Efficient Parallel Finite Difference Time Domain
Algorithm for Modeling Electromagnetic Wave
Interactions with Dispersive Objects

Ahmad S. Salh

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of

Master of Science
in
Computer Engineering

Eastern Mediterranean University
January 2013
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Elvan Yilmaz
Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of
Science in Computer Engineering.

Assoc. Prof. Dr. Muhammed Salamah
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Assoc. Prof. Dr. Muhammed Salamah Prof. Dr. Omar Ramadan
Co-Supervisor Supervisor

Examining Committee

1. Prof. Dr. Erden Basar

2. Prof. Dr. Omar Ramadan

3. Assoc. Prof. Dr. Muhammed Salamah

4. Asst. Prof. Dr. Ahmet Unveren

5. Asst. Prof. Dr. Gircti Oz

ABSTRACT

The finite difference time domain (FDTD) method is the most wide spread time domain
numerical simulation technique for solving Maxwell equations. The advantages of this
method is that it is conceptually simple, and it is simple to be implemented for solving
complicated electromagnetic problems. This method, however, is computationally
expensive in terms of computational time and memory storage requirement. In this
thesis, parallel finite difference time domain (FDTD) algorithm is presented for
modeling open region dispersive electromagnetic applications. The algorithm is based
on spatial partitioning of the problem geometry into adjacent non-overlapping sub-
domains using the two-dimensional topology. The communication among the
neighboring processors is carried out by using the message-passing-interface (MPI)
library. The performance of the proposed algorithm parallel system, which is composed
of (1-16) PCs interconnected through 100Mbps Ethernet, was illustrated for a point
source radiating in three-dimensional Lorentz dispersive domain. It has been shown that
with eight processors, a speedup factor of 5.6348 is obtained. On the other hand when
the problem is distributed among many processors, the speedup decreases. This is
because the communication time between neighboring processors becomes comparable
to the computation time. Also, it has been found that the algorithm not only speed up the

computations but also increases the maximum solvable problem size.

Keywords: Finite Difference Time Domain (FDTD), Message Passing Interface (MPI),

Maxwell equations, Electromagnetic Applications.

Oz

Zamanda Sonlu Farklar Alan1 Yontemi (FDTD), Maxwell denklemlerinin ¢éziimiinde
kullanilan en popiiler sayisal simulasyon zaman alan1 yOntemlerden birisidir. Bu
yontemin avantajlar1 kavramsal olarak basit olmasi ve karisik elektromagnetik
problemlerin ¢oziimiinde uygulanmasinin kolay ve basit olmasidir. Fakat, ayn1 zamanda
bu yéntem hesaplama icin harcanan zaman ve hafiza depolama kosullar1 bakimindan
pahali bir yontem olarak bilinmektedir. Bu tezde parallel sonlu farklar zaman alani
algoritmasinin (FDTD) acik alanli dagitimc1 elektromagnetik uygulamalarin
modellenmesinde kullanim1 sunulmaktadir. Adi gecen algoritma iki boyutlu topoloji
yontemi kullanilarak geometrik problemlerin birbiriyle drtlismeyen, bitisik alt alanlara
boliinmesine dayanmaktadir. Bitisik islemcilerin arasindaki iletisim ise mesaj iletme
(MPI) kiitiiphanesi tarafindan saglanmaktadir. 100Mbps Ethernet araciligiyle baglanan
(1-16) bilgisayarlardan olusan algoritmik paralel sistemin performansi, {i¢ boyutlu
Lorentz dagitic1 alani araciligiyla yayilan nokta kaynak olarak gosterilmis ve sekiz adet
islemci araciligiyle (5.6348) degerine sahip hizlanma faktorii elde edilmistir. Diger
taraftan problem bircok islemci arasinda dagitildigt zaman iletisim zamaninin
hesaplanma zamani ile kiyaslanabilir olmasindan dolayr hizlanma faktoriintin diistiigii
ortaya c¢ikmistir. Biitlin bu bulgulara ek olarak adi gecen algoritma hesaplamay1

hizlandirmakta ve ayn1 zamanda ¢oziilebilecek problem biiyiikliigiinii de artirmaktadir.

Anahtar kelimeler: Zamanda Sonlu Farklar Alan1 Yontemi (FDTD), Message Passing

Interface (MPI),, Maxwell denklemleri, Elektromanyetik Uygulamalar

ACKNOWLEDGMENT

I sincerely acknowledge all the help and support that my supervisor Prof. Dr. Omar
Ramadan gave me, his knowledge, guidance, and effort make this research go on and see
the light. Also, I am grateful to my Co-supervisor Assoc. Prof. Dr. Muhammed

Salamah, who helped me with various issues during this thesis.

My deep gratitude also goes to my mother and father for the support, effort, pain, and
patience who | own the success of my life to them. Special thanks to my friends Emad
muhamad, Ahmad hani, Huthaifa Luay and Abduallah saad and to all my friends for

their help and support.

TABLE OF CONTENTS

ABSTRACT et ii
OZ bbbttt iv
ACKNOWLEDGMENT ...t v
LIST OF TABLES ...ttt bbbt viil
LIST OF FIGURES ...ttt e et e e e s nnneee s iX
1 INTRODUGCTION L.ttt st sb et e nee e e 1
2 INTRODUCTION TO THE FINITE DIFFERNCE TIME DOMAIN METHOD......... 4
2.1 Basics of Finite Difference Time Domain Algorithm...........c.cccccooviiiiiiicieciee, 4
2.2 YEE’S FDTD AIOTTtRIM ...c.voiiiiiiiiiiiicc e 6
2.3 Absorbing Boundary Conditions (ABC)ccceiiiiriiiniiieieie e 8
2.4 FDTD discretization of PML qUatioNScccooviiiiiinieieese e, 10

3 PARALLELIZING THE FDTD ALGORITHM ...ccoviiiiiiiiiieeeee e 13
L INErOAUCTION ..ot 13
3.2 Domain deCOMPOSITION.coiieiiieiie e 17

4 PARALLEL IMPLEMETATION USING MPI SYSTEMccccooooiiiieiiee e, 20
A1 INTFOAUCTION ..ttt bbbt 20
4.2 Message passing interface (MPI)ccccooiiiiiiiiiiienee e 21
4.2.1 MPI FUNCHIONS ..vvvieiiiieeiiiie ettt e e e e e e e ssae e e snne e s nsneeeseeeas 22

Vi

N\, o B 0T 1 1772 (o) o U 23

4.3 MPICH2 installation and configurationccccoeeiieiinieiiciincse e 28
4.3.1 Installation MPI'S SYSTEMcccuiiiiiiiiiiieiee e 29
4.3.2 MPICH2 CONTIGUIATION ...ttt 31
4.3.3 Visual studio 2010 configuration............cccccveveiieiiere e 34

4.4 Program deSCHPLION.......ccviiii et sre e e 36
4.4.1 Two Dimensional Cartesian domain topology.ccccccevveeveiiieiierecrie e, 38

