

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Implementation and Experiments on Distributed

Ensemble Learning System (DELS) With Several

Partitioning Methods and Classifiers

Azadeh Zamani

Eastern Mediterranean University

February 2021

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. Hadi Işık Aybay

 Chair, Department of Computer

Engineering

Assoc. Prof. Dr. Alexander Chefranov

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science in Computer Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

Examining Committee

1. Assoc. Prof. Dr. Adnan Acan

2. Assoc. Prof. Dr. Alexander Chefranov

3. Asst. Prof. Dr. Öykü Akaydın

iii

ABSTRACT

Nowadays, Machine Learning in Big Data is one of the challenges. As the large

datasets are too big to handle in the single node memory using distributed method is

mandatory. Hence, the methods of distributing data return the results with high

accuracy and better performance in time is the goal of this research. Using various

learning processes to train multiple classifiers from distributed data sets increases the

possibility of achieving higher accuracy, particularly on a big datasets. This is

because the combination of classifiers can represent an integration of different

learning biases which may compensate for each other's inefficiencies.

Implementation and Experiments on Distributed Ensemble Learning System (DELS)

With Several partitioning Methods and classifier s in single and multiple systems

have been chosen.The user should choose the input dataset, the number of partitions

and the classifier. Classification and regression tree (CART) and multilayer

perceptron (MLP) are the selected classifier used of decision tree and neural network

methods, respectively. We assume that number of partition is related to the number

of disjoint bagging which will be used for division of data and consequently the

number of parallel processors to which data is sent. Algorithms of bagging the data

are disjoint partitions (D), disjoint bags (DB), small bags (SB) and No-replication

small bags (NRSB) classification. These stratified inputs are proposed as training

samples and will train in single machine. The distribution of each part of this

stratified input is done by MPI. This service is responsible for performing several

tasks with its own resources separately. The task includes implementing the learning

algorithm and extracting the learning model. The results are N training models which

iv

are collected using the majority vote method. The model with higher prediction rank

is selected in major voting. This final model is used to check the test data and extract

the Scoring test result. The previous test is repeated in multi-node system with

random input dataset.

In single-node, SB (Small Bag) has highest and D (Disjont Partition) has lowest

accuracy. CART has 0.998 in accuracy while MLP has 0.96. MLP requires 2 to 11

more times for learning than CART. In multi-node run time in CART is 5 to 11 times

faster than MLP. The best test score we reach was 0.955. As the number of disjoint

partitions is increased scoring time will increase, thus in 2 partitions scoring time is

37 minutes while in 12 partitions it is 210 minutes.

In DELS, better training time get with LADEL and MLP algorithm than CART. It

takes 4.6 seconds in 2 nodes while training time decrease to 0.11 second in 12 nodes

by using MLP in multi-node. These results are obtained by the CART algorithm in a

multi-node system, 207 and 7.01 seconds for 2 and 12 nodes, respectively.

Keywords: distributed systems, parallel processing, ensemble learning, bagging,

classification, decision tree, neural network, disjoint partition

v

ÖZ

Günümüzde, Büyük Veride Makine Öğrenimi zorluklardan biridir. Büyük veri

kümeleri, dağıtılmış yöntem kullanılarak tek düğüm belleğinde işlenemeyecek kadar

büyük olduğundan zorunludur. Bu nedenle, sonuçları yüksek doğrulukta ve

zamanında daha iyi performansla döndüren yararlı algoritmalar kullanılarak verilerin

dağıtılması yöntemi bu araştırmanın amacıdır.

Tekli ve çoklu sistemlerde Çeşitli Bölümleme Yöntemleri ve Sınıflandırıcılar ile

Dağıtılmış Toplu Öğrenme Sisteminde (DELS) Uygulama ve Deneyler seçilmiştir.

Kullanıcı, giriş veri setini, bölüm sayısını ve sınıflandırıcıyı seçmelidir.

Sınıflandırma ve Regresyon Ağacı (CART) ve Çok Katmanlı Algılayıcı (MLP),

sırasıyla karar ağacı ve sinir ağı yöntemlerinde kullanılan seçili sınıflandırıcıdır.

Bölüm sayısının, verilerin bölünmesi için kullanılacak ayrık torbalama sayısı ve

dolayısıyla verilerin gönderildiği paralel işlemcilerin sayısı ile ilişkili olduğunu

varsayıyoruz. Verileri torbalama algoritmaları, Ayrık bölümler (D), Ayrık Torbalar

(DB), Küçük Torbalar (SB) ve Çoğaltmasız Küçük Torbalar (NRSB)

sınıflandırmasıdır. Bu tabakalandırılmış girdiler eğitim örnekleri olarak

önerilmektedir ve tek makinede eğitilecektir. Bu tabakalandırılmış girdinin her bir

bölümünün dağılımı MPI tarafından yapılır. Bu hizmet, çeşitli görevleri kendi

kaynakları ile ayrı ayrı yapmaktan sorumludur. Görev, öğrenme algoritmasının

uygulanmasını ve öğrenme modelinin çıkarılmasını içerir. Sonuçlar, ana oylama

tekniği kullanılarak bir araya getirilen N eğitim modelidir. Büyük oylamada tahmin

sıralaması daha yüksek olan model seçilir. Bu Son model, test verilerini test etmek ve

vi

Puanlama test sonucunu çıkarmak için kullanılır. Önceki test, rasgele giriş veri

kümesiyle Çoklu Düğümlü sistemde tekrarlanır.

single-node SB'de (Small Bag) en yüksek, D (Disjont Partition) ise en düşük

doğruluğa sahiptir. CART'ın doğruluğu 0.998 iken MLP 0.96'dır. MLP, öğrenme için

CART'tan 2 ila 11 kez daha fazla gerektirir. Çok Düğümlü yürütme işleminde

CART'ta, MLP'den 5 ila 11 kat daha hızlıdır. Test veri setini test ederken ulaştığımız

en iyi test puanı 0,955 idi. Ayrık bölüm sayısı arttıkça çalıştırma süresi artacaktır,

dolayısıyla 2 bölümde çalışma süresi 37 dakika, 12 bölümde 210 dakikadır. LADEL

modelinde en iyi ve en kötü test puanı 6 bölümde 0,931 ve 10 bölümde 0,192'dir.

Anahtar Kelimeler: dağıtık sistemler, Paralel işleme, Topluluk öğrenimi,

Torbalama, Sınıflandırma, Karar ağacı, Sinir Ağı, Ayrık Bölüm

vii

DEDICATION

I dedicate my dissertation to my loving family.

 In memory of my father Asghar Zamani who always encouraged me to be

independent and strong as long as he was with me. A special feeling of gratitude to

my mother who has always been the myth of patience in my life and has always

encouraged me to continue on my path with her boundless love and affection. I

dedicated it to my brothers Bahram and Shahram who have always been my

supporters in this direction and have motivated me to continue. I also dedicate this

dissertation to Leila for all her compassionate counseling by love like a sister, and

finally to my beloved nephews Anisa and Ava who are always give me energy and

love.

I will always be appreciating all they have done for me.Thank you for all your

support and love.

viii

ACKNOWLEDGMENT

I wanted to have a special thanks to Assoc. Prof. Dr. Alexander Chefranov, my

supervisor, because of the countless hours of reflection, reading, encouragment and

most of all patience in the whole process. He was the one who led me to acquire and

expand new knowledge so that I could finish this dissertation in the best possible

way. Thanks to him, I experienced real research and my knowledge on the subject

has expanded.

I sincerely appreciate Assoc. Prof. Dr. ÖNSEN TOYGAR, Assoc. Prof. Dr.

MEHMET BODUR, Prof. Dr. EKREM VAROĞLU, Assoc. Prof. Dr. DUYGU

ÇELİK ERTUĞRUL, Assist. Prof. Dr. YILTAN BITIRIM and Assist. Prof. Dr.

NİLGÜN HANCIOĞLU and all of the instructors I have been in direct contact with

and who have influenced me during this program.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

1 INTRODUCTION .. 1

2 RELATED WORKS AND PROBLEM DEFINITION .. 4

2.1 Classification and regression tree (CART), and multilayer perceptron (MLP)

classifiers .. 4

2.1.1 CART classifier ... 6

2.1.2 MLP classifier ... 8

2.2 Single and multiple-node classifier ensembles .. 13

2.2.1 Single-node Bagging-like ensembles ... 13

2.2.2 Multi-node Bagging-like ensembles .. 16

2.3 Partitioning methods for Bagging-like ensembles .. 17

2.3.1 Disjoint partitioning .. 18

2.3.2 Small bags partitioning .. 20

2.3.3 No-replication small bags partitioning .. 21

2.3.4 Disjoint bags partitioning .. 23

2.4 The label-aware distributed ensemble learning (LADEL) 24

2.5 LADEL evaluation ... 28

2.6 Parallel computing ... 30

x

2.7 Client-server architecture ... 33

2.8 Message passing interface (MPI) ... 34

2.9 MPI in Python .. 35

2.10 Problem definition .. 37

3 DESIGN, IMPLEMENTATION AND EXAMINATION OF DELS 39

3.1 DELS design and architecture .. 40

3.2 Design and implementation of IOS .. 44

3.3 Design and implementation of partitioning subsystem 46

3.4 Design and implementation of training subsystem .. 48

3.5 Design and implementation of testing subsystem .. 50

3.6 Testing DELS ... 52

3.6.1 Accuracy comparison for Bagging-like partitioning method.................... 52

3.6.1.1 Accuracy in single-node ... 52

3.6.1.2 Accuracy in multi-node architecture .. 55

3.6.2 Prediction and test-score and runtime comparison for Bagging-like

partitioning method and LADEL algorithm ... 57

4 EXPERIMENTS ON DELS ... 58

4.1 Experimental setup ... 59

4.1.1 Environment setup .. 59

4.1.2 Datasets ... 60

4.2 Accuracy comparison for single-node classifier ensemble 61

4.3 Accuracy comparison for multi-node classifier ensemble 64

4.3.1 Prediction comparison for Bagging-like partitioning method 607

4.4 Training time and scoring time comparison for LADEL 68

5 CONCLUSION ... 72

xi

REFERENCES ... 75

APPENDICES………………………………………………………………………78

 Appendix A: Software source code- Implementation of DELS 79

Appendix B: Experimental results of DELS .. 102

Appendix C: Experimental results of DELS system .. 107

Appendix D: Experimental results of DELS system.. 112

Appendix E: Experimental results of DELS system .. 117

Appendix F: Comparison on “KDDCUP” dataset with CART classifier on single

node system...……..…………………………………………………………….122

Appendix G: Comparison on “KDDCUP” dataset with MLP classifier on single

node system. ……………………………………………………………………123

Appendix H: Comparison on “KDDCUP” dataset with CART classifier on multi

node system .. 124

Appendix I: Comparison on “KDDCUP” dataset with MLP classifier on multi-

node system .. 125

Appendix J:Experimental results of DELS system .. 126

Appendix K: Experimental results of DELS system on HIGGS 130

Appendix L: Experimental results of DELS system on HIGGS 132

Appendix M: Experimental results of DELS system on KDD Cup 99 133

xii

LIST OF TABLES

Table 4. 1: Input data set attributes .. 60

Table 4.2: Run-time in single-node mode .. 64

Table 4.3: Run-time in multi-node mode ... 66

Table 4.4: Accuracy of model in training dataset by Cross-valiadation & accuracy of

model in testing dataset by test scores in Bagging-like methods by MLP 67

Table 4.5: Training and scoring time in Bagging-like methods by MLP in multi-node

mode ... 68

xiii

LIST OF FIGURES

Figure 2.1: Splitting training data into regions .. 6

Figure 2.2: Decision tree model for Figure 2.1 .. 6

Figure 2.3: Splitting training data into t regions .. 8

Figure 2.4: Decision tree model for Figure 2.3 .. 8

Figure 2.5: Perceptron .. 9

Figure 2.6: Multilayer perceptron (MLP) .. 10

Figure 2.7: Single-node Bagging ensemble classifier schema 15

Figure 2.8: Multi-node Bagging-like classifier ensemble schema 17

Figure 2.9: Four Bagging-like strategies: D, SB, NRSB, DB [2] 17

Figure 2.10: Disjoint partitioning method D [2] .. 18

Figure 2.11: An illustration of small bags, SB [2] ... 20

Figure 2.12: An illustration of No-replication small bags, NRSB [2] 22

Figure 2.13: An illustration of disjoint bags, DB [2] ... 23

Figure 2.14: LADEL execution overview [3] .. 25

Figure 2.15: single-node stratified sampling [3] .. 26

Figure 2.16: Distributed stratified sampling (DSS) [3] .. 27

Figure 2.17: Ratio of the training time of distributed ensemble to a sequential single-

node classifier [3] .. 29

Figure 2.18: Ratio of the scoring time of single machine ensemble to a sequential

single-node classifier [3] ... 30

Figure 2.19: Ratio of distributed scoring time on 10 machines of an ensemble to that

of a single classifier on a single machine [3] .. 30

Figure 2.20: Distributed memory model [17] .. 34

xiv

Figure 2.21: Shared memory model [19] ... 34

Figure 2.22: Hybrid memory model [17] ... 35

Figure 3.1 DELS architecture .. 40

Figure 3.2 Input/output subsystem (IOS) ... 45

Figure 3.3 Partitioning subsystem .. 47

Figure 3.4 Training subsystem ... 49

Figure 3.5Testing subsystem .. 51

Figure 3.6 Program execution in terminal, single-node ... 53

Figure 3.7 Resource monitoring in master system with 8 processors 54

Figure 3.8 Program execution in terminal, multi-node .. 56

Figure 3.9 Resource monitoring in client system with 4 processors 57

Figure 4.1 Accuracy comparison on Bagging-like ensembles by MLP for 2 disjoint

partitions [Appendix G] ... 62

1

Chapter 1

INTRODUCTION

Nowadays, extracting useful information from large amounts of data stored in

databases and warehouses known as data mining is important in system analysis.

Data mining [1] is the process of finding meaningful statistical patterns in a large

amount of data. It applies in many fields including business, science,

telecommunication, and medicine to predict protein structure [2], prevents network

intrusion detection, and recognizes breast cancer from mammography tests. Finding

these statistical patterns based on some techniques including classification,

regression, clustering, and association rules.

In 1959, Arthur Samuel defined machine learning as a “field of study that gives

computers the ability to learn without being explicitly programmed” [4]. Generating

disjoint subsets of training dataset fitting memory [2] allows decreasing training time

Thus, breaking big data into several smaller files and processing each part is

necessary. The training algorithms execute on each part to produce multiple models

aggregated into an ensemble. Prediction results of the ensemble models are

combined by majority voting to produce improved results. Partitioning data into

smaller parts (disjoint partitions) affects accuracy and computational efficiency of

the ensembles of classifiers.

2

There are several methods to partition big data. For example, Chawla et al [2] used

various Bagging-like partitioning methods. They were tested on small-, medium-,

and large-sized data. There are two difficulties in using Bagging-like methods. 1-

When the training dataset order by the class labels. A class label attributes a data to a

particular class. If a training dataset arrange on the class label, small partitions

probably contain data belonging to a single label. Therefore, the algorithm always

predicts the same single class. 2- When the proportion of records in one class is

significantly different than another class. Having highly skewed training dataset may

prevent some partitions from including minority class labels records, which may

result in not recognizing minority class records.

The label_aware distributed ensemble learning (LADEL) [3] algorithm has an add-

on model for the Bagging-like model that does not have the above problems by

including all class labels in each partition, while no class labels are included in

Bagging-like partitions. Classifiers can be created in a distributed way on disjoint

partitions. Each classifier can be learned in parallel on a separate processor.

In this work, we shall consider a problem of large-scale data breaking down into

smaller parts and train several classifiers from distributed data sets separately. These

partitions are generated by the Bagging-like method and LADEL distributed over

multiple processors’ memories, and classifiers are trained separately on them. To

generate the final classifier, the trained classifiers are aggregated using majority

voting to produce the final classifier. These distributed and parallel processing may

improve accuracy and the training time.

3

The rest of the thesis is set as follows: Chapter 2 surveys classifiers, Bagging

classifier ensembles, the segmentation methods for Bagging-like distributed

ensembles of classifiers, LADEL model, describes experimental settings, and results

for them. The problems of the thesis are defined. Chapter 3 explains the system

architecture design, implementation, and testing of the distributed ensemble learning

system (DELS). Chapter 4 introduces experimental settings and results on DELS

study and comparison of DELS versus LADEL and other models. Chapter 5 is

conclusion.

4

Chapter 2

RELATED WORKS AND PROBLEM DEFINITION

In data mining and Machine learning, discovering the patterns in data is used to

predict (classify) new data. Data maybe labeled or unlabeled. Labels tag labeled data.

For example, a collection of patient data containing their test results in the diagnosis

of cancer label with one (positive), or zero (negative). Machine learning approaches

classify into supervised and unsupervised based on whether data labeled or not. If the

training data labeled, it is in the supervised group, otherwise, in the unsupervised

group. Supervised learning algorithms use Classification and Regression, while

unsupervised learning algorithms use Clustering and Association Rules.

In this chapter, CART and MLP classifiers (Section 2.1), single and multiple-node

classifier ensembles, partitioning methods for Bagging-like ensembles (Section 2.3),

LADEL, and LADEL evaluation (Section 2.4 and 2.5), Parallel computing (Section

2.6), Client-server architecture (Section 2.7), MPI and MPI with Python (Section 2.8

and 2.9) and problem definition (Section 2.10) are considered.

2.1 Classification and regression tree (CART), and multilayer

perceptron (MLP) classifiers

One of the main purposes of data mining is to predict the unknown value of a new

sample based on previous samples. Achieving such a result is performed in two

steps:

A) Training step: Createe a predictive model [6] on training samples [7] using some

5

learning-algorithm.

B) Test step: The created predictive model is used to classify test samples.

In machine learning, usually an input dataset is divided into two parts, training and

testing samples. The training dataset is a dataset of records used during learning

process; it is used to tune the parameters of a classifier (train model). The testing

dataset is a dataset that is independent of the training dataset, and is a set of records

used only to assess the accuracy of the trained model (learned classifier)]. In

supervised learning, training data has an attribute named “class label” for classifying

the data based on their common attribute and predicting a class of testing data. In

learning process on a training dataset, algorithm builds a model based on the class of

data specified by the class labels. Then, the model built is used to predict (classify)

test data. Identifying the class of a test sample is called classification.

Decision tree learning [8] is a method of machine learning that creates a model for

predicting the amount of output variables depend on input values. A decision tree is a

tree structure used to categorize data. It breaks down an input dataset into smaller

subsets and decision tree is incrementally developed. A decision tree defined as a

group of nodes which is started with root node as first parent node and continue

breaking down the parent node recursively into child nodes based on a series of

decisions using the variables in the dataset. The final child nodes in tree are called

leaves and the final result is a tree with decision (parent) nodes and leaf (child)

nodes. The examples will be considered in the CART section (section 2.1.1).

6

2.1.1 CART classifier

Classification and Regression Tree (CART) [9] is tree-based method which creates a

binary decision tree model, meaning each parent node has two children. It is

supervised learning because the training data is pre-classified using labels. The

strong point of this method is that it allows diverse types of input data. The input data

can be numerical, like price, or non-numerical, or categorical, like location. CART

versatility makes it a popular tool for a wide range of input data types. It works with

all types of input data by “classification tree” or “regression tree”.

For classification tree, Figure 2.1 shows points in the plane either marked with cross

or circle as an illustration of input data. This display shows the values of two

variables for a set of training data. The training data is displayed as a set of points,

each of the points having two values, one is the position-determining variable on the

horizontal axis (x) and the other is the value of the position-determining variable on

the vertical axis (y). These points have two shapes: “cross”, or “circle”.

Figure 2.1: Splitting training data into

regions

Figure 2.2: Decision tree model for

Figure 2.1

Cross and circle are two class labels. The purpose of the classifier is to partition the

plane into smaller regions and assign a class label to each region by majority number

of class labels. First, the training dataset of the points (xi, yi), i=1, 33, labeled by

stars and circles, is in the whole region labeled by t1 (single-node). Then, split t1 into

7

two regions (nodes), t2 (where xi<5), and t3 (where x>=5). T2 label with a cross

because it has more crosses than circles. Therefore, this area no longer needs further

division and known as the leaf in the decision tree, but for t3, we cannot decide on

the labeling of this area. Continue splitting t3 into t4 (for yi>=3) and t5 (for yi<3).

Now assign the class label into each region. The region t4 is marked by “circle”,

because has more circles than crosses, and t5 is marked by “cross”. Figure 2.2 shows

decision tree for Figure 2.1. Decision on splitting each region made by some rules.

These rules split each region in a decision tree into two sub-regions, so decision tree

is called binary decision tree. Once the decision tree is built, the trained model is

ready. This model is used to find new data class labels and prediction of new data

class labels is possible. For example, assume the new data point is A= {(10, 2,?)}, it

has not class label. The prepared decision tree is a model to predict the class label for

point A. As x = 10 and its greater than 5, it belongs to t3. Then y = 2 and it is less

than 3, hence, it belongs to t5. According to model, A belongs to t5 with the class

label cross. Thus, A={(10,2,cross)}.

For Regression Tree method, Figure 2.3 shows points in the xy-plane by crosses. In

this case, goal is to find a function y = f(x) whose graph lies close to the given data

points. Figure 2.4 shows decision tree for the data in Figure 2.3. The method of the

regression tree is similar to classification tree. The only difference is that instead of

finding majority number of class labels for decision making, in regression tree, the

average y-value of the data is used as the value of the regression function on each

region and the target value of decisions can take continuous values (typically real

numbers). For creating the decision tree firstly, the training dataset of the points (x,

y) is in the whole region labeled t1. Then, split t1 into two regions (nodes), t2 (where

8

x < x , and 𝑦(𝑥) = 𝑦 ̅ is the average of 𝑦, for examplex =4), and t3 (where x >=

x with what average of y?). The region t2 can again be split into t4 (where x <x=2

and average of y is y4) and t5 (where x >=x=2 and average of y is y5). For t3, spilt

it into t6 (where x <x=6 and average of y is y6), and t7 region (where x>=x=6, and

average of y is y7). For prediction, y value for the known x value by decision tree,

region of x value will be selected in decision tree, then the related y value will be

assigned to y(x).

Figure 2.3: Splitting training data into t

regions

Figure 2.4: Decision tree model for

Figure 2.3

2.1.2 MLP classifier

Multilayer perceptron (MLP) [10] is one of the artificial Neural Networks (ANN)

[11] classifier. Neural networks include a set of nodes and the connections between

them. MLP is a supervised learning method that has multiple layers of nodes.

Perceptron [10] is used for supervised learning and making decisions based on a

linear predictor function. A function that maps its input x (a real-valued vector) to an

output value f(x) (a single binary value) is an activation function of the perceptron.

𝑓(𝑥) = 𝑜(𝑥1, 𝑥2. . , 𝑥𝑛) = {
1, 𝑤. 𝑥 + 𝑏 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (1)

9

where n is the number of x input values, o(𝑥⃗) is output of x vector, w is a vector of

real-valued weights, 𝑤. 𝑥 = ∑ 𝑤𝑖 ∙ 𝑥𝑖
𝑛
𝑖=1 is the scalar product of the vectors w and x,

and b is a bias, or threshold, a term that shifts the decision boundary away from the

origin. The perceptron is triggered only when weighted input reaches a certain

threshold value (0, in our case, 𝑤. 𝑥 + 𝑏 > 0). An output of one specifies that the

perceptron is triggered; otherwise, the perceptron was not triggered. If b is negative,

then to force the classifier perceptron over the 0 threshold, the scalar product shall

exceed b.

Figure 2.5: Perceptron

Figure 2.5 demonstrates the n desired input values of x(𝑥1, 𝑥2, … , 𝑥𝑛) and

W(𝑤1, 𝑤2, … , 𝑤𝑛) as input weights. The input values multiply by weights and then

summed up. The activation function f(x) applies on the sum value to determine,

trigger, or not to generate output (O). Training dataset includes input value and

desired output value, d(x). Learning process starts by setting of the weights

randomly and continues to optimize weights in a way that the perceptron output is

equal to the desired output. This weight updating is done based on the error (ϵ). Error

is the difference between the output obtained in perceptron and the desired output (ϵ

= d(x)-f(x)). If the error value is not zero, the output is incorrectly predicted and the

weights must be updated. The learning process repeats several times and update

10

weights to find the optimize weights with zero or at least less error value. When the

perceptron output is equal to the desired output, the perceptron finds the optimal

weight and the repetition process stops. Pseudocode of the perceptron algorithm is

given below in Code 1[36, p. 71].

Perceptron algorithm(

Assumption: the two desired output(classes), d(x) = 1 and d(x) = 0, are linearly

separable.

1. Initialize all weights, 𝑤𝑖, to small random numbers.

Choose an appropriate learning rate, α ϵ (0,1].

