4 5 6 7

1st Node

number of an

edge

Includes:
4 characters

2nd Node

number of an

edge

Includes:
4 characters

Load flow

area number

includes:
1 character

Loss zone area

number

Includes:
1 character

number of

parallel

transmission

Includes:
1 character

Transmission

line

Includes:
 1 character

Branch

resistance

()

Includes:
10 characters

1 2 1 1 1 0 0.01938

An electric power grid is an interconnected network to bring electricity from

producers to consumers [21]. It contains generating stations, high voltage

transmission lines and distribution lines.

Generating station, generator, converts the mechanical energy using steam turbines,

gas turbines, water turbines into electrical power for use in an external circuit [22].

High voltage transmission line, electric power transmission system, moves the

electrical energy from generating station to an electrical substation [23]. Electric

power distribution is the final stage in the delivery of electric power, it carries

electricity from the electrical substation to individual consumers [24].

In a smart grid environment, electric power grids are assumed to be accompanied by

the representative SCADA communication networks. In a representative network,

each link corresponds to a power grid branch and each node corresponds to a

particular power grid bus. Links are weighted by the propagation delays. Figure 16

shows the IEEE BUS 14 test system topology with 14 nodes (buses) and 20 active

links.

In Figure 16, diagram of IEEE BUS 14 is depicted. IEEE BUS 14 includes 14 buses

which indicate the generator stations and 20 branches which indicate the

 49

transmission lines. The arrows in Figure 16 demonstrates the electrical loads,

component or portion of a circuit that consumes electric power [25]. Each bus in a

power system can be classified into three types [26]. First one is known as load bus.

All buses in load bus having no generators. Second one is the generator bus. The

buses that have generator are known as generator buses. The third one is the slack

bus that it balances the active and reactive power in power system. IEEE BUS 14

includes 14 buses, correspond to node in graph, that buses 1,2,3 and 8 are generator

buses and the other buses are load buses. The rectangle in Figure 16 demonstrates the

transmission lines number, correspond to link in graph.

Figure 16 : IEEE BUS 14 test system.

The information that must be retrieved from the databases includes: node number in

column 1 of Table 3, node number in column 2 of Table 3 and branch resistance in

 50

column 7 in Table 3. Brach resistance is used to calculate the propagation delay.

Structure of the database record is as follows:

 First field defines the first node number of the link. This field includes 4

characters (including space characters). For example, in the first line of BUS 14

(Column 1 in Table 3), characters 1-3 are spaces and the fourth character is 1, as

a consequence, the node number is equal to 1.

 Second field defines the second node number of the link. This field includes 4

characters (including space characters). For instance, characters 1-3 (Column 2

in Table 3) are spaces and the fourth character is equal to 2 as a result, the node

number is 2. After these 2 steps, two nodes of the link, (1, 2), are found.

 Field 7 includes 10 characters (including space characters) and defines the branch

resistance. In the given example the branch resistance is 0.01938.

Because propagation delays are not given in the text file, the following calculations

are used to retrieve propagation delays for IEEE test system topologies:

1. Branch resistance (R) is retrieved from the previous steps.

2. Static resistivity (𝜌) is a measure of how strongly a material opposes the flow of

electric current. Aluminum wire with an iron core is assumed in [3], which has a

resistivity value of 2.50188E-8 m.

3. Area is the cross-sectional area of the material in square meters (𝑚2). In [3], it is

selected 0.00080642 𝑚2 as a typical value.

4. The line length of a piece of material is measured in meters. The line length is

obtained by equation (2.21).

5. In [3], fiber optics cables are used in the communication line, therefore, the speed

of light, 299792458 m/s, in fiber optics cable, fiber optic operates 99.7% speed of

 51

light, is used in equation (2.22) to obtain the time or latency from the line length

(2.21) [3].

Line_Length =
R×Area

ρ
 m (meters), (2.21)

Time =
Line_Length×3

speed of light
 s (seconds), (2.22)

For instance, the propagation delay between nodes 1 and 2 of IEEE BUS 14 power

system is calculated as follows:

Example 3: Computation of propagation delay between node 1 and node 2

of IEEE BUS 14.

R=0.01938 . // retrieved from field 7 of Table 3.

Area=0.00080642 m2.

ρ = 2.50188E − 8 m.

Line_Length=
0.01938×0.00080642

2.50188E−8
= 624.667034.

Time=
624.667034×3

299792458
= 6.250E − 6 s (seconds) = 6 µs (micro seconds).

The rest propagation delays are obtained in same way of Example 3 which are

specified in Figure 17.

Figure 17 shows a graph of IEEE BUS 14 test system topology. In the graph, nodes

correspond to the buses, generators or electrical loads, links represent

communication between buses, transmission lines, and link’s weights represent

propagation delay in micro seconds.

 52

1

2

3

4

5

7

13

14

8

12

6

91011

6

17

18

15

21

18

4

1

1

1
1

1026
40

30

55

21

71

1

39

Figure 17: Graph of IEEE BUS 14 test system topology presented in figure 16.

The designed method implementation employed MATLAB optimization toolbox.

The IEEE test system models are utilized as SCADA network graphs. Small

networks are divided into 3 to 6 segments with increment of 1. Large networks are

split into 5 to 30 segments with increments of 5. The mean value of the segment size

differs between 2.33 and 19 in small size networks and also, the range of mean value

of the segment size is between 3.93 and 60 in large networks. In [1], all the

examinations are implemented on a PC system equipped by RAM 4 GB and Intel

core i3, 3.30 GHz processor.

In [1] coefficient of variation, also known as relative standard deviation, RSD, of

segment size [27] is chosen as a metric. Equation (2.23) demonstrates the coefficient

of variation, CV, formula [27].

𝐶𝑉 =
𝜎

𝜇
 , (2.23)

 53

where 𝜎 is the standard deviation and µ is the average. Equation (2.24) illustrates the

standard deviation formula [28] for values x[1..N]:

𝜎 = √∑ (𝑥𝑖−𝜇)2𝑁
𝑖=1

𝑁−1
 , (2 .24)

. Equation (2.25) defines the mean of x[1..N] values :

𝜇 =
1

𝑁
 (∑ 𝑥𝑖

𝑁
𝑖=1) , (2.25)

Figure 18 demonstrates the relative standard deviation of the calculated segment

sizes for small (Figure 18(a)) and large (Figure 18(b)) networks.

 54

(a)

(b)

Figure 18: Relative standard deviation of the calculated segment sizes. (a) Large

networks. (b) Small networks [1].

Relative standard deviation of the computed segment sizes is less than 0.5 for small

networks and is less than 1 for large networks. As the Figure 18 shows, it is obvious

that the coefficient for large network is higher than for small network and it is

because of network size. In large networks segments have lower size balance and as

a consequence, the relative standard deviation of the calculated segment sizes is

larger.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30

R
ea

la
ti

ve
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Number of Segments

BUS 118

BUS 300

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 4 5 6

R
el

at
iv

e
St

an
d

ar
d

 D
ev

ia
ti

o
n

Number of Segments

BUS14

BUS30

BUS57

 55

In Figure 19, the average MST weight (2.25) is the metric for the geographic

dispersion. Figure 19(a) is for small networks and Figure 19(b) is for large networks.

In both of them, it is clear that by increasing the number of segments the average

MST weight is reduced. The segment sizes and quantity of segments are related, and

it means that increasing number of segments causes decrementing of the segment

sizes. As a consequence, there is a decrement in the average of MST weight.

(a)

(b)

Figure 19: The average MST weight of the calculated segments. (a) Large networks,

(b) Small networks [1].

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30

A
ve

ra
ge

 M
ST

 W
ei

gh
t

(µ
s)

Number of Segments

BUS118

BUS300

0

50

100

150

200

250

300

350

400

450

500

3 4 5 6

A
ve

ra
ge

 M
ST

 W
ei

gh
t

(µ
s)

Number of Segments

BUS57

BUS30

BUS14

 56

Figures 20 shows the desired quantity of trust systems, calculated by the Algorithm

2.10, for the proposed scheme. In both cases, the bar chart shows that required

amount of trust systems rises with the amount of segment increasing. The amount of

increments is higher for larger networks.

(a)

(b)

Figure 20: The needed number of trust systems. (a) Large networks. (b) Small

networks [1].

0

10

20

30

40

50

60

5 10 15 20 25 30

N
u

m
b

er
 o

f
 T

ru
st

 S
ys

te
m

s

Number of Segments

BUS 118

BUS 300

0

2

4

6

8

10

12

14

3 4 5 6

N
u

m
b

er
 o

f
 T

ru
st

 S
ys

te
m

s

Number of Segments

BUS 14

BUS 30

BUS 57

 57

2.5 Problem Definition

SCADA networks are used to monitor and control the input and output traffic to

protect the smart grid networks against the intrusions, malicious activities and other

bad activities that harm the smart grid networks. For this reason, trust systems are

deployed by the smart grid operators to monitor traffic packets. Trust systems consist

of firewalls and intrusion detection systems (IDS).

The objective of optimal TSP problem is to optimize the cyber-security of smart grid

networks. As trust systems contain specialized software and hardware agents, it is

expensive to deploy them through entire of network and also trust systems cause

delay through the network. In [1], optimal TSP problem is proposed to optimize the

security by minimizing the operational expenditure and capital expenditure. As a

consequence, minimum number of trust nodes is selected and equipped by the trust

systems. These nodes are known as trust nodes. Optimal TSP problem provides

optimize security and minimize the cost.

Methods that are used to solve the optimal TSP problem comprise segmentation

algorithm, local search algorithm and trust node selection algorithm. Segmentation

problem is the main part of the optimal TSP problem. As smart grid networks, power

grid systems, are geographically distributed the network is divided into small

networks to restrict the spreading of cyber-attacks. Segmentation is based on the

MST it means that in each segment the distance between components is minimal.

Local search is used to uniform the size of the segments in number of nodes.

Only bordering nodes can host the trust systems. As a consequence, due to the

budgetary minimum number of trust nodes are selected by the trust node selection

 58

algorithm. The constraint of trust node selection algorithm is that all inter-segment

links must be connected to at least one trust node. As a result, if in one segment a bad

activity, malicious traffic and other types of attack is took place then it can not

distribute to other segment because segments are connected through the inter-

segment links which they are equipped by at list one trust system.

We used IEEE test system topologies, categorized into small and large networks, as

database to analyze the performance of optimal TSP problem. We use coefficient

variation to measure the segments size. The coefficient of variation for small network

is smaller than coefficient of variation for large networks. It means that segments in

small networks are more balanced in number of nodes. By increasing the number of

segments, the required number of trust systems increases, and the average of MST

weighs decreases.

 59

Chapter 3

DESIGN, IMPLEMENTATION, AND TESTING OF

OPTIMAL TSP SCHEME

In this chapter, we explain design and implementation of the codes. This chapter

includes three sections. In Section 3.1, design and implementation of proposed

optimal TSP scheme [1] are discussed. In Section 3.2, testing of the developed

optimal TSP scheme is discussed.

3.1 Design and Implementation of Proposed TSP System in [1]

As mentioned in Chapter 2, the optimal TSP scheme is based on three algorithms

(Figure 14). Inputs of this software are divided into two parts, the first one is manual

input and the second one is the text files, based on IEEE test system topology [20].

The source codes and the databases are shown in the Appendix A. After explanation

of the codes, we will discuss the improvement part of the optimal Trust System

Placement (TSP) scheme in smart grid SCADA networks program due to the

minimization of the dispersion of the trust system number over the network segments

that improves uniformity of the trust systems placement. Utilities that we used, are

Microsoft Visual Studio.Net Enterprise 2015 and Matlab R2016a. This application is

implemented by Microsoft C#.net which is an elegant and type-safe object-oriented

language. Matlab is used to solve the LPP1 and LPP2 problems. All the examinations

are implemented on a PC system equipped by an Intel core i7 2.10 GHz CPU and

8GB RAM and Microsoft Windows 10 64-bit operating system.

 60

3.1.1 Design of Optimal TSP Scheme [1]

Figure 21 demonstrates 8 blocks of process to implement the proposed optimal TSP

in smart grid SCADA networks. These blocks are shown as follows:

Figure 21: Block diagram of process to implement the proposed TSP in smart grid

SCADA networks.

 61

Block 1 is a decision process to select the graph. Initialization of the graph is divided

into 2 types, initializing graph of IEEE test system topologies via text file (Block 2)

and manually initialize the graph (Block 3). The output of the Blocks 2 or 3 is used

as an input (Block 4) for the segmentation problem (Figure 15 Block 2). Block 5,

implements the code to execute the Algorithm 2.7 and the output of block 5 is used

as an input of block 6. In block6, the Algorithms 2.8 and 2.9 are implemented to run

the local search procedure. The output of the block 6 is the updated segment sets and

used as an input for the selection of trust nodes procedure (Block 7). Block 7

implements the Algorithm 2.10 and the output is the set of trust nodes that must host

the trust systems. The source codes of theses blocks are described in Section 3.1.2.

3.1.2 Implementation of optimal TSP scheme

Appendix A demonstrates the source codes of the optimal TSP program. This

program includes Edge, Graph, Create_Graph_text, Create_graph

Minimum_Spanning_Tree, LPP, Delta_min, Bordering_node_details, button1_click,

and Trust_Node_selection classes. Each process in Figure 21 includes several

classes.

