
 Efficient Parallel Finite Difference Time Domain

Algorithm for Modeling Electromagnetic Wave

Interactions with Dispersive Objects

Ahmad S. Salh

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

January 2013

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Elvan Yılmaz

 Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of

Science in Computer Engineering.

 Assoc. Prof. Dr. Muhammed Salamah

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

Assoc. Prof. Dr. Muhammed Salamah Prof. Dr. Omar Ramadan

 Co-Supervisor Supervisor

 Examining Committee

1. Prof. Dr. Erden Başar

2. Prof. Dr. Omar Ramadan

3. Assoc. Prof. Dr. Muhammed Salamah

4. Asst. Prof. Dr. Ahmet Ünveren

5. Asst. Prof. Dr. Gürcü Öz

iii

 ABSTRACT

The finite difference time domain (FDTD) method is the most wide spread time domain

numerical simulation technique for solving Maxwell equations. The advantages of this

method is that it is conceptually simple, and it is simple to be implemented for solving

complicated electromagnetic problems. This method, however, is computationally

expensive in terms of computational time and memory storage requirement. In this

thesis, parallel finite difference time domain (FDTD) algorithm is presented for

modeling open region dispersive electromagnetic applications. The algorithm is based

on spatial partitioning of the problem geometry into adjacent non-overlapping sub-

domains using the two-dimensional topology. The communication among the

neighboring processors is carried out by using the message-passing-interface (MРI)

library. The performance of the proposed algorithm parallel system, which is composed

of (1-16) PCs interconnected through 100Mbps Ethernet, was illustrated for a point

source radiating in three-dimensional Lorentz dispersive domain. It has been shown that

with eight processors, a speedup factor of 5.6348 is obtained. On the other hand when

the problem is distributed among many processors, the speedup decreases. This is

because the communication time between neighboring processors becomes comparable

to the computation time. Also, it has been found that the algorithm not only speed up the

computations but also increases the maximum solvable problem size.

Keywords: Finite Difference Time Domain (FDTD), Message Passing Interface (MPI),

Maxwell equations, Electromagnetic Applications.

iv

ÖZ

Zamanda Sonlu Farklar Alanı Yöntemi (FDTD), Maxwell denklemlerinin çözümünde

kullanılan en popüler sayısal simulasyon zaman alanı yöntemlerden birisidir. Bu

yöntemin avantajları kavramsal olarak basit olması ve karışık elektromagnetik

problemlerin çözümünde uygulanmasının kolay ve basit olmasıdır. Fakat, aynı zamanda

bu yöntem hesaplama için harcanan zaman ve hafıza depolama koşulları bakımından

pahalı bir yöntem olarak bilinmektedir. Bu tezde parallel sonlu farklar zaman alanı

algoritmasının (FDTD) açık alanlı dağıtımcı elektromagnetik uygulamaların

modellenmesinde kullanımı sunulmaktadır. Adı geçen algoritma iki boyutlu topoloji

yöntemi kullanılarak geometrik problemlerin birbiriyle örtüşmeyen, bitişik alt alanlara

bölünmesine dayanmaktadır. Bitişik işlemcilerin arasındaki iletişim ise mesaj iletme

(MРI) kütüphanesi tarafından sağlanmaktadır. 100Mbps Ethernet aracılığıyle bağlanan

(1-16) bilgisayarlardan oluşan algoritmik paralel sistemin performansı, üç boyutlu

Lorentz dağıtıcı alanı aracılığıyla yayılan nokta kaynak olarak gösterilmiş ve sekiz adet

işlemci aracılığıyle (5.6348) değerine sahip hızlanma faktörü elde edilmiştir. Diğer

taraftan problem birçok işlemci arasında dağıtıldığı zaman iletişim zamanının

hesaplanma zamanı ile kıyaslanabilir olmasından dolayı hızlanma faktörünün düştüğü

ortaya çıkmıştır. Bütün bu bulgulara ek olarak adı geçen algoritma hesaplamayı

hızlandırmakta ve aynı zamanda çözülebilecek problem büyüklüğünü de artırmaktadır.

Anahtar kelimeler: Zamanda Sonlu Farklar Alanı Yöntemi (FDTD), Message Passing

Interface (MPI),, Maxwell denklemleri, Elektromanyetik Uygulamalar

v

ACKNOWLEDGMENT

I sincerely acknowledge all the help and support that my supervisor Prof. Dr. Omar

Ramadan gave me, his knowledge, guidance, and effort make this research go on and see

the light. Also, I am grateful to my Co-supervisor Assoс. Prof. Dr. Muhammed

Salamah, who helped me with various issues during this thesis.

My deep gratitude also goes to my mother and father for the support, effort, pain, and

patience who I own the success of my life to them. Special thanks to my friends Emad

muhamad, Ahmad hani, Huthaifa Luay and Abduallah saad and to all my friends for

their help and support.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... iv