2. For each training example, x = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑥0. 𝑤0is bias, whose class is

d(x):

2.1.1. Let f(x) = 1 if ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=0 > 0, and f(x) = 0 otherwise.

2.1.2. Update each weight using formula, 𝑤𝑖 = 𝑤𝑖 + α[d(x) – f(x)].𝑥𝑖

3. If d(x) = f(x) for all training examples, stop; otherwise, return to step 2.

End//perceptron

Code 1. Pseudocode of perceptron algorithm

MLP utilizes a supervised learning method for training. It is an artificial Neural

Network (ANN) with at least three layers: input, hidden, and output layers, shown in

Figure 2.6. Single layer perceptron can learn only linearly separable patterns, while

multilayer perceptron can learn patterns that are more complicated. MLP distinguish

data that are not linearly separable.

Figure 2.6: Multilayer perceptron (MLP)

In Figure 2.6, filled circles represent the nodes with real values. The dotted circles

represent the bias with a constant value of one. Solid lines represent the connection

11

between nodes. Dotted lines connect bias value to the nodes. Nodes labeled by 𝑥𝑖 for

input values for input nodes in input layer and 𝑎𝑖 for activation node in hidden layer

where i is the number of a node. Arcs connect nodes from one layer to other and

labelled by 𝑤𝑖𝑗. 𝑤𝑖𝑗 is weight for each connection where i represents the layer

number and j represents the line number. Output layer has one node with the output

value.

MLP learning step starts with the input layer and forward data propagation to the

output layer. This is “forward propagation” process. Calculate the error (the

difference between the current and desired output) and need to minimize the error.

The next step is to find derivative for each weight in the network, and update the

model. Repeat these steps to learn ideal weights same as in single perceptron. Now

model is created. Finally, to obtain the expected class labels for the test data, the

output is taken through the model.

Forward Propagation: Each node-to-node link is associated with a weight. The

weight of the link from the j-th hidden nodes to the i-th output nodes is denoted as

𝑤𝑗𝑖 , and the weight of the link from the k-th value of hidden nodes (𝑎𝑘) to the j-th

hidden node is introduced as 𝑤𝑘𝑗. The inputs multiplied by their respective weights

are summed (∑ 𝑤𝑘𝑗𝑥𝑘𝑘), and then mapped to the output via the transfer function. The

transfer function can be one of several different functions below, depending on

which interval we want to map, for example interval (-1,1]. The transfer functions for

x value are listed below.

The sigmoid functions:

 𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ∈ (−1,1)

12

output is in range (-1,1). or

 𝑓(𝑥) = (1 + 𝑒−𝑥)−1 ∈ (0,1)

and ReLU function:

 𝑓(𝑥) = 𝑥+ = max(0, 𝑥) ∈ [0, ∞)

where x is a real number, and e = 2.71828 is Euler’s number.

The i-th output node then receives the weighted sum of the values coming from the

hidden nodes and returns to the activation function. This is how the i-th output is

obtained. Two-layer perceptron calculates the following formula where f is the

sigmoid transfer function, 𝑤𝑘𝑗 and 𝑤𝑗𝑖 are the weights of hidden layer and output

layer and 𝑥𝑘 are the input values.

𝑦𝑖 = 𝑓(∑ 𝑤𝑗𝑖

𝑗

𝑓(∑ 𝑤𝑘𝑗

𝑘

. 𝑥𝑘))

Backpropagation: it is a short form for "backward propagation of errors." The

principle of the backpropagation approach is to model a given function by modifying

internal weightings of input signals to produce an expected output signal. The system

is trained using a supervised learning method, where the error between the system’s

output and a known expected output is presented to the system and used to modify its

internal state.

How MLP works?

1. Inputs 𝑥𝑖, arrive through the preconnected path

2. Input is modelled using real weights𝑤𝑖. The weights are usually randomly

selected.

3. Calculate the output for every neuron from the input layer, to the hidden

layers, to the output layer.

13

4. Calculate the error in the outputs

ErrorB= Actual Output f(x) – Desired Output d(x)

5. Travel back from the output layer to the hidden layer to adjust the weights

such that the error is decreased (Backpropagation).

Keep repeating the process until the desired output is achieved.

2.2 Single and multiple-node classifier ensembles

2.2.1 Single-node Bagging-like ensembles

In machine learning, the classifier ensemble learning [12] methods apply multiple

learning algorithms to increase predictive performance.

Bootstrap aggregating (bagging) [14] is a simple ensemble of classifiers which

combines predictions of multiple machine learning algorithms to make more accurate

final result than any individual classifier. It executes on a single node. Bagging

generates m new training datasets by sampling from training dataset. These new

training datasets are named” bootstrap samples”. Bootstrap samples are randomly

selected with replacement, and the number of records in each bootstrap sample is

equal to the amount of data in the training data set. A separate different training

algorithm trains subsamples. After training, m models create. For illustration, let the

training dataset have 10 records: TD={A,B,C,D,E,F,G,I,J,K}. Bagging using random

sampling with replacement creates 3 training datasets,

TD1={D,K,D,D,K,A,F,E,B,I},TD2={A,B,F,K,C,K,I,A,G,J},

TD3={G,J,J,J,J,K,B,E,F,C} to train 3 different classifiers in the ensemble. For

example, TD1 is fed to CART learning algorithm to train first model, and TD2 and

TD3 are fed to MLP to train model2 and model3. And then the results from each

trained model are aggregated in the form of voting (for classification) or averaging

14

(for regression). Aggregation for classification is made in the way that the vote-based

ensemble is created with each classification in the ensemble to predict the class of

new sample data, the class is selected by a majority of votes as the final ensemble

prediction. For example, Figure 2.1 shows model1 predict label class cross for t1 and

circle for t2 and cross for t3. Model2 predict cross for t1 and t2, circle for t3. Model3

predict cross for t1 and t3 and circle for t2. Therefor vote-based ensemble predict t1

region as cross because all the models predict it as cross and predict t2 region as

circle because two models predict this region as circle and so on for region t3.

Therefore, ensemble classifier predict t1 as cross, t2 as circle and finally t3 as cross.

 Aggregation for regression, average of class labels is selected as the final prediction

of ensemble. For example in figure 2.3, model1 predict {(x < 2, t4),(2< x < 4, t5),(

4< x < 6, t6),(x > 6, t7)} and model2 predict {(x < 3, t4),(3< x < 4, t5),(4< x < 7,

t6),(x > 7, t7)} and model3 predict {(x < 3, t4),(3< x < 6, t5),(6< x < 7, t6),(x > 7,

t7)}. Ensemble classifier calculate average of x in each region and create final model

as {(x < 2.6, t4), (2.6< x < 4.6, t5), (4.6< x < 6.6, t6), (x > 6.6, t7)}.

Figure 2.7 shows the steps of training input dataset by ensemble classifier method

(bagging) in single node approach. First, the input dataset is partitioned into training

and testing dataset. Bootstrap samples of records are selected from training dataset.

In bagging ensemble method, there are several classifiers trained on the bootstrap

samples separately to create model. A model is a file that has been trained to

organize certain types of patterns to make prediction. The models are combined to

create final ensemble classifier; this is “Aggregating” step. And finally in the testing

step, final ensemble classifier or final model can predict the class label of the new

15

data and it can predict test data. The label of the region which the new data is placed

is the prediction of new data.

Figure 2.7: Single-node Bagging ensemble classifier schema

In the case working with big data, as the size of dataset is too large for the memory to

match, it is impractical to train data using single-node method to create several

bootstrap samples of sizes which are equal to the initial dataset. So the Bagging-like

approach is suggested to solve this issue. In next section, we will examine methods

of dataset partitioning and Bagging-like approach.

16

2.2.2 Multi-node Bagging-like ensembles

Bagging-like is an approach to creating a group of n classifiers from the partitioning

of training dataset into n part. Each of these parts has size (1/n) which will fit to the

memory, while in bagging approach each partition has size (n) equal to the original

training dataset. Bagging-like has different methods for partitioning training dataset

into disjoint subsets .These methods are disjoint partition (D), Small bags (SB), no

replication Small bags (NRSB) and disjoint bags (DB) which will describe in next

section in detail [Section 2.3].

Training on these disjoint partitions are done in distributed way in multiple node.In

multi node classifier, training dataset is trained across many computing systems

through network in parallel. Client-server architecture use to train multiple classifiers

in multi systems.

In Figure 2.8, you can see the multi-node classifier ensemble schema. This schema

has three steps:

Step 1. First step runs in server side and is involved partitioning dataset into training

and testing dataset. The training dataset partitioned into smaller disjoint set by four

different methods of Bagging-like partitioning (D/DB/SB/NRSB) [Section 2.3].

These disjoint datasets transfer to the client’s side.

Step 2.Second step run on clients in parallel. Each disjoint dataset is settled in

separate client and trained by distributed classifiers on any distributed frameworks

(clients) for learning them in parallel way and extracting N models. Models will

transfer to the server.

 Step 3. In this step, all models combined and create final ensemble classifier,

aggregating phase same as in normal bagging approach.

17

All these models will join to the server side for voting (classification) or averaging

(regression) purpose. The ensemble’s final prediction use to predict new data classes.

Figure 2.8: Multi-node Bagging-like classifier ensemble schema

2.3 Partitioning methods for Bagging-like ensembles

Chawla et al [2] suggested four Bagging-like ways of dataset partitioning.

Figure 2.9: Four Bagging-like strategies: D, SB, NRSB, DB [2]

 Figure 2.9 illustrates four Bagging-like partitioning methods [2]. They are:

18

- Disjoint partitioning (D): partition data into parts (bags) with random selection of

data. The bags have not repeated records within or across the bags.

- Small bags (SB): select data randomly with replacement, so then there may be

repeated records within and across the bags.

- In no replication Small bags (NRSB), record selection within bags is random

without replacement, but across bags allows replacement.

- The last approach is disjoint bags (DB) choosing data across bags with

replacement, and it has extra records so bags are larger than for three other

methods, D, SB, NRSB

Details of the methods are considered below

2.3.1 Disjoint partitioning

Figure 2.10: Disjoint partitioning method D [2]

Disjoint partitioning is a method to partition input dataset into N bags, and records

are randomly selected without replacement.

Having a database, DB, with number of records, R, and given the number of

partitions, N. Records of DB are read one by one and will be distributed in disjoint

partitions one by one in sequence, so the union of disjoint sets (bags) is equal the

19

input dataset. Each letter in the bags refers to class labels. The approach D is

illustrated by Figure 2.10.

Two sets are disjoint if they have no common elements. equivalently; two disjoint

sets (bags) are sets whose intersection is empty. It is necessary splitting 𝑆 into N

partitions, Pi, such that ⋃ 𝑃𝑖𝑁
𝑖=1 = 𝑆 and𝑃𝑖 ∩ 𝑃𝑗 = ∅. For example in Fig 2.2, N=4

bags created are: S={A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P},

P1= {A, B, C, D}, P2= {E, F, G, H}, P3= {I, J, K, L}, and P4= {M, N, O, P}. The

partitions obtained are expected having approximately the same number of records.

For disjoint partitions with random arrangement of data, first, disorder the DB by

using random number generator. Then, the records are read one by one and added to

the disjoint sets (bags). It should be emphasized that if the number of records in input

file is not divisible by number of partitions, the number of records in the bags will

not be equal. A pseudocode of D bagging is given below:

D bagging{

Inputs: DB array, data file;

 N integer, number of partitions (bags);

Outputs: P [N] array of partitions

L=len(DB) /* length size of input dataset

randomdf =reorder_randomly(DB) /* generate input file with random

/* records

while not end of randomdf do

For i=1 to N do

 rec= read (randomdf) /* read one record from random datafile

 P[i]= P[i] + rec /* add record to each P[i] bag

endfor

endwhile

}

https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Empty_set

20

The sample of input and output of the program is given below:

Sample of Program:

DB = ['a', 'b', 'c','d','e','f','g','h','i','j', 'k', 'l', 'm', 'n', 'o', 'p', 'q'] /* input data

L = 17, N=4

Randomdf = ['b', 'h', 'f',’d’, 'o', 'p', 'g', 'j', 'i', 'c', 'a', 'm', 'e', 'k', 'l', 'n', 'q']

i = 1  P[1] = [‘b’], i = 2 P[2]=[‘h’], i = 3  P[3]=[‘f’], i = 4  P[4]=[‘d’]

i= 1  P[1] = [‘b’,’o’], i = 2  P[2]=[‘h’,’p’], i = 3  P[3]=[‘f’,’g’], i = 4  P[4]=[‘d’,’j’]

i= 1  P[1] = [‘b’,’o’,’i’], i = 2  P[2]=[‘h’,’p’,’c’], i = 3  P[3]=[‘f’,’g’,’a’], i = 4  P[4]=[‘d’,’j’,’m’]

i= 1  P[1] = [‘b’,’o’,’i’,’e’], i = 2  P[2]=[‘h’,’p’,’c’,’k’], i = 3  P[3]=[‘f’,’g’,’a’,’l’],

i = 4  P[4]=[‘d’,’j’,’m’,’n’]

i= 1  P[1] = [‘b’,’o’,’i’,’e’,’q’]

 p= [['b', 'o', 'i',’e’, 'q'], ['h', 'p', 'c', 'k'], ['f', 'g', 'a', 'l'], ['d', 'j', 'm', 'n']] /* output lists

2.3.2 Small bags partitioning

small bags (SB) partitioning from [2, p. 458] is same as disjoint partition except that

records are randomly selected with replacement so replicated records are within and

across the dataset partitions. The union of these datasets is not equal to the input

dataset.

Figure 2.11: An illustration of small bags, SB [2]

For achieving partitions in random order of data with replication within and across

the partitions, first check if the number of records is divisible by N, or not. If it is

divisible, random records select as the number of integer value of quotient. If it is not

divisible, integer value of quotient plus one record is selected. The relevant

pseudocode is given below. Ceil function maps x to the smallest number greater than

21

or equal to x. In the case of divisibility, all partitions have the same number of

records.

SB bagging {

Inputs: DB array, data file;

 N integer, number of partitions;

Outputs:P [N] array of partitions;

L = len(DB)
ceil(x)={x, if x integer, the minimal integer not less than x}

k= ceil(L/N)

For i=1 to N do

randomdf = select_randomly_with_replacement(DB,k)

 /*select random samples in size of k with replacement

P[i]= randomdf

endfor

}//end of SB bagging

Example is given below:

DB = ['a', 'b', 'c','d','e','f','g','h','i','j', 'k', 'l', 'm', 'n', 'o', 'p', ‘q’, ‘r’] /* input data

N = 4 and L= 18, k=5

 i=1 p[1]:['a', 'n', 'i', 'j', ‘q’] /* output lists

 i=2 p[2]:[‘r’,'f', 'g', 'g', 'l']

 i=3 p[3]:['l', 'j', 'a', 'm', 'b']

 i=4 p[4]:['e', 'h', 'c', 'g', 'd']

Above sample shows, letter 'a' is repeated across partitions(1,3) and letter 'g' is

repeated within and across partitions 2 and 4.

2.3.3 No-replication small bags partitioning

No Replication small bags (NRSB), is like small bags, but each partition is created

by random sampling without replacement, so records are not duplicated in partitions,

but may repeat across partitions. So, intersection of partition sets may not be empty,

𝑃𝑖 ∩ 𝑃𝑗 ≠ ∅.

22

Figure 2.12: An illustration of No-replication small bags, NRSB [2]

For NRSB in figure 2.12, first check the divisibility of input record numbers (L) to

the number of disjoint partition (N) same as SB. The algorithm selects random

records in the length of k without replacement in each partition subset separately.

The pseudocode follows.

NRSB bagging{

Inputs: DB: the dataset for partitioning;

 N: integer number of subsets;

Output: P [N] array of partitions

L = len(DB)
ceil(x)={x, if x integer, the minimal integer not less than x}

k= ceil(L / N)

For i=1 to N do

randomdf = select_randomly_without_replacement(DB,k)

 /*select random samples in size of k without

replacement

P[i]= randomdf

endfor

}//end of NRSB bagging

In the following you can see the sample of input and output of the program.

Sample of Program:
DB = ['a', 'b', 'c','d','e','f','g','h','i','j', 'k', 'l', 'm', 'n', 'o', 'p', 'q'] /* input data

L=17, N=4,k=5

 i=1 p[1]: ['a', 'f', 'n', 'k', g'] /* output lists

i=2 p[2]: ['f', 'e', 'd', 'c', i']

i=3 p[3]: ['h', 'm', 'f', 'e', i']

i=4 p[4]: ['b', 'l', 'j', 'e', 'q']

23

Above sample shows, letter 'f' is repeated across partitions(1,2,3) and not repeated

within partitions.

2.3.4 Disjoint bags partitioning

The fourth approach is disjoint bags (DB) illustrated by Figure. 2.13. Each partition

is created by random with replacement but in larger size than the first three

approaches so the union of bags is all of the original data, and some data is

replicated.

Figure 2.13: An illustration of disjoint bags, DB [2]

For this approach, firstly, change the order of records by creating random file. Then,

create the random partition set without replacement. Then, choose an element in each

partition set as a candidate for appending to the same partition set. In this case, each

partition is larger than before with repeated element. The relevant pseudocode is as

follows.

DB bagging{

Inputs: DB array, data file; N integer, number of partitions;

Outputs: P [N] array of partitions;

L=len(DB) /* length size of input dataset

randomdf = reorder_randomly(DB)

 /*select random sample without replacement from DB

while not end of randomdf do

for i=1 to N do

 rec= read(randomdf) /* read one record from random datafile

 P[i]= P[i] + rec /* add record to each P[i] bag

 endfor

endwhile

24

for i=1 to N do

S = select_randomly(P[i],1) /*select randomly one record from P[i]

 P[i]= P[i] + S

endfor

}//end of DB bagging

Example of DB work is given below:

Sample Output of Program:
DB = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q'] /* input data

L=17, N=4

Randomdf = ['b', 'h', 'f',’d’, 'o', 'p', 'g', 'j', 'i', 'c', 'q', 'a', 'm', 'e', 'k', 'l', 'n']

i = 1  P[1] = [‘b’], i = 2 P[2]=[‘h’], i = 3  P[3]=[‘f’], i = 4  P[4]=[‘d’]

i= 1  P[1] = [‘b’,’o’], i = 2  P[2]=[‘h’,’p’], i = 3  P[3]=[‘f’,’g’], i = 4  P[4]=[‘d’,’j’]

i= 1  P[1] = [‘b’,’o’,’i’], i = 2  P[2]=[‘h’,’p’,’c’], i = 3  P[3]=[‘f’,’g’,’q’], i = 4  P[4]=[‘d’,’j’,’a’]

i= 1  P[1] = [‘b’,’o’,’i’,’m’], i = 2  P[2]=[‘h’,’p’,’c’,’e’], i = 3  P[3]=[‘f’,’g’,’q’,’k’],

i = 4  P[4]=[‘d’,’j’,’a’,’l’]

i= 1  P[1] = [‘b’,’o’,’i’,’m’,’n’]

i= 1  S=’m’, P[1] = ['b', 'o', 'i', 'm', 'n', 'm']

i= 2  S=’h’, P[2] = ['h', 'p', 'c', 'e', 'h']

i= 3  S=’q’, P[3] =['f', 'g', 'q', 'k', 'q']

i= 4  S=’l’, P[4] =[’d’, 'j', 'a', 'l', 'l']

2.4 The label-aware distributed ensemble learning (LADEL)

Khalifa et al. [3] work on the other model to prepare training dataset, named

“LADEL”. Label_aware distributed ensemble learning (LADEL) is a method to

distribute data in the distributed systems [5] parallel which increase accuracy in big

training dataset. The strong point of this new technique is capability of working in

any classification algorithms, in any platform without any changing in program and

faster training.

Generally, there are two types of perspectives to solve machine learning problems.

One is to focus on speed and gain faster training time, and the other is to gain better

accuracy. For this purpose, the following steps have been taken to obtain the results

for decision making. First approach is distributed sequential single-node algorithms.

Second, Distributed Stratified Sampling (DSS) algorithm is used on large dataset.

25

DSS is a technique that input data is broken down into small groups (stratum), and

then random sampling is done from each of this stratum independently. These

random records gather in a file used as an input for classification algorithm (Figure

2.14). Big Data should be stratified and distributed to shared-nothing [13]

architecture systems. Standard Stratified sampling work on broken down training

dataset into small size dataset without any special policy on selecting samples. In

DSS, stratum is created based on the class labels. Therefore, random sampling forced

strata to train in all training dataset class labels. Finally, LADEL model is used to

train data in any framework.

LADEL needs three inputs: -the input dataset, -the classification method and - the

number of desired parallel dataset partitions to construct a trained classifier.

Figure 2.14: LADEL execution overview [3]

Figure 2.15 shows three steps of LADEL execution model:

1- Create stratified partitions using Distributed Stratified sampling (DSS).

2- Train sequential single-node classifiers on each data partition.

26

3- Aggregate classifiers by using majority vote method.

Figure 2.15: single-node stratified sampling [3]

The labels and number of records in each class is distributed balanced. Figure 2.15

displays two steps for making stratified in sequential single node.

Step 1 - Create groups of records in separate strata by class label.

Step 2 - Select samples from each stratum randomly.

Created categories include all the class labels.

In the single-node memory, big data does not fit. Simple random sample selection is

used to create distributed filesystem and transfer them to distributed servers. These

disjoint partitions does not include all class labels and poorly trained ensemble

classifier. Figure 2.16 displays distributed stratified sampling (DSS) model to create

a disjoint partitions with all class labels included. DSS has two phases, Local and

Global.

Local phase is executed in each individual slave node separately in parallel. It

consists of two steps;

Step 1- Create groups of records in separate strata by class label. Therefore, the

number of strata is equal to the number of class labels.

Step 2- Round-robin selector runs in parallel on each system separately on each

stratum (including one class label). In each round-robin cycle, a record is selected

27

and stored in the current slave node and the second selected record is sent to second

slave node and so to the end. Thus, all the class labels distribute in slave nodes.

Figure 2.16: Distributed stratified sampling (DSS) [3]

For example, as you can see in Figure 2.16, local sampling creates local strata on

each node. The upper node has three class labels (white, grey, black), so it has three

local strata. White and grey strata each have one record and black strata have two

records. Such grouping will be done on each node in parallel. In the next step,

Round-robin selector runs in each node separately in parallel. In the upper node,

record labeled number 1 remains in the same node. This stratum has not any other

record, so selector goes to the next strata. In next stratum, record label number 2

remains in the same node, record number 4 will be sent to the next node. In the next

stratum, record number 3, remains in the same node. As you can see, in the middle

node, there is a black stratum with three records numbers by 6, 7, and 8. Record

number 6 remains in the same node, number 7 is sent to the node above, and record

number 8 is sent to the node below. At the end, you can see each node has records

including all class labels.

Global phase runs in each individual slave node after the local phase. It integrates the

records sent from local phase with its own records. These new strata have all class

labels of original big dataset inside and are ready to be used by a classifier.

28

By increasing number of strata and having parallel process, execution time will be

declined. Practical experiments show that using sequential single-node stratified

sampling needs more execution time than DSS to aggregate the distributed partitions.

2.5 LADEL evaluation

In [3], three approaches are used to compare the training time and accuracy on

decision tree, neural network with or without LADEL technique. First, it uses

LADEL on distributed nodes and a sequential single-node data mining library.

Second, it uses voted-based distributed ensemble learning on distributed sequential

single node classification algorithms, and third, it uses original sequential single-

node classification algorithm on a single machine trained on the whole training data.

The past empirical experiments show that neural network algorithms have better

training time and accuracy on single-node training in comparison to other solutions.

Multilayer perceptron has been chosen for testing the distributed systems. The

second algorithm chosen from decision tree methods is Hoeffding Tree. The HIGGS

dataset with almost 7 million training records and 2 class labels is used.

Figure 2.14 shows the effect of increasing the number of classifiers on the amount of

training time in distributed ensemble compared to a sequential single node. A

distributed ensemble is modelled by training classifiers (Hoeffding Tree, multilayer

perceptron) based on disjoint partitions data divided into separate partitions in

multiple slave nodes. The trained models are sent to the master node to participate in

the vote-based classification. Figure 2.17 demonstrates that training time is decreased

by increasing number of slave-nodes and this result is independent of the training

algorithm. In the best case with 100 nodes, almost 5 % and in the worst case with 10

29

nodes, almost 29% of the time required to train dataset in a single-node classifier for

total records in data set.

Figure 2.18 displays the effect of increasing number of classifiers on the scoring

time. It shows that scoring time increases when using ensembles in comparison of

using single classifier on single node. So by adding the number of classifiers may

sacrifice training time to better predict accuracy.

Figure 2.19 displays the effect of distributing the scoring time operation across 10

nodes. It shows reduction on scoring time than that of a single classifier running on a

single machine. Scoring time in distributed systems on 10 machines is 18 times faster

than single node.

Figure 2.17: Ratio of the training time of distributed ensemble to a sequential single-

node classifier [3]

30

Figure 2.18: Ratio of the scoring time of single machine ensemble to a sequential

single-node classifier [3]

Figure 2.19: Ratio of distributed scoring time on 10 machines of an ensemble to that

of a single classifier on a single machine [3]

In addition to timing score analysis, they also focused on prediction accuracy

analysis by using LADEL ensembles. LADEL gains better precision than single-

node classifier trained on entire training dataset.

