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ABSTRACT 

The aim of this thesis is to investigate the optimal Trust System Placement (TSP) 

method for smart grid Supervisory Control And Data Acquisition (SCADA) 

networks. At present, as SCADA networks are connected to the internet the scope of 

cyber-security concerns becomes much wider. Trust Systems (TSs) are deployed to 

provide the cyber-security of SCADA networks. TS are used to detect and block 

malicious activities. Optimal TSP problem is used to minimize the cost and 

maximize the security by selecting minimum number of TSs. Segmentation is the 

main part of the optimal TSP problem. Segmentation is used to divide the SCADA 

graph to small segments and ideal segmentation problem uniforms the size of the 

segment. Linear Programming Problem (LPP) is used to assign the TSs to some 

nodes among the bordering nodes and its constraint is that all inter-segment links are 

connected to at least one trust node.  

The experiments are conducted on five IEEE test system topologies. The IEEE test 

system is categorized into small and large networks. The obtained results show that 

by increasing the quantity of segments the required quantity of TSs increases and 

small networks are more balanced than the large networks in size of segments.  

In optimal TSP problem TS number per segments are not uniform over the segments. 

It may deteriorate the security of the segments and more delays happened to the 

inter-segment links. We propose optimal TSP uniformity problem to maximize the 

security and minimize the operational expenditure by distributing TSs over the 

segments.  
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After executing the optimal TSP uniformity on IEEE BUS 14, the distribution of TSs 

over the segments is improved by 100% with 3 segments and 5 segments and it is 

improved by 81% with 4 segments and it is improved by 35% with 6 segments. 

Keywords: Smart grid Supervisory Control and Data Acquisition (SCADA) 

network, cyber-security, trust node, Minimum Spanning Tree (MST), Linear 

Programming Problem (LPP), segment, bordering node, uniformity problem. 
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ÖZ 

Bu tezin amacı, akıllı şebeke Denetleme Kontrolü ve Veri Toplama (DKVVT) ağları 

için optimal Güven Sistemi Yerleştirme (GSY) yöntemini araştırmaktır. Şu anda, 

DKVVT ağları internete bağlı olduğundan, siber güvenlik endişelerinin kapsamı 

daha da genişlemektedir. DKVVT ağlarının siber güvenliğini sağlamak için Güven 

Sistemleri (GS'ler) kullanılmaktadır. GS, kötü niyetli etkinlikleri tespit etmek ve 

engellemek için kullanılır. En düşük GS sayısını seçerek maliyeti en aza indirmek ve 

güvenliği en üst düzeye çıkarmak için en uygun GSY sorunu kullanılır. 

Segmentasyon, optimum GSY probleminin ana parçasıdır. Segmentasyon, DKVVT 

grafiğini küçük parçalara bölmek için kullanılır ve ideal segmentasyon sorunu, 

segmentin boyutunu düzenler. Doğrusal Programlama Sorunu (DPS), GS'leri 

sınırlayıcı düğümler arasındaki bazı düğümlere atamak için kullanılır ve 

sınırlandırması, tüm bölümler arası bağlantıların en az bir güven düğümüne bağlı 

olmasıdır. 

Deneyler beş IEEE test sistemi topolojisi üzerinde gerçekleştirilmiştir. IEEE test 

sistemi küçük ve büyük ağlara ayrılmıştır. Elde edilen sonuçlar, segmentlerin 

miktarını artırarak, gerekli GS'lerin miktarının arttığını ve küçük ağların, segment 

boyutundaki büyük ağlardan daha dengeli olduğunu göstermektedir. 

Optimum GSY probleminde segment başına GS sayısı segmentler üzerinde aynı 

değildir. Segmentlerin güvenliğini bozabilir ve bölümler arası bağlantılarda daha 

fazla gecikme yaşanabilir. Güvenliği en üst seviyeye çıkarmak ve GS'leri 

segmentlere dağıtarak işletme giderlerini en aza indirmek için optimal GSY 
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tekdüzelik problemi öneriyoruz. 

IEEE BUS 14'te optimum GSY homojenliği uygulandıktan sonra, GS'lerin 

segmentler üzerindeki dağılımı, 3 segment ve 5 segment 100%, 4 segment 81% ve 6 

segment 35% arttırılmıştır. 

Anahtar Kelimeler: Denetleme kontrolü ve veri toplama (DKVVT) ağı, siber 

güvenlik, güven düğümü, Minimum yayılma ağacı (MYA), doğrusal programlama 

sorunu (DPS), segment, sınırlayıcı düğüm, tekdüzelik sorunu. 
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Chapter 1 

INTRODUCTION 

Supervisory Control and Data Acquisition (SCADA) systems are used to control and 

monitor infrastructure of industries such as transmission and distribution networks of 

electricity, refineries, nuclear power plants. At present, industrial control systems and 

information technology (IT) systems merge together. As a consequence, SCADA and 

its equipment are a vulnerable target of the intrusion [1]. 

To keep the integrity of information and avoid cyber intrusions, smart grids need to 

deploy trust systems to monitor and control the input and output traffic. Trust 

systems are a combination of firewall and/or intrusion detection systems [2]. 

In this thesis, we are going to address the optimal trust system placement problem by 

focusing on discussion of its concepts, algorithms, and experimental results mainly 

from [1], and implementation of the optimal trust system placement scheme [1], 

experiments on IEEE test system topologies used in [1], and improvement of optimal 

trust system placement in smart grid SCADA networks [1], [3] and [4]. 

Adding trust systems to all the nodes in the grid is expensive and increases the 

processing time of the communication of nodes. In order to make it practical, 

networks must be divided into small networks, known as segments [1], and the 

selected bordering nodes [1] should be equipped by the trust systems. These nodes 
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are called trust nodes. Inter-segment links are connected to the TS, hence, trust nodes 

are able to monitor ingress and egress traffic. Segmentation problems are often 

solved using mixed integer linear programming [5]. Uniformity of trust nodes among 

the segments is used to keep the balancing of dispersion of the trust nodes among the 

segments. As a consequence, the trust system is transferred from the oversized 

segment to the undersized segment if there is a link between the trust node in the 

oversized segment and the node that is not equipped by the trust system in the 

undersized segment. 

The rest of this thesis is organized as follows. Chapter 2 discusses the related work 

mainly based on [1] and defines the problems of the thesis. Chapter 3 is about the 

design and implementation of the trust system placement problem and testing of the 

optimal trust system placement in smart grid of SCADA networks. Chapter 4 is 

about the improvement of the optimal trust system placement program using 

uniformity of trust systems distribution over network segments. Chapter 5 presents 

our experiments on IEEE test system topologies in the conditions of [1]. Chapter 6 is 

the conclusion. Appendix A shows the source codes of the program. Appendix B 

shows the databases of the IEEE test system topologies used in the experiments. 

Appendix C shows the screenshots of the experimental results on IEEE test system 

topologies.  
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Chapter 2 

RELATED WORK AND PROBLEM DEFINITION 

This chapter explains the terms related to trust system placement in smart grid 

networks (Section 2.1) and describes a method of trust nodes placement from [1] 

(Section 2.2). Thesis problems are defined in detail (Section 2.3).   

2.1 Cyber-Security Terms and Notions for Smart Grid SCADA 

Networks 

If infrastructures of smart grid network have not appropriate security equipment, it 

may result in vulnerabilities in power infrastructures. Power systems have three 

different types of sectors: generation, distribution and control, and consumption that 

may be the targets of the cyber-intrusion. Depending on the target, there can be three 

different cyber-attacks [5] as shown in Figure 1. 

 
Figure 1: Three types of cyber-attacks on the electric grid through the internet [5] 

Type I cyber-intrusion targets generation which intruder tries for interrupting or 

getting control of the operation of generators. Type II targets power distribution and 
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control. In this type intruder makes failure in the supply of electricity or damaging 

the network equipment. Type III attacks target the consumption part. It causes an 

increment of load that damages the grids and it can bring down the grid. Password-

secured access, group key ciphering for multicast transmissions, private key 

ciphering for unicast transmissions, user confirmation, message verification codes 

and firewalling of SCADA data traffic are the defense mechanisms to those attacks 

which are performed by trust systems. 

Trust system validates input, identifies risks and bad data, and initiates appropriate 

alerts. It then assigns data types for the good data elements in each packet. It next 

determines if the recipient is authorized to read all of the data types in the message, 

especially when the recipient is external to the company. If the message is not 

authorized, the system sanitizes the parts of the message that are not allowed to be 

passed to the recipient or it simply deletes the message. Finally, the good data 

elements are transferred to database systems for archiving for historical and trend 

analysis and then they are passed to intranet display. The data archived are viewable 

and accessible by someone with appropriate privileges. A logo and summary for the 

functions supported by trust systems is depicted in Figure 2.  
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Figure 2: Trust system logo with capabilities summary [2]. 

In [2], four different types of trust system implementation were discussed. Type 1 is 

the passive mode, type 2 is the half active mode, type 3 is the active mode, type 4 is 

the tunnel (or gateway) mode. In our work, trust systems will be implemented in type 

3, active mode. 

In type 1, passive mode, a trust system is connected to the switch on the 

communication link from the outside of the network. The advantage of passive mode 

is that a failed trust system does not block the communications link because trust 

system connected to the communication links from outside. The disadvantage is that 

trust system can detect and report the malicious packets and it cannot block these 

malicious packets. In type 2, half-active mode, implementation of passive mode is 

updated to block the bad activities in such a way that trust system interacts with a 

separate firewall or router Access Control List (ACL). The advantage is that it 

monitors and controls the traffics from outside the networks and same as passive 

mode if trust system is failed the communication links does not block. The 
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disadvantage is that there will still be some chance that one or more bad activities 

will reach to the destination. In type 3, active mode, trust system is in line with all of 

the communication between the SCADA network and it can block bad data. The 

advantage is that it can detect and block the malicious traffics. The disadvantage is 

that if trust system fails the communication links is blocked.   In type 4, tunnel or 

gateway mode, trust systems or routers provide firewall and other security features 

for the nodes behind them. The communications between them are secured by the 

encryption gateway. The advantage is that traffic packets are encrypted and protected 

when they are traveling from outside of the network. The disadvantage is that 

encryption and decryption of the packets cause delays to the network. Figure 3 

demonstrates these 4 types of trust system implementation. 
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Figure 3: Trust system modes and configuration options [2] 

In [6], a blackout reported that affected more than 50 million people in Italy. The 

Midwest independent system operator had only non-real-time data to work with, and 

they cannot identify the location of breaking lines. 

In [7], a key management, wide area key exchange (WAKE), was employed to 

provide security for wide area measurement system (WAMS). The WAMS has four 

major hardware elements. 
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1. Phasor measurement units (PMUs), devices which measure the electrical waves 

on an electricity grid using a common time source for synchronization 

2. Phasor data concentrators (PDCs) 

3. Wide area network (WAN) 

4. Real-time database and data archiver 

To provide the security, WAKE uses public key infrastructure (PKI) [8]. PKI is an 

industry-standard asymmetric-key cryptosystem, with standards including X.509 and 

RFC 5280 [9]. 

In [10]- [12], SCADA networks are divided into small networks and trust systems 

are installed to the appropriate nodes to monitor and control the ingress and egress 

traffics. The links between segments are known as inter-segment links. Trust systems 

monitor the traffic between segments; consequently, intersegments shall be 

connected to at least one trust node which hosts trust system. Figure 4 demonstrates 

an example of segmentation. Inter-segment links are shown by the dotted lines. Trust 

systems are installed to the bordering nodes. Inter-segment links are connected to at 

least one trust node. 

 
Figure 4: A simple example of a segmentation-based TSP11]. 

https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/Grid_(electricity)
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In [10], centrality measurement, method of ranking node in a graph, is utilized to 

improve the cyber protection of smart grid networks. The node degree, number of 

links connected to the node, is the simplest definition of centrality. Bordering nodes 

were considered for trust node placement.  

In [11], the impact of latency was considered in selection of trust nodes because trust 

nodes distribute the time critical messages. In [11], the number of segments depends 

on the latency threshold.  

In [12], link coverage and path tolerance deployment schemes were used to protect 

the SCADA networks against the cyber-attacks. Link coverage refers to the number 

of monitored links in a network and path tolerance refers to the maximum number of 

consecutive non-monitoring nodes in a route. As a consequence, the maximum link 

coverage and the least path tolerance were two ideal goals to protect the SCADA 

network against cyber-attack. 

2.2 Description of the Method of Optimal Trust Nodes Placement 

from [1] 

Table 1 describes symbols used in the algorithms, equations and formulas. 

Table 1: Description of symbols [1] 

Symbol Description 

G(V, E) SCADA network graph. It is an undirected graph. 

T(V, 𝐸𝑀𝑆𝑇) MST of a given network G(V, E). 

V Node set of SCADA network. 
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E Link set of the SCADA network. 

N Size of the SCADA network in terms of node, |V|=N.  

𝐸𝑀𝑆𝑇 MST link set of the SCADA network. 

α,β Weighting factors for multiple objectives. 

S Set of network segments. 

K Total number of segments to be created, |S|=k. 

e, s, b Index variables for links, segments and bordering nodes 

respectively. 

𝑒𝑢↔𝑣 Undirected link between node u and v. 

𝑑𝑢
𝑀𝑆𝑇, 𝑑𝑣

𝑀𝑆𝑇 Degrees of node u and v in the MST. 

𝑑𝑚𝑖𝑛
𝑀𝑆𝑇(𝑒𝑢↔𝑣) Minimum degree of the link between node u and node v 

in the MST. 

w(e) Weight of the link e in terms of propagation delay. 

�̃�(𝑒) Normalized weight of the link e with respect to the 

maximum link weight. 

𝑋I(𝑙) Variable set for bordering nodes belonging to the inter-

segment link l. 

𝐿𝑠𝑠′ Set of inter-segment links between segments S, S’. 

B(s) Set of bordering nodes in the segment s. 

Q Total number of trust systems required 

M Number of available trust systems. 

Y Vector for binary decision variables for MST link 

elimination, Y=(𝑦𝑒)(𝑁−1)×1 

X Vector for binary decision variables for trust node 

selection, X=(𝑥𝑠𝑏)∑ |𝐵(𝑠)|×1𝑠∈𝑆
. 

The section has the following structure. Algorithm of sorting (Bubble sort) is 
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considered in Section 2.2.1. Bubble sort will be used for Disjoint-set algorithm in 

Section 2.2.2. Disjoint-set algorithms are considered in section 2.2.2. It will be used 

for initial tree partitioning problem in Section 2.3.1. Kruskal algorithm of minimum 

spanning tree construction is considered in Section 2.2.3. It is necessary for initial 

tree partitioning problem in Section 2.3.1. 

2.2.1 Sorting Algorithms 

As mentioned, segmentation is based on the MST graph and sorting algorithm is the 

main part of the MST graph algorithm. In [13], types of sorting algorithms are 

enlisted. In this section, Bubble sort algorithm [14] will be described. 

Bubble sort algorithm starts at the beginning of the input array, A[0,,n-1] of data to 

be sorted, and compares two neighboring elements. If the first one is greater than the 

second one, it swaps them and continues doing this to the end of the array. Again, 

and again, it starts from the beginning of the array and compares each pair of the 

neighboring elements until there are no swaps. Bubble sort algorithm pseudocode is 

as follows: 

Algorithm 2.1: Pseudocode of bubble sort algorithm [14]. 

Bubble sort 

1. Input: An unsorted array of numbers,  A 

2. Output: The sorted in increasing order array, A 

3. Procedure BubbleSort ( A) 

4.           n=length(A); swapped=true; 

5.           While (swapped ==true) 

6.              swapped=false; 

7.              for i=1 to n-1 do 
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8.                    if A[i-1]>A[i] then  

9.                           swap(A[i-1],A[i]) 

10.                           swapped=true 

11.                    end if 

12.              end for 

13.           end while 

14. end procedure 

The input of the Algorithm 2.1 is the array of numbers that are not sorted, and the 

output is the array of numbers sort from lowest number to greatest number. In Line 4 

the variable n denotes the length of the array. Variable swapped locates in the while 

loop (Lines 5-13) and the initial value of swapped is true. In lines 7-12 if the 

condition in line 8 is true then the greatest value is swapped with the lowest value in 

the pair (Line 9) and then the value of the swapped is changed to true. Lines 7-12 

repeat n-1 times, where n is the length of the array. When the for loop is finished, 

the value of the swapped is false if there were no swaps in the array (Lines 7-12), 

and the while loop terminates (Line 5). After termination of the while loop, the 

numbers in the array are sorted from lowest to the greatest value. An example of the 

bubble sort work is given in Example 1. 

Example 1. Application of Bubblesort to array A[5]= (5,1,4,2,8) 

Input: Array of numbers: A[5]= (5,1,4,2,8) 

n=5, length of the array 

swapped=true; 

(First iteration of while loop) 

swapped=false; i=1; 
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(5, 1, 4, 2, 8) → (1, 5, 4, 2, 8), here, algorithm compares the first two 

elements, and swaps since 5 > 1.  

swapped=true; i=2; 

(1, 5, 4, 2, 8) → (1, 4, 5, 2, 8), swap since 5 > 4 

Swapped=true; i=3; 

(1, 4, 5, 2, 8) → (1, 4, 2, 5, 8), swap since 5 > 2 

Swapped=true; i=4 

(1, 4, 2, 5, 8) → (1, 4, 2, 5, 8), now, since these elements are already in 

order (8 > 5), algorithm does not swap them. 

Loop on I terminates 

(Second iteration of while loop) 

Swapped=false; i=1; 

(1, 4, 2, 5, 8) → (1, 4, 2, 5, 8,) 

i=2; 

(1, 4, 2, 5, 8) → (1, 2, 4, 5, 8), swap since 4 > 2 

Swapped=true; i=3; 

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8) 

i=4; 

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8) 

Now, the array is already sorted, but the algorithm does not know if it is 

completed. The algorithm needs one iteration of while loop 

without any swap to know it is sorted. 

(Third iteration of while loop) 

Swapped=false; i=1; 

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8) 
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i=2; 

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8) 

i=3; 

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8) 

i=4; 

(1, 2, 4, 5, 8) → (1, 2, 4, 5, 8) 

The value of the swapped does not change, hence, the iteration of while 

loop is terminated, and the array is sorted. 

Output: A[5]=(1, 2, 4, 5, 8). 

2.2.2 Disjoint-Set Algorithms 

Before going to describe the Disjoint-set algorithm, some definitions of the graph 

need to be cleared. Figure 5 illustrates an example of small graph. A graph, G, is a 

pair of sets, G(V, E), where V is set of vertices, G.V={1, 2, 3, 4, 5, 6, 7}, E is a set of 

edges, G.E={(1,2), (2,3), (3,5), {4,5}, (5,6), (6,7)}. And edge, e, is a pair of vertices, 

(a, b), that these vertices of the edge are known as end-vertices of the edge. A graph 

in Figure 5 is a weighted graph, each edge has a weight. Weight of the edge is 

denoted by w and the set of edge with weight is denoted by G.E.w={((1,2),4), 

((2,3),10),((3,5),6), ((4,5),3),((5,6),4),((6,7),1)}.  

67

5

432

1

4

3

10

4
6

1

 
Figure 5: An example of graph [1]. 



 15 

The number of vertices defines by |G.V| and the number of edges of the graph, G, 

defines by |G.E|. In Figure 5 the number of vertices is 7, |G.V|=7, and the number of 

edges is 6, |G.E|=6. 

Disjoint-set algorithm [15] is used to find the connected vertices of a graph and 

creates a set of minimum spanning trees of a graph [16]. It plays a key role in 

Kruskal algorithm [17] for finding the minimum spanning trees of a graph. Parent 

pointer and rank value are the attributes of the elements of the disjoint-set forest. If 

the parent pointer of an element does not point to another element, then the element 

is the root of the tree and is the representative member of its set. If the parent pointer 

of the element points to another element, it means that this element belongs to the 

set, tree, and the set is identified the chain of parents upward until a representative 

element is reached at the root of the tree. Figure 6 illustrates an example to show the 

parent pointer. 

 
Figure 6: An example of parent pointer definition in graph. 

In Figure 6, vertices C and F point to themselves. It means that they are the root of 

the trees. The vertex b points to another vertex, it means that this vertex belong to the 

tree, and this vertex is not the root, it points to the vertex c. As a consequence, to find 
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the tree that vertex b is belong to, vertex b follows a chain to up to find the vertex 

that points to itself, root of the tree. In Figure 6, the set of left tree is {b,c,e,h} and the 

set of right tree is {d,f,g}. Another attribute is rank which denotes the depth of the 

tree. For example, both trees in Figure 6 have a rank of 2.  

