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ABSTRACT

Nowadays, Machine Learning in Big Data is one of the challenges. As the large
datasets are too big to handle in the single node memory using distributed method is
mandatory. Hence, the methods of distributing data return the results with high
accuracy and better performance in time is the goal of this research. Using various
learning processes to train multiple classifiers from distributed data sets increases the
possibility of achieving higher accuracy, particularly on a big datasets. This is
because the combination of classifiers can represent an integration of different

learning biases which may compensate for each other's inefficiencies.

Implementation and Experiments on Distributed Ensemble Learning System (DELS)
With Several partitioning Methods and classifier s in single and multiple systems
have been chosen.The user should choose the input dataset, the number of partitions
and the classifier. Classification and regression tree (CART) and multilayer
perceptron (MLP) are the selected classifier used of decision tree and neural network
methods, respectively. We assume that number of partition is related to the number
of disjoint bagging which will be used for division of data and consequently the
number of parallel processors to which data is sent. Algorithms of bagging the data
are disjoint partitions (D), disjoint bags (DB), small bags (SB) and No-replication
small bags (NRSB) classification. These stratified inputs are proposed as training
samples and will train in single machine. The distribution of each part of this
stratified input is done by MPI. This service is responsible for performing several
tasks with its own resources separately. The task includes implementing the learning

algorithm and extracting the learning model. The results are N training models which



are collected using the majority vote method. The model with higher prediction rank
is selected in major voting. This final model is used to check the test data and extract
the Scoring test result. The previous test is repeated in multi-node system with

random input dataset.

In single-node, SB (Small Bag) has highest and D (Disjont Partition) has lowest
accuracy. CART has 0.998 in accuracy while MLP has 0.96. MLP requires 2 to 11
more times for learning than CART. In multi-node run time in CART is 5 to 11 times
faster than MLP. The best test score we reach was 0.955. As the number of disjoint
partitions is increased scoring time will increase, thus in 2 partitions scoring time is

37 minutes while in 12 partitions it is 210 minutes.

In DELS, better training time get with LADEL and MLP algorithm than CART. It
takes 4.6 seconds in 2 nodes while training time decrease to 0.11 second in 12 nodes
by using MLP in multi-node. These results are obtained by the CART algorithm in a

multi-node system, 207 and 7.01 seconds for 2 and 12 nodes, respectively.

Keywords: distributed systems, parallel processing, ensemble learning, bagging,

classification, decision tree, neural network, disjoint partition



Oz

Giiniimiizde, Biiyilk Veride Makine Ogrenimi zorluklardan biridir. Biiyiik veri
kiimeleri, dagitilmis yontem kullanilarak tek diigiim belleginde islenemeyecek kadar
bliylik oldugundan zorunludur. Bu nedenle, sonuglar1 yiiksek dogrulukta ve
zamaninda daha iyi performansla dondiiren yararli algoritmalar kullanilarak verilerin

dagitilmas1 yontemi bu arastirmanin amacidir.

Tekli ve coklu sistemlerde Cesitli Bolimleme Yontemleri ve Siniflandiricilar ile
Dagitilmis Toplu Ogrenme Sisteminde (DELS) Uygulama ve Deneyler segilmistir.
Kullanici, giris veri setini, bolim sayisim  ve siniflandiriciyr  segmelidir.
Siiflandirma ve Regresyon Agaci (CART) ve Cok Katmanli Algilayict (MLP),
sirasiyla karar agaci ve sinir ag1 yontemlerinde kullanilan se¢ili simiflandiricidir.
Bolim sayisinin, verilerin boliinmesi i¢in kullanilacak ayrik torbalama sayis1 ve
dolayisiyla verilerin gonderildigi paralel islemcilerin sayisi ile iliskili oldugunu
varsaytyoruz. Verileri torbalama algoritmalari, Ayrik boliimler (D), Ayrik Torbalar
(DB), Kiiciik Torbalar (SB) ve Cogaltmasiz Kiiciik Torbalar (NRSB)
smiflandirmasidir.  Bu  tabakalandirilmig  girdiler egitim  Ornekleri  olarak
onerilmektedir ve tek makinede egitilecektir. Bu tabakalandirilmis girdinin her bir
boliimiiniin dagilimi MPI tarafindan yapilir. Bu hizmet, cesitli gorevleri kendi
kaynaklar1 ile ayr1 ayr1 yapmaktan sorumludur. Goérev, Ogrenme algoritmasinin
uygulanmasini ve 6grenme modelinin ¢ikarilmasini igerir. Sonuglar, ana oylama
teknigi kullanilarak bir araya getirilen N egitim modelidir. Biiylik oylamada tahmin

siralamas1 daha yiiksek olan model segilir. Bu Son model, test verilerini test etmek ve



Puanlama test sonucunu ¢ikarmak icin kullanilir. Onceki test, rasgele giris veri

kiimesiyle Coklu Diigiimlii sistemde tekrarlanir.

single-node SB'de (Small Bag) en yiiksek, D (Disjont Partition) ise en diisiik
dogruluga sahiptir. CART'in dogrulugu 0.998 iken MLP 0.96'dir. MLP, 6grenme i¢in
CART'tan 2 ila 11 kez daha fazla gerektirir. Cok Diigiimlii yiiritme isleminde
CART'ta, MLP'den 5 ila 11 kat daha hizlidir. Test veri setini test ederken ulagtigimiz
en 1iyi test puani 0,955 idi. Ayrik boliim sayist arttikca calistirma siiresi artacaktir,
dolayisiyla 2 boliimde calisma siiresi 37 dakika, 12 boliimde 210 dakikadir. LADEL

modelinde en iyi ve en koti test puani 6 boliimde 0,931 ve 10 bolimde 0,192'dir.

Anahtar Kelimeler: dagitik sistemler, Paralel isleme, Topluluk &grenimi,

Torbalama, Siniflandirma, Karar agaci, Sinir Ag1, Ayrik Bolim
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Chapter 1

INTRODUCTION

Nowadays, extracting useful information from large amounts of data stored in
databases and warehouses known as data mining is important in system analysis.
Data mining [1] is the process of finding meaningful statistical patterns in a large
amount of data. It applies in many fields including business, science,
telecommunication, and medicine to predict protein structure [2], prevents network
intrusion detection, and recognizes breast cancer from mammography tests. Finding
these statistical patterns based on some techniques including classification,

regression, clustering, and association rules.

In 1959, Arthur Samuel defined machine learning as a “field of study that gives
computers the ability to learn without being explicitly programmed” [4]. Generating
disjoint subsets of training dataset fitting memory [2] allows decreasing training time
Thus, breaking big data into several smaller files and processing each part is
necessary. The training algorithms execute on each part to produce multiple models
aggregated into an ensemble. Prediction results of the ensemble models are
combined by majority voting to produce improved results. Partitioning data into
smaller parts (disjoint partitions) affects accuracy and computational efficiency of

the ensembles of classifiers.



There are several methods to partition big data. For example, Chawla et al [2] used
various Bagging-like partitioning methods. They were tested on small-, medium-,
and large-sized data. There are two difficulties in using Bagging-like methods. 1-
When the training dataset order by the class labels. A class label attributes a data to a
particular class. If a training dataset arrange on the class label, small partitions
probably contain data belonging to a single label. Therefore, the algorithm always
predicts the same single class. 2- When the proportion of records in one class is
significantly different than another class. Having highly skewed training dataset may
prevent some partitions from including minority class labels records, which may

result in not recognizing minority class records.

The label_aware distributed ensemble learning (LADEL) [3] algorithm has an add-
on model for the Bagging-like model that does not have the above problems by
including all class labels in each partition, while no class labels are included in
Bagging-like partitions. Classifiers can be created in a distributed way on disjoint

partitions. Each classifier can be learned in parallel on a separate processor.

In this work, we shall consider a problem of large-scale data breaking down into
smaller parts and train several classifiers from distributed data sets separately. These
partitions are generated by the Bagging-like method and LADEL distributed over
multiple processors’ memories, and classifiers are trained separately on them. To
generate the final classifier, the trained classifiers are aggregated using majority
voting to produce the final classifier. These distributed and parallel processing may

improve accuracy and the training time.



The rest of the thesis is set as follows: Chapter 2 surveys classifiers, Bagging
classifier ensembles, the segmentation methods for Bagging-like distributed
ensembles of classifiers, LADEL model, describes experimental settings, and results
for them. The problems of the thesis are defined. Chapter 3 explains the system
architecture design, implementation, and testing of the distributed ensemble learning
system (DELS). Chapter 4 introduces experimental settings and results on DELS
study and comparison of DELS versus LADEL and other models. Chapter 5 is

conclusion.



Chapter 2

RELATED WORKS AND PROBLEM DEFINITION

In data mining and Machine learning, discovering the patterns in data is used to
predict (classify) new data. Data maybe labeled or unlabeled. Labels tag labeled data.
For example, a collection of patient data containing their test results in the diagnosis
of cancer label with one (positive), or zero (negative). Machine learning approaches
classify into supervised and unsupervised based on whether data labeled or not. If the
training data labeled, it is in the supervised group, otherwise, in the unsupervised
group. Supervised learning algorithms use Classification and Regression, while

unsupervised learning algorithms use Clustering and Association Rules.

In this chapter, CART and MLP classifiers (Section 2.1), single and multiple-node
classifier ensembles, partitioning methods for Bagging-like ensembles (Section 2.3),
LADEL, and LADEL evaluation (Section 2.4 and 2.5), Parallel computing (Section
2.6), Client-server architecture (Section 2.7), MPI and MPI with Python (Section 2.8

and 2.9) and problem definition (Section 2.10) are considered.

2.1 Classification and regression tree (CART), and multilayer

perceptron (MLP) classifiers

One of the main purposes of data mining is to predict the unknown value of a new
sample based on previous samples. Achieving such a result is performed in two
steps:

A) Training step: Createe a predictive model [6] on training samples [7] using some

4



learning algorithm.

B) Test step: The created predictive model is used to classify test samples.

In machine learning, usually an input dataset is divided into two parts, training and
testing samples. The training dataset is a dataset of records used during learning
process; it is used to tune the parameters of a classifier (train model). The testing
dataset is a dataset that is independent of the training dataset, and is a set of records
used only to assess the accuracy of the trained model (learned classifier)]. In
supervised learning, training data has an attribute named “class label” for classifying
the data based on their common attribute and predicting a class of testing data. In
learning process on a training dataset, algorithm builds a model based on the class of
data specified by the class labels. Then, the model built is used to predict (classify)

test data. Identifying the class of a test sample is called classification.

Decision tree learning [8] is a method of machine learning that creates a model for
predicting the amount of output variables depend on input values. A decision tree is a
tree structure used to categorize data. It breaks down an input dataset into smaller
subsets and decision tree is incrementally developed. A decision tree defined as a
group of nodes which is started with root node as first parent node and continue
breaking down the parent node recursively into child nodes based on a series of
decisions using the variables in the dataset. The final child nodes in tree are called
leaves and the final result is a tree with decision (parent) nodes and leaf (child)

nodes. The examples will be considered in the CART section (section 2.1.1).



2.1.1 CART classifier

Classification and Regression Tree (CART) [9] is tree-based method which creates a
binary decision tree model, meaning each parent node has two children. It is
supervised learning because the training data is pre-classified using labels. The
strong point of this method is that it allows diverse types of input data. The input data
can be numerical, like price, or non-numerical, or categorical, like location. CART
versatility makes it a popular tool for a wide range of input data types. It works with

all types of input data by “classification tree” or “regression tree”.

For classification tree, Figure 2.1 shows points in the plane either marked with cross
or circle as an illustration of input data. This display shows the values of two
variables for a set of training data. The training data is displayed as a set of points,
each of the points having two values, one is the position-determining variable on the
horizontal axis (x) and the other is the value of the position-determining variable on

the vertical axis (y). These points have two shapes: “cross”, or “circle”.

Y t2 3
« * o* o o “4
s | L0 Bat
Figure 2.1: Splitting training data into Figure 2.2: Decision tree model for
regions Figure 2.1

Cross and circle are two class labels. The purpose of the classifier is to partition the
plane into smaller regions and assign a class label to each region by majority number
of class labels. First, the training dataset of the points (xi, yi), i=1, 33, labeled by
stars and circles, is in the whole region labeled by t1 (single-node). Then, split t1 into

6



two regions (nodes), t2 (where xi<5), and t3 (where x>=5). T2 label with a cross
because it has more crosses than circles. Therefore, this area no longer needs further
division and known as the leaf in the decision tree, but for t3, we cannot decide on
the labeling of this area. Continue splitting t3 into t4 (for yi>=3) and t5 (for yi<3).
Now assign the class label into each region. The region t4 is marked by “circle”,
because has more circles than crosses, and t5 is marked by “cross”. Figure 2.2 shows
decision tree for Figure 2.1. Decision on splitting each region made by some rules.
These rules split each region in a decision tree into two sub-regions, so decision tree
is called binary decision tree. Once the decision tree is built, the trained model is
ready. This model is used to find new data class labels and prediction of new data
class labels is possible. For example, assume the new data point is A= {(10, 2,?)}, it
has not class label. The prepared decision tree is a model to predict the class label for
point A. As x = 10 and its greater than 5, it belongs to t3. Then y = 2 and it is less
than 3, hence, it belongs to t5. According to model, A belongs to t5 with the class

label cross. Thus, A={(10,2,cross)}.

For Regression Tree method, Figure 2.3 shows points in the xy-plane by crosses. In
this case, goal is to find a function y = f(x) whose graph lies close to the given data
points. Figure 2.4 shows decision tree for the data in Figure 2.3. The method of the
regression tree is similar to classification tree. The only difference is that instead of
finding majority number of class labels for decision making, in regression tree, the
average y-value of the data is used as the value of the regression function on each
region and the target value of decisions can take continuous values (typically real
numbers). For creating the decision tree firstly, the training dataset of the points (X,

y) is in the whole region labeled t1. Then, split t1 into two regions (nodes), t2 (where



X < x,and y(x) = ¥ is the average of y, for example x =4), and t3 (where x >=

x with what average of y?). The region t2 can again be split into t4 (where x < x=2
and average of y is y4) and t5 (where x >= x=2 and average of y is y5). For t3, spilt
it into t6 (where x < x=6 and average of y is y6), and t7 region (where x>= x=6, and
average of y is y7). For prediction, y value for the known x value by decision tree,
region of x value will be selected in decision tree, then the related y value will be

assigned to y( x).

tl 3

y ’
ts ts ts t;
®
y: v | Joan xn“ &
Ya—%g [ "
"
2 4 6 5
Figure 2.3: Splitting training data into t Figure 2.4: Decision tree model for
regions Figure 2.3

2.1.2MLP classifier
Multilayer perceptron (MLP) [10] is one of the artificial Neural Networks (ANN)
[11] classifier. Neural networks include a set of nodes and the connections between

them. MLP is a supervised learning method that has multiple layers of nodes.

Perceptron [10] is used for supervised learning and making decisions based on a
linear predictor function. A function that maps its input x (a real-valued vector) to an
output value f(x) (a single binary value) is an activation function of the perceptron.

1, wx+b>0
0, otherwise

FG) = 0t %500, 70) = | (1)



where n is the number of x input values, o(X) is output of x vector, w is a vector of
real-valued weights, w.x = Y7, w; - x; is the scalar product of the vectors w and x,
and b is a bias, or threshold, a term that shifts the decision boundary away from the
origin. The perceptron is triggered only when weighted input reaches a certain
threshold value (0, in our case, w.x + b > 0 ). An output of one specifies that the
perceptron is triggered; otherwise, the perceptron was not triggered. If b is negative,
then to force the classifier perceptron over the 0 threshold, the scalar product shall

exceed b.

@ ™"
- XW
@ ‘
+ | f ‘o
— =
2 X W

Figure 2.5: Perceptron

Figure 2.5 demonstrates the n desired input values of x(xi,xy,..,x,) and
W(wy, w,, ...,wy,) as input weights. The input values multiply by weights and then
summed up. The activation function f(x) applies on the sum value to determine,
trigger, or not to generate output (O). Training dataset includes input value and
desired output value, d(x). Learning process starts by setting of the weights
randomly and continues to optimize weights in a way that the perceptron output is
equal to the desired output. This weight updating is done based on the error (€). Error
is the difference between the output obtained in perceptron and the desired output (e
= d(x)-f(x)). If the error value is not zero, the output is incorrectly predicted and the

weights must be updated. The learning process repeats several times and update



weights to find the optimize weights with zero or at least less error value. When the
perceptron output is equal to the desired output, the perceptron finds the optimal
weight and the repetition process stops. Pseudocode of the perceptron algorithm is

given below in Code 1[36, p. 71].

Perceptron algorithm(
Assumption: the two desired output(classes), d(x) = 1 and d(x) = 0, are linearly
separable.
1. Initialize all weights, w;, to small random numbers.
Choose an appropriate learning rate, o ¢ (0,1].
2. For each training example, X = (x4, x5, ..., X;) and x,.w,is bias, whose class is
d(x):

2.1.1. Let f(x) = 1 if X7, w;x; > 0, and f(x) = 0 otherwise.

2.1.2. Update each weight using formula, w; = w; + a/d(x) — f(X)].x;
3. Ifd(x) = f(x) for all training examples, stop; otherwise, return to step 2.
End//perceptron
Code 1. Pseudocode of perceptron algorithm

MLP utilizes a supervised learning method for training. It is an artificial Neural
Network (ANN) with at least three layers: input, hidden, and output layers, shown in
Figure 2.6. Single layer perceptron can learn only linearly separable patterns, while
multilayer perceptron can learn patterns that are more complicated. MLP distinguish

data that are not linearly separable.

Input Layer Hidden Layer Output Layer

input2

. wo2
inputl
wo1

3
<4 I% ¥ I%

£

=

8

Figure 2.6: Multilayer perceptron (MLP)

In Figure 2.6, filled circles represent the nodes with real values. The dotted circles
represent the bias with a constant value of one. Solid lines represent the connection
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between nodes. Dotted lines connect bias value to the nodes. Nodes labeled by x; for
input values for input nodes in input layer and a; for activation node in hidden layer
where i is the number of a node. Arcs connect nodes from one layer to other and
labelled by w;;. w;; is weight for each connection where i represents the layer
number and j represents the line number. Output layer has one node with the output

value.

MLP learning step starts with the input layer and forward data propagation to the
output layer. This is “forward propagation” process. Calculate the error (the
difference between the current and desired output) and need to minimize the error.
The next step is to find derivative for each weight in the network, and update the
model. Repeat these steps to learn ideal weights same as in single perceptron. Now
model is created. Finally, to obtain the expected class labels for the test data, the

output is taken through the model.

Forward Propagation: Each node-to-node link is associated with a weight. The
weight of the link from the j-th hidden nodes to the i-th output nodes is denoted as
w;; , and the weight of the link from the k-th value of hidden nodes (ay) to the j-th
hidden node is introduced as wy ;. The inputs multiplied by their respective weights
are summed (X, w;x,), and then mapped to the output via the transfer function. The
transfer function can be one of several different functions below, depending on
which interval we want to map, for example interval (-1,1]. The transfer functions for
X value are listed below.

The sigmoid functions:

ex_e—x

f(x) = tanh(x) = € (—1,1)

eX+e~X
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output is in range (-1,1). or
fx) = 1 +e ™) 1e(01)
and ReLU function:
f(x) = x* = max(0,x) € [0, )

where X is a real number, and e = 2.71828 is Euler’s number.

The i-th output node then receives the weighted sum of the values coming from the
hidden nodes and returns to the activation function. This is how the i-th output is
obtained. Two-layer perceptron calculates the following formula where f is the

sigmoid transfer function, wy; and w;; are the weights of hidden layer and output

layer and x;, are the input values.

v = FO Wi fOQ) wig-x)
7 k

Backpropagation: it is a short form for "backward propagation of errors." The
principle of the backpropagation approach is to model a given function by modifying
internal weightings of input signals to produce an expected output signal. The system
is trained using a supervised learning method, where the error between the system’s
output and a known expected output is presented to the system and used to modify its

internal state.

How MLP works?
1. Inputs x;, arrive through the preconnected path
2. Input is modelled using real weightsw;. The weights are usually randomly
selected.
3. Calculate the output for every neuron from the input layer, to the hidden
layers, to the output layer.
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4. Calculate the error in the outputs
Errorz= Actual Output f(x) - Desired Output d(x)

5. Travel back from the output layer to the hidden layer to adjust the weights

such that the error is decreased (Backpropagation).

Keep repeating the process until the desired output is achieved.
2.2 Single and multiple-node classifier ensembles

2.2.1Single-node Bagging-like ensembles
In machine learning, the classifier ensemble learning [12] methods apply multiple

learning algorithms to increase predictive performance.

Bootstrap aggregating (bagging) [14] is a simple ensemble of classifiers which
combines predictions of multiple machine learning algorithms to make more accurate
final result than any individual classifier. It executes on a single node. Bagging
generates m new training datasets by sampling from training dataset. These new
training datasets are named” bootstrap samples”. Bootstrap samples are randomly
selected with replacement, and the number of records in each bootstrap sample is
equal to the amount of data in the training data set. A separate different training
algorithm trains subsamples. After training, m models create. For illustration, let the
training dataset have 10 records: TD={A,B,C,D,EF,G,I,J,K}. Bagging using random
sampling with replacement creates 3 training datasets,
TD1={D,K,D,D,K,A,FE,B,1}, TD2={A,B,F K,C,K,I,LA,G,J},

TD3={G,J,J,J,J,K,B,E,F,C} to train 3 different classifiers in the ensemble. For
example, TD1 is fed to CART learning algorithm to train first model, and TD2 and
TD3 are fed to MLP to train model2 and model3. And then the results from each

trained model are aggregated in the form of voting (for classification) or averaging
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(for regression). Aggregation for classification is made in the way that the vote-based
ensemble is created with each classification in the ensemble to predict the class of
new sample data, the class is selected by a majority of votes as the final ensemble
prediction. For example, Figure 2.1 shows modell predict label class cross for t1 and
circle for t2 and cross for t3. Model2 predict cross for t1 and t2, circle for t3. Model3
predict cross for t1 and t3 and circle for t2. Therefor vote-based ensemble predict t1
region as cross because all the models predict it as cross and predict t2 region as
circle because two models predict this region as circle and so on for region t3.

Therefore, ensemble classifier predict t1 as cross, t2 as circle and finally t3 as cross.

Aggregation for regression, average of class labels is selected as the final prediction
of ensemble. For example in figure 2.3, modell predict {(x < 2, t4),(2< x < 4, 15 ),(
4< X < 6, t6),(x > 6, t7)} and model2 predict {(x < 3, t4),(3< x < 4,15),(4<x < 7,
t6),(x > 7, t7)} and model3 predict {(x < 3, t4),(3< x <6, t5),( 6< x < 7, t6),(X > 7,
t7)}. Ensemble classifier calculate average of x in each region and create final model

as {(x < 2.6, t4), (2.6< x < 4.6, 15), (4.6< X < 6.6, t6), (X > 6.6, t7)}.

Figure 2.7 shows the steps of training input dataset by ensemble classifier method
(bagging) in single node approach. First, the input dataset is partitioned into training
and testing dataset. Bootstrap samples of records are selected from training dataset.
In bagging ensemble method, there are several classifiers trained on the bootstrap
samples separately to create model. A model is a file that has been trained to
organize certain types of patterns to make prediction. The models are combined to
create final ensemble classifier; this is “Aggregating” step. And finally in the testing

step, final ensemble classifier or final model can predict the class label of the new
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data and it can predict test data. The label of the region which the new data is placed

is the prediction of new data.

| DATA SET |

|| Testing |

Training Dataset
| raining ase e

A A 4

. Bootstrap Bootstrap | ... | Bootstrap
Bootstrapping Sample1 Sample 2 Samplen

Classfier Classfier Classfier

LiLiF :

y

Aggregating

Ensemble
Classifier

I

Prediction

Figure 2.7: Single-node Bagging ensemble classifier schema

In the case working with big data, as the size of dataset is too large for the memory to
match, it is impractical to train data using single-node method to create several
bootstrap samples of sizes which are equal to the initial dataset. So the Bagging-like
approach is suggested to solve this issue. In next section, we will examine methods

of dataset partitioning and Bagging-like approach.
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2.2.2Multi-node Bagging-like ensembles

Bagging-like is an approach to creating a group of n classifiers from the partitioning
of training dataset into n part. Each of these parts has size (1/n) which will fit to the
memory, while in bagging approach each partition has size (n) equal to the original
training dataset. Bagging-like has different methods for partitioning training dataset
into disjoint subsets .These methods are disjoint partition (D), Small bags (SB), no
replication Small bags (NRSB) and disjoint bags (DB) which will describe in next

section in detail [Section 2.3].

Training on these disjoint partitions are done in distributed way in multiple node.In
multi node classifier, training dataset is trained across many computing systems
through network in parallel. Client-server architecture use to train multiple classifiers

in multi systems.

In Figure 2.8, you can see the multi-node classifier ensemble schema. This schema
has three steps:

Step 1. First step runs in server side and is involved partitioning dataset into training
and testing dataset. The training dataset partitioned into smaller disjoint set by four
different methods of Bagging-like partitioning (D/DB/SB/NRSB) [Section 2.3].
These disjoint datasets transfer to the client’s side.

Step 2.Second step run on clients in parallel. Each disjoint dataset is settled in
separate client and trained by distributed classifiers on any distributed frameworks
(clients) for learning them in parallel way and extracting N models. Models will
transfer to the server.

Step 3. In this step, all models combined and create final ensemble classifier,

aggregating phase same as in normal bagging approach.
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All these models will join to the server side for voting (classification) or averaging

(regression) purpose. The ensemble’s final prediction use to predict new data classes.

‘ STEP2
STEP 1 STEP 3 e

| DataSet |
x Client 1 Client 2 Client N
= z > Ensemb!
Training Dataset Testing Dataset

| E I I s Classifier CLASSIFIER CLASSIFIER CLASSIFIER

1 2 N

D/DB/SB/NRSB

l Disjoint 1 l Disjoint 2 I I Disjoint N I , .
ey MODEL MODEL MODEL

Prediction 7 = e

Ly &

Laptop Laptop Laptop

Figure 2.8: Multi-node Bagging-like classifier ensemble schema

2.3 Partitioning methods for Bagging-like ensembles

Chawla et al [2] suggested four Bagging-like ways of dataset partitioning.

Original Data Set :

‘ABCDEFGHIJKLMNOP‘

Disjoiny partitions ( random order of data) :

[ABcD|[EFGH|[1IKL |[MNOP

Small Bags (replication within and across):

[AcHL|[BPLP |[DIOH]| KCFK |

No Replication Small Bags:
[aAcHL]|[oPLN|[DIOH]|[KCFP |

Disjoint Bags (no replication across, larger):

|aBcDC |[EFGHE || IJKLJ |[MNOPO]

Figure 2.9: Four Bagging-like strategies: D, SB, NRSB, DB [2]

Figure 2.9 illustrates four Bagging-like partitioning methods [2]. They are:
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- Disjoint partitioning (D): partition data into parts (bags) with random selection of
data. The bags have not repeated records within or across the bags.

- Small bags (SB): select data randomly with replacement, so then there may be
repeated records within and across the bags.

- In no replication Small bags (NRSB), record selection within bags is random
without replacement, but across bags allows replacement.

- The last approach is disjoint bags (DB) choosing data across bags with
replacement, and it has extra records so bags are larger than for three other

methods, D, SB, NRSB

Details of the methods are considered below

2.3.1Disjoint partitioning

original data set:
ABCDEFGHIJKLMNOP

Disjoint partitions (random order of data)
ABCD[[EFGH| [TJKL| [MNOP| D

Figure 2.10: Disjoint partitioning method D [2]

Disjoint partitioning is a method to partition input dataset into N bags, and records

are randomly selected without replacement.

Having a database, DB, with number of records, R, and given the number of
partitions, N. Records of DB are read one by one and will be distributed in disjoint

partitions one by one in sequence, so the union of disjoint sets (bags) is equal the
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input dataset. Each letter in the bags refers to class labels. The approach D is

illustrated by Figure 2.10.

Two sets are disjoint if they have no common elements. equivalently; two disjoint
sets (bags) are sets whose intersection is empty. It is necessary splitting S into N
partitions, Pi, such that U, Pi = S andPi n Pj = @. For example in Fig 2.2, N=4

bags created are: S={A,B,C,D,E,F, G, H, I,J,K, L, M, N, O, P},

P1= {A, B, C, D}, P2= {E, F, G, H}, P3={I, J, K, L}, and P4= {M, N, O, P}. The

partitions obtained are expected having approximately the same number of records.

For disjoint partitions with random arrangement of data, first, disorder the DB by
using random number generator. Then, the records are read one by one and added to
the disjoint sets (bags). It should be emphasized that if the number of records in input
file is not divisible by number of partitions, the number of records in the bags will

not be equal. A pseudocode of D bagging is given below:

D bagging{
Inputs: DB array, data file;

N integer, number of partitions (bags);
Outputs: P [N] array of partitions

L=len(DB) [* length size of input dataset
randomdf =reorder_randomly(DB) [* generate input file with random
[* records

while not end of randomdf do
Fori=1to N do
rec= read (randomdf) /* read one record from random datafile
P[i]=P[i] + rec /* add record to each P[i] bag
endfor
endwhile

}
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The sample of input and output of the program is given below:

Sample of Program:

DB =l 'v, 'c','d"'e’,'f,'g",'h",'" 1" ], 'K, 'I', 'm", 'n’, '0’, 'p', 'q']  /* input data

L=17,N=4

Randomdf: [Ibl, Vh!} 77, ’d’, ,0,, lpl’ lg,l, jj!y Vl'I’ 'C’, Ial, lmr, '8’, Vkl] !ZI, In!, lq']

i=1 > P/1]=[b],i=2> P2]=[h"],i=3 > P[3]=[1] i=4 > P[M]=[d]

i=1 D P[Y=/b"0],i=23P2]=[h"p],i=3>PB3]=[1,g]i=4>PM4]=[d )]

i=1 D P[Y =/b"0,171=2> PR]=[h"p,'c’],i=3 > PBI=[1.g, a]i=4 > PH]=[d,}, 'm]

i=1 2 P[1]=[D,0ie],i=22>P2]=[Nh"p,c, k] i=3 > P[3]=[F,g,a’,l],
i=4 2P[4]=[4d",j, ' m’ n]

i=1 > P[Y=/b"07 e q]

p=[['b", 0", I",’e’, 'q], ['h, 'p', 'c’, 'K, ['f, 'g', &', 'I'], ['d", j', 'm", 'n"]] /* output lists
2.3.2Small bags partitioning

small bags (SB) partitioning from [2, p. 458] is same as disjoint partition except that
records are randomly selected with replacement so replicated records are within and
across the dataset partitions. The union of these datasets is not equal to the input

dataset.

original data set:

ABCDEFGHIJKLMNOP

Small Bags (replication within and across):
[acHI][BPLP]| [DTOH] [KCFK] sB

Figure 2.11: An illustration of small bags, SB [2]

For achieving partitions in random order of data with replication within and across
the partitions, first check if the number of records is divisible by N, or not. If it is
divisible, random records select as the number of integer value of quotient. If it is not
divisible, integer value of quotient plus one record is selected. The relevant

pseudocode is given below. Ceil function maps x to the smallest number greater than
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or equal to x. In the case of divisibility, all partitions have the same number of

records.

SB bagging {
Inputs: DB array, data file;
N integer, number of partitions;
Outputs:P [N] array of partitions;
L = len(DB)
ceil(x)={x, if x integer, the minimal integer not less than x}
k= ceil(L/N)
For i=1to N do

randomdf = select_randomly_with_replacement(DB,k)
[*select random samples in size of k with replacement
P[i]= randomdf
endfor
}/end of SB bagging

Example is given below:
DB =T['a,'b, 'c'/d et g 'h i 7J, K, I''m,'n, ‘o, 'p, ¢, r] [* input data
N =4 and L= 18, k=5
i=1-2> p[1]:['a’, 'n, i}, ‘¢] I* output lists
i=2=2 p[2):[7'f,'d", 'g", 'I']
i=3-2> p[3]:['I, ', "a", 'm', 'b']

i=4-> p[4]:['e’, 'h, "¢, g’ 'd]

Above sample shows, letter 'a' is repeated across partitions(1,3) and letter 'g' is
repeated within and across partitions 2 and 4.