2.6 Parallel computing

Traditionally, software has been written for serial computation. It means, a problem

is broken into a series of instructions, and instructions are executed sequentially one

after another on a single processor, and, of course, only one instruction executes at

any moment in time. We usually need a more powerful processor and big size of

31

memory to process the Big Data. Mostly the size of a dataset does not fit to memory,

so that is impractical to run program just on a single system. Sometimes the problem

is not memory but processor. Even if the program can run in single node system, it

will be very time consuming. Using parallel computing seems to be the right

solution.

In the simplest sense, parallel computing is the simultaneous use of multiple

computing resources to solve a computational problem easier and faster. Using

parallel computers through networks connects multiple stand-alone computers to

make larger parallel computer clusters to solve larger complex problems and provide

concurrency.

Parallel computers can be classified according to the number of instruction streams

and number of data streams into four categories. Single-instruction single-data

(SISD), single-Instruction multiple-data (SIMD), multiple-instruction single-data

(MISD) and multiple-instruction single-data (MIMD). Various parallel solutions

make three different types of parallelism: Shared memory systems, Distributed

systems. Shared memory systems with multiple processing units are attached to a

single memory (Figure 2.19). Distributed systems consist of many computer units

(Figure 2.20), each with its own processing units and physical memory that are

connected to fast connection networks. Regarding the three types of parallelism,

there are three different approaches for parallel programming: threads model for

shared memory systems, message passing model for distributed memory system. In

this project we used distributed memory topology to use memory resources in all

shared nodes to increase scale of memory and ability of fast computing during long

lasting process on big data set. Besides, using the processing power of several

32

machines simultaneously increases the overall processing power and reduces the

processing time. These are the biggest advantages of using parallel processing

systems that we use in this project.

In Ubuntu operating system NFS (Network File Sharing) service, all the clients can

exchange and access the input data and source code of program to execute it in their

own system in parallel. For example, if we have two laptops, connection between

these two systems is possible through the connection to the modem-router. Now it is

possible to share storage of one laptop (master node) with other laptop (client node)

by NFS service. For this purpose, cloud folder is created in master node and is

mounted in both laptops to access files through network and it consider as a shared

folder. This folder physically used storage of master node but it is logically

accessible by clients.

NFS Configuration:

On master node:

 Sudo apt-get install nfs-kernel-server /*NFS server package installation

 Mkdir cloud /*create cloud folder

 Sudo vi /etc/exports /*cloud folder permanently shared
 /home/azi/cloud * (rw,sync,no_root_squash,no_subtree_check)

 Sudo exportfs –a

 Sudo service nfs-kernel-server restart

On client nodes:

 sudo apt-get install nfs-common /* NFS client package installation

 mkdir cloud /* create cloud folder

 sudo mount -t nfs master:/home/azi/cloud ~/cloud

/*mount cloud folder of master on cloud folder in client

 sudo service nfs-kernel-server restart /*restart nfs service

33

2.7 Client-server architecture

Client-server architecture [16] is a network computing model where one of the

systems has a role of server and the rest systems connected to a central server over

network. The server is responsible to produce services for clients through network.

These services can include application access, storage; file sharing, processors and

memory access. The clients’ requests specific services or resources and the server

can manage several clients’ requests simultaneously and respond to their needs by

preparing requested resources.

Client-server configuration needs to prepare network connection between at least

three systems. Each of these servers are dedicated to static IP address and should be

identified to all systems on the network by adding IP address and alias names to the

hosts file.

Sudo apt install net-tools /* installation of network tools

Sudo vi /etc/hosts /* assign alias names to the IPs

 192.168.0.10 master asus

 192.168.0.20 client sony

FTP Configuration:

 sudo apt install vsftpd /*FTP package installation

 vi /etc/ftp

 sudo vi /etc/vsftpd.conf /*set FTP configuration parameters

 anonymous_enable=NO

 local_enable=YES

 write_enable=YES

 sudo service vsftpd restart /* restart FTP service

34

2.8 Message passing interface (MPI)

The message passing interface (MPI) [17] is a library used to convey messages in

parallel programming. Data transfer from the address space of one process to the

other process through cooperative operations on each process. As it is known,

processors can be local, that means they are housed in a single system or they operate

in distributed systems. MPI is designed to be used in distributed systems. Regarding

the usage of memory, MPI runs on different hardware platforms, including shared

memory, distributed memory and hybrid memory.

In Figure 2.20, Distributed memory [18] is assigned to the system, which has

multiprocessor, and each processor has his own memory separately.

Figure 2.20: Distributed memory model [17]

Figure 2.21 shows shared memory [19] model. In this model, memory may be

accessed by multiple program simultaneously and use by multi-processors.

 Figure 2.21: Shared memory model [19]

35

Hybrid memory model is a multiple processors use multiple memories. As you can

see in Figure 2.22 four processors use each memory.

Figure 2.22: Hybrid memory model [17]

One of the major differences between these models are the data transfer cost. In

shared memory systems, the time required to transfer data is the strong point of this

method, as the inter-connection is much faster than distributed memory. However,

the number of processors that can be used in parallel in distributed memory is much

higher (more than eight) than the previous topology. Therefore, we used the second

method of distributed memory in our project. This structure can reduce execution

time. The communication speed in distributed memory depends on the internal

network topology and the geographical distance of the communicated systems. The

total execution time is the sum of computation and communication time. MPI is a

middleware tool which runs tasks on separate processors using local memory and

communicating with each other over a network. It helps us to run tasks in parallel,

using more resources in parallel and save execution time.

2.9 MPI in Python

Python is a popular language for programming and excellent tool for developing

parallel code today. Anaconda Distribution is an open source Python programming

language distribution that can be used for large-scale data processing and has many

tools and packages for data mining programming and machine learning purposes.

36

Parallel programming on distributed memory machines are using MPI in Python by

mpi4py package. Being array-based in Python is an excellent advantage for

developing parallel codes in small and medium size programs besides it is largely

object oriented [20]. MS-MPI SDK is installed and configured in Ubuntu operating

system in both laptops. For simplicity of later usage, it is recommended to add the

execution path of MPI to the PATH environment variable in all nodes so easily can

run mpirun command from any path you are in Ubuntu console command prompt.

For simply run an MPI application, you can create the execution file or the Python

version of your program and run mpirun command through console.it will run n

copies of execution file in the run-time environment in a round-robin fashion by CPU

slot. There are two purposes of running this command. One is running N copies of

program in the current run-time environment and distributes them on the processors

in the same system and the other way is to run N copies on different processors from

other systems.

MPI Configuration:

 Gcc (the C compiler on Ubuntu 18.04) installation prerequisite for openmpi:
 https://linuxconfig.org/how-to-install-gcc-the-c-compiler-on-ubuntu-18-04-bionic-beaver-linux

 sudo apt install gcc /* gcc package installation

 sudo apt install build-essential /* package installation

 gcc --version /* gcc version checking

 libopenmpi2:

 /* openmpi packages installation

sudo apt-get install openmpi-bin openmpi-common openssh-client openssh-

server libopenmpi2 libopenmpi-dev

 mpi4py package installation in Anaconda Python V3 & PIP:

 conda install mpi /* mpi package installation

 conda install -c anaconda mpi4py /* mpi4py package installation

 sudo apt install python-pip /* package installation

 pip install mpi4py

 conda install --name py3 pandas

37

Mpi4py allow programmers to run multiple processor computing systems. Mpirun

command specifies the number of cores available and use in particular cluster. This

library assigns unique rank to each processor and manages tasks by their ranks. Point

to point communication prepares transmission process through processors by sending

message from one side and receiving from the other processor. Each of the sending

messages is labeled by tags, so we can trace them by these tags. MPI allow

controlling in overlapping on communications by using non-blocking technique.

Non-blocking always tests by completion function to be sure the requested operation

has been completed. Using isend and ireceive command helps to implement non-

blocking method.

For running n copies of program in multi-processor in parallel on single-node just

need to run mpirun command like below format. As an example it will assign 8 copy

of hello.py program through current path to 8 processors. (as we use Python source

code of our application in Python version 3, it should be coded in the executable

command otherwise parser is searching on Python version 2)

mpirun –np 8 python3 ./hello.py

The following command can be used to run the same program on parallel servers

through network. The main server runs on 6 processors and the client runs on two

processors, for a total of 8 copies of the program on 8 processors concurrently.

mpirun –n 8 –H master:6,client:2 python3 ./hello.py

2.10 Problem definition

The problems of the study are as follows:

1. Design DELS using:

38

1.1. Partition methods: disjoint partitions (D), disjoint Bags (DB), small

bags (SB), no-replication small bags (NRSB) and label-aware distributed

ensemble learning (LADEL);

1.2. Classification and regression tree (CART) and multilayer perceptron

(MLP) classifiers

1.3. Message Processing Interface (MPI) and the mpi4py package in

Python V3 in Ubuntu TLS in single-node (not shared structure) and we

implemented multi-node (client-server architecture) using Secure Shell

(SSH) for secure data transmission over the LAN.

2. Test DELS on a network of two laptops with four and eight processors, with

network connection prepared through the TP-Link wireless modem router.

3. Conduct experiments on DELS to evaluate the accuracy of various methods of

data partitioning dependence on a single-node or multi-node systems, as well as

the required runtime to implement them. The accuracy dependence on two

classifiers CART and MLP.

4. For experiments on DELS, use KDD Cup 99 dataset [23] for comparison on

Bagging-like methods and HIGGS dataset [15] for training and scoring time

experiments.

39

Chapter 3

DESIGN, IMPLEMENTATION AND EXAMINATION OF

DELS

In this chapter, we describe the design, implementation, and testing of DELS using

partitioning methods: disjoint partitions (D), disjoint Bags (DB), small bags (SB), No

Replication small bags (NRSB), and label-aware distributed ensemble learning

(LADEL). The input dataset, the required number of partitions, and classification

algorithm are three inputs to DELS. Two algorithms of classification, tree

classification and regression (CART) and multilayer perceptron (MLP) are used in

the system. DELS distributes the partitioned data sets and trains them in parallel to

create models, and the trained models are eventually gathered to produce the final

model. Distributed learning method allows Big Data management. The final model

maintains the prediction accuracy and predicts the class label of new data through

single-node or multi-node structure.

In this chapter, DELS design and architecture (Section 3.1), design and

implementation of Input/ Output subsystem (Section 3.2), partitioning subsystem

including LADEL model (Section 3.3), training subsystem (Section 3.4), testing

subsystem (Section 3.5) and testing DELS in single-node and multi-node classifier

(Section 3.6) are considered. In testing, first, focus is made on checking accuracy of

partitioning methods (D/DB/SB/NRSB) and comparing these methods accuracy with

CART classification algorithm and multi-layer perceptron, MLP classification

40

algorithm. These tests are made in single-node and multi-node with different number

of partitions. Second, checking the prediction test-score of partitioning methods

(D/DB/SB/NRSB) on multi-node with MLP algorithm. Finally, checking the

accuracy and prediction test-score with LADEL in multi-node and compare the test-

score and execution time on MLP and CART.

3.1. DELS design and architecture

DELS system architecture is represented in Figure 3.1. It has the following parts:

Input/output Subsystem (IOS), Task partitioning, partitioning Subsystem, Training

Subsystems, and Testing Subsystem.

Figure 3.1: DELS architecture

41

DELS has three inputs, the input dataset, number of partitions and the classification

algorithm. It works on input dataset which is in big size to divide data into smaller

sub partitions by partitioning methods such as disjoint partitions (D), disjoint Bags

(DB), small bags (SB), No Replication small bags (NRSB) and Label_aware

distributed ensemble learning (LADEL). The number of data partitions is determined

by number of partitions. Parallel tasks are generated, distributed, and executed by

MPI to perform parallel processing on each of these data sub partitions. Parallel tasks

implement in single-node (not shared structure) and multi-node (Client-server

architecture). In this experiment, CART or MLP classification algorithms are used.

In DELS, learning process is performed on each of these separate tasks by CART

and MLP classifiers. Input dataset is introduced in filename variable [Appendix

A.3.1, Line 55]. The format of input dataset is comma separated text file which can

be one of .csv or .txt format. A dataset consists of a series of records with

multivariate features. Each record is defined as a series of attributes with comma

separators, and the attributes value are integers. The KDD Cup 1999 is selected

dataset for testing Bagging-like methods and HIGGS dataset is selected for testing

training and scoring time in DELS. The KDD Cup dataset has a collection of records

with 44 columns, and 44th column is considered as class label (full scheme is given

in Appendix A.1.1, line 62-70, “names” array). In HIGGS dataset, the first 21

features (columns 2-22) are kinematic properties measured by the particle detectors

in the accelerator and The first column is class column(full scheme is given in

Appendix A.3.1, line 57-75, “names” array). Since the program is done to compare

accuracy in the number of data partitions, the number of data partitions is stored in

the array and processed in parallel. The number of partitions is kept in Partno array

[Appendix A.3.1, Line 56].

42

The IOS subsystem [Appendix A.3.2], prepares training dataset and testing dataset

from input dataset as an output of IOS. Training dataset is used in partitioning

subsystem, and testing dataset is used in testing subsystem. These datasets

preparation will be discussed in Subsection 3.2 in detail.

After preparing the training and testing datasets, the training datasets is used for

learning. As mentioned in chapter 2, training to use a single big size dataset is

impractical, as it does not fit in memory, so using Bagging-like approach to train the

ensemble classifiers on disjoint partitions separate from the training dataset that can

fit in memory is practical. Therefore if these partitions combined, will have the size

of the original training dataset. This way all data is used in training to yield a better

accuracy than if sampled. To address this challenge, we implement the Bagging-like

approach to deliver distributed training to their classifier ensembles. Training data

split into disjoint partitions by Bagging-like methods and then distributed and

executed across several tasks, which is implemented by MPI. MPI is responsible for

the simultaneous execution of tasks and distributing them across system(s)

processors. Tasks can be distributed in a local system with multiple processors,

single nodes, or in multiple processors belonging to multiple systems, multiple

nodes.

In this experiment for distributing tasks through multi-node architecture, due to the

lack of laboratory systems, we used two laptops with 8 and 4 processors. Since one

of the systems has higher processing power, so we put two thirds of the parallel

processing on the processors of this system and the other third is processed by

another system. MPI assigns a unique rank to each of these tasks to distribute these

tasks in parallel. We consider rank = 0 as “server task” and assign this task to the first

43

power laptop called “master”. In addition, master server executes two-thirds of the

parallel tasks same as client systems tasks. The second laptop, called “client”, is

responsible for performing one-third of the remaining tasks. For single-node

architecture, all tasks will distribute in the processors of one laptop (usually master).

In Task partitioning [Appendix A.3.3, A.3.8], the number of master and client system

tasks is calculated. MN shows number of master tasks and CN shows number of

client tasks. As you can consider in the Figure 3.1, it has three branches. “Server

task” is on the left, “master task” is in middle and “client task” is on the right.

“Server task” (rank = 0) is included:

- Data partitioning- partition the training dataset

- transfer the CN number of dataset partition(DP) to the client laptop

- train the first dataset partition(DP0), create model 0, waiting to receive all

models prepared in other parallel tasks

- and finally, make prediction on testing dataset

 “Master task” (0 < rank < MN) is included:

- train the dataset partitions with the rank number of 1 to MN (DP1.. MN)

“Client task” (MN+1 < rank < N) is included:

- train the DP with the rank number of MN+1 to N (DPMN+1 .. N).

Partitioning subsystem [Appendix A.3.4] are used two inputs: training dataset and

the number of partitions. Training dataset is divided into Partno smaller subset

partitions. Each dataset partition (DP) is sent to a different task prepared by MPI for

parallel processing. This stage of DELS is called “preprocessing”. Detail will be

discussed in Subsection 3.3. In Training Subsystem [Appendix A.3.5, A.3.9, A.3.11],

44

a sequential classification algorithm is executed on each DP as training dataset in

parallel to produce mathematical models, or classifiers. The number of classifiers is

equal to the number of partitions determined in Partno array. In Testing Subsystem

[Appendix A.3.6], the testing dataset, prepared in IOS and the prediction models

from training subsystem are used as inputs. In this Subsystem, results of the models

are joined by majority vote to select the final prediction. In the following, the

implementation of DELS subsystems is described separately.

3.2 Design and implementation of IOS

Figure 3.2 shows IOS starting with three inputs: data set, classification algorithm and

desired parallel level or number of partitions. We consider the parallel level is in 2, 4,

6, 8, 10 and 12 processes. In machine learning techniques, input data needs to be split

into two sections. One as a training part (usually 75%) and the second part is

considered as testing part (usually 25%). Records are selected randomly. We

consider two approaches to handle input data. One is consider as Bagging-Like

methods (D, DB, SB and NRSB [Appendix A.3.2, Lines 76-94] and the other in

LADEL format [Appendix A.4.2, Lines 81-137].

45

Figure 3.2: Input/output subsystem (IOS)

LADEL suggested us: all the labels should be in training dataset. To do this, records

with the same class label are grouped and then stored in separate CSV files

[Appendix A.4.2, Lines 81-97]. As the input dataset is in large size, it’s ok to

consider the 75% of input dataset records as training dataset and the rest 25% as

testing dataset (training: testing ratio 75:25), but with all class labels included. We

keep 75% of the records of each of these files in a separate file and the remaining

25% in another separate file (dataset division). Record selection is done randomly

[Appendix A.4.2, Lines 106-123]. Next step, all files with 75% of label 1-M dataset

are combined together for making LADEL training dataset (training aggregation) and

all files with 25% of label 1-M dataset are combined together for making LADEL

testing dataset (testing aggregation) [Appendix A.4.2, Lines 124-137]. Now we are

46

sure all the class labels are included in both data sets in the same ratio. LADEL

training dataset is input for the next subsystem, partitioning subsystem and LADEL

testing dataset is input for the testing subsystem.

In Bagging-like method, input dataset records are randomly divided into training

dataset and testing dataset in a ratio of 75:25. [Appendix A.3.2, Lines 76-94].

3.3 Design and implementation of partitioning subsystem

In this stage of DELS Process, the proper size inputs, which fit to the memory size of

the system, is prepared. We use five different data division methods: 1-D as disjoint

partition, 2-DB as disjoint bagging, 3-SB as small bags, and 4-NRSB as No

Replication small bags and 5-LADEL as label_aware distributed ensemble learning.

Figure 3.3 shows steps of partitioning subsystem for Bagging-like and LADEL.

Training dataset is input of this subsystem. MPI is a utility that is responsible for

performing simultaneous tasks. These tasks are distinguished by separate ranks. As it

mentioned before, if the task rank is zero, it means the first executable task and it

consider as the master task. This first task is responsible for data partitioning. The

other ranks assign to the other parallel tasks for training purpose. In this subsystem

(IOS), first should decide about dataset partitioning method between Bagging-like or

LADEL methods.

47

Figure 3.3: Partitioning subsystem

For Bagging-like approach, first main task open and read the training dataset

[Appendix A.3.4]. Then partitioning in D/DB/SB/NRSB methods will do. Dataset

segmentation is done in disjoint partitioning (D) [Appendix A.3.4, Lines 154-186],

small bags (SB) [Appendix A.3.4, Lines 187-220], disjoint Bagging (DB) [Appendix

A.3.4, Lines 221-251] and No replication small bags (NRSB) [Appendix A.3.4,

Lines 252-289] in source code by using MLP classifier. All these process happened

in rank=0 (first parallel task), other parallel tasks just wait until the first main task

finished process. Number of segmentation is handled by the partno array. It has 2, 4,

6, 8, 10 and 12 value. After the data partitioning, a message is sent to the other tasks

stating that the data is ready for further processing by other processors. The split and

transfer time is recorded [Appendix A.3.4, Lines 290-311]. Details of these

implementing data segmentation are described in chapter 2, section 2.3.

48

For LADEL, M is a number of labels in class column in input dataset and N is the

number of data division, which keeps in the partno array. First, all the records of the

same label in training dataset will separate and save in the CSV files [Appendix

A.4.3, Lines 138-169] then each of these files divide into N and finally all the same

division of label 1-M aggregate together [Appendix A.4.3, Lines 169-182]. Final

datasets for sure, have all the labels in equal ratio.

3.4 Design and implementation of training subsystem

In this subsystem, there are two classifier approaches for extracting model. One is

CART and the other is MLP classifier in training subsystem, Figure 3.4. All

segmented data begins to be learned in parallel by separate processors. As you know

in this experiment, there are two approaches. First, accuracy checking and second,

prediction checking.

Training section for accuracy checking is done in disjoint datasets (D) by MLP

[Appendix A.1.3, Lines 238-275], in SB [Appendix A.1.3, Lines 276-310], in NRSB

[Appendix A.1.3, Lines 311-346], in DB [Appendix A.1.3, Lines 347-380]. In this

part, disjoint training dataset is read and using K-fold technique by 10-fold in MLP

classifier. The mean accuracy of these 10 folds is extracted and saves in arrays

(meanD, meanDB, meanSB and meanNRSB). Standard deviation and standard error

of mean (SEM) are also save in a different arrays (stdD and semD) for future

comparison [Appendix A.1.3, Lines 260-264]. First task(rank=0) waits to receive a

signal from other tasks that the training has been completed, and then stores all the

accuracy and error results in an array [Appendix A.1.4]. All the results will save in

Excel file [Appendix A.1.5] and plot them [Appendix A.1.6]. In each matplots, you

49

can see the accuracy of each DSS method plus and minus standard error of mean

(SEM) in each number of dataset partitions.

Figure 3.4: Training subsystem

Training section for prediction checking is done in [Appendix A.3.5, A.3.9, A.3.10],

same as training section for accuracy checking, with the difference that the output of

this subset is a learning model [Appendix A.3.5, Line 329].

Training dataset is done in 3 different rank type: First task by rank=0 is done in first

laptop (ASUS VivoBook S14 with four cores, 1.8 GHz, 1992 MHz, 8 Logical

Processor(s), 8 GB RAM, Page File Space 2.5 GB and 256 GB SSD Disk) as role of

server [Appendix A.3.5]. Second, the two-third of total tasks in ASUS laptop as a

50

role of client [Appendix A.3.11]. The rest one-third of tasks in second laptop

(Desktop SONY VAIO with two cores ,2.4 GHz, 2400 MHz, 4 Logical Processors, 4

GB RAM, Page File Space 1.88GB and 500 GB disk space) is coded [Appendix

A.3.9]. Training subsystem for LADEL also has the same subsections in Appendix

A.4.

3.5 Design and implementation of testing subsystem

In this section of DELS architecture, the results of learning N input datasets are N

models, Figure 3.5. The entire extracted model should gather in the server for

majorityvoting decision-making. In majority voting stage, the prediction accuracy of

the entire extracted models is compared and the highest rank will be selected for the

final step in the application. As we use NFS for using shared storage, there is

CLOUD folder as NFS file system. Both laptops can access to this area of storage in

server. At the end of learning process, models will save in CLOUD folder, so in this

phase no need to transfer back again the results by FTP to the server system. MPI is

responsible to send a signal to the server after successful saving models in shared

storage from all clients. The testing subsystem will do major voting and the results is

one model. This model is used to test the testing dataset and extracting prediction

test-score. Majority voting in multi-node by MLP for Bagging-like ensembles is in

[Appendix A.3.6, Lines 420-480] and in LADEL [Appendix A.4.6, Lines 265-298].

51

Figure 3.5: Testing subsystem

Next step is test the testing dataset by final model extracted in voting phase

[Appendix A.3.6, Lines 482-551] and [Appendix A.4.6, Lines 299-325] for LADEL.

Final step is to save some values in an Excel format file [Appendix A.3.7, A.4.7].

These values are: 1- order of dataset, which can be random for Bagging-like

ensembles and sorted in LADEL format for labels, ordered. 2- number of node

usage, which is equal to the number of disjoint

Partitions, parallelization level and used processors. 3- Partition number. 4- Bagging-

like division method. 5- used classifier (MLP/CART). 6- Cross validation score [21]

in by final model. 7- Test-score in testing dataset by final model. 8- Run-time for

disjoint partition. 9- Run-time for transferring data through server to client. 10-

Training time. 11- Voting time. You can see the results in excel output files in

[Appendix A.I-L].

52

3.6 Testing DELS

For testing the DELS system, first, we focus on comparison accuracy on Bagging-

like methods by CART and MLP classifier in single and multi-node architecture, and

then we focus on comparison test-score and execution time on Bagging-like methods

and LADEL in multi-node architecture. Therefore, in general, the program runs in

two ways, single-node and multi-node.

3.6.1 Accuracy comparison for Bagging-like partitioning method

For testing this system, first we evaluate the accuracy of the Bagging-like methods

(D/DB/SB/NRSB) work in distributed single-node classification algorithms and

second we compare the accuracy of the same approach in distributed multi-node

classification algorithms. Each of these tests is experienced with one of the decision

tree and neural network classification algorithms. CART is selected from decision

tree algorithm, and MLP is selected from neural network algorithm. You can find

Python source code to compare the accuracy by MLP for Bagging-like methods in

Appendix A.1 and by the CART algorithm in Appendix A.2. Both of these codes are

executed in single and multiple systems as follows.