Disjoint-set algorithm contains three functions [15]. First one is Make-set(x) 

function. The input of the Make-Set(x) is a vertex of the graph. This function creates 

a new set for the input vertex and initialize the attributes of the vertex (parent pointer 

points to itself and the value of the rank is 0). This function locates in a for loop to 

create a new set for all vertices in a graph. Algorithm 2.1 shows the pseudocode of 

the Make-Set function. 

Algorithm 2.2: Pseudo code of the Make-Set function [15]. 

Make-Set 

1. Input: x, vertex of graph. 

2. Output: a set of disjoint-set tree with the initialized attributes. 

3. Function Make-Set (x) 

4. Begin 

5.         x.parent =x; 

6.         x.rank=0;    

7. End 

In Line 5, vertex x points to itself, create a tree that the root of the tree is itself, and 

the rank value in Line 6 is 0 that means the depth of the tree is 0.  As a result, a new 

set for the x is created in the disjoint-set tree and the attributes of the vertex are 

initialized. 
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The second function is Find(x). The input of the Find function is a vertex of the tree. 

The functionality of this function is to determine which set of the disjoint-set tree 

contains a given vertex x. Algorithm 2.3 describes the pseudocode of the Find(x). 

Algorithm 2.3: Pseudo code of the Find(x) function [15]. 

Find 

1. Input: vertex x 

2. Output: root of vertex x.  

3. Function Find(x) 

4. Begin 

5. If x.parent !=x then 

6.     x.parent:=Find(x.parent) 

7. End if 

8. Return x.parent 

The input of the function is a vertex of the graph. If the parent pointer of the vertex x 

doesn’t point to itself (if point to itself, it means this is the root vertex) (Line 5) then 

it goes up the tree till find the root vertex (Line 6). The output is the root of the input 

vertex. Hence, the set of vertex x is identified because each set have only one 

specific root. 

The third function is Union (x, y). This function uses the Find function for vertex x 

and y of the edge (x, y) to find the roots of trees that they belong to them. If the roots 

of vertices x and y are different then the trees are combined by attaching the root of 

one to the root of the other. This union function uses the rank value which means 
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that the shorter tree will be attached to the root of the taller tree. Algorithm 2.7 shows 

the pseudocode of the Union (x, y) algorithm. 

Algorithm 2.4: Pseudo code of the Union function [15]. 

Union 

1. Input: Edge of the graph  

2. Output: Updating the structure of trees 

3. Function Union(x, y) 

4. Begin 

5.   xRoot:=Find(x) 

6.   yRoot:=Find(y) 

7.   If    xRoot == yRoot then 

8.           Return 

9.   End If 

10.   If   xRoot.rank < yRoot.rank then 

11.            xRoot, yRoot:=yRoot, xRoot. //swap xRoot and yRoot 

12.   yRoot.parent := xRoot 

13. End If 

14.   If    xRoot.rank==yRoot.rank then 

15.             xRoot.rank:= xRoot.rank+1 

16. End If 

17. End 

Lines (5-6) use Find function to find the root of trees (xRoot and yRoot) that vertices 

x and y are belong to them. If the roots of trees are same, then vertex x and y are in a 

same set. If the roots of vertex x and y are different and the rank value of the vertex 
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x is lower than the rank value of the vertex y then the value of the ranks for the 

vertex x and y will be swapped (Lines 10-13). If their rank value of x and y are same 

then, the rank value of the vertex x will be increase by 1 unit (Lines 14-16). 

Algorithm 2.5 shows the pseudocode of Disjoint-set algorithm. 

Algorithm 2.5: Pseudocode of Disjoint-set algorithm. 

Disjoint-set 

1. Input: Edges of the Graph, G, and N number of vertices in the graph, 

|G.V|  

2. Output: Collection of disjoint sets 

3. Function Disjoint-set(G.E, N) 

4. Begin 

5. N=|G.V|; 

6.        For i=1 to N| do 

7.               Make-Set(Vi); 

8.        End For 

9.        For j=1 to |G.E| do 

10.              X=Find(Ej. e1)// first vertex of the edge Ej; 

11.              Y=Find(Ej. e2)// second vertex of the edge Ej;  

12.              Union(X,Y) 

13.         End For 

14. End 

The input of the Disjoint-set algorithm is a graph and the output is the set of trees. 

Lines 6-7 executes the Make-Set function for each vertex of the graph, Vi, where V 
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is the vertex and the index i denotes the vertex number from the set of the vertex of 

the graph, G.V={V1,V2,…..,VN} and N is the number of vertexes in a graph, 

N=|G.V| . Lines 8-12 is a for loop to check all the edges of the graph. In Lines 10-11 

the Find function is called to find the parent of the endpoints of the edge, 

(Ej.e1,Ej.e2), and store in variables X and Y. in Line 12 the function Union(X, Y) is 

called to find the roots of the trees. Figure 7 shows the four connected partitions of a 

graph that is used as an input for Disjoint-set algorithm. An example of Disjoint-set 

work is given in Example 2.  

 
Figure 7: Four connected components of a graph [15]. 

Example 2: Application of Disjoint-set to the graph G; 

Input: Four connected graph G(V,E): G.V={a,b,c,d,e,f,g,h,I,j}, 

G.E={(a,b),(a,c),(c,b), (b,d),(e,f),(e,g),(h,i)}, |G.v|=10, Number of vertices, 

|G.E|=7, Number of edges. 

Starting the first loop to create the sets for each vertex in given graph 

i=1; 

Make-Set(a)={a}, here Make-Set algorithm create a set for vertex a. 

i=2; 

Make-Set(b)={b}, here Make-Set algorithm create a set for vertex b. 

i=3; 

Make-Set(c)={c}, here Make-Set algorithm create a set for vertex c. 

i=4; 

Make-Set(d)={d}, here Make-Set algorithm create a set for vertex d. 
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i=5; 

Make-Set(e)={e}, here Make-Set algorithm create a set for vertex e. 

i=6; 

Make-Set(f)={f}, here Make-Set algorithm create a set for vertex f. 

i=7; 

Make-Set(g)={g}, here Make-Set algorithm create a set for vertex g. 

i=8; 

Make-Set(h)={h}, here Make-Set algorithm create a set for vertex h. 

i=9; 

Make-Set(i)={i}, here Make-Set algorithm create a set for vertex i. 

i=10; 

Make-Set(j)={j}, here Make-Set algorithm create a set for vertex j. 

The first for loop is finished. 

Starting the second for loop. This loop iterates for the size of the edge, 

|G.E|=7. 

j=1; 

X=Find(a); //X={a}; 

Y=Find(b);// Y={b}; 

Union(a,b);// sets {a},{b} are combined and create one set, {a,b}; 

j=2; 

X=Find(a); //X={a,b}; 

Y=Find(c);// Y={c}; 

Union(a,c);// sets {a,b},{c} are combined and create one set, {a,b,c}; 

j=3; 

X=Find(c); //X={a,b,c}; 
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Y=Find(b);// Y={a,b,c}; 

Union(c,b);// they are in same set; 

j=4; 

X=Find(b); //X={a,b,c}; 

Y=Find(d);// Y={d}; 

Union(b,d);// sets {a,b,c},{d} are combined and create one set, {a,b,c,d}; 

j=5; 

X=Find(e); //X={e}; 

Y=Find(f);// Y={f}; 

Union(e,f);// sets {e},{f} are combined and create one set, {e,f}; 

j=6; 

X=Find(e); //X={e,f}; 

Y=Find(g);// Y={g}; 

Union(e,g);// sets {e,f},{g} are combined and create one set, {e,f,g}; 

j=7; 

X=Find(h); //X={h}; 

Y=Find(i);// Y={i}; 

Union(h,i);// sets {h},{i} are combined and create one set, {h,i}; 

End of second for loop; 

Output: {a,b,c,d}, {e,f,g}, {h,i}; 

2.2.3 Kruskal Algorithm of MST Construction 

Given a weighted graph, MST is a graph connecting all the vertices of the graph 

without any cycle between the vertices and also with minimum possible edge weight 

[16]. In [17], the Kruskal algorithm is used to obtain the MST graph. Pseudocode 

below presents the Kruskal algorithm. 
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Algorithm 2.6: Pseudo code of Kruskal algorithm [17]. 

MST-Kruskal (G(V,E))  

1. Input: An undirected graph having vertices, G.V={V1,V2,….,VN}, 

and edges, G,E, with weights G.E.w for each e from 

G.E={G.E1,G.E2…..G.EM}. 

2. Output: An undirected graph without any cycle between vertices 

(Minimum Spanning Tree). 

3. A=∅; // A is a minimum spanning tree; N=|G.V|;// Number of vertices 

4. For i=1 to N do 

5.      Make-Set(Vi); 

6. End For 

7. BubbleSort(G.E.w); //Sort the edges of G.E into non-decreasing order 

by weight w; 

8. For j=1 to |G.E| do// |G.E| denotes the number of edges in graph,G;   

9. If Find-Set(Ej.e1) ≠ Find-Set(Ej.e2) // Ej denotes the edge in graph in 

position j; e1 and e2 are endpoints of the edge 

10.           A=A ∪ {G.Ej}; 

11.           Union (u, v); 

12. Return A; 

13. End If 

14. End For 

Input of the Kruskal algorithm is an undirected graph and the output is a minimum 

spanning tree. Line 3 initialize an empty set of minimum spanning tree and N, is the 

number of vertices. In line 5, Make-set, Algorithm 2.2, function creates a set of 



 24 

trees. In this set, all vertices in the input graph is a separate tree. Line 7 executes the 

BubbleSort function, Algorithm 2.1, to sort the set of edge into increasing order by 

weight of the edge. In line 8, first element from the set of the edge is selected. The 

functionality of Find-Set(u) and Find-Set(v) is to find the set of trees that contain 

vertices u and v of the edge (u, v), Algorithm 2.3. If selected edge connects two 

different trees (Line 9), their parents are different, then adds this edge to the 

minimum spanning tree set A (Line 10). In Line 10, union (u, v) combines two trees 

that contain vertices u and v. Line 12 returns the minimum spanning tree of the input 

graph. 

(a) 
 

(b) 
 

(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8: An illustrative example of Kruskal algorithm. a) edge AD removed from 

input graph and added to minimum spanning tree. b) edge CE removed and added to 

minimum spanning tree .c) edge DF removed and added to minimum spanning tree. 

d)edge AB added to minimum spanning tree, edge BD form a cycle. e) edge BE 

added to MST. f) last edge EG is removed from input graph and added to MST [17]. 

Figure 8(a) shows the input graph. The edge AD with minimum weight is selected to 

remove from input graph and add to the minimum spanning tree (MST), it is shown 
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by the green line. In Figure 8(b), the next edge CE with minimum weight is removed 

from the input graph and added to the MST. Figure 8(c) shows the next selected edge 

AB. Edge BD cannot be added to the MST because it forms a cycle ADB. The edges 

with red line demonstrate the cycle, hence, they cannot be added to MST. Finally, the 

MST is shown by green line in Figure 8(f). An example of MST-Kruskal work is 

given in Example 3. 

Example 2: Application of MST-Kruskal to the graph G; 

Input: Graph G.// G.V={A,B,C,D,E,F,G}; 

G.E.w={((A,B),7),((B,C),8),((A,D),5),((B,D),9),((B,E),7),((C,E),5),((D,E),1

5),((D,F),6),((F,G),11),((E,F),8),((E,G),9)}; N=|G.V|=7, number of vertices; 

|G.E|=11 is number of edges 

Starting the first for loop to create the sets for each vertex in given graph 

i=1; 

Make-Set(A)={A}, here Make-Set algorithm create a set for vertex A. 

i=2; 

Make-Set(B)={B}, here Make-Set algorithm create a set for vertex B. 

i=3; 

Make-Set(C)={C}, here Make-Set algorithm create a set for vertex C. 

i=4; 

Make-Set(D)={D}, here Make-Set algorithm create a set for vertex D. 

i=5; 

Make-Set(E)={E}, here Make-Set algorithm create a set for vertex E. 

i=6; 

Make-Set(F)={F}, here Make-Set algorithm create a set for vertex F. 
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i=7; 

Make-Set(G)={G}, here Make-Set algorithm create a set for vertex G. 

End of first for loop  

BubbleSort(G.E.w)={((A,D),5),((C,E),5),((D,F),6),((A,B),7),((B,E),7),((B,C

),8),((E,F),8),((B,D),9),((E,G),9),((F,G),11),((E,D),15)} 

Starting of second for loop// it iterates 11 times for the edges of the graph G 

j=1; 

Find(A)≠Find(D) 

A.E.w={((A,D),5)} 

Union(A,D);// sets {A} and {D} are combined,{A,D}; 

j=2; 

Find(C)≠Find(E) 

A.E.w={((A,D),5),((C,E),5)} 

Union(C,E);// sets {C} and {E} are combined,{C,E}; 

j=3; 

Find(D)≠Find(F) 

A.E.w={((A,D),5), ((C,E),5), ((D,F),6)} 

Union(D,F);// sets {A,D} and {F} are combined,{A,D,F}; 

j=4; 

Find(A)≠Find(B) 

A.E.w={((A,D),5), ((C,E),5), ((D,F),6), ((A,B),7)} 

Union(A,B);// sets {A,D,F} and {B} are combined,{A,D,F,B}; 

j=5; 

Find(B)≠Find(E) 

A.E.w={((A,D),5) , ((C,E),5), ((D,F),6), ((A,B),7),((B,E),7)} 
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Union(B,E);// sets {A,D,F,B} and {C,E} are combined,{A,B,C,D,E,F}; 

j=6; 

Find(B)=Find(C)// they are in same set, and cannot be added to A because 

they make a cycle 

j=7; 

Find(E)=Find(F)// they are in same set, and cannot be added to A because 

they make cycle 

j=8; 

Find(B)=Find(D)// they are in same set, and cannot be added to A because 

they make cycle 

j=9; 

Find(E)≠Find(G) 

A.E.w={((A,D),5),((C,E),5), ((D,F),6), ((A,B),7),((B,E),7), ((E,G),9)} 

Union(E,G);// sets {A,B,C,D,E,F} and {G} are combined,{A,B,C,D,E,F,G}; 

j=10; 

Find(F)=Find(G) // they are in same set, and cannot be added to A because 

they make cycle 

j=11; 

Find(E)=Find(D) // they are in same set, and cannot be added to A because 

they make cycle 

Output: A={((A,D),5),((C,E),5), ((D,F),6), ((A,B),7),((B,E),7), ((E,G),9)} 

2.2.4 Linear Programming Problem (LPP) in General 

Linear programming is a method to achieve the best outcome (such as maximum 

profit or lowest cost) with the special conditions and with certain restrictions. Linear 

programming is a special case of mathematical programming (also known as the 
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mathematical optimization). In [18,19], linear programming problem is discussed. In 

our application, we used Matlab program to solve the LPP. Linear programming 

problem can be expressed as below. 

optimize
x

 . CT x         (2.1) 

subject to 

a11x1 + a12x2 + ⋯ +  a1nxn< b1 

a21x1 + a22x2 + ⋯ + a2nxn< b2 

  . 

.                                                        (2.2)  

  . 

am1x1 + am2x2 + ⋯ . . + amnxn< bm 

 

𝑥𝑖 ∈ {0,1}                                                           (2.3) 

where x is the vector of variables, the value of the variable must be 0 or 1, that must 

be determined, C and b are vectors of (known) coefficients, and (. )𝑇 is the matrix 

transpose,  and A is an m×n matrix of real numbers, a. (2.1) is called objective 

function that can be minimized or maximized. The inequalities (2.2) and (2.3) are the 

constraints which specify a convex polytope over which the objective function, f(x), 

is to be optimized. The output of the linear programming problem is a vector, x, that 

optimize, minimize or maximize, the given objective function, f(x). 

2.3 Definition of Optimal TSP Problem as LPP 

In [1], an electric power grid system is considered as an undirected graph, in which 

nodes correspond to power grid buses, generator or load, and links correspond to the 

power grid branches, transformer or transmission lines, and the weight of the links 

denotes the propagation delay or distance between two endpoints of the link. Figure 

9 shows an example of a power grid system with 9 power grid buses and 12 power 
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grid branches. 

 
Figure 9: A graph G(V,E) of power grid system. with G,V={V1...V9} power grid 

buses (nodes) and G.E={G.E1,..,G.E12} power grid branches (links) [1]. Each edge 

has weight, propagation delay between two endpoints of the link or distance between 

them, marking it, e.g., w(G.E1(v1,v2))=4.  

The definition of optimal TSP problem is divided into 3 parts presented in Sections 

2.3.1-2.3.3. Section 2.3.1 presents a problem of segmentation to initialize the 

partitions, Section 2.3.2 presents a problem of local search to update the partitions 

optimally, and Section 2.3.3 describes the problem of optimal trust node selection 

from the bordering nodes of the partitions.  

Figures 10-14 illustrate the results of the initial tree partitioning, ideal segmentation, 

and trust node selection problems solving for SCADA network from Figure 9.   

2.3.1 Definition of Initial Tree Partitioning Problem (Segmentation) 

As I mentioned in the introduction, SCADA networks are distributed geographically, 

the distance between nodes in SCADA networks maybe hundreds or thousands of 

miles. The initial tree partitioning problem (Segmentation) is used to divide the 

SCADA networks to segments. MST is the main part of the segmentation. The MST 

of a SCADA network is obtained by the Kruskal algorithm, Algorithm 2.6. The 

partitions of the SCADA networks include the nodes that the distance between them 

is minimal because partitions are in MST form.   
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Linear programing problem (LPP1) is used to construct the primary partitions by 

removing links from the SCADA network, G(V,E). By removing K-1 links from the 

SCADA network, this network will be divided into K segments. The MST of the 

SCADA network contains N-1 links, where N denotes the quantity of SCADA 

nodes, |G.V|. Totally, N-K edges must be left from the SCADA network to achieve 

the K partitions. 

LPP1 is initial tree partitioning that eliminates K-1 MST links to obtain segments 

regarding their normalized weights and lowest degrees. Node’s degree is the number 

of links connected to that node. Leaf nodes degree is one. The minimum degree of 

the link is defined as follows [1]: 

dmin
MST(eu↔v) = min(du

MST, dv
MST)  ,                               (2.4) 

where 𝑑𝑢
𝑀𝑆𝑇 is the degree of the node u, that is, the number of links that are 

connected to the node u. In (2.4), the lowest degree of the edge of the MST graph is 

obtained by selecting the minimum degree of the nodes that are connected to that 

link. Figure 10 depicts by rectangles the minimum degree of the links of the SCADA 

network in Figure 9.   
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Figure 10: Minimum spanning tree of SCADA network of figure 9 [1]. 

In LPP1, two weighting factors (α, β) are normally set to α=1 and β=0.5. Normalized 

weight (2.7), sets the weight of the links in a same range when they are not in the 

same range. For example, in Figure 10 the link (7, 8) has the maximum value in the 

MST SCADA network and it is equal to 17. To obtain the normalized weights, 

weights of all the links are divided by 17. The normalized weight of link (1, 2) is 

equal to 
4

17
= 0.2352. The decision variable in LPP1 is, Y=(𝑦𝑒)(𝑁−1)×1, such that 

[1]: 

ye = {
1,
0,

             if e∈EMST is selected for elimination;
otherwise.                                             

  (2.5) 

Initial tree partitioning problem (LPP1) is described as follows [1]: 

max
Y

∑ (αdmin
MST(e) + βw̃(e)) ye   ,e∈EMST            (2.6) 

where 

w̃(e) =
w(e)

max
e∈E

 w(e)
, ∀e ∈ E     ,     (2.7) 

subject to 
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  ∑ yee∈EMST = K − 1       ,             (2.8) 

                 ye − dmin
MST(e) < 0, ∀e ∈ EMST       ,                              (2.9) 

                 ye ∈ {0,1},    ∀e ∈ EMST         ,                                (2.10) 

The objective function is presented in (2.6) and the normalization weight is defined 

in (2.7). Constraint (2.8) is the quantity of the links that must be removed, and this is 

equal to K-1 which means that if the quantity of segments K is equal to 3 the number 

of eliminated links shall be equal to 2. Constraint (2.9) ensures that each segment has 

at least two nodes that are connected. Algorithm 2.7 gives the pseudo code of the 

initial tree partitioning problem [1]. 

Algorithm 2.7: Pseudocode of initial tree partitioning (segmentation) 

algorithm [1]. 

Initial tree partitioning 

Input: G (V, E), SCADA network, with weights, G.E.w; K, number of 

target segments; 

Output: S= {s1, s2, s3, …, sK}, K segments obtained; 

1. Begin 

2. Ess = ∅, N = |G. V|, ks = ⌈
N

K
⌉ ; // N is number of nodes in graph G; Ess 

is the set of links left after eliminating N-K links; ks is a limitation 

variable that the size of segments must not exceed from this variable. 