5 SIMULATION STUDY ..ottt st 43
5.1 Speedup and effICIENCY.......cciiiiiiiiieee e 46
5.2 SCAIADTIITY ...t 49

B CONCLUSIONS ...t 52

REFERENGES ...ttt n e ne e 53

vii

LIST OF TABLES

Table 4.1: MPI HBrary fUNCLIONS.ccveiiiic e 22
Table 4.2: Parallel system SpecCifiCation............cccvcveiveiiiieieece e 29
Table 5.1: FDTD parallel system characteristiCs.ccovvivereiievieere e 45
Table 5.2: Scalability of the parallel algorithm.............cccoo e 49

viii

Figure 2.1:

Figure 2.2:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:

Figure 4.9:

Figure 5. 1:

Figure 5.2:
Figure 5.3:
Figure 5.4:

Figure 5.5:

LIST OF FIGURES

Typical unit cell in Yee FDTD algorithmccccoveveiiiieie e, 6
2-D domain surrounded by PML at its boundary.ccccccevveviviieiinvnenene 9
Shared memory multi-processor COMPULETScccverveeeeiieereeriesee e e 14
Distributed memory Modelccooiiiii 14
The distributed shared memory (DSM)cccoiiiiiiiiiiine e 15
Two dimensional (2-D) domain decompoStioN.cceverereneninesieieeens 17
Communications at the boundaries of a sub-domain for the 2-D.................. 18
Master/Worker eXample. ... 29
MPI 1re@iSter's WINAOW. ...c.vviviiiiiiiiiisiieie e 31
MPICH2 Main WINAOW.cceiiiiiieiiiiiieesiiiieeessiiee e e e steee e s snnsneeeesnnreeessnneeeeans 32
MPICH2 main window with more option activated...........ccc.ccevivriviiiennns 33
Editor CONFIQUIALION.coveiiiiiiiieee e 34
Libraries directories of MPL. ..o 35
Additional of library dependencies............covveriiiniiieiene e 36
Structure Of the Program. ..o 39
Flowchart of the parallel FDTD program.c.ccoceveverenenenieneseseeeeeen, 41
Cartesian domain with execution PulSe. ... 43
Numerical form of the excitation PUlSe.cccoovvviiiriiie e, 44
Total simulation time and communication time.ccccoerenininieireienn 46
Speed-up of the parallel SIMUIAtIoN. ..., 48
Efficiency of the parallel SYStem.cccooveveieiiice e 48

Figure 5.6: Total simulation time and the communication time of scailability. 50

Figure 5.7: Ez-field as recorded in 4-PCs at 118 X 60 X 20.cccccveveervereiiieieenie e 50

Chapter 1

INTRODUCTION

The finite difference time domain (FDTD) [1] method has become the state-of-the-art
method for solving Maxwell’s equations in complex geometries. It is based on Yee's
algorithm developed in 1966 [2]. Yee chose a geometric relationship for the spatial
sampling of the vector component of the electric and magnetic fields that enables
representing both the differential and integral forms of Maxwell’s equations in a robust
manner. This method is still used frequently for solving many problems in
electromagnetic area, because it is simple and efficient method to solve Maxwell's
equation in discrete time. The FDTD method calculates the electric field and the
magnetic field by discretizing the Maxwell equations in time and space. After
discretizing the Maxwell equations, it is easy to obtain the electric fields and the
magnetic fields in the computation domain. The computation domain is simply the space
where the simulation is performed, and it is divided into unit cells. Each unit cell within
the computational domain must be associated with electric and magnetic fields. Then,
the material of each cell within the computation domain must be specified, and it can be
a free-space, metal, dielectric, or boundary cell. When solving open region problem
absorbing boundary conditions (ABCs) are needed to limit the computation domain. The
perfectly matched layer (PML) [3] has been shown to be one of the most widely used

FDTD ABCs.

To model a large problem by using the FDTD method, huge memory and CPU time are
required. By using parallel technique, both the CPU time and memory storage
requirements can be decreased. Parallel computing algorithms are based on splitting the
computational domain into sub-domains among a network of computers, for instance,
PCs and workstation. In each subdomain, the computation of the electric and the
magnetic fields on the sub-domain boundary cells require information from the
neighboring subdomains, hence each PC need to transmit and receive information with
neighboring sub-domains. This transmission is done by using the massage passing

interface (MPI) system [4].

MPI system is a standard specification for message passing library, which is used on
different platforms, ranging from massively parallel structures to networks of computers,
MPI provides a rich range of abilities, and support different program languages like
Fortran, assembly language, Pascal, ANSI C, C++, Python, and also support new version
of MatLab. And there are other software doing same parallel jobs for instance, PVM
(Parallel Virtual Machine) is a software package that permits a heterogeneous collection
of Unix and/or Windows computers hooked together by a network to be used as a single
large parallel computer. MPICH2 [5], which is used throughout this thesis for carrying
out the MPI standard, it is a high-performance and widely porTable implementation of
the Message Passing Interface (MPI) standard (both MPI-1 and MPI-2), MPICH2 is
distributed as source (with an open-source, freely available license). It has been tested on
several platforms, including Linux (on 1A32 and x86-64), Mac OS/X (PowerPC and

Intel), Solaris (32- and 64-bit), and Windows.

MPI standard supports the growth of parallel application in windows platforms. There
are many parallel FDTD algorithms available to solve electromagnetic problems [6], but
all of these algorithms are suiTable only for lossless, non-dispersive electromagnetic
applications. In [6], although MPI-FDTD parallel approach is presented for frequency
depended material, it must be noted that this approach is limited to source-free domains.
In this thesis, we extend the parallel FDTD formulation for modeling dispersive as well
as non-dispersive problems. We have simulated three-dimensional (3-D) cartesian
domain entirely composed of Lorentz material [7], and it has been shown that the
parallel algorithm can speed up the computation, and it is able to solve bigger problems
size. It has been shown that with eight processors, a speedup factor of (5.6348) is
obtained. On the other hand, when the program is distributed among many processors,
the speedup decreases, because the communication times become comparable to the

computation time.

The thesis is organized as follow. A shortcut review of conventional FDTD algorithm is
given in Chapter 2. Chapter 3 deals with parallelizing the FDTD algorithm. In Chapter 4,
parallel implementations of FDTD using MPI is described. Chapter 5 gives the

simulation result, and finally conclusions and future work are given in Chapter 6.