3.6.1.1 Accuracy in single-node

First approach of implementation is to execute program in single node architecture.

The program run in one system and distribute the parallel tasks in the resources of

one node. As a proof-of-concept distributed tasks prepared by MPI. MPI manage the

task distribution and the processors each task needed. We can specify which system

processors each task will use and how many processors each system will start with.

First, we set the value in partno to the desired number of dataset partition (DP).

Since each DP is assigned a task for further processes, so the partno value and the

number of processors we use in the MPI command should be equal. We set the

53

partno into 2, 4, 6, 8, 10 and 12. And the input dataset is KDD Cup 99 dataset which

set in the filename variable [Appendix A.1, Line 51]. For example, we start test for

the partno equal to two. Using the following command, the data is divided into two

parts and assigned to two separate tasks with two processors in parallel.

mpirun –np 2 python3 source-code.py

MPI assigns a separate rank to each of these tasks, and each rank considers its own

dataset partition. All tasks start running simultaneously and MPI assign separate

resources for each of them in same system. Figure 3.6 shows the program execution

in the terminal and program outputs.

Figure 3.6: Program execution in terminal, single-node

The printed output in terminal is included:

1- the name of each disjoint partition dataset

54

2- rank number of each task

3- mean accuracy (meanD/ meanDB/ meanSB/ meanNRSB), standard

deviation(stdD/ stdDB/ stdSB/ stdNRSB) and standard error of mean (semD/

semDB/ semSB/ semNRSB) for each of methods.

As shown in the Figure 3.6, each of these results is executed and printed from

separate processors.

Figure 3.7: Resource monitoring in master system with 8 processors

Figure 3.7 illustrates the resource monitoring during program execution. It shows

CPU3 and CPU6 working, and each of these resources is assigned to one task. The

testing of other number of partitions is done as in the above method, with the

difference that when executing command mpirun, we use np parameter (number of

processors), which is the same as PARTNO value in programs. These tests are

repeated for values 2, 4, 6, 8, 10, 12 as well as Appendix A.2 for CART

classification algorithm. The tabular output results of these tests are shown in

Appendices B and C. Appendices F and G contain the plot output of these tests.

55

3.6.1.2 Accuracy in multi-node architecture

Second approach of implementation is to execute program in multi node architecture.

The program runs in more than one system and distributes the parallel tasks in the

resources of multiple nodes. We first make sure that the physical network

connections are established. We test the setting of IPs and netmask interface on the

systems by ifconfig command to be sure about LAN connections are established and

have correct configuration. Command ping is used to test the reachability of a host

on an IP network. Shared storage should check on both systems. The contents of the

CLOUD and CLOUDC1 folders on both systems must be visible. Input dataset and

application source file are stored in the CLOUD folder. This folder also stores

partitioned data sets, final model files, Excel output files, and plots. CLOUDC1

folder stores models generated by tasks other than the “Master task”. Both of these

folders are shared in all nodes. For checking validity of these folders in shared

architecture, mount command can be used (Section 2.6).

 Now we can run program in multi-node by using the following command.

mpirun –n 2 –H master:1,client:1 python3 source-code.py

MPI assigns a separate rank to each of these tasks same as single-node way, but

running each task in different system and using resources of multi systems in

parallel. master is the alias name of ASUS laptop and client is the alias name of the

SONY laptop and the number in front of these aliases is the number of processor(s)

intend to use. Figure 3.8, illustrate the execution of above command in terminal and

the outputs of each tasks in two nodes. This command run program by 2 processors,

which each one of them executes in one node. One task in master node and the other

56

one in client node. The tabular output results of these tests are shown in Appendices

D and E. Appendices H and I contain the plot output of these tests.

Figure 3.8: Program execution in terminal, multi-node

Figure 3.9 shows the resource monitoring in second node when we use command

mpirun –n 12 –H master:8,client:4 python3 source-code.py. In this command, MPI

starts 12 concurrent tasks, with using all the processors in first and second laptop. As

you can see in Figure 3.11, all four CPUs in second node and local network are busy.

57

Figure 3.9: Resource monitoring in client system with 4 processors

3.6.2 Prediction and test-score and runtime comparison for Bagging-like

partitioning method and LADEL algorithm

First, to test the DELS system in Bagging-like methods by MLP work on distributing

multi-node classification algorithms, we execute given in the Appendix A.3 program

using the mpirun command, same as previous program in multi-node system. The

tabular output results are shown in Appendix J.

Second we evaluate the test-score and runtime of the LADEL method work on

distributing multi-node classification algorithms by MLP [Appendix A.4] and CART

[Appendix A.5] and the results of that program execution are in Appendix K and L.

The summary of achievements on this experiment are, in Bagging-like partitioning

method as the number of data partitioning increases, the degree of accuracy is slowly

declining and the error rate increases in both single and multi-node systems. In

LADEL model, prediction of results in MLP is fluctuating, but the trend of results

becomes closer to each other with increasing number of partitions in both classifiers

MLP and CART. For training time in ensemble classification, despite the increase in

the number of nodes, the time to learn and build the model should be distributed in

the systems and therefore have a downward trend. However, this time has an upward

trend. This trend has improved from Bagging-like method to LADEL dramatically.

58

Chapter 4

EXPERIMENTS ON DELS

In this segment, we analyze three strategies for training classifier. The types of

grouping and stratified the data that have been introduced as Bagging-Like methods

in previous articles have been applied to input data and then a comparison between

two different types of learning algorithms, one of the well-known Decision Tree

algorithms called CART and other neural network type called multi-layer perceptron

or MLP is done.

We focus on evaluation the prediction accuracy and the standard deviation and

standard error of mean (SEM) of classifiers using a variety of approaches. The

duration of the training is also checked. Finally, the order of the input data is changed

using the LADEL method and the accuracy and error rate and learning time duration

are evaluated using Algorithms MLP and CART.

The first approach uses four disjoint partition methods to stratify large input dataset

into n smaller one and distribute them into different processors in single node as

parallel tasks. Implementation on this section is by Python-V3.7.4 (64-bit) on

Spyder-V3.3.6 and Microsoft MPI v9 with random data in single node. This dataset

is tested by two CART and MLP classifiers. The second approach uses an

implementation of the same tools but in network area on distributing data through

client-server topology. In our experimental test, we just use two laptops one has a

role of master and client both and the other as a client. The “client” is the name of

59

machine you would like to do computation with and “master” is the name of main

computer, which expected to distribute the files to the other client systems. We use a

300Mb/s TP-Link wireless modem router for creating network between two laptops

through local area network (LAN). Both systems are run in Ubuntu 18.04 TLS with

up to 300 Mb/s network bandwidth connections through wired LAN. Again, these

tests are used random dataset records trained by CART and MLP classifiers. The

third approach uses the sorted dataset by classifications, which is included by all the

class labels in training dataset produced by LADEL method. This approach is trained

on distributed servers with both decision tree and neural network algorithms. We

choose classification and regression tree and multilayer perceptron technique as they

represent LADEL’s worst and best cases in terms of training time and predictive

accuracy in previous scientist’s researches.

In all machine learning techniques the entire of training data should be loaded into

ram memory to do the training, thus in large datasets which the size of in-memory

are not large enough to fit the data satisfactorily, dividing data and distributing them

into several machine and do learning in parallel is suggested and implemented in all

above introduced approaches.

4.1 Experimental setup

4.1.1 Environment setup

We use the laptop ASUS VivoBook S14, Ubuntu 18.04 LTS instances with four

cores (1.8 GHz, 1992 MHz, 8 Logical Processor(s)), 8 GB RAM, Page File Space

2.5 GB and 256 GB SSD Disk. Our second node is Desktop SONY VAIO, Ubuntu

18.04 LTS instances with two cores (2.4 GHz, 2400 MHz, 4 Logical Processors), 4

GB RAM, Page File Space 1.88GB and 500 GB disk space.

60

4.1.2 Datasets

KDD Cup 99 dataset is used for the KDD Cup competition 1999. This is an annual

Data Mining and Knowledge Discovery Competition organized by ACM group. This

database contains data to be distinguished between the different kinds of connections

happening over the military network, whether is good (approved connection) or is a

bad (unwanted, intrusive connection). Extracting well model to predict the

connection type in the future communication is requested. The original dataset is

about 4GB of compressed data from seven weeks of network traffic. This was

processed into about five million connection records. Similarly, the two weeks of

test data yielded around two million connection records.

HIGGS dataset has been produced using Monte Carlo simulations. The first 21

features (columns 2-22) are kinematic properties measured by the particle detectors

in the accelerator. The last seven features are functions of the first 21 features; these

are high-level features derived by physicists to help discriminate between the two

classes. The first column is class column, containing labels 0 and 1. The original

dataset is about 4GB of compressed data. This was processed into about eleven

million records. In our network laboratory facility, we just used partial of original

dataset as bellow in Table 4.1. KDD Cup 1999 data set for Bagging-like method

[Appendix A.1.1-A.3.1] and HIGGS dataset for LADEL method [Appendix A.4.1-

A.5.1].

Table 4. 1: Input data set attributes

Usage

method

Data Set #number

of records

#Attributes #Class

labels

Size

(MB)

Bagging-

like

KDD Cup

1999[24]

48,871

44

23

6.2

LADEL HIGGS[15] 1468 28 2 300KB

61

4.2 Accuracy comparison for single-node classifier ensemble

In this analysis, we investigate the predictive accuracy and standard error on creating

model in four stratify types of input medium-size dataset into smaller size which fit

the memory in local computer and single-node architecture. Based on the tabular

results obtained in [Appendixes B-C] and plot results obtained in [Appendixes F-G]

, a comparison can be made between the value of accuracy, standard deviation and

standard error of mean rate (SEM) in a medium-sized input dataset obtained (Table

4.1). This experimental comparison of the different approaches on two, four, six,

eight, ten and twelve disjoint partitions (D) and classifier groups formed using the

other three approaches (DB, SB, NRSB). We have chosen two classifiers on the

category of decision tree and neural network machine learning algorithms for

training these divided datasets to extract the models and accuracy of them. Codes

implementing these experiments are available in [Appendices A.1] for CART and

[Appendices A] for MLP.

As the first practical experience in Figure 4.1, the first data point represent the Mean

accuracy with tolerance of standard error of mean when the data is divided into 2

sections by disjoint partition method (D) and using MLP classification algorithm.

The rest of data points in plot show the same size division but in sequence DB, SB

and NRSB Bagging-like data division methods. Each of these datasets as a separate

task is assigned to the separate processors in standalone computer. You can consider

other plot results for 4, 6, 8 ,10 and 12 dataset divisions in Plot.G.2-6. In addition,

Tabular results in Table.C.2-6.

62

Figure 4.1: Accuracy comparison on Bagging-like ensembles by MLP for 2 disjoint

partitions [Appendix G]

According to the plots in [Appendix G] using MLP, disjoint Bags (DB) is more

accurate than other dataset partitioning methods. In this sample of experiments, the

possibility of increased accuracy due to frequent records in each bag, as well as

increasing the number of records increases. Duplicate records are available in each

bag. AS in disjoint partition (D) method, there are no duplication records and only

records are randomly entered and tested in the input file, so it is less accurate than the

others are.

The same testing process is repeated by classification and regression tree (CART)

classifier and the tabular results are given in Appendix B and the comparison plots in

Appendix F. According to the plots in [Appendix F] using CART, Small Bag (SB) is

more accurate than most other methods. In this sample of experiments, the

probability of increasing accuracy increases due to the presence of duplicate records.

Duplicate records are available in each bag and throughout the bag, so assuming that

there is a possibility of increasing the number of records in a classification, it can be

claimed that this method is more accurate than other methods. And in method

63

disjoint partition (D), there is no duplication in classifications and only records are

randomly entered and tested in the input file, so it is less accurate than others.

It is clear from the statistics, the overall efficiency of data partitioning in all four

methods decreases by increasing number of data divisions and processors. As the

data loaded into memory is incomplete, the partial data is allocated to parallel tasks

and processors, which reduces performance accuracy. In the same way, standard

error of mean (SEM) has been increased slightly.

In another point of view, the CART classifier from the decision tree is more efficient

than multilayer perceptron in all data division methods. Extracted accuracy in using

CART classifier is almost 0.998 but in MLP classifier is between 0.96-0.97. Also, if

we compare the amount of standard deviation obtained using these two classifiers

with the number of the same processors and different classifications, we conclude

that, by using MLP classifier, the standard deviation is less than the CART and the

standard error of mean (SEM) is a little bit higher than using CART classifier. These

changes are very small, about one thousandth or ten thousandths. Fortunately, as the

number of data partitions increases and the number of processors increases, CART

classification gives us even better accuracy. The standard error rate and the standard

deviation are less than MLP.

We did comparison of the time required to run the program in various data

partitioning by MLP or CART. Table 4.2 illustrates the time required to obtain

accuracy for Bagging-like methods by decision tree and neural network classifier in

different number of partitioning separately.

64

Table 4.2: Run-time in single-node mode

Partitions?

MLP

Run-time

(sec)

CART

Run-time

(sec)
2 4080 360

4 2520 300

6 1440 240

8 1140 180

10 840 120

12 780 120

We measure run-time by T0 variable [Appendix A.1.2- Lines 220]. To measure the

duration of the program (T0), we subtract the start time of the program (Tbegin0)

[Appendix A.1.1- line 22] from the time of the end of the program (Tend0)

[Appendix A.1.5- lines 450-452]. You can find raw data output in Appendix [B-C].

Table 4.2 illustrates neural network algorithm requires more time to learn, while the

decision tree returns the result faster. As you can see, the CART algorithm is about 6

to 11 times faster than the MLP algorithm for Bagging-like methods in single-node.

Since different parts perform learning operations in parallel, increasing the number

of partitions reduces the training time. This conclusion is true in both learning

algorithms.

4.3 Accuracy comparison for multi-node classifier ensemble

In this part of experiment, we run the program [Appendix A.1 and A.2] in multi

node. In this method, exactly same as single-node by increasing the number of

partitions, the accuracy rate is slowly reduced and the error rate and standard

deviation are increased. In all data partitioning methods, we see a decrease in

accuracy. You can refer to [Appendixes D-E] for tabular detailed results and

[Appendixes H-I] comparison plots.

65

In multi-node system method, the input data partition into the small size datasets and

then distributed to different processors in various nodes through the network. The

results show that the accuracy reduces compared to the single-node method. This

reduction in accuracy is negligible for data tested (Table 4.1).We may also see a

greater decrease in predictable accuracy as the size of the input data and the number

of network nodes increase.

Comparing the dataset partitioning methods (Bagging-like) and the degree of

accuracy [Appendixes H-I], it can be said that Small Bag (SB) method still has the

highest level of accuracy in multi-node. After the SB method, the disjoint Bags (DB-

No replication across, Larger) method achieved the highest level of accuracy.

In terms of runtime, the same source code used for single-node use for multi-node,

except that mpirun command uses the client-server format. Thus, we measure run-

time by T0 variable [Appendix A.1.2- Lines 220]. To measure the duration of the

program (T0), we subtract the start time of the program (Tbegin0) from the time of

the end of the program (Tend0). You can find raw data output for CART in

Appendix [H] and for MLP in [Appendix I]. As you illustrate in Table 4.3, in

addition to the fact that MLP algorithm is slower than the CART learning algorithm,

it saves time by increasing the number of disjoint partitions, but the runtime in multi-

node method is longer than in the single-node method. The time of distribution and

transfer of data from the server to the clients, add to the execution time of other parts,

so this slowness is understandable. The main result is by increasing the number of

partition datasets, the runtime decrease.

66

Processor # Master: client column in Table 4.3 shows the number of processor we

assigned to the DELS system by mpirun. Mpirun command has a parameter to assign

the number of resources we need from master and clients. Since the ASUS, laptop

has a better processor with faster speeds in running the program and the number of

processors is twice of SONY laptop, so we assign 2/3 of the processor required by

ASUS and 1/3 of the SONY to the program.

Table 4.3: Run-time in multi-node mode

Partitions # Processor #

Master: Client

MLP

Runtime (sec)

CART

Runtime (sec)
2 1:1 6180 540
4 3:1 2280 240
6 4:2 1560 180
8 6:2 960 180
10 7:3 780 180
12 8:4 960 180

4.3.1 Prediction comparison for Bagging-like partitioning method

In machine learning a common problem is the tendency to memorize the data

classifiers have been trained on [24]. It can make the model looks great on the

training data but in actuality it has no ability to generalize on new data that is given.

To gain perspective into how the model is actually doing, we use a train/test split

(75%-25%). After data training and get the model, the model is tested on the test data

split to realise its performance in comparison with the training data and obtain the

test score. Cross-validation is any of various similar model validation techniques for

assessing how the results of a statistical analysis will generalize to test split of data

set. It is used for prediction, and we want to estimate how accurately a predictive

model will perform in practice.

67

In this experiment, training dataset divide by Bagging-like dataset partitioning

methods in multi node systems to get the models. The test split of data is tested by

these models and we compare the test score of them [Appendix A.3]. The remarkable

point in this part of the test is that despite using four different methods of data

partitioning (D, DB, SB and NRSB) and observing a small amount of difference in

accuracy of them, by adding major-voting part in the server side, the final cross-

validation in all these methods is the same [Table 4.4] and we have a good score of

0.829 in cross-validation to evaluate the extraction model and a very high score of

0.955 for test-score to evaluate model on testing data. You can see the detail results

of the studies in Appendix J, Tables J.1-6.

Table 4.4: Accuracy of model in training dataset by Cross-valiadation value &

accuracy of model in testing dataset by test scores in Bagging-like methods by MLP

Partitions

Cross-

validation

Test-

score

2 0.829 0.955

4 0.829 0.955

6 0.829 0.955

8 0.829 0.955

10 0.829 0.955

12 0.829 0.955

To compare the runtime of the DELS system by MLP, the value of T0 [Appendix

A.3.6, line 553] is measured. As you see in Table 4.5, the training time decreases as

the number of disjoint partitions increases, while the scoring time increases. There

are two reasons for the decrease in training time with the increase in the number of

partitions: 1) Fewer records are available in each partition to learn; 2) Parallel

processing is done on the parts. The reason for this increase in scoring time is related

to that as the number of models obtained increases, the duration of majority-voting

increases.

68

Table 4.5: Training and scoring time in Bagging-like methods by MLP in multi-node

mode

Partitions

Processor

Master:

Client

Training

time

(sec)

Scoring

sime

(sec)

2 1:1 17.92 1901

4 3:1 12.55 4099

6 4:2 12.22 5708

8 6:2 11.99 8279

10 7:3 11.90 10083

12 8:4 11.4 11709

4.4 Training time and scoring time comparison for LADEL

In this part of the experimental test, we review and compare training time and

scoring time for label-aware distributed ensemble learning (LADEL) method with

Khalifa’s article. The data set used in this part of the experimental test is HIGGS

with the specifications mentioned in Table 4.1 of the second row. The MLP

implementation code is available in [Appendix A.4] and the raw data outputs of this

test implementation code are available in [Table K]. The CART classification

algorithm repeats the same experimental test. The code is in [Appendix A.5] and

output tabular results in [Appendix L].

In this analyze, we investigate the effect of increasing number of dataset partitioning

in training time and scoring time for producing training data set in the format of

LADEL with all class labels include in each dataset partition, in the ratio of [1:1].

Ratio of [1:1] means, original balanced on HIGGS dataset. It has two class labels

with an equal records number belonging to each class. Disjoint partitioned datasets

train in distributed process on single node or multiple nodes. The training classifiers

gather in vote-based ensemble on the master node.

69

We analyze the training time in 2-12 number of disjoint partitions in parallel

processing. As you can see in figure 4.2, adding number of training dataset leads to

increasing the training parallelization, which leads to a shorter training time. By

increasing number of parallel process, the graph has a downward trend, but having

12 ensemble classifiers graph shows slightly increase on the training time. The

results illustrates that the training time in CART is at most 3 times the MLP

algorithm, so using MLP is faster than CART.

Figure 4.2: Ratio of the distributed ensemble training time to that of single-node

classifier

The results obtained in Khalifa’s article [3] presented in Figure 2.17 are in line with

the results of this study for training time. Since the hardware and software

specifications of the tools used are not the same, and the number of data samples

used in HIGGS dataset is not the same, we will leave the statistical comparison of the

results to future studies.

In terms of scoring time, as the number of ensemble classifiers increases, the more

time require to calculate the score the new data because the number of classifiers

367.76%

252.04%

193.85%

155.65% 147.91% 138.95%
120.54%

12.83% 2.21% 1.82% 0.22% 1.52%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

350.00%

400.00%

0 2 4 6 8 10 12 14

R
at

io
 o

f
th

e
 D

is
tr

ib
u

te
d

 e
n

se
m

b
le

 T
ra

in
in

g
ti

m
e

 t
o

 t
h

at

o
f

a
se

q
e

n
ti

al
 S

in
gl

e
 N

o
d

e
 C

la
ss

if
ie

r

Number of Partitions

HIGGS Datasets [2 Classes, ratio 1:1]
Training: 1101 records

Testing: 367 records
[Lower values are better]

CART MLP

70

increases. In this test, testing data has 367 records. We analyze scoring time in

distributed classifiers in single-node (Figure 4.3) and in multi-node (Figure 4.4).

Both approaches show mostly an upward trend.

Figure 4.3: Scoring time for single-node mode

Figure 4.4: Scoring time for multi-node mode

Comparison of the results obtained versus known from the Khalifa’s article [3, Fig

10], the results in Figure 2.17 extracted 4.1% in 1000 nodes faster in distributed

ensemble classifier than single classifier by MLP in almost 7 million training records

in 2 classes, ratio 1:1 and our results are in maximum 12 processors in almost 1

250.23

516.00

809.68

1027.76 1007.85 958.83

140.07

380.54

645.98 681.37
628.93

991.04

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14

Sc
o

ri
n

g
ti

m
e

fo
r

Si
n

gl
e

-n
o

d
e(

Se
c)

Number of Partitions

HIGGS Datasets [2 Classes, ratio 1:1]
Training: 1101 records
Testing: 367 records

[Lower values are better]

CART MLP

182.93

391.28

557.85

755.10

899.57

1062.53

220.37

354.73

538.98

836.93

1022.92
1117.68

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14

Sc
o

ri
n

g
 t

im
e

fo
r

M
u

lt
i-

n
o

d
e(

Se
c)

Number of Partitions

HIGGS Datasets [2 Classes, ratio 1:1]
Training: 1101 records
Testing: 367 records

[Lower values are better]

CART MLP

71

thousand training records in 2 classes by ratio 1:1 and it shows faster training time in

MLP than CART classifier.

In summery our experimental findings are in DELS for Bagging-like methods show

that as the number of data divisions increases the level of learning accuracy

decreases and Error rate increases in both single and multi-node structure with

parallel processing. Using CART, SB has almost better accuracy and D has almost

the less accuracy. With MLP, DB has almost better accuracy and D has less

accuracy. CART classification provides slightly better accuracy in single-node and

multi-node experiments than MLP. The main purpose of these practical experiments

is to reduce the training time. Training time decreases with increasing number of

training datasets.

72

Chapter 5

CONCLUSION

This thesis considers a problem of minimizing training time of classifiers by

distributing data across distributed nodes. To study the problem, DELS with several

partitioning methods and classifiers was implemented and experiments were

conducted. Partitioning methods used are D, DB, SB, NRSB and DSS in LADEL

algorithm. The classifiers used are CART and MLP. The single-node and multi-node

architecture are used to distribute parallel tasks. MPI is used for distributing disjoint

partitions in parallel tasks.

DELS is implemented as a system with Input/ Output subsystem (IOS), partitioning

subsystem including LADEL model, training subsystem and testing subsystem. The

tools were used are Ubuntu 18.04 LTS, Python-V3.7.4 (64bit) on Spyder-V3.3.6 and

Microsoft MPI v9. We just use two laptops one has a role of master and client both

and the other as a client. TP-Link wireless modem router with 300Mb/s speed are

used for creating network between two laptops. The KDD Cup 99 dataset for the

KDD Cup competition 1999 and HIGGS dataset that has been produced using Monte

Carlo simulations are used in DELS system.

We followed mainly [3] where LADEL system was proposed and [2] where

Bagging-like methods was proposed. Our experimental results obtained for DELS

using datasets, 1- KDD Cup 99 dataset for Bagging-like partitioning dataset methods

and, 2- HIGGS dataset that has been produced using Monte Carlo simulations for

73

LADEL algorithm. The results obtained in [3], Figure 2.17 are in line with the results

of Figure 4.2 for training time. Both results show, adding number of training dataset

leads to increasing the training parallelization, which leads to a shorter training time.

Also the results of Figures 2.18 and 2.19 about scoring-time comply with the results

we obtained by DELS in Figures 4.3 4.4. As the number of ensemble classifiers

increases, the more time require to calculate the score the new data because the

number of classifiers increases.