3. T(V, EMST) ← MST − 𝐊𝐫𝐮𝐬𝐤𝐚𝐥(G(V, E)); // MST graph, T, is 

calculated by the Algorithm 2.6. 

4. For all e∈ EMST  do 
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5.   Calculate the lowest degree dmin
MST(e) by (2,4); 

6.   Calculate the normalized weight w̃(e) by (2.7); 

7. End for 

8. EI ←

𝐋𝐏𝐏𝟏(𝐢𝐧𝐩𝐮𝐭𝐬: objective function, (2.6), and the constraints, (2.8) −

(2.10);           𝐎𝐮𝐭𝐩𝐮𝐭: the vectore Y that maximize the objective function)) 

(2.5)-(2.10);  // EI, vector Y, is the set of links that need to be 

eliminated. LPP1 will choose the (K-1) edges that shall be removed to 

make the primary tree partition. 

9. ESS = {EMST\EI}; // Remove EIfrom the links of MST and store the 

remain links in ESS. Size of ESS is N-K.  

10. 𝐫𝐞𝐭𝐮𝐫𝐧 S = {s1, s2, … . , sK} ← 𝐃𝐢𝐬𝐣𝐨𝐢𝐧𝐭 − 𝐬𝐞𝐭(𝐄𝐒𝐒, 𝐍);   //initial 

partition set defined by using Disjoint-set algorithm, Algorithm 2.5. 

Inputs of Disjoint-set algorithm are edges, ESS, and number of nodes 

in the graph G, N.  

The input of the Algorithm 2.7 is the graph G (V, E) which G.V and G.E, vertices 

and edges of G, and G.E.w, weights of the edges, G.E, and the number of segments, 

K. The output of the Algorithm 2.7 is the set of the segments. Line 2 is the 

initialization part and the set of the links left after elimination (𝐸𝑠𝑠) by the LPP1 is 

empty, number of nodes (N) set to the number of nodes in the input graph and 

variable 𝑘𝑠 = ⌈
𝑁

𝐾
⌉. In fact, the variable 𝑘𝑠 is the limitation variable and it means that 

the number of nodes in segments must not exceed this value. In line 3, the minimum 

spanning tree, T(V, 𝐸𝑀𝑆𝑇) is computed by the Kruskal algorithm. The input of the 

Kruskal algorithm is the original graph, G (V, E), and edges weights, and the output 
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of the Kruskal algorithm is the MST graph, T(V, 𝐸𝑀𝑆𝑇). The number of links in the 

MST is equal to N-1. Lines 4-6 compute the minimum degree and normalized weight 

for all links in the MST. K-1 links are eliminated by the LPP1 in line 8 and the set of 

the eliminated links of the MST is returned, 𝐸𝐼, by the LPP1. In line 9, the remaining 

set of links after elimination are placed in 𝐸𝑠𝑠, set of links after elimination. Line 10 

returns the initial set of segments. Disjoint-set algorithm, Algorithm 2.5, identifies 

the segments. The inputs of the Disjoint-Set algorithm are set of edges and number of 

nodes in the graph, G, and the output is the collection of disjoint sets, S. Figure 11 

illustrates the primary segments that obtained by the Algorithm 2.7. 

 
Figure 11: Links eliminations and segments identification [1]. 

The inputs of the initial tree partitioning algorithm, Algorithm 2.7, are the weighted 

graph, G, in Figure 9 and the number of target segments, K, which is 3. The variables 

𝐸𝑠𝑠, set of remain links after eliminating the links, number of nodes, N=|G.V|=9, and 

𝑘𝑠 = 3, limitation variable, are initialized. In line 3 the MST, T, is obtained by the 

MST-Kruskal algorithm. The MST is represented by Figure 10. Lines 4-7 compute 

the minimum degree of the links (2.4) and normalized the weight of the MST links 

(2.7). Figure 10 represents the minimum degree of the links. By solving the linear 



 35 

programming problem 1, LPP1, the number of links that must be eliminated is 

returned and stored in  𝐸𝐼, 𝐸𝐼 = {(2,3), (6,7)} ,. The input of LPP1 are objective 

function and the constraints (2.6)- (2.10). the output is the vector Y that the decision 

variable is denoted in (2.5). In line 9,  set of the elimination links, 𝐸𝐼, is removed 

from the set of the MST links, 𝐸𝑀𝑆𝑇 , and the remain links of the MST are stored in 

𝐸𝑆𝑆, 𝐸𝑆𝑆 = {((1,2), 4), ((3,6), 6), ((6,4), 3)((4,5), 2), ((9,7), 1)((7,8), 17)}. The 

set of 3 segments, S={s1,s2,s3}, is returned by Disjoint-Set algorithm, S= 

{{1,2},{3,4,5,6,},{7,8,9}}, Line 10. 

2.3.2 Definition of Ideal Segmentation Problem 

The objective of ideal segmentation problem is to reduce the sum of the minimum 

spanning tree weights of all partitions in SCADA networks and it is acquired when 

the MST weight of any partition is minimized. Ideal segmentation problem is 

described as follows [1]:   

min
S

∑ τs
mst  

s∈S  ,                (2.11) 

where 

τs
mst = ∑ w(es)eϵMSTs , ∀s ∈ S      ,    (2.12) 

subject to 

                ⋃ Vs
s∈S = V ,     (2.13) 

              Vs ∩  Vs′
= ∅, ∀s ≠ s′  and s, s′  ∈ S ,       (2.14) 

      |Vs| ≤ ⌈
N

K
⌉  ,                                         (2.15) 

where V is set of the SCADA nodes, S is set of the segments; for each segment , 

s ∈ S, τs
mst is the MST’s weight of the segment s and Vs is the set of segment’s 

nodes, MSTs is the minimum spanning tree in segment s and w(es)denotes the link’s 
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weight in segment s. Expression (2.11) is the objective function that minimizes the 

sum of the weights of the MST graph in the segments. Equation (2.12) defines the 

sum of the weights of the MST graph in the segment s. Constraint (2.13) ensures that 

the entire network is segmented, i.e. the union of all segments returns the whole 

network. Constraint (2.14) shows that intersection of any two segments is empty, in 

other words, it shows that each node belongs to only one segment. Constraint (2.15) 

limits the number of nodes for one segment. Algorithm 2.8 describes the local search 

algorithm to provide the ideal segments size. 

Algorithm 2.8: Pseudo code of local search algorithm. 

Local search 

Input: G(V, E), K, S   // G is the original graph, K is number of target 

segments and S is the set of segments that returns by the Algorithm 2.7; 

Output: Set of segment sets after repartitioning; 

15. Begin 

16.  Phi=0, N=|G.V|, ks=⌈
N

K
⌉ ; ∆min =∅//initialization 

17.  𝐰𝐡𝐢𝐥𝐞   phi < 1 do 

18.   Count=0; 

19.   For i=1 to K do 

20.     For j=1 to K do 

21.        If |si>ks and |sj |<ks then 

22. ∆min=Find∆min(𝐬𝐢, 𝐬𝐢, 𝐓) // The inputs of the Find∆min 

algorithm,    Algorithm 2.9, are oversized segment, 𝐬𝐢, and 

undersized segment, 𝐬𝐣, and MST graph, T, the output is the 
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minimum sub-segment, ∆min, belonging to si that is adjacent to 

sj.      

23. If ((|ks − |si||) + (|ks − |sj||) > ((|ks − |si| + |∆min||) +

(|ks −                       |sj| − |∆min||)) then 

24. si = {si\∆min} and sj = {sj ∪ ∆min};// Updates the MST 

partitions 

 count=count+1;// It checks for balancing segment sizes 

25.           End if 

26.        End if 

27.     End for //j 

28.   End for  //i 

29.   If (count==0) then 

30.      Phi=1;//termination condition 

31.   End if 

32.  End while 

33.  Return s={s1,s2,…., sK} 

34. End  

The inputs of the Algorithm 2.9 are complete graph of the SCADA network, G(V,E), 

number of segments, K, and the set of segment sets, S. Output contains updated 

segment set. In line 2 the value of 𝑘𝑠, 𝑘𝑠=⌈
𝑁

𝐾
⌉, is the limitation variable, ideal 

segmentation size (2.15), and it means that the number of nodes in segments must 

not exceed this value. The variable phi is set to zero, this variable is used by the 

while loop (Lines 3-20) implementing the local search. This loop searches for the 

oversized, 𝑠𝑖, (|𝑠𝑖| > 𝑘𝑠) and the undersized, 𝑠𝑗, (|𝑠𝑗| < 𝑘𝑠) segments, and for each 
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pair of oversized and undersized segments that are adjacent, computes sub set, ∆min, 

of the oversized segment, Algorithm 2.9, (Line 9). Line 10 checks that the sum of 

sizes of oversized and undersized segments after updating (removing the subset, 

computed by ∆min algorithm, from the oversized segment, 𝑠𝑖, and adding this subset 

to the undersized segment, 𝑠𝑗) is less than it was originally. If the condition in line 10 

is true, then the ∆min set is removed from the oversized segment and added to the 

undersized segment (Line 11). ∆min is computed in algorithm 2.9. This loop will be 

finished when the adjacent oversized and undersized segments are not exist, after that 

the value of the counting variable sets to one (phi=1). Line 20 returns the segment 

set. 

Algorithm 2.9: Pseudo code of ∆min finding algorithm. 

Find ∆min 

Input: si, sj and T(V, EMST),// si is the oversized segment set, sjis the 

undersized segment set, T is the minimum spanning tree; 

Output: Collection of nodes of the oversized segment; 

1. Begin numbered list? 

2. If{e(u,v)|u ∈ si, v ∈ sj}∩ EMST = ∅ then// Edge e is the adjacent 

edge between oversized segment, si, and undersized segment, sj, 

and endpoint u of edge e is a node that belongs to oversized 

segment and endpoint v of edge e is a node that belong to 

undersized segment,  

3.     ∆min=∅; 

4.   Else 

5.     δsize = ∅, δset = ∅ , n=0;//Initialization 
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6.     EPsi = ⋃ {e(a, b)|e(a, b) ∈ EMST}a,b∈si
 

7.     For all e∈ EPsi do 

8. EPsi = {EPsi\e(u, z)};  //Cutting the edge e(u,z) where endpoint u 

of edge  e is a node that connected to undersized segment by the 

edge e(u,v) in line 2 and endpoint z of node e is the other endpoint 

of the edges belong to oversized segment. 

9. {∆u, ∆z} ← 𝐃𝐢𝐬𝐣𝐨𝐢𝐧𝐭 − 𝐬𝐞𝐭(𝐄Psi, |𝐓. 𝐕|);// After cutting the edge 

u two segments ∆u and ∆z are obtained by the Disjoint-Set 

algorithm. One segment having node adjacent node, u, that is 

called ∆u the other one is ∆z that is not used. 

10.       n=n+1; 

11.       δset(n) = ∆u; 

12.       δsize(n) = |∆u|; 

13.       EPsi = {EPsi ⋃ eu↔z};//Restoring 

14.     End for 

15.     n*=arg minn δsize(n); 

16.     ∆min=δset(n ∗); 

17.   End if 

18.   Return ∆min 

19. End  

Algorithm 2.9 is utilized to calculate ∆min subset for the oversized segment in 

algorithm 2.8. The inputs of the Algorithm 2.9 are oversized segment, 𝑠𝑖  , and 

undersized segment, 𝑠𝑗, and the minimum spanning tree, T. Line 2 checks the 

neighboring of the segments. If they are not neighbor, the ∆min set is empty. If the 
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segments are neighbor, these segments are connected by a link, line 5 initializes the 

size of segment set, 𝛿𝑠𝑖𝑧𝑒, and the segment set , 𝛿𝑠𝑒𝑡, and the variable n. Line 6 

returns the set 𝐸𝑃𝑠𝑖of links belonging to oversized segment, 𝑠𝑖.  The link that 

contains node the adjacent node, u, and this node belongs to the oversized segment 

cuts from the 𝐸𝑃𝑠𝑖  set (Line 8). After cutting, the oversized segment is divided into 

two segments. Disjoint-set function, Algorithm 2.5, returns these segments (Line 9). 

One of these sub segments contains adjacent node, u. This segment is qualified for 

segment modification. The sets 𝛿𝑠𝑖𝑧𝑒 and 𝛿𝑠𝑒𝑡 are updated (Lines 11-12). This loop is 

continued for all links of the 𝐸𝑃𝑠𝑖  that contains adjacent node, u. Line 15 returns the 

minimum size of 𝛿𝑠𝑖𝑧𝑒. Finally, in line 16 the corresponding node set ∆min is 

computed. Figure 12 illustrates the updated segment obtained by Algorithm 2.9.  

 
Figure 12: Updated segments of figure 11 obtained by algorithm 2.8 [1]. 

The node 3 in Figure 11 which is located in the oversized segment, {3,4,5,6} is 

shown by green color in Figure 11, is identified by the Algorithm 2.9. The inputs of 

Algorithm 2.9 are oversized segment, {3,4,5,6}, and undersized segment, {1,2}, and 

minimum spanning tree, T, the adjacent link is e (3,6) and the adjacent node is u=3. 

In line 6 the set of links belongs to oversized segment is initialized, 𝐸𝑝𝑠𝑖 =

{(3,6), (6,4), (4,5)}. The link (3,6) is the only link that contains adjacent node, 3, 
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from 𝐸𝑝𝑠𝑖  as a consequence, the for loop in Line 7 iterates only one time. In Line 8 

the link (3,6) is cut from the 𝐸𝑝𝑠𝑖  set and in line 9 two segments are returns by the 

Disjoint-set algorithm, Algorithm 2.5, these set are {3}and {4,5,6}. The set that 

contains the adjacent node, {3}, is returned by the Find ∆min algorithm. This node is 

adjacent to the undersized segment, {1,2} shown by blue color in Figure 11. 

Algorithm 2.8 receives the ∆min set, {3}, from the Algorithm 2.9 and then checks 

the balancing condition in Line 10. In Line 11, node 3 is removed from oversized 

segment and added to undersized segment. The output of the Algorithm 2.8 is the 

updated set of segments, S= {{1,2,3},{4,5,6},{7,8,9}}.  

2.3.3 Definition of Optimal TSP Problem 

After the segments are initialized by the Algorithm 2.7 using LPP1, and repartitioned 

by the Algorithms 2.8, 2.9 solving ideal segmentation problem, the optimal trust 

nodes must be selected. The LPP2 is the optimal trust node computation problem that 

is described by (2.16)-(2.19) [1]: 

min
X

∑ ∑ xsbb∈B(s)  s∈S       (2.16) 

subject to 

∑ xI ≥ 1xI∈XI(l) , ∀ l ∈ Lsś;  ∀s, s′ ∈ S ,       (2.17) 

 xsb ∈ {0,1},   ∀s ∈ S and ∀b ∈ B(s),       (2.18) 

where 

XI(l) = {xsb, xs′b′}, b ∈ B(s), b′ ∈ B(s′), s ≠ s′, l = (b, b′),  (2.19) 

where B(s) denotes the collection of bordering vertexes, 𝐿𝑠�́� denotes the set of inter-

segment links between segment s and 𝑠′, and 𝑋𝐼(𝑙) is the parameter set for bordering 

vertexes relevant to the inter-segment link, 𝑙.The output of the LPP2 is the quantity 
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of trust nodes that the system needs to be protected against the attacks. The decision 

binary variable is 𝑋 = (𝑥𝑠𝑏)∑ |𝐵(𝑠)|×1𝑠∈𝑆  , where b∈B(s), 

xsb = {
1,
0,

                                   if b∈B(s)is selected,   s∈S;
otherwise

    .            (2.20) 

The objective function is given in (2.16) and inequality (2.17) ensures that all inter-

segment links are covered by at least one trust system. 

Algorithm 2.10: Pseudo code of trust node selection algorithm. 

Optimal trust nodes placement algorithm 

Input: S= {s1, s2, ….., sK}, G (V, E) 

Output: VTrust; 

1. Begin 

2.   For all s∈ S  do 

3.      B(s)=∅;//Initialize bordering node sets 

4.   End for 

5.   For all s≠s’ and s,s’∈ S do 

6.      Lss′ = ∅;//Initialize inter-segment link sets 

7.   End for 

8.   For all e(u,v)∈ E do 

9.     Find the segment x having node u; 

10.     Find the segment y having node v; 

11.     If  x≠y then 

12. Lxy = {Lxy ∪ e}; // Updating inter-segment link set by adding link 

e(u,v); 
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13.        B(x) = {B(x) ∪ u}; // adding node u to bordering node set x; 

14.        B(y) = {B(y) ∪ v}; // adding node v to bordering node set y; 

15.     𝐞𝐧𝐝 𝐢𝐟 

16.   End for 

17. VTrust ←

Solve LPP2(inputs: the objective function and constraints (2.16) −

(2.19), outputs: The vector X for binary decision variables )//This 

will select the trust node set 

18.   Return VTrust 

19. End 

Algorithm 2.10 is used to identify the bordering nodes and select the trust nodes. The 

input of the algorithm 2.10 is a set of segments S which is the output of the algorithm 

2.8 and the original graph. G (V, E). The output of the algorithm 2.10 is the selected 

trust nodes. Lines 2-7 are the initialization part of the algorithm. In this part the set of 

bordering nodes, B(s), per segment is initialized (Lines 2-4). For each pair of 

segments, the inter-segment link set, 𝐿𝑠𝑠′, is initialized in Lines 5-7. For all links, 

e(u,v), in original graph, the segment, x, is identified that contains node u of the link 

e(u,v) and segment y is identified that contains node v of the link e(u,v) (Lines 9-10). 

If these segments are different, this link is known as an inter-segment link. Lines (12-

14) update the bordering node set and inter-segment link sets. By using LPP2 the 

trust nodes are selected (Line 17).  Figure 13 illustrates the intersegment links. These 

links are shown by the dotted line in Figure 13. 
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Figure 13: Identifying inter-segment links and bordering nodes [1]. 

Figure 13 illustrates the inter-segment links set, Algorithm 2.10 identifies the sets of 

the inter-segment links, Lss’, and the set of bordering nodes, B(s), as follows: 

Ls1s2 = {(3,4), (3,6)} and Ls1s3 = {(1,9), (2,9), (3,7)} and Ls2s3 = {(6,7)}. 

B(s1)={1,2,3}, B(s2)={4,6}, B(s3)={7,9}. 

After initializing the bordering node sets and inter-segment links, the trust nodes, 

𝑉𝑇𝑟𝑢𝑠𝑡, are obtained by the LPP2 in line 17. The inputs of the LPP2 are the objective 

function (2.16) and the constraints (2.16)- (2.19). The output is the vector X, 𝑋 =

(𝑥𝑠𝑏)∑ |𝐵(𝑠)|×1𝑠∈𝑆  , where b∈B(s). The selected trust nodes in Figure 14 are 3, 7 and 9. 

 
Figure 14: Finding trust nodes by algorithm 2.10[1]. 
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Figure 15 depicts the flowchart of the optimal TSP problem solution algorithm. This 

flowchart has 5 blocks except starting and ending blocks. In block 1, SCADA 

network graph. G (V, E), and number of segments, K, are inputs of the Algorithm 

2.7. In block 2, primary segments are computed by the Algorithm 2.7 (Segmentation 

problem); the output of the Algorithm 2.7 is the set of segments, S, and this is used 

as an input for the Algorithm 2.8 in block 3. Block 3 is about the local search process 

in Algorithm 2.8 to find the oversized, 𝑠𝑖, and undersized, 𝑠𝑗, segments. This block 

implements the ideal segmentation problem. Algorithm 2.9 is part of the Algorithm 

2.8. The inputs of the Algorithm 2.9 are oversized, 𝑠𝑖, and undersized, 𝑠𝑗, segments 

and minimum spanning tree, T, ant the output is the set of sub-partition, ∆min, of the 

oversized segment. The functionality of the Algorithm 2.9 is to find the set of nodes 

from the oversized segments. The output of the block 3 is the updated set of 

segments. Algorithm 2.10 implements the trust node selection problem (Block 4). 

The inputs of the Algorithm 2.10 in block 4 are output of Algorithm 2.9, set of 

segments, and the input graph in block 1, G(V,E). Output of the block 5 is the 

selected trust nodes set (Block 5). 
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Figure 15: Flowchart of the algorithm for solving optimal TSP problem [1]. 
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2.4 Experimental Outcomes 

Case studies are conducted in [1] for the IEEE test system topologies [20]. The IEEE 

test cases represent the part of the American Electric Power Systems. Table 2 

illustrates the overview of experimental parameters.  

Table 2: Overview of experimental parameters [1] 

 

The topologies are divided into two parts on the base of the network size: large 

networks and small size networks. BUS 118 and BUS 300 are members of large 

networks. BUS 14, BUS 30, and BUS 57 are members of the small networks. 