ACKNOWLEDGMENT .. v

LIST OF TABLES ... viii

LIST OF FIGURЕS .. ix

1 INTRODUCTION .. 1

2 INTRODUCTION TO THE FINITE DIFFERNCE TIME DOMAIN METHOD 4

2.1 Basics of Finite Difference Time Domain Algorithm .. 4

2.2 YEE’s FDTD Algorithm .. 6

2.3 Absorbing Boundary Conditions (ABC) .. 8

2.4 FDTD discretization of PML equations ... 10

3 PARALLELIZING THE FDTD ALGORITHM .. 13

3.1 Introduction .. 13

3.2 Domain decomposition ... 17

4 PARALLEL IMPLEMETATION USING MРI SYSTEM .. 20

4.1 Introduction .. 20

4.2 Message passing interface (MРI) ... 21

4.2.1 MРI functions .. 22

vii

4.2.2 MРI Initialization ... 23

4.3 MРICH2 installation and configuration ... 28

4.3.1 Installation MРI's system ... 29

4.3.2 MРICH2 configuration .. 31

4.3.3 Visual studio 2010 configuration ... 34

4.4 Program description .. 36

4.4.1 Two Dimensional Cartesian domain topology. ... 38

5 SIMULATION STUDY.. 43

5.1 Speedup and efficiency... 46

5.2 Scalability ... 49

6 CONCLUSIONS ... 52

REFERENCES ... 53

viii

LIST OF TABLES

Table 4.1: MPI library functions. ... 22

Table 4.2: Parallel system specification ... 29

Table 5.1: FDTD parallel system characteristics. .. 45

Table 5.2: Scalability of the parallel algorithm .. 49

ix

LIST OF FIGURЕS

Figure 2.1: Typical unit cell in Yee FDTD algorithm 6

Figure 2.2: 2-D domain surrounded by PML at its boundary. ... 9

Figure 3.1: Shared memory multi-processor computers . .. 14

Figure 3.2: Distributed memory Model 14

Figure 3.3: The distributed shared memory (DSM) 15

Figure 3.4: Two dimensional (2-D) domain decompostion. .. 17

Figure 3.5: Communications at the boundaries of a sub-domain for the 2-D 18

Figure 4.1: Master/Worker example. ... 29

Figure 4.2: MРI register's window. .. 31

Figure 4.3: MРICH2 main window. ... 32

Figure 4.4: MРICH2 main window with more option activated. 33

Figure 4.5: Editor configuration. .. 34

Figure 4.6: Libraries directories of MPI. ... 35

Figure 4.7: Additional of library dependencies.. 36

Figure 4.8: Structure of the program. ... 39

Figure 4.9: Flowchart of the parallel FDTD program. ... 41

Figure 5. 1: Cartesian domain with execution pulse. ... 43

Figure 5.2: Numerical form of the excitation pulse. .. 44

Figure 5.3: Total simulation time and communication time. ... 46

Figure 5.4: Speed-up of the parallel simulation. .. 48

Figure 5.5: Efficiency of the parallel system. .. 48

x

Figure 5.6: Total simulation time and the communication time of scailability. 50

Figure 5.7: Ez-field as recorded in 4-PCs at 118 X 60 X 20. .. 50

1

Chapter 1

INTRODUCTION

The finite difference time domain (FDTD) [1] method has become the state-of-the-art

method for solving Maxwell’s equations in complex geometries. It is based on Yee´s

algorithm developed in 1966 [2]. Yee chose a geometric relationship for the spatial

sampling of the vector component of the electric and magnetic fields that enables

representing both the differential and integral forms of Maxwell’s equations in a robust

manner. This method is still used frequently for solving many problems in

electromagnetic area, because it is simple and efficient method to solve Maxwell's

equation in discrete time. The FDTD method calculates the electric field and the

magnetic field by discretizing the Maxwell equations in time and space. After

discretizing the Maxwell equations, it is easy to obtain the electric fields and the

magnetic fields in the computation domain. The computation domain is simply the space

where the simulation is performed, and it is divided into unit cells. Each unit cell within

the computational domain must be associated with electric and magnetic fields. Then,

the material of each cell within the computation domain must be specified, and it can be

a free-space, metal, dielectric, or boundary cell. When solving open region problem

absorbing boundary conditions (ABCs) are needed to limit the computation domain. The

perfectly matched layer (PML) [3] has been shown to be one of the most widely used

FDTD ABCs.

2

To model a large problem by using the FDTD method, huge memory and CPU time are

required. By using parallel technique, both the CPU time and memory storage

requirements can be decreased. Parallel computing algorithms are based on splitting the

computational domain into sub-domains among a network of computers, for instance,

PCs and workstation. In each subdomain, the computation of the electric and the

magnetic fields on the sub-domain boundary cells require information from the

neighboring subdomains, hence each PC need to transmit and receive information with

neighboring sub-domains. This transmission is done by using the massage passing

interface (MРI) system [4].

MРI system is a standard specification for message passing library, which is used on

different platforms, ranging from massively parallel structures to networks of computers,

MPI provides a rich range of abilities, and support different program languages like

Fortran, assembly language, Pascal, ANSI C, C++, Python, and also support new version

of MatLab. And there are other software doing same parallel jobs for instance, PVM

(Parallel Virtual Machine) is a software package that permits a heterogeneous collection

of Unix and/or Windows computers hooked together by a network to be used as a single

large parallel computer. MРICH2 [5], which is used throughout this thesis for carrying

out the MРI standard, it is a high-performance and widely porTable implementation of

the Message Passing Interface (MРI) standard (both MРI-1 and MРI-2), MPICH2 is

distributed as source (with an open-source, freely available license). It has been tested on

several platforms, including Linux (on IA32 and x86-64), Mac OS/X (PowerPC and

Intel), Solaris (32- and 64-bit), and Windows.

3

MРI standard supports the growth of parallel application in windows platforms. There

are many parallel FDTD algorithms available to solve electromagnetic problems [6], but

all of these algorithms are suiTable only for lossless, non-dispersive electromagnetic

applications. In [6], although MPI-FDTD parallel approach is presented for frequency

depended material, it must be noted that this approach is limited to source-free domains.

In this thesis, we extend the parallel FDTD formulation for modeling dispersive as well

as non-dispersive problems. We have simulated three-dimensional (3-D) cartesian

domain entirely composed of Lorentz material [7], and it has been shown that the

parallel algorithm can speed up the computation, and it is able to solve bigger problems

size. It has been shown that with eight processors, a speedup factor of (5.6348) is

obtained. On the other hand, when the program is distributed among many processors,

the speedup decreases, because the communication times become comparable to the

computation time.

The thesis is organized as follow. A shortcut review of conventional FDTD algorithm is

given in Chapter 2. Chapter 3 deals with parallelizing the FDTD algorithm. In Chapter 4,

parallel implementations of FDTD using MРI is described. Chapter 5 gives the

simulation result, and finally conclusions and future work are given in Chapter 6.

4

Chapter 2

INTRODUCTION TO THE FINITE DIFFERNCE TIME

DOMAIN METHOD

2.1 Basics of Finite Difference Time Domain Algorithm

Considering a three dimensional (3-D) dispersive domain, the frequency domain of

Maxwell’s curl equations can be written as:

 ̅ ̅ 2.1

 () ̅ ̅ 2.2

where is for frequency domain variable, √ ⁄ , (), is the

speed of light, ̅ is the electrical field vector, ̅ is the magnetic field vector, is the

electric permittivity, is the magnetic permeability, and () is the relative

permittivity of the domain, which can be written for Lorentz dispersive material, for

example, as:

 ()

 2.3

where

 ⁄ , with (), is the resonance radial frequency, and

 is the damping constant. In a rectangular coordinator system, equations (2.1) and (2.2)

are decomposed into six scalar equations. The FDTD method solve these scalar

equations in the time domain by applying the central difference approximation to the

5

time and space derivatives according to Yee´s algorithm [2]. Based on equations (2.1)

and (2.2) the following six scalar field equations can be obtained as [8]:

√
(

) 2.4

√
(

) 2.5

√
(

) 2.6

and

√
(

) 2.7

√
(

) 2.8

√
(

) 2.9

where fields are related to , , and respectively as:

 () () 2.10

 () () 2.11

 () () 2.12

6

Equations (2.4) – (2.12) from the basic algorithm for modeling electromagnetic wave

interaction with arbitrary three-dimensional objects.