To obtain experimental results, first, the implementation of Bagging-like methods, D,

DB, SB, and NRSB, respectively investigated in single-node with parallel processors

in the same system and then multi-node with parallel tasks in separate systems with

two learning algorithms CART and MLP. From the results obtained in this

experimental set, we concluded that in Bagging-like methods, the level of learning

accuracy decreases and the error rate increases by increasing number of data

divisions. These results are true for both single-node and multi-node methods with

parallel processing.SB and D are the best and worst dataset partitioning methods by

CART, respectively. In addition, for MLP classification algorithms, DB and D are

the best and worst dataset partitioning methods. Simultaneous execution of tasks in

distributed systems greatly reduces the run-time of the learning training data.

Data distribution by LADEL algorithm has been the next part of our experiment,

which groups’ data based on the uniform distribution of classifications in all files.

Although data preparation takes time, it can be neglected in terms of better

performance. The results of this section show that by an increase in the number of

distributed nodes, the learning and modeling time is distributed in the systems, so

less time is needed to get the results, but at the same time the scoring time increases.

74

In general, the CART classifier from the decision tree is more efficient than MLP in

Bagging-like methods training split in single-node with accuracy of 0.998 but in

MLP, the accuracy is 0.96-0.97 and SB method has higher accuracy than other

methods. Cross validation in Bagging-like methods is 0.829 and test-score is 0.955.

The training time in a single-node with Bagging-like method and classification by

MLP is 4080 and 780 seconds for 2 and 12 partitions, respectively. A similar

experiment was performed by the CART algorithm with 360 and 120 seconds for 2

and 12 partitions. Runtime in multi-node by MLP is 6180 and 960 seconds for 2 and

12 disjoint partitions while by CART is 540 and 180 seconds for 2 and 12 disjoint

partitions.

Using LADEL algorithm in DELS significantly reduces training time. The

experimental results show that in both single-node and multi-node, MLP learns faster

than CART. Best training time occurred in 12 distributed nodes with 0.46

milliseconds by MLP, while learn training dataset in 12 nodes by CART takes 21.39

seconds. Totally, results show that training time decreases in distributed systems

while scoring time increases. To reduce the scoring time, the ensemble classifiers

can be copied to the distributed nodes, and just as the training data is divided into

number of nodes, the testing dataset can be divided and sent to the distributed nodes,

and the scoring operation can be performed in parallel. This part of experiment is left

for the future work.

75

REFERENCES

[1] Christopher, C. (2010). Encyclopaedia britannica: Definition of data mining.

Retrieved from https://www.britannica.com/technology/data-mining

[2] Chawla, N. V., Moore, T. E., Hall, L. O., Bowyer, K. W., Kegelmeyer, W. P., &

Springer, C. (2003). Distributed learning with bagging-like performance. Pattern

recognition letters, 24(1-3), 455-471.

[3] Khalifa, S., Martin, P., & Young, R. (2019). Label-aware distributed ensemble

learning: A simplified distributed classifier training model for big data. Big Data

Research, 15, 1-11.

[4] Bhavsar, P., Safro, I., Bouaynaya, N., Polikar, R., & Dera, D. (2017). Machine

learning in transportation data analytics. In Data analytics for intelligent

transportation systems (pp. 283-307). Elsevier.

[5] Van Steen, M., & Tanenbaum, A. S. (2017). Distributed systems. Leiden, The

Netherlands: Maarten van Steen.

[6] Finlay, S. (2014). Predictive analytics, data mining and big data: Myths,

misconceptions and methods. Springer.

[7] Brownlee, J. (2017). What is the difference between test and validation datasets.

Machine Learning Mastery, 14.

https://www.britannica.com/technology/data-mining

76

[8] Gupta, P. (2017). Decision trees in machine learning. Reftived from

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

[9] Steinberg, D., & Colla, P. (2009). CART: classification and regression trees. The

top ten algorithms in data mining, 9, 179.

[10] Nicholson, C. (2019). A beginner’s guide to multilayer perceptrons (MLP).

[11] Zhou, V. (2019). Machine Learning for Beginners: An Introduction to Neural

Networks. Towards Data Science.

[12] Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study.

Journal of artificial intelligence research, 11, 169-198.

[13] Stonebraker, M. (1986). The case for shared nothing. IEEE Database Eng. Bull.,

9(1), 4-9.

[14] Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting

classification algorithms: Bagging, boosting, and variants. Machine learning,

36(1), 105-139.

[15] HIGGS UCI data set. (2014). Reftived from

https://archive.ics.uci.edu/ml/datasets/HIGGS

[16] Buyya, R., Vecchiola, C., & Selvi, S. T. (2013). Mastering Cloud Computing:

Introduction 2. Principles of Parallel and Distributed Computing 3. Virtualization

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://archive.ics.uci.edu/ml/datasets/HIGGS

77

4. Cloud Computing Architecture 5. Aneka: Cloud application platform 6.

Concurrent Computing: Thread programming 7. High-Throughput Computing:

Task Programming 8. Data Intensive Computing: Map-Reduce Programming 9.

Cloud Platforms in Industry 10. Cloud Applications 11. Advanced Topics in Cloud

Computing. Morgan Kaufmann.

[17] Snir, M., Gropp, W., Otto, S., Huss-Lederman, S., Dongarra, J., & Walker, D.

(1998). MPI--the Complete Reference: the MPI core (Vol. 1). MIT press.

[18] Barlas, G. (2014). Multicore and GPU Programming: An integrated approach.

Elsevier.

[19] Dagum, L., & Menon, R. (1998). OpenMP: an industry standard API for shared-

memory programming. IEEE computational science and engineering, 5(1), 46-55.

[20] Bejarano, J. (2013). An Introduction to parallel programming with MPI and

python. Retrived from https://materials.jeremybejarano.com/MPIwithPython/

[21] Browne, M. W. (2000). Cross-validation methods. Journal of mathematical

psychology, 44(1), 108-132.

[22] Kubat, M. (2017). An introduction to machine learning. Springer International

Publishing AG.

[23] KDD Cup 1999 UCI Data Set. (1999). Reftived from

http://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data

https://materials.jeremybejarano.com/MPIwithPython/

78

APPENDICES

79

Appendix A: Software source code- implementation of DELS

1) Accuracy for Bagging-like methods by MLP (Python source code)

Inputs: filename, data file; partno[], array of partitions; base_estimator, classification algorithm;

Outputs: meanD [] array for mean of accuracy by “disjoint partitioning”; meanDB [] array for mean

of accuracy by “disjoint bags”; meanSB [] array for mean of accuracy by “small bags”; meanNRSB []

array for mean of accuracy by “no replication small bags”; stdD [], stdDB [], stdSB [], stdNRSB []

standard deviation for D/DB/SB/NRSB; semD [],semDB [],semSB [],semNRSB [] standard error of

mean for D/DB/SB/NRSB;

1. Definitions and inputs:

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

 Appendix B: Experimental results of DELS

Table B.1: Implementation of the subsystem of data partitioning by DSS. single-

node, single-classifier single-classifier (CART) for 2 disjoint partitions:

ORDER: order of input dataset

ACCURACY: Mean of cross validation score on 10 fold

NODE: number of processor on one or more systems STD: Standard Deviation

PART#: processor rank number SEM: Standard Error of Mean

PARTITION: method of partitioning input dataset CP (MASTER:CLIENT): no of processors used in

master and client machines controlled by MPI command

CLASSIFIER: type of usage classifier

 Standard deviation 𝜑 = √
∑ (𝑥𝑖−𝑥⃐)2𝑛

𝑖=1

𝑛−1
 Variance = 𝜑2

 Standard Error of Mean (SEM) (𝜑𝑥⃐) =
𝜑

√𝑛

 Where 𝑥⃐ = the sample’s mean & n = the sample size

Table B.2: Implementation of the subsystem of data partitioning by DSS. single-

node, single-classifier (CART) for 4 disjoint partitions:
Single-Node Ensemble and Classifier.

NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

4 0 D Decision Tree-CART 0.998445 0.0008543 0.0002702 300

4 0 DB Decision Tree-CART 0.999018 0.0008019 0.0002536 300

4 0 SB Decision Tree-CART 0.9991 0.0008544 0.0002702 300

4 0 NRSB Decision Tree-CART 0.998526 0.001409 0.0004456 300

4 1 D Decision Tree-CART 0.998936 0.0007367 0.000233 300

4 1 DB Decision Tree-CART 0.999182 0.0007319 0.0002315 300

4 1 SB Decision Tree-CART 0.999182 0.0008964 0.0002835 300

4 1 NRSB Decision Tree-CART 0.998854 0.001048 0.0003314 300

4 2 D Decision Tree-CART 0.998527 0.0014553 0.0004602 300

4 2 DB Decision Tree-CART 0.999182 0.0009683 0.0003062 300

4 2 SB Decision Tree-CART 0.999345 0.0006124 0.0001937 300

4 2 NRSB Decision Tree-CART 0.99869 0.001048 0.0003314 300

4 3 D Decision Tree-CART 0.998854 0.0012247 0.0003873 300

4 3 DB Decision Tree-CART 0.9991 0.0006797 0.000215 300

4 3 SB Decision Tree-CART 0.998854 0.001473 0.0004658 300

4 3 NRSB Decision Tree-CART 0.9991 0.0006797 0.000215 300

Single-Node Ensemble and Classifier.

NODE # Part # Partitioning MethodClassifier Accuracy STD SEM Runtime(Sec)

2 0 D Decision Tree-CART 0.999427 0.000584419 0.00018481 360

2 0 DB Decision Tree-CART 0.999182 0.000484216 0.000153123 360

2 0 SB Decision Tree-CART 0.999304 0.000550564 0.000174104 360

2 0 NRSB Decision Tree-CART 0.999263 0.000703935 0.000222604 360

2 1 D Decision Tree-CART 0.999304 0.000777647 0.000245914 360

2 1 DB Decision Tree-CART 0.999468 0.00045016 0.000142353 360

2 1 SB Decision Tree-CART 0.999509 0.000477211 0.000150907 360

103

Table B.3: Implementation of the subsystem of data partitioning by DSS. single-

node, single-classifier (CART) for 6 disjoint partitions:
Single-Node Ensemble and Classifier.

NODE #Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

6 0 D Decision Tree-CART 0.998771951 0.001648207 0.000521209 240

6 0 DB Decision Tree-CART 0.998035905 0.001472946 0.000465786 240

6 0 SB Decision Tree-CART 0.998772855 0.001344105 0.000425043 240

6 0 NRSB Decision Tree-CART 0.999140803 0.000785801 0.000248492 240

6 1 D Decision Tree-CART 0.998649553 0.001281525 0.000405254 240

6 1 DB Decision Tree-CART 0.998772252 0.000776496 0.00024555 240

6 1 SB Decision Tree-CART 0.999017802 0.0007369 0.000233028 240

6 1 NRSB Decision Tree-CART 0.998403853 0.001105618 0.000349627 240

6 2 D Decision Tree-CART 0.998772252 0.001345206 0.000425391 240

6 2 DB Decision Tree-CART 0.998036056 0.001664265 0.000526287 240

6 2 SB Decision Tree-CART 0.998649704 0.0011578 0.000366128 240

6 2 NRSB Decision Tree-CART 0.998526552 0.00107081 0.00033862 240

6 3 D Decision Tree-CART 0.998772102 0.001098468 0.000347366 240

6 3 DB Decision Tree-CART 0.998895103 0.000859413 0.00027177 240

6 3 SB Decision Tree-CART 0.998649553 0.000859219 0.000271709 240

6 3 NRSB Decision Tree-CART 0.998035905 0.001664865 0.000526477 240

6 4 D Decision Tree-CART 0.998035905 0.000982048 0.000310551 240

6 4 DB Decision Tree-CART 0.998895253 0.001157592 0.000366063 240

6 4 SB Decision Tree-CART 0.998158756 0.001669946 0.000528083 240

6 4 NRSB Decision Tree-CART 0.998158756 0.000951204 0.000300797 240

6 5 D Decision Tree-CART 0.998158756 0.000859628 0.000271838 240

6 5 DB Decision Tree-CART 0.998158756 0.001203496 0.000380579 240

6 5 SB Decision Tree-CART 0.998158756 0.001019654 0.000322443 240

6 5 NRSB Decision Tree-CART 0.998158756 0.001234299 0.00039032 240

104

Table B.4: Implementation of the subsystem of data partitioning by DSS. single-

node, single-classifier (CART) for 8 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE #Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

RANDOM 8 0 D Decision Tree-CART0.99869 0.001764 0.000558 180

RANDOM 8 0 DB Decision Tree-CART0.9982 0.00136 0.00043 180

RANDOM 8 0 SB Decision Tree-CART0.998363 0.001637 0.000518 180

RANDOM 8 0 NRSB Decision Tree-CART0.999018 0.0015 0.000474 180

RANDOM 8 1 D Decision Tree-CART0.998691 0.001225 0.000387 180

RANDOM 8 1 DB Decision Tree-CART0.997709 0.002096 0.000663 180

RANDOM 8 1 SB Decision Tree-CART0.99869 0.000982 0.000311 180

RANDOM 8 1 NRSB Decision Tree-CART0.998363 0.001937 0.000612 180

RANDOM 8 2 D Decision Tree-CART0.998199 0.001859 0.000588 180

RANDOM 8 2 DB Decision Tree-CART0.998691 0.001604 0.000507 180

RANDOM 8 2 SB Decision Tree-CART0.998199 0.001859 0.000588 180

RANDOM 8 2 NRSB Decision Tree-CART0.999182 0.001098 0.000347 180

RANDOM 8 3 D Decision Tree-CART0.998854 0.001278 0.000404 180

RANDOM 8 3 DB Decision Tree-CART0.998691 0.000982 0.000311 180

RANDOM 8 3 SB Decision Tree-CART0.99869 0.001429 0.000452 180

RANDOM 8 3 NRSB Decision Tree-CART0.99869 0.001604 0.000507 180

RANDOM 8 4 D Decision Tree-CART0.998199 0.001146 0.000363 180

RANDOM 8 4 DB Decision Tree-CART0.998691 0.001225 0.000387 180

RANDOM 8 4 SB Decision Tree-CART0.998854 0.001278 0.000404 180

RANDOM 8 4 NRSB Decision Tree-CART0.997872 0.002077 0.000657 180

RANDOM 8 5 D Decision Tree-CART0.997217 0.001944 0.000615 180

RANDOM 8 5 DB Decision Tree-CART0.999018 0.001669 0.000528 180

RANDOM 8 5 SB Decision Tree-CART0.997544 0.002227 0.000704 180

RANDOM 8 5 NRSB Decision Tree-CART0.998198 0.00237 0.000749 180

RANDOM 8 6 D Decision Tree-CART0.99869 0.001226 0.000388 180

RANDOM 8 6 DB Decision Tree-CART0.998527 0.00136 0.00043 180

RANDOM 8 6 SB Decision Tree-CART0.998363 0.001268 0.000401 180

RANDOM 8 6 NRSB Decision Tree-CART0.998199 0.001546 0.000489 180

RANDOM 8 7 D Decision Tree-CART0.998526 0.001147 0.000363 180

RANDOM 8 7 DB Decision Tree-CART0.998199 0.001862 0.000589 180

RANDOM 8 7 SB Decision Tree-CART0.999018 0.001086 0.000343 180

RANDOM 8 7 NRSB Decision Tree-CART0.998854 0.001048 0.000331 180

105

Table B.5: Implementation of the subsystem of data partitioning by DSS. single-

node, single-classifier (CART) for 10 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE #Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

RANDOM 10 0 D Decision Tree-CART0.998976667 0.001373696 0.0004344 120

RANDOM 10 0 DB Decision Tree-CART0.99856725 0.001843705 0.00058303 120

RANDOM 10 0 SB Decision Tree-CART0.998363589 0.001530443 0.00048397 120

RANDOM 10 0 NRSB Decision Tree-CART0.999182004 0.001356493 0.00042896 120

RANDOM 10 1 D Decision Tree-CART0.997747997 0.002138004 0.0006761 120

RANDOM 10 1 DB Decision Tree-CART0.99856725 0.001311332 0.00041468 120

RANDOM 10 1 SB Decision Tree-CART0.99815909 0.001698747 0.00053719 120

RANDOM 10 1 NRSB Decision Tree-CART0.997749254 0.001102586 0.00034867 120

RANDOM 10 2 D Decision Tree-CART0.998976667 0.001372446 0.00043401 120

RANDOM 10 2 DB Decision Tree-CART0.997341094 0.002594702 0.00082052 120

RANDOM 10 2 SB Decision Tree-CART0.997544755 0.002004273 0.00063381 120

RANDOM 10 2 NRSB Decision Tree-CART0.997750092 0.001101184 0.00034822 120

RANDOM 10 3 D Decision Tree-CART0.998158671 0.002956466 0.00093492 120

RANDOM 10 3 DB Decision Tree-CART0.997341094 0.002249375 0.00071131 120

RANDOM 10 3 SB Decision Tree-CART0.998159509 0.001698696 0.00053717 120

RANDOM 10 3 NRSB Decision Tree-CART0.999181166 0.001358515 0.0004296 120

RANDOM 10 4 D Decision Tree-CART0.997953334 0.001585126 0.00050126 120

RANDOM 10 4 DB Decision Tree-CART0.998977086 0.001372134 0.00043391 120

RANDOM 10 4 SB Decision Tree-CART0.99836317 0.0020047 0.00063394 120

RANDOM 10 4 NRSB Decision Tree-CART0.998773006 0.002085489 0.00065949 120

RANDOM 10 5 D Decision Tree-CART0.998157833 0.002137603 0.00067597 120

RANDOM 10 5 DB Decision Tree-CART0.998772587 0.001356746 0.00042904 120

RANDOM 10 5 SB Decision Tree-CART0.998568088 0.001309629 0.00041414 120

RANDOM 10 5 NRSB Decision Tree-CART0.997954591 0.002419665 0.00076517 120

RANDOM 10 6 D Decision Tree-CART0.998157833 0.001432932 0.00045313 120

RANDOM 10 6 DB Decision Tree-CART0.99795501 0.002419665 0.00076517 120

RANDOM 10 6 SB Decision Tree-CART0.998772587 0.001356746 0.00042904 120

RANDOM 10 6 NRSB Decision Tree-CART0.997340675 0.00275169 0.00087016 120

RANDOM 10 7 D Decision Tree-CART0.998158671 0.001929329 0.00061011 120

RANDOM 10 7 DB Decision Tree-CART0.997750511 0.002135032 0.00067516 120

RANDOM 10 7 SB Decision Tree-CART0.997750092 0.002322625 0.00073448 120

RANDOM 10 7 NRSB Decision Tree-CART0.998362751 0.002006497 0.00063451 120

RANDOM 10 8 D Decision Tree-CART0.998156995 0.001702027 0.00053823 120

RANDOM 10 8 DB Decision Tree-CART0.997748416 0.001932573 0.00061113 120

RANDOM 10 8 SB Decision Tree-CART0.998158252 0.001930263 0.0006104 120

RANDOM 10 8 NRSB Decision Tree-CART0.997953753 0.002421792 0.00076584 120

RANDOM 10 9 D Decision Tree-CART0.998772168 0.00163746 0.00051781 120

RANDOM 10 9 DB Decision Tree-CART0.998363589 0.001530443 0.00048397 120

RANDOM 10 9 SB Decision Tree-CART0.998158671 0.001431614 0.00045272 120

RANDOM 10 9 NRSB Decision Tree-CART0.998159509 0.001698696 0.00053717 120

106

Table B.6: Implementation of the subsystem of data partitioning by DSS. single-

node, single-classifier (CART) for 12 disjoint partitions:
ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

RANDOM 12 0 D CART 0.9970546081 0.0018362429 0.0005806710 120

RANDOM 12 0 DB CART 0.9982813027 0.0015726866 0.0004973272 120

RANDOM 12 0 SB CART 0.9985264007 0.0016294289 0.0005152707 120

RANDOM 12 0 NRSB CART 0.9977893000 0.0027905659 0.0008824544 120

RANDOM 12 1 D CART 0.9987714988 0.0016482074 0.0005212089 120

RANDOM 12 1 DB CART 0.9992635015 0.0011250212 0.0003557629 120

RANDOM 12 1 SB CART 0.9982819049 0.0019167468 0.0006061286 120

RANDOM 12 1 NRSB CART 0.9985257985 0.0036773046 0.0011628658 120

RANDOM 12 2 D CART 0.9972997061 0.0023143606 0.0007318651 120

RANDOM 12 2 DB CART 0.9973009105 0.0031878991 0.0010081022 120

RANDOM 12 2 SB CART 0.9980350002 0.0021418277 0.0006773054 120

RANDOM 12 2 NRSB CART 0.9975448042 0.0019016343 0.0006013496 120

RANDOM 12 3 D CART 0.9968077034 0.0019196761 0.0006070549 120

RANDOM 12 3 DB CART 0.9982807005 0.0024690778 0.0007807910 120

RANDOM 12 3 SB CART 0.9985264007 0.0019653017 0.0006214830 120

RANDOM 12 3 NRSB CART 0.9977899022 0.0017197313 0.0005438268 120

RANDOM 12 4 D CART 0.9973003083 0.0033745387 0.0010671228 120

RANDOM 12 4 DB CART 0.9977929132 0.0029919025 0.0009461226 120

RANDOM 12 4 SB CART 0.9970540059 0.0026456046 0.0008366136 120

RANDOM 12 4 NRSB CART 0.9985264007 0.0016294289 0.0005152707 120

RANDOM 12 5 D CART 0.9985270029 0.0019634964 0.0006209121 120

RANDOM 12 5 DB CART 0.9990171990 0.0016297911 0.0005153852 120

RANDOM 12 5 SB CART 0.9980343980 0.0024073609 0.0007612744 120

RANDOM 12 5 NRSB CART 0.9995092017 0.0009815975 0.0003104084 120

RANDOM 12 6 D CART 0.9972991039 0.0027897195 0.0008821868 120

RANDOM 12 6 DB CART 0.9980374091 0.0028586209 0.0009039753 120

RANDOM 12 6 SB CART 0.9975429975 0.0021976098 0.0006949452 120

RANDOM 12 6 NRSB CART 0.9987727032 0.0016473112 0.0005209255 120

RANDOM 12 7 D CART 0.9985264007 0.0019653017 0.0006214830 120

RANDOM 12 7 DB CART 0.9968089078 0.0022082961 0.0006983245 120

RANDOM 12 7 SB CART 0.9992635015 0.0011250212 0.0003557629 120

RANDOM 12 7 NRSB CART 0.9977899022 0.0023178051 0.0007329543 120

RANDOM 12 8 D CART 0.9982800983 0.0022113022 0.0006992752 120

RANDOM 12 8 DB CART 0.9987721010 0.0016477594 0.0005210673 120

RANDOM 12 8 SB CART 0.9985257985 0.0019656020 0.0006215779 120

RANDOM 12 8 NRSB CART 0.9965607988 0.0029486042 0.0009324305 120

RANDOM 12 9 D CART 0.9982813027 0.0022109020 0.0006991486 120

RANDOM 12 9 DB CART 0.9982825071 0.0024649449 0.0007794840 120

RANDOM 12 9 SB CART 0.9987721010 0.0016477594 0.0005210673 120

RANDOM 12 9 NRSB CART 0.9977899022 0.0027905133 0.0008824378 120

RANDOM 12 10 D CART 0.9985276051 0.0016268879 0.0005144671 120

RANDOM 12 10 DB CART 0.9973003083 0.0025631708 0.0008105458 120

RANDOM 12 10 SB CART 0.9987721010 0.0016477594 0.0005210673 120

RANDOM 12 10 NRSB CART 0.9985276051 0.0016268879 0.0005144671 120

RANDOM 12 11 D CART 0.9972985017 0.0023180604 0.0007330351 120

RANDOM 12 11 DB CART 0.9985282074 0.0019613879 0.0006202453 120

RANDOM 12 11 SB CART 0.9980374091 0.0021371314 0.0006758203 120

RANDOM 12 11 NRSB CART 0.9987733054 0.0025132726 0.0007947666 120

107

Appendix C: Experimental results of DELS system

Table C.1: Implementation of the subsystem of data partitioning by DSS, single-

node, single-classifier (MLP) for 2 disjoint partitions:

ORDER: order of input dataset

ACCURACY: Mean of cross validation score on 10 fold

NODE: number of processor on one or more systems STD: Standard Deviation

PART#: processor rank number SEM: Standard Error of Mean

PARTITION: method of partitioning input dataset CP (MASTER:CLIENT): no of processors used in

master and client machines controlled by MPI command

CLASSIFIER: type of usage classifier

 Standard deviation 𝜑 = √
∑ (𝑥𝑖−𝑥⃐)2𝑛

𝑖=1

𝑛−1
 Variance = 𝜑2

 Standard Error of Mean (SEM) (𝜑𝑥⃐) =
𝜑

√𝑛

 Where 𝑥⃐ = the sample’s mean & n = the sample size

Table C.2: Implementation of the subsystem of data partitioning by DSS, single-

node, single-classifier (MLP) for 4 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