Databases of the IEEE test system topologies include: bus number, load flow area, 

loss zone, circuit, branch resistance, branch reactance, base KV (Kilo Volt), load 

MVAR (Mega Volt Ampere Reactive), load MW (Mega Watt), minimum voltage 

and maximum voltage. Databases are stored as text files. The first seven fields of the 

first record of the IEEE test system topology of the BUS14 is shown in Table 3. 
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Table 3: Structure of the IEEE test system topology BUS14. 

1 2 3 4 5 6 7 

1st Node 

number of an 

edge 

 
Includes: 
4 characters 

2nd Node 

number of an 

edge 

 
Includes:  
4 characters 

Load flow 

area number 

includes:  
1 character 

Loss zone area 

number 

 
Includes:  
1 character 

number of 

parallel 

transmission 

 
Includes:  
1 character 

Transmission 

line 

 
Includes: 
 1 character 

Branch 

resistance 

() 

Includes: 
10 characters 

 

1 2 1 1 1 0 0.01938 

An electric power grid is an interconnected network to bring electricity from 

producers to consumers [21]. It contains generating stations, high voltage 

transmission lines and distribution lines. 

Generating station, generator, converts the mechanical energy using steam turbines, 

gas turbines, water turbines into electrical power for use in an external circuit [22].  

High voltage transmission line, electric power transmission system, moves the 

electrical energy from generating station to an electrical substation [23]. Electric 

power distribution is the final stage in the delivery of electric power, it carries 

electricity from the electrical substation to individual consumers [24].  

In a smart grid environment, electric power grids are assumed to be accompanied by 

the representative SCADA communication networks. In a representative network, 

each link corresponds to a power grid branch and each node corresponds to a 

particular power grid bus. Links are weighted by the propagation delays. Figure 16 

shows the IEEE BUS 14 test system topology with 14 nodes (buses) and 20 active 

links. 

In Figure 16, diagram of IEEE BUS 14 is depicted. IEEE BUS 14 includes 14 buses 

which indicate the generator stations and 20 branches which indicate the 
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transmission lines. The arrows in Figure 16 demonstrates the electrical loads, 

component or portion of a circuit that consumes electric power [25]. Each bus in a 

power system can be classified into three types [26]. First one is known as load bus. 

All buses in load bus having no generators. Second one is the generator bus. The 

buses that have generator are known as generator buses. The third one is the slack 

bus that it balances the active and reactive power in power system. IEEE BUS 14 

includes 14 buses, correspond to node in graph, that buses 1,2,3 and 8 are generator 

buses and the other buses are load buses. The rectangle in Figure 16 demonstrates the 

transmission lines number, correspond to link in graph. 

 
Figure 16 : IEEE BUS 14 test system. 

The information that must be retrieved from the databases includes: node number in 

column 1 of Table 3, node number in column 2 of Table 3 and branch resistance in 
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column 7 in Table 3. Brach resistance is used to calculate the propagation delay. 

Structure of the database record is as follows: 

 First field defines the first node number of the link. This field includes 4 

characters (including space characters). For example, in the first line of BUS 14 

(Column 1 in Table 3), characters 1-3 are spaces and the fourth character is 1, as 

a consequence, the node number is equal to 1. 

 Second field defines the second node number of the link.  This field includes 4 

characters (including space characters).  For instance, characters 1-3 (Column 2 

in Table 3) are spaces and the fourth character is equal to 2 as a result, the node 

number is 2. After these 2 steps, two nodes of the link, (1, 2), are found.  

 Field 7 includes 10 characters (including space characters) and defines the branch 

resistance. In the given example the branch resistance is 0.01938.  

Because propagation delays are not given in the text file, the following calculations 

are used to retrieve propagation delays for IEEE test system topologies: 

1. Branch resistance (R) is retrieved from the previous steps. 

2. Static resistivity (𝜌) is a measure of how strongly a material opposes the flow of 

electric current. Aluminum wire with an iron core is assumed in [3], which has a 

resistivity value of 2.50188E-8 m.   

3. Area is the cross-sectional area of the material in square meters (𝑚2). In [3], it is 

selected 0.00080642 𝑚2 as a typical value. 

4. The line length of a piece of material is measured in meters. The line length is 

obtained by equation (2.21).  

5. In [3], fiber optics cables are used in the communication line, therefore, the speed 

of light, 299792458 m/s, in fiber optics cable, fiber optic operates 99.7% speed of 
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light, is used in equation (2.22) to obtain the time or latency from the line length 

(2.21) [3]. 

Line_Length =
R×Area

ρ
   m (meters),                            (2.21) 

Time =
Line_Length×3

speed of light
    s (seconds),                            (2.22) 

For instance, the propagation delay between nodes 1 and 2 of IEEE BUS 14 power 

system is calculated as follows: 

Example 3: Computation of propagation delay between node 1 and node 2 

of IEEE BUS 14. 

R=0.01938 . // retrieved from field 7 of Table 3.  

Area=0.00080642 m2. 

ρ = 2.50188E − 8 m.   

Line_Length=
0.01938×0.00080642

2.50188E−8
= 624.667034. 

Time=
624.667034×3

299792458
= 6.250E − 6 s (seconds) = 6 µs (micro seconds). 

The rest propagation delays are obtained in same way of Example 3 which are 

specified in Figure 17. 

Figure 17 shows a graph of IEEE BUS 14 test system topology. In the graph, nodes 

correspond to the buses, generators or electrical loads, links represent 

communication between buses, transmission lines, and link’s weights represent 

propagation delay in micro seconds. 
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Figure 17: Graph of IEEE BUS 14 test system topology presented in figure 16. 

The designed method implementation employed MATLAB optimization toolbox. 

The IEEE test system models are utilized as SCADA network graphs. Small 

networks are divided into 3 to 6 segments with increment of 1. Large networks are 

split into 5 to 30 segments with increments of 5. The mean value of the segment size 

differs between 2.33 and 19 in small size networks and also, the range of mean value 

of the segment size is between 3.93 and 60 in large networks. In [1], all the 

examinations are implemented on a PC system equipped by RAM 4 GB and Intel 

core i3, 3.30 GHz processor. 

In [1] coefficient of variation, also known as relative standard deviation, RSD, of 

segment size [27] is chosen as a metric. Equation (2.23) demonstrates the coefficient 

of variation, CV, formula [27]. 

𝐶𝑉 =
𝜎

𝜇
 ,                                      (2.23) 
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where 𝜎 is the standard deviation and µ is the average. Equation (2.24) illustrates the 

standard deviation formula [28] for values x[1..N]: 

𝜎 = √∑ (𝑥𝑖−𝜇)2𝑁
𝑖=1

𝑁−1
      ,                                       (2 .24) 

. Equation (2.25) defines the mean of x[1..N] values : 

𝜇 =
1

𝑁
 (∑ 𝑥𝑖

𝑁
𝑖=1 )  ,                                                     (2.25) 

Figure 18 demonstrates the relative standard deviation of the calculated segment 

sizes for small (Figure 18(a)) and large (Figure 18(b)) networks. 
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(a) 

 

(b) 

Figure 18: Relative standard deviation of the calculated segment sizes. (a) Large 

networks. (b) Small networks [1].  

Relative standard deviation of the computed segment sizes is less than 0.5 for small 

networks and is less than 1 for large networks. As the Figure 18 shows, it is obvious 

that the coefficient for large network is higher than for small network and it is 

because of network size. In large networks segments have lower size balance and as 

a consequence, the relative standard deviation of the calculated segment sizes is 

larger. 
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In Figure 19, the average MST weight (2.25) is the metric for the geographic 

dispersion.  Figure 19(a) is for small networks and Figure 19(b) is for large networks. 

In both of them, it is clear that by increasing the number of segments the average 

MST weight is reduced. The segment sizes and quantity of segments are related, and 

it means that increasing number of segments causes decrementing of the segment 

sizes. As a consequence, there is a decrement in the average of MST weight.  

(a) 

 

(b) 

Figure 19: The average MST weight of the calculated segments. (a) Large networks, 

(b) Small networks [1].  
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Figures 20 shows the desired quantity of trust systems, calculated by the Algorithm 

2.10, for the proposed scheme. In both cases, the bar chart shows that required 

amount of trust systems rises with the amount of segment increasing. The amount of 

increments is higher for larger networks. 

 

(a) 

 

(b) 

Figure 20: The needed number of trust systems. (a) Large networks. (b) Small 

networks [1]. 
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2.5 Problem Definition 

SCADA networks are used to monitor and control the input and output traffic to 

protect the smart grid networks against the intrusions, malicious activities and other 

bad activities that harm the smart grid networks. For this reason, trust systems are 

deployed by the smart grid operators to monitor traffic packets. Trust systems consist 

of firewalls and intrusion detection systems (IDS).  

The objective of optimal TSP problem is to optimize the cyber-security of smart grid 

networks. As trust systems contain specialized software and hardware agents, it is 

expensive to deploy them through entire of network and also trust systems cause 

delay through the network. In [1], optimal TSP problem is proposed to optimize the 

security by minimizing the operational expenditure and capital expenditure. As a 

consequence, minimum number of trust nodes is selected and equipped by the trust 

systems. These nodes are known as trust nodes. Optimal TSP problem provides 

optimize security and minimize the cost. 

Methods that are used to solve the optimal TSP problem comprise segmentation 

algorithm, local search algorithm and trust node selection algorithm. Segmentation 

problem is the main part of the optimal TSP problem. As smart grid networks, power 

grid systems, are geographically distributed the network is divided into small 

networks to restrict the spreading of cyber-attacks. Segmentation is based on the 

MST it means that in each segment the distance between components is minimal. 

Local search is used to uniform the size of the segments in number of nodes. 

Only bordering nodes can host the trust systems. As a consequence, due to the 

budgetary minimum number of trust nodes are selected by the trust node selection 
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algorithm. The constraint of trust node selection algorithm is that all inter-segment 

links must be connected to at least one trust node. As a result, if in one segment a bad 

activity, malicious traffic and other types of attack is took place then it can not 

distribute to other segment because segments are connected through the inter-

segment links which they are equipped by at list one trust system.    

We used IEEE test system topologies, categorized into small and large networks, as 

database to analyze the performance of optimal TSP problem. We use coefficient 

variation to measure the segments size. The coefficient of variation for small network 

is smaller than coefficient of variation for large networks. It means that segments in 

small networks are more balanced in number of nodes. By increasing the number of 

segments, the required number of trust systems increases, and the average of MST 

weighs decreases. 
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Chapter 3 

DESIGN, IMPLEMENTATION, AND TESTING OF 

OPTIMAL TSP SCHEME  

In this chapter, we explain design and implementation of the codes. This chapter 

includes three sections. In Section 3.1, design and implementation of proposed 

optimal TSP scheme [1] are discussed. In Section 3.2, testing of the developed 

optimal TSP scheme is discussed.  

3.1 Design and Implementation of Proposed TSP System in [1]  

As mentioned in Chapter 2, the optimal TSP scheme is based on three algorithms 

(Figure 14). Inputs of this software are divided into two parts, the first one is manual 

input and the second one is the text files, based on IEEE test system topology [20]. 

The source codes and the databases are shown in the Appendix A. After explanation 

of the codes, we will discuss the improvement part of the optimal Trust System 

Placement (TSP) scheme in smart grid SCADA networks program due to the 

minimization of the dispersion of the trust system number over the network segments 

that improves uniformity of the trust systems placement. Utilities that we used, are 

Microsoft Visual Studio.Net Enterprise 2015 and Matlab R2016a. This application is 

implemented by Microsoft C#.net which is an elegant and type-safe object-oriented 

language. Matlab is used to solve the LPP1 and LPP2 problems. All the examinations 

are implemented on a PC system equipped by an Intel core i7 2.10 GHz CPU and 

8GB RAM and Microsoft Windows 10 64-bit operating system. 
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3.1.1 Design of Optimal TSP Scheme [1] 

Figure 21 demonstrates 8 blocks of process to implement the proposed optimal TSP 

in smart grid SCADA networks. These blocks are shown as follows: 

 
Figure 21: Block diagram of process to implement the proposed TSP in smart grid 

SCADA networks. 
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Block 1 is a decision process to select the graph. Initialization of the graph is divided 

into 2 types, initializing graph of IEEE test system topologies via text file (Block 2) 

and manually initialize the graph (Block 3). The output of the Blocks 2 or 3 is used 

as an input (Block 4) for the segmentation problem (Figure 15 Block 2).  Block 5, 

implements the code to execute the Algorithm 2.7 and the output of block 5 is used 

as an input of block 6. In block6, the Algorithms 2.8 and 2.9 are implemented to run 

the local search procedure. The output of the block 6 is the updated segment sets and 

used as an input for the selection of trust nodes procedure (Block 7). Block 7 

implements the Algorithm 2.10 and the output is the set of trust nodes that must host 

the trust systems. The source codes of theses blocks are described in Section 3.1.2. 

3.1.2 Implementation of optimal TSP scheme 

Appendix A demonstrates the source codes of the optimal TSP program. This 

program includes Edge, Graph, Create_Graph_text, Create_graph 

Minimum_Spanning_Tree, LPP, Delta_min, Bordering_node_details, button1_click, 

and Trust_Node_selection classes. Each process in Figure 21 includes several 

classes. 

1. The process of initializing graph in blocks 2 and 3 implement the input process 

uses classes: Edge, Graph, Create_Graph.cs, Creat_Graph_text and button1_click 

event. 

2. Segmentation process (Block 5) uses classes: Minimum_Spanning_Tree.cs and 

LPP.cs. 

3. Local search process (Block 7) uses classes: Delta_min and Form1.cs . 

4. Selection of trust nodes process (Block 9) uses classes: 

Bordering_node_details.cs and Trust_Node_selection.cs. 
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The first part of the implementation is to define the attributes of the graph which 

include: edge, source/destination node, weight (propagation delay). These attributes 

are obtained by the process in block 2 or 3. Block 1 decides which block 2 or 3 might 

be run. Figure 22 shows the main form appearance. 

 
Figure 22: Main form of the program. 

Figure 22 illustrates that the default input type is by the text file because the elements 

of manual input are disabled. By clicking on the combo box and choosing the 

databases (BUS14, BUS 30, BUS57, BUS 118 and BUS300), the decision process in 

block 1, decides to execute the process of block 2 in Figure 21. Otherwise, if the 

“Manual” button is clicked then the process of block 3 is executed (Manually input). 

The manual input includes number of vertices (nodes), number of edges (links), 

source (node number), destination (node number) and weight of the link. The graph 

is undirected, the source and destination value just denote the two endpoints of the 
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link. Classes Edge, Graph and Create_Graph are used in the both processes. Block 2, 

except the mentioned classes, executes the Create_Graph_text and block 3 executes 

the button1_click event. Figure 23 illustrates the flowchart of the input graph 

procedure with the use of a text file. Figure 24 shows the main form for the manual 

input graph, and Figure 25 depicts the flowchart of the procedure of manual graph 

initialization. 

 
Figure 23: Flowchart of the algorithm providing input of graph via text file. 
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Block 1 is a switch statement that chooses a single switch section to execute from a 

list of candidates based on a pattern match with the match expression [29]. It has 5 

switch selections for IEEE test system topologies. By choosing one of the IEEE test 

system topologies from the combo-box in Figure 22, one switch selection is executed 

(Blocks 2, 5, 8, 11 and 14) and all lines of the text file will be read by the 

“File.ReadAllLines()” method and stored in an array of string [30]. In the next block, 

the array of string is parsed by the create_graph_text method to extract the attributes 

of the graph in text file (Table 3). Finally, the output is the SCADA network graph 

object. By clicking on the button (manual) the manual input graph is activated 

(Figure 24). 

 
Figure 24: Manual graph input screen. 

Figure 25 depicts a flowchart of the procedure of manual input of the graph. In block 

1, the number of vertices (nodes) and number of edges (links) are read from the 
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textboxes. The array of the object edges is created in block 2. In block 3, the variable 

i is set to zero. This variable is used to count the number of edges (links).  The value 

of the weight, source (node number 1) and destination (node number 2) of the edge is 

read and if the value of the variable i is smaller than the number of edges (Block 5) 

then these values are stored to the attribute of the graph (Block 6). After adding these 

values, the value of i increases by 1. If the condition in block 5 returns false 

(i>number of edges), the graph is created by the Create_graph method (Block 8). The 

output is an undirected graph. Below, the classes which implement the input graph 

are discussed. 
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Figure 25: Flowchart of the algorithm allowing of manual graph creation. 
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Defining class of Edge: Appendix A1 shows the class Edge.cs. It has 8 attributes 

and includes: Source, Destination, Weight, minDegree, maxdeg, normalizeWeight, 

we, Active, delta_Seg and Intersegment lines (3-12). There is one method, 

add_Edge, which initializes the attributes Source, Destination, Weight, and Active, 

which is a Boolean variable. The value of this variable at the beginning is equal to 

true. This method is used to add the value of the destination, source and weight to the 

created object of edge. 

Defining class of Graph: Appendix A2 is about a class Graph. Lines 3-8 define the 

attributes which are related to the number of vertices, number of links, Edge 

properties and two constraint variables that are used to calculate the weight of the 

edge (propagation delay) [3] and they are defined in Section 2, (2.21)- (2.22). It 

includes seven methods. Lines (9-13) initialize the graph attributes such as: 

vericesCount, number of nodes, and edgesCount, number of links, and the array of 

links, ed, for manual inputs. Lines 14-28 is a method to compute the mean value of 

the links (2.25). Lines 29-50 defines a method, standard_Deviation, to computes the 

standard deviation of segments in size. Inputs are segments and the mean weight and 

the output is the standard deviation of the computed segment size (2.24). Line 51-56 

define a method, coefficient_Variation, to computes the coefficient of variation of 

the segment size or of the trust nodes over the segments (2.23). Inputs are standard 

deviation and mean value. Lines 58-77 is a method to find the remote nodes, 

disconnected power grids in IEEE Buss300 are connected by the remote nodes and 

remote nodes share and exchange the power excess. This method is used only for 

BUS300. Appendix B6 show the information of remote nodes data. Table 4 

illustrates the first row of the remote node file. I just need to retrieve a data from 
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field 1, remote node number, and from field 19, node number. If their values are 

different the values are swapped. 

Table 4: First row of the remote node text file for BUS300. 

  

Defining the button1_Click event (Adding link’s information for manual input): 

This method is run when the button by the name Add is clicked. Appendix A3 shows 

the codes of the button1_Click which executes the manual graph input procedure 

(Figure 25). Lines 5-10 initialize an empty array of edges. By clicking the Add 

button, Line 12 checks that this edge information does not exceed the number of 

edges (Figure 25, Block 5). Line 14 adds the edge attributes to the array in element 

with index number i. If variable i exceeds the number of edges, then the method 

create_Graph returns the output graph (Line 28).   

Defining the function of Create_Graph_text (Input graph by using text files): 

This method executes in the class of the Graph. Appendix A4 shows the functionality 

of the creat_Graph_text method. The inputs of this method include: array of the lines 

of the text file, number of edges and number of vertices. Lines 3-19 are the 

initializing. In line 8 the remotenode function executes if the input text file is IEEE 

BUS300. Lines 20-75 is a loop that read characters of lines one by one from the input 

text file (database). In each line, characters 1-4 indicate the first node of the link 

(Line 28). In Line 30, there is a condition that checks the ASCII code of space 

(ASCII code of space=32): if it is not equal to ASCII code of the space then it is 

added to the source variable. Line 33 reads characters 6-9,and sets the value of the 

dest variable. The characters in range of the positions, [20-29], of the line indicate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 0 1.0284 5.95 90 49 0 0 115 0 0 0 0 0 0 1
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the branch “resistance”. Lines 45-61 is executed if the selected text file is BUS300. If 

the remotenode and node number are different they will be swapped. Line 41 sets the 

value of the weigth, resistance, variable. Lines (62-72) calculate the propagation 

delay of the link (2.21) - (2.22). 

The segmentation process (Block 5) includes 2 classes as follows: 

Defining class of minimum_spanning_tree: Appendix A5 defines MST. In this 

class, I used Kruskal algorithm, Algorithm 2.6, to compute the minimum spanning 

tree, Disjoint-set algorithm, Algorithm 2.5, to extract the segments and one function 

to compute the minimum degree of the links. Line 4-9 implements the Find 

algorithm, Algorithm 2.3. in line 6 if the node does not point to itself then the Find 

method calls itself to find the parent of that node, go up the tree to find the parent. 

Lines 10-29 implements the Bubblesort algorithm, Algorithm 2.1. The Exchange 

method in line 10 is used to swap the elements in the array of the link. Lines 30-43 

implement the Union function, Algorithm 2.11. Lines 56-91 is the Disjoint-set 

algorithm, Algorithm 2.5. The input is the object graph G and the output is the 

segments. Lines 92-133 is Mst_Graph method that implements the MST-Kruskal 

algorithm, Algorithm 2.6, and the input is the object of the input graph, G(V,E), and 

the output is the minimum spanning tree, Mst.  