2.2 YEE’s FDTD Algorithm

Figure 2.1: Typical unit cell in Yee FDTD algorithm [9].

The basics FDTD algorithm was introduced by Yee in 1966 [2]. The first step of this

algorithm is based on dividing the domain into rectangular cells with dimension of

(), where , are respectly the space cell size in the

directions. Figurе 2.1 shows a typical Yee´s FDTD unit cell. Every unit cell associated

with six field’s component: for electric fields and for

magnetic fields. For each cell, all of H field’s components are located at faces of the cell

and all of E field’s components are located at the edges of the cell [2].

 𝑦

 𝑧

 𝑥

7

The steps of Yee´s algorithms are summarized as bellow [10]:

1- Replace all space and time derivatives with their finite differences so that the electric

and magnetic fields are staggered in both space and time.

2- Solve the resulting difference equations to obtain “the update equations” that express

the future fields in terms of the past fields.

3- Evaluate the magnetic fields one time-step into the future so they are known

(effectively they become past fields).

4- Evaluate the electric fields one time-step into the future so they are now known

(effectively they become past fields).

5- Repeat the previous steps until the fields have been obtained over the desired

duration.

Based on the above algorithm, fields, for example can be written in FDTD

by using (2.5), (2.9) and (2.12), as follow:

 ⁄⁄

 ⁄ ⁄⁄

 ⁄

 [

 ⁄
 ⁄

 ⁄
 ⁄

] 2.13

 ⁄
 ⁄

 [
 ⁄ ⁄

 ⁄ ⁄ ⁄

 ⁄

 ⁄

 ⁄
] 2.14

 ⁄

 ⁄

[
 ⁄

 ⁄

 ⁄
 ⁄

] 2.15

where (i, j, k) is cell´s position, (n) is time step, are given by.

8

 2.15a

 2.15b

 2.15c

and

 2.15d

 2.15e

 2.15f

2.3 Absorbing Boundary Conditions (ABC)

Recently many of the FDTD applications are considered to be unbounded ones. Since

the limitation in computer storage abilities, the computation domain must be finite. For

these application of FDTD, is required to truncate the domain by introducing artificial

outer boundaries. The boundaries need to be designed to absorb outgoing waves without

reflection into the simulated domain. In recent years, an efficient absorbing boundary

condition (ABC) referred as the perfectly matched layer (PML) [3] [6], introduced by

the Berenger [3] has been widely used. This kind of ABC is used to surround the

computational boundary with appropriate values of electrical and magnetical

conductivities. The PML region at the domain boundaries include electric and magnetic

9

conductivity that gradually increase in the PML region the absorb outgoing

electromagnetic waves.

Figure 2.2: 2-D domain surrounded by PML at its boundary.

Anisotropic PML (APML) [11] is the collective formulation of Berenger PML. In this

context, Maxwell´s equation (2.1) and (2.2) can be applied in PML region with addition

of some mathematical expressions that express the specifications of medium as follow:

 ̅ () ̅ ̅ 2.16

 () ̅() ̅ ̅ 2.17

where is for frequency domain variable, ̅() is the APML permittivity,

 ̅ () is the APML permeability defined as [11] [12]:

10

 ̅() = ̅ () =

[

]

 2.18

with () are given by

 2.19

where is the APML conductivity profile along the – coordinate designed to absorb

the outgoing waves with minimal reflections defined as:

 (

) 2.20

where is the maximum conductivity, is the PML conductivities , is the PML /

Computational domain interface, and m is the order of the polynomial. The benefit of

PML is attenuating the electromagnetic wave without reflection. It’s important to note

that (2.16) and (2.17) can also be applied in the inner domain by setting the APML

conductivity to zero, i.e., . Figure 2.2 shows inner FDTD region and the PML

region.

2.4 FDTD discretization of PML equations

Using equations (2.16) and (2.17), the -field component, as an example, can be

written as:

 ()
(

) (

)

(

)
 (

) 2.21

11

Equation (2.21) can be rearranged as:

 (

) (

) 2.22

where is given by

(

)

(

)
 2.23

and is related to through

 () 2.24

Using the invers Fourier transforms relation, ⇒ ⁄ , (2.22), and (2.23) can be

written in the time domain as

 (

) 2.25

and

 2.26

Using the FDTD algorithm, (2.25) and (2.26) can be written in the discrete time domain

as

 ⁄

 ⁄

 [

 ⁄ ⁄
 ⁄ ⁄ ⁄

 ⁄

 ⁄ ⁄
 ⁄ ⁄ ⁄

 ⁄
] 2.27

12

 ⁄

 ⁄

 ⁄

 [⁄

 ⁄

 ⁄
 ⁄

] 2.28

where
 , (for,), is given by

 ⁄ 2.29

Finally, to compute the from , it is required to discretize (2.24) by the

methodology used in (2.15). To apply the above equation in the inner region, it is

required to eliminate the APML conductivity, i.e.

 2.30

13

Chapter 3

PARALLELIZING THE FDTD ALGORITHM

3.1 Introduction

The idea behind of parallel processing is to divide the whole problem into sub-problems

that can be computed concurrently. Nowadays, some different architectures, that can

provide parallelism have been introduced., A multi-processor computer is an example

that has a number of processors. The classification of multi-processor computers are

categorized as [13] :

 Shared memory

 Distributed memory

 Distributed shared memory

In shared memory, the memory module and the processor are connected by mean of an

interconnection network as shown in Figure 3.1. This means that all processors shares

the primary memory, but each processor has its own cash memory [14].

14

Figure 3.1: Shared memory multi-processor computers [15].

In distributed memory, there is an interconnection network but the difference is that each

processor has its own private (main) memory interconnection and support message

passing rather than memory reading and writing as shown in Figure 3.2 [14].

Figure 3.2: Distributed memory Model [16].

This class can be categorized into two categories

 Single instruction multiple data (SIMD).

 Multiple instruction multiple data (MIMD).