RANDOM 4 0 D MLP 0.969471041 0.003377356 0.001068014 2520

RANDOM 4 0 DB MLP 0.967346531 0.007678578 0.00242818 2520

RANDOM 4 0 SB MLP 0.971517873 0.004101962 0.001297154 2520

RANDOM 4 0 NRSB MLP 0.971926435 0.00310987 0.000983427 2520

RANDOM 4 1 D MLP 0.969717545 0.004434248 0.001402232 2520

RANDOM 4 1 DB MLP 0.969064824 0.003327991 0.001052403 2520

RANDOM 4 1 SB MLP 0.970780437 0.0051135 0.001617031 2520

RANDOM 4 1 NRSB MLP 0.969471845 0.005912589 0.001869725 2520

RANDOM 4 2 D MLP 0.967997644 0.005998723 0.001896963 2520

RANDOM 4 2 DB MLP 0.972829145 0.003869979 0.001223795 2520

RANDOM 4 2 SB MLP 0.970699341 0.00388437 0.001228346 2520

RANDOM 4 2 NRSB MLP 0.965869716 0.004500544 0.001423197 2520

RANDOM 4 3 D MLP 0.967668301 0.003910078 0.001236475 2520

RANDOM 4 3 DB MLP 0.970290042 0.004714657 0.001490905 2520

RANDOM 4 3 SB MLP 0.967916548 0.003054454 0.000965903 2520

RANDOM 4 3 NRSB MLP 0.968815438 0.005150237 0.001628648 2520

Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard Deviation Standard Error of Mean(SEM)Runtime(Sec)

RANDOM 2 0 D MLP 0.9736045 0.004949548 0.001565185 4080

RANDOM 2 0 DB MLP 0.97205079 0.003352801 0.001060249 4080

RANDOM 2 0 SB MLP 0.97176267 0.00413519 0.001307662 4080

RANDOM 2 0 NRSB MLP 0.97638706 0.005039876 0.001593749 4080

RANDOM 2 1 D MLP 0.97155725 0.003165296 0.001000955 4080

RANDOM 2 1 DB MLP 0.97761536 0.005537967 0.001751259 4080

RANDOM 2 1 SB MLP 0.97196759 0.002641358 0.000835271 4080

RANDOM 2 1 NRSB MLP 0.97753279 0.005803803 0.001835324 4080

MEAN Accuracy Mean SEM MA - SEM MA + SEM

D 0.972580875 0.00128307 0.971297805 0.97386394

DB 0.974833076 0.001405754 0.973427322 0.97623883

SB 0.971865129 0.001071466 0.970793663 0.9729366

NRSB 0.976959924 0.001714536 0.975245387 0.97867446

108

Table C.3: Implementation of the subsystem of data partitioning by DSS, single-

node, single-classifier (MLP) for 6 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

RANDOM 6 0 D MLP 0.966117 0.006245 0.001975 1440

RANDOM 6 0 DB MLP 0.968947 0.004385 0.001387 1440

RANDOM 6 0 SB MLP 0.965137 0.00485 0.001534 1440

RANDOM 6 0 NRSB MLP 0.970904 0.006738 0.002131 1440

RANDOM 6 1 D MLP 0.970412 0.004953 0.001566 1440

RANDOM 6 1 DB MLP 0.966363 0.004985 0.001576 1440

RANDOM 6 1 SB MLP 0.966609 0.006543 0.002069 1440

RANDOM 6 1 NRSB MLP 0.968696 0.005631 0.001781 1440

RANDOM 6 2 D MLP 0.969429 0.005361 0.001695 1440

RANDOM 6 2 DB MLP 0.967962 0.007426 0.002348 1440

RANDOM 6 2 SB MLP 0.968329 0.007082 0.00224 1440

RANDOM 6 2 NRSB MLP 0.967714 0.006016 0.001902 1440

RANDOM 6 3 D MLP 0.969185 0.006287 0.001988 1440

RANDOM 6 3 DB MLP 0.967223 0.0069 0.002182 1440

RANDOM 6 3 SB MLP 0.970292 0.004352 0.001376 1440

RANDOM 6 3 NRSB MLP 0.966363 0.006175 0.001953 1440

RANDOM 6 4 D MLP 0.967712 0.00583 0.001844 1440

RANDOM 6 4 DB MLP 0.971154 0.005027 0.00159 1440

RANDOM 6 4 SB MLP 0.967101 0.006714 0.002123 1440

RANDOM 6 4 NRSB MLP 0.96698 0.006449 0.002039 1440

RANDOM 6 5 D MLP 0.967955 0.006152 0.001946 1440

RANDOM 6 5 DB MLP 0.967224 0.005029 0.00159 1440

RANDOM 6 5 SB MLP 0.963909 0.007804 0.002468 1440

RANDOM 6 5 NRSB MLP 0.968573 0.005097 0.001612 1440

109

Table C.4: Implementation of the subsystem of data partitioning by DSS, single-

node, single-classifier (MLP) for 8 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

RANDOM 8 0 D MLP 0.965625 0.005069 0.001603 1140

RANDOM 8 0 DB MLP 0.964648 0.007179 0.00227 1140

RANDOM 8 0 SB MLP 0.962023 0.004622 0.001462 1140

RANDOM 8 0 NRSB MLP 0.969228 0.009278 0.002934 1140

RANDOM 8 1 D MLP 0.964315 0.004256 0.001346 1140

RANDOM 8 1 DB MLP 0.963993 0.007607 0.002405 1140

RANDOM 8 1 SB MLP 0.965134 0.007019 0.00222 1140

RANDOM 8 1 NRSB MLP 0.962839 0.005692 0.0018 1140

RANDOM 8 2 D MLP 0.962841 0.006128 0.001938 1140

RANDOM 8 2 DB MLP 0.963339 0.010226 0.003234 1140

RANDOM 8 2 SB MLP 0.965788 0.007154 0.002262 1140

RANDOM 8 2 NRSB MLP 0.966116 0.005279 0.00167 1140

RANDOM 8 3 D MLP 0.968572 0.00556 0.001758 1140

RANDOM 8 3 DB MLP 0.96743 0.008198 0.002592 1140

RANDOM 8 3 SB MLP 0.96546 0.007628 0.002412 1140

RANDOM 8 3 NRSB MLP 0.96726 0.005684 0.001798 1140

RANDOM 8 4 D MLP 0.964475 0.011642 0.003681 1140

RANDOM 8 4 DB MLP 0.965794 0.006187 0.001956 1140

RANDOM 8 4 SB MLP 0.967588 0.00764 0.002416 1140

RANDOM 8 4 NRSB MLP 0.963496 0.006129 0.001938 1140

RANDOM 8 5 D MLP 0.96677 0.004808 0.00152 1140

RANDOM 8 5 DB MLP 0.964975 0.007179 0.00227 1140

RANDOM 8 5 SB MLP 0.964152 0.01114 0.003778 1140

RANDOM 8 5 NRSB MLP 0.964152 0.00726 0.002296 1140

RANDOM 8 6 D MLP 0.966935 0.011284 0.003568 1140

RANDOM 8 6 DB MLP 0.969231 0.00767 0.002425 1140

RANDOM 8 6 SB MLP 0.963497 0.009821 0.003106 1140

RANDOM 8 6 NRSB MLP 0.962023 0.00393 0.001243 1140

RANDOM 8 7 D MLP 0.967913 0.006125 0.001937 1140

RANDOM 8 7 DB MLP 0.969881 0.006872 0.002173 1140

RANDOM 8 7 SB MLP 0.96628 0.008286 0.00262 1140

RANDOM 8 7 NRSB MLP 0.967262 0.00828 0.002618 1140

110

Table C.5: Implementation of the subsystem of data partitioning by DSS, single-

node, single-classifier (MLP) for 10 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)Runtime(Sec)

RANDOM 10 0 D MLP 0.965223 0.007365 0.002329 840

RANDOM 10 0 DB MLP 0.961545 0.008429 0.002665 840

RANDOM 10 0 SB MLP 0.963996 0.008869 0.002805 840

RANDOM 10 0 NRSB MLP 0.967066 0.008445 0.00267 840

RANDOM 10 1 D MLP 0.964193 0.007874 0.00249 840

RANDOM 10 1 DB MLP 0.96256 0.007608 0.002406 840

RANDOM 10 1 SB MLP 0.966447 0.008644 0.002733 840

RANDOM 10 1 NRSB MLP 0.966244 0.006224 0.001968 840

RANDOM 10 2 D MLP 0.965218 0.008116 0.002567 840

RANDOM 10 2 DB MLP 0.962153 0.004105 0.001298 840

RANDOM 10 2 SB MLP 0.96338 0.008603 0.002721 840

RANDOM 10 2 NRSB MLP 0.962973 0.007275 0.002301 840

RANDOM 10 3 D MLP 0.962347 0.008697 0.00275 840

RANDOM 10 3 DB MLP 0.962967 0.010579 0.003345 840

RANDOM 10 3 SB MLP 0.949469 0.006333 0.002003 840

RANDOM 10 3 NRSB MLP 0.962356 0.010876 0.003439 840

RANDOM 10 4 D MLP 0.964801 0.007831 0.002476 840

RANDOM 10 4 DB MLP 0.963991 0.006684 0.002114 840

RANDOM 10 4 SB MLP 0.959288 0.006303 0.001993 840

RANDOM 10 4 NRSB MLP 0.96461 0.010818 0.003421 840

RANDOM 10 5 D MLP 0.963778 0.007452 0.002356 840

RANDOM 10 5 DB MLP 0.963788 0.008492 0.002685 840

RANDOM 10 5 SB MLP 0.964404 0.006006 0.001899 840

RANDOM 10 5 NRSB MLP 0.963996 0.006469 0.002046 840

RANDOM 10 6 D MLP 0.959281 0.008449 0.002672 840

RANDOM 10 6 DB MLP 0.963585 0.008072 0.002552 840

RANDOM 10 6 SB MLP 0.954991 0.005262 0.001664 840

RANDOM 10 6 NRSB MLP 0.964814 0.009576 0.003028 840

RANDOM 10 7 D MLP 0.964804 0.005773 0.001825 840

RANDOM 10 7 DB MLP 0.963994 0.006353 0.002009 840

RANDOM 10 7 SB MLP 0.960106 0.005113 0.001617 840

RANDOM 10 7 NRSB MLP 0.963994 0.00733 0.002318 840

RANDOM 10 8 D MLP 0.963985 0.006163 0.001949 840

RANDOM 10 8 DB MLP 0.965426 0.007228 0.002286 840

RANDOM 10 8 SB MLP 0.964605 0.007329 0.002318 840

RANDOM 10 8 NRSB MLP 0.959904 0.010467 0.00331 840

RANDOM 10 9 D MLP 0.965626 0.006698 0.002118 840

RANDOM 10 9 DB MLP 0.966654 0.010469 0.003311 840

RANDOM 10 9 SB MLP 0.963994 0.008038 0.002542 840

RANDOM 10 9 NRSB MLP 0.964608 0.01015 0.00321 840

111

Table C.6: Implementation of the subsystem of data partitioning by DSS, single-

node, single-classifier (MLP) for 12 disjoint partitions:

RANDOM 12 0 D MLP 0.958753 0.0087 0.002751 780

RANDOM 12 0 DB MLP 0.960733 0.010213 0.00323 780

RANDOM 12 0 SB MLP 0.96317 0.012086 0.003822 780

RANDOM 12 0 NRSB MLP 0.963662 0.008847 0.002798 780

RANDOM 12 1 D MLP 0.961944 0.007472 0.002363 780

RANDOM 12 1 DB MLP 0.958519 0.007635 0.002414 780

RANDOM 12 1 SB MLP 0.95753 0.013689 0.004329 780

RANDOM 12 1 NRSB MLP 0.961215 0.008732 0.002761 780

RANDOM 12 2 D MLP 0.964647 0.010066 0.003183 780

RANDOM 12 2 DB MLP 0.961711 0.006685 0.002114 780

RANDOM 12 2 SB MLP 0.961942 0.009346 0.002956 780

RANDOM 12 2 NRSB MLP 0.961209 0.006831 0.00216 780

RANDOM 12 3 D MLP 0.966117 0.003941 0.001246 780

RANDOM 12 3 DB MLP 0.961951 0.004842 0.001531 780

RANDOM 12 3 SB MLP 0.960959 0.011553 0.003653 780

RANDOM 12 3 NRSB MLP 0.960965 0.009403 0.002974 780

RANDOM 12 4 D MLP 0.966363 0.00572 0.001809 780

RANDOM 12 4 DB MLP 0.968091 0.008769 0.002773 780

RANDOM 12 4 SB MLP 0.965135 0.006842 0.002164 780

RANDOM 12 4 NRSB MLP 0.964643 0.010377 0.003281 780

RANDOM 12 5 D MLP 0.96317 0.011938 0.003775 780

RANDOM 12 5 DB MLP 0.964897 0.008935 0.002826 780

RANDOM 12 5 SB MLP 0.96096 0.012637 0.003996 780

RANDOM 12 5 NRSB MLP 0.966854 0.0053 0.001676 780

RANDOM 12 6 D MLP 0.956298 0.012408 0.003924 780

RANDOM 12 6 DB MLP 0.966861 0.009143 0.002891 780

RANDOM 12 6 SB MLP 0.965622 0.012539 0.003965 780

RANDOM 12 6 NRSB MLP 0.945737 0.014838 0.004692 780

RANDOM 12 7 D MLP 0.961697 0.011544 0.003651 780

RANDOM 12 7 DB MLP 0.95311 0.010596 0.003351 780

RANDOM 12 7 SB MLP 0.954341 0.011959 0.003782 780

RANDOM 12 7 NRSB MLP 0.963654 0.014031 0.004437 780

RANDOM 12 8 D 0.960466 0.01104 0.003491 780

RANDOM 12 8 DB MLP 0.958757 0.010953 0.003464 780

RANDOM 12 8 SB MLP 0.965382 0.007872 0.002489 780

RANDOM 12 8 NRSB MLP 0.960225 0.007435 0.002351 780

RANDOM 12 9 D MLP 0.963165 0.009631 0.003046 780

RANDOM 12 9 DB MLP 0.96341 0.012564 0.003973 780

RANDOM 12 9 SB MLP 0.957523 0.009588 0.003032 780

RANDOM 12 9 NRSB MLP 0.965132 0.010478 0.003313 780

RANDOM 12 10 D MLP 0.956777 0.007791 0.002464 780

RANDOM 12 10 DB MLP 0.961938 0.009425 0.00298 780

RANDOM 12 10 SB MLP 0.957771 0.007347 0.002323 780

RANDOM 12 10 NRSB MLP 0.961944 0.007712 0.002439 780

RANDOM 12 11 D MLP 0.957514 0.009396 0.002971 780

112

Appendix D: Experimental results of DELS system

Table D.1: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (CART) for 2 disjoint partitions:
Multi-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 2 0 D Decision Tree-CART 0.999468 0.000686 0.000217 1:1 540

RANDOM 2 0 DB Decision Tree-CART 0.999304 0.000661 0.000209 1:1 540

RANDOM 2 0 SB Decision Tree-CART 0.999304 0.000519 0.000164 1:1 540

RANDOM 2 0 NRSB Decision Tree-CART 0.999141 0.000532 0.000168 1:1 540

RANDOM 2 1 D Decision Tree-CART 0.999304 0.00045 0.000142 1:1 540

RANDOM 2 1 DB Decision Tree-CART 0.999468 0.000368 0.000116 1:1 540

RANDOM 2 1 SB Decision Tree-CART 0.99955 0.00034 0.000108 1:1 540

RANDOM 2 1 NRSB Decision Tree-CART 0.999386 0.000526 0.000166 1:1 540

CP (Master: Client) = number of processor of master and client systems in MPI

Table D.2: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (CART) for 4 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 4 0 D CART 0.998526804 0.001022288 0.000323276 3:1 240

RANDOM 4 0 DB CART 0.999017936 0.000612365 0.000193647 3:1 240

RANDOM 4 0 SB CART 0.999345201 0.000612598 0.00019372 3:1 240

RANDOM 4 0 NRSB CART 0.999263368 0.000772026 0.000244136 3:1 240

RANDOM 4 1 D CART 0.999099635 0.000572994 0.000181197 3:1 240

RANDOM 4 1 DB CART 0.998608704 0.000639188 0.000202129 3:1 240

RANDOM 4 1 SB CART 0.999099635 0.000854728 0.000270289 3:1 240

RANDOM 4 1 NRSB CART 0.999426833 0.000972476 0.000307524 3:1 240

RANDOM 4 2 D CART 0.998608771 0.001554803 0.000491672 3:1 240

RANDOM 4 2 DB CART 0.998690671 0.00116881 0.00036961 3:1 240

RANDOM 4 2 SB CART 0.999017869 0.000801907 0.000253585 3:1 240

RANDOM 4 2 NRSB CART 0.998608704 0.00127033 0.000401714 3:1 240

RANDOM 4 3 D CART 0.999099568 0.000679886 0.000214999 3:1 240

RANDOM 4 3 DB CART 0.999099702 0.00067974 0.000214953 3:1 240

RANDOM 4 3 SB CART 0.99877237 0.000985345 0.000311593 3:1 240

RANDOM 4 3 NRSB CART 0.998608771 0.001270361 0.000401723 3:1 240

CP (Master: Client) = number of processor of master and client systems in MPI are in order 3 and 1.

113

Table D.3: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (CART) for 6 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER NODE #Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 6 0 D Decision Tree-CART 0.999386352 0.000823205 0.0002603 4:2 180

RANDOM 6 0 DB Decision Tree-CART 0.998404305 0.001349803 0.0004268 4:2 180

RANDOM 6 0 SB Decision Tree-CART 0.9990175 0.001070914 0.0003387 4:2 180

RANDOM 6 0 NRSB Decision Tree-CART 0.999017953 0.000918722 0.0002905 4:2 180

RANDOM 6 1 D Decision Tree-CART 0.999017651 0.001203281 0.0003805 4:2 180

RANDOM 6 1 DB Decision Tree-CART 0.998772403 0.001097794 0.0003472 4:2 180

RANDOM 6 1 SB Decision Tree-CART 0.999017651 0.000919206 0.0002907 4:2 180

RANDOM 6 1 NRSB Decision Tree-CART 0.998035905 0.001251353 0.0003957 4:2 180

RANDOM 6 2 D Decision Tree-CART 0.998771951 0.001821959 0.0005762 4:2 180

RANDOM 6 2 DB Decision Tree-CART 0.997790205 0.001533192 0.0004848 4:2 180

RANDOM 6 2 SB Decision Tree-CART 0.999140652 0.000786342 0.0002487 4:2 180

RANDOM 6 2 NRSB Decision Tree-CART 0.999263653 0.000981671 0.0003104 4:2 180

RANDOM 6 3 D Decision Tree-CART 0.998649252 0.000859607 0.0002718 4:2 180

RANDOM 6 3 DB Decision Tree-CART 0.999263201 0.000814714 0.0002576 4:2 180

RANDOM 6 3 SB Decision Tree-CART 0.998158454 0.00125884 0.0003981 4:2 180

RANDOM 6 3 NRSB Decision Tree-CART 0.998404154 0.001350036 0.0004269 4:2 180

RANDOM 6 4 D Decision Tree-CART 0.998526401 0.001322969 0.0004184 4:2 180

RANDOM 6 4 DB Decision Tree-CART 0.998404305 0.00165129 0.0005222 4:2 180

RANDOM 6 4 SB Decision Tree-CART 0.999140501 0.000958931 0.0003032 4:2 180

RANDOM 6 4 NRSB Decision Tree-CART 0.998404607 0.001456898 0.0004607 4:2 180

RANDOM 6 5 D Decision Tree-CART 0.998281153 0.001251767 0.0003958 4:2 180

RANDOM 6 5 DB Decision Tree-CART 0.999263502 0.000814532 0.0002576 4:2 180

RANDOM 6 5 SB Decision Tree-CART 0.998527004 0.001202389 0.0003802 4:2 180

RANDOM 6 5 NRSB Decision Tree-CART 0.998526703 0.001202635 0.0003803 4:2 180

114

Table D.4: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (CART) for 8 disjoint partitions:
Multi-Node Ensemble and Classifier.

ORDER NODE #Part # Partitioning MethodClassifierAccuracy Standard Deviation Standard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 8 0 D CART 0.99787234 0.001943428 0.000614566 7:1 180

RANDOM 8 0 DB CART 0.998690671 0.001426808 0.000451196 7:1 180

RANDOM 8 0 SB CART 0.998690134 0.001225626 0.000387577 7:1 180

RANDOM 8 0 NRSB CART 0.998690671 0.001426808 0.000451196 7:1 180

RANDOM 8 1 D CART 0.998526737 0.000881419 0.000278729 7:1 180

RANDOM 8 1 DB CART 0.997217676 0.00207669 0.000656707 7:1 180

RANDOM 8 1 SB CART 0.9985262 0.001545816 0.00048883 7:1 180

RANDOM 8 1 NRSB CART 0.998199404 0.001997778 0.000631753 7:1 180

RANDOM 8 2 D CART 0.998199673 0.002476718 0.000783207 7:1 180

RANDOM 8 2 DB CART 0.998036007 0.001762738 0.000557427 7:1 180

RANDOM 8 2 SB CART 0.99836307 0.001636661 0.000517558 7:1 180

RANDOM 8 2 NRSB CART 0.998690134 0.001427548 0.00045143 7:1 180

RANDOM 8 3 D CART 0.998690671 0.001908659 0.000603571 7:1 180

RANDOM 8 3 DB CART 0.998854337 0.000750012 0.000237175 7:1 180

RANDOM 8 3 SB CART 0.999345336 0.000801797 0.00025355 7:1 180

RANDOM 8 3 NRSB CART 0.99803547 0.002044534 0.000646538 7:1 180

RANDOM 8 4 D CART 0.999345336 0.001500025 0.000474349 7:1 180

RANDOM 8 4 DB CART 0.998690671 0.001224765 0.000387305 7:1 180

RANDOM 8 4 SB CART 0.998690403 0.000982086 0.000310563 7:1 180

RANDOM 8 4 NRSB CART 0.99836307 0.001035116 0.000327332 7:1 180

RANDOM 8 5 D CART 0.998854337 0.001047975 0.000331399 7:1 180

RANDOM 8 5 DB CART 0.998690671 0.001908659 0.000603571 7:1 180

RANDOM 8 5 SB CART 0.998527005 0.001145663 0.00036229 7:1 180

RANDOM 8 5 NRSB CART 0.998199404 0.00088132 0.000278698 7:1 180

RANDOM 8 6 D CART 0.998199404 0.001359481 0.000429906 7:1 180

RANDOM 8 6 DB CART 0.998690671 0.000981997 0.000310535 7:1 180

RANDOM 8 6 SB CART 0.998527005 0.002250037 0.000711524 7:1 180

RANDOM 8 6 NRSB CART 0.998854337 0.001047975 0.000331399 7:1 180

RANDOM 8 7 D CART 0.999018003 0.001669073 0.000527807 7:1 180

RANDOM 8 7 DB CART 0.998854337 0.001943428 0.000614566 7:1 180

RANDOM 8 7 SB CART 0.998035738 0.002044146 0.000646416 7:1 180

RANDOM 8 7 NRSB CART 0.999018003 0.001309329 0.000414046 7:1 180

115

Table D.5: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (CART) for 10 disjoint partitions:
Multi-Node Ensemble and Classifier.