1. The process of initializing graph in blocks 2 and 3 implement the input process

uses classes: Edge, Graph, Create_Graph.cs, Creat_Graph_text and button1_click

event.

2. Segmentation process (Block 5) uses classes: Minimum_Spanning_Tree.cs and

LPP.cs.

3. Local search process (Block 7) uses classes: Delta_min and Form1.cs .

4. Selection of trust nodes process (Block 9) uses classes:

Bordering_node_details.cs and Trust_Node_selection.cs.

 62

The first part of the implementation is to define the attributes of the graph which

include: edge, source/destination node, weight (propagation delay). These attributes

are obtained by the process in block 2 or 3. Block 1 decides which block 2 or 3 might

be run. Figure 22 shows the main form appearance.

Figure 22: Main form of the program.

Figure 22 illustrates that the default input type is by the text file because the elements

of manual input are disabled. By clicking on the combo box and choosing the

databases (BUS14, BUS 30, BUS57, BUS 118 and BUS300), the decision process in

block 1, decides to execute the process of block 2 in Figure 21. Otherwise, if the

“Manual” button is clicked then the process of block 3 is executed (Manually input).

The manual input includes number of vertices (nodes), number of edges (links),

source (node number), destination (node number) and weight of the link. The graph

is undirected, the source and destination value just denote the two endpoints of the

 63

link. Classes Edge, Graph and Create_Graph are used in the both processes. Block 2,

except the mentioned classes, executes the Create_Graph_text and block 3 executes

the button1_click event. Figure 23 illustrates the flowchart of the input graph

procedure with the use of a text file. Figure 24 shows the main form for the manual

input graph, and Figure 25 depicts the flowchart of the procedure of manual graph

initialization.

Figure 23: Flowchart of the algorithm providing input of graph via text file.

 64

Block 1 is a switch statement that chooses a single switch section to execute from a

list of candidates based on a pattern match with the match expression [29]. It has 5

switch selections for IEEE test system topologies. By choosing one of the IEEE test

system topologies from the combo-box in Figure 22, one switch selection is executed

(Blocks 2, 5, 8, 11 and 14) and all lines of the text file will be read by the

“File.ReadAllLines()” method and stored in an array of string [30]. In the next block,

the array of string is parsed by the create_graph_text method to extract the attributes

of the graph in text file (Table 3). Finally, the output is the SCADA network graph

object. By clicking on the button (manual) the manual input graph is activated

(Figure 24).

Figure 24: Manual graph input screen.

Figure 25 depicts a flowchart of the procedure of manual input of the graph. In block

1, the number of vertices (nodes) and number of edges (links) are read from the

 65

textboxes. The array of the object edges is created in block 2. In block 3, the variable

i is set to zero. This variable is used to count the number of edges (links). The value

of the weight, source (node number 1) and destination (node number 2) of the edge is

read and if the value of the variable i is smaller than the number of edges (Block 5)

then these values are stored to the attribute of the graph (Block 6). After adding these

values, the value of i increases by 1. If the condition in block 5 returns false

(i>number of edges), the graph is created by the Create_graph method (Block 8). The

output is an undirected graph. Below, the classes which implement the input graph

are discussed.

 66

Figure 25: Flowchart of the algorithm allowing of manual graph creation.

 67

Defining class of Edge: Appendix A1 shows the class Edge.cs. It has 8 attributes

and includes: Source, Destination, Weight, minDegree, maxdeg, normalizeWeight,

we, Active, delta_Seg and Intersegment lines (3-12). There is one method,

add_Edge, which initializes the attributes Source, Destination, Weight, and Active,

which is a Boolean variable. The value of this variable at the beginning is equal to

true. This method is used to add the value of the destination, source and weight to the

created object of edge.

Defining class of Graph: Appendix A2 is about a class Graph. Lines 3-8 define the

attributes which are related to the number of vertices, number of links, Edge

properties and two constraint variables that are used to calculate the weight of the

edge (propagation delay) [3] and they are defined in Section 2, (2.21)- (2.22). It

includes seven methods. Lines (9-13) initialize the graph attributes such as:

vericesCount, number of nodes, and edgesCount, number of links, and the array of

links, ed, for manual inputs. Lines 14-28 is a method to compute the mean value of

the links (2.25). Lines 29-50 defines a method, standard_Deviation, to computes the

standard deviation of segments in size. Inputs are segments and the mean weight and

the output is the standard deviation of the computed segment size (2.24). Line 51-56

define a method, coefficient_Variation, to computes the coefficient of variation of

the segment size or of the trust nodes over the segments (2.23). Inputs are standard

deviation and mean value. Lines 58-77 is a method to find the remote nodes,

disconnected power grids in IEEE Buss300 are connected by the remote nodes and

remote nodes share and exchange the power excess. This method is used only for

BUS300. Appendix B6 show the information of remote nodes data. Table 4

illustrates the first row of the remote node file. I just need to retrieve a data from

 68

field 1, remote node number, and from field 19, node number. If their values are

different the values are swapped.

Table 4: First row of the remote node text file for BUS300.

Defining the button1_Click event (Adding link’s information for manual input):

This method is run when the button by the name Add is clicked. Appendix A3 shows

the codes of the button1_Click which executes the manual graph input procedure

(Figure 25). Lines 5-10 initialize an empty array of edges. By clicking the Add

button, Line 12 checks that this edge information does not exceed the number of

edges (Figure 25, Block 5). Line 14 adds the edge attributes to the array in element

with index number i. If variable i exceeds the number of edges, then the method

create_Graph returns the output graph (Line 28).

Defining the function of Create_Graph_text (Input graph by using text files):

This method executes in the class of the Graph. Appendix A4 shows the functionality

of the creat_Graph_text method. The inputs of this method include: array of the lines

of the text file, number of edges and number of vertices. Lines 3-19 are the

initializing. In line 8 the remotenode function executes if the input text file is IEEE

BUS300. Lines 20-75 is a loop that read characters of lines one by one from the input

text file (database). In each line, characters 1-4 indicate the first node of the link

(Line 28). In Line 30, there is a condition that checks the ASCII code of space

(ASCII code of space=32): if it is not equal to ASCII code of the space then it is

added to the source variable. Line 33 reads characters 6-9,and sets the value of the

dest variable. The characters in range of the positions, [20-29], of the line indicate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 0 1.0284 5.95 90 49 0 0 115 0 0 0 0 0 0 1

 69

the branch “resistance”. Lines 45-61 is executed if the selected text file is BUS300. If

the remotenode and node number are different they will be swapped. Line 41 sets the

value of the weigth, resistance, variable. Lines (62-72) calculate the propagation

delay of the link (2.21) - (2.22).

The segmentation process (Block 5) includes 2 classes as follows:

Defining class of minimum_spanning_tree: Appendix A5 defines MST. In this

class, I used Kruskal algorithm, Algorithm 2.6, to compute the minimum spanning

tree, Disjoint-set algorithm, Algorithm 2.5, to extract the segments and one function

to compute the minimum degree of the links. Line 4-9 implements the Find

algorithm, Algorithm 2.3. in line 6 if the node does not point to itself then the Find

method calls itself to find the parent of that node, go up the tree to find the parent.

Lines 10-29 implements the Bubblesort algorithm, Algorithm 2.1. The Exchange

method in line 10 is used to swap the elements in the array of the link. Lines 30-43

implement the Union function, Algorithm 2.11. Lines 56-91 is the Disjoint-set

algorithm, Algorithm 2.5. The input is the object graph G and the output is the

segments. Lines 92-133 is Mst_Graph method that implements the MST-Kruskal

algorithm, Algorithm 2.6, and the input is the object of the input graph, G(V,E), and

the output is the minimum spanning tree, Mst.

Defining class of LPP: This class (Appendix A6) is used to solve the integer linear

programming LPP in [1]. It has two functions LPP1 and LPP2. Line 4 is used to

make a connection between Microsoft Visual Studio and Matlab. Lines 5 and 6

define two constraints (α=1, β=0.5) which are discussed in Chapter 2. In Matlab, all

the variables are double, and also, they are defined as matrices. Hence, I defined a 2-

dimensional arrays, matrices, and the attributes of the indexes of the matrix are

 70

double, Lines 9-16 are arrays of LPP2 and Lines 66-73 are arrays of LPP1. Line 7 is

a method to solve the LPP2. The inputs are number of bordering nodes, number of

inter-segment links and the set of inter-segment link and the set of bordering nodes.

Lines 9-12 initialize objective function array (2.16), f, and the equation constraint

array, intcon, and inequality constraints array (2.17), A, b. Lines 13-16 initialize the

arrays to send to the Matlab application. Lines 17-36 the value of the arrays are set.

Line 31-32 call the method Find_for_Array_A, Lines 45-62, to find the segment that

having endpoints of inter-segment link. The object of array res is initialized. This

object stores the returns answer from the Matlab application (Line 38). In line 40 the

arrays are sent to the Matlab by the method Feval. The first input of this method set

to “intlinprog” it means that the answer is a binary vector, {0,1}. In line 42, first

index of the array res is the returned answer by the Matlab application and store in

the array sln. Line 43 is the output of the LPP2 method. Lines 63-130 implement the

LPP1. The structure of the code is same as the LPP2.

Implementing the local search process (Block 6) needs to implement the while loop

in Algorithm 2.8. This loop finds the oversized segment and undersized segment. If

these segments are adjacent, then Line 10 calls the delta_computation (Algorithm

2.9) method from the delta_min class to find the set of the nodes. This set will be

removed from the oversized segment and added to the undersized segment. Below I

am going to describe the functionality of the local search algorithm, button2_click

event in form1 class, and Find∆min procedure, delta_min class.

Defining class of Delta_min: Appendix A7 illustrates the source codes of the class

Delta_min. This class defines ∆min computation algorithm (Algorithm 2.9) in

chapter 2. Inputs of function (delta_computation) are oversized, S_i, and undersized

 71

segments, S_j, and minimum spanning tree, Mst, and minimum spanning tree of the

segments, Mstss, these 4 arguments are shown in Line 3. Lines 4-17 initialize the

variables such as: a set for delta_min, line 6, an adjacent node u, line 6, an array for

Epsi, Line 9, an array for the links that are cut, line 10, an object f

minimum_spanning_tree class to use the disjoint-set method, line11, segment set for

adjacent node, line 13. Lines 18-32 check the adjacency of the segments. There is no

adjacency if the value of the variable (u=999) does not change; otherwise, lines 42-

76 extract the links set belonging to the oversized segments (Lines 42-76). All links

that belong to node u are removed and collection of segment (Segment_set_U) will

be updated (Lines 81-107). All the elements of the collection set of the segment

(Segment_set_U) will be checked if the nodes of the segment include node u then,

that segment is the output of the delta_min(Lines 108-120).

Defining the button2_click event: Appendix A8 demonstrates the Lines 1-10 in

Algorithm 2.7 and the lines 1-20 in Algorithm 2.8 in Chapter 2. In line 3 the value of

the variable phi is set to 1, this variable is used in while loop, line 28. In lines 5-8 the

number of segments, K, and the object of the segment are initialized. In line 11,

kruskal method (Appendix A5) is executed to obtain the minimum spanning tree,

MST. Minimum degree of the links is computed in line 13. The link weight standard

deviation and link weight mean are computed in lines 16-17. Line 21 executes the

LPP1 and store the output data of LPP1 to the ESS, links of segment set. In line 26,

the segments are returned by the disjoint-set algorithm, Segmentation method

executes the disjoint set method. The variable Ks, limitation variable in Algorithm

2.8, is set in line 27. Lines 28-66 of Appendix A8 implement the local search to find

the oversized segment and undersized segment. Line 31-56 implement two for loop

 72

of Algorithm 2.8. In line 37 the sub-segment of oversized segment is computed by

Delta_min class in Appendix A7 and this segment stores in delta_Min object. If the

conditions in Lines 38-43 is satisfied, then the set of nodes will be added to the

undersized segment (Lines 46-47) and removed from the oversized segment (Lines

48-56). If there are no adjacent oversized and undersized segments, then the while

loop is terminated.

Implementation of trust node selection process (Block 9) includes 2 classes as

follows:

Defining class of Bordering_Node_Details: Appendix A9 shows the

Bordering_Node_Details class. Bordering node class checks all the list of the set of

the bordering nodes for duplication. If there is no duplication, then the node will be

added to the list (Lines 6-20)

Defining class of Trust_Node_Selection: Trust_Node_Selection class (Appendix

A10) is used to perform the Algorithm 2.11 in Chapter 2. Lines 2-22 represent

initialization part. Inputs of the function (Bordering_Node_Details) is the original

graph (G) and updated segment collection (S). All the links belonging to the original

graph are checked. If bordering node (x) and bordering node (y) are not equal, the

intersegment property of the Edge property changes to true and the bordering node,

(x, y), is added to the bordering node set (Lines 26-37). All the links are checked: if

the intersegment feature is equal true, it is added to the intersegment link array

(L_xy) (Lines 38-51). Line 56 is the linear programming problem solved by Matlab.

This function returns the set of trust nodes.

 73

3.2 Testing of Optimal TSP Program

In this section, we will compare the results of the application with results in Figures

9-14 in Chapter 2. Figure 26 shows the main page of the optimal TSP in smart grid

SCADA networks.

Figure 26: Main form of the program.