Chapter 2

INTRODUCTION TO THE FINITE DIFFERNCE TIME
DOMAIN METHOD

2.1 Basics of Finite Difference Time Domain Algorithm

Considering a three dimensional (3-D) dispersive domain, the frequency domain of

Maxwell’s curl equations can be written as:
jo H=—¢cyV XE 2.1
jo g (W)E =cyV xXH 2.2

where jw is for frequency domain variable, ¢y = 1//&otoEw » o = &-(), is the
speed of light, E is the electrical field vector, H is the magnetic field vector, &, is the

electric permittivity, [y is the magnetic permeability, and &,.(w) is the relative

permittivity of the domain, which can be written for Lorentz dispersive material, for

example, as:

2
gw)y=1+ A - 2.3

wi+j26w-w?

where Ae = SS/(Soo — 1, with &, = &,.(0), w, is the resonance radial frequency, and

¢ is the damping constant. In a rectangular coordinator system, equations (2.1) and (2.2)
are decomposed into six scalar equations. The FDTD method solve these scalar

equations in the time domain by applying the central difference approximation to the

time and space derivatives according to Yee’s algorithm [2]. Based on equations (2.1)

and (2.2) the following six scalar field equations can be obtained as [8]:

6Hx 1 aEy dH,
— _ 9Hz 2.4
Eolo (ay)
OHy _ 1 (0B, _ 03By
ot Eolo (az) 2.5
OHy 1 0Ex _ OEy
2 - oGy T) 2.6
and
oDy _ 1 OH, _ 0Hy
at Jeoko (0z) 2.1
by _ 1 OHy _ 0H
5 = T Cor T ax) 2.8
6Dz _ 1 (aHy _ OHy 29
EoMo oy '
where D, D,, and D, fields are related to Ey, E,, and E, respectively as:
D,(w) = &(w).E, 2.10
Dy(w) = &(w).E, 211
D,(w) = & (w).E, 2.12

Equations (2.4) — (2.12) from the basic algorithm for modeling electromagnetic wave

interaction with arbitrary three-dimensional objects.

2.2 YEE’s FDTD Algorithm

z
A
Ax y S Ey
+r
Ex H2 | Ex
— - — & ————
l “Ey | |
T | |
| Ez | ! I Ei
| | = =i
Vs I | s
Ez| 7/ Ez| 7
Hx | I I
ol L)T

Az | - | | :
| Ey Y,

Ex | Bz Ex

|
&«
<.
X Ay

Figure 2.1: Typical unit cell in Yee FDTD algorithm [9].

The basics FDTD algorithm was introduced by Yee in 1966 [2]. The first step of this
algorithm is based on dividing the domain into rectangular cells with dimension of
(Ax, Ay, Az), where Ax, Ay and Az, are respectly the space cell size in the x,y and z
directions. Figure 2.1 shows a typical Yee’s FDTD unit cell. Every unit cell associated
with six field’s component: Ex, Ey and Ez for electric fields and Hx, Hy and Hz for
magnetic fields. For each cell, all of H field’s components are located at faces of the cell

and all of E field’s components are located at the edges of the cell [2].

The steps of Yee’s algorithms are summarized as bellow [10]:
1- Replace all space and time derivatives with their finite differences so that the electric

and magnetic fields are staggered in both space and time.

2- Solve the resulting difference equations to obtain “the update equations” that express
the un — known future fields in terms of the known past fields.
3- Evaluate the magnetic fields one time-step into the future so they are known

(effectively they become past fields).

4- Evaluate the electric fields one time-step into the future so they are now known

(effectively they become past fields).

5- Repeat the previous steps until the fields have been obtained over the desired

duration.

Based on the above algorithm, E, and H,, fields, for example can be written in FDTD

by using (2.5), (2.9) and (2.12), as follow:

E} — EI
n+1/2 _ yn-1/2 __cAt Xi+1/2,jk+1 Xit+1/2,jk 213
Yit1/2,jk+1/2 Vi+1/2,jk+1/2 Ax | — n n .
/ / EZi+1,j,k+1/2 + Ezi,j,k+1/2
n+1/2 __ gnt1/2
n+1 — pn &At Yi+1/2,j,k+1/2 Yi-1/2,j,k+1/2 214
Zijk+1/2 Zijk+1/2 Ax | _ pgnt+1/2 n+1/2 '
Xij+1/2,k+1/2 Xij—1/2,k+1/2
D} . pp1t
n+1 _ 99 mn+1 1 91 Yz 4172 t 92 Zijk+1/2 215
Zijk+1/2 ~ do Zijk+1/2 ' do | — n _ n-1 :
dy EZi,j,k+1/z d, Ezi,j,k+1/2

where (i, j, k) is cell’s position, (n) is time step, go, 91, 92, do, d1 and d, are given by.

2
go = 1+T5+ w3 2.15a
2
g1=—2+2 0} 2.15b
At At?
g2=1-T =+ wi— 2.15¢
and
do=1+T T+ w} + A.wf = A% 2.15d
dy = —2+2 w2 + A2 28 2.15€
dy=1-T T+ w}+A.0F = A% 2.15f

2.3 Absorbing Boundary Conditions (ABC)

Recently many of the FDTD applications are considered to be unbounded ones. Since
the limitation in computer storage abilities, the computation domain must be finite. For
these application of FDTD, is required to truncate the domain by introducing artificial
outer boundaries. The boundaries need to be designed to absorb outgoing waves without
reflection into the simulated domain. In recent years, an efficient absorbing boundary
condition (ABC) referred as the perfectly matched layer (PML) [3] [6], introduced by
the Berenger [3] has been widely used. This kind of ABC is used to surround the
computational boundary with appropriate values of electrical and magnetical

conductivities. The PML region at the domain boundaries include electric and magnetic

conductivity that gradually increase in the PML region the absorb outgoing

electromagnetic waves.

Computational area

inner FDTD region

Figure 2.2: 2-D domain surrounded by PML at its boundary.

Anisotropic PML (APML) [11] is the collective formulation of Berenger PML. In this
context, Maxwell’s equation (2.1) and (2.2) can be applied in PML region with addition

of some mathematical expressions that express the specifications of medium as follow:
_jwﬂr(w)pMLﬁz Cov XE 216
jw g (@) & (W)pyL E = coV X H 2.17

where jw is for frequency domain variable, &.(w)py, IS the APML permittivity,

fr(w)pp 1S the APML permeability defined as [11] [12]:

5ySy

SxSz

&(w) = iy (w) = 2.18
Sz
with s, (n = x,y, or z) are given by
s, =1+ 2.19
n jweo

where g, is the APML conductivity profile along the n — coordinate designed to absorb

the outgoing waves with minimal reflections defined as:

oy = oy (5™ 2.20

where a,,, is the maximum conductivity, & is the PML conductivities , n, is the PML /
Computational domain interface, and m is the order of the polynomial. The benefit of
PML is attenuating the electromagnetic wave without reflection. It’s important to note
that (2.16) and (2.17) can also be applied in the inner domain by setting the APML
conductivity to zero, i.e., o, = 0. Figure 2.2 shows inner FDTD region and the PML

region.