2.3.3No-replication small bags partitioning

No Replication small bags (NRSB), is like small bags, but each partition is created
by random sampling without replacement, so records are not duplicated in partitions,
but may repeat across partitions. So, intersection of partition sets may not be empty,
PinPj+ Q.
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original data set:
ABCDEFGHIJKLMNOP

No Replication Small Bags:
ACHL| (OPLN| (DIOH| |[KCFP | NRSB

Figure 2.12: An illustration of No-replication small bags, NRSB [2]

For NRSB in figure 2.12, first check the divisibility of input record numbers (L) to
the number of disjoint partition (N) same as SB. The algorithm selects random
records in the length of k without replacement in each partition subset separately.

The pseudocode follows.

NRSB bagging{
Inputs: DB: the dataset for partitioning;
N: integer number of subsets;
Output: P [N] array of partitions
L = len(DB)
ceil(xX)={x, if x integer, the minimal integer not less than x}
k= ceil(L / N)
For i=1to N do
randomdf = select_randomly_without_replacement(DB,k)
[*select random samples in size of k without
replacement
P[i]= randomdf
endfor
}l/end of NRSB bagging

In the following you can see the sample of input and output of the program.

Sample of Program:
DB =T['a', 'k, 'c','d" e, 'g") 'h, i)}, 'k, 'I','m','n,'0", 'p", ']  /* input data
L=17, N=4,k=5
i=1-2> p[1]: ['a', 'f", 'n', 'k, 9] /* output lists
=22 p[2]: ['f', 'e', 'd", 'c’, I']
i=3-=2 p[3]: ['h", 'm’, 'f', "', i']
i=4-2>p[4]: ['b, I, ', e, ']
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Above sample shows, letter 'f' is repeated across partitions(1,2,3) and not repeated
within partitions.

2.3.4Disjoint bags partitioning

The fourth approach is disjoint bags (DB) illustrated by Figure. 2.13. Each partition
is created by random with replacement but in larger size than the first three
approaches so the union of bags is all of the original data, and some data is

replicated.

original data set:
[ABCDEFGHIJKLMNOP |

Disjoint Bags (no replication across, larger):
[aBcDC| [EFGHE| | DKL) | [MNOPO| DB

Figure 2.13: An illustration of disjoint bags, DB [2]

For this approach, firstly, change the order of records by creating random file. Then,
create the random partition set without replacement. Then, choose an element in each
partition set as a candidate for appending to the same partition set. In this case, each
partition is larger than before with repeated element. The relevant pseudocode is as

follows.

DB bagging{
Inputs: DB array, data file; N integer, number of partitions;
Outputs: P [N] array of partitions;
L=len(DB) * length size of input dataset
randomdf = reorder_randomly(DB)
[*select random sample without replacement from DB

while not end of randomdf do
fori=1to N do
rec= read(randomdf) /* read one record from random datafile
P[i]=P[i] + rec [* add record to each P[i] bag
endfor
endwhile
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fori=1to N do
S = select_randomly(P[i],1) /*select randomly one record from P[i]
P[i]=P[i] +S

endfor

}/end of DB bagging

Example of DB work is given below:

Sample Output of Program:
DB = [.a'l Ibll .C.l Idll Iell Ifll Ig'! Ihll Iill I.Il .k'l .I|l Imll In.l .OII Ip.l I(q.] /* InpUt data

i P/1]=[b’],1 =22 P2]=[h],i=3 2> P[3]=[] i=4 > P[4]=[d’]
P/1]=[b"0’],i=22P2]=[h’p’],i=3 > P[3]=[F,g’],i=4 > P[4]=[d" ]

P/1]=[b" 0], i=2 2> P2]=[h"p,c],i=3 2> P[3]=[Fg,ql,i=4 > P[4]=[d"}’, a’]
P/1]=[b" 0", m],i=2 2> P2]=[h"p’c’,e], i=3 > P[3]=[F,g,q, K]

i=4 >P[4]=[d"j,a’, ]

P/1] =[b"0"i",’m’, n’]

T
vovb Ly

1

‘m’, P[1] =[b",'0", 1", 'm", 'n’, 'm7]
VP21 =['h,"p', e, e, ']

S PEBI=[T,"9,'q, 'K, 'q]
VPA=[d ) a1

gl

’

[TRRTARTIT!
1
_ T3

)

2.4 The label-aware distributed ensemble learning (LADEL)

Khalifa et al. [3] work on the other model to prepare training dataset, named
“LADEL”. Label _aware distributed ensemble learning (LADEL) is a method to
distribute data in the distributed systems [5] parallel which increase accuracy in big
training dataset. The strong point of this new technique is capability of working in
any classification algorithms, in any platform without any changing in program and

faster training.

Generally, there are two types of perspectives to solve machine learning problems.
One is to focus on speed and gain faster training time, and the other is to gain better
accuracy. For this purpose, the following steps have been taken to obtain the results
for decision making. First approach is distributed sequential single-node algorithms.

Second, Distributed Stratified Sampling (DSS) algorithm is used on large dataset.
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DSS is a technique that input data is broken down into small groups (stratum), and
then random sampling is done from each of this stratum independently. These
random records gather in a file used as an input for classification algorithm (Figure
2.14). Big Data should be stratified and distributed to shared-nothing [13]
architecture systems. Standard Stratified sampling work on broken down training
dataset into small size dataset without any special policy on selecting samples. In
DSS, stratum is created based on the class labels. Therefore, random sampling forced
strata to train in all training dataset class labels. Finally, LADEL model is used to

train data in any framework.

LADEL needs three inputs: -the input dataset, -the classification method and - the

number of desired parallel dataset partitions to construct a trained classifier.

User’s data pre-partitioned disjoint partitions on HDFS

——]
Slave Node =2 Slave Node  |=2
Data disjoint | = | Data disjoint |=

partition 4 4 4 4 partition , & 1 4

‘ 1. Create stratified partitions using DSS

Slave Node Slave Node
e 11t Date et
stratified ) L7, stratified 4 4 4 4

partition artition 4
g 5 i

‘ 2, Train sequential single-node classifier on each data partition

Slave Node Slave Node

‘ 3. Aggregate intermediate cfassifiers
A Master Node T Ay
P
(5 —
iy

Classifier Ensemble

Figure 2.14: LADEL execution overview [3]

Figure 2.15 shows three steps of LADEL execution model:
1- Create stratified partitions using Distributed Stratified sampling (DSS).

2- Train sequential single-node classifiers on each data partition.
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3- Aggregate classifiers by using majority vote method.

el
Sl 11 L

OO @O
N[ EH) - [

Figure 2.15: single-node stratified sampling [3]

The labels and number of records in each class is distributed balanced. Figure 2.15
displays two steps for making stratified in sequential single node.

Step 1 - Create groups of records in separate strata by class label.

Step 2 - Select samples from each stratum randomly.

Created categories include all the class labels.

In the single-node memory, big data does not fit. Simple random sample selection is
used to create distributed filesystem and transfer them to distributed servers. These
disjoint partitions does not include all class labels and poorly trained ensemble
classifier. Figure 2.16 displays distributed stratified sampling (DSS) model to create
a disjoint partitions with all class labels included. DSS has two phases, Local and

Global.

Local phase is executed in each individual slave node separately in parallel. It
consists of two steps;

Step 1- Create groups of records in separate strata by class label. Therefore, the
number of strata is equal to the number of class labels.

Step 2- Round-robin selector runs in parallel on each system separately on each

stratum (including one class label). In each round-robin cycle, a record is selected
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and stored in the current slave node and the second selected record is sent to second

slave node and so to the end. Thus, all the class labels distribute in slave nodes.

Local Sampling Global Sampling

Pre-Partitioned Local Population Local Strata Stratified Partitions

Figure 2.16: Distributed stratified sampling (DSS) [3]

For example, as you can see in Figure 2.16, local sampling creates local strata on
each node. The upper node has three class labels (white, grey, black), so it has three
local strata. White and grey strata each have one record and black strata have two
records. Such grouping will be done on each node in parallel. In the next step,
Round-robin selector runs in each node separately in parallel. In the upper node,
record labeled number 1 remains in the same node. This stratum has not any other
record, so selector goes to the next strata. In next stratum, record label number 2
remains in the same node, record number 4 will be sent to the next node. In the next
stratum, record number 3, remains in the same node. As you can see, in the middle
node, there is a black stratum with three records numbers by 6, 7, and 8. Record
number 6 remains in the same node, number 7 is sent to the node above, and record
number 8 is sent to the node below. At the end, you can see each node has records

including all class labels.

Global phase runs in each individual slave node after the local phase. It integrates the
records sent from local phase with its own records. These new strata have all class

labels of original big dataset inside and are ready to be used by a classifier.
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By increasing number of strata and having parallel process, execution time will be
declined. Practical experiments show that using sequential single-node stratified

sampling needs more execution time than DSS to aggregate the distributed partitions.
2.5 LADEL evaluation

In [3], three approaches are used to compare the training time and accuracy on
decision tree, neural network with or without LADEL technique. First, it uses
LADEL on distributed nodes and a sequential single-node data mining library.
Second, it uses voted-based distributed ensemble learning on distributed sequential
single node classification algorithms, and third, it uses original sequential single-
node classification algorithm on a single machine trained on the whole training data.
The past empirical experiments show that neural network algorithms have better
training time and accuracy on single-node training in comparison to other solutions.
Multilayer perceptron has been chosen for testing the distributed systems. The
second algorithm chosen from decision tree methods is Hoeffding Tree. The HIGGS

dataset with almost 7 million training records and 2 class labels is used.

Figure 2.14 shows the effect of increasing the number of classifiers on the amount of
training time in distributed ensemble compared to a sequential single node. A
distributed ensemble is modelled by training classifiers (Hoeffding Tree, multilayer
perceptron) based on disjoint partitions data divided into separate partitions in
multiple slave nodes. The trained models are sent to the master node to participate in
the vote-based classification. Figure 2.17 demonstrates that training time is decreased
by increasing number of slave-nodes and this result is independent of the training

algorithm. In the best case with 100 nodes, almost 5 % and in the worst case with 10
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nodes, almost 29% of the time required to train dataset in a single-node classifier for

total records in data set.

Figure 2.18 displays the effect of increasing number of classifiers on the scoring
time. It shows that scoring time increases when using ensembles in comparison of
using single classifier on single node. So by adding the number of classifiers may

sacrifice training time to better predict accuracy.

Figure 2.19 displays the effect of distributing the scoring time operation across 10
nodes. It shows reduction on scoring time than that of a single classifier running on a
single machine. Scoring time in distributed systems on 10 machines is 18 times faster

than single node.

HIGGS Datasets [2 classes, ratio 1:1]
Training: 7,614,319 records
35.00% [Lower values are better]
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Figure 2.17: Ratio of the training time of distributed ensemble to a sequential single-
node classifier [3]
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HIGGS Datasets [2 classes, ratio 1:1]
Validation: 3,385,684 records
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Figure 2.18: Ratio of the scoring time of single machine ensemble to a sequential
single-node classifier [3]
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Figure 2.19: Ratio of distributed scoring time on 10 machines of an ensemble to that
of a single classifier on a single machine [3]

In addition to timing score analysis, they also focused on prediction accuracy
analysis by using LADEL ensembles. LADEL gains better precision than single-

node classifier trained on entire training dataset.
2.6 Parallel computing

Traditionally, software has been written for serial computation. It means, a problem
is broken into a series of instructions, and instructions are executed sequentially one
after another on a single processor, and, of course, only one instruction executes at
any moment in time. We usually need a more powerful processor and big size of
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memory to process the Big Data. Mostly the size of a dataset does not fit to memory,
so that is impractical to run program just on a single system. Sometimes the problem
is not memory but processor. Even if the program can run in single node system, it
will be very time consuming. Using parallel computing seems to be the right

solution.

In the simplest sense, parallel computing is the simultaneous use of multiple
computing resources to solve a computational problem easier and faster. Using
parallel computers through networks connects multiple stand-alone computers to
make larger parallel computer clusters to solve larger complex problems and provide

concurrency.

Parallel computers can be classified according to the number of instruction streams
and number of data streams into four categories. Single-instruction single-data
(SISD), single-Instruction multiple-data (SIMD), multiple-instruction single-data
(MISD) and multiple-instruction single-data (MIMD). Various parallel solutions
make three different types of parallelism: Shared memory systems, Distributed
systems. Shared memory systems with multiple processing units are attached to a
single memory (Figure 2.19). Distributed systems consist of many computer units
(Figure 2.20), each with its own processing units and physical memory that are
connected to fast connection networks. Regarding the three types of parallelism,
there are three different approaches for parallel programming: threads model for
shared memory systems, message passing model for distributed memory system. In
this project we used distributed memory topology to use memory resources in all
shared nodes to increase scale of memory and ability of fast computing during long

lasting process on big data set. Besides, using the processing power of several
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machines simultaneously increases the overall processing power and reduces the
processing time. These are the biggest advantages of using parallel processing

systems that we use in this project.

In Ubuntu operating system NFS (Network File Sharing) service, all the clients can
exchange and access the input data and source code of program to execute it in their
own system in parallel. For example, if we have two laptops, connection between
these two systems is possible through the connection to the modem-router. Now it is
possible to share storage of one laptop (master node) with other laptop (client node)
by NFS service. For this purpose, cloud folder is created in master node and is
mounted in both laptops to access files through network and it consider as a shared
folder. This folder physically used storage of master node but it is logically

accessible by clients.

NFS Configuration:

On master node:
Sudo apt-get install nfs-kernel-server /*NFS server package installation
Mkdir cloud [*create cloud folder

Sudo vi /etc/exports /*cloud folder permanently shared
/home/azi/cloud * (rw,sync,no_root squash,no_subtree check)

Sudo exportfs —a
Sudo service nfs-kernel-server restart

On client nodes:
sudo apt-get install nfs-common I* NFS client package installation
mkdir cloud I* create cloud folder
sudo mount -t nfs master:/home/azi/cloud ~/cloud

/*mount cloud folder of master on cloud folder in client
sudo service nfs-kernel-server restart [*restart nfs service
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2.7 Client-server architecture

Client-server architecture [16] is a network computing model where one of the
systems has a role of server and the rest systems connected to a central server over
network. The server is responsible to produce services for clients through network.
These services can include application access, storage; file sharing, processors and
memory access. The clients’ requests specific services or resources and the server
can manage several clients’ requests simultaneously and respond to their needs by

preparing requested resources.

Client-server configuration needs to prepare network connection between at least
three systems. Each of these servers are dedicated to static IP address and should be

identified to all systems on the network by adding IP address and alias names to the

hosts file.
Sudo apt install net-tools /* installation of network tools
Sudo vi /etc/hosts /[* assign alias names to the IPs
192.168.0.10 master asus
192.168.0.20 client sony
FTP Configuration:
sudo apt install vsftpd [*FTP package installation
vi /etc/ftp
sudo vi /etc/vsftpd.conf [*set FTP configuration parameters
anonymous_enable=NO
local_enable=YES
write_enable=YES
sudo service vsftpd restart [* restart FTP service
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2.8 Message passing interface (MPI)

The message passing interface (MPI) [17] is a library used to convey messages in
parallel programming. Data transfer from the address space of one process to the
other process through cooperative operations on each process. As it is known,
processors can be local, that means they are housed in a single system or they operate
in distributed systems. MPI is designed to be used in distributed systems. Regarding
the usage of memory, MPI runs on different hardware platforms, including shared

memory, distributed memory and hybrid memory.

In Figure 2.20, Distributed memory [18] is assigned to the system, which has

multiprocessor, and each processor has his own memory separately.

Figure 2.20: Distributed memory model [17]

Figure 2.21 shows shared memory [19] model. In this model, memory may be

accessed by multiple program simultaneously and use by multi-processors.

Figure 2.21: Shared memory model [19]
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Hybrid memory model is a multiple processors use multiple memories. As you can

see in Figure 2.22 four processors use each memory.

* | network | >

Figure 2.22: Hybrid memory model [17]

One of the major differences between these models are the data transfer cost. In
shared memory systems, the time required to transfer data is the strong point of this
method, as the inter-connection is much faster than distributed memory. However,
the number of processors that can be used in parallel in distributed memory is much
higher (more than eight) than the previous topology. Therefore, we used the second
method of distributed memory in our project. This structure can reduce execution
time. The communication speed in distributed memory depends on the internal
network topology and the geographical distance of the communicated systems. The
total execution time is the sum of computation and communication time. MPI is a
middleware tool which runs tasks on separate processors using local memory and
communicating with each other over a network. It helps us to run tasks in parallel,
using more resources in parallel and save execution time.

2.9 MPI in Python

Python is a popular language for programming and excellent tool for developing
parallel code today. Anaconda Distribution is an open source Python programming
language distribution that can be used for large-scale data processing and has many

tools and packages for data mining programming and machine learning purposes.
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Parallel programming on distributed memory machines are using MPI in Python by
mpi4py package. Being array-based in Python is an excellent advantage for
developing parallel codes in small and medium size programs besides it is largely
object oriented [20]. MS-MPI SDK is installed and configured in Ubuntu operating
system in both laptops. For simplicity of later usage, it is recommended to add the
execution path of MPI to the PATH environment variable in all nodes so easily can
run mpirun command from any path you are in Ubuntu console command prompt.
For simply run an MPI application, you can create the execution file or the Python
version of your program and run mpirun command through console.it will run n
copies of execution file in the run-time environment in a round-robin fashion by CPU
slot. There are two purposes of running this command. One is running N copies of
program in the current run-time environment and distributes them on the processors
in the same system and the other way is to run N copies on different processors from

other systems.

MPI Configuration:
Gcc (the C compiler on Ubuntu 18.04) installation prerequisite for openmpi:

https://linuxconfig.org/how-to-install-gcc-the-c-compiler-on-ubuntu-18-04-bionic-beaver-linux

sudo apt install gcc /* gcc package installation
sudo apt install build-essential /* package installation
gcc --version [* gcc version checking
libopenmpi2:

/* openmpi packages installation
sudo apt-get install openmpi-bin openmpi-common openssh-client openssh-
server libopenmpi2 libopenmpi-dev

mpidpy package installation in Anaconda Python V3 & PIP:

conda install mpi [* mpi package installation
conda install -c anaconda mpidpy  /* mpidpy package installation
sudo apt install python-pip [* package installation

pip install mpidpy
conda install --name py3 pandas
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Mpidpy allow programmers to run multiple processor computing systems. Mpirun
command specifies the number of cores available and use in particular cluster. This
library assigns unique rank to each processor and manages tasks by their ranks. Point
to point communication prepares transmission process through processors by sending
message from one side and receiving from the other processor. Each of the sending
messages is labeled by tags, so we can trace them by these tags. MPI allow
controlling in overlapping on communications by using non-blocking technique.
Non-blocking always tests by completion function to be sure the requested operation
has been completed. Using isend and ireceive command helps to implement non-

blocking method.

For running n copies of program in multi-processor in parallel on single-node just
need to run mpirun command like below format. As an example it will assign 8 copy
of hello.py program through current path to 8 processors. (as we use Python source
code of our application in Python version 3, it should be coded in the executable
command otherwise parser is searching on Python version 2)
mpirun —np 8 python3 ./hello.py

The following command can be used to run the same program on parallel servers
through network. The main server runs on 6 processors and the client runs on two
processors, for a total of 8 copies of the program on 8 processors concurrently.

mpirun —n 8 —H master:6,client:2 python3 ./hello.py

2.10 Problem definition

The problems of the study are as follows:

1. Design DELS using:
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1.1. Partition methods: disjoint partitions (D), disjoint Bags (DB), small
bags (SB), no-replication small bags (NRSB) and label-aware distributed
ensemble learning (LADEL);

1.2. Classification and regression tree (CART) and multilayer perceptron
(MLP) classifiers

1.3. Message Processing Interface (MPI) and the mpidpy package in
Python V3 in Ubuntu TLS in single-node (not shared structure) and we
implemented multi-node (client-server architecture) using Secure Shell
(SSH) for secure data transmission over the LAN.

2. Test DELS on a network of two laptops with four and eight processors, with
network connection prepared through the TP-Link wireless modem router.

3. Conduct experiments on DELS to evaluate the accuracy of various methods of
data partitioning dependence on a single-node or multi-node systems, as well as
the required runtime to implement them. The accuracy dependence on two
classifiers CART and MLP.

4. For experiments on DELS, use KDD Cup 99 dataset [23] for comparison on
Bagging-like methods and HIGGS dataset [15] for training and scoring time

experiments.
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Chapter 3

DESIGN, IMPLEMENTATION AND EXAMINATION OF

DELS

In this chapter, we describe the design, implementation, and testing of DELS using
partitioning methods: disjoint partitions (D), disjoint Bags (DB), small bags (SB), No
Replication small bags (NRSB), and label-aware distributed ensemble learning
(LADEL). The input dataset, the required number of partitions, and classification
algorithm are three inputs to DELS. Two algorithms of classification, tree
classification and regression (CART) and multilayer perceptron (MLP) are used in
the system. DELS distributes the partitioned data sets and trains them in parallel to
create models, and the trained models are eventually gathered to produce the final
model. Distributed learning method allows Big Data management. The final model
maintains the prediction accuracy and predicts the class label of new data through

single-node or multi-node structure.

In this chapter, DELS design and architecture (Section 3.1), design and
implementation of Input/ Output subsystem (Section 3.2), partitioning subsystem
including LADEL model (Section 3.3), training subsystem (Section 3.4), testing
subsystem (Section 3.5) and testing DELS in single-node and multi-node classifier
(Section 3.6) are considered. In testing, first, focus is made on checking accuracy of
partitioning methods (D/DB/SB/NRSB) and comparing these methods accuracy with

CART classification algorithm and multi-layer perceptron, MLP classification
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algorithm. These tests are made in single-node and multi-node with different number
of partitions. Second, checking the prediction test-score of partitioning methods
(D/DB/SB/NRSB) on multi-node with MLP algorithm. Finally, checking the
accuracy and prediction test-score with LADEL in multi-node and compare the test-

score and execution time on MLP and CART.
3.1. DELS design and architecture
DELS system architecture is represented in Figure 3.1. It has the following parts:

Input/output Subsystem (I0S), Task partitioning, partitioning Subsystem, Training

Subsystems, and Testing Subsystem.
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Figure 3.1: DELS architecture
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DELS has three inputs, the input dataset, number of partitions and the classification
algorithm. It works on input dataset which is in big size to divide data into smaller
sub partitions by partitioning methods such as disjoint partitions (D), disjoint Bags
(DB), small bags (SB), No Replication small bags (NRSB) and Label aware
distributed ensemble learning (LADEL). The number of data partitions is determined
by number of partitions. Parallel tasks are generated, distributed, and executed by
MPI to perform parallel processing on each of these data sub partitions. Parallel tasks
implement in single-node (not shared structure) and multi-node (Client-server
architecture). In this experiment, CART or MLP classification algorithms are used.
In DELS, learning process is performed on each of these separate tasks by CART
and MLP classifiers. Input dataset is introduced in filename variable [Appendix
A.3.1, Line 55]. The format of input dataset is comma separated text file which can
be one of .csv or .txt format. A dataset consists of a series of records with
multivariate features. Each record is defined as a series of attributes with comma
separators, and the attributes value are integers. The KDD Cup 1999 is selected
dataset for testing Bagging-like methods and HIGGS dataset is selected for testing
training and scoring time in DELS. The KDD Cup dataset has a collection of records
with 44 columns, and 44th column is considered as class label (full scheme is given
in Appendix A.1.1, line 62-70, “names” array). In HIGGS dataset, the first 21
features (columns 2-22) are kinematic properties measured by the particle detectors
in the accelerator and The first column is class column(full scheme is given in
Appendix A.3.1, line 57-75, “names” array). Since the program is done to compare
accuracy in the number of data partitions, the number of data partitions is stored in
the array and processed in parallel. The number of partitions is kept in Partno array

[Appendix A.3.1, Line 56].
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The 10S subsystem [Appendix A.3.2], prepares training dataset and testing dataset
from input dataset as an output of 10S. Training dataset is used in partitioning
subsystem, and testing dataset is used in testing subsystem. These datasets

preparation will be discussed in Subsection 3.2 in detail.

After preparing the training and testing datasets, the training datasets is used for
learning. As mentioned in chapter 2, training to use a single big size dataset is
impractical, as it does not fit in memory, so using Bagging-like approach to train the
ensemble classifiers on disjoint partitions separate from the training dataset that can
fit in memory is practical. Therefore if these partitions combined, will have the size
of the original training dataset. This way all data is used in training to yield a better
accuracy than if sampled. To address this challenge, we implement the Bagging-like
approach to deliver distributed training to their classifier ensembles. Training data
split into disjoint partitions by Bagging-like methods and then distributed and
executed across several tasks, which is implemented by MPI. MPI is responsible for
the simultaneous execution of tasks and distributing them across system(s)
processors. Tasks can be distributed in a local system with multiple processors,
single nodes, or in multiple processors belonging to multiple systems, multiple

nodes.

In this experiment for distributing tasks through multi-node architecture, due to the
lack of laboratory systems, we used two laptops with 8 and 4 processors. Since one
of the systems has higher processing power, so we put two thirds of the parallel
processing on the processors of this system and the other third is processed by
another system. MPI assigns a unique rank to each of these tasks to distribute these

tasks in parallel. We consider rank = 0 as “server task” and assign this task to the first
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power laptop called “master”. In addition, master server executes two-thirds of the
parallel tasks same as client systems tasks. The second laptop, called “client”, is
responsible for performing one-third of the remaining tasks. For single-node

architecture, all tasks will distribute in the processors of one laptop (usually master).

In Task partitioning [Appendix A.3.3, A.3.8], the number of master and client system
tasks is calculated. MN shows number of master tasks and CN shows number of
client tasks. As you can consider in the Figure 3.1, it has three branches. “Server

task” is on the left, “master task™ is in middle and “client task™ is on the right.

“Server task” (rank = 0) is included:

Data partitioning- partition the training dataset

transfer the CN number of dataset partition(DP) to the client laptop

train the first dataset partition(DPQ), create model 0, waiting to receive all

models prepared in other parallel tasks

and finally, make prediction on testing dataset
“Master task” (0 < rank < MN) is included:

- train the dataset partitions with the rank number of 1 to MN ( DP1.. MN )
“Client task” ( MN+1 < rank < N ) is included:

- train the DP with the rank number of MN+1 to N ( DPMN+1 .. N ).

Partitioning subsystem [Appendix A.3.4] are used two inputs: training dataset and
the number of partitions. Training dataset is divided into Partno smaller subset
partitions. Each dataset partition (DP) is sent to a different task prepared by MPI for
parallel processing. This stage of DELS is called “preprocessing”. Detail will be
discussed in Subsection 3.3. In Training Subsystem [Appendix A.3.5, A.3.9, A.3.11],
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a sequential classification algorithm is executed on each DP as training dataset in
parallel to produce mathematical models, or classifiers. The number of classifiers is
equal to the number of partitions determined in Partno array. In Testing Subsystem
[Appendix A.3.6], the testing dataset, prepared in 10S and the prediction models
from training subsystem are used as inputs. In this Subsystem, results of the models
are joined by majority vote to select the final prediction. In the following, the

implementation of DELS subsystems is described separately.
3.2 Design and implementation of 10S

Figure 3.2 shows 10S starting with three inputs: data set, classification algorithm and
desired parallel level or number of partitions. We consider the parallel level is in 2, 4,
6, 8, 10 and 12 processes. In machine learning techniques, input data needs to be split
into two sections. One as a training part (usually 75%) and the second part is
considered as testing part (usually 25%). Records are selected randomly. We
consider two approaches to handle input data. One is consider as Bagging-Like
methods (D, DB, SB and NRSB [Appendix A.3.2, Lines 76-94] and the other in

LADEL format [Appendix A.4.2, Lines 81-137].
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Figure 3.2: Input/output subsystem (10S)

LADEL suggested us: all the labels should be in training dataset. To do this, records
with the same class label are grouped and then stored in separate CSV files
[Appendix A.4.2, Lines 81-97]. As the input dataset is in large size, it’s ok to
consider the 75% of input dataset records as training dataset and the rest 25% as
testing dataset (training: testing ratio 75:25), but with all class labels included. We
keep 75% of the records of each of these files in a separate file and the remaining
25% in another separate file (dataset division). Record selection is done randomly
[Appendix A.4.2, Lines 106-123]. Next step, all files with 75% of label 1-M dataset
are combined together for making LADEL training dataset (training aggregation) and
all files with 25% of label 1-M dataset are combined together for making LADEL

testing dataset (testing aggregation) [Appendix A.4.2, Lines 124-137]. Now we are
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sure all the class labels are included in both data sets in the same ratio. LADEL
training dataset is input for the next subsystem, partitioning subsystem and LADEL

testing dataset is input for the testing subsystem.

In Bagging-like method, input dataset records are randomly divided into training

dataset and testing dataset in a ratio of 75:25. [Appendix A.3.2, Lines 76-94].
3.3 Design and implementation of partitioning subsystem

In this stage of DELS Process, the proper size inputs, which fit to the memory size of
the system, is prepared. We use five different data division methods: 1-D as disjoint
partition, 2-DB as disjoint bagging, 3-SB as small bags, and 4-NRSB as No
Replication small bags and 5-LADEL as label_aware distributed ensemble learning.

Figure 3.3 shows steps of partitioning subsystem for Bagging-like and LADEL.
Training dataset is input of this subsystem. MPI is a utility that is responsible for
performing simultaneous tasks. These tasks are distinguished by separate ranks. As it
mentioned before, if the task rank is zero, it means the first executable task and it
consider as the master task. This first task is responsible for data partitioning. The
other ranks assign to the other parallel tasks for training purpose. In this subsystem
(109), first should decide about dataset partitioning method between Bagging-like or

LADEL methods.
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Figure 3.3: Partitioning subsystem

For Bagging-like approach, first main task open and read the training dataset
[Appendix A.3.4]. Then partitioning in D/DB/SB/NRSB methods will do. Dataset
segmentation is done in disjoint partitioning (D) [Appendix A.3.4, Lines 154-186],
small bags (SB) [Appendix A.3.4, Lines 187-220], disjoint Bagging (DB) [Appendix
A.3.4, Lines 221-251] and No replication small bags (NRSB) [Appendix A.3.4,
Lines 252-289] in source code by using MLP classifier. All these process happened
in rank=0 (first parallel task), other parallel tasks just wait until the first main task
finished process. Number of segmentation is handled by the partno array. It has 2, 4,
6, 8, 10 and 12 value. After the data partitioning, a message is sent to the other tasks
stating that the data is ready for further processing by other processors. The split and
transfer time is recorded [Appendix A.3.4, Lines 290-311]. Details of these

implementing data segmentation are described in chapter 2, section 2.3.
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For LADEL, M is a number of labels in class column in input dataset and N is the
number of data division, which keeps in the partno array. First, all the records of the
same label in training dataset will separate and save in the CSV files [Appendix
A.4.3, Lines 138-169] then each of these files divide into N and finally all the same
division of label 1-M aggregate together [Appendix A.4.3, Lines 169-182]. Final

datasets for sure, have all the labels in equal ratio.
3.4 Design and implementation of training subsystem

In this subsystem, there are two classifier approaches for extracting model. One is
CART and the other is MLP classifier in training subsystem, Figure 3.4. All
segmented data begins to be learned in parallel by separate processors. As you know
in this experiment, there are two approaches. First, accuracy checking and second,

prediction checking.