Defining class of LPP: This class (Appendix A6) is used to solve the integer linear 

programming LPP in [1]. It has two functions LPP1 and LPP2. Line 4 is used to 

make a connection between Microsoft Visual Studio and Matlab. Lines 5 and 6 

define two constraints (α=1, β=0.5) which are discussed in Chapter 2. In Matlab, all 

the variables are double, and also, they are defined as matrices. Hence, I defined a 2- 

dimensional arrays, matrices, and the attributes of the indexes of the matrix are 
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double, Lines 9-16 are arrays of LPP2 and Lines 66-73 are arrays of LPP1. Line 7 is 

a method to solve the LPP2. The inputs are number of bordering nodes, number of 

inter-segment links and the set of inter-segment link and the set of bordering nodes. 

Lines 9-12 initialize objective function array (2.16), f, and the equation constraint 

array, intcon, and inequality constraints array (2.17), A, b. Lines 13-16 initialize the 

arrays to send to the Matlab application. Lines 17-36 the value of the arrays are set. 

Line 31-32 call the method Find_for_Array_A, Lines 45-62, to find the segment that 

having endpoints of inter-segment link. The object of array res is initialized. This 

object stores the returns answer from the Matlab application (Line 38). In line 40 the 

arrays are sent to the Matlab by the method Feval. The first input of this method set 

to “intlinprog” it means that the answer is a binary vector, {0,1}. In line 42, first 

index of the array res is the returned answer by the Matlab application and store in 

the array sln. Line 43 is the output of the LPP2 method. Lines 63-130 implement the 

LPP1. The structure of the code is same as the LPP2. 

Implementing the local search process (Block 6) needs to implement the while loop 

in Algorithm 2.8. This loop finds the oversized segment and undersized segment. If 

these segments are adjacent, then Line 10 calls the delta_computation (Algorithm 

2.9) method from the delta_min class to find the set of the nodes. This set will be 

removed from the oversized segment and added to the undersized segment. Below I 

am going to describe the functionality of the local search algorithm, button2_click 

event in form1 class, and Find∆min procedure, delta_min class.   

Defining class of Delta_min: Appendix A7 illustrates the source codes of the class 

Delta_min. This class defines ∆min computation algorithm (Algorithm 2.9) in 

chapter 2. Inputs of function (delta_computation) are oversized, S_i, and undersized 
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segments, S_j, and minimum spanning tree, Mst, and minimum spanning tree of the 

segments, Mstss, these 4 arguments are shown in Line 3. Lines 4-17 initialize the 

variables such as: a set for delta_min, line 6, an adjacent node u, line 6, an array for 

Epsi, Line 9, an array for the links that are cut, line 10, an object f 

minimum_spanning_tree class to use the disjoint-set method, line11, segment set for 

adjacent node, line 13. Lines 18-32 check the adjacency of the segments. There is no 

adjacency if the value of the variable (u=999) does not change; otherwise, lines 42-

76 extract the links set belonging to the oversized segments (Lines 42-76). All links 

that belong to node u are removed and collection of segment (Segment_set_U) will 

be updated (Lines 81-107). All the elements of the collection set of the segment 

(Segment_set_U) will be checked if the nodes of the segment include node u then, 

that segment is the output of the delta_min(Lines 108-120).   

Defining the button2_click event: Appendix A8 demonstrates the Lines 1-10 in 

Algorithm 2.7 and the lines 1-20 in Algorithm 2.8 in Chapter 2. In line 3 the value of 

the variable phi is set to 1, this variable is used in while loop, line 28. In lines 5-8 the 

number of segments, K, and the object of the segment are initialized. In line 11, 

kruskal method (Appendix A5) is executed to obtain the minimum spanning tree, 

MST. Minimum degree of the links is computed in line 13. The link weight standard 

deviation and link weight mean are computed in lines 16-17. Line 21 executes the 

LPP1 and store the output data of LPP1 to the ESS, links of segment set. In line 26, 

the segments are returned by the disjoint-set algorithm, Segmentation method 

executes the disjoint set method. The variable Ks, limitation variable in Algorithm 

2.8, is set in line 27. Lines 28-66 of Appendix A8 implement the local search to find 

the oversized segment and undersized segment. Line 31-56 implement two for loop 
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of Algorithm 2.8. In line 37 the sub-segment of oversized segment is computed by 

Delta_min class in Appendix A7 and this segment stores in delta_Min object.  If the 

conditions in Lines 38-43 is satisfied, then the set of nodes will be added to the 

undersized segment (Lines 46-47) and removed from the oversized segment (Lines 

48-56). If there are no adjacent oversized and undersized segments, then the while 

loop is terminated. 

Implementation of trust node selection process (Block 9) includes 2 classes as 

follows: 

Defining class of Bordering_Node_Details: Appendix A9 shows the 

Bordering_Node_Details class. Bordering node class checks all the list of the set of 

the bordering nodes for duplication. If there is no duplication, then the node will be 

added to the list (Lines 6-20) 

Defining class of Trust_Node_Selection: Trust_Node_Selection class (Appendix 

A10) is used to perform the Algorithm 2.11 in Chapter 2. Lines 2-22 represent 

initialization part. Inputs of the function (Bordering_Node_Details) is the original 

graph (G) and updated segment collection (S). All the links belonging to the original 

graph are checked. If bordering node (x) and bordering node (y) are not equal, the 

intersegment property of the Edge property changes to true and the bordering node, 

(x, y), is added to the bordering node set (Lines 26-37). All the links are checked: if 

the intersegment feature is equal true, it is added to the intersegment link array 

(L_xy) (Lines 38-51). Line 56 is the linear programming problem solved by Matlab. 

This function returns the set of trust nodes. 
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3.2 Testing of Optimal TSP Program 

In this section, we will compare the results of the application with results in Figures 

9-14 in Chapter 2. Figure 26 shows the main page of the optimal TSP in smart grid 

SCADA networks. 

 
Figure 26: Main form of the program. 

The default input graph is considered as text file. The comboBox property on the 

right side of the form shows the databases of the IEEE test system topologies. The 

number of segments is initialized by the textbox. The button “Find Trust Nodes 

IEEE”, executes the Algorithms 2.7-2.10, and the results will be shown in the 

Minimum Spanning Tree and Uniform forms.  

In Figure 26, if user clicks on the button “Manual”, the input type will be changed to 

the manual input. Number of vertices textbox receives the number of nodes in the 

graph. Number of edges textbox receives the number of links of the graph. Source 



 74 

and Destination text boxes receive the node number of two connected nodes of the 

link. Weight textbox receives the propagation or distance between two nodes of the 

link. By pressing the button “ADD”, the new information of the link of the graph will 

be added to the Edge object (this object is defined in Edge class, Appendix A). The 

functionality of the Find Trust Nodes button is to execute the Algorithms 2.7-2.10. 

The complete graph is shown in Figure 9. The data of this graph is used as input to 

the application. 

Figure 27 demonstrates the minimum spanning tree and the trust systems in each 

segment (Figures 10 and 14). Minimum spanning tree form (Figure 27) at first does 

not have any contents. After computing the MST and segments the values will be 

changed to string type and written on the form. 

 
Figure 27: Minimum spanning tree form that shows the MST graph and trust nodes 

in each segment base on figure 8.  

We test on Figures 9-14. The complete SCADA network is depicted in Figure 8. The 

links of minimum spanning tree of SCADA network in Figure 10 are (1, 2), (2, 3), 
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(3, 6), (6, 4), (4, 5), (6, 7), (7, 8) and (7, 9) which are same as the links of minimum 

spanning tree in Figure 27. The number of segments K is 3. After information of the 

MST in Figure 27, the nodes of segments and trust systems in each segment are 

shown. Trust nodes in Figure 27 are 3, 7, 9 and segment 1 contains one trust node 

(3), segment 2 does not have any trust node and segment 3 has two trust nodes (7, 9). 

All the results are the same as in the Figure 14. 

In Figure 14, we realized that one segment does not have trust node on the other 

hand, the total number of trust nodes is 3, and number of segments is 3, s1={1,2,3}, 

s2={4,5,6}, and s3={6,7,8}. As a consequence, we decide to distribute the trust 

nodes through the segments as much as possible. In the next Chapter, I am going to 

describe how uniformity of trust nodes distribution can improve the dispersion of 

trust nodes over network segments as much as possible.  

3.3 Summary 

In this chapter, we implemented optimal TSP problem. The problem is written by the 

Microsoft C#.net which is an objective oriented language. We defined classes for 

Edge, Graph, MST, LPP, Delta min, bordering node and trust selectin. System 

scheme of the optimal TSP problem in [1] is depicted in Figure 21. The input of the 

implemented program is divided into two types. First one is a manual input which 

user indicates the node numbers, propagation delay or weight of the links, links and 

number of segments by filling the form. In the second one, user selects one of the 

IEEE test system topologies and the software extract the information of selected 

topology from the related text file. The outputs of the software include, minimum 

spanning tree form that shows the MST graph details, segment sets and trust nodes in 

each segment. We tested the program by comparing the result of our program with 
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the result in [1]. Details of the graph in Figure 14 are inserted manually to the 

program. By comparing the results, we notice that both of them are same. 
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Chapter 4 

IMPROVEMENT OF THE OPTIMAL TSP 

UNIFORMITY 

In this chapter, we describe how uniformity of trust nodes distribution can be 

improved. We propose the Uniformity algorithm to solve the optimal TSP 

uniformity. This chapter includes two sections. In Section 4.1, definition and 

implementation of Uniformity algorithm is discussed. In Section 4.2, the uniformity 

of trust systems distribution over network segments is compared versus uniformity of 

the original TSP [1]. 

4.1 Definition and Implementation of Uniformity of TS Distribution 

over Network Segments 

Trust systems are installed to the smart grid networks to monitor and control the 

traffic packets to block the dispersion of malicious packets through the segments. In 

discussed optimal TSP problem security is optimized but the dispersion of trust 

systems was not considered. Consequently, segments may have quite different 

number of TS allocated to them, some may have many TS, other may have no one 

TS. Segments that are not equipped by TS may deteriorate its security and the 

segments that overloaded may cause delay on the segment. 

To optimize the security and minimize the operational delay we propose to optimize 

uniformity of TSP allocation to the segments (Optimal TSP uniformity problem). 

This problem improves TSP which means that the number of TS will be exactly 
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same as after optimal TSP problem solving, and all inter-segment links are connected 

to at least one TS. The number of TS and inter-segment limitation are considered as 

constraints for the optimal TSP uniformity problem. 

We introduce the Uniformity optimization algorithm to solve the optimal TSP 

uniformity problem. The relative standard deviation, coefficient of variation, of TS 

number per segment is used as a metric to measure how much the segments are 

uniform in number of trust systems. 

For example, trust nodes in Figure 14 are 3, 7, 9. Nodes 7, 9 are in one segment, s3; 

node 3 belongs to another segment, s1, and one segment, s2, has not any TS that may 

deteriorate its security (vulnerable to compromise of other segments). Uniformity 

algorithm re-distributes the TS over the segments. For instance, Uniformity 

algorithm selects node number 6 as a trust node that belongs to the segment, s2, 

instead of the node number 7 belonging to s3. As a result, all segments have the same 

number of TS and all inter-segment links are connected to at least one TS. In Figure 

14 the coefficient of variation of trust node number per segment was 0.81 and in 

Figure 28, after executing the Uniformity optimization algorithm, this value changes 

to 0. As a result, we improved the dispersion of trust system by 81%. Figure 28 

shows the result of the Uniformity algorithm. 
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Figure 28: Distributing trust systems over segments by using Uniformity 

optimization algorithm, algorithm 4.1.   
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Algorithm 4.1 describes the Uniformity optimization algorithm to distribute the trust 

systems through the segments. 

Algorithm 4.1: Pseudo code of Uniformity optimization algorithm. 

Uniformity optimization  

Input: S, VTrust,Lss’.// S denotes the .set of segments, VTrust denotes the 

set of trust nodes and Lss’ denotes the set of all inter-segment links, 

Lss’={e1,e2,..en} where e=(v1,v2) denotes the inter-segment link. 

Output: VTrust // Updated trust nodes set. 

1. Begin 

2. Ns=⌈
|VTrust|

|𝑆|
⌉; O_cv=Computing the coefficient of variation of trust 

system// limitation of trust nodes in each segment. O_cv is CV of trust 

system 

3. balance=0; ph=0; Vtemp
Trust = ∅; // Vtemp

Trust is a temporary set of trust 

nodes. 

4. while (balance<1) do 

5. ph=0; Vtemp
Trust = VTrust;// ph is a decision variable to terminate the 

while loop. Vtemp
Trust store the value of VTrust. 

6. //searching to find overloaded and underloaded segments 

7.      For i=1 to |S| do 

8.           For j=1 to |S| do 

9. If ((number of trust nodes in segment i<Ns) and 

(number of trust node in segment j>Ns ))  then 

10.        

11.     X1=Find trust node in segment j adjacent to segment i; 
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12.     For all e ϵ Lss’ do 

13. //searching to find the intersegment link between 

overloaded  segment j and underloaded segment i                  

14. Y1=Find segment such that Lss’.e.v1 belongs 

to it; 

15. Y2=Find segment such that Lss’.e.v2  belongs 

to it; 

16. //If there is an inter-segment link and one node of the link, hosted 

the trust system and other node does not then change the place of 

trust system.   

17. If((((Y1==segment i) and (Y2==segment j)) 

or((Y1==segment j) and(Y2==segment j)) then     

18. If ((X1==Lss’.e.v2) and(Lss’.e.v1∉ VTrust))) 

then 

19.       VTrust={VTrust\X1};//Remove. 

20.        VTrust={VTrust ∪Lss’.e.v1};//Add. 

21.                                       End if 

22. If ((X1==Lss’.e.v1) and(Lss’.e.v2∉ VTrust))) 

then 

23.       VTrust={VTrust\X1};//Remove. 

24.        VTrust={VTrust ∪Lss’.e.v2};//Add. 

25.                                   End if 

26.  

27.               End if                          

28.               ph++; 
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29.     End for  

30. For all e ϵ Lss’ do// checking the constraint, inter-

segment links must be connected to at least one trust 

nod, 

31.                               If (Lss’.e.v1∉ VTrust ) and 

32.                                   (Lss’.e.v2∉ VTrust) then 

33. VTrust=Vtemp
Trust;// It means that one inter-

segment link is not connected to trust system 

as a result, the new trust nodes cannot accept 

and the value of  VTrust returns to Vtemp
Trust, 

nothing change,  

34.                                End if 

35.                            End for 

36.     End if 

37.            End for 

38.          End for 

39.          If(ph==0) then 

40.   Balance++;// all segments are checked 

41.          End if 

42. End while 

43. P_cv=Compute the coefficient of variation of trust system after 

improvement 

44. Improve_Measure=O_cv – P_cv;// show how much the dispersion 

of trust system is improved. 

45. Return VTrust; 
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The inputs of the Algorithm 4.1 are set of segments, S, and set of trust nodes, VTrust, 

and set of all inter-segment links. The output is the updated trust nodes set, VTrust, 

which includes trust nodes that are distributed over segments. In line 2, the limitation 

of the size of the segments in number of trust nodes and coefficient of variation of 

trust system over segments before improving are calculated. In line 3 the Vtemp
Trust is a 

temporary set of trust nodes to store the value of VTrust before it is updated. Line 4 is 

a while loop and the function of this loop is to find the overloaded and underloaded 

segments. If these segments are found, Line 9, then the adjacent trust node, which is 

connected to underloaded segment by the inter-segment link, in overloaded segment 

must be recognized, line 11. Line 12 is a local search loop and it finds the inter-

segment link between oversized and undersized segments. Line 16 checks 2 

conditions. First condition checks the nodes of inter-segment link that these nodes 

belong to underloaded and overloaded segments. Second condition checks that the 

node of the inter-segment link that is located in overloaded segment hosted the TS 

and the intersection of the other node with VTrust is empty, it is not a trust node. If 

these conditions return true value, then the place of trust system is swapped between 

the nodes of the inter-segment link, lines 18-19. After finding the new node that 

hosted trust system the VTrust is updated. The constraint of the problem is that all 

inter-segment links must be connected to at least one trust node. Lines 30-35 are used 

to check all inter-segment links for this reason. If even one inter-segment link is not 

connected to at least one trust node in the updated VTrust, Lines 31-32, then the value 

of VTrust returns to its value before updating, Vtemp
Trust  .The search function to find the 

overloaded and underloaded segments has been continued since there is no 

overloaded and underloaded segments, line 39. In line 43 the coefficient of variation 

of TS over segments after improving is computed. In line 44, the improvement value 
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is return. In line 45 the updated trust nodes set is returned. An example of Uniformity 

optimization algorithm work is given in Example 4. 

Example 4: Application of Uniformity algorithm, Algorithm 4.1, to the 

graph in Figure 14.   

Input: S={s1,s2,s3}={{1,2,3},{4,5,6},{7,8,9}}; VTrust = {3,7,9}; 

Lss’={(1,9),(2,9),(3,6),(3,7),(3,4),(6,7)}. 

Ns=⌈
3

3
⌉ = 1; balance=0; Vtemp

Trust = ∅; O_cv=0.81; 

First iteration of while loop// balance=0<1 

Ph=0; Vtemp
Trust = {3,7,9}; 

i=1; 

j=1; 

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of 

trust node in s(j)=s1=1 is not greater than Ns=1; //both conditions is not 

satisfied. 

i=1; 

j=2; 

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of 

trust node in s(j)=s2=0 is not greater than Ns;//both conditions is not 

satisfied 

i=1; 

j=3; 

number of trust node in s(i)=s1=1 is not smaller than Ns=1 and number of 

trust node in s(j)=s3=2 is greater than Ns;// one condition is not satisfied. 

i=2; 
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j=1; 

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust 

node in s(j)=s1=1 is not greater than Ns;// one condition is not satisfied. 

i=2; 

j=2; 

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust 

node in s(j)=s2=0 is not greater than Ns;// both conditions are not satisfied. 

i=2; 

j=3; 

number of trust node in s(i)=s2=0 is smaller than Ns=1 and number of trust 

node in s(j)=s3=2 is greater than Ns. 

X1=7;// adjacent trust node in oversized segment, s3, that is connected to 

undersized segment, s2, through the inter-segment link. 

Ls2s3={(6,7)};//inter-segment link between segments s2 and s3. 

Y1=s2; Y2=s3; 

Ls2s3.e.v2=7=X1; 

Ls2s3.e.v1=6∩{3,7,9}=∅; 

VTrust = {3,6,9}; 

Ph=1; 

// Checking all inter-segment links that are connected to at least one trust 

node as follows; 

Lss’={e1,e2,e3,e4,e5,e6}={(1,9),(2,9),(3,6),(3,7),(3,4),(6,7)} 

e1.v1=1 does not belong to VTrust e1.v2=9 belongs to VTrust; 

e12.v1=2 does not belong to VTrust e2.v2=9 belongs to VTrust; 

e3.v1=3 belongs to VTrust e3.v2=6 belongs to VTrust; 
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e4.v1=3 belongs to VTrust e1.v2=7 does not belong to VTrust; 

e5.v1=3 belongs to VTrust e5.v2=4 does not belong to VTrust; 

e6.v1=6 belongs to VTrust e6.v2=7 does not belong to VTrust; 

//All inter-segment links are connected to at least one trust node as a 

consequence updated  set of trust nodes , VTrust, is accepted. 

VTrust={3,6,9}; 

i=3; 

j=1; 

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of 

trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not 

satisfied. 

i=3; 

j=2; 

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of 

trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not 

satisfied. 

i=3; 

j=3; 

number of trust node in s(i)=s3=1 is not smaller than Ns=1 and number of 

trust node in s(j)=s1=1 is not greater than Ns;// both conditions are not 

satisfied. 

Ph=1 then balance=0 

//in the second iteration of while loop the value of ph does not change, 

ph=0, because there is no oversized and undersized segment. 

Ph=0 then balance=1;//the while loop is terminated 
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The updated set of trust node, uniform trust nodes, is returned by the 

Uniformity algorithm. 

P_cv=0; 

Improve_Measure=0.81-0=0.81//improved by 81%; 

Output: VTrust = {3,6,9}; 

Appendix A11 shows the codes that make the uniform distribution of trust nodes 

over the segments (uniformity algorithm). In uniformity algorithm, number of trust 

nodes does not change but the place of the trust node may be changed. This 

algorithm has a loop that checks the number of trust system in segment set to find the 

oversized set (Lines 16-48). It checks the other side of the link of the trust node to 

check that at first this node belongs to undersized trust system in bordering node set 

and latter checks that the other side of the link is not a trust node (Lines 49-57). If all 

the conditions are satisfied, then the trust node is removed from the oversized 

segment and is added to an undersized set (Lines 59-66). This loop continues until all 

the trust nodes are checked.  