2.4 FDTD discretization of PML equations

Using equations (2.16) and (2.17), the E,-field component, as an example, can be

written as:

ay ng_
jo & (@) (”"E’jj)g_fj‘“ g, = ey (2 -)

jw €o

ox dy 221

10

Equation (2.21) can be rearranged as:

jo (1 +ja‘f’;0) G, = co(52 - "aiy) 2.22

where G, is given by

(1 5%)

(1+ ﬂ:’—io)

G, = D, 2.23

and D, is related to E, through
D, = & (w)E, 2.24

Using the invers Fourier transforms relation, jo = a/at’ (2.22), and (2.23) can be

written in the time domain as

% %G, = gy (L 2k)

at+£0 G, = ¢ P % 2.25
and

9y, oo _ ey Ty

at+£0 G, = at+£0 D, 2.26

Using the FDTD algorithm, (2.25) and (2.26) can be written in the discrete time domain

as
B n+1/2 ' _ Hn+1/2 '
Gntl _ Zien 4 Cobe 1| Tyitl/2)k+1/2 yit1/2,jk+1/2 297
zj,j,k+1/2 at. Zilk+1/2 A af. Hn+1/2 +Hn+1/2 '
L L -

xi,j+1/2,k+1/2 xi,j+1/2,k+1/2

11

ay . az, az,
Y Zk+1/2 Zk+1/2
Dn+1 _ i pn / n+1 _ / n 2.28

zojk+1/2 = 7% Dzgjreiz 5 23, k+1/2 = Uz jk+1/2
Yj Yj Zk+1/2

where a;; , (for, n = x,y, or z), is given by
ag =1+ Aroy, /2¢ 2.29

Finally, to compute the E, from D, , it is required to discretize (2.24) by the
methodology used in (2.15). To apply the above equation in the inner region, it is

required to eliminate the APML conductivity, i.e.

oy = 0y=0,=0 2.30

12

Chapter 3

PARALLELIZING THE FDTD ALGORITHM

3.1 Introduction

The idea behind of parallel processing is to divide the whole problem into sub-problems
that can be computed concurrently. Nowadays, some different architectures, that can
provide parallelism have been introduced., A multi-processor computer is an example
that has a number of processors. The classification of multi-processor computers are

categorized as [13] :

e Shared memory
e Distributed memory

e Distributed shared memory

In shared memory, the memory module and the processor are connected by mean of an
interconnection network as shown in Figure 3.1. This means that all processors shares

the primary memory, but each processor has its own cash memory [14].

13

Cache Cache Cache

Cache

Figure 3.1: Shared memory multi-processor computers [15].

In distributed memory, there is an interconnection network but the difference is that each
processor has its own private (main) memory interconnection and support message

passing rather than memory reading and writing as shown in Figure 3.2 [14].

Memory| |Memory| |Memory

Memory

i

CPU

-

Figure 3.2: Distributed memory Model [16].

This class can be categorized into two categories

e Single instruction multiple data (SIMD).

e Multiple instruction multiple data (MIMD).

SIMD computers are typically an array of processing elements, all connected to a

common control host processor by way of one or more processors in the array. MIMD

14

computers are a group of processors executing one or more operating systems,
coordinating or synchronizing their operation, and exchanging data and controlled by
mean of message passing [17]. Finally, the distributed shared memory (DSM)
implements the shared memory model in distributed systems, which have no physical
shared memory. The shared memory model provides a virtual address space shared

between all Processors as shown in Figure 3.3.

) network
Virtual memory

Figure 3.3: The distributed shared memory (DSM) [18].

Parallel processing gives a good solution to reduce computation time for problems that
require huge processing time to run on high-performance workstation. Although the
parallel processing reduces computation time, which is required to solve the problem in
sequential mode, the parallel processing required extra task in terms of parallel
computation, which is not required in serial processing mode. These additional tasks

which will increase the operation times of parallelism are.

15

e Processing Idle time
e Synchronization

e Inter-processor communication overhead

Process idle time depending on how much service and application are running in the PC
and CPU time reserved for each service or application. Synchronization, it is pointing to
synchronizing for one process, which is running on a multi-processor. And finally, inter-
processor communication overhead takes additional CPU time, when a remote processor

needs to send and receive data.

Assume that the time require to solve a given problem using serial algorithm on a single

processor is T(qy , and denoting T(;y as the time needed to solve the same problem on

P processors using a parallel algorithm, we define the speedup as

Speedup = Tw 3.1
T(p)
It is important to note that the computation time of the parallel part will be decreased,
when the number of processors is increased, but the communication time will be
increased, and the synchronization’s time will be raised up, which limiting speedup’s

factor [13].

16

3.2 Domain decomposition

X N PN-1

PO

Figure 3.4: Two dimensional (2-D) domain decompostion.

A regularly explored option to exploit parallelism is to split up the domain into
subdomains that can be worked in parallel by multiple processors. The advantage of this
approach is that if the subdomains need to share data, they can do so with short
messages. The domain can be decomposed using one-dimensional (1-D) or two-
dimensional (2-D) topology. In this thesis, 2-D topology, as shown in Figure 3.4 used as
it is found to be more efficient than the 1-D topology, especially for large number of

processors. As shown in Figure 3.4.

17

3.3 FDTD method in parallel

Receive Send
Subdomain upper E, E; H, H, Subdomain right
boundary cells l boundary cells

Receive H), H, Receive E(E,

-

Send Hy H,

yL ‘
X/ %\Ii\\

Subdomain left i
boundary cells Receive Send Subdomain lower

H E, E, boundary cells
x, 1z ’

Send E, E,

Figure 3.5: Communications at the boundaries of a sub-domain for the 2-D

topology.

Using the 2-D topology, the computational domain is divided into subdomains along the
x and y directions, where each subdomain is assigned to one processor, as shown in
Figure 3.5. To update the field components at the sub-domain boundaries, data from the
neighboring sub-domains are needed. The inter-processor communication among the
neighboring processors is carried out by using the MPI library. Figure 3.5 shows the data
need to be exchanged between neighboring sub-domains. For the communication
purpose, ghost layers located at the edges of the sub-domains are used. The MPI system
is used to exchange data between processors. To calculate E, at the cells located at the
left boundary of a subdomain, the values of H, from the subdomain on its left are
needed. Also, this subdomain must send the values of H,, at cells located at the right
boundary to the subdomain on its right. Similarly, to calculate E, at the cells located at

the lower boundary of a subdomain, the values of H, from the lower subdomain are are

18

needed. Also, this subdomain must send the values of H, at cells located at its upper
boundary to the upper subdomain. To calculate H, at the cells located at the right
boundary of the subdomain, the values of E, from the right subdomain are needed. This
subdomain should also send the values of E, at the cells located at the left boundary to
the left subdomain. Similarly, to calculate H,, at the cells located at the upper boundary
of the subdomain, the values of E, from the upper subdomain are needed. Also, this
subdomain should send the values of E, at the cells located at its lower boundary to the
lower subdomain. Finally, the steps for the proposed parallel algorithm can be

summarized as:

1. MPI initialization: Initialize the MPI execution environment.
2. Reading of simulation parameters.
3. Creation of the 2-D topology

4. At each time step, perform the following:

4.1 Update the E-fields (electric fields) and other auxiliary variables in each sub-

domain.

4.2 Exchange E-fields (electric fields) with the neighbor subdomains by using

the MPI library functions.
4.3 Update the H-fields (magnetic fields) in each sub-domain.