Training section for accuracy checking is done in disjoint datasets (D) by MLP
[Appendix A.1.3, Lines 238-275], in SB [Appendix A.1.3, Lines 276-310], in NRSB
[Appendix A.1.3, Lines 311-346], in DB [Appendix A.1.3, Lines 347-380]. In this
part, disjoint training dataset is read and using K-fold technique by 10-fold in MLP
classifier. The mean accuracy of these 10 folds is extracted and saves in arrays
(meanD, meanDB, meanSB and meanNRSB). Standard deviation and standard error
of mean (SEM) are also save in a different arrays (stdD and semD) for future
comparison [Appendix A.1.3, Lines 260-264]. First task(rank=0) waits to receive a
signal from other tasks that the training has been completed, and then stores all the
accuracy and error results in an array [Appendix A.1.4]. All the results will save in

Excel file [Appendix A.1.5] and plot them [Appendix A.1.6]. In each matplots, you
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can see the accuracy of each DSS method plus and minus standard error of mean

(SEM) in each number of dataset partitions.
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Training section for prediction checking is done in [Appendix A.3.5, A.3.9, A.3.10],
same as training section for accuracy checking, with the difference that the output of

this subset is a learning model [Appendix A.3.5, Line 329].

Training dataset is done in 3 different rank type: First task by rank=0 is done in first
laptop (ASUS VivoBook S14 with four cores, 1.8 GHz, 1992 MHz, 8 Logical
Processor(s), 8 GB RAM, Page File Space 2.5 GB and 256 GB SSD Disk) as role of

server [Appendix A.3.5]. Second, the two-third of total tasks in ASUS laptop as a
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role of client [Appendix A.3.11]. The rest one-third of tasks in second laptop
(Desktop SONY VAIO with two cores ,2.4 GHz, 2400 MHz, 4 Logical Processors, 4
GB RAM, Page File Space 1.88GB and 500 GB disk space) is coded [Appendix
A.3.9]. Training subsystem for LADEL also has the same subsections in Appendix

A4,
3.5 Design and implementation of testing subsystem

In this section of DELS architecture, the results of learning N input datasets are N
models, Figure 3.5. The entire extracted model should gather in the server for
majorityvoting decision-making. In majority voting stage, the prediction accuracy of
the entire extracted models is compared and the highest rank will be selected for the
final step in the application. As we use NFS for using shared storage, there is
CLOUD folder as NFS file system. Both laptops can access to this area of storage in
server. At the end of learning process, models will save in CLOUD folder, so in this
phase no need to transfer back again the results by FTP to the server system. MPI is
responsible to send a signal to the server after successful saving models in shared
storage from all clients. The testing subsystem will do major voting and the results is
one model. This model is used to test the testing dataset and extracting prediction
test-score. Majority voting in multi-node by MLP for Bagging-like ensembles is in

[Appendix A.3.6, Lines 420-480] and in LADEL [Appendix A.4.6, Lines 265-298].
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End

Figure 3.5: Teéting subsystem

Next step is test the testing dataset by final model extracted in voting phase
[Appendix A.3.6, Lines 482-551] and [Appendix A.4.6, Lines 299-325] for LADEL.
Final step is to save some values in an Excel format file [Appendix A.3.7, A.4.7].
These values are: 1- order of dataset, which can be random for Bagging-like
ensembles and sorted in LADEL format for labels, ordered. 2- number of node

usage, which is equal to the number of disjoint

Partitions, parallelization level and used processors. 3- Partition number. 4- Bagging-
like division method. 5- used classifier (MLP/CART). 6- Cross validation score [21]
in by final model. 7- Test-score in testing dataset by final model. 8- Run-time for
disjoint partition. 9- Run-time for transferring data through server to client. 10-
Training time. 11- Voting time. You can see the results in excel output files in

[Appendix A.I-L].
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3.6 Testing DELS

For testing the DELS system, first, we focus on comparison accuracy on Bagging-
like methods by CART and MLP classifier in single and multi-node architecture, and
then we focus on comparison test-score and execution time on Bagging-like methods
and LADEL in multi-node architecture. Therefore, in general, the program runs in
two ways, single-node and multi-node.

3.6.1 Accuracy comparison for Bagging-like partitioning method

For testing this system, first we evaluate the accuracy of the Bagging-like methods
(D/DB/SB/NRSB) work in distributed single-node classification algorithms and
second we compare the accuracy of the same approach in distributed multi-node
classification algorithms. Each of these tests is experienced with one of the decision
tree and neural network classification algorithms. CART is selected from decision
tree algorithm, and MLP is selected from neural network algorithm. You can find
Python source code to compare the accuracy by MLP for Bagging-like methods in
Appendix A.1 and by the CART algorithm in Appendix A.2. Both of these codes are
executed in single and multiple systems as follows.

3.6.1.1 Accuracy in single-node

First approach of implementation is to execute program in single node architecture.
The program run in one system and distribute the parallel tasks in the resources of
one node. As a proof-of-concept distributed tasks prepared by MPI. MPI manage the
task distribution and the processors each task needed. We can specify which system
processors each task will use and how many processors each system will start with.
First, we set the value in partno to the desired number of dataset partition (DP).
Since each DP is assigned a task for further processes, so the partno value and the

number of processors we use in the MPI command should be equal. We set the
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partno into 2, 4, 6, 8, 10 and 12. And the input dataset is KDD Cup 99 dataset which
set in the filename variable [Appendix A.1, Line 51]. For example, we start test for
the partno equal to two. Using the following command, the data is divided into two
parts and assigned to two separate tasks with two processors in parallel.
mpirun —np 2 python3 source-code.py

MPI assigns a separate rank to each of these tasks, and each rank considers its own
dataset partition. All tasks start running simultaneously and MPI assign separate
resources for each of them in same system. Figure 3.6 shows the program execution

in the terminal and program outputs.

TR~

File Edit W rch Terminal Tabs Help

azi@asuslaptop: ~ ® azi@asuslaptop: ~/cloud x azi@asuslaptop: ~/cloud =

1 DisJointPartitionSetRecord21 is created
**%%%* USING Disjoint Bags(DB) METHOD *#*#**
11 SBrecord21.csv is created
#**%%%* USING No Replication Small Bags(NRSB) METHOD ##*#*#*%

1 DBRecord2l.csv is created

rank is: ©

1 NRSBrecord2l.csv is created

rank is: 1

**%** USING Disjoint Partition(D) METHOD **%*%*

Accuracy Bagged Decision Trees on Processor @ : 8.973605

meanDB on 2-D Disjoint Partition(D) on Processor 8: [0.9736045001148945]
stdDB on 2-D Disjoint Partition(D) on Processor 0: [0.004949548121938949]
semDB on 2-D Disjoint Partition(D) on Processor 0: [0.0015651845453935895]
**%%%* USING Disjoint Partition(D) METHOD *%%*%*

Accuracy Bagged Decision Trees on Processor 1 : 0.971557

meanDB on 2-D Disjoint Partition(D) on Processor 1: [0.9715572499804044]
stdDB on 2-D Disjoint Partition(D) on Processor 1: [0.0031652963581274033]
semDB on 2-D Disjoint Partition(D) on Processor 1: [0.0018009545961118618]
**%%%* USING Small Bags(SB) METHOD *#%*%*

Accuracy Bagged Decision Trees on Processor @ : 8.971763

meanDB on 2-D Small Bags(SB) on Processor 0: [0.9717626708556652]

stdDB on 2-D Small Bags(SB) on Processor ©: [0.004135189749318319]

semDB on 2-D Small Bags(SB) on Processor 0: [0.00130766181648266]

Figure 3.6: Program execution in terminal, single-node

The printed output in terminal is included:

1- the name of each disjoint partition dataset

53



2- rank number of each task
3- mean accuracy (meanD/ meanDB/ meanSB/ meanNRSB), standard
deviation(stdD/ stdDB/ stdSB/ stdNRSB) and standard error of mean (semD/

semDB/ semSB/ semNRSB) for each of methods.

As shown in the Figure 3.6, each of these results is executed and printed from

separate processors.

[] System Monitor ~

CPU History

60 seconds 50 1] 0 20 10 [}
[ cPu1 0.8% [ cPuz 4.9% [ cPu3 100.0% [ CPU4 3.0%
[ crus 1.0% [ cPus 100.0%  [IEM CPU7 0.0% [ crus 2.9%

Memory and Swap History

0 El}

60 seconds 50 40 £l 20 10

Memory Swap
4.7 GiB (61.6%) of 7.6 GiB @ .
Cache 2.8 GiB 0 bytes (0.0%) of 7.6 GiB.

Figure 3.7: Resource monitoring in master system with 8 processors

Figure 3.7 illustrates the resource monitoring during program execution. It shows
CPU3 and CPU6 working, and each of these resources is assigned to one task. The
testing of other number of partitions is done as in the above method, with the
difference that when executing command mpirun, we use np parameter (number of
processors), which is the same as PARTNO value in programs. These tests are
repeated for values 2, 4, 6, 8, 10, 12 as well as Appendix A.2 for CART
classification algorithm. The tabular output results of these tests are shown in

Appendices B and C. Appendices F and G contain the plot output of these tests.
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3.6.1.2 Accuracy in multi-node architecture

Second approach of implementation is to execute program in multi node architecture.
The program runs in more than one system and distributes the parallel tasks in the
resources of multiple nodes. We first make sure that the physical network
connections are established. We test the setting of 1Ps and netmask interface on the
systems by ifconfig command to be sure about LAN connections are established and
have correct configuration. Command ping is used to test the reachability of a host
on an IP network. Shared storage should check on both systems. The contents of the
CLOUD and CLOUDCL folders on both systems must be visible. Input dataset and
application source file are stored in the CLOUD folder. This folder also stores
partitioned data sets, final model files, Excel output files, and plots. CLOUDC1
folder stores models generated by tasks other than the “Master task”. Both of these
folders are shared in all nodes. For checking validity of these folders in shared

architecture, mount command can be used (Section 2.6).

Now we can run program in multi-node by using the following command.

mpirun —n 2 —H master:1,client:1 python3 source-code.py
MPI assigns a separate rank to each of these tasks same as single-node way, but
running each task in different system and using resources of multi systems in
parallel. master is the alias name of ASUS laptop and client is the alias name of the
SONY laptop and the number in front of these aliases is the number of processor(s)
intend to use. Figure 3.8, illustrate the execution of above command in terminal and
the outputs of each tasks in two nodes. This command run program by 2 processors,

which each one of them executes in one node. One task in master node and the other
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one in client

node. The tabular output results of these tests are shown in Appendices

D and E. Appendices H and | contain the plot output of these tests.

Activities ] Terminal ¥ Tue 20:31®

)

S PoMma

azi@asuslaptop: ~/clo
File Edit View Search Terminal Tabs Help
azi@asuslapto azi@asuslaptop: ~/cloud

azigasuslaptop ud$ mpirun -n 2 -H master:1,client:1 python3 ./mpi-singlenode-classifier-vs.py
i n number is : 2
t(s) are used in Client and 1 in Master Node
1589906921.486529
****¥x%  YSING Disjoint Partition(D) METHOD For 2 partitions **xkx*x
e e e s o o e o e o e ok e o e e e
Totaly © seconds for Disjeint Partitioning of data in Master node
R NG Small Bags(SB) METHOD FOr 2 partitions **tsxsssxkss
partition number is : 2
e e e s e e o e o e ok e o e ke e
Totaly © second for Small Bags data in Master node
***** USING Disjoint Bags(DB) METHOD For 2 partitions *¥xssksssxx
Totaly @ second for Small Bags data in Master node
¥*#*%* USING No Replication Small Bags(MRSB) METHOD For 2 partitions #¥***%
Totaly © second for Small Bags data in Master node
Total Time for Partitioning is : 1.2565994262695312
Bagging Files are ready to transfer to Client(s) ...
bagging file is ready to transfer
Bagging Transformation from processor 1 is started.
File is Transfered
Model is received from clients
Mean Results of voting in D is .9442431326709526
ensembleD is : [8.92462104 8.87960257 ©.95908825 0.94418469 0.75131562 ©.99941555
1. 0.9 31093]
Mean Results of voting in 442431326709526
ensembleDB is : [0.92402104 0.87 257 0.95908825 0.94418469 0.75131502 0.99941555
e i 6.9 6.98831093]
Mean Results of voting in 1 0.9442431326709526
ensembleSB is : . 87960257 0.95908825 0.94418469 0.75131502 0.99941555
. 1 . 98831093]
i .9442431326709526
is : [0.92462104 0.8796 7 ©.95908825 0.94418469 0.75131502 0.99941555
1. 0.99649328 0.98831093]
D is: 1589907887.9560523
ccuracy of Disjoint partitien(D) is : 0.9884703338288958
edicted result of D method is produced.
ccuracy of Small Bages(SB) is : ©.98084703338288958
e Predicted result of method is produced.
ccuracy of No Replication Small Bags(NRSB) is : ©.9804783338288958
e Predicted result of NRSB method is produced.
ccuracy of Disjoint Bags(DB) is : 0.9804703338288958
The Predicted result of DB method is produced.
TFTPDcOA [('Node®', ©), ('Nodel', 4.558545172214568)]
Tmd1Dc®A [('Node®', ©.6186752319335938), ('Nodel', ©.865351676948918)]
iis : @
TFTPDCOA[1] ('Noded', ©)
Tmd1DcOA[i] ('Node®', ©.6186752319335938)
iis : 1
TFTPDcOA[1] ('Model', 4.558545172214568)
TmdlDcOA[1] ('Nodel', ©.865351676940918)
azig < moi =

hon mp

"Fig'ijirle 3.8: "F'>r<')g'ra"'ecu'in' in termihl, multi-node

Figure 3.9 shows the resource monitoring in second node when we use command

mpirun —n 12 —H master:8,client:4 python3 source-code.py. In this command, MPI

starts 12 concurrent tasks, with using all the processors in first and second laptop. As

you can see in Figure 3.11, all four CPUs in second node and local network are busy.
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B L A
Figure 3.9: Resource monitoring in client system with 4 processors

3.6.2 Prediction and test-score and runtime comparison for Bagging-like
partitioning method and LADEL algorithm

First, to test the DELS system in Bagging-like methods by MLP work on distributing
multi-node classification algorithms, we execute given in the Appendix A.3 program
using the mpirun command, same as previous program in multi-node system. The

tabular output results are shown in Appendix J.

Second we evaluate the test-score and runtime of the LADEL method work on
distributing multi-node classification algorithms by MLP [Appendix A.4] and CART
[Appendix A.5] and the results of that program execution are in Appendix K and L.

The summary of achievements on this experiment are, in Bagging-like partitioning
method as the number of data partitioning increases, the degree of accuracy is slowly
declining and the error rate increases in both single and multi-node systems. In
LADEL model, prediction of results in MLP is fluctuating, but the trend of results
becomes closer to each other with increasing number of partitions in both classifiers
MLP and CART. For training time in ensemble classification, despite the increase in
the number of nodes, the time to learn and build the model should be distributed in
the systems and therefore have a downward trend. However, this time has an upward

trend. This trend has improved from Bagging-like method to LADEL dramatically.
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Chapter 4

EXPERIMENTS ON DELS

In this segment, we analyze three strategies for training classifier. The types of
grouping and stratified the data that have been introduced as Bagging-Like methods
in previous articles have been applied to input data and then a comparison between
two different types of learning algorithms, one of the well-known Decision Tree
algorithms called CART and other neural network type called multi-layer perceptron

or MLP is done.

We focus on evaluation the prediction accuracy and the standard deviation and
standard error of mean (SEM) of classifiers using a variety of approaches. The
duration of the training is also checked. Finally, the order of the input data is changed
using the LADEL method and the accuracy and error rate and learning time duration

are evaluated using Algorithms MLP and CART.

The first approach uses four disjoint partition methods to stratify large input dataset
into n smaller one and distribute them into different processors in single node as
parallel tasks. Implementation on this section is by Python-V3.7.4 (64-bit) on
Spyder-V3.3.6 and Microsoft MPI v9 with random data in single node. This dataset
is tested by two CART and MLP classifiers. The second approach uses an
implementation of the same tools but in network area on distributing data through
client-server topology. In our experimental test, we just use two laptops one has a
role of master and client both and the other as a client. The “client” is the name of
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machine you would like to do computation with and “master” is the name of main
computer, which expected to distribute the files to the other client systems. We use a
300Mb/s TP-Link wireless modem router for creating network between two laptops
through local area network (LAN). Both systems are run in Ubuntu 18.04 TLS with
up to 300 Mb/s network bandwidth connections through wired LAN. Again, these
tests are used random dataset records trained by CART and MLP classifiers. The
third approach uses the sorted dataset by classifications, which is included by all the
class labels in training dataset produced by LADEL method. This approach is trained
on distributed servers with both decision tree and neural network algorithms. We
choose classification and regression tree and multilayer perceptron technique as they
represent LADEL’s worst and best cases in terms of training time and predictive

accuracy in previous scientist’s researches.

In all machine learning techniques the entire of training data should be loaded into
ram memory to do the training, thus in large datasets which the size of in-memory
are not large enough to fit the data satisfactorily, dividing data and distributing them
into several machine and do learning in parallel is suggested and implemented in all

above introduced approaches.
4.1 Experimental setup

4.1.1 Environment setup

We use the laptop ASUS VivoBook S14, Ubuntu 18.04 LTS instances with four
cores (1.8 GHz, 1992 MHz, 8 Logical Processor(s)), 8 GB RAM, Page File Space
2.5 GB and 256 GB SSD Disk. Our second node is Desktop SONY VAIO, Ubuntu
18.04 LTS instances with two cores (2.4 GHz, 2400 MHz, 4 Logical Processors), 4

GB RAM, Page File Space 1.88GB and 500 GB disk space.
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4.1.2 Datasets

KDD Cup 99 dataset is used for the KDD Cup competition 1999. This is an annual
Data Mining and Knowledge Discovery Competition organized by ACM group. This
database contains data to be distinguished between the different kinds of connections
happening over the military network, whether is good (approved connection) or is a
bad (unwanted, intrusive connection). Extracting well model to predict the
connection type in the future communication is requested. The original dataset is
about 4GB of compressed data from seven weeks of network traffic. This was
processed into about five million connection records. Similarly, the two weeks of

test data yielded around two million connection records.

HIGGS dataset has been produced using Monte Carlo simulations. The first 21
features (columns 2-22) are kinematic properties measured by the particle detectors
in the accelerator. The last seven features are functions of the first 21 features; these
are high-level features derived by physicists to help discriminate between the two
classes. The first column is class column, containing labels 0 and 1. The original
dataset is about 4GB of compressed data. This was processed into about eleven
million records. In our network laboratory facility, we just used partial of original
dataset as bellow in Table 4.1. KDD Cup 1999 data set for Bagging-like method
[Appendix A.1.1-A.3.1] and HIGGS dataset for LADEL method [Appendix A.4.1-

A5.1].

Table 4. 1: Input data set attributes

Usage Data Set #number | #Attributes | #Class | Size
method of records labels | (MB)
Bagging- | KDD Cup

like 1999[24] 48,871 44 23 6.2
LADEL | HIGGS[15] | 1468 28 2 300KB
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4.2 Accuracy comparison for single-node classifier ensemble

In this analysis, we investigate the predictive accuracy and standard error on creating
model in four stratify types of input medium-size dataset into smaller size which fit
the memory in local computer and single-node architecture. Based on the tabular
results obtained in [Appendixes B-C] and plot results obtained in [Appendixes F-G]
, @ comparison can be made between the value of accuracy, standard deviation and
standard error of mean rate (SEM) in a medium-sized input dataset obtained (Table
4.1). This experimental comparison of the different approaches on two, four, six,
eight, ten and twelve disjoint partitions (D) and classifier groups formed using the
other three approaches (DB, SB, NRSB). We have chosen two classifiers on the
category of decision tree and neural network machine learning algorithms for
training these divided datasets to extract the models and accuracy of them. Codes
implementing these experiments are available in [Appendices A.1] for CART and

[Appendices A] for MLP.

As the first practical experience in Figure 4.1, the first data point represent the Mean
accuracy with tolerance of standard error of mean when the data is divided into 2
sections by disjoint partition method (D) and using MLP classification algorithm.
The rest of data points in plot show the same size division but in sequence DB, SB
and NRSB Bagging-like data division methods. Each of these datasets as a separate
task is assigned to the separate processors in standalone computer. You can consider
other plot results for 4, 6, 8 ,10 and 12 dataset divisions in Plot.G.2-6. In addition,

Tabular results in Table.C.2-6.
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Figure 4.1: Accuracy comparison on Bagging-like ensembles by MLP for 2 disjoint
partitions [Appendix G]

According to the plots in [Appendix G] using MLP, disjoint Bags (DB) is more
accurate than other dataset partitioning methods. In this sample of experiments, the
possibility of increased accuracy due to frequent records in each bag, as well as
increasing the number of records increases. Duplicate records are available in each
bag. AS in disjoint partition (D) method, there are no duplication records and only
records are randomly entered and tested in the input file, so it is less accurate than the

others are.

The same testing process is repeated by classification and regression tree (CART)
classifier and the tabular results are given in Appendix B and the comparison plots in
Appendix F. According to the plots in [Appendix F] using CART, Small Bag (SB) is
more accurate than most other methods. In this sample of experiments, the
probability of increasing accuracy increases due to the presence of duplicate records.
Duplicate records are available in each bag and throughout the bag, so assuming that
there is a possibility of increasing the number of records in a classification, it can be

claimed that this method is more accurate than other methods. And in method
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disjoint partition (D), there is no duplication in classifications and only records are

randomly entered and tested in the input file, so it is less accurate than others.

It is clear from the statistics, the overall efficiency of data partitioning in all four
methods decreases by increasing number of data divisions and processors. As the
data loaded into memory is incomplete, the partial data is allocated to parallel tasks
and processors, which reduces performance accuracy. In the same way, standard

error of mean (SEM) has been increased slightly.

In another point of view, the CART classifier from the decision tree is more efficient
than multilayer perceptron in all data division methods. Extracted accuracy in using
CART classifier is almost 0.998 but in MLP classifier is between 0.96-0.97. Also, if
we compare the amount of standard deviation obtained using these two classifiers
with the number of the same processors and different classifications, we conclude
that, by using MLP classifier, the standard deviation is less than the CART and the
standard error of mean (SEM) is a little bit higher than using CART classifier. These
changes are very small, about one thousandth or ten thousandths. Fortunately, as the
number of data partitions increases and the number of processors increases, CART
classification gives us even better accuracy. The standard error rate and the standard

deviation are less than MLP.

We did comparison of the time required to run the program in various data
partitioning by MLP or CART. Table 4.2 illustrates the time required to obtain
accuracy for Bagging-like methods by decision tree and neural network classifier in

different number of partitioning separately.
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Table 4.2: Run-time in single-node mode

Partitions? MLP CART
# Run-time Run-time
(sec) (sec)

2 4080 360
4 2520 300
6 1440 240
8 1140 180
10 840 120
12 780 120

We measure run-time by TO variable [Appendix A.1.2- Lines 220]. To measure the
duration of the program (TO), we subtract the start time of the program (Tbegin0)
[Appendix A.1.1- line 22] from the time of the end of the program (TendO)
[Appendix A.1.5- lines 450-452]. You can find raw data output in Appendix [B-C].
Table 4.2 illustrates neural network algorithm requires more time to learn, while the
decision tree returns the result faster. As you can see, the CART algorithm is about 6

to 11 times faster than the MLP algorithm for Bagging-like methods in single-node.

Since different parts perform learning operations in parallel, increasing the number
of partitions reduces the training time. This conclusion is true in both learning
algorithms.

4.3 Accuracy comparison for multi-node classifier ensemble

In this part of experiment, we run the program [Appendix A.1 and A.2] in multi
node. In this method, exactly same as single-node by increasing the number of
partitions, the accuracy rate is slowly reduced and the error rate and standard
deviation are increased. In all data partitioning methods, we see a decrease in
accuracy. You can refer to [Appendixes D-E] for tabular detailed results and

[Appendixes H-1] comparison plots.
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In multi-node system method, the input data partition into the small size datasets and
then distributed to different processors in various nodes through the network. The
results show that the accuracy reduces compared to the single-node method. This
reduction in accuracy is negligible for data tested (Table 4.1).We may also see a
greater decrease in predictable accuracy as the size of the input data and the number

of network nodes increase.

Comparing the dataset partitioning methods (Bagging-like) and the degree of
accuracy [Appendixes H-1], it can be said that Small Bag (SB) method still has the
highest level of accuracy in multi-node. After the SB method, the disjoint Bags (DB-

No replication across, Larger) method achieved the highest level of accuracy.

In terms of runtime, the same source code used for single-node use for multi-node,
except that mpirun command uses the client-server format. Thus, we measure run-
time by TO variable [Appendix A.1.2- Lines 220]. To measure the duration of the
program (T0), we subtract the start time of the program (Tbegin0) from the time of
the end of the program (Tend0). You can find raw data output for CART in
Appendix [H] and for MLP in [Appendix I]. As you illustrate in Table 4.3, in
addition to the fact that MLP algorithm is slower than the CART learning algorithm,
it saves time by increasing the number of disjoint partitions, but the runtime in multi-
node method is longer than in the single-node method. The time of distribution and
transfer of data from the server to the clients, add to the execution time of other parts,
so this slowness is understandable. The main result is by increasing the number of

partition datasets, the runtime decrease.
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Processor # Master: client column in Table 4.3 shows the number of processor we
assigned to the DELS system by mpirun. Mpirun command has a parameter to assign
the number of resources we need from master and clients. Since the ASUS, laptop
has a better processor with faster speeds in running the program and the number of
processors is twice of SONY laptop, so we assign 2/3 of the processor required by

ASUS and 1/3 of the SONY to the program.

Table 4.3: Run-time in multi-node mode

Partitions # Processor # MLP CART
Master: Client Runtime (sec) Runtime (sec)
2 1:1 6180 540
4 31 2280 240
6 4:2 1560 180
8 6:2 960 180
10 7:3 780 180
12 8:4 960 180

4.3.1 Prediction comparison for Bagging-like partitioning method

In machine learning a common problem is the tendency to memorize the data
classifiers have been trained on [24]. It can make the model looks great on the
training data but in actuality it has no ability to generalize on new data that is given.
To gain perspective into how the model is actually doing, we use a train/test split
(75%-25%). After data training and get the model, the model is tested on the test data
split to realise its performance in comparison with the training data and obtain the
test score. Cross-validation is any of various similar model validation techniques for
assessing how the results of a statistical analysis will generalize to test split of data
set. It is used for prediction, and we want to estimate how accurately a predictive

model will perform in practice.
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In this experiment, training dataset divide by Bagging-like dataset partitioning
methods in multi node systems to get the models. The test split of data is tested by
these models and we compare the test score of them [Appendix A.3]. The remarkable
point in this part of the test is that despite using four different methods of data
partitioning (D, DB, SB and NRSB) and observing a small amount of difference in
accuracy of them, by adding major-voting part in the server side, the final cross-
validation in all these methods is the same [Table 4.4] and we have a good score of
0.829 in cross-validation to evaluate the extraction model and a very high score of
0.955 for test-score to evaluate model on testing data. You can see the detail results

of the studies in Appendix J, Tables J.1-6.

Table 4.4: Accuracy of model in training dataset by Cross-valiadation value &
accuracy of model in testing dataset by test scores in Bagging-like methods by MLP

Partitions Cross- Test-

# validation score
2 0.829 0.955
4 0.829 0.955
6 0.829 0.955
8 0.829 0.955
10 0.829 0.955
12 0.829 0.955

To compare the runtime of the DELS system by MLP, the value of TO [Appendix
A.3.6, line 553] is measured. As you see in Table 4.5, the training time decreases as
the number of disjoint partitions increases, while the scoring time increases. There
are two reasons for the decrease in training time with the increase in the number of
partitions: 1) Fewer records are available in each partition to learn; 2) Parallel
processing is done on the parts. The reason for this increase in scoring time is related
to that as the number of models obtained increases, the duration of majority-voting

increases.
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Table 4.5: Training and scoring time in Bagging-like methods by MLP in multi-node
mode

Partitions Processor Training Scoring

# # time sime
Master:  (sec) (sec)
Client
2 1:1 17.92 1901
4 3:1 12.55 4099
6 4:2 12.22 5708
8 6:2 11.99 8279
10 7:3 11.90 10083
12 8:4 11.4 11709

4.4 Training time and scoring time comparison for LADEL

In this part of the experimental test, we review and compare training time and
scoring time for label-aware distributed ensemble learning (LADEL) method with
Khalifa’s article. The data set used in this part of the experimental test is HIGGS
with the specifications mentioned in Table 4.1 of the second row. The MLP
implementation code is available in [Appendix A.4] and the raw data outputs of this
test implementation code are available in [Table K]. The CART classification
algorithm repeats the same experimental test. The code is in [Appendix A.5] and

output tabular results in [Appendix L].

In this analyze, we investigate the effect of increasing number of dataset partitioning
in training time and scoring time for producing training data set in the format of
LADEL with all class labels include in each dataset partition, in the ratio of [1:1].
Ratio of [1:1] means, original balanced on HIGGS dataset. It has two class labels
with an equal records number belonging to each class. Disjoint partitioned datasets
train in distributed process on single node or multiple nodes. The training classifiers

gather in vote-based ensemble on the master node.
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We analyze the training time in 2-12 number of disjoint partitions in parallel
processing. As you can see in figure 4.2, adding number of training dataset leads to
increasing the training parallelization, which leads to a shorter training time. By
increasing number of parallel process, the graph has a downward trend, but having
12 ensemble classifiers graph shows slightly increase on the training time. The
results illustrates that the training time in CART is at most 3 times the MLP

algorithm, so using MLP is faster than CART.

HIGGS Datasets [2 Classes, ratio 1:1]
Training: 1101 records
Testing: 367 records
[Lower values are better]
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Figure 4.2: Ratio of the distributed ensemble training time to that of single-node
classifier

The results obtained in Khalifa’s article [3] presented in Figure 2.17 are in line with
the results of this study for training time. Since the hardware and software
specifications of the tools used are not the same, and the number of data samples
used in HIGGS dataset is not the same, we will leave the statistical comparison of the

results to future studies.

In terms of scoring time, as the number of ensemble classifiers increases, the more

time require to calculate the score the new data because the number of classifiers
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increases. In this test, testing data has 367 records. We analyze scoring time in
distributed classifiers in single-node (Figure 4.3) and in multi-node (Figure 4.4).

Both approaches show mostly an upward trend.

HIGGS Datasets [2 Classes, ratio 1:1]
Training: 1101 records
Testing: 367 records
[Lower values are better]
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Figure 4.3: Scoring time for single-node mode

HIGGS Datasets [2 Classes, ratio 1:1]
Training: 1101 records
Testing: 367 records
[Lower values are better]
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Figure 4.4: Scoring time for multi-node mode

Comparison of the results obtained versus known from the Khalifa’s article [3, Fig
10], the results in Figure 2.17 extracted 4.1% in 1000 nodes faster in distributed
ensemble classifier than single classifier by MLP in almost 7 million training records

in 2 classes, ratio 1:1 and our results are in maximum 12 processors in almost 1
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thousand training records in 2 classes by ratio 1:1 and it shows faster training time in

MLP than CART classifier.

In summery our experimental findings are in DELS for Bagging-like methods show
that as the number of data divisions increases the level of learning accuracy
decreases and Error rate increases in both single and multi-node structure with
parallel processing. Using CART, SB has almost better accuracy and D has almost
the less accuracy. With MLP, DB has almost better accuracy and D has less
accuracy. CART classification provides slightly better accuracy in single-node and
multi-node experiments than MLP. The main purpose of these practical experiments
is to reduce the training time. Training time decreases with increasing number of

training datasets.
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Chapter 5

CONCLUSION

This thesis considers a problem of minimizing training time of classifiers by
distributing data across distributed nodes. To study the problem, DELS with several
partitioning methods and classifiers was implemented and experiments were
conducted. Partitioning methods used are D, DB, SB, NRSB and DSS in LADEL
algorithm. The classifiers used are CART and MLP. The single-node and multi-node
architecture are used to distribute parallel tasks. MPI is used for distributing disjoint

partitions in parallel tasks.