Figure 29 shows the UniformForm, that improves the optimal TSP described in 

Chapter 2 and shown in Figure 14. It is clear that trust system moves from node 7 to 

node 6. As a result, each segment has one trust node. 
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Figure 29: Uniform Form that shows the trust nodes after uniformity problem solving 

for the system on figure 14. 

4.2 Testing Results 

Figure 30 depicts a bar chart. This bar chart compares the number of trust nodes in 

each segment (Figure 14) with the number of trust nodes in each segment after 

uniformity improvement (Figure 27). It is clear that each segment contains one trust 

system and the segments are more balanced in quantity of trust systems. 
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The relative standard deviation is used as a metric to measure the dispersion of trust 

nodes over the segments. Figure 31 shows the coefficient of variation of trust nodes 

through the segments. The smaller value indicates that the dispersion of trust nodes is 

more balance. In Figure 31, the coefficient of variation of trust nodes for the SCADA 

network in Figure 14 is 0.81 and the coefficient of variation of trust systems after 

executing the uniformity (Figure 29) is 0, it means that the segments are completely 

balanced in quantity of trust nodes and each segment has the same quantity of trust 

nodes (each segment contains 1 trust node).  

 

Figure 31: Relative standard deviation of trust system number for 3 segments of 

SCADA system in figure 14. The bar for improved version is not shown as equal to 

zero. 
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least one TS. The number of TS and inter-segment limitation are considered as 

constraints for the optimal TSP uniformity problem. in such a way that all inter-

segment links connected to at least one trust node and number of TS. We proposed 

Uniformity optimization algorithm to distribute the trust systems over the segments. 

By testing the algorithm, graph in Figure 9 used as input, and comparing the results 

with Figure 14 we realized that all segments were balanced in number of trust 

systems. The coefficient of variation was used to measure the dispersion of trust 

systems over the segments. Before performing the Uniformity algorithm, the 

coefficient of variation was 0.81 and after that it changed to 0, lower value of 

coefficient of variation means that segments are more balanced. As a consequence, 

we improved the dispersion of trust systems over the segments for the graph in 

Figure 9 by 81%. 
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Chapter 5 

EXPERIMENTS ON IEEE TEST SYSTEM 

TOPOLOGIES 

In this chapter, we will compare the results of our software for large and small 

networks with the numerical results shown in Chapter 2, Figures 18-20. Large 

networks contain BUS 118 and BUS 300 and BUS 14, BUS 30 and BUS 57 are 

members of small networks. The information of the small networks and large 

networks are used as a text file in the application Appendix B. Small networks are 

split into 3 to 6 segments with increment of 1. Large networks are divided into 5 to 

30 segments with increments of 5. All experiments are run on a laptop with Intel core 

i7 2.10 GHz and 8GB RAM. We run the application one time for each IEEE test 

system topologies, because the input data are not changed. The numerical results are 

shown in Appendix C. 

The obtained results for BUS14 are shown in Appendix C1, Figures (41-44). The 

obtained results for BUS30 are depicted in Appendix C2, Figures (45-49) and these 

results are shown in Figures (50-54) for BUS57. These numerical results include: 

number of TS, link mean weight, link weight standard deviation, average MST 

weight, average segment size and coefficient of variation of computed segment sizes. 

Figures (55-60) depicts the results for BUS118 and Figures (61-66) shows the 

experimental results for BUS300. 
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5.1 Experimental Results on Original TSP 

Figure 32 compares the overview of experimental parameters. Figure 32(a) is a table 

of summary of experimental parameters on our experiment. Figure 32(b) shows a 

table of summary of experimental parameters in [1]. In comparison, the value of 

elements for BUS 30, BUS 57, BUS 118, BUS 300 are slightly different. I used the 

same databases and implemented the exact algorithms in [1]. These differences may 

be happened because the databases are updated. The differences on number of active 

links might affect on the MST, segments and number of trust nodes. The number of 

active links for BUS14 is the same in both Figures 32(a) and 29(b). As a 

consequence, BUS14 is a measure to compare our results with the results in [1].  

(a) 
 

(b) 

Figure 32: Comparison of the summary of experimental parameters in (a) our 

application. (b) in [1].  

All experimental results are shown in Appendixes C1-C5. I insert our results in the 

Microsoft Excel to draw the bar charts and line charts. Figures 33-38 compare our 

experimental results with the results in [1]. 

Figure 33 compares the relative standard deviation of the calculated segment sizes in 

[1] (Figure 33(a)) with the relative standard deviation of the calculated segment sizes 

on our experiments. The trend of the Figure 33(b) is same as the trend of the Figure 
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33(a) for BUS14, BUS30 and BUS57 SCADA networks with 3 and 4 segments and 

it is same as the trend of the Figure 33(a) for BUS30 SCADA network with 5 and 6 

segments. 

 

(a) 

 
(b) 

Figure 33: Relative standard deviation of the calculated segments sizes for small 

networks in (a) [1]. (b) our experiments.  

Figure 34 compares the relative standard deviation of the calculated segment sizes in 

[1] (Figure 34(a)) with the relative standard deviation of the calculated segment sizes 
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34(a) for large BUS300, with 5, 10, 15, and 20 segments and the relative standard 

deviation of computed segment sizes for BUS118 is slightly different by comparing 

with the result in [1](Figure 34(a)). 

 
(a) 

 
(b) 

Figure 34: Relative standard deviation of the calculated segments sizes for large 

networks in (a) [1], (b) our experiments.  

Figure 35 demonstrates the line chart for average of MST weights for small 

networks. Figure 35(a) depicts the average of MST weights for small networks in [1]. 
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Figure 35(b) illustrates the line chart for average of MST weights for small networks 

on our experiments. In general, Figure 34(b) in comparison with Figure 34(a), the 

average of MST weight follows the same decreasing trend by the number of 

segments rises. 

 

(a) 

 
(b) 

Figure 35: The average MST weights for small networks in (a) [1]. (b) our 

experiments.  
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Figure 35 and 36 demonstrates the line chart for average of MST weights for small 

networks. Figure 35(a) depicts the average of MST weights for small networks in [1]. 

Figure 35(b) illustrates the line chart for average of MST weights for small networks 

on our experiments. In general, Figure 35(b) in comparison with Figure 35(a), the 

average of MST weight follows the same decreasing trend by the number of 

segments rises. 

Figure 36 depicts the line chart for average of MST weights for large networks. 

Figure 36(a) illustrates the average of MST weights for large networks in [1]. Figure 

36(b) illustrates the line chart for average of MST weights for large networks on our 

experiments. In general, Figure 36(b) in comparison with Figure 36(a), the average 

of MST weight follows the same decreasing trend by the number of segments rises. 
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(a) 

 
(b) 

Figure 36: The average MST weights for large networks in (a) [1], (b) our 

experiments.  

Figure 37 indicates the bar chart for required number of trust system related to the 

number of segments for small networks. Figure 37(a) represents the required number 

of trust system related to the number of segments in [1]. Figure 37(b) shows the bar 

chart for required number of trust system related to the number of segments on our 

experiment. There is a slight difference between Figure 37(a) and Figure 37(b), and 

this is because of the differences of our database with database used in [1]. The trend 
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of the bar chart in Figures 37(a) is same as the trend of the bar chart in Figure 37(b). 

Both bar charts in Figure 37 follows an increasing trend as the number of segments 

increases and also the number of trust systems increases as the SCADA networks 

size rises. 

 

(a) 

 
(b) 

Figure 37: Required quantity of trust systems related to the quantity of segment for 

small networks in (a) [1]. (b) our experiments.  
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of trust system related to the number of segments in [1]. Figure 38(b) shows the bar 

chart for required number of trust system related to the number of segments on our 

experiment. The tendency of bar chart in Figure 38(b) is same as the tendency in 

Figure 38(a) but the required number of trust system is slightly different. it is 

happened because of the difference in number of links and link mean weigh as 

mentioned at the beginning of the chapter. 

 

(a) 

 
(b) 

Figure 38: Required quantity of trust systems related to the quantity of segment for 

large networks in (a) [1]. (b) our experiments.  
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5.2 Experimental Results on Comparison of Original and Proposed 

TSP 

Figure 39 represents coefficient of variation, relative standard deviation, of 

dispersion of the trust systems through the segments. BUS14 in line chart is related 

to the coefficient of variation of dispersion of the trust nodes through the segments 

without uniformity improvement algorithm for BUS14. BUS14 proposed in line 

chart is related to the coefficient of variation of dispersion of the trust nodes through 

the segments with uniformity improvement algorithm for BUS14. The proposed 

BUS14 (improved by uniformity) exhibits lower coefficient of variation than BUS14. 

Segments of proposed BUS14 in number of trust systems are more balanced compare 

to BUS14 without uniformity in [1]. The value of coefficient of variation for BUS14 

is 1 and this value for proposed BUS14 is 0 with 3 and 5 segments. As a 

consequence, the dispersion of the trust nodes (balancing segment in number of trust 

nodes) is improved by 100% for BUS14 with 3 segments. Figure 39 shows that 

dispersion of the trust nodes is improved by 81% with 4 segments and is improved 

by 35% with 6 segments. 

Coefficient of variation of the size of the segments of trust systems in BUS14 is 

calculated manually and Excel is used to show the line chart. We just test the 

Uniformity optimization algorithm on BUS14 with 3, 4, 5 and 6 segments. Example 

5 shows the calculation of the coefficient of variation of TS over the segments for 

BUS14 with 3 segments. 

Example 5: Calculation of the coefficient of variation of TS over 3-

segments for BUS14. 
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Number of TS over segments is 3; 

The value of CV, standard deviation and average before executing 

Uniformity optimization algorithm are as follows: 

Segment 1 contains 0 TS, segment 2 contains 1 TS and segment 3 contains 2 

TS. 

µ=
0+1+2

3
= 1; 

𝜎 = √
(0 − 1)2 + (1 − 1)2 + (2 − 1)2

3 − 1
= 1; 

CV=
𝜎

µ
= 1;// Coefficient of variation of TS over segments before 

Uniformity. 

The value of CV, standard deviation and average after executing Uniformity 

optimization algorithm are as follows: 

Segment 1 contains 1 TS, segment 2 contains 1 TS and segment 3 contains 1 

TS. 

µ=
1+1+1

3
= 1; 

𝜎 = √
(1 − 1)2 + (1 − 1)2 + (1 − 1)2

3 − 1
= 0; 

CV=
𝜎

µ
= 0;// Coefficient of variation of TS over segments after Uniformity. 
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Figure 39: The coefficient of variation of the size of the segments of trust systems in 

BUS14. 

Figure 40 shows the number of trust nodes in each segment of BUS14 (divided into 3 

segments). The number of trust nodes in each segment of proposed BUS14 is equal 

to 1. It means that segments are completely balanced in number of trust nodes. In 

comparison, the number of trust nodes in each segment of BUS14 is different and 

follows an increasing trend (segment 1 contains 0 trust node, segment 2 contains 1 

trust node and segment 3 contains 2 trust nodes).  

 
Figure 40: Number of trust systems in each segment of BUS 14 divided into 3-

segments partitioning. 
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5.3 Summary 

In this chapter we compared our outcomes with the numerical results in Chapter 2. 

The databases include five IEEE test system topologies for power grid systems that 

are divided into two groups of small networks, and large networks. The trend of the 

bar charts and line charts were same as the charts in Chapter 2. In general, by 

increasing the number of segments the required number of trust system increases and 

the mean value of MST weights decreases for both small and large networks. The 

segments in small networks are more balanced than the segments in large networks 

in size of the segments.  

The coefficient of variation of the size of the segments of trust systems in BUS14 

were considered to compare the results of the proposed TSP, Uniformity, with the 

original TSP. the coefficient of variation is 1 for BUS14 with 3 and 5 segments and 

this value is changed to 0 when the proposed TSP is performed. As a consequence, 

the dispersion of trust system is improved by 100% for BUS14 with 3 and 5 

segments. When the BUS14 was divided into 4 and 6 segments the value of 

coefficient of variation is 0.81, divided into 4 segments, and it is 0.75, divided into 6 

segments. After uniformity, these values were changed to 0 and 0.40. It means that, 

the dispersion of trust systems is improved by 81% and 35% when BUS14 divided 

into 4 and 6 segments. In general, the segments are more balanced in number of trust 

system by performing proposed TSP.  
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Chapter 6 

CONCLUSION 

The problem of optimal Trust System Placement (TSP) in SCADA networks is 

considered in the thesis. At present, as SCADA networks are connected to the 

internet the scope of cyber-security concerns becomes much wider. Trust systems are 

used to detect and block malicious activities. The nodes in SCADA networks that 

host the trust systems are known as trust nodes. Trust system consist of hardware and 

software agents and are expensive to deploy. The optimal TSP problem is considered 

to minimize the cost and maximize the security of the networks by installing 

minimum number of trust systems into the networks. The main part of the optimal 

TSP problem is segmentation. We divide the network into small networks, large 

networks are more vulnerable for intruders, and locate the trust system on the 

bordering node in such a way that all inter-segment links are connected to at least 

one trust node. We have implemented the TSP problem solving method proposed in 

[1].  

We compare our experimental results on IEEE test system topologies with the results 

in [1] and we obtained the same results as in [1]. The results show us that by 

increasing the number of segments the required number of trust systems increases. 

The coefficient of variation is used to measure the uniformity of segments in size of 

number of nodes. We noticed that the small networks are more balanced than the 

large networks.  
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The trust systems number per segments was noted not uniform over the segments 

after optimal TSP problem solving. It may deteriorate security for the segments that 

are not equipped by trust systems and may increase the operational delay over the 

segments and inter-segment links that are oversized in number of segments. We 

propose the optimal TSP uniformity problem to maximize the uniformity of 

segments in number of trust systems and minimize the operational expenditure 

without change of trust nodes number and TS cover all inter-segment links. We 

proposed algorithm to solve the optimal TSP uniformity   

The coefficient of variation of trust systems is used to measure uniformity of TSP. In 

original TSP problem the coefficient of variations for BUS14 with 3,4,5 and 6 

segments are 1, 0.81, 1 and 0.75 in row, and after performing the Uniformity 

optimization algorithm the coefficient of variations are change to 0, 0, 0 and 0.40 

with 3, 4, 5, and 6 segments. As a consequence, distribution of trust systems through 

the segment in comparison in [1], is improved by 100% (number of trust systems in 

each segment are same) with 3 segments and 5 segments and it is improved by 81% 

with 4 segments and it is improved by 35% with 6 segments. 
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Appendix A: Source Codes 

The source codes of the program are shown as follows. 

Appendix A1: Source Code of Class Edge: 

1. class Edge 

2. { 

3. public int Source; 

4. public int Destination; 

5. public int Weight; 

6. public int minDegree=0; 

7. public int maxdeg = 0; 
8. public decimal normalizeWeight; 

9. public decimal we=0; 

10. public bool Active = false; 

11. public bool delta_Seg; 

12. public bool Intersegment = false; 

 

 

 

13. //Insert edge 

14. public  void add_Edge(int src, int dst , int wgth) 

15. { 
16. Source = src; 

17. Destination = dst; 

18. Weight = wgth; 

19. Active = true; 

 

20. } 

 

21. } 

Appendix A2: Source Code of Class Graph: 

1. class Graph 

2. { 

3. public int verticesCount; 

4. public int edgesCount; 
5. public int[] remote_Node; 

6. public Edge[] ed; 

7. private static double area = 0.00080642; 

8. private static double p = 0.0000000250188; 

9. public void create_Graph(int vertices,int edges, Edge [] ed1) 

10. { 

11.    this.verticesCount = vertices; 

12.    this.edgesCount = edges; 

13.    this.ed = ed1;} 

 

 
14. public double mean_Weight(Edge[] ED) 

15. { 

16.    double mean = 0; 

17.    int n = 0; 

18.    for (int i = 0; i < ED.Length; i++) 

19.   { 

20.      if (ED[i].Active == true) 

21.     { 
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22.        mean += ED[i].Weight; 

23.        n++; 

24.      } 

25.    } 

26.    mean = mean / n; 

27. return mean; 

28. } 

29. public double standard_Deviation(Segment[] s, double mean) 

30. { 

31. double standard = 0; 

32.      for (int i = 0; i < s.Length; i++) 
33.     { 

34.        standard += Math.Pow((mean - s[i].nodes.Count), 2); 

35.      } 

36.      standard = (standard) / (s.Length-1); 

37.      standard = Math.Sqrt(standard); 

38. return standard; 

39. } 

40. public double standard_Deviation(Edge[] ED,double mean) 

41. { 

42.    double standard = 0; 

43.    for (int i=0;i<ED.Length;i++) 
44.    { 

45.      standard +=Math.Pow((mean - ED[i].Weight),2); 

46.    } 

47.    standard = (standard)/(ED.Length-1)); 

48.    standard = Math.Sqrt(standard); 

49.    return standard; 

50. } 

51. public double coeffcient_Variation(double Std_DV,double mean) 

52. { 

53. double co_V = 0; 

54. co_V = Std_DV / mean; 

55. return co_V; 
56. } 

57. //THIS METHOD IS USED FOR BUS300 

58. public void find_remote_node(string[] lines) 

59. { 

60. this.remote_Node = new int[300]; 

61. for (int i=0;i<lines.Length;i++) 

62. { 

63.    int count = 1; 

64.    string remote=null; 

65.    foreach(char c in lines[i]) 

66.   { 
67.     if (count <= 4) 

68.    { 

69.      if (c != 32) 

70.        remote += Convert.ToString(c); 

71.    } 

72.    count++; 

73.    } 

74.    remote_Node[i] = Convert.ToInt16(remote); 

75.  } 

76. } 

77. } 
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Appendix A3: Source Codes of Create Graph Manually: 

1. private void button1_Click(object sender, EventArgs e) 
2. {           
3. N = Convert.ToInt16(textBox5.Text); 
4. //Create graph's edge object with the number of edge that input in t

extBox4 
5. if (check == true){ 

 
6.    edg = new Edge[Convert.ToInt16(textBox4.Text)]; 
7.    check = false; 
8.    for (int j = 0; j < edg.Length; j++ 
9.      edg[j] = new Edge(); 
10. } 
11. //Adding edge details....add_Edge(source,Destination,Weight) 
12. if ((i < edg.Length) && (textBox6.Text != "")) 
13. { 
14. edg[i].add_Edge(Convert.ToInt16(textBox1.Text) -

 1, Convert.ToInt16(textBox2.Text) - 1, 
15. Convert.ToInt16(textBox3.Text)); 
16. i++;} 
17. if (textBox6.Text == "") 
18. { 
19.   MessageBox.Show("Please enter the number of segment!!!"); 
20. } 
21. //When i==edge.length inserting is finished 
22. if (i==edg.Length-1) 
23. { 
24.   textBox1.Enabled = false; 
25.   textBox2.Enabled = false; 
26.   textBox3.Enabled = false; 
27.   button1.Enabled = false; 
28.   G.create_Graph(N,Convert.ToInt16(textBox4.Text),edg); 

 
29.   