The default input graph is considered as text file. The comboBox property on the

right side of the form shows the databases of the IEEE test system topologies. The

number of segments is initialized by the textbox. The button “Find Trust Nodes

IEEE”, executes the Algorithms 2.7-2.10, and the results will be shown in the

Minimum Spanning Tree and Uniform forms.

In Figure 26, if user clicks on the button “Manual”, the input type will be changed to

the manual input. Number of vertices textbox receives the number of nodes in the

graph. Number of edges textbox receives the number of links of the graph. Source

 74

and Destination text boxes receive the node number of two connected nodes of the

link. Weight textbox receives the propagation or distance between two nodes of the

link. By pressing the button “ADD”, the new information of the link of the graph will

be added to the Edge object (this object is defined in Edge class, Appendix A). The

functionality of the Find Trust Nodes button is to execute the Algorithms 2.7-2.10.

The complete graph is shown in Figure 9. The data of this graph is used as input to

the application.

Figure 27 demonstrates the minimum spanning tree and the trust systems in each

segment (Figures 10 and 14). Minimum spanning tree form (Figure 27) at first does

not have any contents. After computing the MST and segments the values will be

changed to string type and written on the form.

Figure 27: Minimum spanning tree form that shows the MST graph and trust nodes

in each segment base on figure 8.

We test on Figures 9-14. The complete SCADA network is depicted in Figure 8. The

links of minimum spanning tree of SCADA network in Figure 10 are (1, 2), (2, 3),

 75

(3, 6), (6, 4), (4, 5), (6, 7), (7, 8) and (7, 9) which are same as the links of minimum

spanning tree in Figure 27. The number of segments K is 3. After information of the

MST in Figure 27, the nodes of segments and trust systems in each segment are

shown. Trust nodes in Figure 27 are 3, 7, 9 and segment 1 contains one trust node

(3), segment 2 does not have any trust node and segment 3 has two trust nodes (7, 9).

All the results are the same as in the Figure 14.

In Figure 14, we realized that one segment does not have trust node on the other

hand, the total number of trust nodes is 3, and number of segments is 3, s1={1,2,3},

s2={4,5,6}, and s3={6,7,8}. As a consequence, we decide to distribute the trust

nodes through the segments as much as possible. In the next Chapter, I am going to

describe how uniformity of trust nodes distribution can improve the dispersion of

trust nodes over network segments as much as possible.

3.3 Summary

In this chapter, we implemented optimal TSP problem. The problem is written by the

Microsoft C#.net which is an objective oriented language. We defined classes for

Edge, Graph, MST, LPP, Delta min, bordering node and trust selectin. System

scheme of the optimal TSP problem in [1] is depicted in Figure 21. The input of the

implemented program is divided into two types. First one is a manual input which

user indicates the node numbers, propagation delay or weight of the links, links and

number of segments by filling the form. In the second one, user selects one of the

IEEE test system topologies and the software extract the information of selected

topology from the related text file. The outputs of the software include, minimum

spanning tree form that shows the MST graph details, segment sets and trust nodes in

each segment. We tested the program by comparing the result of our program with

 76

the result in [1]. Details of the graph in Figure 14 are inserted manually to the

program. By comparing the results, we notice that both of them are same.

 77

Chapter 4

IMPROVEMENT OF THE OPTIMAL TSP

UNIFORMITY

In this chapter, we describe how uniformity of trust nodes distribution can be

improved. We propose the Uniformity algorithm to solve the optimal TSP

uniformity. This chapter includes two sections. In Section 4.1, definition and

implementation of Uniformity algorithm is discussed. In Section 4.2, the uniformity

of trust systems distribution over network segments is compared versus uniformity of

the original TSP [1].

4.1 Definition and Implementation of Uniformity of TS Distribution

over Network Segments

Trust systems are installed to the smart grid networks to monitor and control the

traffic packets to block the dispersion of malicious packets through the segments. In

discussed optimal TSP problem security is optimized but the dispersion of trust

systems was not considered. Consequently, segments may have quite different

number of TS allocated to them, some may have many TS, other may have no one

TS. Segments that are not equipped by TS may deteriorate its security and the

segments that overloaded may cause delay on the segment.

To optimize the security and minimize the operational delay we propose to optimize

uniformity of TSP allocation to the segments (Optimal TSP uniformity problem).

This problem improves TSP which means that the number of TS will be exactly

 78

same as after optimal TSP problem solving, and all inter-segment links are connected

to at least one TS. The number of TS and inter-segment limitation are considered as

constraints for the optimal TSP uniformity problem.

We introduce the Uniformity optimization algorithm to solve the optimal TSP

uniformity problem. The relative standard deviation, coefficient of variation, of TS

number per segment is used as a metric to measure how much the segments are

uniform in number of trust systems.

For example, trust nodes in Figure 14 are 3, 7, 9. Nodes 7, 9 are in one segment, s3;

node 3 belongs to another segment, s1, and one segment, s2, has not any TS that may

deteriorate its security (vulnerable to compromise of other segments). Uniformity

algorithm re-distributes the TS over the segments. For instance, Uniformity

algorithm selects node number 6 as a trust node that belongs to the segment, s2,

instead of the node number 7 belonging to s3. As a result, all segments have the same

number of TS and all inter-segment links are connected to at least one TS. In Figure

14 the coefficient of variation of trust node number per segment was 0.81 and in

Figure 28, after executing the Uniformity optimization algorithm, this value changes

to 0. As a result, we improved the dispersion of trust system by 81%. Figure 28

shows the result of the Uniformity algorithm.

7 89

6

4 532

1

3

17

2

4

1

10

9

3

6

Figure 28: Distributing trust systems over segments by using Uniformity

optimization algorithm, algorithm 4.1.

 79

Algorithm 4.1 describes the Uniformity optimization algorithm to distribute the trust

systems through the segments.

Algorithm 4.1: Pseudo code of Uniformity optimization algorithm.

Uniformity optimization

Input: S, VTrust,Lss’.// S denotes the .set of segments, VTrust denotes the

set of trust nodes and Lss’ denotes the set of all inter-segment links,

Lss’={e1,e2,..en} where e=(v1,v2) denotes the inter-segment link.

Output: VTrust // Updated trust nodes set.

1. Begin

2. Ns=⌈
|VTrust|

|𝑆|
⌉; O_cv=Computing the coefficient of variation of trust

system// limitation of trust nodes in each segment. O_cv is CV of trust

system

3. balance=0; ph=0; Vtemp
Trust = ∅; // Vtemp

Trust is a temporary set of trust

nodes.

4. while (balance<1) do

5. ph=0; Vtemp
Trust = VTrust;// ph is a decision variable to terminate the

while loop. Vtemp
Trust store the value of VTrust.

6. //searching to find overloaded and underloaded segments

7. For i=1 to |S| do

8. For j=1 to |S| do

9. If ((number of trust nodes in segment i<Ns) and

(number of trust node in segment j>Ns)) then

10.

11. X1=Find trust node in segment j adjacent to segment i;

 80

12. For all e ϵ Lss’ do

13. //searching to find the intersegment link between

overloaded segment j and underloaded segment i

14. Y1=Find segment such that Lss’.e.v1 belongs

to it;

15. Y2=Find segment such that Lss’.e.v2 belongs

to it;

16. //If there is an inter-segment link and one node of the link, hosted

the trust system and other node does not then change the place of

trust system.

17. If((((Y1==segment i) and (Y2==segment j))

or((Y1==segment j) and(Y2==segment j)) then

18. If ((X1==Lss’.e.v2) and(Lss’.e.v1∉ VTrust)))

then

19. VTrust={VTrust\X1};//Remove.

20. VTrust={VTrust ∪Lss’.e.v1};//Add.

21. End if

22. If ((X1==Lss’.e.v1) and(Lss’.e.v2∉ VTrust)))

then

23. VTrust={VTrust\X1};//Remove.

24. VTrust={VTrust ∪Lss’.e.v2};//Add.

25. End if

26.

27. End if

28. ph++;

 81

29. End for

30. For all e ϵ Lss’ do// checking the constraint, inter-

segment links must be connected to at least one trust

nod,

31. If (Lss’.e.v1∉ VTrust) and

32. (Lss’.e.v2∉ VTrust) then

33. VTrust=Vtemp
Trust;// It means that one inter-

segment link is not connected to trust system

as a result, the new trust nodes cannot accept

and the value of VTrust returns to Vtemp
Trust,

nothing change,

34. End if

35. End for

36. End if

37. End for

38. End for

39. If(ph==0) then

40. Balance++;// all segments are checked

41. End if

42. End while

43. P_cv=Compute the coefficient of variation of trust system after

improvement

44. Improve_Measure=O_cv – P_cv;// show how much the dispersion

of trust system is improved.

45. Return VTrust;

 82

The inputs of the Algorithm 4.1 are set of segments, S, and set of trust nodes, VTrust,

and set of all inter-segment links. The output is the updated trust nodes set, VTrust,

which includes trust nodes that are distributed over segments. In line 2, the limitation

of the size of the segments in number of trust nodes and coefficient of variation of

trust system over segments before improving are calculated. In line 3 the Vtemp
Trust is a

temporary set of trust nodes to store the value of VTrust before it is updated. Line 4 is

a while loop and the function of this loop is to find the overloaded and underloaded

segments. If these segments are found, Line 9, then the adjacent trust node, which is

connected to underloaded segment by the inter-segment link, in overloaded segment

must be recognized, line 11. Line 12 is a local search loop and it finds the inter-

segment link between oversized and undersized segments. Line 16 checks 2

conditions. First condition checks the nodes of inter-segment link that these nodes

belong to underloaded and overloaded segments. Second condition checks that the

node of the inter-segment link that is located in overloaded segment hosted the TS

and the intersection of the other node with VTrust is empty, it is not a trust node. If

these conditions return true value, then the place of trust system is swapped between

the nodes of the inter-segment link, lines 18-19. After finding the new node that

hosted trust system the VTrust is updated. The constraint of the problem is that all

inter-segment links must be connected to at least one trust node. Lines 30-35 are used

to check all inter-segment links for this reason. If even one inter-segment link is not

connected to at least one trust node in the updated VTrust, Lines 31-32, then the value

of VTrust returns to its value before updating, Vtemp
Trust .The search function to find the

overloaded and underloaded segments has been continued since there is no

overloaded and underloaded segments, line 39. In line 43 the coefficient of variation

of TS over segments after improving is computed. In line 44, the improvement value

 83

is return. In line 45 the updated trust nodes set is returned. An example of Uniformity

optimization algorithm work is given in Example 4.

Example 4: Application of Uniformity algorithm, Algorithm 4.1, to the

graph in Figure 14.

Input: S={s1,s2,s3}={{1,2,3},{4,5,6},{7,8,9}}; VTrust = {3,7,9};

Lss’={(1,9),(2,9),(3,6),(3,7),(3,4),(6,7)}.

Ns=⌈
3

3
⌉ = 1; balance=0; Vtemp

Trust = ∅; O_cv=0.81;

First iteration of while loop// balance=0<1

Ph=0; Vtemp
Trust = {3,7,9};

i=1;

j=1;

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of

trust node in s(j)=s1=1 is not greater than Ns=1; //both conditions is not

satisfied.

i=1;

j=2;

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of

trust node in s(j)=s2=0 is not greater than Ns;//both conditions is not

satisfied

i=1;

j=3;

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of

trust node in s(j)=s3=2 is greater than Ns;// one condition is not satisfied.

i=2;

 84

j=1;

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust

node in s(j)=s1=1 is not greater than Ns;// one condition is not satisfied.

i=2;

j=2;

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust

node in s(j)=s2=0 is not greater than Ns;// both conditions are not satisfied.

i=2;

j=3;

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust

node in s(j)=s3=2 is greater than Ns.

X1=7;// adjacent trust node in oversized segment, s3, that is connected to

undersized segment, s2, through the inter-segment link.

Ls2s3={(6,7)};//inter-segment link between segments s2 and s3.

Y1=s2; Y2=s3;

Ls2s3.e.v2=7=X1;

Ls2s3.e.v1=6∩{3,7,9}=∅;

VTrust = {3,6,9};

Ph=1;

// Checking all inter-segment links that are connected to at least one trust

node as follows;

Lss’={e1,e2,e3,e4,e5,e6}={(1,9),(2,9),(3,6),(3,7),(3,4),(6,7)}

e1.v1=1 does not belong to VTrust e1.v2=9 belongs to VTrust;

e12.v1=2 does not belong to VTrust e2.v2=9 belongs to VTrust;

e3.v1=3 belongs to VTrust e3.v2=6 belongs to VTrust;

 85

e4.v1=3 belongs to VTrust e1.v2=7 does not belong to VTrust;

e5.v1=3 belongs to VTrust e5.v2=4 does not belong to VTrust;

e6.v1=6 belongs to VTrust e6.v2=7 does not belong to VTrust;

//All inter-segment links are connected to at least one trust node as a

consequence updated set of trust nodes , VTrust, is accepted.

VTrust={3,6,9};

i=3;

j=1;

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of

trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not

satisfied.

i=3;

j=2;

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of

trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not

satisfied.

i=3;

j=3;

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of

trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not

satisfied.

Ph=1 then balance=0

//in the second iteration of while loop the value of ph does not change,

ph=0, because there is no oversized and undersized segment.

Ph=0 then balance=1;//the while loop is terminated

 86

The updated set of trust node, uniform trust nodes, is returned by the

Uniformity algorithm.