4.4 Exchange H-fields (magnetic fields) with the neighbor sub-domains by using

the MPI library functions.

5. MPI finalization.

19

Chapter 4

PARALLEL IMPLEMETATION USING MPI SYSTEM

4.1 Introduction

In this thesis, the parallel implementation of the FDTD algorithm on a network of PCs
has been examined. The regularity of the computational grid makes the decomposition
into a networked PCs relatively straightforward. Each PC is allocated a block of the
computational grid and handles the calculations of the E and H fields of the cells in that
block. When cells on a block boundary need data from their neighbors in adjacent blokes
in order to update the £ and H fields in each iteration, these data are transferred

between the PCs over the local area network (LAN) connection.

A SIMD type problem, like FDTD algorithm, on a system of networked PCs can be
implemented by using a Single Program Multiple Data (SPMD) computing model. The
SPMD model gives each PC a copy of the same program and requires each PC to
communicate with its neighboring PCs. In the parallel implementation of the FDTD
algorithm, each PC runs the same parallel code and requires closest neighbor

communication between cells [13].

To provide communication between PCs over the LAN, MPI is used as a message
passing system. It provides a flexibility to design and implement a parallel application

based on a distributed memory model. MPICH2 [5] version 1.4.1pl is a sTable

20

release used for the implementation of the parallel code. The code is written in C

language using the Microsoft Visual C++ 2010 as the application package.

The parallel code is organized in a master and worker's PCs (server-client). There is just
one master PC and one or more worker's PCs. The master is responsible for both the
data Input/Output, and the update function, where the workers are responsible for the
calculations of the E and H fields only. Both master PC and workers PCs calculate their

private data then master receives all the results from the worker's PCs.

4.2 Message passing interface (MPI)

The Message Passing Interface (MPI) is a standardized and porTable message passing
system designed by a group of researchers from academia and industry to function on a
wide variety of parallel computers [4]. The standard defines the syntax and semantics of
a core of library routines useful for a wide range of users who write porTable message-
passing programs in FORTRAN or C [4]. MPI has gained wide acceptance in the
parallel computing community and it is available on a wide variety of platforms, ranging

from massively parallel systems to network of computers, or workstations.

In the MPI programming model, a computation comprises one or more processes, which
are grouped inside a communicator. The communicator defines the communication
context. A process has a local memory and an execution unit. Thus, one process cannot
directly access variables in another process’s memory. Because of this reason, processes
communicate by calling MPI library functions in order to send and receive messages

between each other [12].

21

4.2.1 MPI functions

The required communication between processors is very simply to be handled using
MPIL. In this thesis, communication was implemented using the MPICH2 library
integrated into C source code. MPI provides around 200 functions, and it covers a wide
range of parallel programs solutions in different fields. In this thesis, eleven functions

were were used. These eleven functions are given in Table 4.1 [18].

Table 4.1: MPI library functions.

1 MPI _Init Initialize the MPI execution environment

2 MPI_Comm_rank | Determines the rank of the calling process in the
communicator

3 MPI_Comm_size | Determines the size of the group associated with a
communicator

4 MPI_Cart_create | Makes a new communicator to which topology
information has been attached

5 MPI_Cart_coords | Determines process coords in Cartesian topology given
rank in group

6 MPI_Cart_shift Returns the shifted source and destination ranks, given a
shift direction and amount

7 MPI_Comm_free | Marks the communicator object for de-allocation
8 MPI_Wtime Returns an elapsed time on the calling processor
9 MPI_Send Performs a blocking send

10 | MPI_Recv Blocking receive for a message

11 | MPI_Finalize Terminates MPI execution environment

22

4.2.2 MPI Initialization

Before the execution of the parallel programs, it is needed to indicate the number of
processes to be used from the operating-system command line. Each parallel program is
required to determine the number of processes used and the identifier, or rank, of each
process. At the beginning of each parallel program, the first MPI instructions concern

providing of those data which are obtained by the following functions [12].

e MPIL Init(int *argc, char ***argv)

Initialize the MPI execution environment, with the parameter of

argc: [input] Pointer to the number of arguments

argv: [input] Pointer to the argument vector

MPI_Init, is called prior to any calls to other MPI routines. Its purpose is to initialize the
MPI environment. Calling MPI_Init more than once during the execution of a program
will lead to an error. This routine must be called before any other MPI routine. The MPI
standard does not say what a program can do before an MPI_Init or after an

MPI_Finalize [19].

e MPI_Comm_rank (MPI_Comm comm,int *rank)

Determines the rank of the calling process in the communicator, with the parameter of

comm: [input] communicator (handle)
rank: [output] rank of the calling process in the group of communicator
(integer)

23

MPI_COMM_RANK indicates the rank of the process that calls it in the range from

(zero to (size-1)), where size is the return value of MPI_Comm_size [19].

e MPI_Comm_size(MPI_Comm comm, int *size)

Determines the size of the group associated with a communicator, with the parameter of

comm: [input] communicator (handle)

size: [output] number of processes in the group of communicator (integer)

This function indicates the number of processes involved in a communicator. For

MPI_COMM_WORLD, it indicates the total number of processes available [19].

e MPI_Cart_create (MPI_Comm comm_old, int ndims, int *dims, int *periods,

int reorder, MPI_Comm *comm_cart)

Makes a new communicator to which topology information has been attached, with the

parameter of

comm_old: [input] input communicator (handle)

ndims: [input] number of dimensions of cartesian grid (integer)

dims: [input] integer array of size ndims specifying the number of processes in

each dimension

periods: [input] logical array of size ndims specifying whether the grid is periodic

(true) or not (false) in each dimension

reorder: [input] ranking may be reordered (true) or not (false) (logical)

24

comm_cart: [output] communicator with new Cartesian topology (handle)

MPI_CART_CREATE, returns a handle to a new communicator to which the Cartesian
topology information is attached If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder
the processes If the total size of the Cartesian grid is smaller than the size of the group of

comm, then some processes are returned MPI_COMM_NULL [19].

e MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *cords)

Determines process coordinators in cartesian topology given rank in group, with the

parameter of

comm: [input] communicator with cartesian structure (handle)
rank: [input] rank of a process within group of comm (integer)
maxdims: [input] length of vector coords in the calling program (integer)

coords:[output] integer array (of size ndims) containing the Cartesian coordinates of

specified process (integer)

The inverse mapping, rank-to-coordinates translation is provided by MPI_Cart_coords

[19].

e MPI_Cart_shift(MPI_Comm comm, int direction, int displ, int *source, int

*dest)

Returns the shifted source and destination ranks, given a shift direction and amount, with

the parameter of

25

comm: [input] communicator with cartesian structure (handle)

direction: [input] coordinate dimension of shift (integer)

displ: [input] displacement (> 0: upwards shift, < 0: downwards shift) (integer)

source: [output] rank of source process (integer)

dest: [output] rank of destination process (integer) [19].

e MPI_Comm_free(MPI_Comm *comm)