DELS is implemented as a system with Input/ Output subsystem (10S), partitioning
subsystem including LADEL model, training subsystem and testing subsystem. The
tools were used are Ubuntu 18.04 LTS, Python-V3.7.4 (64bit) on Spyder-V3.3.6 and
Microsoft MPI v9. We just use two laptops one has a role of master and client both
and the other as a client. TP-Link wireless modem router with 300Mb/s speed are
used for creating network between two laptops. The KDD Cup 99 dataset for the
KDD Cup competition 1999 and HIGGS dataset that has been produced using Monte

Carlo simulations are used in DELS system.

We followed mainly [3] where LADEL system was proposed and [2] where
Bagging-like methods was proposed. Our experimental results obtained for DELS
using datasets, 1- KDD Cup 99 dataset for Bagging-like partitioning dataset methods
and, 2- HIGGS dataset that has been produced using Monte Carlo simulations for
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LADEL algorithm. The results obtained in [3], Figure 2.17 are in line with the results
of Figure 4.2 for training time. Both results show, adding number of training dataset
leads to increasing the training parallelization, which leads to a shorter training time.
Also the results of Figures 2.18 and 2.19 about scoring-time comply with the results
we obtained by DELS in Figures 4.3 4.4. As the number of ensemble classifiers
increases, the more time require to calculate the score the new data because the

number of classifiers increases.

To obtain experimental results, first, the implementation of Bagging-like methods, D,
DB, SB, and NRSB, respectively investigated in single-node with parallel processors
in the same system and then multi-node with parallel tasks in separate systems with
two learning algorithms CART and MLP. From the results obtained in this
experimental set, we concluded that in Bagging-like methods, the level of learning
accuracy decreases and the error rate increases by increasing number of data
divisions. These results are true for both single-node and multi-node methods with
parallel processing.SB and D are the best and worst dataset partitioning methods by
CART, respectively. In addition, for MLP classification algorithms, DB and D are
the best and worst dataset partitioning methods. Simultaneous execution of tasks in

distributed systems greatly reduces the run-time of the learning training data.

Data distribution by LADEL algorithm has been the next part of our experiment,
which groups’ data based on the uniform distribution of classifications in all files.
Although data preparation takes time, it can be neglected in terms of better
performance. The results of this section show that by an increase in the number of
distributed nodes, the learning and modeling time is distributed in the systems, so

less time is needed to get the results, but at the same time the scoring time increases.
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In general, the CART classifier from the decision tree is more efficient than MLP in
Bagging-like methods training split in single-node with accuracy of 0.998 but in
MLP, the accuracy is 0.96-0.97 and SB method has higher accuracy than other

methods. Cross validation in Bagging-like methods is 0.829 and test-score is 0.955.

The training time in a single-node with Bagging-like method and classification by
MLP is 4080 and 780 seconds for 2 and 12 partitions, respectively. A similar
experiment was performed by the CART algorithm with 360 and 120 seconds for 2
and 12 partitions. Runtime in multi-node by MLP is 6180 and 960 seconds for 2 and
12 disjoint partitions while by CART is 540 and 180 seconds for 2 and 12 disjoint

partitions.

Using LADEL algorithm in DELS significantly reduces training time. The
experimental results show that in both single-node and multi-node, MLP learns faster
than CART. Best training time occurred in 12 distributed nodes with 0.46
milliseconds by MLP, while learn training dataset in 12 nodes by CART takes 21.39

seconds. Totally, results show that training time decreases in distributed systems
while scoring time increases. To reduce the scoring time, the ensemble classifiers

can be copied to the distributed nodes, and just as the training data is divided into
number of nodes, the testing dataset can be divided and sent to the distributed nodes,
and the scoring operation can be performed in parallel. This part of experiment is left

for the future work.
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Appendix A: Software source code- implementation of DELS

1) Accuracy for Bagging-like methods by MLP ( Python source code )

Inputs: filename, data file; partno[], array of partitions; base_estimator, classification algorithm;
Outputs: meanD [] array for mean of accuracy by “disjoint partitioning”’; meanDB [] array for mean
of accuracy by “disjoint bags”; meanSB [] array for mean of accuracy by “small bags”; meanNRSB []
array for mean of accuracy by “no replication small bags”; stdD [], stdDB [], stdSB [], stdNRSB []
standard deviation for D/DB/SB/NRSB; semD [],semDB [],semSB [],5emNRSB [] standard error of
mean for D/DB/SB/NRSB;

1. Definitions and inputs:

2 & mndimee it &
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root_shell''su_attempted’,'num root''num file creations''num shells’,'num access files',
'num_outbound_emds''1s_host_login''1s_guest_login' 'count','srv_count' 'serror_rate',
'sTv_serror_rate','rerror_rate','srv_rerror_rate’,'same srv_rate','diff_srv_rate’,
'srv_diff_host_rate','dst_host_count','dst_host_srv_count','dst_host_same_srv_rate',
'dst_host_diff srv rate''dst host same src_port rate''dst host srv_diff host rate',
'dst_host_serror_rate''dst_host_srv_serror_rate''dst_host_rerror_rate',
'dst_host_srv_rerror_rate','class']

2. Partitioning Subsystem for Bagging-like methods:

if rank == 0:  # Master process
for n in partno

# Read file ==

raw_data = open(filename, 'rt')

reader = csv.reader(raw_data, delimiter="", quoting=csv.QUOTE_NONE)
x = list(reader)

data = np array(x).astype('str')

#read no of records group by classes name

maindata = read_csv(filename, names= names)

class_counts = maindata groupby('class') size()

#print('Name and Number of Classes in master node 1s : ',class_counts)
#print('Total number of records are ' sum(class_counts))

# partitioning in ##
## disjoint Partition(D) Algorithm i

print("F#*#k USING disjoint Partition(D) METHOQD ###k#)
print('n 1s ' n)

#create random file
randomdf = random sample(x,np.size(data,0)) #without replacement
p=[randomdf[1::n] for 1 in range(n)]

for 1 1n range(0,n):
in_file = open(sharedfolder+'tmp%d%s1.csv' %a(n,1),'"w")
with in_file
writer = csv.writer(in_file)
writer.writerows(p[1])

# close files
i _file.close()

mn_file = open(sharedfolder+'tmp%d%s1 csv' %a(n,1),'T")
with open(sharedfolder+'DisJointPartitionSetRecord%d%i.csv' %(n,1), "w") as out_file:
for line 1 mn_file:
if line.strip():
out_file.write(line)
m_file.close()
out_file close()
os.remove(sharedfolder+'tmp%d%1.csv' %(n,1))
ifi1=0:
req = comm.isend('DisJomtPartitionSetRecord%ed%i is created' %o(n,1), dest=1, tag=211)
req.wait()

# partitioning in ##
## small bags(SB) Algorithm ##

print("*#*#k USING small bags(5B) METHOD #####1)
#create random file

r = np.size(data,0) % n

for 1 1n range(0,n):

ifr==0:
m=0

elifr > 0:
m=1

randomdf = random choices(x, weights=None k=mt(np size(data 0)/n+m)) #with replacement
infile = open(sharedfolder+'tmp%d%i.csv' %(n,1),'w")
with infile:

writer = csv writer(infile)

writer. writerows(randomdf)

mfile close()
infile = open(sharedfolder+'tmp%d%si.csv' %a(n,1),'1")
with open(sharedfolder+'SBrecord%d%i.csv' %o(n,1), "w") as out_file:

for line in infile:

80



X o X O TONCAONOANDNONONCACANOND COC000C0 COCOCC000000~T I~ 11111V N N NN

= = TNOCO 3NN A — A0~ IR I — OO OO~ YN b — OO OO0~ N b — N OO~ I R b — ONO 00~ XN Ul — SN0~ b — TANO OO~ NN R — OO

-

B0 2222220220202 22222222+
[PYFV I ILIE (5 (o i6 L L0 (5 N W 3

1f line strip():
out_file write(line)

nfile close()
os.remove(sharedfolder+'tmp%d%i.csv' %(n.1))
out_file close()
if1l=0

req = comm isend('SBrecord%d%i.csv is created’ %(n,1), dest=1, tag=212)

req.wait()

# partitioning mn
# disjoint Bags(DB) Algorithm

EES

print("**#*** USING disjoint Bags(DB) METHOD #*¥*¥¥)
#create random file
randomdf = random sample(x,np.size(data,0)) #without replacement
myarrayl=np.array([randomdf[i-:n] for i in range(n)])
for 1 1 range(0,n):
myarray2 =np.append(myarray1[1], (random choices(myarrayl[1], weights=None, k=int(np.size(myarrayl[1])))),
axis = 0)
#prmt(myarray2)
file = open(sharedfolder+'tmp%d%1.csv' %(n,1),'w")
with infile:
writer = csv.writer(mfile)
writer. writerows(myarray2)
infile close()
file = open(sharedfolder+'tmp%d%1.csv' %(n,1)
with open(sharedfolder+DBRecord%d%i.csv' %
for line 1n infile:
1f line strip():
out_file write(line)
infile close()
os.remove(sharedfolder+'tmp%d%i.csv' %(n.1))
out_file.close()
ifil=0
req = comm isend('DBRecord%d%u.csv is created' %(1.1), dest=1, tag=213)
req.wait()

)

o(n,1), "w") as out_file

# partitioning in #
# No Replication small bags(NRSB) Algorithm #

print("*#*#* USING No Replication small bags(NRSB) METHOD *####)
#create random file

r=np.size(data,0) % n

for 1 in range(0,n):

fr==10:
k=0
elifr > 0:
k=1

randomdf = random sample(x, int(np.s1ze(data,0)/n+k)) #with replacement
infile = open(sharedfolder+'tmp%d%i.csv' %(n,1),'w")
with infile:
writer = csv.writer(mfile)
writer.writerows(randomdf)
mfile.close()
infile = open(sharedfolder+'tmp%d%e1.csv' %(n.1),'")
with open(sharedfolder+NRSBrecord%d%i.csv' %(n,1), "w") as out_file:
for line 1n infile:
1f line.strip():
out_file write(line)
nfile close()
os.remove(sharedfolder+'tmp%d2at.csv' %(n,1))
out_file close()
if1l=0
req = comm isend(NRSBrecord%d%i.csv 1s created' %(n,1), dest=1, tag=214)
req.wait()

Zprint('T am master%d'%rank)
#mput("Press Enter to confmue...")
Tend0 = time time()

TO = Tend0 — Tbegingc0

Print (“Run-time is :”,T0)

else :

req = comm irecv(source=0, tag=211)
data = req.wait()

print(rank data)

req = comm irecv(source=0, tag=212)
data = req.wait()

print(rank data)

req = comm.irecv(source=0, tag=213)
data = req.wait()

print(rank data)
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req = comm.irecv(source=0, tag=214)
data = req.wait()
print(rank data)

for n in partno:

3. Training subsystem :

Training m
disjomt Partition(D) Algorithm

S
g

# Bagging Algorithms
# load data
print('rank 1s:' rank)
dataframe = read_csv(sharedfolder+'DisJointPartitionSetRecord%d%i.csv' %(n, rank), names= names)
array = dataframe values
X = array[;,7:43]
Y = array[-44]
seed=7
num_trees = 100
max_features = 3
kfold = KFold(n_splits=10, random _state=seed)
# Bagged Decision Trees model
#eart = DecisionTreeClassifier()
model = BaggingClassifier(base_estimator=Perceptron(max_iter = 5000), n_estimators=num_trees)
resultsD = cross_val_score ( model, X, ¥, ev=kfold scoring="accuracy' )
meanD.append ( resultsD.mean() )
stdD.append(resultsD.std())
semD append(resultsD std()/math sqrt(10))
print("***** USING disjoint Partition(D) METHOD ####¥1)
print("Accuracy Bagged Decision Trees on Processor %1 : %f" %(rank, resultsD.mean()))
print('meanDB on %d-D disjoint Partition(D) on Processor %i1: '%(n,rank), meanD)
print(’stdDB on %d-D disjoint Partition(D) on Processor %1: "o(n,rank),stdD)
print('semDB on %d-D disjoint Partition(D) on Processor %1 %(n rank) semD)
if rank!=0
req = comm.isend(meanD, dest=0, tag=imt(str(n) + str(rank)+str(5)))
req wait()
req = comm.isend(stdD, dest=0, tag=int(str(n) + str(rank)+str(6)))
req.wait()
req = comm 1send(semD, dest=0, tag=int(str(n) + str(rank)+str(7)))
req.wait()

i Training in
# small bags(SB) Algorithm

EES!

# Bagging Algorithms
# load data
dataframe = read_csv(sharedfolder+'SBrecord%d%d.csv' %(n,rank), names= names)
array = dataframe values
X = array[;,7:43]
Y = array[:,44]
seed=7
num_frees = 100
max_features =3
kfold = KFold(n_splhits=10, random_state=seed)
# Bagged Decision Trees Model
#eart = DecisionTreeClassifier()
model = BaggingClassifier(base_estimator=Perceptron(max_iter = 5000), n_estimators=num_trees)
resultsSB = cross_val score(medel, X, Y, cv=kfold, scoring="accuracy')
meanSB append(resultsSB.mean())
stdSB.append ( resultsSB.std())
semSB.append ( resultsSB.std()/math.sqrt(10))
print("#**#¥* USING small bags(SB) METHOD ##s##ir)
print("Accuracy Bagged Decision Trees on Processor %1 : %f " %(rank,resultsSB.mean()))
print('meanDB on %d-D small bags(SB) on Processor %i: '%(n,rank),meanSB)
print('stdDB on %d-D small bags(SB) on Processor %i: '%(n,rank),stdSB)
print(’'semDB on %d-D small bags(SB) on Processor %i: '%(n,rank) semSB)
if rank!=0
req = comm.1send(meanSB, dest=0, tag=mnt(str(n) + str(rank)+str(8)))
req.wait()
req = comm. isend(stdSB, dest=0, tag=int(str(n) + str(rank)+str(9)))
req wait()
req = comm.isend(semSB, dest=0, tag=int(str(n) + str(rank)+str(10)))
req wait()

Traming in

H
H#H No Replication small bags(NRSB) Algorithm

# Bagging Algorithms
# load data
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dataframe = read_csv(sharedfolder+ NR SBrecord%d%d.csv' %(n,rank) , names = names)

array = dataframe.values

X = array[;,7:43]

Y = array[,44]

seed=7

num_trees = 100

max_features =3

kfold = KFold(n_splits=10, random_state=seed)

# Bagged Decision Trees model

#cart = DecisionTreeClassifier()

model = BaggingClassifier(base_estimator=Perceptron(max _iter = 5000), n_estimators=num _trees)
resultsNRSB = cross_val_score(model, X, Y, cv=kfold, scormg="accuracy’)

meanNR SB.append(resultsNRSB.mean())

stdNRSB.append(resultsNR SB.std())

semNRSB.append(resultsNRSB std()/math.sqrt(10))

print('**¥*** USING No Replication small bags(NRSB) METHOD #*#i###)

print("Accuracy Bagged Decision Trees on Processor %o1 - %f " %(rank resultsNRSB.mean()))

print('meanDB on %d-D No Replication small bags(NRSB) on Processor %i: '%(n,rank), meanNRSB)

print('stdDB on %d-D No Replication small bags(INRSB) on Processor %t: '%(n,rank) stdNRSB)
print('semDB on %d-D No Replication small bags(NRSB) on Processor %i1: '%(n rank),semNRSB)

if rank!=0:
req = comm isend(meanNRSB, dest=0, tag=int(str(n) + str(rank)+str(11)))
req.wait()
req = comm.1send(stdNRSB, dest=0, tag=int(str(n) + str(rank)+str(12)))
req.wait()

req = comm.1send(semNRSB, dest=0, tag=mt(str(n) + str(rank)+str(13)))
req.wait()

#H Training in #
# disjoint Bags(DB) Algorithm #

# Bagging Algorithms

# load data

dataframe = read_csv(sharedfolder+ DBRecord%d%d.csv' %(n,rank),names= names)
array = dataframe.values

X = array[:,7:43]

Y = array[.44]

seed =7

num_trees = 100

max_features =3

kfold = KFold(n_splits=10, random_state=seed)

# Bagged Decision Trees model

#cart = DecisionTreeClassifier()

model = BaggingClassifier(base_estimator=Perceptron(max _iter = 5000), n_estimators=num _trees)
resultsDB = cross_val_score(model, X, Y, cv=kfold, scoring="accuracy")

meanDB append(resultsDB.mean())

stdDB.append(resultsDB.std())

semDB.append(resultsDB.std()/math.sqrt(10))

print("***** USING disjoint Bags(DB) METHOD *#*##)

print("Accuracy Bagged Decision Trees on Processor %1 : %f " %(rank resultsDB.mean()))
print('meanDB on %d-D disjoint Bags(DB) on Processor %i: '%(n,rank), meanDB)
print('stdDB on %d-D disjeint Bags(DB) on Processor %i: '%(n,rank),stdDB)
print('semDB on %d-D disjoint Bags(DB) on Processor %1: '%(n,rank),semDB)

if rank!=0:
req = comm.isend(meanDB, dest=0, tag=int(str(n) + str(rank)+str(14)))
req.wait()
req = comm.1send(stdDB, dest=0, tag=mt(str(n) + str(rank)+str(15)))
req.wait()

req = comm.isend(semDB, dest=0, tag=int(str(n) + str(rank)+str(16)))
req. wait()

4. Generate outputs:

ifrank==0:

Receive all outputs

(meanD meanDB meanSB meanNRSB)
(stdD,stdDB stdSB stdNRSB)
(semD,semDB,semSB,semNRSB)

- EEEEES

from tasks > 0

for 1 in range(1,n):
req = comm.irecv(source=1, tag=mt(str(n) + str(1)+str(5)))
datameanD = req.wait()
meanD.append(datameanD)
print("datameanD : " rank datameanD)
req = comm.irecv(source=1, tag=int(str(n) + str(1)+str(6)))
datastdD = req.wait()
stdD.append(datastdD)
print("datastdD : " rank datastdD)
req = comm.irecv(source=i, tag=int(str(n) + str(1)+str(7)))
datasemD = req.wait()
semD.append(datasemD)
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print("datasemD : " rank datasemD)
Drnf(" s ik

kbbb
req = comm irecv(source=i, tag=int(str(n) + str(i)+str(8)))
datameanSB = req. wait()

meanSB.append(datameanSB)

print("datameanSB :" rank datameanSB)

req = comm 1recv(source=1, tag=int(str(n) + str(1)+str(9)))
datastdSB = req.wait()

stdSB.append(datastdSB)

print("datastdSB : " rank,datastdSB)

req = comm irecv(source=1, tag=int(str(n) + str(1)+str(10)))
datasemSB = req.wait()

semSB.append(datasemSB)

print("datasemSB : " rank datasemSB)
DIIE(" 44 ok bk k)

FickgiokE
req = comm 1recv(source=1, tag=int(str(n) + str(1)+str(11)))
datameanNR SB = req.wait()

meanNRSB append(datameanNRSB)
print("datameanNRSB : "rank,datameanNR SB)

req = comm irecv(source=1, tag=int(str(n) + str(1)+str(12)))
datastdNRSB = req wait()
stdNRSB.append(datastdNRSB)

print("datastdNRSB - " rank datastdNRSB)

req = comm.1recv(source=1, tag=int(str(n) + str(1)+str(13)))
datasemNRSB = req.wait()

semNRSB append(datasemNRSB)

print("datasemNRSB : " rank datasemNRSB)

print(" Rk

kb dokk

req = comm.1recv(source=1, tag=int(str(n) + str(1)+str(14)))
datameanDB = req wait()

meanDB append(datameanDB)

print("datameanDB : " rank datameanDB)

req = comm.1recv(source=1, tag=int(str(n) + str(1)+str(15)))
datastdDB = req.wait()

stdDB.append(datastdDB)

print("datastdDB : " rank datastdDB)

req = comm. irecv(source=i, tag=int(str(n) + str(i)+str(16)))
datasemDB = req wait()

semDB.append(datasemDB)

print("datasemDB : " rank datasemDB)

DHnt(" bbbk

Tend0 = time time()

TO0 = Tend0 - Theginc0

Print (“Run-time is :”,T0)

5. Save outputs in Excel file:

# save outputs in ##
# EXCEL file #

workbook = xlsxwriter. Workbook('/home/azi/cloud/NN-Perceptron/Comapre methods by NN-Perceptron-Multinode-
random_%1 x1sx' %n)

worksheetn = workbook add_worksheet()

#ewrency format = workbook.add format({'num format' '$###0'})

# Some sample data for the table

data =[]

for 1 in range(n)

data.append([RANDOM', n, i, D', 'MLP'str(meanD[1]),  str(stdD[i]), str(semD[1]) ])

data append([RANDOM', n, 1, DB', 'MLP'str(meanDB[1]), str(stdDB[1]), str(semDB[1]) 1)
data.append([RANDOM/, n, i, 'SB', 'MLP'str(meanSB[i]), str(stdSB[i]), str(semSB[i]) ])

data append([RANDOM, 1, 1, NRSB', MLP' str(meanNRSBI1]), str(stdNRSB[1]), str(semNRSB[i]) ])

caption = 'single-node Ensemble and Classifier.'
worksheetn set_column('B:K', 12)
worksheetn write('B1', caption)
worksheetn add_table('B3:160', {'data" data,
'style": 'Table Style Light 11',
‘columns': [{header': 'ORDER'},
{'header": NODE #},
{'header' 'Part #'}
{'header": 'partitioning Method'},
{'header" 'Classifier'}
{'header": 'Accuracy'},
{'header" 'Standard Deviation'},
{'header": 'Standard Error of Mean(SEM)'},
I}

workbook close()
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6. Plot drawing:

il plot drawing a

import matplotlib.pyplot as plt

print(‘datameanD is ' datameanD)

fig = plt.figure()

ax = fig.add_subplot(111)

plt xlabel(Partitions/Bags')

plt ylabel(Mean Ace+- SEM')

plt.title('single-node multilayer perceptron’)

plt errorbar(n-0.2 datameanD, datasemD, marker="*' linestyle="None' color='g', label='D")

plt errorbar(partno datameanDB, datasemDB, marker="0' linestyle="None',color="r' label="DB')
plt.errorbar(np.asarray(partno)+0.2,datameanSB, datasemSB, marker='s" linestyle="None',color="b', label='SB')

plt.errorbar(np.asarray(partne)+0.4, datameanNR SB,datasemNRSB, marker="_" linestyle=None' color="y',labe=NRSB')
plt legend(loc=Tower right')
plt.savefig(/home/azi/cloud/NN
plt.show()

-Perceptron/Total%imeanComparison. png %n)

2) Accuracy for Bagging-like methods by CART ( Python source code )

All sections are the same with the MLP classification. The differences are coded
in the following lines.
1. Definitions and inputs:

from sklearn. tree import DecisionTreeClassifier

2. Training subsystem:

CART1 = DecisionTreeClassifier()
modelCART = BaggingClassifier ( base_estimator = CARTI1, n_estimators = num_trees, random_state = seed)

3) DELS system for Bagging-like methods by MLP:

1. Definitions and inputs:

/bn/env python3
- codmg’ utf-8 -*-

Created on Sat Oct 5 15:10:40 2019

@author: azi

Multi Node Ensemble of

Classifiers building or using

Multi-layer perceptron classification

and D, DB, SB, NRSB data devision method

import random
import csv
import 0s
import time
import numpy as np
from mpi4py mmport MPI
from pandas import read_csv
# Importing Bagged Decision Trees

From sklearn. model_selection import KFold

From sklearn model selection import cross_val score
from sklearn. model_selection import train_test_split
from sklearn neural network import MLPClassifier
from joblib import dump

from joblib import load

from sklearn.ensemble import VotingClassifier

import xlsxwriter

Thbegme0 = time time()

comm = MPIL.COMM_WORLD
rank = comm rank

size = comm.size

name = MPL.Get_processor_name()
A=00

B=00
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Cc=00

## DELS inputs are

== 1-input dataset(kddeup 1999) n filename variable
## 2-number of partitionsets in partno array

# 3-classification algorithm 1s MLP set in model variable
# in subsection 3.training subsystem
## (medel = MLPClassifier(solver="1bfgs', alpha=1e-5 hidden la

T sizes=(5, 2), random_state=2)) ##

sharedfolder = Yhome/azi/cloud/singleNode/bagging/
sharedfolderC = Yhome/azi/cloudC1/singleNode/baggmg/
modelfolder = Yhome/azi/cloud/singleNode/model/
modelfolderC = Yhome/azi/cloudC1/singleNode/model/
foldername = Yhome/azi/cloud/smgleNode/data/"

filename = foldername+ 'kddcup.data.corrected-sample.csv'

partno=[2,4,6,8,10,12] # Array, number of partition sets

OO\ \CANONCACADCOCOCOS000COCO00CCOO~I~ 1] ~ I IOV N
L = OO~ IR U = ONCCO~-JON NI = TONOCO~- NN S = ONDCO~- NN U = CTNOCO~-1ON Ul = OO0~ IR U = OO0~ IO b O

## dataset columns name. Last column(class) 1s the labeling eriteria.
## class type: back buffer_overflow, ftp_write guess_passwd,imap,
## ipsweep land, loadmodule, multthop neptune nmap,normal perl phf,
## pod,portsweep,rootkit satan,smurf,spy, teardrop, warezclient,

## warezmaster

R
#
fisd

#

names = [rows','num','duration’'protocol_type','service' 'flag''src_bytes''dst_bytes''land’,

‘wrong_fragment' 'urgent''hot''num failed logins','logged mn','num compromised’,

‘root_shell''su_attempted''num_root''num_file_creations''num_shells' 'num_access_files',

‘num_outbound cmds''is_host login''is guest login''count’,'srv_count','serror_rate',
'stv_serror_rate','rerror rate','srv_rerror rate''same srv rate','diff srv rate’,
'srv_diff_host_rate''dst_host_count''dst_host_srv_count''dst_host_same srv_rate',
'dst_host_diff srv_rate''dst_host same src_port rate''dst host srv_diff host rate’,

'dst_host serror rate''dst host srv_serror rate''dst host rerror rate',
'dst_host_srv_rerror_rate' 'class']

Input/Output Subsystem (10

Create training & testing dataset
### mput dataset (kddcup.data.corrected-sample)
###£ 15 used to split mto 75% for traming & 25% for testing

T

#for line in filename:
# r=random random()

# ifr>075:

# fTestRandom write(line)

# else:

# fTramRandom. write(line)

#

#fTramRandom.close()

#fTestRandom close()

fTrainRandom = foldername+'kddcup.data.corrected.ordered. Random75%.csv'
fTestRandom = foldername+'kddeup .data.corrected.ordered. Random25%.csv'

Task partitioning:

The task partitioning subsystem Calculates the
processors needed to divide by partno on each laptop.
##2 Two-thirds of the tasks are allocated to the first laptop
# and one-third to the second laptop.

MN 15 number of master node processors
CN 1s number of client node processors
Tasks are distributed across the processors by MPL

e EEad

ifrank == 0:  # this 15 master processor
for n in partno:

TmdIDe0A =[]
TmdIDBeOA =[]
TmdISBe0A =[]
TmdINRSBe0A =]
TFTPDcOA =[]
TFTPDBcOA =[]
TFTPSBc0A =]
TFTPNRSBc0A =[]

filename = fTramRandom
print("partition number 15 :" 1)
CNr= divmod(n,3)
f(CN<landn!=1):

MN=1
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else:
MN=n-CN
print("%1 DataSet(s) are used in Client and %1 in Master Node' %(CN,MIN))

4. Partitioning subsystem:

The Traming dataset is partitioned in number of ~ ##
* partno in several sequential splits by Bagging-like mthds ##
and distributed across the processors (MPI tasks) mthe ##

¢ number of MN and CN. #
} Reading Traming data for partitioning #
in 4 different techniques #
(partitioming/Bagging) ==
1-disjont Partition(D) ##
2-small bags(SB) H
3-disjont Bags(DB) #

4-No Replication small bags(NRSB)

Tbeginc0 = time.time()
print(Tbeginc0)

raw_data = open(filename, '1)

reader = csv.reader(raw_data, delimiter=", quoting=csv.QUOTE_NONE)
X = list(reader)

data = np.array(x).astype('str’)

# partitioning in ==
== disjoint Partition(D) Algorithm B

print("##dd USING disjoint Partition(D) METHOD For %i partitions ######¥1055)
#create random file

randomdf = random.sample(x,np.size(data,0)) # without replacement
p=[randomdf[1::n] for 1 m range(n)]

for j in range(0,n)

m_file = open(sharedfolder+'tmp%d%i.csv' %(n,),"w")
with m_file

writer = csv.writer(in_file)

writer writerows(p[j])

m_file.close()

m_file = open(sharedfolder+'tmp%d%i.csv' %(n),")
with open(sharedfolder+DisJomtPartitionSetRecord%d%i.csv' %(nj), "w") as out_file:

for line in in_file:

if line.strip()
out_file write(line)

m_file.close()

out_file close()
os.remove(sharedfolder+'tmp%d%i.csv' %(n,)))

TendDc0 = time time()
TDc0 = TendDc0 - Tbeginc0

priut('**$***’3**3’3**’3***’3’;***’3**’3’3**&***’3’?**’3***3**’3****’3***&**‘)

print(’ Totaly %1 seconds for disjoint partitioning of data in Master node ' %TDc0)
# partitioning in #H

# small bags(SB) Algorithm #it

print("¥*#+ USING small bags(SB) METHOD For %1 partitions #¥#¥#bikiikiiiogy)
TbeginSBc0 = time time()

#create random file

r=np.size(data,0) % n

for j n range(0,n)

ifr==
m=0

elifr>0:
m=1

randomdf = random choices(x,weights=None k=int(np size(data,0)/n+m)) #with replacement
infile = open(sharedfolder+'tmp%d%i csv' %(n,j),'w")
with mfile:
writer = csv.writer(infile)
writer writerows(randomdf)
infile close()
mfile = open(sharedfolder+'tmp%d%1.csv' %a(n,)),'r")
with open(sharedfolder+'SBrecord%d%i.csv' %(n,j), "w") as out_file:
for line in infile:
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if line strip()
out_file write(line)
infile close()
os.remove(sharedfolder+'tmp%d%i.csv' %e(n))
out_file.close()

TendSBe0 = time time()
TSBc0 = TendSBe0 - TbheginSBc0
P G D)

print(" Totaly %l second for small bags data in Master node ' %TSBc0)

partitioning in
disjoint Bags(DB) Algorith

print("**#** USING disjoint Bags(DB) METHOD For %1 partitions *####ikiiiiiios )
TbeginDBe0 = time time()
#create random file
randomdf = random sample(x np size(data,0)) #without replacement
myarrayl=np.array([randomdf[l::n] for I in range(n)])
for j m range(0,n):
myarray2 =np_append(myarray1[j], (random choices(myarray1[j], weights=None, k=100)), axis = 0)
#print(myarray2)
infile = open(sharedfolder+'tmp%d%i.csv' %(n,)),'w")
with infile
writer = csv writer(infile)
writer.writerows(myarray2)
infile close()
infile = open(sharedfolder+'tmp%ed%i.csv' %(n,j),'r)
with open(sharedfolder+ DBRecord%d%i1.csv' %(n ), "w") as out_file:
for line m infile:
if line strip():
out_file write(line)
mfile close()
os.remove(sharedfolder+'tmp%d%i.csv' %(n))
out_file.close()

TendDBc0 = time.time()

TDBc0 = TendDBe0 - TheginDBc0
c0 = Ten c0 - Thegt c
primt( ik ok R R R RO o k)

print(' Totaly %1 second for small bags data 1n Master node ' %TDBc0)
# partitioning 1n #H
Ht iiid

No Replication small bags(NRSB) Algorithm

print("**#** TSING No Replication small bags(NRSB) METHOD For %1 partitions **#¥#+%p)
TbeginNRSBc0 = time.time()

#create random file

r = np.size(data,0) % n

for j m range(0,n):

ifr==
k=0
elifr > 0:
k=1

randomdf = random sample(x,mnt(np size(data,0)/n+k)) #with replacement
mfile = open(sharedfolder+'tmp%d%i.csv' %(n,j),'w")
with mfile

writer = esv.writer(infile)

writer writerows(randomdf)

infile close()

mfile = open(sharedfolder+'tmp%d%i1.csv' %(n ), ')

with open(sharedfolder+NRSBrecord%d%i.csv' %(n,j), "w") as out_file

for line in infile:
if line strip()
out_file write(line)

nfile close()
os.remove(sharedfolder+'tmp%d%i.csv' %(n,j))
out_file close()

TendNRSBc0 = time time()

TNRSBc0 = TendNRSBc0 - TheginNRSBc0
Primt( ks ok o koo R O o R k)

print(’ Totaly %1 second for small bags data in Master node ' %TNRSBc0)

print('Total Time for partitioning 15 - ', TDc0+TSBc0+TDBc0+TNRSBe0)
print('Bagging Files are ready to transfer to Client(s) ... )

send message to other tasks that files are ready for next processes
save the time of file transfering 1n varables

for t in range (1,n):
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print('t is:',t)
ftpreq = comm 1send('Files are ready to transfer to Client(s)', dest=t, tag=1357)
ftpreq.wart()
print(bagging file 1s ready to transfer')
TFTPDc0A append(('Node0',0))
TFTPDBcOA append((Node0',0))
TFTPSBc0A append((Node0',0))
TFTPNRSBc0A append((Node0',0))

for 1 m range(MN,n):
reqTFTPcO = comm recv(source=1, tag= 4044)
FTPT =reqTFTPc0/ 4
TFTPDc0A append((Node%:1'%1,FTPT))
TFTPDBcOA append((Node%1'%LFTPT))
TEFTPSBe0A append((Node%1'%1,FTPT))
TFTPNRSBec0A append((Node%1'%1FTPT))

5. Training subsystem ( in master task) :

# Traming m master,

H
#H disjoint Partition(D) Algorithm #
TheginDc0 = time.time()
fbagname = sharedfolder+DisJoimntPartitionSetRecord%d%1.csv' %(n,rank)
dataframeD = read_csv(fbagname, names=names)
arrayD = dataframeD.values
XD = arrayD[:,7:43]
Y = arrayD[:,44]
YD = Y.astype(str)
X tram, X_test, Y_tramn, V_test= tram_test split(XD, YD, test_size=0.01, random_state=9)
# Fit the model on 1%
modelD = MLPClassifier(solver="Tbfgs', alpha=1e-5mdden layer sizes=(5, 2), random _state=2)
modelD fit(X_tramn, Y_tramn)
# save the model to disk
fbagname = MLPjoblib_model_D%d%i sav' %(n.rank)
dump(modelD, modelfolder+fbagname)
TendDc0 = time time()
TmdIDe0 = TendDe0 - TbeginDe0
TmdIDe0A append(('Node%i'%rank TmdlDc0))
# Training in master, #
== ==

small bags(SB) Algorithm

TbegmSBe0 = time.time()
fbagname = sharedfolder+'SBrecord%d%1.csv' %(n,rank)

dataframeSB = read_csv(fbagname, names=names)

arraySB = dataframeSB.values

XSB = arraySB[:,7:43]

Y = arraySB[;,44]

YSB = Y.astype('str')

X tram X test, Y tramn, Y test=train test split(XSB, YSB, test size=0.01, random_state=9)
# Fit the model on 1%

mo delSB = MLPClassifier(s olver="Tbfgs', alpha=1e-5 idden layer sizes=(3, 2), random_state=2)

modelSB.fit( X train, Y _train)

# save the model to disk

fbagname = MLPjoblib_model SB%d%1.sav' %(n,rank)

dump (m odelSB, modelfol der+ fhagname)

TendSBc0 = t1 me.time()

TmdISBe0 = TendSBe0 - TbeginSBc0

TmdISBe0A append((Node%i'%rank, TmdISBc0))

# Training in master,
== No Replication small bags(NRSB) Algorithm

-'-‘H- ;]{_:'.