P_cv=0;

Improve_Measure=0.81-0=0.81//improved by 81%;

Output: VTrust = {3,6,9};

Appendix A11 shows the codes that make the uniform distribution of trust nodes

over the segments (uniformity algorithm). In uniformity algorithm, number of trust

nodes does not change but the place of the trust node may be changed. This

algorithm has a loop that checks the number of trust system in segment set to find the

oversized set (Lines 16-48). It checks the other side of the link of the trust node to

check that at first this node belongs to undersized trust system in bordering node set

and latter checks that the other side of the link is not a trust node (Lines 49-57). If all

the conditions are satisfied, then the trust node is removed from the oversized

segment and is added to an undersized set (Lines 59-66). This loop continues until all

the trust nodes are checked.

Figure 29 shows the UniformForm, that improves the optimal TSP described in

Chapter 2 and shown in Figure 14. It is clear that trust system moves from node 7 to

node 6. As a result, each segment has one trust node.

 87

Figure 29: Uniform Form that shows the trust nodes after uniformity problem solving

for the system on figure 14.

4.2 Testing Results

Figure 30 depicts a bar chart. This bar chart compares the number of trust nodes in

each segment (Figure 14) with the number of trust nodes in each segment after

uniformity improvement (Figure 27). It is clear that each segment contains one trust

system and the segments are more balanced in quantity of trust systems.

Figure 30: Number of trust systems in each segment.

0

0.5

1

1.5

2

2.5

segment 1 segment 2 segment 3

N
u

m
b

er
 o

f
Tr

u
st

 S
ys

te
m

s

Segment Number

Trust node selection in Figure
14

Improved trust node
selection

 88

The relative standard deviation is used as a metric to measure the dispersion of trust

nodes over the segments. Figure 31 shows the coefficient of variation of trust nodes

through the segments. The smaller value indicates that the dispersion of trust nodes is

more balance. In Figure 31, the coefficient of variation of trust nodes for the SCADA

network in Figure 14 is 0.81 and the coefficient of variation of trust systems after

executing the uniformity (Figure 29) is 0, it means that the segments are completely

balanced in quantity of trust nodes and each segment has the same quantity of trust

nodes (each segment contains 1 trust node).

Figure 31: Relative standard deviation of trust system number for 3 segments of

SCADA system in figure 14. The bar for improved version is not shown as equal to

zero.

4.3 Summary

In this chapter, improvement of optimal TSP was discussed. The idea comes from

Figure 14. When we analyzed the Figure 14, we realized that one segment does not

have any TS and instead of this one segment has 2 TS and another one has 1 TS. This

problem improves TSP which means that the number of TS will be exactly same as

after optimal TSP problem solving, and all inter-segment links are connected to at

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e
St

an
d

ar
d

 D
ev

ia
ti

o
n

SCADA network in Figure 14

Improved SCADA network in
Figure 14

 89

least one TS. The number of TS and inter-segment limitation are considered as

constraints for the optimal TSP uniformity problem. in such a way that all inter-

segment links connected to at least one trust node and number of TS. We proposed

Uniformity optimization algorithm to distribute the trust systems over the segments.

By testing the algorithm, graph in Figure 9 used as input, and comparing the results

with Figure 14 we realized that all segments were balanced in number of trust

systems. The coefficient of variation was used to measure the dispersion of trust

systems over the segments. Before performing the Uniformity algorithm, the

coefficient of variation was 0.81 and after that it changed to 0, lower value of

coefficient of variation means that segments are more balanced. As a consequence,

we improved the dispersion of trust systems over the segments for the graph in

Figure 9 by 81%.

 90

Chapter 5

EXPERIMENTS ON IEEE TEST SYSTEM

TOPOLOGIES

In this chapter, we will compare the results of our software for large and small

networks with the numerical results shown in Chapter 2, Figures 18-20. Large

networks contain BUS 118 and BUS 300 and BUS 14, BUS 30 and BUS 57 are

members of small networks. The information of the small networks and large

networks are used as a text file in the application Appendix B. Small networks are

split into 3 to 6 segments with increment of 1. Large networks are divided into 5 to

30 segments with increments of 5. All experiments are run on a laptop with Intel core

i7 2.10 GHz and 8GB RAM. We run the application one time for each IEEE test

system topologies, because the input data are not changed. The numerical results are

shown in Appendix C.

The obtained results for BUS14 are shown in Appendix C1, Figures (41-44). The

obtained results for BUS30 are depicted in Appendix C2, Figures (45-49) and these

results are shown in Figures (50-54) for BUS57. These numerical results include:

number of TS, link mean weight, link weight standard deviation, average MST

weight, average segment size and coefficient of variation of computed segment sizes.

Figures (55-60) depicts the results for BUS118 and Figures (61-66) shows the

experimental results for BUS300.

 91

5.1 Experimental Results on Original TSP

Figure 32 compares the overview of experimental parameters. Figure 32(a) is a table

of summary of experimental parameters on our experiment. Figure 32(b) shows a

table of summary of experimental parameters in [1]. In comparison, the value of

elements for BUS 30, BUS 57, BUS 118, BUS 300 are slightly different. I used the

same databases and implemented the exact algorithms in [1]. These differences may

be happened because the databases are updated. The differences on number of active

links might affect on the MST, segments and number of trust nodes. The number of

active links for BUS14 is the same in both Figures 32(a) and 29(b). As a

consequence, BUS14 is a measure to compare our results with the results in [1].

(a)

(b)

Figure 32: Comparison of the summary of experimental parameters in (a) our

application. (b) in [1].

All experimental results are shown in Appendixes C1-C5. I insert our results in the

Microsoft Excel to draw the bar charts and line charts. Figures 33-38 compare our

experimental results with the results in [1].

Figure 33 compares the relative standard deviation of the calculated segment sizes in

[1] (Figure 33(a)) with the relative standard deviation of the calculated segment sizes

on our experiments. The trend of the Figure 33(b) is same as the trend of the Figure

 92

33(a) for BUS14, BUS30 and BUS57 SCADA networks with 3 and 4 segments and

it is same as the trend of the Figure 33(a) for BUS30 SCADA network with 5 and 6

segments.

(a)

(b)

Figure 33: Relative standard deviation of the calculated segments sizes for small

networks in (a) [1]. (b) our experiments.

Figure 34 compares the relative standard deviation of the calculated segment sizes in

[1] (Figure 34(a)) with the relative standard deviation of the calculated segment sizes

on our experiments. The trend of the Figure 34(b) is same as the trend of the Figure

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 4 5 6

R
el

at
iv

e
St

an
d

ar
d

 D
ev

ia
ti

o
n

Number of Segments

BUS14

BUS30

BUS57

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 4 5 6

R
el

at
iv

e
St

an
d

ar
d

 d
ev

ia
ti

o
n

Number of Segments

BUS14

BUS30

BUS57

 93

34(a) for large BUS300, with 5, 10, 15, and 20 segments and the relative standard

deviation of computed segment sizes for BUS118 is slightly different by comparing

with the result in [1](Figure 34(a)).

(a)

(b)

Figure 34: Relative standard deviation of the calculated segments sizes for large

networks in (a) [1], (b) our experiments.

Figure 35 demonstrates the line chart for average of MST weights for small

networks. Figure 35(a) depicts the average of MST weights for small networks in [1].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30

R
ea

la
ti

ve
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Number of Segments

BUS 118

BUS 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30

R
el

at
iv

e
St

an
d

ar
d

 D
ev

ia
ti

o
n

Number of Segments

BUS118

BUS300

 94

Figure 35(b) illustrates the line chart for average of MST weights for small networks

on our experiments. In general, Figure 34(b) in comparison with Figure 34(a), the

average of MST weight follows the same decreasing trend by the number of

segments rises.

(a)

(b)

Figure 35: The average MST weights for small networks in (a) [1]. (b) our

experiments.

0

50

100

150

200

250

300

350

400

450

500

3 4 5 6

A
ve

ra
ge

 M
ST

 w
ei

gh
t

(µ
s)

Number of Segments

BUS57

BUS30

BUS14

0

50

100

150

200

250

300

350

400

450

500

3 4 5 6

A
ve

ra
ge

 M
ST

 w
eg

h
t(

µ
s)

Number of Segments

BUS57

BUS30

BUS14

 95

Figure 35 and 36 demonstrates the line chart for average of MST weights for small

networks. Figure 35(a) depicts the average of MST weights for small networks in [1].

Figure 35(b) illustrates the line chart for average of MST weights for small networks

on our experiments. In general, Figure 35(b) in comparison with Figure 35(a), the

average of MST weight follows the same decreasing trend by the number of

segments rises.

Figure 36 depicts the line chart for average of MST weights for large networks.

Figure 36(a) illustrates the average of MST weights for large networks in [1]. Figure

36(b) illustrates the line chart for average of MST weights for large networks on our

experiments. In general, Figure 36(b) in comparison with Figure 36(a), the average

of MST weight follows the same decreasing trend by the number of segments rises.

 96

(a)

(b)

Figure 36: The average MST weights for large networks in (a) [1], (b) our

experiments.

Figure 37 indicates the bar chart for required number of trust system related to the

number of segments for small networks. Figure 37(a) represents the required number

of trust system related to the number of segments in [1]. Figure 37(b) shows the bar

chart for required number of trust system related to the number of segments on our

experiment. There is a slight difference between Figure 37(a) and Figure 37(b), and

this is because of the differences of our database with database used in [1]. The trend

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30

A
ve

ra
ge

 M
ST

 W
e

ig
h

t
(µ

s)

Number of Segments

BUS118

BUS300

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30

A
ve

ra
ge

 M
ST

 w
ei

gh
t

(µ
s)

Number of Segments

BUS118

BUS300

 97

of the bar chart in Figures 37(a) is same as the trend of the bar chart in Figure 37(b).

Both bar charts in Figure 37 follows an increasing trend as the number of segments

increases and also the number of trust systems increases as the SCADA networks

size rises.

(a)

(b)

Figure 37: Required quantity of trust systems related to the quantity of segment for

small networks in (a) [1]. (b) our experiments.

Figure 38 displays the bar chart for required number of trust system related to the

number of segments for large networks. Figure 38(a) represents the required number

0

2

4

6

8

10

12

14

3 4 5 6

N
u

m
b

er
 o

f
Tr

u
st

 S
ys

te
m

s

Number of Segments

BUS 14

BUS 30

BUS 57

0

2

4

6

8

10

12

14

16

3 4 5 6

N
u

m
b

er
 o

f
Tr

u
st

 S
ys

te
m

s

Number of Segments

BUS14

BUS30

BUS57

 98

of trust system related to the number of segments in [1]. Figure 38(b) shows the bar

chart for required number of trust system related to the number of segments on our

experiment. The tendency of bar chart in Figure 38(b) is same as the tendency in

Figure 38(a) but the required number of trust system is slightly different. it is

happened because of the difference in number of links and link mean weigh as

mentioned at the beginning of the chapter.

(a)

(b)

Figure 38: Required quantity of trust systems related to the quantity of segment for

large networks in (a) [1]. (b) our experiments.

0

10

20

30

40

50

60

5 10 15 20 25 30

N
u

m
b

er
 o

f
Tr

u
st

 S
ys

te
m

s

Number of Segments

BUS 118

BUS 300

0

10

20

30

40

50

60

70

5 10 15 20 25 30

N
u

m
b

er
 o

f
Tr

u
st

 S
ys

te
m

s

Number of Segments

BUS118

BUS300

 99

5.2 Experimental Results on Comparison of Original and Proposed

TSP

Figure 39 represents coefficient of variation, relative standard deviation, of

dispersion of the trust systems through the segments. BUS14 in line chart is related

to the coefficient of variation of dispersion of the trust nodes through the segments

without uniformity improvement algorithm for BUS14. BUS14 proposed in line

chart is related to the coefficient of variation of dispersion of the trust nodes through

the segments with uniformity improvement algorithm for BUS14. The proposed

BUS14 (improved by uniformity) exhibits lower coefficient of variation than BUS14.

Segments of proposed BUS14 in number of trust systems are more balanced compare

to BUS14 without uniformity in [1]. The value of coefficient of variation for BUS14

is 1 and this value for proposed BUS14 is 0 with 3 and 5 segments. As a

consequence, the dispersion of the trust nodes (balancing segment in number of trust

nodes) is improved by 100% for BUS14 with 3 segments. Figure 39 shows that

dispersion of the trust nodes is improved by 81% with 4 segments and is improved

by 35% with 6 segments.

Coefficient of variation of the size of the segments of trust systems in BUS14 is

calculated manually and Excel is used to show the line chart. We just test the

Uniformity optimization algorithm on BUS14 with 3, 4, 5 and 6 segments. Example

5 shows the calculation of the coefficient of variation of TS over the segments for

BUS14 with 3 segments.

Example 5: Calculation of the coefficient of variation of TS over 3-

segments for BUS14.

 100

Number of TS over segments is 3;

The value of CV, standard deviation and average before executing

Uniformity optimization algorithm are as follows:

Segment 1 contains 0 TS, segment 2 contains 1 TS and segment 3 contains 2

TS.

µ=
0+1+2

3
= 1;

𝜎 = √
(0 − 1)2 + (1 − 1)2 + (2 − 1)2

3 − 1
= 1;

CV=
𝜎

µ
= 1;// Coefficient of variation of TS over segments before

Uniformity.