Marks the communicator object for de-allocation, with the parameter of

comm: [input] Communicator to be destroyed (handle)

This routine frees a communicator, because the communicator may still be in use by

other MPI routines [19].

e MPI_Wtime(void)

Returns an elapsed time on the calling processor, returns a floating-point number of

seconds, representing elapsed wall-clock time since some time in the past [19].

e MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm)

Performs a blocking send, with the parameter of

buf: [input] initial address of send buffer (choice)

count: [input] number of elements in send buffer (nonnegative integer)

26

datatype: [input] datatype of each send buffer element (handle)

dest: [input] rank of destination (integer)
tag: [input] message tag (integer)
comm: [input] communicator (handle)

This routine may block until the message is received by the destination process [19].

e MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,

MPI_Comm comm, MPI_Status *status)

Blocking receive for a message, with the parameter of

buf: [output] initial address of receive buffer (choice)
count: [input] maximum number of elements in receive buffer (integer)
datatype: [input] datatype of each receive buffer element (handle)

source: [input] rank of source (integer)

tag: [input] message tag (integer)
comm: [input] communicator (handle)
status: [output] status object (Status)

The receive buffer consists of the storage containing count consecutive elements of the

type specified by data-type, starting at address buf [19].

27

e MPI_Finalize(void)
Terminates MPI execution environment

This routine cleans up all MPI state. Once this routine is called, no MPI routine (even

MPI_INIT) may be called [19].

4.3 MPICH2 installation and configuration

MPICH2 is a high-performance and widely porTable implementation of the Message
Passing Interface (MPI) standard (both MPI-1 and MPI-2) [5], as the goals of MPICH

team are:

1: to provide an MPI implementation that efficiently supports different computation and
communication platforms including commodity clusters (desktop systems, shared-
memory systems, multicore architectures), high-speed networks (10 Gigabit Ethernet,
InfiniBand, Myrinet, Quadrics) and proprietary high-end computing systems (Blue

Gene, Cray).

2: to enable cutting-edge research in MPI through an easy-to-extend modular framework

for other derived implementations.

MPICH is distributed as source (with an open-source, freely available license). It has
been tested on several platforms, including Linux (on IA32 and x86-64), Mac OS/X

(PowerPC and Intel), Solaris (32- and 64-bit), and Windows.

28

The MPICH2 library aimed to implement all the functionality specified by the MPI
standard in an efficient and porTable fashion. Due to its characteristics, MPICH served
as a development base for many other implementations, which addressed different
operating systems and architectures [13].

4.3.1 Installation MPI's system

In this thesis we had download of MPICH2 version 1.4.1p1. It is sTable release version
of MPICH2 for windows platforms X86 systems. For installing and preparing,
computers used in this thesis have the following specification shown in Table 4.2, and
the example of the system’s network with three workers and one master, is shown in
Figure 4.1.

Table 4.2: Parallel system specification
CPU: Core 2 due @ 3.0 GHz
RAM: 2 Gigabytes
OS: Windows XP Professional X86 service pack 2

Master Worker

BL

Worker . Worker

Figure 4.1: Master/Worker example.

29

To guarantee install without problems, the following steps are came out. We need first,
to make new user account with administrator privileges on all PCs with secure

password. All PCs should have the same user account name and password.

Second, login in the new account, double click on the execution file (mpich2-1.4.1p1-
win-ia32.exe), the wizard will begin, follow the wizard and accept license agreement,
and don’t change the installation directory, then click "Close" bottom to finish wizard.

Before run the program, the following steps should be done.

e Press Start bottom; click on run type "cmd" and click Enter. Command window
will open

e Type in the command window "cd C:\Program Files\MPICH2\bin" then hit
Enter,

e Type " smpd.exe -install" and hit Enter.

e Type "smpd.exe —sethosts <host name>", you can take computer name from
these steps, after doing it click Enter:
+ Right click on My computer
+«» Select Properties
+«» Select Computer Name tab, copy full computer name and exchange it with

<host name>

e Finally, type "smpd.exe -restart" and click Enter and close command window.

30

Now, we need to enter account information such as user name and password. Press start
bottom, click programs, MPICH2, and then click on "wmpiregister" then Figure 4.2 will

appear

IUsethistoolto encrypt an account and
password tobe used by mpiexecta launch
mpich2 jobs.

The account provided must be a valid user
account available on all the nodes that will
participate in mpich2jobs.

Example:
mydomainymyaccount
or myaccount

Account: |[

password |

Click registerto savethe credentials and
Removeto deletethe credentials farthe
current user.

F‘.egister| F‘.emu:u'.'E| Ok | Cancel

Figure 4.2: MPI register's window.

Enter user name in account field and enter password in password field. Then click
Register then click ok. After these steps, the installation of the system finished.

4.3.2 MPICH2 configuration

MPICH2 provide GUI utility, which makes the process work easier than using command
window. After finish of install MPICH2 on all PCs, a program called "wmpiexec.exe"
appears under Programs in the Start menu list, click on MPICHZ2, finally, click on
wmpiexec.exe, Figure 4.3 showing main window of wmpiexec to start a parallel job

under Windows

31

= Application | jJ
Mumber of processes 1 El:

Execute | ||_runinanseparatﬂv.'indu:m.' Load Job | Save Job |

Show Command |

[more options

Figure 4.3: MPICH2 main window.

After building the project with Visual C++ 2010, the execution file should be distributed
among all PCs in the system with same path of execution file in master PC. Then at the
application field click on brows bottom and specify the execution file project; "Number
of processes” is for specifying the number of PCs that will do the parallel project,
because each PC will take one process, and we should specify the address of all PCs in
parallel system to make communication work, checkbox on "more option™” as shown in

Figure 4.4.

32

s Applicaton |.;: \FOTD_MPI.exe

Number of processes

Execute |

| | runinan separatewindow

R

4 S

Load Job | Save Job |

Show Command |m|:uiexeu:.exe -hosts 4 192,168, 1.1 192.168. 1.2 192,168, 1.3 192,168, 1.4 -noprompt c:\FOTD_MPL exe

v moreoptions

working directory
hosts

environment variables
drive mappings

channel

extra mpiexecoptions

" configuration file

[~ produceclog2file Jumpshot

-]

|192. 168.1.1 192,168, 1.2 192,163, 1.3 192, 163. 1.4

reset

default -

{~ mpichl configuration file |

N

Figure 4.4: MPICH2 main window with more option activated.

Now, after active more option in main window, all PCs addresses specified in the host

field, as shown in Figure 4.4, for instance, parallel system of 4 PCs. Finally, to execute

the system, press Execute bottom, to make parallel system begin execute parallel project

that specified in main window of program. Then system monitor and program message

appear in big field down of "Show Command" bottom and field.

33

4.3.3 Visual studio 2010 configuration

For building code program, the editor of visual C, need some additional configuration to
work with MPT's libraries. After open visual studio 2010 and creating a new project,
right click at the project's name, click properties, go to configuration properties, then

C/C++, then select general, then click additional include directories then add new, then

add the following path: "C:\program files\MPICH2\include", as shown in Figure 4.5.