ORDER NODE #Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 10 0 D Decision Tree-CART 0.99754476 0.001531116 0.00048418 8:2 180

RANDOM 10 0 DB Decision Tree-CART 0.99733942 0.003179674 0.0010055 8:2 180

RANDOM 10 0 SB Decision Tree-CART 0.99815825 0.001699858 0.00053754 8:2 180

RANDOM 10 0 NRSB Decision Tree-CART 0.99754476 0.001783456 0.00056398 8:2 180

RANDOM 10 1 D Decision Tree-CART 0.99897709 0.001372134 0.00043391 8:2 180

RANDOM 10 1 DB Decision Tree-CART 0.99754476 0.00238679 0.00075477 8:2 180

RANDOM 10 1 SB Decision Tree-CART 0.99836317 0.002203456 0.00069679 8:2 180

RANDOM 10 1 NRSB Decision Tree-CART 0.99856809 0.001309629 0.00041414 8:2 180

RANDOM 10 2 D Decision Tree-CART 0.99856725 0.001598746 0.00050557 8:2 180

RANDOM 10 2 DB Decision Tree-CART 0.99815825 0.00193204 0.00061096 8:2 180

RANDOM 10 2 SB Decision Tree-CART 0.99877301 0.001874264 0.00059269 8:2 180

RANDOM 10 2 NRSB Decision Tree-CART 0.99836317 0.001782974 0.00056383 8:2 180

RANDOM 10 3 D Decision Tree-CART 0.99815825 0.002135957 0.00067545 8:2 180

RANDOM 10 3 DB Decision Tree-CART 0.99815909 0.002322699 0.0007345 8:2 180

RANDOM 10 3 SB Decision Tree-CART 0.99836359 0.0022026 0.00069652 8:2 180

RANDOM 10 3 NRSB Decision Tree-CART 0.99815909 0.001431553 0.0004527 8:2 180

RANDOM 10 4 D Decision Tree-CART 0.99795375 0.001830033 0.00057871 8:2 180

RANDOM 10 4 DB Decision Tree-CART 0.99897751 0.001371821 0.00043381 8:2 180

RANDOM 10 4 SB Decision Tree-CART 0.99713576 0.002085819 0.00065959 8:2 180

RANDOM 10 4 NRSB Decision Tree-CART 0.99877301 0.001874264 0.00059269 8:2 180

RANDOM 10 5 D Decision Tree-CART 0.99815825 0.001432872 0.00045311 8:2 180

RANDOM 10 5 DB Decision Tree-CART 0.99836359 0.001782877 0.0005638 8:2 180

RANDOM 10 5 SB Decision Tree-CART 0.99775051 0.002496228 0.00078938 8:2 180

RANDOM 10 5 NRSB Decision Tree-CART 0.99836359 0.002003759 0.00063364 8:2 180

RANDOM 10 6 D Decision Tree-CART 0.99815825 0.001699858 0.00053754 8:2 180

RANDOM 10 6 DB Decision Tree-CART 0.99795459 0.001829095 0.00057841 8:2 180

RANDOM 10 6 SB Decision Tree-CART 0.99795417 0.001294692 0.00040942 8:2 180

RANDOM 10 6 NRSB Decision Tree-CART 0.99856809 0.001309629 0.00041414 8:2 180

RANDOM 10 7 D Decision Tree-CART 0.99774842 0.001103986 0.00034911 8:2 180

RANDOM 10 7 DB Decision Tree-CART 0.99897751 0.001648723 0.00052137 8:2 180

RANDOM 10 7 SB Decision Tree-CART 0.99897751 0.001371821 0.00043381 8:2 180

RANDOM 10 7 NRSB Decision Tree-CART 0.99713576 0.001874632 0.00059281 8:2 180

RANDOM 10 8 D Decision Tree-CART 0.99897667 0.001372446 0.00043401 8:2 180

RANDOM 10 8 DB Decision Tree-CART 0.9969321 0.003452216 0.00109169 8:2 180

RANDOM 10 8 SB Decision Tree-CART 0.99815909 0.001698747 0.00053719 8:2 180

RANDOM 10 8 NRSB Decision Tree-CART 0.99815867 0.001698798 0.00053721 8:2 180

RANDOM 10 9 D Decision Tree-CART 0.99877091 0.001877922 0.00059385 8:2 180

RANDOM 10 9 DB Decision Tree-CART 0.99734109 0.001597028 0.00050502 8:2 180

RANDOM 10 9 SB Decision Tree-CART 0.99815867 0.001431614 0.00045272 8:2 180

RANDOM 10 9 NRSB Decision Tree-CART 0.99897709 0.001372134 0.00043391 8:2 180

116

Table D.6: Implementation of the subsystem of data partitioning by DSS, multi-

node, single-classifier (CART) for 12 disjoint partitions:
Multi-Node Ensemble and Classifier.

ORDER NODE # Part #Partitioning MethodClassifier Accuracy Standard Deviation Standard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 12 0 D CART 0.998772101 0.0012279 0.000388296 8:4 120

RANDOM 12 0 DB CART 0.998526401 0.00120319 0.000380482 8:4 120

RANDOM 12 0 SB CART 0.998772101 0.0012279 0.000388296 8:4 120

RANDOM 12 0 NRSB CART 0.997790504 0.002563862 0.000810764 8:4 120

RANDOM 12 1 D CART 0.998526401 0.00120319 0.000380482 8:4 120

RANDOM 12 1 DB CART 0.996317507 0.002746208 0.000868427 8:4 120

RANDOM 12 1 SB CART 0.999018403 0.001202207 0.000380171 8:4 120

RANDOM 12 1 NRSB CART 0.998526401 0.001629429 0.000515271 8:4 120

RANDOM 12 2 D CART 0.998281303 0.001918519 0.000606689 8:4 120

RANDOM 12 2 DB CART 0.997545406 0.002196266 0.00069452 8:4 120

RANDOM 12 2 SB CART 0.998035 0.001838492 0.000581382 8:4 120

RANDOM 12 2 NRSB CART 0.998527003 0.001963496 0.000620912 8:4 120

RANDOM 12 3 D CART 0.9982807 0.001572968 0.000497416 8:4 120

RANDOM 12 3 DB CART 0.998772703 0.001645516 0.000520358 8:4 120

RANDOM 12 3 SB CART 0.997791709 0.002783992 0.000880376 8:4 120

RANDOM 12 3 NRSB CART 0.998772101 0.001647759 0.000521067 8:4 120

RANDOM 12 4 D CART 0.998035602 0.001473802 0.000466057 8:4 120

RANDOM 12 4 DB CART 0.997791107 0.001322692 0.000418272 8:4 120

RANDOM 12 4 SB CART 0.997053404 0.002645493 0.000836578 8:4 120

RANDOM 12 4 NRSB CART 0.998526401 0.001629429 0.000515271 8:4 120

RANDOM 12 5 D CART 0.998527003 0.001629066 0.000515156 8:4 120

RANDOM 12 5 DB CART 0.999017801 0.001202944 0.000380404 8:4 120

RANDOM 12 5 SB CART 0.998526401 0.001629429 0.000515271 8:4 120

RANDOM 12 5 NRSB CART 0.999017199 0.00120368 0.000380637 8:4 120

RANDOM 12 6 D CART 0.998772101 0.001647759 0.000521067 8:4 120

RANDOM 12 6 DB CART 0.998772101 0.001980526 0.000626297 8:4 120

RANDOM 12 6 SB CART 0.999018403 0.001202207 0.000380171 8:4 120

RANDOM 12 6 NRSB CART 0.999018403 0.001626887 0.000514467 8:4 120

RANDOM 12 7 D CART 0.998527605 0.001626888 0.000514467 8:4 120

RANDOM 12 7 DB CART 0.998037409 0.002401831 0.000759526 8:4 120

RANDOM 12 7 SB CART 0.998035602 0.001473802 0.000466057 8:4 120

RANDOM 12 7 NRSB CART 0.997792311 0.00299294 0.000946451 8:4 120

RANDOM 12 8 D CART 0.9982807 0.001572968 0.000497416 8:4 120

RANDOM 12 8 DB CART 0.9982807 0.001572968 0.000497416 8:4 120

RANDOM 12 8 SB CART 0.998037409 0.002401831 0.000759526 8:4 120

RANDOM 12 8 NRSB CART 0.997545406 0.002193573 0.000693669 8:4 120

RANDOM 12 9 D CART 0.997790504 0.001717926 0.000543256 8:4 120

RANDOM 12 9 DB CART 0.999264104 0.001570052 0.000496494 8:4 120

RANDOM 12 9 SB CART 0.997791107 0.002039203 0.000644853 8:4 120

RANDOM 12 9 NRSB CART 0.998525799 0.001629791 0.000515385 8:4 120

RANDOM 12 10 D CART 0.998034398 0.001474201 0.000466183 8:4 120

RANDOM 12 10 DB CART 0.996807703 0.002703197 0.000854826 8:4 120

RANDOM 12 10 SB CART 0.998772703 0.00197866 0.000625707 8:4 120

RANDOM 12 10 NRSB CART 0.997054006 0.003063399 0.000968732 8:4 120

RANDOM 12 11 D CART 0.998036205 0.002642585 0.000835659 8:4 120

RANDOM 12 11 DB CART 0.997546611 0.00290106 0.000917396 8:4 120

RANDOM 12 11 SB CART 0.998526401 0.001629429 0.000515271 8:4 120

RANDOM 12 11 NRSB CART 0.998281303 0.002701281 0.00085422 8:4 120

117

Appendix E: Experimental results of DELS system

Table E.1: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (MLP) for 2 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE #Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 2 0 D MLP 0.97761494 0.004914 0.0015541 1:1 6180

RANDOM 2 0 DB MLP 0.973400788 0.002518 0.000796416 1:1 6180

RANDOM 2 0 SB MLP 0.972499586 0.002434 0.000769582 1:1 6180

RANDOM 2 0 NRSB MLP 0.975077964 0.006757 0.002136732 1:1 6180

RANDOM 2 1 D MLP 0.972743846 0.003037 0.000960459 1:1 6180

RANDOM 2 1 DB MLP 0.97164044 0.003617 0.001143921 1:1 6180

RANDOM 2 1 SB MLP 0.97438168 0.003677 0.001162923 1:1 6180

RANDOM 2 1 NRSB MLP 0.972417703 0.002228 0.00070463 1:1 6180

Table E.2: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (MLP) for 4 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 4 0 D MLP 0.967834 0.005114 0.001617 3:1 2280

RANDOM 4 0 DB MLP 0.971601 0.003846 0.001216 3:1 2280

RANDOM 4 0 SB MLP 0.968243 0.005539 0.001751 3:1 2280

RANDOM 4 0 NRSB MLP 0.965952 0.004914 0.001554 3:1 2280

RANDOM 4 1 D MLP 0.967916 0.004235 0.001339 3:1 2280

RANDOM 4 1 DB MLP 0.969474 0.003086 0.000976 3:1 2280

RANDOM 4 1 SB MLP 0.958668 0.008723 0.002759 3:1 2280

RANDOM 4 1 NRSB MLP 0.970618 0.004677 0.001479 3:1 2280

RANDOM 4 2 D MLP 0.971762 0.005784 0.001829 3:1 2280

RANDOM 4 2 DB MLP 0.968983 0.003632 0.001148 3:1 2280

RANDOM 4 2 SB MLP 0.970371 0.00306 0.000968 3:1 2280

RANDOM 4 2 NRSB MLP 0.969636 0.004775 0.00151 3:1 2280

RANDOM 4 3 D MLP 0.970041 0.004473 0.001414 3:1 2280

RANDOM 4 3 DB MLP 0.968653 0.005575 0.001763 3:1 2280

RANDOM 4 3 SB MLP 0.97209 0.004276 0.001352 3:1 2280

RANDOM 4 3 NRSB MLP 0.970535 0.004885 0.001545 3:1 2280

118

Table E.3: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (MLP) for 6 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE #Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 6 0 D MLP 0.969188 0.0085979 0.002719 4:02 1560

RANDOM 6 0 DB MLP 0.966491 0.0064921 0.002053 4:02 1560

RANDOM 6 0 SB MLP 0.964647 0.0072276 0.002286 4:02 1560

RANDOM 6 0 NRSB MLP 0.971276 0.005118 0.001618 4:02 1560

RANDOM 6 1 D MLP 0.960712 0.0073257 0.002317 4:02 1560

RANDOM 6 1 DB MLP 0.968698 0.0048436 0.001532 4:02 1560

RANDOM 6 1 SB MLP 0.967348 0.005725 0.00181 4:02 1560

RANDOM 6 1 NRSB MLP 0.96882 0.0056262 0.001779 4:02 1560

RANDOM 6 2 D MLP 0.967466 0.003249 0.001027 4:02 1560

RANDOM 6 2 DB MLP 0.968696 0.0064115 0.002027 4:02 1560

RANDOM 6 2 SB MLP 0.96759 0.006413 0.002028 4:02 1560

RANDOM 6 2 NRSB MLP 0.967344 0.0055883 0.001767 4:02 1560

RANDOM 6 3 D MLP 0.969674 0.0057657 0.001823 4:02 1560

RANDOM 6 3 DB MLP 0.964766 0.0065081 0.002058 4:02 1560

RANDOM 6 3 SB MLP 0.959243 0.0077468 0.00245 4:02 1560

RANDOM 6 3 NRSB MLP 0.970045 0.0045785 0.001448 4:02 1560

RANDOM 6 4 D MLP 0.969431 0.0041483 0.001312 4:02 1560

RANDOM 6 4 DB MLP 0.968451 0.0055719 0.001762 4:02 1560

RANDOM 6 4 SB MLP 0.967348 0.0070922 0.002243 4:02 1560

RANDOM 6 4 NRSB MLP 0.965628 0.0051146 0.001617 4:02 1560

RANDOM 6 5 D MLP 0.964028 0.0041393 0.001309 4:02 1560

RANDOM 6 5 DB MLP 0.968328 0.0048716 0.001541 4:02 1560

RANDOM 6 5 SB MLP 0.9644 0.003995 0.001263 4:02 1560

RANDOM 6 5 NRSB MLP 0.960472 0.0070662 0.002235 4:02 1560

119

Table E.4: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (MLP) for 8 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 8 0 D MLP 0.966117 0.006746 0.002133 7:1 960

RANDOM 8 0 DB MLP 0.969231 0.006245 0.001975 7:1 960

RANDOM 8 0 SB MLP 0.969062 0.004481 0.001417 7:1 960

RANDOM 8 0 NRSB MLP 0.961041 0.01182 0.003738 7:1 960

RANDOM 8 1 D MLP 0.962678 0.0072 0.002277 7:1 960

RANDOM 8 1 DB MLP 0.970213 0.006202 0.001961 7:1 960

RANDOM 8 1 SB MLP 0.965296 0.010194 0.003223 7:1 960

RANDOM 8 1 NRSB MLP 0.96759 0.005158 0.001631 7:1 960

RANDOM 8 2 D MLP 0.965459 0.008528 0.002697 7:1 960

RANDOM 8 2 DB MLP 0.966121 0.005126 0.001621 7:1 960

RANDOM 8 2 SB MLP 0.966773 0.008048 0.002545 7:1 960

RANDOM 8 2 NRSB MLP 0.95482 0.009414 0.002977 7:1 960

RANDOM 8 3 D MLP 0.965462 0.010815 0.00342 7:1 960

RANDOM 8 3 DB MLP 0.962193 0.003835 0.001213 7:1 960

RANDOM 8 3 SB MLP 0.965299 0.006693 0.002117 7:1 960

RANDOM 8 3 NRSB MLP 0.965952 0.004787 0.001514 7:1 960

RANDOM 8 4 D MLP 0.967917 0.006469 0.002046 7:1 960

RANDOM 8 4 DB MLP 0.96252 0.008736 0.002763 7:1 960

RANDOM 8 4 SB MLP 0.966113 0.008073 0.002553 7:1 960

RANDOM 8 4 NRSB MLP 0.963332 0.009666 0.003057 7:1 960

RANDOM 8 5 D MLP 0.966934 0.008145 0.002576 7:1 960

RANDOM 8 5 DB MLP 0.962684 0.005754 0.00182 7:1 960

RANDOM 8 5 SB MLP 0.969062 0.003226 0.00102 7:1 960

RANDOM 8 5 NRSB MLP 0.963003 0.011401 0.003605 7:1 960

RANDOM 8 6 D MLP 0.966279 0.004463 0.001411 7:1 960

RANDOM 8 6 DB MLP 0.958756 0.010346 0.003272 7:1 960

RANDOM 8 6 SB MLP 0.969225 0.00496 0.001568 7:1 960

RANDOM 8 6 NRSB MLP 0.966772 0.007092 0.002243 7:1 960

RANDOM 8 7 D MLP 0.967748 0.006943 0.002196 7:1 960

RANDOM 8 7 DB MLP 0.967755 0.005851 0.00185 7:1 960

RANDOM 8 7 SB MLP 0.969226 0.006619 0.002093 7:1 960

RANDOM 8 7 NRSB MLP 0.958095 0.008819 0.002789 7:1 960

120

Table E.5: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (MLP) for 10 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 10 0 D MLP 0.967881 0.007598 0.002403 8:2 780

RANDOM 10 0 DB MLP 0.964411 0.006852 0.002167 8:2 780

RANDOM 10 0 SB MLP 0.955605 0.008286 0.00262 8:2 780

RANDOM 10 0 NRSB MLP 0.965222 0.003651 0.001155 8:2 780

RANDOM 10 1 D MLP 0.966232 0.008469 0.002678 8:2 780

RANDOM 10 1 DB MLP 0.967466 0.008031 0.00254 8:2 780

RANDOM 10 1 SB MLP 0.967062 0.00631 0.001995 8:2 780

RANDOM 10 1 NRSB MLP 0.965839 0.01058 0.003346 8:2 780

RANDOM 10 2 D MLP 0.967465 0.008258 0.002611 8:2 780

RANDOM 10 2 DB MLP 0.961741 0.009433 0.002983 8:2 780

RANDOM 10 2 SB MLP 0.963585 0.004735 0.001497 8:2 780

RANDOM 10 2 NRSB MLP 0.961128 0.004933 0.00156 8:2 780

RANDOM 10 3 D MLP 0.962964 0.008887 0.00281 8:2 780

RANDOM 10 3 DB MLP 0.959083 0.005787 0.00183 8:2 780

RANDOM 10 3 SB MLP 0.959075 0.012411 0.003925 8:2 780

RANDOM 10 3 NRSB MLP 0.960308 0.008309 0.002627 8:2 780

RANDOM 10 4 D MLP 0.96624 0.004579 0.001448 8:2 780

RANDOM 10 4 DB MLP 0.964813 0.005764 0.001823 8:2 780

RANDOM 10 4 SB MLP 0.969922 0.011809 0.003734 8:2 780

RANDOM 10 4 NRSB MLP 0.965429 0.008194 0.002591 8:2 780

RANDOM 10 5 D MLP 0.960713 0.00786 0.002486 8:2 780

RANDOM 10 5 DB MLP 0.966859 0.007471 0.002362 8:2 780

RANDOM 10 5 SB MLP 0.960721 0.009627 0.003044 8:2 780

RANDOM 10 5 NRSB MLP 0.962564 0.007535 0.002383 8:2 780

RANDOM 10 6 D MLP 0.961325 0.009079 0.002871 8:2 780

RANDOM 10 6 DB MLP 0.965019 0.006354 0.002009 8:2 780

RANDOM 10 6 SB MLP 0.960722 0.014738 0.004661 8:2 780

RANDOM 10 6 NRSB MLP 0.96706 0.010456 0.003306 8:2 780

RANDOM 10 7 D MLP 0.966031 0.008355 0.002642 8:2 780

RANDOM 10 7 DB MLP 0.963992 0.008497 0.002687 8:2 780

RANDOM 10 7 SB MLP 0.961948 0.006349 0.002008 8:2 780

RANDOM 10 7 NRSB MLP 0.968498 0.006905 0.002183 8:2 780

RANDOM 10 8 D MLP 0.957639 0.0087 0.002751 8:2 780

RANDOM 10 8 DB MLP 0.966859 0.007068 0.002235 8:2 780

RANDOM 10 8 SB MLP 0.963585 0.004641 0.001468 8:2 780

RANDOM 10 8 NRSB MLP 0.961538 0.00993 0.00314 8:2 780

RANDOM 10 9 D MLP 0.962349 0.008295 0.002623 8:2 780

RANDOM 10 9 DB MLP 0.962971 0.006233 0.001971 8:2 780

RANDOM 10 9 SB MLP 0.969109 0.006681 0.002113 8:2 780

RANDOM 10 9 NRSB MLP 0.958879 0.006499 0.002055 8:2 780

121

Table E.6: Implementation of the subsystem of data partitioning by DSS, multi-node,

single-classifier (MLP) for 12 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitioning MethodClassifier Accuracy Standard DeviationStandard Error of Mean(SEM)CP (Master:Client)Runtime(Sec)

RANDOM 12 0 D MLP 0.962928 0.010326 0.003265 8:4 960

RANDOM 12 0 DB MLP 0.96269 0.010172 0.003217 8:4 960

RANDOM 12 0 SB MLP 0.956052 0.006439 0.002036 8:4 960

RANDOM 12 0 NRSB MLP 0.968574 0.00884 0.002795 8:4 960

RANDOM 12 1 D MLP 0.960223 0.00439 0.001388 8:4 960

RANDOM 12 1 DB MLP 0.959494 0.011286 0.003569 8:4 960

RANDOM 12 1 SB MLP 0.957284 0.014064 0.004448 8:4 960

RANDOM 12 1 NRSB MLP 0.955559 0.010849 0.003431 8:4 960

RANDOM 12 2 D MLP 0.960964 0.009471 0.002995 8:4 960

RANDOM 12 2 DB MLP 0.968338 0.009398 0.002972 8:4 960

RANDOM 12 2 SB MLP 0.955555 0.010579 0.003345 8:4 960

RANDOM 12 2 NRSB MLP 0.965627 0.009049 0.002862 8:4 960

RANDOM 12 3 D MLP 0.947467 0.012726 0.004024 8:4 960

RANDOM 12 3 DB MLP 0.958517 0.009144 0.002892 8:4 960

RANDOM 12 3 SB MLP 0.95974 0.011565 0.003657 8:4 960

RANDOM 12 3 NRSB MLP 0.96268 0.008558 0.002706 8:4 960

RANDOM 12 4 D MLP 0.964891 0.00769 0.002432 8:4 960

RANDOM 12 4 DB MLP 0.963424 0.010891 0.003444 8:4 960

RANDOM 12 4 SB MLP 0.958016 0.010673 0.003375 8:4 960

RANDOM 12 4 NRSB MLP 0.961702 0.00865 0.002735 8:4 960

RANDOM 12 5 D MLP 0.959738 0.011187 0.003538 8:4 960

RANDOM 12 5 DB MLP 0.955823 0.009358 0.002959 8:4 960

RANDOM 12 5 SB MLP 0.961697 0.009785 0.003094 8:4 960

RANDOM 12 5 NRSB MLP 0.962675 0.010012 0.003166 8:4 960

RANDOM 12 6 D MLP 0.956547 0.007176 0.002269 8:4 960

RANDOM 12 6 DB MLP 0.961709 0.010141 0.003207 8:4 960

RANDOM 12 6 SB MLP 0.962188 0.008171 0.002584 8:4 960

RANDOM 12 6 NRSB MLP 0.961944 0.009012 0.00285 8:4 960

RANDOM 12 7 D MLP 0.967583 0.004641 0.001468 8:4 960

RANDOM 12 7 DB MLP 0.965621 0.00914 0.00289 8:4 960

RANDOM 12 7 SB MLP 0.959734 0.006333 0.002003 8:4 960

RANDOM 12 7 NRSB MLP 0.963663 0.010513 0.003325 8:4 960

RANDOM 12 8 D MLP 0.965619 0.004526 0.001431 8:4 960

RANDOM 12 8 DB MLP 0.960958 0.00718 0.002271 8:4 960

RANDOM 12 8 SB MLP 0.966614 0.010348 0.003272 8:4 960

RANDOM 12 8 NRSB MLP 0.959252 0.012056 0.003812 8:4 960

RANDOM 12 9 D MLP 0.955552 0.015275 0.00483 8:4 960

RANDOM 12 9 DB MLP 0.965875 0.010322 0.003264 8:4 960

RANDOM 12 9 SB MLP 0.957279 0.009962 0.00315 8:4 960

RANDOM 12 9 NRSB MLP 0.959738 0.0056 0.001771 8:4 960

RANDOM 12 10 D MLP 0.96685 0.00958 0.003029 8:4 960

RANDOM 12 10 DB MLP 0.963417 0.00818 0.002587 8:4 960

RANDOM 12 10 SB MLP 0.958751 0.008715 0.002756 8:4 960

RANDOM 12 10 NRSB MLP 0.96538 0.007569 0.002393 8:4 960

RANDOM 12 11 D MLP 0.966112 0.007177 0.00227 8:4 960

RANDOM 12 11 DB MLP 0.961945 0.009006 0.002848 8:4 960

RANDOM 12 11 SB MLP 0.958265 0.011966 0.003784 8:4 960

RANDOM 12 11 NRSB MLP 0.96096 0.008963 0.002834 8:4 960

122

Appendix F: Comparison on “KDDCUP” data set with CART

classifier on single node

Plot F.1 CART classifier on 2 partitions,

DS

Plot F.2 CART classifier on 4 partitions,

DS

Plot F.3 CART classifier on 6 partitions,

DS

Plot F.4 CART classifier on 8 partitions,

DS

Plot F.5 CART classifier on 10

partitions, DS

Plot F.6 CART classifier on 12 partition,

DS

123

Appendix G: Comparison on “KDDCUP” data set with MLP

classifier on single node

Plot G.1 MLP classifier on 2 partitions,

DS

Plot G.2 MLP classifier on 4 partitions,

DS

Plot G.3 MLP classifier on 6 partitions,

DS

Plot G.4 MLP classifier on 8 partitions,

DS

Plot G.5 MLP classifier on 10 partitions,

DS

Plot G.6 MLP classifier on 12 partitions,

DS

124

Appendix H:Comparison on “KDDCUP” data set with CART

classifier on multi-node system

Plot H.1 CART classifier on 2 partitions,

DS

Plot H.2 CART classifier on 4 partitions,

DS

Plot H.3 CART classifier on 6 partitions,

DS

Plot H.4 CART classifier on 8 partitions,

DS

Plot H.5 CART classifier on 10

partitions, DS

Plot H.6 CART classifier on 12

partitions, DS

125

Appendix I: Comparison on “KDDCUP” data set with MLP

classifier on multi-node System

Plot I.1 MLP classifier on 2 partitions,

DS

Plot I.2 MLP classifier on 4 partitions,

DS

Plot I.3 MLP classifier on 6 partitions,

DS

Plot I.4 MLP classifier on 8 partitions,

DS

Plot I.5 MLP classifier on 10 partitions,

DS

Plot I.6 MLP classifier on 12 partitions,

DS

126

Appendix J:Experimental results of DELS system

Table J.1: Multi-node ensemble-MLP on random input by Bagging-like method-2

dataset partitions:
NODE #Part #Partitioning MethodClassifierCross-Val-ScoreTest-Score Time of PartitioningTime of TransferingTime of Training Ensemble-Scoring Time