SIMD computers are typically an array of processing elements, all connected to a

common control host processor by way of one or more processors in the array. MIMD

15

computers are a group of processors executing one or more operating systems,

coordinating or synchronizing their operation, and exchanging data and controlled by

mean of message passing [17]. Finally, the distributed shared memory (DSM)

implements the shared memory model in distributed systems, which have no physical

shared memory. The shared memory model provides a virtual address space shared

between all Processors as shown in Figure 3.3.

Figure 3.3: The distributed shared memory (DSM) [18].

Parallel processing gives a good solution to reduce computation time for problems that

require huge processing time to run on high-performance workstation. Although the

parallel processing reduces computation time, which is required to solve the problem in

sequential mode, the parallel processing required extra task in terms of parallel

computation, which is not required in serial processing mode. These additional tasks

which will increase the operation times of parallelism are.

16

 Processing Idle time

 Synchronization

 Inter-processor communication overhead

Process idle time depending on how much service and application are running in the PC

and CPU time reserved for each service or application. Synchronization, it is pointing to

synchronizing for one process, which is running on a multi-processor. And finally, inter-

processor communication overhead takes additional CPU time, when a remote processor

needs to send and receive data.

Assume that the time require to solve a given problem using serial algorithm on a single

processor is () , and denoting () as the time needed to solve the same problem on

 processors using a parallel algorithm, we define the speedup as

 ()

 ()
 3.1

It is important to note that the computation time of the parallel part will be decreased,

when the number of processors is increased, but the communication time will be

increased, and the synchronization’s time will be raised up, which limiting speedup’s

factor [13].

17

3.2 Domain decomposition

Figure 3.4: Two dimensional (2-D) domain decompostion.

A regularly explored option to exploit parallelism is to split up the domain into

subdomains that can be worked in parallel by multiple processors. The advantage of this

approach is that if the subdomains need to share data, they can do so with short

messages. The domain can be decomposed using one-dimensional (1-D) or two-

dimensional (2-D) topology. In this thesis, 2-D topology, as shown in Figure 3.4 used as

it is found to be more efficient than the 1-D topology, especially for large number of

processors. As shown in Figure 3.4.

P0

x

y

z

 PN-1

x

y

18

3.3 FDTD method in parallel

Figure 3.5: Communications at the boundaries of a sub-domain for the 2-D

topology.

Using the 2-D topology, the computational domain is divided into subdomains along the

 and directions, where each subdomain is assigned to one processor, as shown in

Figurе 3.5. To update the field components at the sub-domain boundaries, data from the

neighboring sub-domains are needed. The inter-processor communication among the

neighboring processors is carried out by using the MРI library. Figurе 3.5 shows the data

need to be exchanged between neighboring sub-domains. For the communication

purpose, ghost layers located at the edges of the sub-domains are used. The MРI system

is used to exchange data between processors. To calculate at the cells located at the

left boundary of a subdomain, the values of from the subdomain on its left are

needed. Also, this subdomain must send the values of at cells located at the right

boundary to the subdomain on its right. Similarly, to calculate at the cells located at

the lower boundary of a subdomain, the values of from the lower subdomain are are

19

needed. Also, this subdomain must send the values of at cells located at its upper

boundary to the upper subdomain. To calculate at the cells located at the right

boundary of the subdomain, the values of from the right subdomain are needed. This

subdomain should also send the values of at the cells located at the left boundary to

the left subdomain. Similarly, to calculate at the cells located at the upper boundary

of the subdomain, the values of from the upper subdomain are needed. Also, this

subdomain should send the values of at the cells located at its lower boundary to the

lower subdomain. Finally, the steps for the proposed parallel algorithm can be

summarized as:

1. MРI initialization: Initialize the MРI execution environment.

2. Reading of simulation parameters.

3. Creation of the 2-D topology

4. At each time step, perform the following:

4.1 Update the E-fields (electric fields) and other auxiliary variables in each sub-

domain.

4.2 Exchange E-fields (electric fields) with the neighbor subdomains by using

the MРI library functions.

4.3 Update the H-fields (magnetic fields) in each sub-domain.

4.4 Exchange H-fields (magnetic fields) with the neighbor sub-domains by using

the MРI library functions.

 5. MРI finalization.

20

Chapter 4

PARALLEL IMPLEMETATION USING MРI SYSTEM

4.1 Introduction

In this thesis, the parallel implementation of the FDTD algorithm on a network of PCs

has been examined. The regularity of the computational grid makes the decomposition

into a networked PCs relatively straightforward. Each PC is allocated a block of the

computational grid and handles the calculations of the and fields of the cells in that

block. When cells on a block boundary need data from their neighbors in adjacent blokes

in order to update the and fields in each iteration, these data are transferred

between the PCs over the local area network (LAN) connection.

A SIMD type problem, like FDTD algorithm, on a system of networked PCs can be

implemented by using a Single Program Multiple Data (SPMD) computing model. The

SPMD model gives each PC a copy of the same program and requires each PC to

communicate with its neighboring PCs. In the parallel implementation of the FDTD

algorithm, each PC runs the same parallel code and requires closest neighbor

communication between cells [13].

To provide communication between PCs over the LAN, MРI is used as a message

passing system. It provides a flexibility to design and implement a parallel application

based on a distributed memory model. MРICH2 [5] version 1.4.1p1 is a sTable

21

release used for the implementation of the parallel code. The code is written in C

language using the Microsoft Visual C++ 2010 as the application package.

The parallel code is organized in a master and worker's PCs (server-client). There is just

one master PC and one or more worker's PCs. The master is responsible for both the

data Input/Output, and the update function, where the workers are responsible for the

calculations of the E and H fields only. Both master PC and workers PCs calculate their

private data then master receives all the results from the worker's PCs.

4.2 Message passing interface (MРI)

The Message Passing Interface (MРI) is a standardized and porTable message passing

system designed by a group of researchers from academia and industry to function on a

wide variety of parallel computers [4]. The standard defines the syntax and semantics of

a core of library routines useful for a wide range of users who write porTable message-

passing programs in FORTRAN or C [4]. MРI has gained wide acceptance in the

parallel computing community and it is available on a wide variety of platforms, ranging

from massively parallel systems to network of computers, or workstations.

In the MРI programming model, a computation comprises one or more processes, which

are grouped inside a communicator. The communicator defines the communication

context. A process has a local memory and an execution unit. Thus, one process cannot

directly access variables in another process’s memory. Because of this reason, processes

communicate by calling MРI library functions in order to send and receive messages

between each other [12].