.. mpi - Microsoft Visual Studio

File Edit View Project Build b“?, Team Data Tools Architecture Test Anab{ze Window Help
E GG | % a9 - - DG b [pebug | [wina2 - || 1 5 G 4 e] 2
f =203 sR85R]

Solution Explorer
=l
e Solution 'mpi' (1 project)

=] ',’1 mpi
(z External Dependenci

X0gjooL (\ daio|dx3 daniag 3

S
j ::::3::’:’;535 Configuration: ‘ Active(Debug) N \ Platform; L&cFi}{'g(_V!ig_SZ) V“ [Configuration Manager...]
e & SourceAFiIes Common Properties Additional Include Directories C:\Program Files\MPICH2\include;%{Additionall
c:] maln. cpp [=- Configuration Properties Resolve #using References
General Debug Information Format Program Database for Edit And Continue (fZI)
Debugging Common Language RunTime Suj -
YC++ Directories Suppress Sta‘itupranner Additional Include Directories @
B CfCH+ Warning Level ‘
Gen.er.al % Treat Warnings As Errors EJEJL'LI
Optimization Multi-processor Compilation C:\Program Files\MPICHZ\include
Fepeogessoy i Use Unicode For Assembler Listi
Code Generation < | ES
Language =
Precompiled Headers
Output Files Inherited values:
Browse Information
Advanced
Command Line 2.4
B Linker
(- Manifest Tool
[# XML Document Generator

[+ Browse Information Inherit from parent or project defaults
[Build Events

ancel
(- Code Analysis 4

additional Include Directoried

Specifies one or more directories to add to the include path; separate with semi-colons if more than one.

(/1[path])

cl.. EF‘r “:T

Figure 4.5: Editor configuration.

Next step, click linker, then go to general, and then select additional library directories,
double click, add new, and add this path: "c:\program files\MPICH2\lib" as shown in

Figure 4.6.

34

mpi - Microsoft Visual Studio

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help

P00 R A

-SHd| % LA -0-0-5

Solution Explorer

Glsla
[Solution 'mpi' (1 project)
=] -’J mpi
(a4 External Dependenci
3 Header Files
(3 Resource Files
= [Source Files
€+ main.cpp

B, Be. BT

‘4 Start mpi - Mic

main.cpp X

[Debug | [winz2 Al C[EE
2| 0PI 63685 A-

{Global Scope)

mpi Property Pages

Configuration: JA\:tive(Debug)

| Platform; |Active(win32)

V‘ [Cunfiguration Manager...]

General
Debugging
YC++ Directories
= CiC++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
Command Line
(= Linker
General
Input
Manifest File
Debugging
System =
Optimization
Embedded IDL
Advanced
Command Line
[+ Manifesk Tnnl —

|2

Qutput File

Show Progress

Version

Enable Incremental Linking
Suppress Startup Banner
Ignore Import Library

Reqgister Output

Per-user Redirection
Additional Library Directories
Link Library Dependencies

Use Library Dependency Inputs
Link Status

Prevent DIl Binding

Treat Linker Warning As Errors
Force File Output

Create Hot Patchable Image
Specify Section Attributes

'Additinnal Library Directories
Allows the user to override the envird

B Code Defini

\§ 1.3PG - Paint

$(OutDir)$(TargetMame)$(TargetExt)
Mot Set

Yes (/INCREMENTAL)

Yes ({NOLOGO)

Mo

Mo

Mo

C:\Program FiIes\MPIEHZ\Iib;%(Additionallibra1

Additional Library Directories

=R JRIES

|
|
|
/X

C:\Program Files\MPICH2\lib

¥

Inherited values:

Inherit from parent or project defaults

OK

SmE] R

Figure 4.6: Libraries directories of MPI.

Finally, click input then, go to dependencies then, add these libraries

U@ O% g:20pM

cxx.lib, fmpich2.lib, fmpich2g.lib, fmpich2s.lib, mpe.lib and mpi.lib. as shown in Figure

4.7. These are a functions library that you needed under editor for building parallel

applications.

35

_mpi-Microsoft VisualStudio |-
File Edit View Project Build Debugr Team Data Tools Architecture Test Analy;e Window Help
BE-cd-Shd e % 29 -0 - -5 b [pebug -| [winzz

HESU LR 2|00 13 @5 <

|| RS Dk Bl

Solution Explorer v S

2 &8
4 Solution 'mpi (1 project)
= [21 mpi

w
8
3
o
{4 External Dependenci 3
1 Header Files . :) T h . . ’
(Bl Resource Fles Configuration: ‘ Active(Debug) ¥ | Platform; | Active(Win3z) - ‘ [Configuration Manager...] %
B B y g
2 & (S:)ource.Flles General Additional Dependencies cxxli ich2.li ich2g.li ich2s.lib;mpe. i
] main.cpp Debugging Ignore All Default Libraries - y 2 2
WC++ Directories Ignore Specific Default Libraries Additional Dependencies gl
B CiC++ Module Definition File m—
General Add Module to Assembly fmpich2.lib
Optirization Embed Managed Resource File || Fmpich2g.lib
Preprocessor Force Symbol References Fmplcl_'uZS.Ilb
Code Generation mpe.lib
Delay Loaded Dlls mpi.lib
Language Assembly Link Resource
Precompiled Headers 4
Output Files
Browse Information Inherited values:
Ad d
VAKOL s, kernel32.lib A
Command Line user32.lib 5
(=) Linker qdi32.lib
General winspool.lib = v
e comdlg32.lib
Mp iFest Fil advapi32.lib
oS T shell3z.lib v T
Debugging = 7 %
System Inherit from parent or project defaults -
M, >>
Optimization
OK Cancel
Advanced s Additional Dependencies 4
Command Line | | Specifies additional items to add to
[+ Manifesk Tnnl =1
< T

B2c. EEer. W7 IR Code Definition Wi

™8 =] output

Ready

<4 start mpi - Microsoft Visual ... | 4 2.JPG - Paink SmE S & U@L sz

Figure 4.7: Additional of library dependencies.

4.4 Program description

The program calculates the E and H fields at each cell in a (2-D) topology. In the
program, the computational domain, with dimensional X X Y is decomposed equally for
computation on P PCs; where X is the long of the x-dimension of the computational

grid, Y is the long of the y-dimension of the computational grid, and P is the number of

PCs used in the simulation [13].

In this thesis, the parallel implementation of the 3-D FDTD algorithm in dispersive
medium has been examined. The parallelization of the given FDTD algorithms is

performed using the 2-D topologies. For the communications between the neighboring

36

processors, MPI Send and MPI Recv of communications functions have been

implemented with MPI library.