MessageBox.Show("Graph is created\n\n"+"Number of Vertices=\n"+textB
ox5.Text+"Number of Edges="+textBox4.Text); 

 
30. } 

Appendix A4: Source of Method Create-Graph_Text File: 

1. public Graph creat_Graph_text(string [] allLines,int edge_length,int vertices) 
2. { 

3. ShowGrapgdetails sh = new ShowGrapgdetails(); 

4. sh.Show(); 

5.   if (vertices == 300) 

6.   { 

 

7.    

string[] lines = File.ReadAllLines("C:\\Users\\Administrator\\Desktop\\TrustNode\\TrustNod

e\\NewFolder1\\Bus300 remote.txt"); 

 

8.    find_remote_node(lines); 
9.   } 

10. Graph G=new Graph(); 

11. G.ed = new Edge[edge_length]; 

12.     for (int i = 0; i < edge_length; i++) 

13.     G.ed[i] = new Edge(); 
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14. string source = null; 

15. string dest = null; 

16. string weigth = null; 

17. G.verticesCount = vertices; 

18. G.edgesCount = edge_length; 

19. int edgecol = 0; 

20.    for (int i = 0; i < allLines.Length; i++) 

21.    { 

22.    int count = 1; 

23.    source = null; 

24.    dest = null; 
25.    weigth = null; 

26.      foreach (char c in allLines[i]) 

27.      { 

28.        if (count <= 4) 

29.       { 

30.          if (c != 32) 

31.             source += Convert.ToString(c); 

32.        } 

33.       if ((count >= 6) && (count <= 9)) 

34.      { 

35.          if (c != 32) 
36.             dest += Convert.ToString(c); 

37.      } 

38.       if ((count >= 20) && (count <= 29)) 

39.       { 

40.           if (c != 32) 

41.               weigth += Convert.ToString(c); 

42.        } 

43.   count++; 

44.   } 

45. if (vertices == 300) 

46. { 

47. for(int k=0;k<300;k++) 
48. { 

49. if(Convert.ToInt16(source)==remote_Node[k]) 

50. G.ed[edgecol].Source = k; 

51. if (Convert.ToInt16(dest) == remote_Node[k]) 

52. G.ed[edgecol].Destination= k; 

53. G.ed[edgecol].Active = true; 

54. } 

55. } 

56. else 

57. { 

58. G.ed[edgecol].Source = Convert.ToInt16(source) - 1; 
 

 

59. G.ed[edgecol].Destination = Convert.ToInt16(dest) - 1; 

60. G.ed[edgecol].Active = true; 

61. } 

62. if (Convert.ToDouble(weigth) > 0.00000000000000000000) 

63. { 

64. double x = ((Convert.ToDouble(weigth)* area) / p); 

65. x = (x * 3) / 299792.458; 

66. x = Math.Floor(x *1000); 

67. G.ed[edgecol].Weight = Convert.ToInt16(x); 

 
68. } 

69. else 

70. { 
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71. G.ed[edgecol].Weight = 1; 

72. } 

73. sh.input_text("\t\t\t\t\t" + source + "\t\t\t\t" + dest + "\t\t\t" + G.ed[edgecol].Weight); 

74. edgecol++; 

 

75. } 

76. return G; 

77. } 

Appendix A5: Source Code of Class Minimum_Spanning_Tree: 

1. class Minimum_Spanning_Tree 
2. { 

 

3. private Graph Mst = new Graph(); 

 

 

4. private static int Find(Subset[] subsets, int i) 

5. { 

6.   if (subsets[i].parent != i) 

7.   subsets[i].parent = Find(subsets, subsets[i].parent); 

 

8.   return subsets[i].parent; 
9. } 

 

10. public static void exchange(Edge[] data, int m, int n) 

11. { 

12. Edge temporary; 

 

13. temporary = data[m]; 

14. data[m] = data[n]; 

15. data[n] = temporary; 

16. } 

17. public static void IntArrayBubbleSort(Edge[] data) 

18. { 
19. int i, j; 

20. int N = data.Length; 

 

21. for (j = N - 1; j > 0; j--) 

22. { 

23. for (i = 0; i < j; i++) 

24. { 

25. if (data[i].Weight > data[i + 1].Weight) 

26. exchange(data, i, i + 1); 

27. } 

28. } 
29. } 

 

30. private static void Union(Subset[] subsets, int x, int y) 

31. { 

32. int xroot = Find(subsets, x); 

33. int yroot = Find(subsets, y); 

 

34.     if (subsets[xroot].rank < subsets[yroot].rank) 

35.       subsets[xroot].parent = yroot; 

36.     else if (subsets[xroot].rank > subsets[yroot].rank) 

37.        subsets[yroot].parent = xroot; 

38.     else 
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39.     { 

40.            subsets[yroot].parent = xroot; 

41.           ++subsets[xroot].rank; 

42.      } 

43.    } 

 

44. //Prepare the string to show the MST details 

45. public  string Print(Edge[] result,int e) 

46. { 

47. string s = null; ; 

48.   for (int i = 0; i < e-1; ++i) 
49.   { 

50.      s += "\t"+(result[i].Source) + "\t\t" + (result[i].Destination) + "\t\t\t" + result[i].Weight; 

51.      s += Environment.NewLine; 

52.    } 

53. return s; 

54. } 

 

55. //Disjointset method used for segmentation the difference with kruskal is: kruskal return grap

h disjointset return subset 

56. public  Subset[] disjointset(Graph graph) 

57. { 
 

58. int verticesCount = graph.verticesCount; 

 

59. //Initial subset and edge array object 

60. Edge[] result = new Edge[verticesCount]; 

61. Subset[] subsets = new Subset[verticesCount]; 

62. for (int k = 0; k < verticesCount; k++) 

63. { 

64. result[k] = new Edge(); 

65. subsets[k] = new Subset(); 

66. } 

67. //----------------------------------------- 
 

68. int i = 0; 

69. int e = 0; 

  

70. Array.Sort(graph.ed, delegate (Edge a, Edge b) 

71. { 

72. return a.Weight.CompareTo(b.Weight); 

73. }); 

 

 

 
74. for (int v = 0; v < graph.verticesCount; ++v) 

75. { 

76. subsets[v].parent = v; 

77. subsets[v].rank = 0; 

78. } 

 

79. while (i < graph.ed.Length) 

80. { 

81. Edge nextEdge = graph.ed[i++]; 

82. int x = Find(subsets, nextEdge.Source); 

83. int y = Find(subsets, nextEdge.Destination); 

 
84. if (x != y) 

85. { 

86. result[e++] = nextEdge; 
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87. Union(subsets, x, y); 

88. } 

89. } 

 

 

 

90. return subsets; 

 

91. } 

92. public Graph  Mst_Graph(Graph graph) 

93. { 
94. int verticesCount = graph.verticesCount; 

 

95. //Initial subset and edge array object 

96. Edge[] result = new Edge[verticesCount]; 

97. Subset[] subsets = new Subset[verticesCount]; 

98. for(int k=0;k<verticesCount;k++) 

99. { 

100. result[k] = new Edge(); 

101. subsets[k] = new Subset(); 

102. } 

103. //---------------------------------- 
 

104. int i = 0; 

105. int e = 0; 

 

106. // IntArrayBubbleSort(graph.ed); 

107. //sorting the edge by weight 

 

108. Array.Sort(graph.ed, delegate (Edge a, Edge b) 

109. { 

110. return a.Weight.CompareTo(b.Weight); 

111. }); 

 
 

112. //at first each node's parent  is themself and their rank is 0  

113. for (int v = 0; v < verticesCount; ++v) 

114. { 

115. subsets[v].parent = v; 

116. subsets[v].rank = 0; 

117. } 

 

118. while (e < verticesCount - 1) 

119. { 

120. Edge nextEdge = graph.ed[i++]; 
121. int x = Find(subsets, nextEdge.Source); 

122. int y = Find(subsets, nextEdge.Destination); 

 

123. if (x != y) 

124. { 

125. result[e++] = nextEdge; 

126. Union(subsets, x, y); 

127. } 

128. } 

 

129. Mst.ed = result; 

130. Mst.verticesCount = verticesCount; 
131. Mst.edgesCount = verticesCount-1; 

 

132. return Mst; 



 117 

 

133. } 

 

 

134. //Finding minimum degree of each edge & normalizing the edge weight (edge.weight/maxim

um weight) 

135. public  void MinDegree(Graph MST) 

136. { 

137. int dest; 

138. int src; 

139. int maxWeight = 0; 
140. maxWeight = MST.ed[0].Weight; 

141. for (int i = 0; i < MST.edgesCount; i++) 

142. { 

143. maxWeight = Math.Max(maxWeight, MST.ed[i].Weight); 

144. int scount = 0; 

145. int dcount = 0; 

146. src = MST.ed[i].Source; 

147. dest = MST.ed[i].Destination; 

148. for (int j = 0; j < MST.edgesCount; j++) 

149. { 

150. if ((src == MST.ed[j].Source) || (src == MST.ed[j].Destination)) 
151. { 

152. scount++; 

153. } 

 

154. if ((dest == MST.ed[j].Source) || (dest == MST.ed[j].Destination)) 

155. { 

156. dcount++; 

157. } 

158. } 

159. MST.ed[i].minDegree = Math.Min(scount, dcount); 

160. MST.ed[i].maxdeg = Math.Max(scount,dcount); 

161. } 
 

162. //calculating the normalizeweight 

163. for (int j = 0; j < MST.edgesCount; j++) 

164. { 

165. MST.ed[j].normalizeWeight = Convert.ToDecimal(Convert.ToDecimal(MST.ed[j].Weight) /

 Convert.ToDecimal(maxWeight)); 

 

166. } 

167. } 

 

 
168. } 

Appendix A6: Source Code of Class LPP: 

1. class LPP 

2. { 

3. //STEP2 

4. MLApp.MLApp matlab = new MLApp.MLApp(); 

5. private double alpha = 1; 

6. private double beta = 0.5; 

7. public double[,] LPP2(int Numberof_Borderin,int Numberof_interlink,Edge[] Intersegment,

Bordering_Node_Details[] B_S) 

8. { 

9. double[,] f = new double[Numberof_Borderin, 1]; 

10. double[,] intcon = new double[1, Numberof_Borderin]; 
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11. double[,] A = new double[Numberof_interlink, Numberof_Borderin]; 

12. double[,] b = new double[Numberof_interlink,1]; 

13. double[,] Aeq = new double[1,Numberof_Borderin]; 

14. double[,] beq = new double[1,1]; 

15. double[,] lb = new double[1,Numberof_Borderin]; 

16. double[,] ub = new double[1,Numberof_Borderin]; 

 

17. for (int i = 0; i < Numberof_Borderin; i++) 

18. for (int j = 0; j < Numberof_Borderin; j++) 

19. f[i, 0] = 1; 

 
 

20. for (int i = 0; i < Numberof_Borderin; i++) 

21. { 

 

22. lb[0, i] = 0; 

23. ub[0, i] = 1; 

24. intcon[0, i] = i + 1; 

25. } 

26. //Fill Array "A" 

27. for(int i=0;i<Numberof_interlink;i++) 

28. { 
29. int index1; 

30. int index2; 

31. index1 = Find_for_Array_A(Intersegment[i].Source, B_S); 

32. index2 = Find_for_Array_A(Intersegment[i].Destination, B_S); 

33. A[i,index1] = -1; 

34. A[i, index2] = -1; 

35. b[i, 0] = -1; 

36. } 

 

37. //Executing matlab function 

38. int[] ans = new int[Numberof_Borderin]; 

39. object res = null; 
40. matlab.Feval("intlinprog", 4, out res, f, intcon, A, b, Aeq, beq, lb, ub); 

 

41. object[] lppresult = res as object[]; 

42. double[,] sln = lppresult[0] as double[,]; 

 

43. return sln; 

44. } 

 

 

45. public int Find_for_Array_A(int node,Bordering_Node_Details[] B_s) 

46. { 
 

47. int j = 0; 

48. int ans = 0; 

49. for(int i=0;i<B_s.Length;i++) 

50. { 

51. for (int k=0;k<B_s[i].BNode.Count;k++) 

52. { 

53. if (node != B_s[i].BNode[k]) 

54. j++; 

55. else 

56. { 

57. ans = j; 
 

58. } 

59. } 
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60. } 

 

61. return ans; 

62. } 

 

63. //This method solve the lpp problem and return N-K number of edges (ESS) 

64. public Edge[] LPP1(Graph Mst, double Num_segMent) 

65. { 

66. double[,] f = new double[Mst.edgesCount, 1]; 

67. double[,] intcon = new double[1, Mst.edgesCount]; 

68. double[,] A = new double[Mst.edgesCount, Mst.edgesCount]; 
69. double[,] b = new double[Mst.edgesCount, 1]; 

70. double[,] Aeq = new double[1, Mst.edgesCount]; 

71. double[,] beq = new double[1, 1]; 

72. double[,] lb = new double[1, Mst.edgesCount]; 

73. double[,] ub = new double[1, Mst.edgesCount]; 

 

74. ////Preparing Subjects to for mix integer linear programming 

75. for (int i = 0; i < Mst.edgesCount; i++) 

76. for (int j = 0; j < Mst.edgesCount; j++) 

77. A[i, j] = 0; 

 
 

78. for (int i = 0; i < Mst.edgesCount; i++) 

79. { 

80. A[i, i] = 1; 

81. lb[0, i] = 0; 

82. ub[0, i] = 1; 

83. intcon[0, i] = i + 1; 

84. b[i, 0] = Mst.ed[i].minDegree; 

85. Aeq[0, i] = 1; 

86. Mst.ed[i].we = (Convert.ToDecimal(alpha) * Convert.ToDecimal(Mst.ed[i].minDegree)) + (

Convert.ToDecimal(beta) * Convert.ToDecimal(Mst.ed[i].normalizeWeight)); 

 
87. } 

88. for (int i = 0; i < Mst.edgesCount; i++) 

89. f[i, 0] = Convert.ToDouble(-Mst.ed[i].we); 

90. beq[0, 0] = Num_segMent - 1; 

91. //-------------------------------------------------------------------- 

 

 

92. //------------------Executing matlab function         

93. int[] ans = new int[Mst.edgesCount]; 

94. object res = null; 

95. matlab.Feval("intlinprog",4, out res, f, intcon, A, b, Aeq, beq, lb, ub); 
 

96. //--------------------------------------------------- 

 

97. //----------------------------Access to out put of the matlab function------------------------ 

98. object[] lppresult = res as object[]; 

99. double[,] sln = lppresult[0] as double[,]; 

 

 

100. //Avtive value changed to false for selected edge from the LPP  

101. for (int i = 0; i < sln.Length; i++) 

102. { 

103. if (sln[i, 0] == 1) 
104. Mst.ed[i].Active = false; 

 

105. } 
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106. Edge[] rss = new Edge[Mst.verticesCount]; 

107. for (int i = 0; i < Mst.verticesCount; i++) 

108. rss[i] = new Edge(); 

109. Graph Mstss = new Graph(); 

110. Mstss.ed = rss; 

111. Mstss.verticesCount = Mst.verticesCount; 

112. Mstss.edgesCount = Mst.verticesCount - Convert.ToInt16(Num_segMent); 

113. int o = 0; 

 

 
114. //preparing Ess edge(matrices)----------------------------------- 

115. for (int j = 0; j < Mst.edgesCount; j++) 

116. { 

117. if (Mst.ed[j].Active != false) 

 

118. { 

119. Mstss.ed[o].Destination = Mst.ed[j].Destination; 

120. Mstss.ed[o].Active = Mst.ed[j].Active; 

121. Mstss.ed[o].Source = Mst.ed[j].Source; 

122. Mstss.ed[o].Weight = Mst.ed[j].Weight; 

123. o++; 
124. } 

 

125. } 

126. //----------------------------------------------------------------- 
 

127. return Mstss.ed; 

 

128. } 

129. } 

130. } 

 

Appendix A7: Source Code of Class Delta_Min: 

1. class Delta_min 
2. { 

3. public Segment delta_computation(Segment S_i, Segment S_j, Graph MST,Graph Mstss) 

4. { 

5. Segment dlt_M = new Segment(); 

6. int u = 999; 

7. int counting = 0; 

8. int y = 0; 

9. Edge[] E_Psi = new Edge[S_i.nodes.Count - 1]; 

10. Edge[] e_psi_cutted=new Edge[E_Psi.Length-1]; 

 

11. Minimum_Spanning_Tree disj = new Minimum_Spanning_Tree(); 
 

12. Graph cutt = new Graph(); 

 

13. Segment[] segment_Set_U; 

14. Segment s1 = new Segment(); 

15. Segment[] delta_min_set; 

 

16. bool chq = false; 

17. bool chq1 = false; 

 

18. //Finding U----------------------------------------->Z 

19. for (int i = 0; i < S_i.nodes.Count; i++) 
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20. { 

21. for (int j = 0; j < S_j.nodes.Count; j++) 

22. { 

23. for (int k = 0; k < MST.ed.Length; k++) 

24. { 

25. if (((S_i.nodes[i] == MST.ed[k].Source) || (S_i.nodes[i] == MST.ed[k].Destination)) && ((S

_j.nodes[j] == MST.ed[k].Source) || (S_j.nodes[j] == MST.ed[k].Destination))) 

26. { 

27. u = S_i.nodes[i]; 

28. } 

29. } 
30. } 

31. } 

 

32. //------------------------------------------------------------------ 

33. if (u == 999) 

34. { 

35. dlt_M.nodes.Add(-1); 

36. } 

37. else 

38. { 

39. for (int i = 0; i < E_Psi.Length; i++) 
40. E_Psi[i] = new Edge(); 

 

41. int n = 0; 

42. //finding E_Psi------------------------------------ 

43. for (int i = 0; i < Mstss.ed.Length; i++) 

44. { 

45. chq = false; 

46. chq1 = false; 

47. for (int j = 0; j < S_i.nodes.Count; j++) 

48. { 

49. if ((Mstss.ed[i].Source == S_i.nodes[j])&&(Mstss.ed[i].Active==true)) 

50. chq = true; 
 

51. } 

52. for (int j = 0; j < S_i.nodes.Count; j++) 

53. { 

54. if ((Mstss.ed[i].Destination == S_i.nodes[j]) && (Mstss.ed[i].Active == true)) 

 

55. chq1 = true; 

 

56. } 

 

57. if ((chq ==true)&&(chq1==true)) 
58. { 

59. if ((Mstss.ed[i].Destination == u) || (Mstss.ed[i].Source == u)) 

60. { 

61. E_Psi[y].Active = true; 

62. counting++; 

63. } 

64. E_Psi[y].Destination = Mstss.ed[i].Destination; 

65. E_Psi[y].Source = Mstss.ed[i].Source; 

66. E_Psi[y].Active = true; 

67. E_Psi[y].delta_Seg = true; 

68. Mstss.ed[i].delta_Seg = true; 

69. y++; 
70. } 

71. } 

72. for (int i = 0; i < E_Psi.Length - 1; i++) 
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73. e_psi_cutted[i] = new Edge(); 

74. delta_min_set = new Segment[E_Psi.Length]; 

75. for (int i = 0; i < delta_min_set.Length; i++) 

76. delta_min_set[i] = new Segment(); 

 

77. //------------------------------------End Finding------------------------ 

78. for (int i = 0; i < E_Psi.Length; i++) 

79. { 

80. int y1 = 0; 

81. //-------------cutting selected edge belong to u--------------------- 

82. if ((E_Psi[i].Source == u) || (E_Psi[i].Destination == u)) 
83. { 

84. E_Psi[i].Active = false; 

85. cutt.edgesCount = E_Psi.Length - 1; 

86. for(int k=0;k<E_Psi.Length;k++) 

87. { 

 

88. if (E_Psi[k].Active == true) 

89. e_psi_cutted[y1++] = E_Psi[k]; 

90. } 

91. cutt.verticesCount = MST.verticesCount; 

92. cutt.ed = e_psi_cutted; 
 

93. //finding delta_u segment after segmentation with updated graph 

94. segment_Set_U = s1.Segmentation(cutt.verticesCount,cutt); 

95. for (int j = 0; j < cutt.verticesCount; j++) 

96. { 

97. for (int k = 0; k < segment_Set_U[j].nodes.Count; k++) 

98. { 

99. if (segment_Set_U[j].nodes[k] == u) 

100. delta_min_set[n] = segment_Set_U[j]; 

101. } 

102. } 

103. n++; 
 

 

 

104. //restoring 

105. E_Psi[i].Active = true; 

106. } 

107. } 

108. dlt_M = delta_min_set[0]; 

109. for (int i = 1; i < delta_min_set.Length; i++) 

110. { 

111. if (delta_min_set[i].nodes.Count != 0) 
112. { 

113. if(delta_min_set[i].nodes.Count<dlt_M.nodes.Count) 

114. dlt_M = delta_min_set[i]; 

115. } 

116. } 

 

117. } 

118. return dlt_M; 

 

 

119. } 

120. } 
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Appendix A8: Source Code of the Button2_Click Event (Implementation of the 

Local Search and Initial Tree Partitioning Algorithms): 

Source Code of the Algorithms 2.7 -2.9: 

1. private void button2_Click(object sender, EventArgs e) 
 

2. { 

 

3. int phi=1; 
4. if (textBox6.Text == null) 
 
5. K = Convert.ToInt16(textBox6.Text); 
6. segment_Set = new Segment[K]; 
7. for (int i = 0; i < K; i++) 
8. segment_Set[i] = new Segment(); 
9. string s = ""; 
10. //Minimum spanning tree(MST) using kruskal algorithm 
11. MST =kruskal.Mst_Graph(G); 
12. //minimum degree of each edge and normalized the weight---

This method is in minimum spanning tree class 
13. kruskal.MinDegree(MST); 
14. //show the MST graph details in form 
15. ms.Show(); 

 
16. Mean_Weight = G.mean_Weight(G.ed); 
17. St_Deviation = G.standard_Deviation(G.ed, Mean_Weight); 

 
 

 
 

18. s = kruskal.Print(MST.ed,MST.verticesCount); 
19. ms.input_Mst_Res(s); 

 
20. //return(N-K) number of edges 
21. Ess = lpp1.LPP1(MST,K); 