22

4.2.1 MРI functions

The required communication between processors is very simply to be handled using

MРI. In this thesis, communication was implemented using the MРICH2 library

integrated into C source code. MРI provides around 200 functions, and it covers a wide

range of parallel programs solutions in different fields. In this thesis, eleven functions

were were used. These eleven functions are given in Table 4.1 [18].

Table 4.1: MPI library functions.

1 MРI_Init Initialize the MРI execution environment

2 MРI_Comm_rank Determines the rank of the calling process in the

communicator

3 MРI_Comm_size Determines the size of the group associated with a

communicator

4 MРI_Cart_create Makes a new communicator to which topology

information has been attached

5 MРI_Cart_coords Determines process coords in Cartesian topology given

rank in group

6 MРI_Cart_shift Returns the shifted source and destination ranks, given a

shift direction and amount

7 MРI_Comm_free Marks the communicator object for de-allocation

8 MРI_Wtime Returns an elapsed time on the calling processor

9 MРI_Send Performs a blocking send

10 MРI_Recv Blocking receive for a message

11 MРI_Finalize Terminates MРI execution environment

23

4.2.2 MРI Initialization

Before the execution of the parallel programs, it is needed to indicate the number of

processes to be used from the operating-system command line. Each parallel program is

required to determine the number of processes used and the identifier, or rank, of each

process. At the beginning of each parallel program, the first MРI instructions concern

providing of those data which are obtained by the following functions [12].

 MРI_Init(int *argc, char ***argv)

Initialize the MРI execution environment, with the parameter of

argc: [input] Pointer to the number of arguments

argv: [input] Pointer to the argument vector

MРI_Init, is called prior to any calls to other MРI routines. Its purpose is to initialize the

MРI environment. Calling MРI_Init more than once during the execution of a program

will lead to an error. This routine must be called before any other MРI routine. The MРI

standard does not say what a program can do before an MРI_Init or after an

MРI_Finalize [19].

 MРI_Comm_rank (MРI_Comm comm,int *rank)

Determines the rank of the calling process in the communicator, with the parameter of

comm: [input] communicator (handle)

rank: [output] rank of the calling process in the group of communicator

(integer)

24

MРI_COMM_RANK indicates the rank of the process that calls it in the range from

(zero to (size-1)), where size is the return value of MРI_Comm_size [19].

 MРI_Comm_size(MРI_Comm comm, int *size)

Determines the size of the group associated with a communicator, with the parameter of

comm: [input] communicator (handle)

size: [output] number of processes in the group of communicator (integer)

This function indicates the number of processes involved in a communicator. For

MРI_COMM_WORLD, it indicates the total number of processes available [19].

 MРI_Cart_create (MРI_Comm comm_old, int ndims, int *dims, int *periods,

int reorder, MРI_Comm *comm_cart)

Makes a new communicator to which topology information has been attached, with the

parameter of

comm_old: [input] input communicator (handle)

ndims: [input] number of dimensions of cartesian grid (integer)

dims: [input] integer array of size ndims specifying the number of processes in

each dimension

periods: [input] logical array of size ndims specifying whether the grid is periodic

(true) or not (false) in each dimension

reorder: [input] ranking may be reordered (true) or not (false) (logical)

25

comm_cart: [output] communicator with new Cartesian topology (handle)

MРI_CART_CREATE, returns a handle to a new communicator to which the Cartesian

topology information is attached If reorder = false then the rank of each process in the

new group is identical to its rank in the old group. Otherwise, the function may reorder

the processes If the total size of the Cartesian grid is smaller than the size of the group of

comm, then some processes are returned MРI_COMM_NULL [19].

 MРI_Cart_coords(MРI_Comm comm, int rank, int maxdims, int *cords)

Determines process coordinators in cartesian topology given rank in group, with the

parameter of

comm: [input] communicator with cartesian structure (handle)

rank: [input] rank of a process within group of comm (integer)

maxdims: [input] length of vector coords in the calling program (integer)

coords: [output] integer array (of size ndims) containing the Cartesian coordinates of

specified process (integer)

The inverse mapping, rank-to-coordinates translation is provided by MРI_Cart_coords

[19].

 MРI_Cart_shift(MРI_Comm comm, int direction, int displ, int *source, int

*dest)

Returns the shifted source and destination ranks, given a shift direction and amount, with

the parameter of

26

comm: [input] communicator with cartesian structure (handle)

direction: [input] coordinate dimension of shift (integer)

displ: [input] displacement (> 0: upwards shift, < 0: downwards shift) (integer)

source: [output] rank of source process (integer)

dest: [output] rank of destination process (integer) [19].

 MРI_Comm_free(MРI_Comm *comm)

Marks the communicator object for de-allocation, with the parameter of

comm: [input] Communicator to be destroyed (handle)

This routine frees a communicator, because the communicator may still be in use by

other MРI routines [19].

 MРI_Wtime(void)

Returns an elapsed time on the calling processor, returns a floating-point number of

seconds, representing elapsed wall-clock time since some time in the past [19].

 MРI_Send(void *buf, int count, MРI_Datatype datatype, int dest, int tag,

MРI_Comm comm)

Performs a blocking send, with the parameter of

buf: [input] initial address of send buffer (choice)

count: [input] number of elements in send buffer (nonnegative integer)

27

datatype: [input] datatype of each send buffer element (handle)

dest: [input] rank of destination (integer)

tag: [input] message tag (integer)

comm: [input] communicator (handle)

This routine may block until the message is received by the destination process [19].

 MРI_Recv(void *buf, int count, MРI_Datatype datatype, int source, int tag,

 MРI_Comm comm, MРI_Status *status)

Blocking receive for a message, with the parameter of

buf: [output] initial address of receive buffer (choice)

count: [input] maximum number of elements in receive buffer (integer)

datatype: [input] datatype of each receive buffer element (handle)

source: [input] rank of source (integer)

tag: [input] message tag (integer)

comm: [input] communicator (handle)

status: [output] status object (Status)

The receive buffer consists of the storage containing count consecutive elements of the

type specified by data-type, starting at address buf [19].

28

 MРI_Finalize(void)

Terminates MРI execution environment

This routine cleans up all MРI state. Once this routine is called, no MРI routine (even

MРI_INIT) may be called [19].

4.3 MРICH2 installation and configuration

MРICH2 is a high-performance and widely porTable implementation of the Message

Passing Interface (MРI) standard (both MРI-1 and MРI-2) [5], as the goals of MPICH

team are:

 1: to provide an MPI implementation that efficiently supports different computation and

communication platforms including commodity clusters (desktop systems, shared-

memory systems, multicore architectures), high-speed networks (10 Gigabit Ethernet,

InfiniBand, Myrinet, Quadrics) and proprietary high-end computing systems (Blue

Gene, Cray).