2 0 D MLP 0.82968834 0.955467 1.700584 ('Node0', 0) ('Node0', 15.096729040145874)1901.261

2 0 DB MLP 0.82968834 0.955467 2.323832 ('Node0', 0) ('Node0', 3.0416510105133057)1901.261

2 0 SB MLP 0.82968834 0.955467 0.466872 ('Node0', 0) ('Node0', 6.798189401626587)1901.261

2 0 NRSB MLP 0.82968834 0.955467 0.487792 ('Node0', 0) ('Node0', 15.363284826278687)1901.261

2 1 D MLP 0.82968834 0.955467 1.700584 ('Node1', 10.712603449821472)('Node1', 17.682600259780884)1901.261

2 1 DB MLP 0.82968834 0.955467 2.323832 ('Node1', 10.712603449821472)('Node1', 7.907098293304443)1901.261

2 1 SB MLP 0.82968834 0.955467 0.466872 ('Node1', 10.712603449821472)('Node1', 8.230186462402344)1901.261

2 1 NRSB MLP 0.82968834 0.955467 0.487792 ('Node1', 10.712603449821472)('Node1', 17.927194356918335)1901.261

Table J.2: Multi-node ensemble-MLP on random input by Bagging-like method-4

dataset partitions:
ORDER NODE #Part #Partitioning MethodClassifierCross-Val-ScoreTest-Score Time of PartitioningTime of TransferingTime of Training Ensemble-Scoring Time

RANDOM 4 0 D MLP 0.8296883 0.9554672 1.77120924 ('Node0', 0) ('Node0', 2.374786853790283)4099.96613

RANDOM 4 0 DB MLP 0.8296883 0.9554672 2.158751726 ('Node0', 0) ('Node0', 8.944024562835693)4099.96613

RANDOM 4 0 SB MLP 0.8296883 0.9554672 0.426065207 ('Node0', 0) ('Node0', 12.554888486862183)4099.96613

RANDOM 4 0 NRSB MLP 0.8296883 0.9554672 0.596661091 ('Node0', 0) ('Node0', 5.9941370487213135)4099.96613

RANDOM 4 1 D MLP 0.8296883 0.9554672 1.77120924 ('Node0', 0) ('Node1', 5.006728887557983)4099.96613

RANDOM 4 1 DB MLP 0.8296883 0.9554672 2.158751726 ('Node0', 0) ('Node1', 9.371885299682617)4099.96613

RANDOM 4 1 SB MLP 0.8296883 0.9554672 0.426065207 ('Node0', 0) ('Node1', 2.5055110454559326)4099.96613

RANDOM 4 1 NRSB MLP 0.8296883 0.9554672 0.596661091 ('Node0', 0) ('Node1', 3.9463374614715576)4099.96613

RANDOM 4 2 D MLP 0.8296883 0.9554672 1.77120924 ('Node0', 0) ('Node2', 3.3750555515289307)4099.96613

RANDOM 4 2 DB MLP 0.8296883 0.9554672 2.158751726 ('Node0', 0) ('Node2', 5.405501127243042)4099.96613

RANDOM 4 2 SB MLP 0.8296883 0.9554672 0.426065207 ('Node0', 0) ('Node2', 4.578976631164551)4099.96613

RANDOM 4 2 NRSB MLP 0.8296883 0.9554672 0.596661091 ('Node0', 0) ('Node2', 3.271782398223877)4099.96613

RANDOM 4 3 D MLP 0.8296883 0.9554672 1.77120924 ('Node3', 5.367912709712982)('Node3', 10.007397651672363)4099.96613

RANDOM 4 3 DB MLP 0.8296883 0.9554672 2.158751726 ('Node3', 5.367912709712982)('Node3', 4.225964069366455)4099.96613

RANDOM 4 3 SB MLP 0.8296883 0.9554672 0.426065207 ('Node3', 5.367912709712982)('Node3', 4.913753271102905)4099.96613

RANDOM 4 3 NRSB MLP 0.8296883 0.9554672 0.596661091 ('Node3', 5.367912709712982)('Node3', 3.921491861343384)4099.96613

Table J.3: Multi-node ensemble-MLP on random input by Bagging-like method-6

dataset partitions:
ORDER NODE #Part #Partitioning MethodClassifierCross-Val-ScoreTest-ScoreTime of PartitioningTime of TransferingTime of Training Ensemble-Scoring Time

RANDOM 6 0 D MLP 0.82969 0.95547 1.9361341 ('Node0', 0) ('Node0', 6.109520435333252) 5708.42344

RANDOM 6 0 DB MLP 0.82969 0.95547 2.7440946 ('Node0', 0) ('Node0', 1.467219591140747) 5708.42344

RANDOM 6 0 SB MLP 0.82969 0.95547 0.5213635 ('Node0', 0) ('Node0', 1.8763961791992188) 5708.42344

RANDOM 6 0 NRSB MLP 0.82969 0.95547 0.5457218 ('Node0', 0) ('Node0', 8.472907304763794) 5708.42344

RANDOM 6 1 D MLP 0.82969 0.95547 1.9361341 ('Node0', 0) ('Node1', 3.2719459533691406) 5708.42344

RANDOM 6 1 DB MLP 0.82969 0.95547 2.7440946 ('Node0', 0) ('Node1', 4.2388317584991455) 5708.42344

RANDOM 6 1 SB MLP 0.82969 0.95547 0.5213635 ('Node0', 0) ('Node1', 2.7688090801239014) 5708.42344

RANDOM 6 1 NRSB MLP 0.82969 0.95547 0.5457218 ('Node0', 0) ('Node1', 3.0151898860931396) 5708.42344

RANDOM 6 2 D MLP 0.82969 0.95547 1.9361341 ('Node0', 0) ('Node2', 12.221603870391846) 5708.42344

RANDOM 6 2 DB MLP 0.82969 0.95547 2.7440946 ('Node0', 0) ('Node2', 3.6746206283569336) 5708.42344

RANDOM 6 2 SB MLP 0.82969 0.95547 0.5213635 ('Node0', 0) ('Node2', 2.077237606048584) 5708.42344

RANDOM 6 2 NRSB MLP 0.82969 0.95547 0.5457218 ('Node0', 0) ('Node2', 2.0695748329162598) 5708.42344

RANDOM 6 3 D MLP 0.82969 0.95547 1.9361341 ('Node0', 0) ('Node3', 2.9128472805023193) 5708.42344

RANDOM 6 3 DB MLP 0.82969 0.95547 2.7440946 ('Node0', 0) ('Node3', 8.182551860809326) 5708.42344

RANDOM 6 3 SB MLP 0.82969 0.95547 0.5213635 ('Node0', 0) ('Node3', 3.125713348388672) 5708.42344

RANDOM 6 3 NRSB MLP 0.82969 0.95547 0.5457218 ('Node0', 0) ('Node3', 7.693204879760742) 5708.42344

RANDOM 6 4 D MLP 0.82969 0.95547 1.9361341 ('Node0', 0) ('Node4', 6.948272466659546) 5708.42344

RANDOM 6 4 DB MLP 0.82969 0.95547 2.7440946 ('Node0', 0) ('Node4', 6.029633283615112) 5708.42344

127

Table J.4: Multi-node ensemble-MLP on random input by Bagging-like method-8

dataset partitions:
ORDER NODE #Part #Partitioning MethodClassifierCross-Val-ScoreTest-Score Time of PartitioningTime of TransferingTime of Training Ensemble-Scoring Time

RANDOM 8 0 D MLP 0.82969 0.955467 2.26275 ('Node0', 0) ('Node0', 1.5941722393035889)8279.656

RANDOM 8 0 DB MLP 0.82969 0.955467 2.97346 ('Node0', 0) ('Node0', 0.5960898399353027)8279.656

RANDOM 8 0 SB MLP 0.82969 0.955467 0.58898 ('Node0', 0) ('Node0', 3.1591906547546387)8279.656

RANDOM 8 0 NRSB MLP 0.82969 0.955467 0.57667 ('Node0', 0) ('Node0', 2.0272414684295654)8279.656

RANDOM 8 1 D MLP 0.82969 0.955467 2.26275 ('Node0', 0) ('Node1', 1.1301524639129639)8279.656

RANDOM 8 1 DB MLP 0.82969 0.955467 2.97346 ('Node0', 0) ('Node1', 6.767746210098267)8279.656

RANDOM 8 1 SB MLP 0.82969 0.955467 0.58898 ('Node0', 0) ('Node1', 4.508790016174316)8279.656

RANDOM 8 1 NRSB MLP 0.82969 0.955467 0.57667 ('Node0', 0) ('Node1', 8.637242794036865)8279.656

RANDOM 8 2 D MLP 0.82969 0.955467 2.26275 ('Node0', 0) ('Node2', 3.461589813232422)8279.656

RANDOM 8 2 DB MLP 0.82969 0.955467 2.97346 ('Node0', 0) ('Node2', 6.403005838394165)8279.656

RANDOM 8 2 SB MLP 0.82969 0.955467 0.58898 ('Node0', 0) ('Node2', 3.434842586517334)8279.656

RANDOM 8 2 NRSB MLP 0.82969 0.955467 0.57667 ('Node0', 0) ('Node2', 3.579407215118408)8279.656

RANDOM 8 3 D MLP 0.82969 0.955467 2.26275 ('Node0', 0) ('Node3', 3.375446319580078)8279.656

RANDOM 8 3 DB MLP 0.82969 0.955467 2.97346 ('Node0', 0) ('Node3', 3.5487773418426514)8279.656

RANDOM 8 3 SB MLP 0.82969 0.955467 0.58898 ('Node0', 0) ('Node3', 3.635127067565918)8279.656

RANDOM 8 3 NRSB MLP 0.82969 0.955467 0.57667 ('Node0', 0) ('Node3', 4.719955682754517)8279.656

RANDOM 8 4 D MLP 0.82969 0.955467 2.26275 ('Node0', 0) ('Node4', 3.52553129196167)8279.656

RANDOM 8 4 DB MLP 0.82969 0.955467 2.97346 ('Node0', 0) ('Node4', 2.7935407161712646)8279.656

RANDOM 8 4 SB MLP 0.82969 0.955467 0.58898 ('Node0', 0) ('Node4', 2.629754066467285)8279.656

RANDOM 8 4 NRSB MLP 0.82969 0.955467 0.57667 ('Node0', 0) ('Node4', 4.1186203956604) 8279.656

RANDOM 8 5 D MLP 0.82969 0.955467 2.26275 ('Node0', 0) ('Node5', 4.67939019203186)8279.656

RANDOM 8 5 DB MLP 0.82969 0.955467 2.97346 ('Node0', 0) ('Node5', 4.045528411865234)8279.656

RANDOM 8 5 SB MLP 0.82969 0.955467 0.58898 ('Node0', 0) ('Node5', 11.991963863372803)8279.656

RANDOM 8 5 NRSB MLP 0.82969 0.955467 0.57667 ('Node0', 0) ('Node5', 4.3554017543792725)8279.656

RANDOM 8 6 D MLP 0.82969 0.955467 2.26275 ('Node0', 0) ('Node6', 2.473811149597168)8279.656

RANDOM 8 6 DB MLP 0.82969 0.955467 2.97346 ('Node0', 0) ('Node6', 9.146058320999146)8279.656

RANDOM 8 6 SB MLP 0.82969 0.955467 0.58898 ('Node0', 0) ('Node6', 4.518118858337402)8279.656

RANDOM 8 6 NRSB MLP 0.82969 0.955467 0.57667 ('Node0', 0) ('Node6', 1.9176461696624756)8279.656

RANDOM 8 7 D MLP 0.82969 0.955467 2.26275 ('Node6', 5.358225524425507)('Node7', 5.829189777374268)8279.656

RANDOM 8 7 DB MLP 0.82969 0.955467 2.97346 ('Node6', 5.358225524425507)('Node7', 3.114637851715088)8279.656

RANDOM 8 7 SB MLP 0.82969 0.955467 0.58898 ('Node6', 5.358225524425507)('Node7', 9.025976181030273)8279.656

RANDOM 8 7 NRSB MLP 0.82969 0.955467 0.57667 ('Node6', 5.358225524425507)('Node7', 4.182201862335205)8279.656

128

Table J.5: Multi-node ensemble-MLP on random input by Bagging-like method-10

dataset partitions:
ORDER NODE #Part #Partitioning MethodClassifierCross-Val-ScoreTest-Score Time of PartitioningTime of TransferingTime of Training Ensemble-Scoring Time

RANDOM 10 0 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node0', 1.0018336772918701)10083.26

RANDOM 10 0 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node0', 1.7233045101165771)10083.26

RANDOM 10 0 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node0', 1.0325791835784912)10083.26

RANDOM 10 0 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node0', 0.8630368709564209)10083.26

RANDOM 10 1 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node1', 0.665623664855957)10083.26

RANDOM 10 1 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node1', 2.022190809249878)10083.26

RANDOM 10 1 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node1', 2.1763992309570312)10083.26

RANDOM 10 1 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node1', 2.3905766010284424)10083.26

RANDOM 10 2 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node2', 1.6372430324554443)10083.26

RANDOM 10 2 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node2', 5.864394426345825)10083.26

RANDOM 10 2 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node2', 5.52865195274353)10083.26

RANDOM 10 2 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node2', 2.27870774269104)10083.26

RANDOM 10 3 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node3', 8.511845111846924)10083.26

RANDOM 10 3 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node3', 5.962931156158447)10083.26

RANDOM 10 3 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node3', 5.125146865844727)10083.26

RANDOM 10 3 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node3', 2.9890360832214355)10083.26

RANDOM 10 4 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node4', 3.2317349910736084)10083.26

RANDOM 10 4 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node4', 4.433586120605469)10083.26

RANDOM 10 4 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node4', 10.3334379196167)10083.26

RANDOM 10 4 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node4', 4.5913050174713135)10083.26

RANDOM 10 5 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node5', 10.703117609024048)10083.26

RANDOM 10 5 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node5', 0.5796527862548828)10083.26

RANDOM 10 5 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node5', 8.432472229003906)10083.26

RANDOM 10 5 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node5', 4.446261644363403)10083.26

RANDOM 10 6 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node6', 1.605600357055664)10083.26

RANDOM 10 6 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node6', 3.8291213512420654)10083.26

RANDOM 10 6 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node6', 3.151310682296753)10083.26

RANDOM 10 6 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node6', 2.3550515174865723)10083.26

RANDOM 10 7 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node7', 2.187837839126587)10083.26

RANDOM 10 7 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node7', 9.827682256698608)10083.26

RANDOM 10 7 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node7', 1.7528812885284424)10083.26

RANDOM 10 7 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node7', 3.8887782096862793)10083.26

RANDOM 10 8 D MLP 0.829688 0.955467246 2.560717583 ('Node0', 0) ('Node8', 2.1880710124969482)10083.26

RANDOM 10 8 DB MLP 0.829688 0.955467246 2.950899363 ('Node0', 0) ('Node8', 5.393547534942627)10083.26

RANDOM 10 8 SB MLP 0.829688 0.955467246 0.820222616 ('Node0', 0) ('Node8', 11.903022050857544)10083.26

RANDOM 10 8 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node0', 0) ('Node8', 4.713577508926392)10083.26

RANDOM 10 9 D MLP 0.829688 0.955467246 2.560717583 ('Node7', 5.907190024852753)('Node9', 11.665583610534668)10083.26

RANDOM 10 9 DB MLP 0.829688 0.955467246 2.950899363 ('Node7', 5.907190024852753)('Node9', 1.9536871910095215)10083.26

RANDOM 10 9 SB MLP 0.829688 0.955467246 0.820222616 ('Node7', 5.907190024852753)('Node9', 3.2058639526367188)10083.26

RANDOM 10 9 NRSB MLP 0.829688 0.955467246 0.812052965 ('Node7', 5.907190024852753)('Node9', 2.336566925048828)10083.26

129

Table J.6: Multi-node ensemble-MLP on random input by Bagging-like method-12

dataset partitions:
ORDERNODE #Part #Partitioning MethodClassifierCross-Val-ScoreTest-Score Time of PartitioningTime of TransferingTime of Training Ensemble-Scoring Time

RANDOM12 0 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node0', 2.6370270252227783)11709.46

RANDOM12 0 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node0', 1.327317714691162)11709.46

RANDOM12 0 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node0', 0.913684606552124)11709.46

RANDOM12 0 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node0', 1.1390390396118164)11709.46

RANDOM12 1 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node1', 4.965033531188965)11709.46

RANDOM12 1 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node1', 4.487643003463745)11709.46

RANDOM12 1 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node1', 12.752262353897095)11709.46

RANDOM12 1 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node1', 9.669726133346558)11709.46

RANDOM12 2 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node2', 2.661926507949829)11709.46

RANDOM12 2 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node2', 9.681201219558716)11709.46

RANDOM12 2 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node2', 2.5964581966400146)11709.46

RANDOM12 2 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node2', 3.41351056098938)11709.46

RANDOM12 3 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node3', 13.154320240020752)11709.46

RANDOM12 3 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node3', 7.491791248321533)11709.46

RANDOM12 3 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node3', 3.243833065032959)11709.46

RANDOM12 3 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node3', 4.871716499328613)11709.46

RANDOM12 4 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node4', 2.6938998699188232)11709.46

RANDOM12 4 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node4', 9.215946674346924)11709.46

RANDOM12 4 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node4', 6.381009578704834)11709.46

RANDOM12 4 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node4', 3.6128857135772705)11709.46

RANDOM12 5 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node5', 2.3795359134674072)11709.46

RANDOM12 5 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node5', 3.3796424865722656)11709.46

RANDOM12 5 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node5', 7.323760271072388)11709.46

RANDOM12 5 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node5', 9.576303720474243)11709.46

RANDOM12 6 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node6', 6.989064455032349)11709.46

RANDOM12 6 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node6', 4.285100936889648)11709.46

RANDOM12 6 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node6', 6.204626560211182)11709.46

RANDOM12 6 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node6', 8.697988748550415)11709.46

RANDOM12 7 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node7', 2.317439556121826)11709.46

RANDOM12 7 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node7', 8.990870237350464)11709.46

RANDOM12 7 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node7', 10.409826755523682)11709.46

RANDOM12 7 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node7', 2.576399564743042)11709.46

RANDOM12 8 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node8', 3.630852460861206)11709.46

RANDOM12 8 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node8', 2.4792826175689697)11709.46

RANDOM12 8 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node8', 9.12377643585205)11709.46

RANDOM12 8 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node8', 3.3221747875213623)11709.46

RANDOM12 9 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node9', 3.623394250869751)11709.46

RANDOM12 9 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node9', 1.514296054840088)11709.46

RANDOM12 9 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node9', 9.76090955734253)11709.46

RANDOM12 9 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node9', 9.82877254486084)11709.46

RANDOM12 10 D MLP 0.829688 0.955467 3.890158 ('Node0', 0) ('Node10', 4.76228928565979)11709.46

RANDOM12 10 DB MLP 0.829688 0.955467 4.403519 ('Node0', 0) ('Node10', 7.483974933624268)11709.46

RANDOM12 10 SB MLP 0.829688 0.955467 0.837627 ('Node0', 0) ('Node10', 2.169569969177246)11709.46

RANDOM12 10 NRSB MLP 0.829688 0.955467 1.156866 ('Node0', 0) ('Node10', 10.924979209899902)11709.46

RANDOM12 11 D MLP 0.829688 0.955467 3.890158 ('Node8', 6.256499469280243)('Node11', 2.0787699222564697)11709.46

RANDOM12 11 DB MLP 0.829688 0.955467 4.403519 ('Node8', 6.256499469280243)('Node11', 1.3561081886291504)11709.46

RANDOM12 11 SB MLP 0.829688 0.955467 0.837627 ('Node8', 6.256499469280243)('Node11', 11.430806159973145)11709.46

RANDOM12 11 NRSB MLP 0.829688 0.955467 1.156866 ('Node8', 6.256499469280243)('Node11', 8.807789087295532)11709.46

130

Appendix K: Experimental results of DELS System on HIGGS
Table K.1:Training time for multi-node on sorted LADEL-[2:12] dataset partitions:

NODE # PART # Training time-CART Training time-MLP

2 0 207.5243757 4.410811901

2 1 204.1257854 4.642113447

4 0 49.1583724 0.364773989

4 1 48.09182978 0.183308601

4 2 49.64368272 0.18478775

4 3 48.76984859 0.593172169

6 0 24.20863676 0.213551998

6 1 22.4028132 0.192713737

6 2 24.37811208 0.220369339

6 3 24.65529346 0.135885477

6 4 22.50022268 0.319504023

6 5 25.81299663 0.545813236

8 0 14.80749965 0.479813347

8 1 14.77436113 0.215327024

8 2 15.66281271 0.165551424

8 3 16.26888108 0.121687412

8 4 16.7793715 0.205135584

8 5 16.61184478 0.20334506

8 6 17.26438093 0.366477251

8 7 18.18044829 0.348156691

10 0 10.05238175 0.035876513

10 1 10.01142478 0.161104679

10 2 9.666127205 0.173743725

10 3 10.19817948 0.175217152

10 4 9.781116962 0.171903372

10 5 9.507634163 0.225968838

10 6 9.525583267 0.394062996

10 7 10.03168988 0.436469746

10 8 10.24550438 0.405379944

10 9 11.77484488 0.393129797

12 0 8.569123745 0.113939047

12 1 8.693429708 0.227532387

12 2 8.95452714 0.184660196

12 3 7.505750179 0.209269524

12 4 8.463288546 0.267534494

12 5 7.852916718 0.201194286

12 6 8.692966461 0.157743216

12 7 8.900878668 0.203767061

12 8 7.143722773 0.423821459

12 9 8.914180279 0.461218805

12 10 7.010122299 0.400116167

12 11 7.478554964 0.244750738

131

Table K.2: Training time for single-node on sorted LADEL-[2:12] parts:

NODE # PART # Training Time-CART Training Time-MLP

2 0 368.0136001 8.07707929611

2 1 970.722302 10.23761057854

4 0 36.88137269 0.30437040329

4 1 36.30187917 0.19760179520

4 2 174.765486 0.19239258766

4 3 171.3531091 0.66925148964

6 0 14.69121647 0.16747665405

6 1 14.73460817 0.13596582413

6 2 14.72076845 0.13284564018

6 3 15.35086513 0.13331699371

6 4 73.97567487 0.55787944794

6 5 75.85161018 0.51566553116

8 0 10.64567995 0.18248271942

8 1 8.559438467 0.17937278748

8 2 8.2943995 0.18115735054

8 3 10.69076514 0.15203356743

8 4 10.93174195 0.19345068932

8 5 10.85930777 0.14757585526

8 6 43.62651348 0.38914155960

8 7 46.47767973 0.48854189873

10 0 5.748681307 0.37717294693

10 1 7.654337406 0.18286013603

10 2 7.887929678 0.17950129509

10 3 8.000450373 0.13058304787

10 4 7.701223373 0.17162775993

10 5 7.940872192 0.19384765625

10 6 8.090419054 0.17492222786

10 7 8.063848019 0.43742585182

10 8 27.62767053 0.33964848518

10 9 29.19114542 0.38032364845

12 0 4.066499472 0.10958361626

12 1 6.098992348 0.12338876724

12 2 6.16697526 0.15580511093

12 3 5.383090496 0.15455269814

12 4 5.984343052 0.14924144745

12 5 5.957971096 0.17402577400

12 6 6.268441439 0.15457987785

12 7 6.728176355 0.15197563171

12 8 20.10471988 0.46822776794

12 9 20.44731212 0.42445044518

12 10 20.67884898 0.32329983711

12 11 21.39685726 0.43457781792

132

Appendix L: Experimental results of DELS system on HIGGS

Table L.1: Scoring time for single-node on sorted LADEL-[2:12] parts:

NODE # Scoring Time-CART Scoring Time-MLP

2 250.2270966 140.074163

4 515.9956222 380.5397527

6 809.6825156 645.9810624

8 1027.764865 681.3745151

10 1007.854003 628.9259033

12 958.8259308 991.0405636

Table L.2: Scoring time for multi-node on sorted LADEL-[2:12] parts:

NODE # Scoring Time-CART Scoring Time-MLP

2 182.9336224 220.3684473

4 391.2762494 354.730495

6 557.8512392 538.9778781

8 755.0983987 836.9345078

10 899.5738959 1022.924756

12 1062.528551 1117.677441

133

Appendix M: Experimental results of DELS system on KDD Cup 99
Table M.1: Comparison in MLP and CART for LADEL :

NODE # Classifier SRV Cross-Val-Score SRV Test-Score

2 MLP 0.853202909 0.268667613

4 MLP 0.219282428 0.929996416

6 MLP 0.853514463 0.194401995

8 MLP 0.93022953 0.93138082

10 MLP 0.929814416 0.589724741

12 MLP 0.852754759 0.930086886

2 CART 0.930196829 0.590309968

4 CART 0.925985781 0.583278876

6 CART 0.930075073 0.931987161

8 CART 0.280884555 0.930511535

10 CART 0.930754784 0.192626914

12 CART 0.853274294 0.582389684