TbeginNRSBc0 = time time()
fbagname = sharedfolder+'NRSBrecord%d%:.csv' %(n,rank)

dataframeNRSB = rea d_csv(fbagname, names = names)

arrayNRSB = dataframeNRSB.values

XNRSB = arrayNRSB [1,7:43]

Y = arrayNRSB [ 44]

YNRSB = YNRSB astype('str)

X _train, X_test, Y_train, Y_test= train_test_split (XNRSB, YNRSB, test_size=0.01, random_state=9)
# Fit the model on 1%

modeINRSB = MLPClassifier(solver="1bfgs', alpha=1e-5 hidden layer sizes=(5, 2), random state=2)

modelNRSB.fit(X_tram, ¥ _tram)
# save the model to disk

fbagname = 'MLPjoblib_model NRSB%d%1.sav' %(n,rank)

dump(model, modelfolder+fbagname)

TendNRSBe0 = time.time()
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TmdINRSBe0 = TendNRSBcO - TbeginNRSBc0
TmdINRSBc0A. append((Node%i'%rank, TmdINRSBc0))

## Traming in master,
# disjoint Bags(DB) Algorithm

FEE

TbegmDBce0 = tume.time()
fbagname = sharedfolder+'DBRecord%d%1.csv' %(n,rank)

dataframeDB = read_csv ( fbagname, names = n ames)

arrayDB = dataframeDB.values

XDB = arrayDB [:,7:43]

Y = arrayDB [,44]

YDB = YDB.astype('str')

X_train, X_test, Y_train, Y_test = train_test_split (XDB, YDB , test_size=0.01, random_state=9)
# Fit the model on 1%

modelDB = MIPClassifier ( solver="bfgs', alpha=1e-5,hidden_layer_sizes=(5, 2), random_state=2)

modelDB fit (X_tramn, Y_traimn)
# save the model to disk

fbagname = MLPjoblib_model DB%d%1sav' %(n,rank)

dump(model, modelfolder+fbagname)

TendSBc0 = time.time()

TmdIDBc0 = TendSBe0 - TbeginDBc0

TmdIDBc0A append((Node%1'%rank, TmdIDBc0))

for 1 m range(1,n):
reqmodM = comm trecv(source=1, tag= 1346)
datal = reqmodM.wait()
reqTmdIDec0 = comm recv(source=1, tag= 4040)
reqTmdISBc0 = comm recv(source=1, tag= 4041)
reqTmdINRSBc0 = comm recv(source=1, tag= 4042)
reqTmdIDBc0 = comm recv(source=1, tag= 4043)
TmdIDc0A append((Node%1'%1,reqTmdlDe0))
TmdIDBc0A append((Node%i1'%1,reqTmdIDBc0))
TmdISBcOA append((Node%1'%1,reqTmdlSBe0))
TmdINRSBc0A append((Node%i'%1,reqTmdINRSBc0))

6. Testing subsystem:

N N N N e N N N S N e N N e S S N N N N O N N N N e S N e N N e N O N N N S N S S S S S N N S S N S N S S N S S N N S S S S S S S S IS IV IR IE SV IS S FC FL L JC V1SS I L IN
~ NN U = TONOCO~ NN U =TSO~ I N R U = OGO~ I N LA I—TOCO- NN U = O\~ IR U = TN OO~ b =D OO~V L = NSO~ LD

NNV AN s s B B I P I IS A AU Ut DI a2 D

##  Vote-based Ensemble Step (Major-Voting) : In Master Task

print('Model is received from clients’)
TbeginENSM = time.time()

dataframeV = read_csv ( fTrainRandom, nam es= names)
arrayV = dataframeV_values
XV =arrayV[;,7:43]
Y = array V[ 44]
YV = Y.astype('str)
kfold = Kfold (n _splits =10, random_state=7 )
# create the sub models for vote-based ensemble
estimatorsD = []
estimatorsDB = []
estimatorsSB = []
estimatorsNRSB =[]

for j in range(0,n):
print(j is:'j)
mfD = modelfolder+'MLPjoblib_model D%d%i.sav' %(n.j)
mfDB = modelfolder+MLPjoblib_model DB%d%L1.sav' %(n,))
mfSB = modelfolder+MLPjoblib_model SB%d%i.sav' %(n,j)
mfNRSB = modelfolder+'MLPjoblib_mode]l NRSB%d%1sav' %(n,))

modelD = load(mfD)
modelDB = load(mfDB)
modelSB = load(mfSB)
modeINRSB = load(mfNRSB)

estimatorsD_append(('modelD%i' %j, modelD) )
estimatorsDB.append(('modelDB%1'%j, modelDB))
estimatorsSB_append(('modelSB%1%j, modelSB))
estimatorsNRSB.append(('modeINRSB%1' %], modeINRSB))

# create the ensemble model

ensembleD = VotingClassifier(estimatorsD)
ensembleDB = VotingClassifier(estimatorsDB)
ensembleSB = VotingClassifier(estimatorsSB)

ensembleNRSB = VotingClassifier(estimatorsNRSB)

resultsD = cross_val score(ensembleD, X, Y, ev=kfold)
resultsDB = cross_val_score(ensembleDB, X, Y, cv=kfold)
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resultsSB = cross_val_score(ensembleSB, X, Y, ev=kfold)
resultsNRSB = cross_val score(ensembleNRSB, X, Y, ev=kfold)
print('Mean Results of voting in D 1s ' resultsD mean())
print('ensembleD 1s ' resultsD)

print('Mean Results of voting in DB is ' resultsDB.mean())
print('ensembleDB 1s ' resultsDB)

print('Mean Results of voting in SB is :',resultsSB.mean())
print('ensembleSB 15 - resultsSB)

print('Mean Results of voting in NRSB 15 ' resultsNRSB_mean())
print('ensembleNRSRB 15 ' resultsNRSB)

TendENSM = time time()
TENSM = TendENSM - TheginENSM

Testing data i master task ##H

dataframeTest = read_csv ( f TestRandom, names = na mes)
arrayTest = dataframeTest. values

X test=arrayTest [,7:41]

Y_test=arrayTest [1,41]

Y test= Y _testastype(str’)

# Testing in master task
# disjomt Partition(D) Algorithm

TbeginTESTD = time time()

loaded_modelD = ensembleD.fit(X_test, Y_test)
print('TbegmTESTD 15: ', TbeginTESTD)

accuracyD = loaded_modelD.score(X_test, Y_test)
print('The Accuracy of disjoint partition(D) 1s : accuracyD)
ynewD = loaded_modelD predict(X_test)

#prnt(X_test, ynewD)

print('The Predicted result of D method is produced.”)

TendTESTD = time.time()
TTESTD = TendTESTD - TbeginTESTD

# Testing in master task
# small bags(SB) Algerithm

s

loaded modelSB = ensembleSB fit(X _test, Y test)
accuracySB = loaded_modelSB.score(X_test, Y_test)
print('The Accuracy of Small Bages(SB) 1s : ',accuracySB)
ynewSB = loaded modelSB.predict(X_fest)
#pnnt(X_test, ynewD)

print('The Predicted result of SB method is produced.”)

TendTESTSB = time.time()
TTESTSB = TendTESTSB - TendTESTD

# Testing in master task
# No Replication small bags(NRSB) Algorithm

i;}t;‘[[::i

loaded_modeINRSB = ensembleNRSB fit(X_test, Y_test)

accuracyNRSB = loaded_modeINRSB.score(X_test. Y_test)

print('The Accuracy of No Replication small bags(NRSB) 1s : 'accuracyNRSB)
ynewNRSB = loaded_modeINRSB predict(X_test)

#prnt(X_test, ynewD)

print('The Predicted result of NRSB method 1s produced.")

TendTESTNRSB = time time()
TTESTNRSB = TendTESTNRSB - TendTESTSB

Testing in master task

# disjomt Bags(DB) Algorithm

S

loaded_modelDB = ensembleDB.fit(X_test, ¥_test)
accuracyDB = loaded modelDB.score(X fest, Y test)
print('The Accuracy of disjoint Bags(DB) is : ,accuracyDB)
ynewDB = loaded_modelDB predict(X_test)
#prnt(X_test,ynewD)

print('The Predicted result of DB method 15 produced.’)

TendTESTDB = time.time()

TTESTDB = TendTESTDB — TendTESTNRSB
Tend0 = time time()

TO0 = Tend0 - ThegincO
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Print (“Run-time is :”,T0)

7. Save outputs in Excel file:

# save outputs in T
# EXCEL file w

workbook = xlsxwriter. Workbook(foldername+ MultiNode-MLP-Random-TestScore-part%1.xlsx' %n)
worksheetn = workbook.add_worksheet()
#eurrency_format = workbook.add_format({'num_format': '$##£0'})
# Some sample data for the table
data =]
print( TFTPDcOA' TFTPDc0A)
print('TmdIDc0A' TmdIDcOA)
for i in range(n):
#print('1 15 1)
#prmt(' TETPDe0A[1] str(TFTPDeOA[1]))
#prmt('TmdIDe0A[1] str(TmdIDe0A])

data.append([RANDOM', n, 1, D', 'MLP'resultsD.mean(), accuracyD,  TDc0, str(TFTPDcOA[1]) str(TmdIDcOA[1]),

TENSM ])

data.append([RANDOM', n, 1, DB’ 'MLP' resultsDB mean(), accuracyDB, TDBcO, str(TFTPDBcOA[1])
str(TmdIDBcOA[1]), TENSM ])

data.append(|RANDOM', n, 1, 'SB' MLP' resultsSB.mean() accuracySB, TSBe0, str(TFTPSBe0A[1])

str(TmdISBe0A[1]), TENSM])
data.append([RANDOM!, n, 1, NRSB', MLP'resultsNRSB.mean(), accuracyNRSB,TNRSBcO, str(TFTPNRSBcOA[])
str(TmdINRSBeO0A[1]), TENSM 1)

caption = 'single-node Ensemble and single Classifier.'
worksheetn set_column('B:L', 12)
worksheetn write('B1', caption)
worksheetn.add table('B3:L52', {'data" data,
'style": 'Table Style Light 11',
‘columns": [{'header': 'ORDER'},
{'header': NODE #'},
{'header": 'Part #'}
{'header": 'partitioning Method'},
{'header" 'Classifier'}
{'header": 'Cross-Val-Score'},
{'header" 'Test-Score'},
{
{
{
{
}

‘header": 'Time of partitiomng'}

header": 'Time of Transfering'},
‘header”: 'Time of Trainmng'},

‘header’: 'Time of Ensemble Classifier'},

1

workbook close()

8. Task partitioning in other tasks than master:

else: # rank 1s not 0
for n in partno
print("partition number 15 :"
CNr= divmod(n,3)
fCN<1
MN=1
CN=1
else:
MN=n-CN

n)

if rank < MN : #rank is not 0 and is run on ASUS (one-third of tasks)

9. Training Subsystem in other tasks (one-third of tasks ):

fipreq = comm recv{(source=0, tag=1357)
text = fipreq.wait()
print('rank in ASUS 15 ', rank)

#H Training in first laptop #H
#H disjoint Partition(D) Algorithm #H

TbeginDe0 = time.time()
fbagname = sharedfolder+DisJomntPartitionSetRecord%d%1esv' %e(n, rank)

dataframeTrain = read_csv ( fbagname, names = name s )

arrayTrain = dataffameTrain. values

XTrain = arrayTrain [1,7:43]

Y = arrayTram [ 44]

YTrain =7 astype('sir')

X_train, X_test, Y_train, Y_test = train_test split ( XTrain, YTrain, test_size=033, r andom_state=9)
#Fitt the model on 33%

modelTrain = MLPClassifi er(solver="bfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=2)
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modelTrain fit (X_train, Y_train)
# save the model to disk
fbagname = 'MLPjoblib_model D%d%: sav' %(n,rank)
dump ( modelTrain, modelfolder+fbagname)
TendDc0 = time.time()
TmdIDc0 = TendDc0 - TbegmDc0
reqTmdIDec0 = comm send(TmdIDc0, dest=0, tag= 4040)

Training in first laptop,

fiaid
£

S

TbeginSBel = time time()
fbagname = sharedfolder+'SBrecord%d%i.csv' %(n,rank)

dataframeSB =read csv ( fbagname, names = na mes)

arraySB = dataframeSB. values

XSB = arraySB [:.7:43]

YSB =arraySB [1,44]

YSB = YSB.astype('str')

X train, X test, Y train, Y test=train test split(XSB , YSB, test size=0.33, random_state=9)
# Fit the modelSB on 33%

modelSB = MLPClassifie r ( solver="bfgs', alpha=1e-5 hidden_layer_sizes=(5, 2), random_state=2)

modelfit (X_train, ¥_train)
# save the model to disk

fbagname = 'MLPjoblib_model_SB%d%1.sav" %(n,rank)

dump(model, modelfolder+ fbagname)

TendSBel = time time()

TmdISBe0 = TendSBe0 - TbeginSBc0

reqTmdISBe0 = comm send(TmdISBe0, dest=0, tag=4041)

#H Traming in first laptop, #
# No Replication small bags(NRSB) Algorithm #

TbeginNRSBc0 = tume.time()
fbagname = sharedfolder+NR SBrecord%d%i.csv' %(n,rank)

dataframeNRSB =read_csv(fbagname, names = names )

arrayNRSB = dataframeNRSB . values

XNRSB = arrayNRSB [:,7:43]

YNRSB = amrayNRSB [, 44]

YNRSB = YNRSB . astype('str')

X train, X test, Y frain, Y test=tram test split(XNRSB, YNRSB, test size=0.33, random_state=9)
# Fit the model NRSB on 33%

modelNRSB = MLPClassifier ( solver="1bfgs', alpha=1le-5 hidden layer sizes=(5, 2), random state=2)

modelNRSB fit ( X_train, Y_train )
# save the model to disk

fbagname = 'MLPjoblib_model NRSB%d%i sav' %(n,rank)

dump(modeINRSB, modelfolder+fbagname)

TendNRSBe0 = time time()

TmdINRSBcO = TendNRSBc0 - TheginNRSBc0

reqTmdINRSBc0 = comm send(TmdINRSBc0, dest=0, tag= 4042)

Traming m first laptop, #
e

#
# disjoint Bags(DB) Algorithm H

TbeginDBc0 = time.time()
fhagname = sharedfolder+'DBRecord%d%ucsv' %(n,rank)

dataframe = read _csv(fbagname, names=names)

array = dataframe values

X = array[:,7:43]

Y = array[,44]

Y =Y astype('str')

X train, X test, Y fraimn, Y test=tram test split(X, Y, test_size=0.33, random _state=9)
# Fit the model on 33%

model = MLPClassifier(solver="lbfgs', alpha=1e-5 hidden layer sizes=(5, 2), random_state=2)
model fit(X_train, Y_train)

# save the model to disk

fbagname = 'MLPjoblib_model_DB%d%1.sav' %(n,rank)

dump(model, modelfolder+fbagname)

TendDBc0 = time time()

TmdIDBc0 = TendDBcO - TbheginDBc0

reqTmdIDBc0 = comm send(TmdIDBc0, dest=0, tag= 4043)

reqmodM = comm 1send('models’, dest=0, tag= 1346)
reqmodM.wait()

10. File transferring:
elif rank <n: # rank is not 0 and is run on SONY
ftpreq = comm irecv(source=0, tag= 1357 )

text = ftpreq.wait()
print(‘'rank m SONY 15 ', rank)
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iiiid FTP Step : The Training datasts are
i distributed across the tasks and nodes

print(‘Bagging Transformation from processor %1 15 started.' %rank)

TbeginFTP = time. time()

from ftplib import FTP

#domain name or server ip

ftp = FTP(client')

fip.login(user="azi', passwd = 'cmpe1234')
ftp.cwd(home/azi/cloudC1/singleNode/bagging/")
os.chdir(home/azi/cloud/smgleNode/bagging/")

def placeFile():

filename = DisJoimntPartitionSetRecord%d%1.csv' %o(n,rank)
ftp.storbmary('STOR “+filename, open(filename, 'rb")
filename = 'SBrecord%d%i csv' %(n rank)
ftp.storbiary('STOR. “+filename, open(filename, 'rb"))
filename = DBRecord%d%i.csv' %(n rank)
ftp.storbinary('STOR “+filename, open(filename, 'rb"))
filename = WRSBrecord%d%1.csv' %(n rank)
ftp.storbmary('STOR. "+filename, open(filename, b")
ftp.quit()

placeFile()

print(File 15 Transfered')

TendFTP = time. time()

TFTPc( = TendFTP - TbeginFTP

1eqTFTPcO = comm send(TFTPcO, dest=0, tag=4044)

11. Training Subsystem in other tasks (two-third of tasks):

i

# Training in second laptop
# disjoint Partition(D) Algorithm

S
F 45 4F OF

TbeginDe0 = time.time()
filename = sharedfolderC+DisJointPartitionSetRecord%d%i.csv' %(n,rank)

dataframeD1 = read_csv(filename, names=names)

array D1 = dataframe values

XDl =amayD1 [:7:43]

Y D1l =amay D1 [:44]

Y D1 =Y Dl.astype(’str')

X_train, X_test, Y_train, Y_test = train_test_split(X D1, Y D1, test_size=0.01, ranom_state=9)
# Fit the model D1 on 1%

model D1 = MLPClassifier(solver="Ibfgs', alpha=1e-5 hidden_layer_sizes=(5, 2), random_state=2)

model D1 fit(X_train, Y_train)
# save the model D1 to disk

filename D1 = MLPjoblib_model_D%d%1.sav' %(n,rank)

dump(model D1, modelfolder+filename)

TendDc0 = time.tume()

TmdIDc0 = TendDcO - TheginDe0

reqTmdIDe0 = comm send(TmdIDc0, dest=0, tag= 4040)

i

# Traming in second laptop,
== small bags(SB) Algorithm

i

SIETE T o

TbeginSBe0 = time.time()
filename = sharedfolderC+'SBrecord%d%d.csv' %(n,rank)

dataframeSB1 = read _csv(filename, name s=names)

array SB1 = dataframe SB1.values

X SB1 =array SB1 [ :,7:43]

Y SB1=array SB1 [ - 44]

Y SB1 =Y SBI astype('sir')

X_train, X_test, Y_train, Y_test = train_test_split(X SB1, Y SB1, test_size=0.01, random_state=9)
# Fit the model SB1 on 1%

model SB1 = MLPClassifier ( s olver="Ibfgs', alpha=1 e-5 hidden_layer_sizes=(5, 2), random_state=2)

model SBL.fit(X_train, Y_train)
# save the SB1 model to disk

filename = MLPjoblib_model 5B%d%i.sav' %(n rank)

dump(model SB1 , modelfolder+ filename)

TendSBc0 = tim e.time()

TmdISBe0 = TendSBe0 — TheginSBe0

reqTmdISBe0 = comm.send(TmdISBc0, dest=0, tag= 4041)
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# Traiming in second laptop, i
# No Replication small bags(NRSB) Algerithm i

TheginNRSBc0 = time.time()
filename = sharedfolderC+NR SBrecord%d%d.csv' %(n, rank)

dataframeNRSB1 = read_cs v( filename, names=n ames)

arrayNRSB1 = dataframe NRSB1 values

X NRSBI = array NRSB1 [1,7:43]

Y NRSBI = amray NRSBI [ :,44]

Y NRSB1 =Y NRSB1.astype(str')

X _frain, X_test, Y_train, Y_test= train_test split(X NRSB1, Y NRSBI, test_size=0.01, random_state=9)
# Fit the NRSB1 model on 1%

model NRSB1 = MLPClassifier(solver="1bfgs', alpha=1e-5 hidden_layer sizes=(5, 2), random_state=2)

model NRSB1.fit(X_train, Y_train)
# save the NRSB1 model to disk

filename = MLPjoblib_model NRSB%d%1.5av' %(n,rank)

dump ( model NRSB1 , modelfolder+filename)

TendNRSBc0 = ti me time()

TmdINRSBc0 = TendNRSBc0 - TbeginNRSBe0

reqTmdINRSBc0 = comm send(TmdINRSBe0, dest=0, tag= 4042)

#H Trammg in second laptop, #H
# disjoint Bags(DB) Algorithm #

TbeginDBc0 = time time()
filename = sharedfolderC+DBRecord%d%d.csv' %(n,rank)

dataframeDB1 = read_csv (f ilename, name s=nam es)

arrayDB1 = dataframe DB1.values

X DBI1 = array DB1 [:7:43]

Y DB1 =array DB1 [:44]

Y DB1 =7 DBI astype('sir')

X frain, X test, Y train, Y test=train test split (X DB1,Y DBI, test size=0.01, random state=9)
# Fit the mode DB1 on 1%

model DB1 = MLPClassifier(solver="Ibfgs', al pha=1e-5 hidden_laye r_sizes=(5, 2), random_state=2)

model DB fit (X tram, Y_tram)
# save the DB1 model to disk

Filename = MLPjoblib_model_DB%d%i sav' %(n,rank)

dump (model DB1, modelfolder+filename)

TendDBc0 = Time. Time ()

TmdIDBc0 = TendDBc0 - TbeginDBc0

reqTmdIDBc0 = comm.send(TmdIDBc0, dest=0, tag= 4043)

reqmodM = comm isend('models', dest=0, tag= 1346)
reqmodM. wait()

4) DELS system for LADEL model by MLP (Python source code):

1. Definitions and inputs:

1- divide input dataset into 75% as traming &
25% as testing dataset by LADEL
2- partitioning training dataset to number of partno

LADEL inputs are
1-mnput dataset(HIGGS) in filename variable
2-number of partitionsets in partno array

#lfusr/bin/env python3
#-% coding: utf-8 -*-

Created on Sat Oct 5 15:10:40 2019

(@author: azi

import pandas as pd
import fomatch

import 0s

mmport shutil

import time

import csv

import random

from mpidpy import MPI

from pandas import read_csvi#

from sklearn. model_selection impert Kfold##

from sklearn model selection 1mport cross_val score##
from sk6learn. model selection 1mport train_test split##
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from sklearn neural_network mport MLPClassifier##
from joblib import dump

from joblib import load

from sklearn ensemble import VotingClassifier

import xlsxwriter

comm = MPL.COMM _WORLD
rank = comm rank

size = comm.size

name = MPI.Get_processor_name()

A=00
B=00
Cc=00

#mport numpy as np

Tbegin = time time()

SourceFile = /home/azi/cloud/LADEL/
LADELFile = Yhome/azi/cloud/LADEL/data/
LADELFileC = Yhome/azi/cloudC1/LADEL/data/"
LADELmodel = Yhome/azi/cloud/LADEL/model/
tempfolder = Yhome/azi/cloud/LADEL/temp/'
RPTfolder = "/home/azi/cloud/LADEL/report/’

folder25 = 'Yhome/azi/cloud/LADEL /percentage25/'
folder75 = '/home/azi/cloud/LADEL /percentage75/'

filename = home/azi/cloud/singleNode/data/HIGGS data.corrected ordered LADEL1% csv'
partno= [12]# Array, number of partition sets
#partno= [2,4,6,8,10,12] # Array, number of partition sets

## dataset columns name. Last column(class) 1s the labeling criteria.
## class type: back buffer overflow fip write guess passwd,imap,
## psweep.land loadmodule multthop, neptune, nmap, normal perl phf,
## pod portsweep,rootkit satan, smurf, spy teardrop, warezclient,

## warezmaster.

E oy

-

4 -

s 3
CoAE SR S A A T

names = [rows','num’,'duration’,'protocol_type','service’ 'flag''src_bytes' 'dst_bytes','land’,
'wrong_fragment' 'urgent''hot''num_failed_logins','logged_in''num_compromised',
'root_shell''su_attempted''num_root''num_file_creations''num_shells' 'num_access_files',
'num_outbound_cmds''is_host_login''is_guest_login','count''srv_count','serror_rate’,
'srv_serror_rate','rerror_rate''srv_rerror_rate''same_srv_rate''diff srv_rate’,
'srv_diff host_rate''dst_host_count’'dst_host_srv_count''dst_host_same srv_rate’,
'dst_host_diff_srv_rate''dst_host_same_src_port_rate''dst_host_srv_diff host_rate’,
'dst_host_serror_rate''dst_host_srv_serror_rate''dst_host_rerror_rate’,
'dst_host_srv_rerror_rate' 'class']

2. Input/Output Subsystem (10S) (LADEL):

#save start time

Tbeginclass = time time()

df = pd.read csv(filename names= names , low_memory = False)
shutil rmtree(tempfolder, ignore_errors=True)
os.mkdmr(tempfolder)

df dropna(inplace=True) #drop rows with missing value
df.drop_duplicates(inplace=True) # Drop duplicate values

df by class = df. groupby(‘class').count()

#print('data file by class: ',df by class)

for 1, g in df groupby(‘class’)
g.to_csv(Vhome/azi/cloud/LADEL/{}esv' format(i), header=False, index_label=False)
Tendclass = time time()
Ttotalclass = Tendclass-Tbeginclass
PrInt( s bbbk b bR R R R b4
print('Begin process time for seperate classifications 1s :%1 ' %Tbeginclass)
print('End process time for seperate classifications 1s %1 ' %Tendclass)
PLIE( bbbk bk bk bk b kbbb bbbk h bk bk bbb b bR k)

print(' Totaly %i second ' %Ttotalelass)

for filename in os listdir(SourceFile):
if fnmatch famatch(filename, '* esv")
#prmt(filename)
fin = open(SourceFile+filename, 'rb")
f99out = open(folder75+'75'+filename, "wb")
flout = open(folder25+'25'+ilename, "wb")

for line 1n fin:
r = random.random()
ifr>0.75:
flout.write(line)
else
f99out write(line)
flout write(line)
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3. Partitioning subsystem (LADEL):

99out write(line)
fin close()
99out close()

flout.close()
list75 = os_listdir(folder75)
combmed esv75 = pdconcat ( [pdread csv(folder75+f header=None, engine='python’) for f m list75

].sort=False axis=0)

combied csv75.to_csv( LADELFile+'HIGGS. data.corrected.ordered LADEL75%.csv', header=False)

list25 = os.histdir(folder25)

#print(list25)

combined esv25 = pdconcat ( [pdread csv(folder25+f header=None, engine='python’) for f in list25
] sort=False axis=0)

combmed esv25.to_esv( LADELFile+'HIGGS. data.corrected. ordered LADEL25% csv', header=False)

df = pdread_csv(LADELFile+'HIGGS data corrected ordered LADEL75%.csv' names= names , low_memory = False)
for 1, g in df groupby('class')
g.to_csv(/home/azi/cloud/LADEL/{}csv" format(1), header=False, index_label=False)

The Training dataset is partitioned in number of
##  partno in several sequential splits byLADEL mthds
### and distributed across the processors (MPI tasks) 1n the
## number of MN and CN

EEE TS

Tbegin = time time()

for filename in os listdir(SourceFile):
if fnmatch fomatch(filename, '* esv')
fin = open(SourceFile+filename, ')
file = list(esv reader(fin))
numline = len(file)
length = int(numline / partno[0])
#prnt('length:' length)
folds =]
for11n range (int(partno[0]-1))
folds += [file[1*length: (1+1)*length]]
with open(tempfolder+filename+'%i%i.csv' %(partno[0] i), 'w") as fout:
wr = csv.writer(fout, dialect="excel')
wr.writerows(folds[1])

folds += [file[(partno[0]-1)*length: numline]]

with open(tempfolder+filename+'%1%i.csv' %(partno[0],1+1), 'w") as fout:
wr = esv.writer(fout, dialect="excel)
wr.writerows(folds[1+1])

for 1 in range(partno[0])
listdata = [f for f 1n os.histdir(tempfolder) if fendswith('%e1%1.csv' %(partno[0].1)) and os.stat(tempfolder+f).st size >
0]

combined csv = pdconcat ( [pdread csv(tempfolder+f header=None, engine="python’) for f in listdata
] sort=False axis=0)
combined_csv.to_esv( LADELFile+'HIGGS data.corrected ordered. LADEL. part%i%.csv' %(partno[0].1),

header=False)

Tend = time.time()

Ttotal = Tend-Thegin

print(Begin process time for equal devision 1s :%1 ' %Tbegin)

print(‘End process time for equal devision1s %1 ' %Tend)

DEIE(PFH R ERE R R R R R R )

prnt(’ Totaly %1 second ' %Ttotal)

4. Task partitioning (LADEL):

fLADELsort75 = LADELFile + 'HIGGS data corrected ordered LADEL75% csv'
fLADELsort25 = LADELFile + 'HIGGS. data corrected.ordered LADEL25% csv'
fLADELsortl = HIGGS data corrected ordered LADEL1%_csv'

#HH The task partitioning subsystem Calculates the
### processors needed to divide by partno on each laptop.
## Two-tlurds of the tasks are allocated to the first laptop
## and one-thurd to the second laptop.