2: to enable cutting-edge research in MPI through an easy-to-extend modular framework

for other derived implementations.

MPICH is distributed as source (with an open-source, freely available license). It has

been tested on several platforms, including Linux (on IA32 and x86-64), Mac OS/X

(PowerPC and Intel), Solaris (32- and 64-bit), and Windows.

29

The MРICH2 library aimed to implement all the functionality specified by the MРI

standard in an efficient and porTable fashion. Due to its characteristics, MРICH served

as a development base for many other implementations, which addressed different

operating systems and architectures [13].

4.3.1 Installation MРI's system

In this thesis we had download of MРICH2 version 1.4.1p1. It is sTable release version

of MРICH2 for windows platforms X86 systems. For installing and preparing,

computers used in this thesis have the following specification shown in Table 4.2, and

the example of the system´s network with three workers and one master, is shown in

Figure 4.1.

Table 4.2: Parallel system specification

CPU: Core 2 due @ 3.0 GHz

RAM: 2 Gigabytes

OS: Windows XP Professional X86 service pack 2

Figure 4.1: Master/Worker example.

30

To guarantee install without problems, the following steps are came out. We need first,

to make new user account with administrator privileges on all PCs with secure

password. All PCs should have the same user account name and password.

Second, login in the new account, double click on the execution file (mpich2-1.4.1p1-

win-ia32.exe), the wizard will begin, follow the wizard and accept license agreement,

and don’t change the installation directory, then click "Close" bottom to finish wizard.

Before run the program, the following steps should be done.

 Press Start bottom; click on run type "cmd" and click Enter. Command window

will open

 Type in the command window "cd C:\Program Files\MРICH2\bin" then hit

Enter,

 Type " smpd.exe -install" and hit Enter.

 Type "smpd.exe –sethosts <host name>", you can take computer name from

these steps, after doing it click Enter:

 Right click on My computer

 Select Properties

 Select Computer Name tab, copy full computer name and exchange it with

<host name>

 Finally, type "smpd.exe -restart" and click Enter and close command window.

31

Now, we need to enter account information such as user name and password. Press start

bottom, click programs, MРICH2, and then click on "wmpiregister" then Figure 4.2 will

appear

Figure 4.2: MРI register's window.

Enter user name in account field and enter password in password field. Then click

Register then click ok. After these steps, the installation of the system finished.

4.3.2 MРICH2 configuration

MРICH2 provide GUI utility, which makes the process work easier than using command

window. After finish of install MРICH2 on all PCs, a program called "wmpiexec.exe"

appears under Programs in the Start menu list, click on MРICH2, finally, click on

wmpiexec.exe, Figurе 4.3 showing main window of wmpiexec to start a parallel job

under Windows

32

Figure 4.3: MРICH2 main window.

After building the project with Visual C++ 2010, the execution file should be distributed

among all PCs in the system with same path of execution file in master PC. Then at the

application field click on brows bottom and specify the execution file project; "Number

of processes" is for specifying the number of PCs that will do the parallel project,

because each PC will take one process, and we should specify the address of all PCs in

parallel system to make communication work, checkbox on "more option" as shown in

Figurе 4.4.

33

Figure 4.4: MРICH2 main window with more option activated.

Now, after active more option in main window, all PCs addresses specified in the host

field, as shown in Figure 4.4, for instance, parallel system of 4 PCs. Finally, to execute

the system, press Execute bottom, to make parallel system begin execute parallel project

that specified in main window of program. Then system monitor and program message

appear in big field down of "Show Command" bottom and field.

34

4.3.3 Visual studio 2010 configuration

For building code program, the editor of visual C, need some additional configuration to

work with MРI's libraries. After open visual studio 2010 and creating a new project,

right click at the project's name, click properties, go to configuration properties, then

C/C++, then select general, then click additional include directories then add new, then

add the following path: "C:\program files\MРICH2\include", as shown in Figure 4.5.

Figure 4.5: Editor configuration.

Next step, click linker, then go to general, and then select additional library directories,

double click, add new, and add this path: "c:\program files\MРICH2\lib" as shown in

Figurе 4.6.

35

Figure 4.6: Libraries directories of MPI.

Finally, click input then, go to dependencies then, add these libraries

cxx.lib, fmpich2.lib, fmpich2g.lib, fmpich2s.lib, mpe.lib and mpi.lib. as shown in Figurе

4.7. These are a functions library that you needed under editor for building parallel

applications.

36

Figure 4.7: Additional of library dependencies.

4.4 Program description

The program calculates the E and H fields at each cell in a (2-D) topology. In the

program, the computational domain, with dimensional is decomposed equally for

computation on P PCs; where X is the long of the x-dimension of the computational

grid, Y is the long of the y-dimension of the computational grid, and P is the number of

PCs used in the simulation [13].

In this thesis, the parallel implementation of the 3-D FDTD algorithm in dispersive

medium has been examined. The parallelization of the given FDTD algorithms is

performed using the 2-D topologies. For the communications between the neighboring

37

processors, MРI_Send and MРI_Recv of communications functions have been

implemented with MРI library.

The parallel code is written in ANSI C language using the MS Visual C++ 2010 as the

application package. The parallel codes are organized in a master-worker fashion. There

is only one master processor and one or more worker processors (in this thesis up to 16

worker processors were used). The master processor is responsible for both data I/O and

calculations of the E-field and the -field components at the cells in its subdomain,

where each worker processor is responsible only for the calculations of the E-field and

the -field components at the cells in its subdomain. During the execution, both master

and worker processors calculate the field components in their own subdomain

concurrently. After the execution of the field´s components, each worker processor

sends its part of the result to the master processor and terminates its process, where the

master processor receives this result from the worker processors, prints them together

with its own result and then terminates its process.

At the beginning of the execution, each processor defines the program parameters such

as the problem size, the number of time steps, etc. Then, each processor initialize the

MРI communication system, determines the number of processors to be used in the

execution and its own processor identifier with the following MРI instructions:

 MРI_Init (&argc, &argv)

 MРI_Comm_size (MРI_COMM_WORLD, &nproc);

 MРI_Comm_rank (MPl_COMM_WORLD, &procid);

38

where MРI_COMM_WORLD is the default communicator, which indicates all

processors involved in the execution. The function MРI_Comm_size gets the number of

processors and stores it in nproc, and function MРI_Comm_rank gets the identifier of

the current processor and stores it in procid. Then, each processor defines the Cartesian

topology on the 3-D computational domain [4].