 
22. Mstss.verticesCount = N; 
23. Mstss.edgesCount = N - K; 
24. Mstss.ed = Ess; 

 
25. //Initial segment sets 
26. segment_Set = s1.Segmentation(K, Mstss); 
27. Ks= Ks = Convert.ToInt16(Math.Ceiling(Convert.ToDecimal(G.verticesCo

unt) / Convert.ToDecimal(K))); 
 

 
28. while (phi < 1) 
29. { 
30. int count = 0; 
31. for (int i = 0; i <K; i++) 
32. { 
33. for (int j = 0; j < K; j++) 
34. { 
35. if ((segment_Set[i].nodes.Count > Ks) && (segment_Set[j].nodes.Count

 < Ks)) 
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36. { 
 

37. delta_Min = computation.delta_computation(segment_Set[i], segment_Se
t[j], MST, Mstss); 

38. if (delta_Min.nodes.Count > 0) 
39. { 
40. if (delta_Min.nodes[0] != -1) 
41. { 
42. if (((Math.Abs(Ks - segment_Set[i].nodes.Count)) + (Math.Abs(Ks -

 segment_Set[j].nodes.Count))) > 
43. (Math.Abs(Ks -

 segment_Set[i].nodes.Count + delta_Min.nodes.Count) + (Math.Abs(Ks 
- segment_Set[j].nodes.Count - delta_Min.nodes.Count)))) 

44. { 
45. //Add 
46. for (int k = 0; k < delta_Min.nodes.Count; k++) 
47. segment_Set[j].nodes.Add(delta_Min.nodes[k]); 

 
48. //remove 
49. for (int l = 0; l < delta_Min.nodes.Count; l++) 
50. { 
51. for (int k = 0; k < segment_Set[i].nodes.Count; k++) 
52. { 
53. if (segment_Set[i].nodes[k] == delta_Min.nodes[l]) 
54. segment_Set[i].nodes.RemoveAt(k); 
55. } 
56. } 
57. count++; 
58. } 
59. } 
60. } 
61. } 
62. } 
63. } 
64. if (count == 0) 
65. phi = 1; 
66. } 

 

Appendix A9: Source Code of Class Borderin_Node_Details: 

1. class Bordering_Node_Details 

2. { 

3. public IList<int> BNode; 

4. public int segment_Name { get; set; } 

 

 

 

5. public IList<int> trust_node; 

 

6. public void add_bordering_node(int x,IList<int> B) 
7. { 

8. bool check = false; 

9. int n; 

10. //check for duplicate 

11. for (int i=0;i<B.Count;i++) 

12. { 

13. if(x==B[i]) 

14. { 
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15. check = true; 

16. } 

17. } 

18. if (check == false) 

19. BNode.Add(x); 

20. } 

 

 

 

 

21. } 
 

22. } 

Appendix A10: Source Code of Class Trust_Node_Selection: 

1. class Trust_Node_Selection 

2. { 

3. private Bordering_Node_Details V_Trust = new Bordering_Node_Details(); 

4. private Segment s1 = new Segment(); 

5. private LPP lp2 = new LPP(); 

6. private Edge[] L_xy ; 

7. public string ANSWER = "Trus Nodes Are:\n\t"; 

8. public Bordering_Node_Details[] trusted(Graph G,Segment[] S) 

9. { 
10. //Initializing Bordering node and Intersegment sets 

11. int count_Inter_Link=0; 

12. int x; 

13. int y; 

14. double[,] ans; 

15. Bordering_Node_Details[] B_s = new Bordering_Node_Details[S.Length]; 

16. for (int i = 0; i < S.Length; i++) 

17. { 

18. B_s[i] = new Bordering_Node_Details(); 

19. B_s[i].BNode = new List <int> (); 

20. B_s[i].trust_node = new List<int>(); 

21. B_s[i].segment_Name = i; 
22. } 

 

 

23. //------------------------------------------------------------- 

 

24. //-------------------------------------------- 

25. //--------------------------------------- 

26. for (int i = 0; i < G.edgesCount; i++) 

27. { 

 

28. x = s1.find_segment_belongtonode(G.ed[i].Source, S); 
 

29. y = s1.find_segment_belongtonode(G.ed[i].Destination, S); 

 

30. if (x != y) 

31. {     

32. B_s[x].add_bordering_node(G.ed[i].Source,B_s[x].BNode); 

33. B_s[y].add_bordering_node(G.ed[i].Destination,B_s[y].BNode); 

34. G.ed[i].Intersegment = true; 

35. count_Inter_Link++; 

 

36. } 

37. } 
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38. //Fill the intersegment link array 

39. L_xy = new Edge[count_Inter_Link]; 

40. for (int i = 0; i < L_xy.Length; i++) 

41. L_xy[i] = new Edge(); 

42. int m = 0; 

43. for (int i = 0; i < G.edgesCount; i++) 

44. { 

45. if (G.ed[i].Intersegment == true) 

 

46. { 
47. L_xy[m].Source = G.ed[i].Source; 

48. L_xy[m].Destination = G.ed[i].Destination; 

49. m++; 

50. } 

51. } 

52. //----------------------------------------- 

53. int count_bordering = 0; 

54. for (int i = 0; i < S.Length; i++) 

55. count_bordering += B_s[i].BNode.Count; 

 

56. ans=lp2.LPP2(count_bordering,count_Inter_Link,L_xy,B_s); 
57. int count = 0; 

58. //search matlab result in bordering node and convert it to node as string 

59. for(int i=0;i<count_bordering;i++) 

60. { 

61. if (ans[i, 0] != 0) 

62. { 

63. int j = i; 

64. int i1 = 0; 

 

65. for(int k=0;k<B_s.Length;k++) 

66. { 

67. for(int l=0;l<B_s[k].BNode.Count;l++) 
68. { 

69. if (j == i1) 

70. { 

71. ANSWER += Convert.ToString(B_s[k].BNode[l] + 1) + ","; 

 

72. B_s[k].trust_node.Add(B_s[k].BNode[l]); 

73. count++; 

74. i1++; 

75. } 

76. else 

77. i1++; 
 

78. } 

79. } 

80. } 

81. } 

 

 

82. ANSWER += Environment.NewLine; 

83. ANSWER += "Number of trust nodes are: " + Convert.ToString(count); 

 

84. return B_s; 

85. } 
86. } 
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Appendix A11: Source Code of Uniform_Segment: 

This class is used to uniform the segments in number of trust systems. 

1. class Uniform_Segment 

2. { 

 

3. public Bordering_Node_Details[] uniform(Bordering_Node_Details[] b_s,Graph G, Segment
[] S, int Number_of_Segment,int num_trustNodes ) 

4. { 

5. int balance = 0; 

6. int n ; 

7. int ph = 0; 

 

8. int temp=0; 

9. int Ns =Convert.ToInt16( Math.Ceiling((Convert.ToDecimal(Number_of_Segment)/Convert.

ToDecimal(num_trustNodes)))); 

10. int Ns1= Convert.ToInt16(Math.Ceiling((Convert.ToDecimal(num_trustNodes)/Convert.To

Decimal(Number_of_Segment)))); 
11. if (Ns1 > 0) 

12. Ns = Ns1; 

13. while (balance<1) 

14. { 

15. ph = 0; 

16. for(int i=0;i<Number_of_Segment;i++) 

17. { 

18. for(int j=0;j<Number_of_Segment;j++) 

19. { 

20. if((b_s[i].trust_node.Count<Ns)&&(b_s[j].trust_node.Count>Ns)) 

21. { 

22. n = 0; 
23. for(int k=0;k<G.ed.Length;k++) 

24. { 

25. //when nodes find to exchange between segments this loop will be finished 

26. if(n<1) 

27. { 

28. bool t1 = false; 

29. bool t2 = false; 

30. bool t3 = false; 

31. //find trust node belongs to oversized bordering node set 

32. for (int h = 0; h < b_s[j].trust_node.Count; h++) 

33. { 
34. if ((b_s[j].trust_node[h] == G.ed[k].Destination) || (b_s[j].trust_node[h] == G.ed[k].Source)) 

35. { 

36. temp = b_s[j].trust_node[h]; 

37. t1 = true; 

 

38. } 

 

39. } 

40. for (int h = 0; h < b_s[i].trust_node.Count; h++) 

41. { 

42. if ((b_s[i].trust_node[h] == G.ed[k].Destination) || (b_s[i].trust_node[h] == G.ed[k].Source)) 

43. { 
44. t3 = true; 

 

45. } 

 

46. } 

47. if (t1 != t3) 
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48. { 

49. int x1 = S[i].find_segment_belongtonode(G.ed[k].Source, S); 

 

50. int x2 = S[i].find_segment_belongtonode(G.ed[k].Destination, S); 

51. //check other side of the link and be sure that this node belong to undersized segment 

52. if ((((x1 == i) || (x2 == i))) && (x1 != x2)) 

53. { 

54. t2 = true; 

55. } 

 

56. if ((t1 == true) && (t2 == true)) 
57. { 

 

58. n = 1; 

59. //Add 

60. if (temp != G.ed[k].Destination) 

61. b_s[i].trust_node.Add(G.ed[k].Destination); 

62. if (temp != G.ed[k].Source) 

63. b_s[i].trust_node.Add(G.ed[k].Source); 

 

64. //remove 

65. b_s[j].trust_node.Remove(temp); 
 

66. ph++;//It checks for balancing 

 

67. } 

68. } 

69. } 

70. } 

71. } 

72. } 

73. } 

 

74. if (ph == 0) 
75. balance = 1; 

76. } 

77. return b_s; 

78. } 

79. } 
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Appendix B: IEEE Test System Topologies Databases 

Following Tables show the first and last 5 rows of data for IEEE test system 

topologies. The complete databases are provided in the attached CD.  

Appendix B1: IEEE BUS14 Branch Data: 

Table 5: IEEE BUS14 branch data. 

 
. 

. 

. 

. 

. 

 

Appendix B2: IEEE BUS30 Branch Data: 

Table 6: IEEE BUS30 branch data. 

 
. 

. 

. 

. 

 

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.01938 0.05917 0.0528 0 0 0 0 0 0 0 0 0 0 0 0

2 1 5 1 1 1 0 0.05403 0.22304 0.0492 0 0 0 0 0 0 0 0 0 0 0 0

3 2 3 1 1 1 0 0.04699 0.19797 0.0438 0 0 0 0 0 0 0 0 0 0 0 0

4 2 4 1 1 1 0 0.05811 0.17632 0.034 0 0 0 0 0 0 0 0 0 0 0 0

5 2 5 1 1 1 0 0.05695 0.17388 0.0346 0 0 0 0 0 0 0 0 0 0 0 0

16 9 10 1 1 1 0 0.03181 0.0845 0 0 0 0 0 0 0 0 0 0 0 0 0

17 9 14 1 1 1 0 0.12711 0.27038 0 0 0 0 0 0 0 0 0 0 0 0 0

18 10 11 1 1 1 0 0.08205 0.19207 0 0 0 0 0 0 0 0 0 0 0 0 0

19 12 13 1 1 1 0 0.22092 0.19988 0 0 0 0 0 0 0 0 0 0 0 0 0

20 13 14 1 1 1 0 0.17093 0.34802 0 0 0 0 0 0 0 0 0 0 0 0 0

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.0192 0.0575 0.0528 0 0 0 0 0 0 0 0 0 0 0 0

2 1 3 1 1 1 0 0.0452 0.1652 0.0408 0 0 0 0 0 0 0 0 0 0 0 0

3 2 4 1 1 1 0 0.057 0.1737 0.0368 0 0 0 0 0 0 0 0 0 0 0 0

4 3 4 1 1 1 0 0.0132 0.0379 0.0084 0 0 0 0 0 0 0 0 0 0 0 0

5 2 5 1 1 1 0 0.0472 0.1983 0.0418 0 0 0 0 0 0 0 0 0 0 0 0

37 27 29 1 1 1 0 0.2198 0.4153 0 0 0 0 0 0 0 0 0 0 0 0 0

38 27 30 1 1 1 0 0.3202 0.6027 0 0 0 0 0 0 0 0 0 0 0 0 0

39 29 30 1 1 1 0 0.2399 0.4533 0 0 0 0 0 0 0 0 0 0 0 0 0

40 8 28 1 1 1 0 0.0636 0.2 0.0428 0 0 0 0 0 0 0 0 0 0 0 0

41 6 28 1 1 1 0 0.0169 0.0599 0.013 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix B3: IEEE BUS57 Branch Data: 

Table 7: IEEE BUS57 branch data. 
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. 

. 

. 

. 

 

Appendix B4: IEEE BUS118 Branch Data: 

Table 8: IEEE BUS118 branch data. 
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. 
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Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.0083 0.028 0.129 0 0 0 0 0 0 0 0 0 0 0 0

2 2 3 1 1 1 0 0.0298 0.085 0.0818 0 0 0 0 0 0 0 0 0 0 0 0

3 3 4 1 1 1 0 0.0112 0.0366 0.038 0 0 0 0 0 0 0 0 0 0 0 0

4 4 5 1 1 1 0 0.0625 0.132 0.0258 0 0 0 0 0 0 0 0 0 0 0 0

5 4 6 1 1 1 0 0.043 0.148 0.0348 0 0 0 0 0 0 0 0 0 0 0 0

76 39 57 1 1 1 0 0 1.355 0 0 0 0 0 0 0.98 0 0 0 0 0 0

77 57 56 1 1 1 0 0.174 0.26 0 0 0 0 0 0 0 0 0 0 0 0 0

78 38 49 1 1 1 0 0.115 0.177 0.003 0 0 0 0 0 0 0 0 0 0 0 0

70 38 48 1 1 1 0 0.0312 0.0482 0 0 0 0 0 0 0 0 0 0 0 0 0

80 9 55 1 1 1 0 0 0.1205 0 0 0 0 0 0 0.94 0 0 0 0 0 0

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 2 1 1 1 0 0.0303 0.0999 0.0254 0 0 0 0 0 0 0 0 0 0 0 0

2 1 3 1 1 1 0 0.0129 0.0424 0.01082 0 0 0 0 0 0 0 0 0 0 0 0

3 4 5 1 1 1 0 0.00176 0.00798 0.0021 0 0 0 0 0 0 0 0 0 0 0 0

4 3 5 1 1 1 0 0.0241 0.108 0.0284 0 0 0 0 0 0 0 0 0 0 0 0

5 5 6 1 1 1 0 0.0119 0.054 0.01426 0 0 0 0 0 0 0 0 0 0 0 0

182 114 115 1 1 1 0 0.0023 0.0104 0.00276 0 0 0 0 0 0 0 0 0 0 0 0

183 68 116 1 1 1 0 0.00034 0.00405 0.164 0 0 0 0 0 0 0 0 0 0 0 0

184 12 117 1 1 1 0 0.0329 0.14 0.0358 0 0 0 0 0 0 0 0 0 0 0 0

185 75 118 1 1 1 0 0.0145 0.0481 0.01198 0 0 0 0 0 0 0 0 0 0 0 0

186 76 118 1 1 1 0 0.0164 0.0544 0.01356 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix B5: IEEE BUS300 Branch Data: 

Table 9: IEEE BUS300 branch data. 
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Appendix B6: IEEE BUS300 Remote Node Data: 

Table 10: IEEE BUS300 remote node data 

 
. 
. 
. 
. 
. 

 
  

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 37 9001 1 9 1 2 0.00006 0.00046 0 0 0 75 0 0 1.0082 0 0.9043 1.10435 0.004 0 15 1

2 9001 9005 1 9 1 0 0.0008 0.00348 0 0 0 0 0 0 0 0 0 0 0 0 0 2

3 9001 9006 1 9 1 2 0.02439 0.43682 0 0 0 0 9006 0 0.9668 0 0.9391 1.1478 0.00417 0.99 1.01 3

4 9001 9012 1 9 1 2 0.03624 0.64898 0 0 0 0 9012 0 0.9796 0 0.9391 1.1478 0.00417 0.99 1.01 4

5 9005 9051 1 9 1 1 0.01578 0.37486 0 0 0 0 9051 0 1.0435 0 0.9391 1.1478 0.00417 0.99 1.01 5

407 7039 39 1 1 1 1 0 0.03159 0 0 0 0 0 0 0.965 0 0 0 0 0 0 407

408 7057 57 1 1 1 1 0 0.05347 0 0 0 0 0 0 0.95 0 0 0 0 0 0 408

409 7044 44 1 1 1 1 0 0.18181 0 0 0 0 0 0 0.942 0 0 0 0 0 0 409

410 7055 55 1 1 1 1 0 0.19607 0 0 0 0 0 0 0.942 0 0 0 0 0 0 410

411 7071 71 1 1 1 1 0 0.06896 0 0 0 0 0 0 0.9565 0 0 0 0 0 0 411

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 1 0 1.0284 5.95 90 49 0 0 115 0 0 0 0 0 0 1

2 2 1 1 1 0 1.0354 7.74 56 15 0 0 115 0 0 0 0 0 0 2

3 3 1 1 1 0 0.9971 6.64 20 0 0 0 230 0 0 0 0 0 0 3

4 4 1 1 1 0 1.0308 4.71 0 0 0 0 345 0 0 0 0 0 0 4

5 5 1 1 1 0 1.0191 4.68 353 130 0 0 115 0 0 0 0 0 0 5

296 9055 1 1 9 2 1 -7.54 0 0 8 0 13.8 1 6 -6 0 0 9055 296

297 9071 1 1 9 0 0.9752 -20.48 1.02 0.35 0 0 0.6 0 0 0 0.0005 0 0 297

298 9072 1 1 9 0 0.9803 -19.92 1.02 0.35 0 0 0.6 0 0 0 0.0005 0 0 298

299 9121 1 1 9 0 0.9799 -19.3 3.8 1.25 0 0 6.6 0 0 0 0 0 0 299

300 9533 1 1 9 0 1.0402 -18.24 1.19 0.41 0 0 2.3 0 0 0 0.001 0 0 300
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Appendix C: Experimental Results 

The following Figures are the screenshots of 5 different databases output results. 

Appendix C1: Screenshots of Experimental Results on IEEE Test System of 

BUS14: 

 
Figure 41: The experimental results on IEEE test system of BUS14 with 3 segments. 

 
Figure 42: The experimental results on IEEE test system of BUS14 with 4 segments. 
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Figure 43: The experimental results on IEEE test system of BUS14 with 5 segments. 

 
Figure 44: The experimental results on IEEE test system of BUS14 with 6 segments. 

 

  



 134 

Appendix C2: Screenshots of Experimental Results on IEEE Test System of 

BUS30: 

Following Figures show the experimental results on IEEE test system of BUS30. 

 
Figure 45: Experimental parameters for IEEE test system topology BUS30. 

 
Figure 46: The experimental results on IEEE test system of BUS30 with 3 segments. 
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Figure 47: The experimental results on IEEE test system of BUS30 with 4 segments. 

 
Figure 48: The experimental results on IEEE test system of BUS30 with 5 segments. 
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Figure 49: The experimental results on IEEE test system of BUS30 with 6 segments. 

Appendix C3: Experimental Parameters for IEEE Test System Topology 

BUS57: 

Following Figures show the experimental results on IEEE test system of BUS57.  

 
Figure 50: Experimental parameters for IEEE test system topology BUS57. 
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Figure 51: The experimental results on IEEE test system of BUS57 with 3 segments. 

 
Figure 52: The experimental results on IEEE test system of BUS57 with 4 segments. 
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Figure 53: The experimental results on IEEE test system of BUS57 with 5 segments. 

 
Figure 54: The experimental results on IEEE test system of BUS57 with 6 segments. 
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Appendix C4: The Experimental Results on IEEE Test System of BUS118: 

 
Figure 55: The experimental results on IEEE test system of BUS118 with 5 

segments. 

 
Figure 56: The experimental results on IEEE test system of BUS118 with 10 

segments. 
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Figure 57: The experimental results on IEEE test system of BUS118 with 15 

segments. 

 
Figure 58: The experimental results on IEEE test system of BUS118 with 20 

segments. 



 141 

 
Figure 59: The experimental results on IEEE test system of BUS118 with 25 

segments. 

 
Figure 60: The experimental results on IEEE test system of BUS118 with 30 

segments. 
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Appendix C5: The Experimental Result on IEEE Test System of BUS300: 

 
Figure 61: The experimental results on IEEE test system of BUS300 with 5 

segments. 

 
Figure 62: The experimental results on IEEE test system of BUS300 with 10 

segments. 
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Figure 63: The experimental results on IEEE test system of BUS300 with 15 

segments. 

 
Figure 64: The experimental results on IEEE test system of BUS300 with 20 

segments. 
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Figure 65: The experimental results on IEEE test system of BUS300 with 25 

segments. 

 
Figure 66: The experimental results on IEEE test system of BUS300 with 30 

segments. 

 