## MN is number of master node processors

## CN 1s number of client node processors

###  Tasks are distributed across the processors by MPL

EETEEE S

ifrank == 0: # this 1s master processor or node
for n in partno

TmdILADELcOA =[]
TFTPLADELc0A =[]
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filename = fLADELsort75
print("partition number is
CN.,r= divmod(n,3)
if(CN<landn!=1):

n)

MN=1
CN=1
elifn==1
MN=1
CN=0
else:
MN=n-CN

print(*%1 DataSet(s) are used in Client and %1 1n Master Node' %(CN,MN))

#H send message to other tasks that files are ready for next processes b
#HH save the time of file transfering in vanables HH

Tbegine0 = time.time()
print(Tbeginc0)

for t in range (MN)
TFTPLADELc0A append(0)
print('bagging file 1s ready to transfer')

for1i in range(MN n)
1eqTFTPcO = comm recv(source=i, tag= 4044)
FTPT = reqTFTPcO
TFTPLADELc0A append(FTPT)

5. Training subsystem in master task (LADEL):

# Training in master, #t
# LADEL Algorithm by MLP #

TbeginL ADELc0 = time.time()
fbagname = LADELFile + 'HIGGS .data.corrected.ordered. LADEL. part%i1%i.csv' %(n,rank)

dataframeL ADEL = read_csv ( fbagname, names=name s, low_memory = False)

arrayLADEL = dataframeLADEL values

XLADEL = arrayLADEL [ :,7:43]

YLADEL = arrayLADEL [ :.44]

YLADEL = YLADEL astype('str’)

X_train, X_test, Y_train, Y_test=train_test_split(XLADEL, YLADEL, test_size = 0.01, random_state=9 )
# Fit the LADEL model on 1%

modelLADEL = MLPClassi fier(solver="Ibfgs', alpha=1e- 5 h 1dden layer sizes=(5, 2), random_state=2)

modelLADEL fit (X tram, Y _train)
# save the LADEL model to disk

fbagname = MLPjoblib_meodel LADEL%d%1.sav' %o(n.rank)

dump(modelLADEL , LADELmodel+fbagname)

TendLADELcO = time.time()

TmdILADELc0 = TendLADELcO - ThegimnL ADELc0

TmdILADELc0A append((TmdILADELc0))

for1in range(l,n):
reqmodM = comm irecv(source=1, tag= 1346)
datal = reqmodM wait()
reqTmdILADELcO = comm recv(source=i, tag= 4040)

TmdILADELcOA append((reqTmdILADELc0))

6. Testing subsystem (LADEL):

#HH## Vote-based Ensemble Step (Major-Voting) : In Master Node TR

print(Model 15 recerved from clients’)
TbeginENSM = time.time()
dataframeLADEL = read_csv ( fLADELsort75, names-= names)
arrayLADEL = dataframe LADEL .values
XLADEL = array LADEL [:,7:43]
YLADEL = array LADEL [-,44]
YLADEL = YLADEL astype('str’)
kfold = Kfolds (n_splits=10, random_state=7)
# create the LADEL sub models
estimatorsLADEL = []

for j in range(0.n):
mfLADEL = LADELmode+-"MLPjoblib_model LADEL%d%1 sav' %(n,j)
modelLADEL = load(mfLADEL)
estimatorsLADEL append(('modelLADEL%:i' %j, modeILADEL) )

# create the LADEL ensemble model

ensembleLADEL = Voting Classifier(estimatorsLADEL)
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resultsLADEL = cross_val_sco re ( ensembleLADEL, X, Y, cv=kfold)

print ( Mean results of voting m LADEL 1s - resultsLADEL mean())
print('ensemble LADEL 15 - resultsLADEL)

TendENSM = time.time()
TENSM = TendENSM - TbeginENSM

#i# Testing data in master task #iH

dataframeLADEL = read_csv ( {LADELsort 25, nnames=names, low_memory = False)
arrayLADEL = dataframeLADEL .values

X _test=arrayLADEL [:7:43]

Y_test=arrayLADEL [:44]

Y_test="7Y_test astype('str)

# Testing in master task #
# LADEL Algorithm #

TbeginTESTLADEL = time time()

loaded modelLADEL = ensembleLADEL fit(X test, Y_test)
print('TbeginTESTLADEL 1s: ', TbeginTESTLADEL)

accuracyLADEL = loaded modelLADEL. score(X test, Y test)
print('The Accuracy of disjont partition(LADEL) 1s : ',accuracyLADEL)
ynewLADEL = loaded modelLADEL predict(X_test)

#print(X_test, ynewLADEL)

print('The Predicted result of LADEL method is produced.”)

TendTESTLADEL = time.time()
TTESTLADEL = TendTESTLADEL - TbeginTESTLADEL

7. Save outputs in Excel file:

# save outputs m #
i EXCEL file Fii

workbook = xlsxwriter Workbook(RPTfolder+'MultiNode-LADEL-MLP-TestScore-part%i xlsx' %n)
worksheetn = workbook.add worksheet()

#currency_format = workbook.add_format({'num_format": '$# ##0'})

# Some sample data for the table.

data=1]

print( TFTPLADELcOA' TFTPLADELc0A)

print(TmdILADELcOA' TmdILADELc0A)

foriin range(n):

data.append(['SORTED", 1, 1, LADEL'MLP' resultsLADEL.mean(),accuracyLADEL,§,
stt(TFTPLADELcOA[1]), str(TmdILADELcOA[1]), TENSM])

caption = MULTI-Node Ensemble and single Classifier.'
worksheetn set_column('B'L', 12)
worksheetn write('B1', caption)
worksheetn.add_table('B3:L52', {'data": data
'style": 'Table Style Light 11",
‘columns': [{'header': 'ORDER'"}
{'header” NWODE #'}
{'header" 'Part #'}
{'header": 'partitioning Method'}
{'header" 'Classifier'},
{'header": 'SRV Cross-Val-Score'}
{'header": 'SRV Test-Score'}
{'header": 'SRV Time of partitioning'}
{'header": 'Time of Transfering'},
{'header" 'Time of Training'}
{'header" ' Ensemble-Scoring Time'}

1

workbool close()

8. Task partitioning in other tasks than master:
else: # rank 15 not 0
for n 1n partno:

CN,r= divmod(n,3)
fCN<1

MN=1

CN=1
else:

MN=n-CN

if rank < MN : # rank 1s not 0 and 1s run on ASUS (one-third of tasks)
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9. Training Subsystem in other tasks (one-third of tasks):

# Traming in first laptop #H
#t LADEL Algorithm #

TbeginLADELcO = time.time()
foagname = LADELFile + 'HIGGS.data.corrected.ordered LADEL .part%1%1.csv' %(n.rank)

dataframeLADEL =rea d_csv( fbagname, names=names, low_memory = False)

arrayLADEL = dataframe LADEL values

XLADEL =arrayLADEL [:,7:43]

YLADEL = arrayLADEL [ :44]

YLADEL = YLADEL a stype('str')

X train, X test, ¥ frain, Y test=train test split (XLADEL , YLADEL , test size=0.33, random _state=9)
# Fit LADEL model on 33%

model = MLPClassifier(solver="lbfgs’, alpha=1e-5 hidden_layer_sizes=(5, 2), random_state=2)

model fit(X_train, Y_train)

# save the model to disk

fbagname = MLPjoblib_model LADEL%d%i. sav' %(n rank)

dump(model, LADELmodel+fbagname)

TendLADELc0 = time time()

TmdILADELc( = TendLADELc0 - TbeginLADELc0

reqTmdILADELcO = comm.send(TmdILADELcO, dest=0, tag= 4040)

reqmodM = comm isend('models’, dest=0, tag= 1346)
reqmodM.wait()
10. File transferring:

elifrank <n: #rank 1s not 0 and 1s run on SONY

#HH FTP Step : The Training datasts are HERH
HHH distributed across the tasks and nodes HEHH

print(Bagging Transformation from processor %1 1s started.' %erank)

TbeginF TP = time time()

from fiplib import FTP

#domain name or server ip

ftp = FTP('client")

fip.login(user="az1', passwd = 'empe1234')
ftp.cwd(/home/azi/cloudC 1/LADEL/data/")
os.chdir('/home/azi/cloud/LADEL/data/")

def placeFile()

filename = 'HIGGS .data.corrected.ordered LADEL part%1%a.csv' %(n,rank)
ftp.storbinary('STOR '+filename, open(filename, 'tb"))
ftp.quit()

placeFile()

print(File 15 Transfered’)

TendFTP = time.time()

TFTPcO = TendFTP - TheginFTP

reqTFTPc0 = comm.send(TFTPe0, dest=0, tag=4044)

11. Training subsystem in other tasks (two-third of tasks):

# Training in second laptop #
# LADEL Algorithm #

TbeginLADELc0 = time. time()
filename = LADELFileC + 'HIGGS.data.corrected.ordered LADEL. part%i%i.csv' %(n,rank)

dataframeTLADEL = read_csv( { ilename, names=-names , low_memory = False)

arrayTLADEL = dataframe TLADEL values

XTLADEL = arrayTLADEL [ :,7:43]

YTLADEL = arrayTLADEL [ :44]

YTLADEL = YTLADEL a stype('str')

X train, X test, Y train, Y test=tram test spht ( XTLADEL, YTLADEL , test size=0.01, random state=9)
#Fit TLADEL model on 1%

modelTLADEL = MLPClassifier(s olver='Ibfgs', alpha=1e-5 hi dden_layer_sizes=(5, 2), random_state=2)

modelTLADEL fit(X_tram, Y_tram)
# save TLADEL model to disk

filename TLADEL = MLPjoblib_model LADEL%d% sav' %(n,rank)

dump(modelTLADEL , LADELmodel+filenameTLADEL)

TendLADELcO = ttime time()

TmdILADELc( = TendLADELc0 - TbeginLADELc0

reqTmdILADELcO = comm.send(TmdILADELcO, dest=0, tag= 4040)

reqmodM = comm isend('models’, dest=0, tag= 1346)
reqmodM.wait()
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5) DELS system for LADEL model by CART (Python source code):

All sections are the same with the MLP classification. The differences are coded
in the following lines.
1. Definitions and inputs:

from sklearn tree import DecisionTreeClassifier

9 .Training subsystem in master and other tasks (LADEL):

fbagname = LADELFile + 'HIGGS data.corrected.ordered. LADEL part%i%i.csv' %o(n,rank)

dataframeMLPLADEL = read_csv(fbagname, names=na-mes , low_memory = False)
arrayMLPLADEL = dataframeMLPLADEL values

XMLPLADEL = arrayMLPLADEL [,7:43]

YMLPLADEL = arrayMLPLADEL [-44]

TYMLPLADEL = YMLPLADEL astype('str")

seed=7

num_trees = 100

max_features = 3

Ikfold = KFold(n_splits=10, rando m_state=seed)

# Bagged Decision Trees Model

X train, X test, Y_train, Y_test = train_test_split (XMLPLADEL, YMLPLADEL, test_size= 0.01, random_state =

cart = DecisionTreeClassifier()
modeIMLPLADEL = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=seed)
modeIMLPLADEL fit (X _train, Y_train)
# save the model MLPLADEL to disk
fbagname = 'CARTjoblib_model LADEL%d%:1 sav' %(n,rank)
dump(modelMLPLADEL, LADELmodel+fbagname)
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Appendix B: Experimental results of DELS

Table B.1: Implementation of the subsystem of data partitioning by DSS. single-
node, single-classifier single-classifier (CART) for 2 disjoint partitions:

le Ensemble and Classifier.

NODE# Part# Partitionin Classifier Accuracy STD SEM Runtime(Se

2 0D Decision Tree-CART = 0.999427 0.000584419 0.00018481 360
2 0 DB Decision Tree-CART  0.999182 0.000484216 0.000153123 360
2 0 SB Decision Tree-CART  0.999304 0.000550564 0.000174104 360
2 0 NRSB Decision Tree-CART = 0.999263 0.000703935 0.000222604 360
2 1D Decision Tree-CART = 0.999304 0.000777647 0.000245914 360
2 1 DB Decision Tree-CART  0.999468 0.00045016 0.000142353 360
2 1 SB Decision Tree-CART  0.999509 0.000477211 0.000150907 360

ORDER: order of input dataset ACCURACY:: Mean of cross validation score on 10 fold

NODE: number of processor on one or more systems STD: Standard Deviation

PART#: processor rank number SEM: Standard Error of Mean

PARTITION: method of partitioning input dataset CP (MASTER:CLIENT): no of processors used in

master and client machines controlled by MPI command
CLASSIFIER: type of usage classifier

Z?:l(xi_f)z
n-1

Standard Error of Mean (SEM) (¢3) = %

Where ¥ = the sample’s mean & n = the sample size

Standard deviation ¢ = Variance = ¢?

Table B.2: Implementation of the subsystem of data partitioning by DSS. single-
node, single-classifier (CART) for 4 disjoint partitions:

e Ensemble and Classifier.

NODE # Part # Partition Classifier Accuracy Standard D¢ Standard Erri Runtime(Se
4 0D Decision Tree-CART  0.998445 0.0008543 0.0002702 300
4 0 DB Decision Tree-CART  0.999018 0.0008019 0.0002536 300
4 0SB Decision Tree-CART 0.9991 0.0008544 0.0002702 300
4 0 NRSB  Decision Tree-CART 0.998526 0.001409 0.0004456 300
4 1D Decision Tree-CART  0.998936 0.0007367  0.000233 300
4 1 DB Decision Tree-CART  0.999182 0.0007319 0.0002315 300
4 1SB Decision Tree-CART  0.999182 0.0008964 0.0002835 300
4 1 NRSB  Decision Tree-CART 0.998854 0.001048 0.0003314 300
4 2D Decision Tree-CART  0.998527 0.0014553 0.0004602 300
4 2 DB Decision Tree-CART  0.999182 0.0009683 0.0003062 300
4 2 SB Decision Tree-CART  0.999345 0.0006124 0.0001937 300
4 2 NRSB  Decision Tree-CART 0.99869 0.001048 0.0003314 300
4 3D Decision Tree-CART  0.998854 0.0012247 0.0003873 300
4 3 DB Decision Tree-CART 0.9991 0.0006797 0.000215 300
4 3 SB Decision Tree-CART 0.998854 0.001473 0.0004658 300
4 3 NRSB  Decision Tree-CART 0.9991 0.0006797  0.000215 300
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Table B.3: Implementation of the subsystem of data partitioning by DSS. single-
node, single-classifier (CART) for 6 disjoint partitions:
e Ensemble and Classifier.

NODE # Part # Partition Classifier

6

[N «) Bie) B« ) Bie) I @ ) @) I @) BN« ) (@) B @ ) Bl ) B @ ) i@ ) B @ ) B« ) Il @) B @ ) B e ) B @ ) Bl o) B @ ) B @) |

0D

0 DB
0SB

0 NRSB
1D

1 DB
1SB

1 NRSB
2D

2 DB

2 SB

2 NRSB
3D

3 DB
3SB

3 NRSB
4D

4 DB

4 SB

4 NRSB
5D

5 DB
55SB

5 NRSB

Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART
Decision Tree-CART

Accuracy
0.998771951
0.998035905
0.998772855
0.999140803
0.998649553
0.998772252
0.999017802
0.998403853
0.998772252
0.998036056
0.998649704
0.998526552
0.998772102
0.998895103
0.998649553
0.998035905
0.998035905
0.998895253
0.998158756
0.998158756
0.998158756
0.998158756
0.998158756
0.998158756
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Standard Deviat Standard Error of IV Runtime(S¢

0.001648207
0.001472946
0.001344105
0.000785801
0.001281525
0.000776496
0.0007369
0.001105618
0.001345206
0.001664265
0.0011578
0.00107081
0.001098468
0.000859413
0.000859219
0.001664865
0.000982048
0.001157592
0.001669946
0.000951204
0.000859628
0.001203496
0.001019654
0.001234299

0.000521209
0.000465786
0.000425043
0.000248492
0.000405254

0.00024555
0.000233028
0.000349627
0.000425391
0.000526287
0.000366128

0.00033862
0.000347366

0.00027177
0.000271709
0.000526477
0.000310551
0.000366063
0.000528083
0.000300797
0.000271838
0.000380579
0.000322443

0.00039032

240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240



Table B.4: Implementation of the subsystem of data partitioning by DSS. single-
node, single-classifier (CART) for 8 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE {Part # Partitionin Classifier ~ Accuracy Standard C Standard E Runtime(S¢

RANDOM 8 0D Decision Tre  0.99869 0.001764 0.000558 180
RANDOM 8 0 DB Decision Tre  0.9982 0.00136 0.00043 180
RANDOM 8 0SB Decision Tre 0.998363 0.001637 0.000518 180
RANDOM 8 0 NRSB Decision Tre 0.999018 0.0015 0.000474 180
RANDOM 8 1D Decision Tre 0.998691 0.001225 0.000387 180
RANDOM 8 1DB Decision Tre 0.997709 0.002096 0.000663 180
RANDOM 8 1SB Decision Tre  0.99869 0.000982 0.000311 180
RANDOM 8 1 NRSB Decision Tre 0.998363 0.001937 0.000612 180
RANDOM 8 2D Decision Tre 0.998199 0.001859 0.000588 180
RANDOM 8 2 DB Decision Tre 0.998691 0.001604 0.000507 180
RANDOM 8 2 SB Decision Tre 0.998199 0.001859 0.000588 180
RANDOM 8 2 NRSB Decision Tre 0.999182 0.001098 0.000347 180
RANDOM 8 3D Decision Tre 0.998854 0.001278 0.000404 180
RANDOM 8 3 DB Decision Tre 0.998691 0.000982 0.000311 180
RANDOM 8 3 SB Decision Tre  0.99869 0.001429 0.000452 180
RANDOM 8 3 NRSB Decision Tre  0.99869 0.001604 0.000507 180
RANDOM 8 4D Decision Tre 0.998199 0.001146 0.000363 180
RANDOM 8 4 DB Decision Tre 0.998691 0.001225 0.000387 180
RANDOM 8 4 SB Decision Tre 0.998854 0.001278 0.000404 180
RANDOM 8 4 NRSB Decision Tre 0.997872 0.002077 0.000657 180
RANDOM 8 5D Decision Tre 0.997217 0.001944 0.000615 180
RANDOM 8 5 DB Decision Tre 0.999018 0.001669 0.000528 180
RANDOM 8 5SB Decision Tre 0.997544 0.002227 0.000704 180
RANDOM 8 5 NRSB Decision Tre 0.998198 0.00237 0.000749 180
RANDOM 8 6D Decision Tre  0.99869 0.001226 0.000388 180
RANDOM 8 6 DB Decision Tre 0.998527 0.00136 0.00043 180
RANDOM 8 6 SB Decision Tre 0.998363 0.001268 0.000401 180
RANDOM 8 6 NRSB Decision Tre 0.998199 0.001546 0.000489 180
RANDOM 8 7D Decision Tre 0.998526 0.001147 0.000363 180
RANDOM 8 7 DB Decision Tre 0.998199 0.001862 0.000589 180
RANDOM 8 7 SB Decision Tre 0.999018 0.001086 0.000343 180
RANDOM 8 7 NRSB Decision Tre 0.998854 0.001048 0.000331 180
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Table B.5: Implementation of the subsystem of data partitioning by DSS. single-
node, single-classifier (CART) for 10 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER

RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

0D

0 DB
0SB

0 NRSB
1D
1DB
1SB

1 NRSB
2D

2 DB

2 SB

2 NRSB
3D

3 DB
3SB

3 NRSB
4D

4 DB

4 SB

4 NRSB
5D

5 DB

5 SB

5 NRSB
6D

6 DB

6 SB

6 NRSB
7D

7 DB

7 SB

7 NRSB
8D

8 DB

8 SB

8 NRSB
9D

9 DB

9 SB

9 NRSB

NODE Part # Partitic Classifier

Decision T
Decision T
Decision T
Decision T
Decision T
Decision Ti
Decision Ti
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision T
Decision Ti
Decision Ti
Decision T
Decision T
Decision T
Decision T
Decision T

Accuracy

0.998976667

0.99856725
0.998363589
0.999182004
0.997747997

0.99856725

0.99815909
0.997749254
0.998976667
0.997341094
0.997544755
0.997750092
0.998158671
0.997341094
0.998159509
0.999181166
0.997953334
0.998977086

0.99836317
0.998773006
0.998157833
0.998772587
0.998568088
0.997954591
0.998157833

0.99795501
0.998772587
0.997340675
0.998158671
0.997750511
0.997750092
0.998362751
0.998156995
0.997748416
0.998158252
0.997953753
0.998772168
0.998363589
0.998158671
0.998159509
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0.001373696
0.001843705
0.001530443
0.001356493
0.002138004
0.001311332
0.001698747
0.001102586
0.001372446
0.002594702
0.002004273
0.001101184
0.002956466
0.002249375
0.001698696
0.001358515
0.001585126
0.001372134
0.0020047
0.002085489
0.002137603
0.001356746
0.001309629
0.002419665
0.001432932
0.002419665
0.001356746
0.00275169
0.001929329
0.002135032
0.002322625
0.002006497
0.001702027
0.001932573
0.001930263
0.002421792
0.00163746
0.001530443
0.001431614
0.001698696

0.0004344
0.00058303
0.00048397
0.00042896

0.0006761
0.00041468
0.00053719
0.00034867
0.00043401
0.00082052
0.00063381
0.00034822
0.00093492
0.00071131
0.00053717

0.0004296
0.00050126
0.00043391
0.00063394
0.00065949
0.00067597
0.00042904
0.00041414
0.00076517
0.00045313
0.00076517
0.00042904
0.00087016
0.00061011
0.00067516
0.00073448
0.00063451
0.00053823
0.00061113

0.0006104
0.00076584
0.00051781
0.00048397
0.00045272
0.00053717

Standard Deviatic Standard Erro Runtime(Se

120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120



Table B.6: Implementation of the subsystem of data partitioning by DSS. single-

node, single-classifier (CART) for 12 disjoint partitions:

ORDER

RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

0D

0 DB

0 SB
NRSB
D
DB
SB
NRSB
D
DB
SB
NRSB
D
DB
SB
NRSB
D
DB
SB
NRSB
D
DB
SB
NRSB
D

DB
SB
NRSB
D

DB
SB
NRSB
D

DB
SB
NRSB
D

DB
SB
NRSB
D

DB
SB
NRSB
D

DB
SB
NRSB

O O VW WO0WOoMWOWOOWNNNNOOTOODIOITOOTULUUUDESDEDWWWWNNNNERRERRRELRDO

P R R RPRRPRRRPR
B R R RP OOOOo

NODE # Part # Partition Classifier

CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART
CART

Accuracy
0.9970546081
0.9982813027
0.9985264007
0.9977893000
0.9987714988
0.9992635015
0.9982819049
0.9985257985
0.9972997061
0.9973009105
0.9980350002
0.9975448042
0.9968077034
0.9982807005
0.9985264007
0.9977899022
0.9973003083
0.9977929132
0.9970540059
0.9985264007
0.9985270029
0.9990171990
0.9980343980
0.9995092017
0.9972991039
0.9980374091
0.9975429975
0.9987727032
0.9985264007
0.9968089078
0.9992635015
0.9977899022
0.9982800983
0.9987721010
0.9985257985
0.9965607988
0.9982813027
0.9982825071
0.9987721010
0.9977899022
0.9985276051
0.9973003083
0.9987721010
0.9985276051
0.9972985017
0.9985282074
0.9980374091
0.9987733054
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Standard Deviat Standard Error of Runtime(S¢

0.0018362429
0.0015726866
0.0016294289
0.0027905659
0.0016482074
0.0011250212
0.0019167468
0.0036773046
0.0023143606
0.0031878991
0.0021418277
0.0019016343
0.0019196761
0.0024690778
0.0019653017
0.0017197313
0.0033745387
0.0029919025
0.0026456046
0.0016294289
0.0019634964
0.0016297911
0.0024073609
0.0009815975
0.0027897195
0.0028586209
0.0021976098
0.0016473112
0.0019653017
0.0022082961
0.0011250212
0.0023178051
0.0022113022
0.0016477594
0.0019656020
0.0029486042
0.0022109020
0.0024649449
0.0016477594
0.0027905133
0.0016268879
0.0025631708
0.0016477594
0.0016268879
0.0023180604
0.0019613879
0.0021371314
0.0025132726

0.0005806710
0.0004973272
0.0005152707
0.0008824544
0.0005212089
0.0003557629
0.0006061286
0.0011628658
0.0007318651
0.0010081022
0.0006773054
0.0006013496
0.0006070549
0.0007807910
0.0006214830
0.0005438268
0.0010671228
0.0009461226
0.0008366136
0.0005152707
0.0006209121
0.0005153852
0.0007612744
0.0003104084
0.0008821868
0.0009039753
0.0006949452
0.0005209255
0.0006214830
0.0006983245
0.0003557629
0.0007329543
0.0006992752
0.0005210673
0.0006215779
0.0009324305
0.0006991486
0.0007794840
0.0005210673
0.0008824378
0.0005144671
0.0008105458
0.0005210673
0.0005144671
0.0007330351
0.0006202453
0.0006758203
0.0007947666



Appendix C: Experimental results of DELS system

Table C.1: Implementation of the subsystem of data partitioning by DSS, single-
node, single-classifier (MLP) for 2 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER  NODE # Part # Partitioning Me Classifier Accuracy Standard Deviation  Standard Error of Runtime(S¢
RANDOM 2 0D MLP 0.9736045 0.004949548 0.001565185 4080
RANDOM 2 0 DB MLP 0.97205079 0.003352801 0.001060249 4080
RANDOM 2 0 SB MLP 0.97176267 0.00413519 0.001307662 4080
RANDOM 2 0 NRSB MLP 0.97638706 0.005039876 0.001593749 4080
RANDOM 2 1D MLP 0.97155725 0.003165296 0.001000955 4080
RANDOM 2 1 DB MLP 0.97761536 0.005537967 0.001751259 4080
RANDOM 2 1SB MLP 0.97196759 0.002641358 0.000835271 4080
RANDOM 2 1 NRSB MLP 0.97753279 0.005803803 0.001835324 4080
MEAN Accuracy Mean SEM MA - SEM MA + SEM

D 0.972580875 0.00128307 0.971297805 0.97386394

DB 0.974833076 0.001405754 0.973427322 0.97623883

SB 0.971865129 0.001071466 0.970793663  0.9729366

NRSB 0.976959924 0.001714536 0.975245387 0.97867446

ORDER: order of input dataset

NODE: number of processor on one or more systems
PART#: processor rank number

PARTITION: method of partitioning input dataset

ACCURACY:: Mean of cross validation score on 10 fold
STD: Standard Deviation

SEM: Standard Error of Mean

CP (MASTER:CLIENT): no of processors used in
master and client machines controlled by MPI command
CLASSIFIER: type of usage classifier

no N2 .
Standard deviation ¢ = /Zz=1é+x) Variance = ¢?