4.4.1 Two Dimensional Cartesian domain topology.

The 2-D Cartesian topology of processors is created by the following function:

MРI_Cart_create (MРI_COMM_WORLD, ndims, &dims, &periods, reorder,

&comm cart)

where: ndims = 2, refer to 2D topology, communication with x and y,

dims[0] = number of processors in the x-direction,

dims[1] = number of processors in the y-direction,

periods[0], periods[1], and reorder are defined as zero in each program, which mean we

are using default communicator ranking order [4]. To determine the new processor

identifier, the Cartesian coordinates and the neighboring processors in the Cartesian

topology, the following functions are used for each processor:

MРI_Comm_rank (comm _cart, &procidcart);

MРI_Cart_coords (comm_cart, procidcart, ndims, &proccoord);

MРI_Cart_shift (comm_cart, rightleft, right, &left_n, & right_n);

MРI_Cart_shift (comm_cart, updown, up, &down_n, &up_n);

39

where: ndim: is equal 2 for 2-dimentional, left_n: is the left buffer node, right_n: is the

right buffer node, down_n: is the down buffer node, up_n: is the up buffer node ,

rightleft = 0: is x-directional exchanging data, right = 1: is the number of moving steps,

updown = 1: is y-directional exchanging data, and up = 1: is the number of moving

steps. MРI_Comm_rank, gets the identifier of the current processor in the Cartesian

topology and stores it in procidcart (process id cartesian), MРI_Cart_coords, gets the

coordinates of the current processor in the Cartesian topology and stores in proccoord,

the first function of MРI_Cart_shift, gets the identifiers of the left and the right

neighbors along the x-direction and stores in left_n and right_n, respectively, and the

second function of MРI_Cart_shift, gets the identifiers of the down and the up neighbors

along the y-direction and store in down_n and up_n, respectively.

When the number of processors in the x-direction and the y-direction and the processor

coordinates are determined, each processor calculates the values of nx and ny to define its

subdomain size. , where are volume size of sub domain at each

PC, , is the number of cells in Z direction, and determines the starting point of

the subdomain along the x-direction and the y-direction. Then, each processor initializes

the values of the field components and the additional auxiliary variables at each cell in

its subdomain. At each time step, each processor calculates the required field

components and the additional auxiliary variables and then, communicates the calculated

field components between the related neighboring processors. The general form of the

program structure and the program flowchart are given in Figure 4.8 and Figure 4.9,

respectively.

40

Figure 4.8: Structure of the program.

41

Figure 4.9: Flowchart of the parallel FDTD program.

Start

Reading simulation´s parameters

Update the 𝐸-fields

Exchange the 𝑬-fields

Update the 𝑯-fields

Exchange the 𝑯-fields

Increase iteration number

Iteration >

NSTEP

Collect result in master

Print results

End

No

Yes

42

First step in this algorithm is Initialize the MРI execution environment. Then reading

simulation´s parameters. After this step, the algorithm deals with parallel topology, it is

required to create of the 2-D topology, now at each time step, the algorithm perform the

following

 Update the E-fields (electric fields) and other auxiliary variables in each sub-

domain.

 Exchange E-fields (electric fields) with the neighbor subdomains by using the

MРI library functions.

 Update the H-fields (magnetic fields) in each sub-domain.

 Exchange H-fields (magnetic fields) with the neighbor sub-domains by using the

MРI library functions.

And, then increase the iteration number, then checking if the iteration number is it

greater than number of steps, if it is yes, go to terminate the algorithm by MРI

finalization, if it is not, repeat previous steps until iteration number be greater than

number of steps, finally algorithm collect results in master PC and print the collected

results, then the algorithm, goes to terminating.

43

Chapter 5

SIMULATION STUDY

In this chapter, the simulation results of the proposed parallel FDTD algorithms, which

is used for solving Maxwell’s equations in 3-D dispersive medium, are presented. The

simulation cartesian domain is shown in Figure 5.1.

Figure 5.1: Cartesian domain with execution pulse.

The excitation pulse applied at the center of domains as shown in Figure 5.1. The form

of the excitation pulse as shown in Figure 5.2

44

Figure 5.2: Numerical form of the excitation pulse.

The experiments was carried out using different number of PCs for comparing the

simulation time by increasing the number of PCs with fixed problem size. In addition,

the grid size (number of cells) is increased as much as possible to find a relationship

between the number of cells in the grid and the simulation time.

The computational domain size was, ,where the space cell

size was chosen as:

 5.1

45

The computational domain was entirely composed of linear Lorentz material with a

dielectric permittivity given by:

 ()

 5.2

where () ,

 ⁄ , with ,

 , and

 [6]. The computational domain was truncated by eight additional

PML layers with a quadratic conductivity profile and with a theoretical reflection

coefficient of , as defined in [3].

The simulation time was carried out for the first 4000 time steps and the time step was

taken as

, where , is the speed of light in vacuum (). The

characteristic of the parallel system used in this thesis is shown in Table 5.1.The parallel

system used in this study was composed of 1-16 PCs interconnected through 100Mbps

Ethernet. Figurе 5.3 shows the total simulation time and the communication time of the

proposed parallel algorithm.

Table 5.1: FDTD parallel system characteristics.

CPU Core 2 due @ 3.0 GHz

RAM 2 Gigabytes

OS Windows XP Professional X86 service pack 2

Compiler C++

Communication software Message Passing Interface

No. of PCs 1-16 PCs

46

Figure 5.3: Total simulation time and communication time.

The performance of the proposed parallel algorithm was studied according to the

following three factors:

1. Speedup

2. Efficiency

3. Scalability

5.1 Speedup and efficiency

The speedup was calculated as:

 () () () 5.3

47

where () the time is needed to solve the problem using one processor and () is the

time needed to solve the same problem using processors [20].

The efficiency was calculated as

 () () 5.4

Figures 5.4 and 5.5 show, respectively, the speedup and the efficiency of the proposed

parallel algorithm. For the purpose of comparison, the ideal speedup and efficiency were

also shown in Figures 5.4 and 5.5. As can be seen from Figure 5.4, almost linear

speedup was obtained when the parallel code was run on less than four processors. It

also clear from Figure 5.4 that with eight PCs, speed-up factor of 5.6348 has been

achieved. Beyond this, the efficiency of the parallel system decreases. This is due to the

fact, that as the number of processors increases, the size of each sub-domain will be too

small and hence the communication time becomes comparable to the computational time

in the sub-domain. It is important to note that the performance of the parallel system can

be improved further by using 3-D topology, which involves dividing the computational

domain in the [6] [21].