The value of CV, standard deviation and average after executing Uniformity

optimization algorithm are as follows:

Segment 1 contains 1 TS, segment 2 contains 1 TS and segment 3 contains 1

TS.

µ=
1+1+1

3
= 1;

𝜎 = √
(1 − 1)2 + (1 − 1)2 + (1 − 1)2

3 − 1
= 0;

CV=
𝜎

µ
= 0;// Coefficient of variation of TS over segments after Uniformity.

 101

Figure 39: The coefficient of variation of the size of the segments of trust systems in

BUS14.

Figure 40 shows the number of trust nodes in each segment of BUS14 (divided into 3

segments). The number of trust nodes in each segment of proposed BUS14 is equal

to 1. It means that segments are completely balanced in number of trust nodes. In

comparison, the number of trust nodes in each segment of BUS14 is different and

follows an increasing trend (segment 1 contains 0 trust node, segment 2 contains 1

trust node and segment 3 contains 2 trust nodes).

Figure 40: Number of trust systems in each segment of BUS 14 divided into 3-

segments partitioning.

0

0.2

0.4

0.6

0.8

1

1.2

3 4 5 6

C
o

ef
fi

ci
en

t
o

f
V

ar
ia

ti
o

n

Number of Segments

BUS14

BUS14 PROPOSED

0

0.5

1

1.5

2

2.5

1 2 3

N
u

m
b

er
 o

f
Tr

u
st

 S
ys

te
m

s

Segment Numbers

 BUS14

BUS14 PROPOSED

 102

5.3 Summary

In this chapter we compared our outcomes with the numerical results in Chapter 2.

The databases include five IEEE test system topologies for power grid systems that

are divided into two groups of small networks, and large networks. The trend of the

bar charts and line charts were same as the charts in Chapter 2. In general, by

increasing the number of segments the required number of trust system increases and

the mean value of MST weights decreases for both small and large networks. The

segments in small networks are more balanced than the segments in large networks

in size of the segments.

The coefficient of variation of the size of the segments of trust systems in BUS14

were considered to compare the results of the proposed TSP, Uniformity, with the

original TSP. the coefficient of variation is 1 for BUS14 with 3 and 5 segments and

this value is changed to 0 when the proposed TSP is performed. As a consequence,

the dispersion of trust system is improved by 100% for BUS14 with 3 and 5

segments. When the BUS14 was divided into 4 and 6 segments the value of

coefficient of variation is 0.81, divided into 4 segments, and it is 0.75, divided into 6

segments. After uniformity, these values were changed to 0 and 0.40. It means that,

the dispersion of trust systems is improved by 81% and 35% when BUS14 divided

into 4 and 6 segments. In general, the segments are more balanced in number of trust

system by performing proposed TSP.

 103

Chapter 6

CONCLUSION

The problem of optimal Trust System Placement (TSP) in SCADA networks is

considered in the thesis. At present, as SCADA networks are connected to the

internet the scope of cyber-security concerns becomes much wider. Trust systems are

used to detect and block malicious activities. The nodes in SCADA networks that

host the trust systems are known as trust nodes. Trust system consist of hardware and

software agents and are expensive to deploy. The optimal TSP problem is considered

to minimize the cost and maximize the security of the networks by installing

minimum number of trust systems into the networks. The main part of the optimal

TSP problem is segmentation. We divide the network into small networks, large

networks are more vulnerable for intruders, and locate the trust system on the

bordering node in such a way that all inter-segment links are connected to at least

one trust node. We have implemented the TSP problem solving method proposed in

[1].

We compare our experimental results on IEEE test system topologies with the results

in [1] and we obtained the same results as in [1]. The results show us that by

increasing the number of segments the required number of trust systems increases.

The coefficient of variation is used to measure the uniformity of segments in size of

number of nodes. We noticed that the small networks are more balanced than the

large networks.

 104

The trust systems number per segments was noted not uniform over the segments

after optimal TSP problem solving. It may deteriorate security for the segments that

are not equipped by trust systems and may increase the operational delay over the

segments and inter-segment links that are oversized in number of segments. We

propose the optimal TSP uniformity problem to maximize the uniformity of

segments in number of trust systems and minimize the operational expenditure

without change of trust nodes number and TS cover all inter-segment links. We

proposed algorithm to solve the optimal TSP uniformity

The coefficient of variation of trust systems is used to measure uniformity of TSP. In

original TSP problem the coefficient of variations for BUS14 with 3,4,5 and 6

segments are 1, 0.81, 1 and 0.75 in row, and after performing the Uniformity

optimization algorithm the coefficient of variations are change to 0, 0, 0 and 0.40

with 3, 4, 5, and 6 segments. As a consequence, distribution of trust systems through

the segment in comparison in [1], is improved by 100% (number of trust systems in

each segment are same) with 3 segments and 5 segments and it is improved by 81%

with 4 segments and it is improved by 35% with 6 segments.

 105

REFERENCES

[1] MD. M. Hasan, H. T. Mouftah, “Optimal trust system placement in smart grid

SCADA networks”, IEEE Sensors Journal, vol. 4, pp. 2907-2919, June 2016

[2] G. M. Coates “A trust system architecture for SCADA network security,'' IEEE

Trans. Power Del., vol. 25, no. 1, pp. 158-169, Jan. 2010.

[3] J. Gonzalez ``Optimization of trust system placement for power grid security

and compartmentalization,'' IEEE Trans. Power Syst., vol. 26, no. 2, pp. 550-

563, May 2011.

[4] Y. Zhang, L. Wang, and W. Sun, ``Trust system design optimization in smart

grid network infrastructure,'' IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 184-

195, Mar. 2013.

[5] A.-H. Mohsenian-Rad and A. Leon-Garcia, ``Distributed Internet-based load

altering attacks against smart power grids,'' IEEE Trans. Smart Grid, vol. 2, no.

4, pp. 667-674, Dec. 2011.

[6] Black out report. (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/2003_Italy_blackout

[7] Y. W. Law, M. Palaniswami, G. Kounga, and A. Lo, ``WAKE: Key

management scheme for wide-area measurement systems in smart grid,'' IEEE

Commun. Mag., vol. 51, no. 1, pp. 34-41, Jan. 2013.

https://en.wikipedia.org/wiki/2003_Italy_blackout

 106

[8] Public key infrastructure. (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/Public_key_infrastructure

[9] X-509. (9 October 2018), Retrieved from https://en.wikipedia.org/wiki/X.509

[10] M. M. Hassan and H. T. Mouftah, “A Study of Resource-Constrained Cyber

Security Planning for Smart Grid Networks”, In Proceedings of the EPEC2016,

Ottawa, ON, Canada, pp. 1-6, 2016.

[11] M. M. Hassan and H. T. Mouftah, “Latency-Aware Segmentation and Trust

System Placement in Smart Grid SCADA Networks”, In Proceedings of the

CAMAD2016, Toronto, ON, Canada, pp. 37-42, 2016.

[12] M. M. Hassan and H. T. Mouftah, “Optimization of Trust Node Assignment

for securing Routes in Smart Grid SCADA Networks”, IEEE Systems Journal,

vol. 1, pp. 1-9, Sep 2018.

[13] Sorting algorithms. (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/Sorting_algorithm

[14] Bubble sorting algorithms. (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/Bubble_sort

[15] Disjoint-set Algorithm (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Sorting_algorithm

 107

[16] M. Laszlo and S. Mukherjee, ``Minimum spanning tree partitioning algorithm

for microaggregation,'' IEEE Trans. Knowl. Data Eng., vol. 17, no. 7, pp. 902-

911, Jul. 2005.

[17] Kruskal Algorithm (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[19] V. Chvatal, Linear Programming. New York, NY, USA: Freeman, 1983.

[20] University of Washington, Seattle, WA, USA. (2016). Power Systems Test

Case Archive. [Online]. Available:

http://www.ee.washington.edu/research/pstca/.

[21] Electrical grid. (14 February 2019), Retrieved from

https://en.wikipedia.org/wiki/Electrical_grid.

[22] Electric generator. (14 February 2019), Retrieved from

https://en.wikipedia.org/wiki/Electric_generator.

[23] Electric power transmission. (14 February 2019), Retrieved from

https://en.wikipedia.org/wiki/Electric_power_transmission.

https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
http://www.ee.washington.edu/research/pstca/
https://en.wikipedia.org/wiki/Electrical_grid
https://en.wikipedia.org/wiki/Electric_generator

 108

[24] Electric power distribution. (14 February 2019), Retrieved from

https://en.wikipedia.org/wiki/Electric_power_distribution.

[25] Electrical load. (14 February 2019), Retrieved from

https://en.wikipedia.org/wiki/Electrical_load.

[26] Slack bus. (14 February 2019), Retrieved from

https://en.wikipedia.org/wiki/Slack_bus.

[27] Coefficient of variation. (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/Coefficient_of_variation

[28] Standard deviation (9 October 2018), Retrieved from

https://en.wikipedia.org/wiki/Standard_deviation.

[29] Switch statement (9 October 2018), Retrieved from

https://docs.microsoft.com/en-us/dotnet/csharp/language-

reference/keywords/switch

[30] File.ReadAllLines method (9 October 2018), Retrieved from

https://docs.microsoft.com/en-

us/dotnet/api/system.io.file.readalllines?view=netframework-4.7.2

https://en.wikipedia.org/wiki/Electric_power_distribution
https://en.wikipedia.org/wiki/Electrical_load
https://en.wikipedia.org/wiki/Standard_deviation
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/switch
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/switch
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.readalllines?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.file.readalllines?view=netframework-4.7.2

 109

APPENDICES

 110

Appendix A: Source Codes

The source codes of the program are shown as follows.

Appendix A1: Source Code of Class Edge:

1. class Edge

2. {

3. public int Source;

4. public int Destination;

5. public int Weight;

6. public int minDegree=0;

7. public int maxdeg = 0;
8. public decimal normalizeWeight;

9. public decimal we=0;

10. public bool Active = false;

11. public bool delta_Seg;

12. public bool Intersegment = false;

13. //Insert edge

14. public void add_Edge(int src, int dst , int wgth)

15. {
16. Source = src;

17. Destination = dst;

18. Weight = wgth;

19. Active = true;

20. }

21. }

Appendix A2: Source Code of Class Graph:

1. class Graph

2. {

3. public int verticesCount;

4. public int edgesCount;
5. public int[] remote_Node;

6. public Edge[] ed;

7. private static double area = 0.00080642;

8. private static double p = 0.0000000250188;

9. public void create_Graph(int vertices,int edges, Edge [] ed1)

10. {

11. this.verticesCount = vertices;

12. this.edgesCount = edges;

13. this.ed = ed1;}

14. public double mean_Weight(Edge[] ED)

15. {

16. double mean = 0;

17. int n = 0;

18. for (int i = 0; i < ED.Length; i++)

19. {

20. if (ED[i].Active == true)

21. {

 111

22. mean += ED[i].Weight;

23. n++;

24. }

25. }

26. mean = mean / n;

27. return mean;

28. }

29. public double standard_Deviation(Segment[] s, double mean)

30. {

31. double standard = 0;

32. for (int i = 0; i < s.Length; i++)
33. {

34. standard += Math.Pow((mean - s[i].nodes.Count), 2);

35. }

36. standard = (standard) / (s.Length-1);

37. standard = Math.Sqrt(standard);

38. return standard;

39. }

40. public double standard_Deviation(Edge[] ED,double mean)

41. {

42. double standard = 0;

43. for (int i=0;i<ED.Length;i++)
44. {

45. standard +=Math.Pow((mean - ED[i].Weight),2);

46. }

47. standard = (standard)/(ED.Length-1));

48. standard = Math.Sqrt(standard);

49. return standard;

50. }

51. public double coeffcient_Variation(double Std_DV,double mean)

52. {

53. double co_V = 0;

54. co_V = Std_DV / mean;

55. return co_V;
56. }

57. //THIS METHOD IS USED FOR BUS300

58. public void find_remote_node(string[] lines)

59. {

60. this.remote_Node = new int[300];

61. for (int i=0;i<lines.Length;i++)

62. {

63. int count = 1;

64. string remote=null;

65. foreach(char c in lines[i])

66. {
67. if (count <= 4)

68. {

69. if (c != 32)

70. remote += Convert.ToString(c);

71. }

72. count++;

73. }

74. remote_Node[i] = Convert.ToInt16(remote);

75. }

76. }

77. }

 112

Appendix A3: Source Codes of Create Graph Manually:

1. private void button1_Click(object sender, EventArgs e)
2. {
3. N = Convert.ToInt16(textBox5.Text);
4. //Create graph's edge object with the number of edge that input in t

extBox4
5. if (check == true){

6. edg = new Edge[Convert.ToInt16(textBox4.Text)];
7. check = false;
8. for (int j = 0; j < edg.Length; j++
9. edg[j] = new Edge();
10. }
11. //Adding edge details....add_Edge(source,Destination,Weight)
12. if ((i < edg.Length) && (textBox6.Text != ""))
13. {
14. edg[i].add_Edge(Convert.ToInt16(textBox1.Text) -

 1, Convert.ToInt16(textBox2.Text) - 1,
15. Convert.ToInt16(textBox3.Text));
16. i++;}
17. if (textBox6.Text == "")
18. {
19. MessageBox.Show("Please enter the number of segment!!!");
20. }
21. //When i==edge.length inserting is finished
22. if (i==edg.Length-1)
23. {
24. textBox1.Enabled = false;
25. textBox2.Enabled = false;
26. textBox3.Enabled = false;
27. button1.Enabled = false;
28. G.create_Graph(N,Convert.ToInt16(textBox4.Text),edg);

29.