Standard Error of Mean (SEM) (¢z) = %

Where i = the sample’s mean & n = the sample size

Table C.2: Implementation of the subsystem of data partitioning by DSS, single-
node, single-classifier (MLP) for 4 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER

RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM

NODE # Part # Partitior Classifier Accuracy
RANDOM 4

A BB EAEEPLELEPH

0D

0 DB
0SB

0 NRSB
1D
1DB
1SB

1 NRSB
2D

2 DB

2 SB

2 NRSB
3D

3 DB

3 SB

3 NRSB

MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP

0.969471041
0.967346531
0.971517873
0.971926435
0.969717545
0.969064824
0.970780437
0.969471845
0.967997644
0.972829145
0.970699341
0.965869716
0.967668301
0.970290042
0.967916548
0.968815438
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0.003377356
0.007678578
0.004101962
0.00310987
0.004434248
0.003327991
0.0051135
0.005912589
0.005998723
0.003869979
0.00388437
0.004500544
0.003910078
0.004714657
0.003054454
0.005150237

0.001068014

0.00242818
0.001297154
0.000983427
0.001402232
0.001052403
0.001617031
0.001869725
0.001896963
0.001223795
0.001228346
0.001423197
0.001236475
0.001490905
0.000965903
0.001628648

Standard Devial Standard Error o Runtime(Se

2520
2520
2520
2520
2520
2520
2520
2520
2520
2520
2520
2520
2520
2520
2520
2520



Table C.3: Implementation of the subsystem of data partitioning by DSS, single-
node, single-classifier (MLP) for 6 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE # Part# Partitionin Classifier Accuracy Standard C Standard E Runtime(Se

RANDOM 6 0D MLP 0.966117 0.006245 0.001975 1440
RANDOM 6 0 DB MLP 0.968947 0.004385 0.001387 1440
RANDOM 6 0SB MLP 0.965137 0.00485 0.001534 1440
RANDOM 6 0 NRSB MLP 0.970904 0.006738 0.002131 1440
RANDOM 6 1D MLP 0.970412 0.004953 0.001566 1440
RANDOM 6 1 DB MLP 0.966363 0.004985 0.001576 1440
RANDOM 6 1SB MLP 0.966609 0.006543 0.002069 1440
RANDOM 6 1 NRSB MLP 0.968696 0.005631 0.001781 1440
RANDOM 6 2D MLP 0.969429 0.005361 0.001695 1440
RANDOM 6 2 DB MLP 0.967962 0.007426 0.002348 1440
RANDOM 6 2 SB MLP 0.968329 0.007082 0.00224 1440
RANDOM 6 2 NRSB MLP 0.967714 0.006016 0.001902 1440
RANDOM 6 3D MLP 0.969185 0.006287 0.001988 1440
RANDOM 6 3 DB MLP 0.967223 0.0069 0.002182 1440
RANDOM 6 3SB MLP 0.970292 0.004352 0.001376 1440
RANDOM 6 3 NRSB MLP 0.966363 0.006175 0.001953 1440
RANDOM 6 4D MLP 0.967712 0.00583 0.001844 1440
RANDOM 6 4 DB MLP 0.971154 0.005027 0.00159 1440
RANDOM 6 4 SB MLP 0.967101 0.006714 0.002123 1440
RANDOM 6 4 NRSB MLP 0.96698 0.006449 0.002039 1440
RANDOM 6 5D MLP 0.967955 0.006152 0.001946 1440
RANDOM 6 5 DB MLP 0.967224 0.005029 0.00159 1440
RANDOM 6 5SB MLP 0.963909 0.007804 0.002468 1440
RANDOM 6 5 NRSB MLP 0.968573 0.005097 0.001612 1440
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Table C.4: Implementation of the subsystem of data partitioning by DSS, single-
node, single-classifier (MLP) for 8 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE # Part# Partitionin Classifier Accuracy Standard C Standard E Runtime(Se

RANDOM 8 0D MLP 0.965625 0.005069 0.001603 1140
RANDOM 8 0 DB MLP 0.964648 0.007179 0.00227 1140
RANDOM 8 0SB MLP 0.962023 0.004622 0.001462 1140
RANDOM 8 0 NRSB MLP 0.969228 0.009278 0.002934 1140
RANDOM 8 1D MLP 0.964315 0.004256 0.001346 1140
RANDOM 8 1 DB MLP 0.963993 0.007607 0.002405 1140
RANDOM 8 1SB MLP 0.965134 0.007019 0.00222 1140
RANDOM 8 1 NRSB MLP 0.962839 0.005692 0.0018 1140
RANDOM 8 2D MLP 0.962841 0.006128 0.001938 1140
RANDOM 8 2 DB MLP 0.963339 0.010226 0.003234 1140
RANDOM 8 2 SB MLP 0.965788 0.007154 0.002262 1140
RANDOM 8 2 NRSB MLP 0.966116 0.005279 0.00167 1140
RANDOM 8 3D MLP 0.968572 0.00556 0.001758 1140
RANDOM 8 3 DB MLP 0.96743 0.008198 0.002592 1140
RANDOM 8 3SB MLP 0.96546 0.007628 0.002412 1140
RANDOM 8 3 NRSB MLP 0.96726 0.005684 0.001798 1140
RANDOM 8 4D MLP 0.964475 0.011642 0.003681 1140
RANDOM 8 4 DB MLP 0.965794 0.006187 0.001956 1140
RANDOM 8 4 SB MLP 0.967588 0.00764 0.002416 1140
RANDOM 8 4 NRSB MLP 0.963496 0.006129 0.001938 1140
RANDOM 8 5D MLP 0.96677 0.004808 0.00152 1140
RANDOM 8 5 DB MLP 0.964975 0.007179 0.00227 1140
RANDOM 8 5SB MLP 0.964152 0.01114 0.003778 1140
RANDOM 8 5 NRSB MLP 0.964152 0.00726 0.002296 1140
RANDOM 8 6D MLP 0.966935 0.011284 0.003568 1140
RANDOM 8 6 DB MLP 0.969231 0.00767 0.002425 1140
RANDOM 8 6 SB MLP 0.963497 0.009821 0.003106 1140
RANDOM 8 6 NRSB MLP 0.962023 0.00393 0.001243 1140
RANDOM 8 7D MLP 0.967913 0.006125 0.001937 1140
RANDOM 8 7 DB MLP 0.969881 0.006872 0.002173 1140
RANDOM 8 7 SB MLP 0.96628 0.008286 0.00262 1140
RANDOM 8 7 NRSB MLP 0.967262 0.00828 0.002618 1140
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Table C.5: Implementation of the subsystem of data partitioning by DSS, single-
node, single-classifier (MLP) for 10 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE# Part# Partitionin Classifier Accuracy Standard C Standard E Runtime(Se

RANDOM 10 0D MLP 0.965223 0.007365 0.002329 840
RANDOM 10 0 DB MLP 0.961545 0.008429 0.002665 840
RANDOM 10 0SB MLP 0.963996 0.008869 0.002805 840
RANDOM 10 0 NRSB MLP 0.967066 0.008445 0.00267 840
RANDOM 10 1D MLP 0.964193 0.007874 0.00249 840
RANDOM 10 1 DB MLP 0.96256 0.007608 0.002406 840
RANDOM 10 1SB MLP 0.966447 0.008644 0.002733 840
RANDOM 10 1 NRSB MLP 0.966244 0.006224 0.001968 840
RANDOM 10 2D MLP 0.965218 0.008116 0.002567 840
RANDOM 10 2 DB MLP 0.962153 0.004105 0.001298 840
RANDOM 10 2 SB MLP 0.96338 0.008603 0.002721 840
RANDOM 10 2 NRSB MLP 0.962973 0.007275 0.002301 840
RANDOM 10 3D MLP 0.962347 0.008697 0.00275 840
RANDOM 10 3 DB MLP 0.962967 0.010579 0.003345 840
RANDOM 10 3 SB MLP 0.949469 0.006333 0.002003 840
RANDOM 10 3 NRSB MLP 0.962356 0.010876 0.003439 840
RANDOM 10 4D MLP 0.964801 0.007831 0.002476 840
RANDOM 10 4 DB MLP 0.963991 0.006684 0.002114 840
RANDOM 10 4 SB MLP 0.959288 0.006303 0.001993 840
RANDOM 10 4 NRSB MLP 0.96461 0.010818 0.003421 840
RANDOM 10 5D MLP 0.963778 0.007452 0.002356 840
RANDOM 10 5 DB MLP 0.963788 0.008492 0.002685 840
RANDOM 10 5 SB MLP 0.964404 0.006006 0.001899 840
RANDOM 10 5 NRSB MLP 0.963996 0.006469 0.002046 840
RANDOM 10 6D MLP 0.959281 0.008449 0.002672 840
RANDOM 10 6 DB MLP 0.963585 0.008072 0.002552 840
RANDOM 10 6 SB MLP 0.954991 0.005262 0.001664 840
RANDOM 10 6 NRSB MLP 0.964814 0.009576 0.003028 840
RANDOM 10 7D MLP 0.964804 0.005773 0.001825 840
RANDOM 10 7 DB MLP 0.963994 0.006353 0.002009 840
RANDOM 10 7 SB MLP 0.960106 0.005113 0.001617 840
RANDOM 10 7 NRSB MLP 0.963994 0.00733 0.002318 840
RANDOM 10 8D MLP 0.963985 0.006163 0.001949 840
RANDOM 10 8 DB MLP 0.965426 0.007228 0.002286 840
RANDOM 10 8 SB MLP 0.964605 0.007329 0.002318 840
RANDOM 10 8 NRSB MLP 0.959904 0.010467 0.00331 840
RANDOM 10 9D MLP 0.965626 0.006698 0.002118 840
RANDOM 10 9 DB MLP 0.966654 0.010469 0.003311 840
RANDOM 10 9 SB MLP 0.963994 0.008038 0.002542 840
RANDOM 10 9 NRSB MLP 0.964608 0.01015 0.00321 840
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Table C.6: Implementation of the subsystem of data partitioning by DSS, single-
node, single-classifier (MLP) for 12 disjoint partitions:

RANDOM 12 0D MLP 0.958753 0.0087 0.002751 780
RANDOM 12 0 DB MLP 0.960733 0.010213 0.00323 780
RANDOM 12 0 SB MLP 0.96317 0.012086 0.003822 780
RANDOM 12 0 NRSB MLP 0.963662 0.008847 0.002798 780
RANDOM 12 1D MLP 0.961944 0.007472 0.002363 780
RANDOM 12 1 DB MLP 0.958519 0.007635 0.002414 780
RANDOM 12 1SB MLP 0.95753 0.013689 0.004329 780
RANDOM 12 1 NRSB MLP 0.961215 0.008732 0.002761 780
RANDOM 12 2D MLP 0.964647 0.010066 0.003183 780
RANDOM 12 2 DB MLP 0.961711 0.006685 0.002114 780
RANDOM 12 2 SB MLP 0.961942 0.009346 0.002956 780
RANDOM 12 2 NRSB MLP 0.961209 0.006831 0.00216 780
RANDOM 12 3D MLP 0.966117 0.003941 0.001246 780
RANDOM 12 3 DB MLP 0.961951 0.004842 0.001531 780
RANDOM 12 3SB MLP 0.960959 0.011553 0.003653 780
RANDOM 12 3 NRSB MLP 0.960965 0.009403 0.002974 780
RANDOM 12 4 D MLP 0.966363 0.00572 0.001809 780
RANDOM 12 4 DB MLP 0.968091 0.008769 0.002773 780
RANDOM 12 4 SB MLP 0.965135 0.006842 0.002164 780
RANDOM 12 4 NRSB MLP 0.964643 0.010377 0.003281 780
RANDOM 12 5D MLP 0.96317 0.011938 0.003775 780
RANDOM 12 5 DB MLP 0.964897 0.008935 0.002826 780
RANDOM 12 5SB MLP 0.96096 0.012637 0.003996 780
RANDOM 12 5 NRSB MLP 0.966854 0.0053 0.001676 780
RANDOM 12 6D MLP 0.956298 0.012408 0.003924 780
RANDOM 12 6 DB MLP 0.966861 0.009143 0.002891 780
RANDOM 12 6 SB MLP 0.965622 0.012539 0.003965 780
RANDOM 12 6 NRSB MLP 0.945737 0.014838 0.004692 780
RANDOM 12 7D MLP 0.961697 0.011544 0.003651 780
RANDOM 12 7 DB MLP 0.95311 0.010596 0.003351 780
RANDOM 12 7 SB MLP 0.954341 0.011959 0.003782 780
RANDOM 12 7 NRSB MLP 0.963654 0.014031 0.004437 780
RANDOM 12 8D 0.960466 0.01104 0.003491 780
RANDOM 12 8 DB MLP 0.958757 0.010953 0.003464 780
RANDOM 12 8 SB MLP 0.965382 0.007872 0.002489 780
RANDOM 12 8 NRSB MLP 0.960225 0.007435 0.002351 780
RANDOM 12 9D MLP 0.963165 0.009631 0.003046 780
RANDOM 12 9 DB MLP 0.96341 0.012564 0.003973 780
RANDOM 12 9 SB MLP 0.957523 0.009588 0.003032 780
RANDOM 12 9 NRSB MLP 0.965132 0.010478 0.003313 780
RANDOM 12 10D MLP 0.956777 0.007791 0.002464 780
RANDOM 12 10 DB MLP 0.961938 0.009425 0.00298 780
RANDOM 12 10 SB MLP 0.957771 0.007347 0.002323 780
RANDOM 12 10 NRSB MLP 0.961944 0.007712 0.002439 780
RANDOM 12 11D MLP 0.957514 0.009396 0.002971 780
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Appendix D: Experimental results of DELS system

Table D.1: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (CART) for 2 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER NODE # Part# Partitionin Classifier Accuracy Standard C Standard E CP (Mastet Runtime(St
RANDOM 2 0D Decision Tree-CART ~ 0.999468 0.000686 0.000217 1:1 540
RANDOM 2 0 DB Decision Tree-CART ~ 0.999304 0.000661 0.000209 1:1 540
RANDOM 2 0 SB Decision Tree-CART ~ 0.999304 0.000519 0.000164 1:1 540
RANDOM 2 0 NRSB Decision Tree-CART ~ 0.999141 0.000532 0.000168 1:1 540
RANDOM 2 1D Decision Tree-CART ~ 0.999304 0.00045 0.000142 1:1 540
RANDOM 2 1 DB Decision Tree-CART ~ 0.999468 0.000368 0.000116 1:1 540
RANDOM 2 1SB Decision Tree-CART 0.99955 0.00034 0.000108 1:1 540
RANDOM 2 1 NRSB Decision Tree-CART ~ 0.999386 0.000526 0.000166 1:1 540

CP (Master: Client) = number of processor of master and client systems in MPI

Table D.2: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (CART) for 4 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER NODE # Part # Partition Classifier Accuracy Standard Deviation Standard Error of |CP (Master Runtime(S¢
RANDOM 4 0D CART 0.998526804 0.001022288 0.000323276 3:1 240
RANDOM 4 0 DB CART 0.999017936 0.000612365 0.000193647 3:1 240
RANDOM 4 0SB CART 0.999345201 0.000612598 0.00019372 3:1 240
RANDOM 4 0 NRSB  CART 0.999263368 0.000772026 0.000244136 3:1 240
RANDOM 4 1D CART 0.999099635 0.000572994 0.000181197 3:1 240
RANDOM 4 1 DB CART 0.998608704 0.000639188 0.000202129 3:1 240
RANDOM 4 1SB CART 0.999099635 0.000854728 0.000270289 3:1 240
RANDOM 4 1 NRSB  CART 0.999426833 0.000972476 0.000307524 3:1 240
RANDOM 4 2D CART 0.998608771 0.001554803 0.000491672 3:1 240
RANDOM 4 2 DB CART 0.998690671 0.00116881 0.00036961 3:1 240
RANDOM 4 2 SB CART 0.999017869 0.000801907 0.000253585 3:1 240
RANDOM 4 2 NRSB  CART 0.998608704 0.00127033 0.000401714 3:1 240
RANDOM 4 3D CART 0.999099568 0.000679886 0.000214999 3:1 240
RANDOM 4 3 DB CART 0.999099702 0.00067974 0.000214953 3:1 240
RANDOM 4 3 SB CART 0.99877237 0.000985345 0.000311593 3:1 240
RANDOM 4 3 NRSB  CART 0.998608771 0.001270361 0.000401723 3:1 240

CP (Master: Client) = number of processor of master and client systems in MP1 are in order 3 and 1.
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Table D.3: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (CART) for 6 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER  NODE:Part # Partitior Classifier Accuracy Standard Deviati Standard Er CP (Mastel Runtime(St
RANDOM 6 0D Decision Tree-CART ~ 0.999386352  0.000823205 0.0002603  4:2 180
RANDOM 6 0 DB Decision Tree-CART 0.998404305 0.001349803 0.0004268 42 7 180
RANDOM 6 0SB Decision Tree-CART 0.9990175  0.001070914 0.0003387 42 180
RANDOM 6 0 NRSB  Decision Tree-CART ~ 0.999017953  0.000918722 0.0002905  4:2 180
RANDOM 6 1D Decision Tree-CART ~ 0.999017651  0.001203281 0.0003805  4:2 180
RANDOM 6 1 DB Decision Tree-CART 0.998772403  0.001097794 0.0003472 42 180
RANDOM 6 1SB Decision Tree-CART 0.999017651  0.000919206 0.0002907 42 7 180
RANDOM 6 1 NRSB  Decision Tree-CART ~ 0.998035905  0.001251353 0.0003957  4:2 180
RANDOM 6 2D Decision Tree-CART 0.998771951  0.001821959 0.0005762 42 7 180
RANDOM 6 2 DB Decision Tree-CART ~ 0.997790205  0.001533192 0.0004848  4:2 180
RANDOM 6 2 SB Decision Tree-CART 0.999140652  0.000786342 0.0002487 42 7 180
RANDOM 6 2 NRSB  Decision Tree-CART ~ 0.999263653  0.000981671 0.0003104  4:2 180
RANDOM 6 3D Decision Tree-CART 0.998649252  0.000859607 0.0002718 42 7 180
RANDOM 6 3 DB Decision Tree-CART ~ 0.999263201  0.000814714 0.0002576  4:2 180
RANDOM 6 3 SB Decision Tree-CART ~ 0.998158454 0.00125884 0.0003981 4:2 180
RANDOM 6 3 NRSB  Decision Tree-CART ~ 0.998404154  0.001350036 0.0004269 42 180
RANDOM 6 4D Decision Tree-CART ~ 0.998526401  0.001322969 0.0004184  4:2 180
RANDOM 6 4 DB Decision Tree-CART 0.998404305 0.00165129 0.0005222 42 7 180
RANDOM 6 4 SB Decision Tree-CART ~ 0.999140501  0.000958931 0.0003032 4:2 180
RANDOM 6 4 NRSB  Decision Tree-CART 0.998404607  0.001456898 0.0004607 42 7 180
RANDOM 6 5D Decision Tree-CART ~ 0.998281153  0.001251767 0.0003958  4:2 180
RANDOM 6 5 DB Decision Tree-CART 0.999263502  0.000814532 0.0002576 42 7 180
RANDOM 6 5 SB Decision Tree-CART ~ 0.998527004  0.001202389 0.0003802  4:2 180
RANDOM 6 5 NRSB  Decision Tree-CART ~ 0.998526703  0.001202635 0.0003803  4:2 180
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Table D.4: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (CART) for 8 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER NODE ¢ Part # Partitic Classifiet Accuracy Standard Deviation  Standard Error of N CP (Mastel Runtime(Se
RANDOM 8 0D CART  0.99787234 0.001943428 0.000614566 7:1 180
RANDOM 8 0 DB CART  0.998690671 0.001426808 0.000451196 7:1 180
RANDOM 8 0SB CART  0.998690134 0.001225626 0.000387577 7:1 180
RANDOM 8 0 NRSB CART  0.998690671 0.001426808 0.000451196 7:1 180
RANDOM 8 1D CART  0.998526737 0.000881419 0.000278729 7:1 180
RANDOM 8 1 DB CART  0.997217676 0.00207669 0.000656707 7:1 180
RANDOM 8 1SB CART  0.9985262 0.001545816 0.00048883 7:1 180
RANDOM 8 1 NRSB CART  0.998199404 0.001997778 0.000631753 7:1 180
RANDOM 8 2D CART  0.998199673 0.002476718 0.000783207 7:1 180
RANDOM 8 2 DB CART  0.998036007 0.001762738 0.000557427 7:1 180
RANDOM 8 2 SB CART  0.99836307 0.001636661 0.000517558 7:1 180
RANDOM 8 2 NRSB CART  0.998690134 0.001427548 0.00045143 7:1 180
RANDOM 8 3D CART  0.998690671 0.001908659 0.000603571 7:1 180
RANDOM 8 3 DB CART  0.998854337 0.000750012 0.000237175 7:1 180
RANDOM 8 3 SB CART  0.999345336 0.000801797 0.00025355 7:1 180
RANDOM 8 3 NRSB CART  0.99803547 0.002044534 0.000646538 7:1 180
RANDOM 8 4D CART  0.999345336 0.001500025 0.000474349 7:1 180
RANDOM 8 4 DB CART  0.998690671 0.001224765 0.000387305 7:1 180
RANDOM 8 4 SB CART  0.998690403 0.000982086 0.000310563 7:1 180
RANDOM 8 4 NRSB CART  0.99836307 0.001035116 0.000327332 7:1 180
RANDOM 8 5D CART  0.998854337 0.001047975 0.000331399 7:1 180
RANDOM 8 5 DB CART  0.998690671 0.001908659 0.000603571 7:1 180
RANDOM 8 5 SB CART  0.998527005 0.001145663 0.00036229 7:1 180
RANDOM 8 5 NRSB CART  0.998199404 0.00088132 0.000278698 7:1 180
RANDOM 8 6D CART  0.998199404 0.001359481 0.000429906 7:1 180
RANDOM 8 6 DB CART  0.998690671 0.000981997 0.000310535 7:1 180
RANDOM 8 6 SB CART  0.998527005 0.002250037 0.000711524 7:1 180
RANDOM 8 6 NRSB CART  0.998854337 0.001047975 0.000331399 7:1 180
RANDOM 8 7D CART  0.999018003 0.001669073 0.000527807 7:1 180
RANDOM 8 7 bB CART  0.998854337 0.001943428 0.000614566 7:1 180
RANDOM 8 7 SB CART  0.998035738 0.002044146 0.000646416 7:1 180
RANDOM 8 7 NRSB CART  0.999018003 0.001309329 0.000414046 7:1 180
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Table D.5: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (CART) for 10 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER NODE Part # Partitic Classifier Accuracy Standard Deviati Standard Errc CP (Mastet Runtime(St
RANDOM 10 0D Decision Tree-CART 0.99754476  0.001531116 0.00048418 8:2 180
RANDOM 10 0 DB Decision Tree-CART 0.99733942  0.003179674 0.0010055 8:2 180
RANDOM 10 0 SB Decision Tree-CART 0.99815825 0.001699858 0.00053754 8:2 180
RANDOM 10 0 NRSB Decision Tree-CART 0.99754476 0.001783456 0.00056398 8:2 180
RANDOM 10 1D Decision Tree-CART 0.99897709  0.001372134 0.00043391 8:2 180
RANDOM 10 1 DB Decision Tree-CART 0.99754476 0.00238679 0.00075477 8:2 180
RANDOM 10 1SB Decision Tree-CART 0.99836317  0.002203456 0.00069679 8:2 180
RANDOM 10 1 NRSB Decision Tree-CART 0.99856809  0.001309629 0.00041414 8:2 180
RANDOM 10 2D Decision Tree-CART 0.99856725  0.001598746 0.00050557 8:2 180
RANDOM 10 2 DB Decision Tree-CART 0.99815825 0.00193204 0.00061096 8:2 180
RANDOM 10 2 SB Decision Tree-CART 0.99877301  0.001874264 0.00059269 8:2 180
RANDOM 10 2 NRSB Decision Tree-CART 0.99836317 0.001782974 0.00056383 8:2 180
RANDOM 10 3D Decision Tree-CART 0.99815825 0.002135957 0.00067545 8:2 180
RANDOM 10 3 DB Decision Tree-CART 0.99815909  0.002322699 0.0007345 8:2 180
RANDOM 10 3 SB Decision Tree-CART 0.99836359 0.0022026 0.00069652 8:2 180
RANDOM 10 3 NRSB Decision Tree-CART 0.99815909  0.001431553 0.0004527 8:2 180
RANDOM 10 4D Decision Tree-CART 0.99795375  0.001830033 0.00057871 8:2 180
RANDOM 10 4 DB Decision Tree-CART 0.99897751  0.001371821 0.00043381 8:2 180
RANDOM 10 4 SB Decision Tree-CART 0.99713576  0.002085819 0.00065959 8:2 180
RANDOM 10 4 NRSB Decision Tree-CART 0.99877301  0.001874264 0.00059269 8:2 180
RANDOM 10 5D Decision Tree-CART 0.99815825  0.001432872 0.00045311 8:2 180
RANDOM 10 5 DB Decision Tree-CART 0.99836359 0.001782877 0.0005638 8:2 180
RANDOM 10 5 SB Decision Tree-CART 0.99775051  0.002496228 0.00078938 8:2 180
RANDOM 10 5 NRSB Decision Tree-CART 0.99836359  0.002003759 0.00063364 8:2 180
RANDOM 10 6D Decision Tree-CART 0.99815825  0.001699858 0.00053754 8:2 180
RANDOM 10 6 DB Decision Tree-CART 0.99795459  0.001829095 0.00057841 8:2 180
RANDOM 10 6 SB Decision Tree-CART 0.99795417  0.001294692 0.00040942 8:2 180
RANDOM 10 6 NRSB Decision Tree-CART 0.99856809  0.001309629 0.00041414 8:2 180
RANDOM 10 7D Decision Tree-CART 0.99774842  0.001103986 0.00034911 8:2 180
RANDOM 10 7 DB Decision Tree-CART 0.99897751  0.001648723 0.00052137 8:2 180
RANDOM 10 7 SB Decision Tree-CART 0.99897751 0.001371821 0.00043381 8:2 180
RANDOM 10 7 NRSB Decision Tree-CART 0.99713576  0.001874632 0.00059281 8:2 180
RANDOM 10 8D Decision Tree-CART 0.99897667  0.001372446 0.00043401 8:2 180
RANDOM 10 8 DB Decision Tree-CART 0.9969321  0.003452216 0.00109169 8:2 180
RANDOM 10 8 SB Decision Tree-CART 0.99815909  0.001698747 0.00053719 8:2 180
RANDOM 10 8 NRSB Decision Tree-CART 0.99815867  0.001698798 0.00053721 8:2 180
RANDOM 10 9D Decision Tree-CART 0.99877091  0.001877922 0.00059385 8:2 180
RANDOM 10 9 DB Decision Tree-CART 0.99734109  0.001597028 0.00050502 8:2 180
RANDOM 10 9 SB Decision Tree-CART 0.99815867  0.001431614 0.00045272 8:2 180
RANDOM 10 9 NRSB Decision Tree-CART 0.99897709 0.001372134 0.00043391 8:2 180
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Table D.6: Implementation of the subsystem of data partitioning by DSS, multi-
node, single-classifier (CART) for 12 disjoint partitions:

Multi-Node Ensemble and Classifier.

ORDER NODE # Part # Partiti Classifier Accuracy Standard Deviation Standard Error of CP (Master Runtime(St
RANDOM 12 0D CART 0.998772101 0.0012279 0.000388296 8:4 120
RANDOM 12 0 DB CART 0.998526401 0.00120319 0.000380482 8:4 120
RANDOM 12 0SB CART 0.998772101 0.0012279 0.000388296 8:4 120
RANDOM 12 0 NRSB CART 0.997790504 0.002563862 0.000810764 8:4 120
RANDOM 12 1D CART 0.998526401 0.00120319 0.000380482 8:4 120
RANDOM 12 1 DB CART 0.996317507 0.002746208 0.000868427 8:4 120
RANDOM 12 1SB CART 0.999018403 0.001202207 0.000380171 8:4 120
RANDOM 12 1 NRSB CART 0.998526401 0.001629429 0.000515271 8:4 120
RANDOM 12 2D CART 0.998281303 0.001918519 0.000606689 8:4 120
RANDOM 12 2 DB CART 0.997545406 0.002196266 0.00069452 8:4 120
RANDOM 12 2 SB CART 0.998035 0.001838492 0.000581382 8:4 120
RANDOM 12 2 NRSB CART 0.998527003 0.001963496 0.000620912 8:4 120
RANDOM 12 3D CART 0.9982807 0.001572968 0.000497416 8:4 120
RANDOM 12 3 DB CART 0.998772703 0.001645516 0.000520358 8:4 120
RANDOM 12 3 SB CART 0.997791709 0.002783992 0.000880376 8:4 120
RANDOM 12 3 NRSB CART 0.998772101 0.001647759 0.000521067 8:4 120
RANDOM 12 4D CART 0.998035602 0.001473802 0.000466057 8:4 120
RANDOM 12 4 DB CART 0.997791107 0.001322692 0.000418272 8:4 120
RANDOM 12 4 SB CART 0.997053404 0.002645493 0.000836578 8:4 120
RANDOM 12 4 NRSB CART 0.998526401 0.001629429 0.000515271 8:4 120
RANDOM 12 5D CART 0.998527003 0.001629066 0.000515156 8:4 120
RANDOM 12 5DB CART 0.999017801 0.001202944 0.000380404 8:4 120
RANDOM 12 5 SB CART 0.998526401 0.001629429 0.000515271 8:4 120
RANDOM 12 5 NRSB CART 0.999017199 0.00120368 0.000380637 8:4 120
RANDOM 12 6D CART 0.998772101 0.001647759 0.000521067 8:4 120
RANDOM 12 6 DB CART 0.998772101 0.001980526 0.000626297 8:4 120
RANDOM 12 6 SB CART 0.999018403 0.001202207 0.000380171 8:4 120
RANDOM 12 6 NRSB CART 0.999018403 0.001626887 0.000514467 8:4 120
RANDOM 12 7D CART 0.998527605 0.001626888 0.000514467 8:4 120
RANDOM 12 7 DB CART 0.998037409 0.002401831 0.000759526 8:4 120
RANDOM 12 7 SB CART 0.998035602 0.001473802 0.000466057 8:4 120
RANDOM 12 7 NRSB CART 0.997792311 0.00299294 0.000946451 8:4 120
RANDOM 12 8D CART 0.9982807 0.001572968 0.000497416 8:4 120
RANDOM 12 8 DB CART 0.9982807 0.001572968 0.000497416 8:4 120
RANDOM 12 8 SB CART 0.998037409 0.002401831 0.000759526 8:4 120
RANDOM 12 8 NRSB CART 0.997545406 0.002193573 0.000693669 8:4 120
RANDOM 12 9D CART 0.997790504 0.001717926 0.000543256 8:4 120
RANDOM 12 9 DB CART 0.999264104 0.001570052 0.000496494 8:4 120
RANDOM 12 9 SB CART 0.997791107 0.002039203 0.000644853 8:4 120
RANDOM 12 9 NRSB CART 0.998525799 0.001629791 0.000515385 8:4 120
RANDOM 12 10D CART 0.998034398 0.001474201 0.000466183 8:4 120
RANDOM 12 10DB  CART 0.996807703 0.002703197 0.000854826 8:4 120
RANDOM 12 10 SB CART 0.998772703 0.00197866 0.000625707 8:4 120
RANDOM 12 10 NRSB CART 0.997054006 0.003063399 0.000968732 8:4 120
RANDOM 12 11D CART 0.998036205 0.002642585 0.000835659 8:4 120
RANDOM 12 11 DB CART 0.997546611 0.00290106 0.000917396 8:4 120
RANDOM 12 11 SB CART 0.998526401 0.001629429 0.000515271 8:4 120
RANDOM 12 11 NRSB CART 0.998281303 0.002701281 0.00085422 8:4 120
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Appendix E: Experimental results of DELS system

Table E.1: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (MLP) for 2 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE i Part # Partitic Classifier Accuracy Standard C Standard Erroi CP (Mastet Runtime(Se

RANDOM 2 0D MLP 0.97761494 0.004914  0.0015541 1:1 6180
RANDOM 2 0 DB MLP 0.973400788 0.002518 0.000796416 1:1 6180
RANDOM 2 0SB MLP 0.972499586 0.002434 0.000769582 1:1 6180
RANDOM 2 0 NRSB MLP 0.975077964 0.006757 0.002136732 1:1 6180
RANDOM 2 1D MLP 0.972743846 0.003037 0.000960459 1:1 6180
RANDOM 2 1 DB MLP 0.97164044 0.003617 0.001143921 11 6180
RANDOM 2 15SB MLP 0.97438168 0.003677 0.001162923 1:1 6180
RANDOM 2 1 NRSB MLP 0.972417703 0.002228 0.00070463 1:1 6180

Table E.2: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (MLP) for 4 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE# Part# Partitionin Classifier Accuracy Standard CStandard E CP (Mastet Runtime(Se

RANDOM 4 0D MLP 0.967834 0.005114 0.001617 3:1 2280
RANDOM 4 0DB MLP 0.971601 0.003846 0.001216 3:1 2280
RANDOM 4 0 SB MLP 0.968243 0.005539 0.001751 3:1 2280
RANDOM 4 0 NRSB MLP 0.965952 0.004914 0.001554 3:1 2280
RANDOM 4 1D MLP 0.967916 0.004235 0.001339 3:1 2280
RANDOM 4 1 DB MLP 0.969474 0.003086 0.000976 3:1 2280
RANDOM 4 1S58 MLP 0.958668 0.008723 0.002759 3:1 2280
RANDOM 4 1 NRSB MLP 0.970618 0.004677 0.001479 3:1 2280
RANDOM 4 2D MLP 0.971762 0.005784 0.001829 3:1 2280
RANDOM 4 2 DB MLP 0.968983 0.003632 0.001148 3:1 2280
RANDOM 4 2 SB MLP 0.970371 0.00306 0.000968 3:1 2280
RANDOM 4 2 NRSB MLP 0.969636 0.004775 0.00151 3:1 2280
RANDOM 4 3D MLP 0.970041 0.004473 0.001414 3:1 2280
RANDOM 4 3 DB MLP 0.968653 0.005575 0.001763 3:1 2280
RANDOM 4 3 SB MLP 0.97209 0.004276 0.001352 3:1 2280
RANDOM 4 3 NRSB MLP 0.970535 0.004885 0.001545 3:1 2280
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Table E.3: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (MLP) for 6 disjoint partitions:
Single-Node Ensemble and Classifier.