48

Figure 5.4: Speed-up of the parallel simulation.

Figure 5.5: Efficiency of the parallel system.

49

5.2 Scalability

The scalability evaluates the performance of the parallel algorithm as the problem size

scales proportionally to the number of processors. In this case, the computational

problem size is kept constant per processor, while the number of processors increases. In

the present study, the sub-domain size is kept fixed at 240 x 240 x 40 per processor.

Table 5.2 shows the scalability of the parallel simulation. Figurе 5.6 shows the total time

and the communication time

Table 5.2: Scalability of the parallel algorithm.

P Computation time in sec Communication time in sec

1 1 1 240 240 1695.71307 00.00000

2 2 1 480 240 1703.82650 91.48884

4 2 2 480 480 1705.72423 312.79285

8 4 2 960 480 1701.15015 569.74148

16 4 4 960 960 2009.66457 607.78940

P is total number of PCs, Px is number of PC in x direction, Py is number of PC in y

direction, Nz = 40.

As can be seen from these results, although the problem size is increased, there is a

slight change in the total simulation time, which is due to the communication time

between the processors. Hence, the proposed algorithm allows to solving very large

problems easily.

50

Figure 5.6: Total simulation time and the communication time of scalability.

Figure 5.7: Ez-field as recorded in 4-PCs at 118 X 60 X 20.

51

Finally, the response of at the point 118 X 60 X 20 was also examined. Figurе 5.7

shows versus time as obtained by the serial and parallel. From Figure 5.7, we can see,

the serial and the parallel approach give same result but in a shorter time in the case of

parallel.

52

Chapter 6

CONCLUSIONS

In this thesis, we had designed and implemented 3-D parallel algorithm, for modeling

wave propagation in dispersive medium by using the MРI system incorporate with

Anisotropic perfectly matched layer. The performance of the parallel algorithm has

been studied for simulating a point source radiating in a 3-D Lorentz dispersive

material domain.

The domain geometry is divided into non-overlapping sub-domains using the 2-D

topology. It has been shown that with eight processors, a speedup factor of 5.6348

was obtained. In the other hand, when the program is distributed among many

processors, the speedup decreases because the communication times become

comparable to the computation time. Also it has been found, the algorithm not only

speed up computations but also increases the maximum solvable problem size.

As a future study, the presented formulations can be extended for modeling

electromagnetic waves interactions with human tissues like mobile phone radiations

effect on human head, and this issue is under investigations.

53

REFERENCES

[1] A. Taflove, "The finite-difference time-domain method," in Computational

Electrodynamics, Artech House, Boston, Mass., 2000.

[2] K. Yee, "Numerical solution of initial boundary value problems involving

maxwell's equations in isotropic media," IEEE Transactions on Antennas and

Propagation, vol. 14, no. 3, p. 302–307, 1966.

[3] J. Berenger, "A perfectly matched layer for the absorption of electromagnetic

waves," Journal of Computational Physics, vol. 114, no. 2, p. 185–200, October

1994.

[4] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, "MPI: the

complete reference," in Scientific and Engineering Computation, vol.1, 2nd. edtion

,ISBN 978-0262692151, The MIT Press, September 19, 1998.

[5] "MPICH2," [Online]. Available:

http://www.mcs.anl.gov/research/projects/mpich2/.

[6] O. Ramadan, "An efficient MPI-based parallel wave-equation FDTD algorithm for

dispersive electromagnetic applications", The 5th International Conference on

Information Technology, (ICIT'11), Amman, Jordan, May 11-3, 2011.

54

[7] R. Ziolkowski, "Time-derivative Lorentz material model-based absorbing boundary

condition," IEEE Transactions on Antennas and Propagation, vol. 45, no. 10, pp.

1530 - 1535 , Oct 1997.

[8] D. M. Sullivan, "Electromagnetic simulation using the FDTD method," in electrical

engineering and computer science, IEEE Press, 2000.

[9] Y. cell. [Online]. Available: http://fdtd.wikispaces.com/The+Yee+Cell.

[10] J. B. Schneider, "Understanding the finite-difference time-domain method," in

electrical engineering and computer science, Lecture notes by John Schneider,

September 4, 2012.

[11] S. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the

truncation of FDTD lattices," IEEE Transactions on Antennas and Propagation,

Vol. 44 , no. 12, pp.1630 - 1639, Dec 1996.

[12] A. Oyko, "Efficient parallel algorithm for modelling open region finite differnce

time domain grids," P.hD thesis, Eastern Mediterranean University, 2008.

[13] A. Oyko, "Parallel implementation of the FD-TD method using MPI," M.thesis,

Eastern Mediterranean University, 2001.

[14] G. R. Andrews, "Foundations of multithreaded, parallel, and distributed

programming," in application of parallel systems, ISBN- 978-0201357523, 1st.

Edition, Addison Wesley, December 10, 1999.

55

[15] P. A. Kaminsky, "Parallel java a unified API for shared memory and cluster parallel

programming in 100% java," [Online]. Available:

http://www.cs.rit.edu/~ark/lectures/pj04/fig03.png.

[16] Dauger, "Parallel programming paradigms - processors and memory," [Online].

Available: http://daugerresearch.com/vault/DistributedMemoryModel.gif.

[17] K. Hwang, Z. Xu, "Scalable parallel computing: technology, architecture,

programming," in parallel and distributed computing, Mishawaka IN U.S.A, ISBN-

978-0070317987, 1st. edition, McGraw-Hill, 1998.

[18] P. H. Oser, "Technical design issues," 8 6 2001. [Online]. Available:

http://www.oser.org/~hp/ds/img12.gif.

[19] "web pages for MPI routines," [Online]. Available:

http://www.mcs.anl.gov/research/projects/mpi/www/www3/.

[20] A.D. Tinniswood, P.S.Excell, M. Whittle and Spicer, "Parallel computation of

large-scale FDTD problems," Third International Conference on Computation in

Electromagnetics, no. 420, pp. 7 - 12, 10-12 April 1996.

[21] J. A. Six, "Development of a 1-dimentional parallel FDTD algorithm," May 1999.

56

	OLE_LINK60
	OLE_LINK46
	OLE_LINK33
	OLE_LINK10
	OLE_LINK11
	MPI_Comm_free
	bookmark0