MessageBox.Show("Graph is created\n\n"+"Number of Vertices=\n"+textB
ox5.Text+"Number of Edges="+textBox4.Text);

30. }

Appendix A4: Source of Method Create-Graph_Text File:

1. public Graph creat_Graph_text(string [] allLines,int edge_length,int vertices)
2. {

3. ShowGrapgdetails sh = new ShowGrapgdetails();

4. sh.Show();

5. if (vertices == 300)

6. {

7.

string[] lines = File.ReadAllLines("C:\\Users\\Administrator\\Desktop\\TrustNode\\TrustNod

e\\NewFolder1\\Bus300 remote.txt");

8. find_remote_node(lines);
9. }

10. Graph G=new Graph();

11. G.ed = new Edge[edge_length];

12. for (int i = 0; i < edge_length; i++)

13. G.ed[i] = new Edge();

 113

14. string source = null;

15. string dest = null;

16. string weigth = null;

17. G.verticesCount = vertices;

18. G.edgesCount = edge_length;

19. int edgecol = 0;

20. for (int i = 0; i < allLines.Length; i++)

21. {

22. int count = 1;

23. source = null;

24. dest = null;
25. weigth = null;

26. foreach (char c in allLines[i])

27. {

28. if (count <= 4)

29. {

30. if (c != 32)

31. source += Convert.ToString(c);

32. }

33. if ((count >= 6) && (count <= 9))

34. {

35. if (c != 32)
36. dest += Convert.ToString(c);

37. }

38. if ((count >= 20) && (count <= 29))

39. {

40. if (c != 32)

41. weigth += Convert.ToString(c);

42. }

43. count++;

44. }

45. if (vertices == 300)

46. {

47. for(int k=0;k<300;k++)
48. {

49. if(Convert.ToInt16(source)==remote_Node[k])

50. G.ed[edgecol].Source = k;

51. if (Convert.ToInt16(dest) == remote_Node[k])

52. G.ed[edgecol].Destination= k;

53. G.ed[edgecol].Active = true;

54. }

55. }

56. else

57. {

58. G.ed[edgecol].Source = Convert.ToInt16(source) - 1;

59. G.ed[edgecol].Destination = Convert.ToInt16(dest) - 1;

60. G.ed[edgecol].Active = true;

61. }

62. if (Convert.ToDouble(weigth) > 0.00000000000000000000)

63. {

64. double x = ((Convert.ToDouble(weigth)* area) / p);

65. x = (x * 3) / 299792.458;

66. x = Math.Floor(x *1000);

67. G.ed[edgecol].Weight = Convert.ToInt16(x);

68. }

69. else

70. {

 114

71. G.ed[edgecol].Weight = 1;

72. }

73. sh.input_text("\t\t\t\t\t" + source + "\t\t\t\t" + dest + "\t\t\t" + G.ed[edgecol].Weight);

74. edgecol++;

75. }

76. return G;

77. }

Appendix A5: Source Code of Class Minimum_Spanning_Tree:

1. class Minimum_Spanning_Tree
2. {

3. private Graph Mst = new Graph();

4. private static int Find(Subset[] subsets, int i)

5. {

6. if (subsets[i].parent != i)

7. subsets[i].parent = Find(subsets, subsets[i].parent);

8. return subsets[i].parent;
9. }

10. public static void exchange(Edge[] data, int m, int n)

11. {

12. Edge temporary;

13. temporary = data[m];

14. data[m] = data[n];

15. data[n] = temporary;

16. }

17. public static void IntArrayBubbleSort(Edge[] data)

18. {
19. int i, j;

20. int N = data.Length;

21. for (j = N - 1; j > 0; j--)

22. {

23. for (i = 0; i < j; i++)

24. {

25. if (data[i].Weight > data[i + 1].Weight)

26. exchange(data, i, i + 1);

27. }

28. }
29. }

30. private static void Union(Subset[] subsets, int x, int y)

31. {

32. int xroot = Find(subsets, x);

33. int yroot = Find(subsets, y);

34. if (subsets[xroot].rank < subsets[yroot].rank)

35. subsets[xroot].parent = yroot;

36. else if (subsets[xroot].rank > subsets[yroot].rank)

37. subsets[yroot].parent = xroot;

38. else

 115

39. {

40. subsets[yroot].parent = xroot;

41. ++subsets[xroot].rank;

42. }

43. }

44. //Prepare the string to show the MST details

45. public string Print(Edge[] result,int e)

46. {

47. string s = null; ;

48. for (int i = 0; i < e-1; ++i)
49. {

50. s += "\t"+(result[i].Source) + "\t\t" + (result[i].Destination) + "\t\t\t" + result[i].Weight;

51. s += Environment.NewLine;

52. }

53. return s;

54. }

55. //Disjointset method used for segmentation the difference with kruskal is: kruskal return grap

h disjointset return subset

56. public Subset[] disjointset(Graph graph)

57. {

58. int verticesCount = graph.verticesCount;

59. //Initial subset and edge array object

60. Edge[] result = new Edge[verticesCount];

61. Subset[] subsets = new Subset[verticesCount];

62. for (int k = 0; k < verticesCount; k++)

63. {

64. result[k] = new Edge();

65. subsets[k] = new Subset();

66. }

67. //---

68. int i = 0;

69. int e = 0;

70. Array.Sort(graph.ed, delegate (Edge a, Edge b)

71. {

72. return a.Weight.CompareTo(b.Weight);

73. });

74. for (int v = 0; v < graph.verticesCount; ++v)

75. {

76. subsets[v].parent = v;

77. subsets[v].rank = 0;

78. }

79. while (i < graph.ed.Length)

80. {

81. Edge nextEdge = graph.ed[i++];

82. int x = Find(subsets, nextEdge.Source);

83. int y = Find(subsets, nextEdge.Destination);

84. if (x != y)

85. {

86. result[e++] = nextEdge;

 116

87. Union(subsets, x, y);

88. }

89. }

90. return subsets;

91. }

92. public Graph Mst_Graph(Graph graph)

93. {
94. int verticesCount = graph.verticesCount;

95. //Initial subset and edge array object

96. Edge[] result = new Edge[verticesCount];

97. Subset[] subsets = new Subset[verticesCount];

98. for(int k=0;k<verticesCount;k++)

99. {

100. result[k] = new Edge();

101. subsets[k] = new Subset();

102. }

103. //----------------------------------

104. int i = 0;

105. int e = 0;

106. // IntArrayBubbleSort(graph.ed);

107. //sorting the edge by weight

108. Array.Sort(graph.ed, delegate (Edge a, Edge b)

109. {

110. return a.Weight.CompareTo(b.Weight);

111. });

112. //at first each node's parent is themself and their rank is 0

113. for (int v = 0; v < verticesCount; ++v)

114. {

115. subsets[v].parent = v;

116. subsets[v].rank = 0;

117. }

118. while (e < verticesCount - 1)

119. {

120. Edge nextEdge = graph.ed[i++];
121. int x = Find(subsets, nextEdge.Source);

122. int y = Find(subsets, nextEdge.Destination);

123. if (x != y)

124. {

125. result[e++] = nextEdge;

126. Union(subsets, x, y);

127. }

128. }

129. Mst.ed = result;

130. Mst.verticesCount = verticesCount;
131. Mst.edgesCount = verticesCount-1;

132. return Mst;

 117

133. }

134. //Finding minimum degree of each edge & normalizing the edge weight (edge.weight/maxim

um weight)

135. public void MinDegree(Graph MST)

136. {

137. int dest;

138. int src;

139. int maxWeight = 0;
140. maxWeight = MST.ed[0].Weight;

141. for (int i = 0; i < MST.edgesCount; i++)

142. {

143. maxWeight = Math.Max(maxWeight, MST.ed[i].Weight);

144. int scount = 0;

145. int dcount = 0;

146. src = MST.ed[i].Source;

147. dest = MST.ed[i].Destination;

148. for (int j = 0; j < MST.edgesCount; j++)

149. {

150. if ((src == MST.ed[j].Source) || (src == MST.ed[j].Destination))
151. {

152. scount++;

153. }

154. if ((dest == MST.ed[j].Source) || (dest == MST.ed[j].Destination))

155. {

156. dcount++;

157. }

158. }

159. MST.ed[i].minDegree = Math.Min(scount, dcount);

160. MST.ed[i].maxdeg = Math.Max(scount,dcount);

161. }

162. //calculating the normalizeweight

163. for (int j = 0; j < MST.edgesCount; j++)

164. {

165. MST.ed[j].normalizeWeight = Convert.ToDecimal(Convert.ToDecimal(MST.ed[j].Weight) /

 Convert.ToDecimal(maxWeight));

166. }

167. }

168. }

Appendix A6: Source Code of Class LPP:

1. class LPP

2. {

3. //STEP2

4. MLApp.MLApp matlab = new MLApp.MLApp();

5. private double alpha = 1;

6. private double beta = 0.5;

7. public double[,] LPP2(int Numberof_Borderin,int Numberof_interlink,Edge[] Intersegment,

Bordering_Node_Details[] B_S)

8. {

9. double[,] f = new double[Numberof_Borderin, 1];

10. double[,] intcon = new double[1, Numberof_Borderin];

 118

11. double[,] A = new double[Numberof_interlink, Numberof_Borderin];

12. double[,] b = new double[Numberof_interlink,1];

13. double[,] Aeq = new double[1,Numberof_Borderin];

14. double[,] beq = new double[1,1];

15. double[,] lb = new double[1,Numberof_Borderin];

16. double[,] ub = new double[1,Numberof_Borderin];

17. for (int i = 0; i < Numberof_Borderin; i++)

18. for (int j = 0; j < Numberof_Borderin; j++)

19. f[i, 0] = 1;

20. for (int i = 0; i < Numberof_Borderin; i++)

21. {

22. lb[0, i] = 0;

23. ub[0, i] = 1;

24. intcon[0, i] = i + 1;

25. }

26. //Fill Array "A"

27. for(int i=0;i<Numberof_interlink;i++)

28. {
29. int index1;

30. int index2;

31. index1 = Find_for_Array_A(Intersegment[i].Source, B_S);

32. index2 = Find_for_Array_A(Intersegment[i].Destination, B_S);

33. A[i,index1] = -1;

34. A[i, index2] = -1;

35. b[i, 0] = -1;

36. }

37. //Executing matlab function

38. int[] ans = new int[Numberof_Borderin];

39. object res = null;
40. matlab.Feval("intlinprog", 4, out res, f, intcon, A, b, Aeq, beq, lb, ub);

41. object[] lppresult = res as object[];

42. double[,] sln = lppresult[0] as double[,];

43. return sln;

44. }

45. public int Find_for_Array_A(int node,Bordering_Node_Details[] B_s)

46. {

47. int j = 0;

48. int ans = 0;

49. for(int i=0;i<B_s.Length;i++)

50. {

51. for (int k=0;k<B_s[i].BNode.Count;k++)

52. {

53. if (node != B_s[i].BNode[k])

54. j++;

55. else

56. {

57. ans = j;

58. }

59. }

 119

60. }

61. return ans;

62. }

63. //This method solve the lpp problem and return N-K number of edges (ESS)

64. public Edge[] LPP1(Graph Mst, double Num_segMent)

65. {

66. double[,] f = new double[Mst.edgesCount, 1];

67. double[,] intcon = new double[1, Mst.edgesCount];

68. double[,] A = new double[Mst.edgesCount, Mst.edgesCount];
69. double[,] b = new double[Mst.edgesCount, 1];

70. double[,] Aeq = new double[1, Mst.edgesCount];

71. double[,] beq = new double[1, 1];

72. double[,] lb = new double[1, Mst.edgesCount];

73. double[,] ub = new double[1, Mst.edgesCount];

74. ////Preparing Subjects to for mix integer linear programming

75. for (int i = 0; i < Mst.edgesCount; i++)

76. for (int j = 0; j < Mst.edgesCount; j++)

77. A[i, j] = 0;

78. for (int i = 0; i < Mst.edgesCount; i++)

79. {

80. A[i, i] = 1;

81. lb[0, i] = 0;

82. ub[0, i] = 1;

83. intcon[0, i] = i + 1;

84. b[i, 0] = Mst.ed[i].minDegree;

85. Aeq[0, i] = 1;

86. Mst.ed[i].we = (Convert.ToDecimal(alpha) * Convert.ToDecimal(Mst.ed[i].minDegree)) + (

Convert.ToDecimal(beta) * Convert.ToDecimal(Mst.ed[i].normalizeWeight));

87. }

88. for (int i = 0; i < Mst.edgesCount; i++)

89. f[i, 0] = Convert.ToDouble(-Mst.ed[i].we);

90. beq[0, 0] = Num_segMent - 1;

91. //--

92. //------------------Executing matlab function

93. int[] ans = new int[Mst.edgesCount];

94. object res = null;

95. matlab.Feval("intlinprog",4, out res, f, intcon, A, b, Aeq, beq, lb, ub);

96. //---

97. //----------------------------Access to out put of the matlab function------------------------

98. object[] lppresult = res as object[];

99. double[,] sln = lppresult[0] as double[,];

100. //Avtive value changed to false for selected edge from the LPP

101. for (int i = 0; i < sln.Length; i++)