ORDER NODE £ Part # Partitioni Classifier Accuracy Standard De Standard E CP (Mastel Runtime(Se

RANDOM 6 0D MLP 0.969188 0.0085979 0.002719  4:02 1560
RANDOM 6 0 DB MLP 0.966491 0.0064921 0.002053  4:02 1560
RANDOM 6 0SB MLP 0.964647 0.0072276 0.002286  4:02 1560
RANDOM 6 0 NRSB MLP 0.971276 0.005118 0.001618  4:02 1560
RANDOM 6 1D MLP 0.960712 0.0073257 0.002317  4:02 1560
RANDOM 6 1 DB MLP 0.968698 0.0048436 0.001532  4:02 1560
RANDOM 6 1SB MLP 0.967348 0.005725 0.00181  4:02 1560
RANDOM 6 1 NRSB MLP 0.96882 0.0056262 0.001779  4:02 1560
RANDOM 6 2D MLP 0.967466 0.003249 0.001027  4:02 1560
RANDOM 6 2 DB MLP 0.968696 0.0064115 0.002027  4:02 1560
RANDOM 6 2SB MLP 0.96759 0.006413 0.002028  4:02 1560
RANDOM 6 2 NRSB MLP 0.967344 0.0055883 0.001767  4:02 1560
RANDOM 6 3D MLP 0.969674 0.0057657 0.001823  4:02 1560
RANDOM 6 3 DB MLP 0.964766 0.0065081 0.002058  4:02 1560
RANDOM 6 3SB MLP 0.959243 0.0077468 0.00245  4:02 1560
RANDOM 6 3 NRSB MLP 0.970045 0.0045785 0.001448  4:02 1560
RANDOM 6 4D MLP 0.969431 0.0041483 0.001312  4:02 1560
RANDOM 6 4 DB MLP 0.968451 0.0055719 0.001762  4:02 1560
RANDOM 6 4 SB MLP 0.967348 0.0070922 0.002243  4:02 1560
RANDOM 6 4 NRSB MLP 0.965628 0.0051146 0.001617  4:02 1560
RANDOM 6 5D MLP 0.964028 0.0041393 0.001309  4:02 1560
RANDOM 6 5 DB MLP 0.968328 0.0048716 0.001541  4:02 1560
RANDOM 6 5 SB MLP 0.9644 0.003995 0.001263  4:02 1560
RANDOM 6 5 NRSB MLP 0.960472 0.0070662 0.002235  4:02 1560
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Table E.4: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (MLP) for 8 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE# Part# Partitionin Classifier Accuracy Standard CStandard E CP (Maste! Runtime(Sec)

RANDOM 8 oD MLP 0.966117 0.006746 0.002133 7:1 960
RANDOM 8 0 DB MLP 0.969231 0.006245 0.001975 7:1 960
RANDOM 8 0SB MLP 0.969062 0.004481 0.001417 7:1 960
RANDOM 8 0 NRSB MLP 0.961041 0.01182 0.003738 7:1 960
RANDOM 8 1D MLP 0.962678 0.0072 0.002277 7:1 960
RANDOM 8 1 DB MLP 0.970213 0.006202 0.001961 7:1 960
RANDOM 8 1SB MLP 0.965296 0.010194 0.003223 7:1 960
RANDOM 8 1 NRSB MLP 0.96759 0.005158 0.001631 7:1 960
RANDOM 8 2D MLP 0.965459 0.008528 0.002697 7:1 960
RANDOM 8 2 DB MLP 0.966121 0.005126 0.001621 7:1 960
RANDOM 8 2 SB MLP 0.966773 0.008048 0.002545 7:1 960
RANDOM 8 2 NRSB MLP 0.95482 0.009414 0.002977 7:1 960
RANDOM 8 3D MLP 0.965462 0.010815 0.00342 7:1 960
RANDOM 8 3 DB MLP 0.962193 0.003835 0.001213 7:1 960
RANDOM 8 3 SB MLP 0.965299 0.006693 0.002117 7:1 960
RANDOM 8 3 NRSB MLP 0.965952 0.004787 0.001514 7:1 960
RANDOM 8 4D MLP 0.967917 0.006469 0.002046 7:1 960
RANDOM 8 4 DB MLP 0.96252 0.008736 0.002763 7:1 960
RANDOM 8 4 SB MLP 0.966113 0.008073 0.002553 7:1 960
RANDOM 8 4 NRSB MLP 0.963332 0.009666 0.003057 7:1 960
RANDOM 8 5D MLP 0.966934 0.008145 0.002576 7:1 960
RANDOM 8 5 DB MLP 0.962684 0.005754 0.00182 7:1 960
RANDOM 8 5 SB MLP 0.969062 0.003226 0.00102 7:1 960
RANDOM 8 5 NRSB MLP 0.963003 0.011401 0.003605 7:1 960
RANDOM 8 6D MLP 0.966279 0.004463 0.001411 7:1 960
RANDOM 8 6 DB MLP 0.958756 0.010346 0.003272 7:1 960
RANDOM 8 6 SB MLP 0.969225 0.00496 0.001568 7:1 960
RANDOM 8 6 NRSB MLP 0.966772 0.007092 0.002243 7:1 960
RANDOM 8 7D MLP 0.967748 0.006943 0.002196 7:1 960
RANDOM 8 7 DB MLP 0.967755 0.005851 0.00185 7:1 960
RANDOM 8 7 SB MLP 0.969226 0.006619 0.002093 7:1 960
RANDOM 8 7 NRSB MLP 0.958095 0.008819 0.002789 7:1 960
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Table E.5: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (MLP) for 10 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE# Part# Partitionin Classifier Accuracy Standard C Standard E CP (Master Runtime(S¢

RANDOM 10 0D MLP 0.967881 0.007598 0.002403 8:2 780
RANDOM 10 0 DB MLP 0.964411 0.006852 0.002167 8:2 780
RANDOM 10 0SB MLP 0.955605 0.008286 0.00262 8:2 780
RANDOM 10 0 NRSB MLP 0.965222 0.003651 0.001155 8:2 780
RANDOM 10 1D MLP 0.966232 0.008469 0.002678 8:2 780
RANDOM 10 1DB MLP 0.967466 0.008031 0.00254 8:2 780
RANDOM 10 1SB MLP 0.967062 0.00631 0.001995 8:2 780
RANDOM 10 1 NRSB MLP 0.965839 0.01058 0.003346 8:2 780
RANDOM 10 2D MLP 0.967465 0.008258 0.002611 8:2 780
RANDOM 10 2 DB MLP 0.961741 0.009433 0.002983 8:2 780
RANDOM 10 2 SB MLP 0.963585 0.004735 0.001497 8:2 780
RANDOM 10 2 NRSB MLP 0.961128 0.004933 0.00156 8:2 780
RANDOM 10 3D MLP 0.962964 0.008887 0.00281 8:2 780
RANDOM 10 3 DB MLP 0.959083 0.005787 0.00183 8:2 780
RANDOM 10 3 SB MLP 0.959075 0.012411 0.003925 8:2 780
RANDOM 10 3 NRSB MLP 0.960308 0.008309 0.002627 8:2 780
RANDOM 10 4D MLP 0.96624 0.004579 0.001448 8:2 780
RANDOM 10 4 DB MLP 0.964813 0.005764 0.001823 8:2 780
RANDOM 10 4 SB MLP 0.969922 0.011809 0.003734 8:2 780
RANDOM 10 4 NRSB MLP 0.965429 0.008194 0.002591 8:2 780
RANDOM 10 5D MLP 0.960713 0.00786 0.002486 8:2 780
RANDOM 10 5 DB MLP 0.966859 0.007471 0.002362 8:2 780
RANDOM 10 5SB MLP 0.960721 0.009627 0.003044 8:2 780
RANDOM 10 5 NRSB MLP 0.962564 0.007535 0.002383 8:2 780
RANDOM 10 6D MLP 0.961325 0.009079 0.002871 8:2 780
RANDOM 10 6 DB MLP 0.965019 0.006354 0.002009 8:2 780
RANDOM 10 6 SB MLP 0.960722 0.014738 0.004661 8:2 780
RANDOM 10 6 NRSB MLP 0.96706 0.010456 0.003306 8:2 780
RANDOM 10 7D MLP 0.966031 0.008355 0.002642 8:2 780
RANDOM 10 7 DB MLP 0.963992 0.008497 0.002687 8:2 780
RANDOM 10 7 SB MLP 0.961948 0.006349 0.002008 8:2 780
RANDOM 10 7 NRSB MLP 0.968498 0.006905 0.002183 8:2 780
RANDOM 10 8D MLP 0.957639 0.0087 0.002751 8:2 780
RANDOM 10 8 DB MLP 0.966859 0.007068 0.002235 8:2 780
RANDOM 10 8 SB MLP 0.963585 0.004641 0.001468 8:2 780
RANDOM 10 8 NRSB MLP 0.961538 0.00993 0.00314 8:2 780
RANDOM 10 9D MLP 0.962349 0.008295 0.002623 8:2 780
RANDOM 10 9 DB MLP 0.962971 0.006233 0.001971 8:2 780
RANDOM 10 9 SB MLP 0.969109 0.006681 0.002113 8:2 780
RANDOM 10 9 NRSB MLP 0.958879 0.006499 0.002055 8:2 780

120



Table E.6: Implementation of the subsystem of data partitioning by DSS, multi-node,
single-classifier (MLP) for 12 disjoint partitions:

Single-Node Ensemble and Classifier.

ORDER NODE # Part # Partitionin Classifier Accuracy Standard C Standard E CP (Mastet Runtime(Se
RANDOM 12 0D MLP 0.962928 0.010326 0.003265 8:4 960
RANDOM 12 O DB MLP 0.96269 0.010172 0.003217 8:4 960
RANDOM 12 0 SB MLP 0.956052 0.006439 0.002036 8:4 960
RANDOM 12 0 NRSB MLP 0.968574 0.00884 0.002795 8:4 960
RANDOM 12 1D MLP 0.960223 0.00439 0.001388 8:4 960
RANDOM 12 1 DB MLP 0.959494 0.011286 0.003569 8:4 960
RANDOM 12 1SB MLP 0.957284 0.014064 0.004448 8:4 960
RANDOM 12 1 NRSB MLP 0.955559 0.010849 0.003431 8:4 960
RANDOM 12 2D MLP 0.960964 0.009471 0.002995 8:4 960
RANDOM 12 2 DB MLP 0.968338 0.009398 0.002972 8:4 960
RANDOM 12 2 SB MLP 0.955555 0.010579 0.003345 8:4 960
RANDOM 12 2 NRSB MLP 0.965627 0.009049 0.002862 8:4 960
RANDOM 12 3D MLP 0.947467 0.012726 0.004024 8:4 960
RANDOM 12 3 DB MLP 0.958517 0.009144 0.002892 8:4 960
RANDOM 12 3 SB MLP 0.95974 0.011565 0.003657 8:4 960
RANDOM 12 3 NRSB MLP 0.96268 0.008558 0.002706 8:4 960
RANDOM 12 4D MLP 0.964891 0.00769 0.002432 8:4 960
RANDOM 12 4 DB MLP 0.963424 0.010891 0.003444 8:4 960
RANDOM 12 4 SB MLP 0.958016 0.010673 0.003375 8:4 960
RANDOM 12 4 NRSB MLP 0.961702 0.00865 0.002735 8:4 960
RANDOM 12 5D MLP 0.959738 0.011187 0.003538 8:4 960
RANDOM 12 5 DB MLP 0.955823 0.009358 0.002959 8:4 960
RANDOM 12 5SB MLP 0.961697 0.009785 0.003094 8:4 960
RANDOM 12 5 NRSB MLP 0.962675 0.010012 0.003166 8:4 960
RANDOM 12 6 D MLP 0.956547 0.007176 0.002269 8:4 960
RANDOM 12 6 DB MLP 0.961709 0.010141 0.003207 8:4 960
RANDOM 12 6 SB MLP 0.962188 0.008171 0.002584 8:4 960
RANDOM 12 6 NRSB MLP 0.961944 0.009012 0.00285 8:4 960
RANDOM 12 7D MLP 0.967583 0.004641 0.001468 8:4 960
RANDOM 12 7 DB MLP 0.965621 0.00914 0.00289 8:4 960
RANDOM 12 7 SB MLP 0.959734 0.006333 0.002003 8:4 960
RANDOM 12 7 NRSB MLP 0.963663 0.010513 0.003325 8:4 960
RANDOM 12 8D MLP 0.965619 0.004526 0.001431 8:4 960
RANDOM 12 8 DB MLP 0.960958 0.00718 0.002271 8:4 960
RANDOM 12 8 SB MLP 0.966614 0.010348 0.003272 8:4 960
RANDOM 12 8 NRSB MLP 0.959252 0.012056 0.003812 8:4 960
RANDOM 12 9D MLP 0.955552 0.015275 0.00483 8:4 960
RANDOM 12 9 DB MLP 0.965875 0.010322 0.003264 8:4 960
RANDOM 12 9 SB MLP 0.957279 0.009962 0.00315 8:4 960
RANDOM 12 9 NRSB MLP 0.959738 0.0056 0.001771 8:4 960
RANDOM 12 10 D MLP 0.96685 0.00958 0.003029 8:4 960
RANDOM 12 10 DB MLP 0.963417 0.00818 0.002587 8:4 960
RANDOM 12 10 SB MLP 0.958751 0.008715 0.002756 8:4 960
RANDOM 12 10 NRSB MLP 0.96538 0.007569 0.002393 8:4 960
RANDOM 12 11 D MLP 0.966112 0.007177 0.00227 8:4 960
RANDOM 12 11 DB MLP 0.961945 0.009006 0.002848 8:4 960
RANDOM 12 11 SB MLP 0.958265 0.011966 0.003784 8:4 960
RANDOM 12 11 NRSB MLP 0.96096 0.008963 0.002834 8:4 960
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Appendix F: Comparison

classifier on single node

Algorithm Comparison

on “KDDCUP” data set with
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Appendix G: Comparison on “KDDCUP” data set with MLP

classifier on single node
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Appendix H:Comparison on “KDDCUP” data set with CART

classifier on multi-node system

Multinode Ensemble by CART Classifier
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Appendix I:

classifier on multi-node System

Single-node Multi-Layer Perceptron

Comparison on “KDDCUP” data set with MLP
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Appendix J:Experimental results of DELS system

Table J.1: Multi-node ensemble-MLP on random input by Bagging-like method-2
dataset partitions:

2 0D MLP 0.82968834 0.955467 1.700584 ('Node0', 0) ('Node0', 15.09672 1901.261
2 0DB MLP 0.82968834 0.955467 2.323832 (‘Node0', 0) ('Node0', 3.041651 1901.261
2 0SB MLP 0.82968834 0.955467 0.466872 ('Node0', 0) ('Node0', 6.79818S 1901.261
2 0 NRSB MLP 0.82968834 0.955467 0.487792 ('Node0', 0) ('Node0', 15.36328 1901.261
21D MLP 0.82968834 0.955467 1.700584 ('Nodel’, 10.71 ('Nodel', 17.6826C 1901.261
2 1DB MLP 0.82968834 0.955467 2.323832 (‘Nodel’, 10.71 ('Nodel', 7.90709¢ 1901.261
2 1SB MLP 0.82968834 0.955467 0.466872 ('Nodel’, 10.71 ('Nodel', 8.23018¢ 1901.261
2 1 NRSB MLP 0.82968834 0.955467 0.487792 ('Nodel', 10.71 ('Nodel', 17.9271¢ 1901.261

Table J.2: Multi-node
dataset partitions:

ensemble-MLP on random input by Bagging-like method-4

RANDOM 4 0D MLP 0.8296883 0.9554672 1.77120924 ('Node0',0) ('Node0',2.3747¢ 4099.96613
RANDOM 4 0 DB MLP  0.8296883 0.9554672 2.158751726 ('Node0Q',0) ('Node0', 8.94402 4099.96613
RANDOM 4 0SB MLP 0.8296883 0.9554672 0.426065207 (‘Node0Q',0) ('‘Node0', 12.554¢ 4099.96613
RANDOM 4 0O NRSB MLP 0.8296883 0.9554672 0.596661091 (‘Node0Q',0) ('Node0',5.99413 4099.96613
RANDOM 4 1D MLP 0.8296883 0.9554672 1.77120924 ('Node0Q',0) ('Nodel’, 5.00672 4099.96613
RANDOM 4 1DB MLP 0.8296883 0.9554672 2.158751726 ('Node0',0) ('Nodel’, 9.3718¢ 4099.96613
RANDOM 4 1SB MLP 0.8296883 0.9554672 0.426065207 (‘Node0Q',0) ('Nodel’, 2.50551 4099.96613
RANDOM 4 1 NRSB MLP 0.8296883 0.9554672 0.596661091 (‘Node0', 0) ('Nodel', 3.94633 4099.96613
RANDOM 4 2D MLP 0.8296883 0.9554672 1.77120924 ('Node0Q',0) ('Node2',3.3750% 4099.96613
RANDOM 4 2DB MLP  0.8296883 0.9554672 2.158751726 (‘Node0',0) ('Node2',5.4055C 4099.96613
RANDOM 4 2 SB MLP  0.8296883 0.9554672 0.426065207 ('Node0Q',0) ('Node2',4.57897 4099.96613
RANDOM 4 2 NRSB MLP 0.8296883 0.9554672 0.596661091 (‘Node0', 0) ('Node2',3.2717¢ 4099.96613
RANDOM 4 3D MLP  0.8296883 0.9554672 1.77120924 ('Node3', 5.3¢('Node3', 10.0072 4099.96613
RANDOM 4 3 DB MLP 0.8296883 0.9554672 2.158751726 ('Node3', 5.3¢('Node3’, 4.2259€¢ 4099.96613
RANDOM 4 3 SB MLP  0.8296883 0.9554672 0.426065207 ('Node3', 5.3¢('Node3', 4.9137% 4099.96613
RANDOM 4 3 NRSB MLP 0.8296883 0.9554672 0.596661091 ('Node3', 5.3¢('Node3', 3.9214¢ 4099.96613

Table J.3: Multi-node ensemble-MLP on random input by Bagging-like method-6

dataset partitions:

RANDON 6 0D MLP  0.82969 0.95547 1.9361341 ('Node0',0) ('Node0', 6.109520435333252) 5708.42344
RANDONV 6 O0DB MLP 0.82969 0.95547 2.7440946 ('Node0O',0) ('Node0',1.467219591140747) 5708.42344
RANDONV 6 0SB MLP 0.82969 0.95547 0.5213635 (‘Node0',0) ('Node0',1.8763961791992188) 5708.42344
RANDON 6 O NRSB MLP 0.82969 0.95547 0.5457218 ('Node0',0) ('Node0', 8.472907304763794) 5708.42344
RANDON 6 1D MLP  0.82969 0.95547 1.9361341 ('Node0',0) ('Nodel',3.2719459533691406) 5708.42344
RANDOV 6 1DB MLP 0.82969 0.95547 2.7440946 ('Node0O',0) ('Nodel',4.2388317584991455) 5708.42344
RANDOV 6 1SB MLP 0.82969 0.95547 0.5213635 ('Node0',0) ('Nodel', 2.7688090801239014) 5708.42344
RANDON 6 1 NRSB MLP 0.82969 0.95547 0.5457218 ('Node0',0) ('Nodel’,3.0151898860931396) 5708.42344
RANDON 6 2D MLP  0.82969 0.95547 1.9361341 ('Node0',0) ('Node2',12.221603870391846) 5708.42344
RANDONV 6 2 DB MLP 0.82969 0.95547 2.7440946 ('Node0O',0) ('Node2',3.6746206283569336) 5708.42344
RANDON 6 2SB  MLP 0.82969 0.95547 0.5213635 (‘Node0',0) ('Node2',2.077237606048584) 5708.42344
RANDON 6 2 NRSB MLP 0.82969 0.95547 0.5457218 ('Node0',0) ('Node2',2.0695748329162598) 5708.42344
RANDON 6 3 D MLP 0.82969 0.95547 1.9361341 ('Node0',0) ('Node3',2.9128472805023193) 5708.42344
RANDOV 6 3 DB MLP 0.82969 0.95547 2.7440946 ('Node0',0) ('Node3',8.182551860809326) 5708.42344
RANDOV 6 3 SB  MLP 0.82969 0.95547 0.5213635 ('Node0',0) ('Node3',3.125713348388672) 5708.42344
RANDON 6 3 NRSB MLP 0.82969 0.95547 0.5457218 ('Node0',0) ('Node3',7.693204879760742) 5708.42344
RANDON 6 4D MLP  0.82969 0.95547 1.9361341 ('Node0',0) ('Node4', 6.948272466659546) 5708.42344
RANDON 6 4 DB MLP 0.82969 0.95547 2.7440946 ('Node0O',0) ('Node4', 6.029633283615112) 5708.42344
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Table J.4: Multi-node ensemble-MLP on random input by Bagging-like method-8
dataset partitions:

RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM

00|00 00|00 00|00 00|00 00 00| 00|00 00 00 00| 00 00 00 00 00 00 00 00 00 00|00 00 00 00 00 00 OO

0D

0 DB

0 SB

0 NRSB
1D
1DB
1SB

1 NRSB
2D

2 DB

2 SB

2 NRSB
3D

3 DB

3 SB

3 NRSB
4D

4 DB

4 SB

4 NRSB
5D

5 DB

5 SB

5 NRSB
6D

6 DB

6 SB

6 NRSB
7D

7 DB

7 SB

7 NRSB

MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP

0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969
0.82969

0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467

2.26275
2.97346
0.58898
0.57667
2.26275
2.97346
0.58898
0.57667
2.26275
2.97346
0.58898
0.57667
2.26275

(‘Node0', 0)
(‘Node0', 0)
(‘Node0', 0)
(‘Node0', 0)
(‘Node0', 0)
(‘Node0', 0)
(‘Node0', 0)
(‘Node0', 0)
('Node0', 0)
(‘Node0', 0)
('Node0', 0)
(‘Node0', 0)
('Node0', 0)
2.97346 ('Node0', 0)
0.58898 ('Node0', 0)
0.57667 ('Node0', 0)
2.26275 ('Node0', 0)
2.97346 ('Node0', 0)
0.58898 ('Node0', 0)
0.57667 ('Node0', 0)
2.26275 ('Node0', 0)
2.97346 ('Node0', 0)
0.58898 ('Node0', 0)
0.57667 ('Node0', 0)
2.26275 ('Node0', 0)
2.97346 ('Node0', 0)
0.58898 ('Node0', 0)
0.57667 ('NodeQ', 0)
2.26275 ('
2.97346 ('
0.58898 ('
0.57667 ('
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('Node0', 1.5941722393035
('Node0', 0.5960898399353
('Node0', 3.1591906547546
('Node0', 2.0272414684295
('Nodel', 1.1301524639129
('Nodel', 6.7677462100982
('Nodel', 4.5087900161743
('Nodel', 8.6372427940368
('Node2', 3.4615898132324
('Node2', 6.4030058383941
('Node2', 3.4348425865173
('Node2',3.5794072151184
('Node3', 3.3754463195800
('Node3', 3.5487773418426
('Node3', 3.6351270675659
('Node3', 4.7199556827545
('Node4', 3.5255312919616
('Node4', 2.7935407161712
('Node4', 2.6297540664672
('Node4', 4.1186203956604
('Node5', 4.6793901920318
('Node5', 4.0455284118652
('Node5', 11.991963863372
('Node5', 4.3554017543792
('Node6', 2.4738111495971
('Node6', 9.1460583209991
('Node6', 4.5181188583374
('Node6', 1.9176461696624

Node6', 5.3 ('Node7', 5.8291897773742
Node6', 5.3 ('Node7', 3.1146378517150
Node6', 5.3 ('Node7', 9.0259761810302
Node6', 5.3 ('Node7', 4.1822018623352

8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656
8279.656



Table J.5: Multi-node ensemble-MLP on random input by Bagging-like method-10

dataset partitions:

RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM
RANDOM

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

0D

0 DB

0 SB

0 NRSB
1D

1 DB
1SB

1 NRSB
2D

2 DB

2 SB

2 NRSB
3D

3 DB

3 SB

3 NRSB
4D

4 DB
4 SB

4 NRSB
5D

5 DB

5 SB

5 NRSB
6 D

6 DB

6 SB

6 NRSB
7D

7 DB

7 SB

7 NRSB
8D

8 DB

8 SB

8 NRSB
9D

9 DB

9 SB

9 NRSB

MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP

0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688

0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246
0.955467246

2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)
2.560717583 ('Node0', 0)
2.950899363 ('Node0', 0)
0.820222616 ('Node0', 0)
0.812052965 ('Node0', 0)

('Node0', 1.0018336
('"Node0', 1.7233045
('Node0', 1.0325791
('Node0', 0.8630368
('Nodel', 0.6656236
('Nodel', 2.0221908
('Nodel', 2.1763992
('Nodel', 2.3905766
('Node2', 1.6372430
('Node2', 5.8643944
('Node2', 5.5286519
('Node2', 2.2787077
('Node3', 8.5118451
('Node3', 5.9629311
('Node3', 5.1251468
('Node3', 2.9890360
('Node4', 3.2317349
('Node4', 4.4335861
('Node4', 10.333437
('Node4', 4.5913050
('Node5', 10.703117
('Node5', 0.5796527
('Node5', 8.4324722
('Node5', 4.4462616
('"Node6', 1.6056003
('Node6', 3.8291213
('Node6', 3.1513106
('Node6', 2.3550515
('Node7',2.1878378
('Node7',9.8276822
('Node7',1.7528812
('Node7', 3.8887782
('Node8', 2.1880710
('Node8', 5.3935475
('Node8', 11.903022
('Node8', 4.7135775

2.560717583 ('Node7', 5.9(('Node9', 11.665583
2.950899363 ('Node7', 5.9(('Node9', 1.9536871
0.820222616 ('Node7', 5.9(('Node9', 3.2058639
0.812052965 ('Node7', 5.9(('Node9', 2.3365669
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10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26
10083.26



Table J.6: Multi-node ensemble-MLP on random input by Bagging-like method-12

dataset partitions:

RAND!
RANDt!
RAND!
RAND!
RANDt1
RAND!
RANDt!
RANDt!
RANDt!
RAND!
RAND!
RAND!
RANDt!
RAND!
RAND!
RAND:!
RANDt!
RAND!
RAND!
RAND!
RANDt!
RANDt!
RANDt!
RAND!
RANDt!
RAND!
RAND!
RAND!
RANDt!
RANDt!
RAND!
RANDt!
RANDt!
RAND!
RAND!
RAND!
RANDt1
RANDt!
RANDt!
RAND!
RANDt!
RAND!
RAND!
RAND!
RANDt!
RAND:!
RAND!
RAND!

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

0D

0 DB
0SB

0 NRSB
1D

1 DB
1SB

1 NRSB
2D

2 DB

2 SB

2 NRSB
3D

3 DB
3SB

3 NRSB
4D

4 DB

4 SB

4 NRSB
5D

5 DB
5SB

5 NRSB
6D

6 DB

6 SB

6 NRSB
7D

7 DB

7 SB

7 NRSB
8D

8 DB

8 SB

8 NRSB
9D

9 DB

9 SB

9 NRSB
10D

10 DB
10 SB
10 NRSB
11D

11 DB
11 SB
11 NRSB

MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP
MLP

0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688
0.829688

0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467
0.955467

3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)
3.890158 ('Node0', 0)
4.403519 ('Node0', 0)
0.837627 ('Node0', 0)
1.156866 ('Node0', 0)

('Node0', 2.6370270
('Node0', 1.3273177
('Node0', 0.9136846
('Node0', 1.1390390
('Nodel', 4.9650335
('Nodel', 4.4876430
('Nodel', 12.752262
('Nodel', 9.6697261
('Node2', 2.6619265
('Node2',9.6812012
('Node2', 2.5964581
('Node2', 3.4135105
('Node3', 13.154320
('Node3', 7.4917912
('Node3', 3.2438330
('Node3', 4.8717164
('Node4', 2.6938998
('Node4', 9.2159466
('Node4', 6.3810095
('Node4', 3.6128857
(‘Node5', 2.3795359
('Node5', 3.3796424
('Node5', 7.3237602
('Node5', 9.5763037
('Nodeb', 6.9890644
('Node6', 4.2851009
('Nodeb', 6.2046265
('Node6', 8.6979887
(‘Node7', 2.3174395
('Node7', 8.9908702
('Node7', 10.409826
('Node7', 2.5763995
('Node8', 3.6308524
('Node8', 2.4792826
('Node8',9.1237764
('Node8', 3.3221747
('Node9', 3.6233942
('Node9', 1.5142960
('Node9', 9.7609095
('Node9', 9.8287725
('Nodel0', 4.762289
('Nodel0', 7.483974
('Nodel0', 2.169569
('Node10', 10.92497

3.890158 ('Node8', 6.25 ('Nodel1', 2.078769
4.403519 ('Node8', 6.25 ('Nodel1', 1.356108
0.837627 ('Node8', 6.25 ('Node11', 11.43080
1.156866 (‘Node8', 6.25 (‘Nodel1', 8.807789
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11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46
11709.46



Appendix K: Experimental results of DELS System on HIGGS
Table K.1:Training time for multi-node on sorted LADEL-[2:12] dataset partitions:

2 0 207.5243757 4.410811901
2 1 204.1257854 4.642113447
4 0 49.1583724 0.364773989
4 1 48.09182978 0.183308601
4 2 49.64368272 0.18478775

4 3 48.76984859 0.593172169
6 0 24.20863676 0.213551998
6 1 22.4028132 0.192713737
6 2 24.37811208 0.220369339
6 3 24.65529346 0.135885477
6 4 22.50022268 0.319504023
6 5 25.81299663 0.545813236
8 0 14.80749965 0.479813347
8 1 14.77436113 0.215327024
8 2 15.66281271 0.165551424
8 3 16.26888108 0.121687412
8 4 16.7793715 0.205135584
8 5 16.61184478 0.20334506

8 6 17.26438093 0.366477251
8 7 18.18044829 0.348156691
10 0 10.05238175 0.035876513
10 1 10.01142478 0.161104679
10 2 9.666127205 0.173743725
10 3 10.19817948 0.175217152
10 4 9.781116962 0.171903372
10 5 9.507634163 0.225968838
10 6 9.525583267 0.394062996
10 7 10.03168988 0.436469746
10 8 10.24550438 0.405379944
10 9 11.77484488 0.393129797
12 0 8.569123745 0.113939047
12 1 8.693429708 0.227532387
12 2 8.95452714 0.184660196
12 3 7.505750179 0.209269524
12 4 8.463288546 0.267534494
12 5 7.852916718 0.201194286
12 6 8.692966461 0.157743216
12 7 8.900878668 0.203767061
12 8 7.143722773 0.423821459
12 9 8.914180279 0.461218805
12 10 7.010122299 0.400116167
12 11 7.478554964 0.244750738
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Table K.2: Training time for single-node on sorted LADEL-[2:12] parts:

00O 00 00 00O 00 00O 00O 00 OO O O O O O A A A B NN

R R R R R R R R R R R R R RRRRRBRRRR
N NN NNNMNMNMNMNNNNNNOOOOOOOOOO

OooNOOTU DS WNRERPROOONOOTULLPEWNPRPERPONOCOGWUMWNPEROOURMWNPEOWNEREROLRLRDO

N
= O

368.0136001
970.722302
36.88137269
36.30187917
174.765486
171.3531091
14.69121647
14.73460817
14.72076845
15.35086513
73.97567487
75.85161018
10.64567995
8.559438467
8.2943995
10.69076514
10.93174195
10.85930777
43.62651348
46.47767973
5.748681307
7.654337406
7.887929678
8.000450373
7.701223373
7.940872192
8.090419054
8.063848019
27.62767053
29.19114542
4.066499472
6.098992348
6.16697526
5.383090496
5.984343052
5.957971096
6.268441439
6.728176355
20.10471988
20.44731212
20.67884898
21.39685726

8.07707929611
10.23761057854
0.30437040329
0.19760179520
0.19239258766
0.66925148964
0.16747665405
0.13596582413
0.13284564018
0.13331699371
0.55787944794
0.51566553116
0.18248271942
0.17937278748
0.18115735054
0.15203356743
0.19345068932
0.14757585526
0.38914155960
0.48854189873
0.37717294693
0.18286013603
0.17950129509
0.13058304787
0.17162775993
0.19384765625
0.17492222786
0.43742585182
0.33964848518
0.38032364845
0.10958361626
0.12338876724
0.15580511093
0.15455269814
0.14924144745
0.17402577400
0.15457987785
0.15197563171
0.46822776794
0.42445044518
0.32329983711
0.43457781792
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Appendix L: Experimental results of DELS system on HIGGS

Table L.1: Scoring time for single-node on sorted LADEL-[2:12] parts:

o o ~N

10
12

Table L.2: Scoring time for multi-node on sorted LADEL-[2:12] parts:

o o B~N

10
12

250.2270966
515.9956222
809.6825156
1027.764865
1007.854003
958.8259308

182.9336224
391.2762494
557.8512392
755.0983987
899.5738959
1062.528551

140.074163
380.5397527
645.9810624
681.3745151
628.9259033
991.0405636

220.3684473

354.730495
538.9778781
836.9345078
1022.924756
1117.677441
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Appendix M: Experimental results of DELS system on KDD Cup 99

Table M.1: Comparison in MLP and CART for LADEL :

NODE #

Classifier
2 MLP
4 MLP
6 MLP
8 MLP
10 MLP
12 MLP
2 CART
4 CART
6 CART
8 CART
10 CART
12 CART

SRV Cross-Val-Score

0.853202909
0.219282428
0.853514463

0.93022953
0.929814416
0.852754759
0.930196829
0.925985781
0.930075073
0.280884555
0.930754784
0.853274294
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SRV Test-Score

0.268667613
0.929996416
0.194401995

0.93138082
0.589724741
0.930086886
0.590309968
0.583278876
0.931987161
0.930511535
0.192626914
0.582389684