102. {

103. if (sln[i, 0] == 1)
104. Mst.ed[i].Active = false;

105. }

 120

106. Edge[] rss = new Edge[Mst.verticesCount];

107. for (int i = 0; i < Mst.verticesCount; i++)

108. rss[i] = new Edge();

109. Graph Mstss = new Graph();

110. Mstss.ed = rss;

111. Mstss.verticesCount = Mst.verticesCount;

112. Mstss.edgesCount = Mst.verticesCount - Convert.ToInt16(Num_segMent);

113. int o = 0;

114. //preparing Ess edge(matrices)-----------------------------------

115. for (int j = 0; j < Mst.edgesCount; j++)

116. {

117. if (Mst.ed[j].Active != false)

118. {

119. Mstss.ed[o].Destination = Mst.ed[j].Destination;

120. Mstss.ed[o].Active = Mst.ed[j].Active;

121. Mstss.ed[o].Source = Mst.ed[j].Source;

122. Mstss.ed[o].Weight = Mst.ed[j].Weight;

123. o++;
124. }

125. }

126. //---

127. return Mstss.ed;

128. }

129. }

130. }

Appendix A7: Source Code of Class Delta_Min:

1. class Delta_min
2. {

3. public Segment delta_computation(Segment S_i, Segment S_j, Graph MST,Graph Mstss)

4. {

5. Segment dlt_M = new Segment();

6. int u = 999;

7. int counting = 0;

8. int y = 0;

9. Edge[] E_Psi = new Edge[S_i.nodes.Count - 1];

10. Edge[] e_psi_cutted=new Edge[E_Psi.Length-1];

11. Minimum_Spanning_Tree disj = new Minimum_Spanning_Tree();

12. Graph cutt = new Graph();

13. Segment[] segment_Set_U;

14. Segment s1 = new Segment();

15. Segment[] delta_min_set;

16. bool chq = false;

17. bool chq1 = false;

18. //Finding U--->Z

19. for (int i = 0; i < S_i.nodes.Count; i++)

 121

20. {

21. for (int j = 0; j < S_j.nodes.Count; j++)

22. {

23. for (int k = 0; k < MST.ed.Length; k++)

24. {

25. if (((S_i.nodes[i] == MST.ed[k].Source) || (S_i.nodes[i] == MST.ed[k].Destination)) && ((S

_j.nodes[j] == MST.ed[k].Source) || (S_j.nodes[j] == MST.ed[k].Destination)))

26. {

27. u = S_i.nodes[i];

28. }

29. }
30. }

31. }

32. //--

33. if (u == 999)

34. {

35. dlt_M.nodes.Add(-1);

36. }

37. else

38. {

39. for (int i = 0; i < E_Psi.Length; i++)
40. E_Psi[i] = new Edge();

41. int n = 0;

42. //finding E_Psi------------------------------------

43. for (int i = 0; i < Mstss.ed.Length; i++)

44. {

45. chq = false;

46. chq1 = false;

47. for (int j = 0; j < S_i.nodes.Count; j++)

48. {

49. if ((Mstss.ed[i].Source == S_i.nodes[j])&&(Mstss.ed[i].Active==true))

50. chq = true;

51. }

52. for (int j = 0; j < S_i.nodes.Count; j++)

53. {

54. if ((Mstss.ed[i].Destination == S_i.nodes[j]) && (Mstss.ed[i].Active == true))

55. chq1 = true;

56. }

57. if ((chq ==true)&&(chq1==true))
58. {

59. if ((Mstss.ed[i].Destination == u) || (Mstss.ed[i].Source == u))

60. {

61. E_Psi[y].Active = true;

62. counting++;

63. }

64. E_Psi[y].Destination = Mstss.ed[i].Destination;

65. E_Psi[y].Source = Mstss.ed[i].Source;

66. E_Psi[y].Active = true;

67. E_Psi[y].delta_Seg = true;

68. Mstss.ed[i].delta_Seg = true;

69. y++;
70. }

71. }

72. for (int i = 0; i < E_Psi.Length - 1; i++)

 122

73. e_psi_cutted[i] = new Edge();

74. delta_min_set = new Segment[E_Psi.Length];

75. for (int i = 0; i < delta_min_set.Length; i++)

76. delta_min_set[i] = new Segment();

77. //------------------------------------End Finding------------------------

78. for (int i = 0; i < E_Psi.Length; i++)

79. {

80. int y1 = 0;

81. //-------------cutting selected edge belong to u---------------------

82. if ((E_Psi[i].Source == u) || (E_Psi[i].Destination == u))
83. {

84. E_Psi[i].Active = false;

85. cutt.edgesCount = E_Psi.Length - 1;

86. for(int k=0;k<E_Psi.Length;k++)

87. {

88. if (E_Psi[k].Active == true)

89. e_psi_cutted[y1++] = E_Psi[k];

90. }

91. cutt.verticesCount = MST.verticesCount;

92. cutt.ed = e_psi_cutted;

93. //finding delta_u segment after segmentation with updated graph

94. segment_Set_U = s1.Segmentation(cutt.verticesCount,cutt);

95. for (int j = 0; j < cutt.verticesCount; j++)

96. {

97. for (int k = 0; k < segment_Set_U[j].nodes.Count; k++)

98. {

99. if (segment_Set_U[j].nodes[k] == u)

100. delta_min_set[n] = segment_Set_U[j];

101. }

102. }

103. n++;

104. //restoring

105. E_Psi[i].Active = true;

106. }

107. }

108. dlt_M = delta_min_set[0];

109. for (int i = 1; i < delta_min_set.Length; i++)

110. {

111. if (delta_min_set[i].nodes.Count != 0)
112. {

113. if(delta_min_set[i].nodes.Count<dlt_M.nodes.Count)

114. dlt_M = delta_min_set[i];

115. }

116. }

117. }

118. return dlt_M;

119. }

120. }

 123

Appendix A8: Source Code of the Button2_Click Event (Implementation of the

Local Search and Initial Tree Partitioning Algorithms):

Source Code of the Algorithms 2.7 -2.9:

1. private void button2_Click(object sender, EventArgs e)

2. {

3. int phi=1;
4. if (textBox6.Text == null)

5. K = Convert.ToInt16(textBox6.Text);
6. segment_Set = new Segment[K];
7. for (int i = 0; i < K; i++)
8. segment_Set[i] = new Segment();
9. string s = "";
10. //Minimum spanning tree(MST) using kruskal algorithm
11. MST =kruskal.Mst_Graph(G);
12. //minimum degree of each edge and normalized the weight---

This method is in minimum spanning tree class
13. kruskal.MinDegree(MST);
14. //show the MST graph details in form
15. ms.Show();

16. Mean_Weight = G.mean_Weight(G.ed);
17. St_Deviation = G.standard_Deviation(G.ed, Mean_Weight);

18. s = kruskal.Print(MST.ed,MST.verticesCount);
19. ms.input_Mst_Res(s);

20. //return(N-K) number of edges
21. Ess = lpp1.LPP1(MST,K);

22. Mstss.verticesCount = N;
23. Mstss.edgesCount = N - K;
24. Mstss.ed = Ess;

25. //Initial segment sets
26. segment_Set = s1.Segmentation(K, Mstss);
27. Ks= Ks = Convert.ToInt16(Math.Ceiling(Convert.ToDecimal(G.verticesCo

unt) / Convert.ToDecimal(K)));

28. while (phi < 1)
29. {
30. int count = 0;
31. for (int i = 0; i <K; i++)
32. {
33. for (int j = 0; j < K; j++)
34. {
35. if ((segment_Set[i].nodes.Count > Ks) && (segment_Set[j].nodes.Count

 < Ks))

 124

36. {

37. delta_Min = computation.delta_computation(segment_Set[i], segment_Se
t[j], MST, Mstss);

38. if (delta_Min.nodes.Count > 0)
39. {
40. if (delta_Min.nodes[0] != -1)
41. {
42. if (((Math.Abs(Ks - segment_Set[i].nodes.Count)) + (Math.Abs(Ks -

 segment_Set[j].nodes.Count))) >
43. (Math.Abs(Ks -

 segment_Set[i].nodes.Count + delta_Min.nodes.Count) + (Math.Abs(Ks
- segment_Set[j].nodes.Count - delta_Min.nodes.Count))))

44. {
45. //Add
46. for (int k = 0; k < delta_Min.nodes.Count; k++)
47. segment_Set[j].nodes.Add(delta_Min.nodes[k]);

48. //remove
49. for (int l = 0; l < delta_Min.nodes.Count; l++)
50. {
51. for (int k = 0; k < segment_Set[i].nodes.Count; k++)
52. {
53. if (segment_Set[i].nodes[k] == delta_Min.nodes[l])
54. segment_Set[i].nodes.RemoveAt(k);
55. }
56. }
57. count++;
58. }
59. }
60. }
61. }
62. }
63. }
64. if (count == 0)
65. phi = 1;
66. }

Appendix A9: Source Code of Class Borderin_Node_Details:

1. class Bordering_Node_Details

2. {

3. public IList<int> BNode;

4. public int segment_Name { get; set; }

5. public IList<int> trust_node;

6. public void add_bordering_node(int x,IList<int> B)
7. {

8. bool check = false;

9. int n;

10. //check for duplicate

11. for (int i=0;i<B.Count;i++)

12. {

13. if(x==B[i])

14. {

 125

15. check = true;

16. }

17. }

18. if (check == false)

19. BNode.Add(x);

20. }

21. }

22. }

Appendix A10: Source Code of Class Trust_Node_Selection:

1. class Trust_Node_Selection

2. {

3. private Bordering_Node_Details V_Trust = new Bordering_Node_Details();

4. private Segment s1 = new Segment();

5. private LPP lp2 = new LPP();

6. private Edge[] L_xy ;

7. public string ANSWER = "Trus Nodes Are:\n\t";

8. public Bordering_Node_Details[] trusted(Graph G,Segment[] S)

9. {
10. //Initializing Bordering node and Intersegment sets

11. int count_Inter_Link=0;

12. int x;

13. int y;

14. double[,] ans;

15. Bordering_Node_Details[] B_s = new Bordering_Node_Details[S.Length];

16. for (int i = 0; i < S.Length; i++)

17. {

18. B_s[i] = new Bordering_Node_Details();

19. B_s[i].BNode = new List <int> ();

20. B_s[i].trust_node = new List<int>();

21. B_s[i].segment_Name = i;
22. }

23. //---

24. //--

25. //---------------------------------------

26. for (int i = 0; i < G.edgesCount; i++)

27. {

28. x = s1.find_segment_belongtonode(G.ed[i].Source, S);

29. y = s1.find_segment_belongtonode(G.ed[i].Destination, S);

30. if (x != y)

31. {

32. B_s[x].add_bordering_node(G.ed[i].Source,B_s[x].BNode);

33. B_s[y].add_bordering_node(G.ed[i].Destination,B_s[y].BNode);

34. G.ed[i].Intersegment = true;

35. count_Inter_Link++;

36. }

37. }

 126

38. //Fill the intersegment link array

39. L_xy = new Edge[count_Inter_Link];

40. for (int i = 0; i < L_xy.Length; i++)

41. L_xy[i] = new Edge();

42. int m = 0;

43. for (int i = 0; i < G.edgesCount; i++)

44. {

45. if (G.ed[i].Intersegment == true)

46. {
47. L_xy[m].Source = G.ed[i].Source;

48. L_xy[m].Destination = G.ed[i].Destination;

49. m++;

50. }

51. }

52. //---

53. int count_bordering = 0;

54. for (int i = 0; i < S.Length; i++)

55. count_bordering += B_s[i].BNode.Count;

56. ans=lp2.LPP2(count_bordering,count_Inter_Link,L_xy,B_s);
57. int count = 0;

58. //search matlab result in bordering node and convert it to node as string

59. for(int i=0;i<count_bordering;i++)

60. {

61. if (ans[i, 0] != 0)

62. {

63. int j = i;

64. int i1 = 0;

65. for(int k=0;k<B_s.Length;k++)

66. {

67. for(int l=0;l<B_s[k].BNode.Count;l++)
68. {

69. if (j == i1)

70. {

71. ANSWER += Convert.ToString(B_s[k].BNode[l] + 1) + ",";

72. B_s[k].trust_node.Add(B_s[k].BNode[l]);

73. count++;

74. i1++;

75. }

76. else

77. i1++;

78. }

79. }

80. }

81. }

82. ANSWER += Environment.NewLine;

83. ANSWER += "Number of trust nodes are: " + Convert.ToString(count);

84. return B_s;

85. }
86. }

 127

Appendix A11: Source Code of Uniform_Segment:

This class is used to uniform the segments in number of trust systems.

1. class Uniform_Segment

2. {

3. public Bordering_Node_Details[] uniform(Bordering_Node_Details[] b_s,Graph G, Segment
[] S, int Number_of_Segment,int num_trustNodes)

4. {

5. int balance = 0;

6. int n ;

7. int ph = 0;

8. int temp=0;

9. int Ns =Convert.ToInt16(Math.Ceiling((Convert.ToDecimal(Number_of_Segment)/Convert.

ToDecimal(num_trustNodes))));

10. int Ns1= Convert.ToInt16(Math.Ceiling((Convert.ToDecimal(num_trustNodes)/Convert.To

Decimal(Number_of_Segment))));
11. if (Ns1 > 0)

12. Ns = Ns1;

13. while (balance<1)

14. {

15. ph = 0;

16. for(int i=0;i<Number_of_Segment;i++)

17. {

18. for(int j=0;j<Number_of_Segment;j++)

19. {

20. if((b_s[i].trust_node.Count<Ns)&&(b_s[j].trust_node.Count>Ns))

21. {

22. n = 0;
23. for(int k=0;k<G.ed.Length;k++)

24. {

25. //when nodes find to exchange between segments this loop will be finished

26. if(n<1)

27. {

28. bool t1 = false;

29. bool t2 = false;

30. bool t3 = false;

31. //find trust node belongs to oversized bordering node set

32. for (int h = 0; h < b_s[j].trust_node.Count; h++)

33. {
34. if ((b_s[j].trust_node[h] == G.ed[k].Destination) || (b_s[j].trust_node[h] == G.ed[k].Source))

35. {

36. temp = b_s[j].trust_node[h];

37. t1 = true;

38. }

39. }

40. for (int h = 0; h < b_s[i].trust_node.Count; h++)

41. {

42. if ((b_s[i].trust_node[h] == G.ed[k].Destination) || (b_s[i].trust_node[h] == G.ed[k].Source))

43. {
44. t3 = true;

45. }

46. }

47. if (t1 != t3)

 128

48. {

49. int x1 = S[i].find_segment_belongtonode(G.ed[k].Source, S);

50. int x2 = S[i].find_segment_belongtonode(G.ed[k].Destination, S);

51. //check other side of the link and be sure that this node belong to undersized segment

52. if ((((x1 == i) || (x2 == i))) && (x1 != x2))

53. {

54. t2 = true;

55. }

56. if ((t1 == true) && (t2 == true))
57. {

58. n = 1;

59. //Add

60. if (temp != G.ed[k].Destination)

61. b_s[i].trust_node.Add(G.ed[k].Destination);

62. if (temp != G.ed[k].Source)

63. b_s[i].trust_node.Add(G.ed[k].Source);

64. //remove

65. b_s[j].trust_node.Remove(temp);

66. ph++;//It checks for balancing

67. }

68. }

69. }

70. }

71. }

72. }

73. }

74. if (ph == 0)
75. balance = 1;

76. }

77. return b_s;

78. }

79. }

 129

Appendix B: IEEE Test System Topologies Databases

Following Tables show the first and last 5 rows of data for IEEE test system

topologies. The complete databases are provided in the attached CD.

Appendix B1: IEEE BUS14 Branch Data:

Table 5: IEEE BUS14 branch data.

.

.

.

.

.

Appendix B2: IEEE BUS30 Branch Data:

Table 6: IEEE BUS30 branch data.

.

.

.

.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.01938 0.05917 0.0528 0 0 0 0 0 0 0 0 0 0 0 0

2 1 5 1 1 1 0 0.05403 0.22304 0.0492 0 0 0 0 0 0 0 0 0 0 0 0

3 2 3 1 1 1 0 0.04699 0.19797 0.0438 0 0 0 0 0 0 0 0 0 0 0 0

4 2 4 1 1 1 0 0.05811 0.17632 0.034 0 0 0 0 0 0 0 0 0 0 0 0

5 2 5 1 1 1 0 0.05695 0.17388 0.0346 0 0 0 0 0 0 0 0 0 0 0 0

16 9 10 1 1 1 0 0.03181 0.0845 0 0 0 0 0 0 0 0 0 0 0 0 0

17 9 14 1 1 1 0 0.12711 0.27038 0 0 0 0 0 0 0 0 0 0 0 0 0

18 10 11 1 1 1 0 0.08205 0.19207 0 0 0 0 0 0 0 0 0 0 0 0 0

19 12 13 1 1 1 0 0.22092 0.19988 0 0 0 0 0 0 0 0 0 0 0 0 0

20 13 14 1 1 1 0 0.17093 0.34802 0 0 0 0 0 0 0 0 0 0 0 0 0

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.0192 0.0575 0.0528 0 0 0 0 0 0 0 0 0 0 0 0

2 1 3 1 1 1 0 0.0452 0.1652 0.0408 0 0 0 0 0 0 0 0 0 0 0 0

3 2 4 1 1 1 0 0.057 0.1737 0.0368 0 0 0 0 0 0 0 0 0 0 0 0

4 3 4 1 1 1 0 0.0132 0.0379 0.0084 0 0 0 0 0 0 0 0 0 0 0 0

5 2 5 1 1 1 0 0.0472 0.1983 0.0418 0 0 0 0 0 0 0 0 0 0 0 0

37 27 29 1 1 1 0 0.2198 0.4153 0 0 0 0 0 0 0 0 0 0 0 0 0

38 27 30 1 1 1 0 0.3202 0.6027 0 0 0 0 0 0 0 0 0 0 0 0 0

39 29 30 1 1 1 0 0.2399 0.4533 0 0 0 0 0 0 0 0 0 0 0 0 0

40 8 28 1 1 1 0 0.0636 0.2 0.0428 0 0 0 0 0 0 0 0 0 0 0 0

41 6 28 1 1 1 0 0.0169 0.0599 0.013 0 0 0 0 0 0 0 0 0 0 0 0

 130

Appendix B3: IEEE BUS57 Branch Data:

Table 7: IEEE BUS57 branch data.

.

.

.

.

.

Appendix B4: IEEE BUS118 Branch Data:

Table 8: IEEE BUS118 branch data.

.

.

.

.

.

.

.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.0083 0.028 0.129 0 0 0 0 0 0 0 0 0 0 0 0

2 2 3 1 1 1 0 0.0298 0.085 0.0818 0 0 0 0 0 0 0 0 0 0 0 0

3 3 4 1 1 1 0 0.0112 0.0366 0.038 0 0 0 0 0 0 0 0 0 0 0 0

4 4 5 1 1 1 0 0.0625 0.132 0.0258 0 0 0 0 0 0 0 0 0 0 0 0

5 4 6 1 1 1 0 0.043 0.148 0.0348 0 0 0 0 0 0 0 0 0 0 0 0

76 39 57 1 1 1 0 0 1.355 0 0 0 0 0 0 0.98 0 0 0 0 0 0

77 57 56 1 1 1 0 0.174 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0

78 38 49 1 1 1 0 0.115 0.177 0.003 0 0 0 0 0 0 0 0 0 0 0 0

70 38 48 1 1 1 0 0.0312 0.0482 0 0 0 0 0 0 0 0 0 0 0 0 0

80 9 55 1 1 1 0 0 0.1205 0 0 0 0 0 0 0.94 0 0 0 0 0 0

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.0303 0.0999 0.0254 0 0 0 0 0 0 0 0 0 0 0 0

2 1 3 1 1 1 0 0.0129 0.0424 0.01082 0 0 0 0 0 0 0 0 0 0 0 0

3 4 5 1 1 1 0 0.00176 0.00798 0.0021 0 0 0 0 0 0 0 0 0 0 0 0

4 3 5 1 1 1 0 0.0241 0.108 0.0284 0 0 0 0 0 0 0 0 0 0 0 0

5 5 6 1 1 1 0 0.0119 0.054 0.01426 0 0 0 0 0 0 0 0 0 0 0 0

182 114 115 1 1 1 0 0.0023 0.0104 0.00276 0 0 0 0 0 0 0 0 0 0 0 0

183 68 116 1 1 1 0 0.00034 0.00405 0.164 0 0 0 0 0 0 0 0 0 0 0 0

184 12 117 1 1 1 0 0.0329 0.14 0.0358 0 0 0 0 0 0 0 0 0 0 0 0

185 75 118 1 1 1 0 0.0145 0.0481 0.01198 0 0 0 0 0 0 0 0 0 0 0 0

186 76 118 1 1 1 0 0.0164 0.0544 0.01356 0 0 0 0 0 0 0 0 0 0 0 0

 131

Appendix B5: IEEE BUS300 Branch Data:

Table 9: IEEE BUS300 branch data.

.

.

.

.

.

Appendix B6: IEEE BUS300 Remote Node Data:

Table 10: IEEE BUS300 remote node data

.
.
.
.
.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 37 9001 1 9 1 2 0.00006 0.00046 0 0 0 75 0 0 1.0082 0 0.9043 1.10435 0.004 0 15 1

2 9001 9005 1 9 1 0 0.0008 0.00348 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 9001 9006 1 9 1 2 0.02439 0.43682 0 0 0 0 9006 0 0.9668 0 0.9391 1.1478 0.00417 0.99 1.01 3

4 9001 9012 1 9 1 2 0.03624 0.64898 0 0 0 0 9012 0 0.9796 0 0.9391 1.1478 0.00417 0.99 1.01 4

5 9005 9051 1 9 1 1 0.01578 0.37486 0 0 0 0 9051 0 1.0435 0 0.9391 1.1478 0.00417 0.99 1.01 5

407 7039 39 1 1 1 1 0 0.03159 0 0 0 0 0 0 0.965 0 0 0 0 0 0 407

408 7057 57 1 1 1 1 0 0.05347 0 0 0 0 0 0 0.95 0 0 0 0 0 0 408

409 7044 44 1 1 1 1 0 0.18181 0 0 0 0 0 0 0.942 0 0 0 0 0 0 409

410 7055 55 1 1 1 1 0 0.19607 0 0 0 0 0 0 0.942 0 0 0 0 0 0 410

411 7071 71 1 1 1 1 0 0.06896 0 0 0 0 0 0 0.9565 0 0 0 0 0 0 411

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 1 0 1.0284 5.95 90 49 0 0 115 0 0 0 0 0 0 1

2 2 1 1 1 0 1.0354 7.74 56 15 0 0 115 0 0 0 0 0 0 2

3 3 1 1 1 0 0.9971 6.64 20 0 0 0 230 0 0 0 0 0 0 3

4 4 1 1 1 0 1.0308 4.71 0 0 0 0 345 0 0 0 0 0 0 4

5 5 1 1 1 0 1.0191 4.68 353 130 0 0 115 0 0 0 0 0 0 5

296 9055 1 1 9 2 1 -7.54 0 0 8 0 13.8 1 6 -6 0 0 9055 296

297 9071 1 1 9 0 0.9752 -20.48 1.02 0.35 0 0 0.6 0 0 0 0.0005 0 0 297

298 9072 1 1 9 0 0.9803 -19.92 1.02 0.35 0 0 0.6 0 0 0 0.0005 0 0 298

299 9121 1 1 9 0 0.9799 -19.3 3.8 1.25 0 0 6.6 0 0 0 0 0 0 299

300 9533 1 1 9 0 1.0402 -18.24 1.19 0.41 0 0 2.3 0 0 0 0.001 0 0 300

 132

Appendix C: Experimental Results

The following Figures are the screenshots of 5 different databases output results.

Appendix C1: Screenshots of Experimental Results on IEEE Test System of

BUS14:

Figure 41: The experimental results on IEEE test system of BUS14 with 3 segments.

Figure 42: The experimental results on IEEE test system of BUS14 with 4 segments.

 133

Figure 43: The experimental results on IEEE test system of BUS14 with 5 segments.

Figure 44: The experimental results on IEEE test system of BUS14 with 6 segments.

 134

Appendix C2: Screenshots of Experimental Results on IEEE Test System of

BUS30:

Following Figures show the experimental results on IEEE test system of BUS30.

Figure 45: Experimental parameters for IEEE test system topology BUS30.

Figure 46: The experimental results on IEEE test system of BUS30 with 3 segments.

 135

Figure 47: The experimental results on IEEE test system of BUS30 with 4 segments.

Figure 48: The experimental results on IEEE test system of BUS30 with 5 segments.

 136

Figure 49: The experimental results on IEEE test system of BUS30 with 6 segments.

Appendix C3: Experimental Parameters for IEEE Test System Topology

BUS57:

Following Figures show the experimental results on IEEE test system of BUS57.

Figure 50: Experimental parameters for IEEE test system topology BUS57.

 137

Figure 51: The experimental results on IEEE test system of BUS57 with 3 segments.

Figure 52: The experimental results on IEEE test system of BUS57 with 4 segments.

 138

Figure 53: The experimental results on IEEE test system of BUS57 with 5 segments.

Figure 54: The experimental results on IEEE test system of BUS57 with 6 segments.

 139

Appendix C4: The Experimental Results on IEEE Test System of BUS118:

Figure 55: The experimental results on IEEE test system of BUS118 with 5

segments.

Figure 56: The experimental results on IEEE test system of BUS118 with 10

segments.

 140

Figure 57: The experimental results on IEEE test system of BUS118 with 15

segments.

Figure 58: The experimental results on IEEE test system of BUS118 with 20

segments.

 141

Figure 59: The experimental results on IEEE test system of BUS118 with 25

segments.

Figure 60: The experimental results on IEEE test system of BUS118 with 30

segments.

 142

Appendix C5: The Experimental Result on IEEE Test System of BUS300:

Figure 61: The experimental results on IEEE test system of BUS300 with 5

segments.

Figure 62: The experimental results on IEEE test system of BUS300 with 10

segments.

 143

Figure 63: The experimental results on IEEE test system of BUS300 with 15

segments.

Figure 64: The experimental results on IEEE test system of BUS300 with 20

segments.

 144

Figure 65: The experimental results on IEEE test system of BUS300 with 25

segments.

Figure 66: The experimental results on IEEE test system of BUS300 with 30

segments.