The parallel code is written in ANSI C language using the MS Visual C++ 2010 as the
application package. The parallel codes are organized in a master-worker fashion. There
is only one master processor and one or more worker processors (in this thesis up to 16
worker processors were used). The master processor is responsible for both data 1/0 and
calculations of the E-field and the H-field components at the cells in its subdomain,
where each worker processor is responsible only for the calculations of the E-field and
the H-field components at the cells in its subdomain. During the execution, both master
and worker processors calculate the field components in their own subdomain
concurrently. After the execution of the field’s components, each worker processor
sends its part of the result to the master processor and terminates its process, where the
master processor receives this result from the worker processors, prints them together

with its own result and then terminates its process.

At the beginning of the execution, each processor defines the program parameters such
as the problem size, the number of time steps, etc. Then, each processor initialize the
MPI communication system, determines the number of processors to be used in the

execution and its own processor identifier with the following MPI instructions:

e MPI Init (&argc, &argv)
e MPI_Comm_size (MPI_COMM_WORLD, &nproc);

e MPI_Comm_rank (MPI_COMM_WORLD, &procid);

37

where MPI_COMM_WORLD is the default communicator, which indicates all
processors involved in the execution. The function MPI_Comm_size gets the number of
processors and stores it in nproc, and function MPI_Comm_rank gets the identifier of
the current processor and stores it in procid. Then, each processor defines the Cartesian
topology on the 3-D computational domain [4].

4.4.1 Two Dimensional Cartesian domain topology.

The 2-D Cartesian topology of processors is created by the following function:

MPI_Cart_create (MPI_COMM_WORLD, ndims, &dims, &periods, reorder,

&comm cart)

where: ndims = 2, refer to 2D topology, communication with x and v,

dims[0] = number of processors in the x-direction,

dims[1] = number of processors in the y-direction,

periods[0], periods[1], and reorder are defined as zero in each program, which mean we
are using default communicator ranking order [4]. To determine the new processor
identifier, the Cartesian coordinates and the neighboring processors in the Cartesian

topology, the following functions are used for each processor:

MPI_Comm_rank (comm _cart, &procidcart);
MPI_Cart_coords (comm_cart, procidcart, ndims, &proccoord);
MPI_Cart_shift (comm_cart, rightleft, right, &left_n, & right_n);

MPI_Cart_shift (comm_cart, updown, up, &down_n, &up_n);

38

where: ndim: is equal 2 for 2-dimentional, left_n: is the left buffer node, right_n: is the
right buffer node, down_n: is the down buffer node, up_n: is the up buffer node ,
rightleft = 0: is x-directional exchanging data, right = 1: is the number of moving steps,
updown = 1: is y-directional exchanging data, and up = 1: is the number of moving
steps. MPI_Comm_rank, gets the identifier of the current processor in the Cartesian
topology and stores it in procidcart (process id cartesian), MPI_Cart_coords, gets the
coordinates of the current processor in the Cartesian topology and stores in proccoord,
the first function of MPI_Cart_shift, gets the identifiers of the left and the right
neighbors along the x-direction and stores in left_n and right_n, respectively, and the
second function of MPI_Cart_shift, gets the identifiers of the down and the up neighbors

along the y-direction and store in down_n and up_n, respectively.

When the number of processors in the x-direction and the y-direction and the processor
coordinates are determined, each processor calculates the values of ny and ny to define its

subdomain size. ny X n, X N, where n,ny, are volume size of sub domain at each

PC, and N,, is the number of cells in Z direction, and determines the starting point of
the subdomain along the x-direction and the y-direction. Then, each processor initializes
the values of the field components and the additional auxiliary variables at each cell in
its subdomain. At each time step, each processor calculates the required field
components and the additional auxiliary variables and then, communicates the calculated
field components between the related neighboring processors. The general form of the
program structure and the program flowchart are given in Figure 4.8 and Figure 4.9,

respectively.

39

Main

Ll ol e

topology.

Lh

Define program parameters.

Learn number of processors and processor id.
Creation of 2D Topology.

Determine processor 1d. Coordinates, and left, right, up and down neighbors in the

If master: call init master function to output program parameters.

6. Call decomposition to determine the subdomain.

e xEA

Call init arrays function to initialize field components and additional auxiliary variables.
Call update to calculate field components a specified number of time steps.

If master: call output master to collect results from workers and print.

0. If worker: call output worker to send results to master.

init_master decomposition init_array
Print domain size Calculate the value of nx and ny, Initialize
and number of time for define subdomain size, and E.E, E, ,D,D,D,
steps. determine the starting point of
subdomain. H,,H,, H,, and other
auxiliary variables
update
At each time step:
1. Foreach cell, calculate
Ey Ey,Ez, Dy, Dy, Dy, and other auxiliary
2. Communicate E, E,, E, , at subdomain boundaries.
3. Foreach cell
Calculate H, ,H, , H,. And other auxiliary variables.
4. Communicate Hy, Hy , H;, at subdomain boundaries.
Output master output works
1. Receive results from workers Send results to master

2. Print results

Figure 4.8: Structure of the program.

40

/ Reading simulation’s parameters /

Update the E-fields

v

Exchange the E-fields

A

Update the H-fields
v
Exchange the H-fields

\/
Increase iteration number

Iteration >
NSTEP

\|/ Yes

Collect result in master

/ Print results /

End

Figure 4.9: Flowchart of the parallel FDTD program.

41

First step in this algorithm is Initialize the MPI execution environment. Then reading
simulation’s parameters. After this step, the algorithm deals with parallel topology, it is
required to create of the 2-D topology, now at each time step, the algorithm perform the

following

Update the E-fields (electric fields) and other auxiliary variables in each sub-
domain.

Exchange E-fields (electric fields) with the neighbor subdomains by using the
MPI library functions.

Update the H-fields (magnetic fields) in each sub-domain.

Exchange H-fields (magnetic fields) with the neighbor sub-domains by using the

MPI library functions.

And, then increase the iteration number, then checking if the iteration number is it
greater than number of steps, if it is yes, go to terminate the algorithm by MPI
finalization, if it is not, repeat previous steps until iteration number be greater than
number of steps, finally algorithm collect results in master PC and print the collected

results, then the algorithm, goes to terminating.

42

Chapter 5

SIMULATION STUDY

In this chapter, the simulation results of the proposed parallel FDTD algorithms, which
is used for solving Maxwell’s equations in 3-D dispersive medium, are presented. The

simulation cartesian domain is shown in Figure 5.1.

Az

e]
Source

observation point

L X

>

V&7
Figure 5.1: Cartesian domain with execution pulse.

The excitation pulse applied at the center of domains as shown in Figure 5.1. The form

of the excitation pulse as shown in Figure 5.2

43

| | | |
(I L RN M —

i
'
'
'
'
P
'
'
'
'
RPN —
'
'
'
'
[———
'
'
'
'
[T ——
]
'
'
'
[R ———
]
'
'
'
[B —
———epm - -
'
'
'
'
[———
'
'
'

' ' ' ' ' ' ' ' ' '
I o e Lt R e R T e R e e e R T S]
- ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
[R | el e e e T B e T —
- ' ' ' | ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' '
I o | R T E e e S L L T T P R T —
- '

Ez values
[==]
"

0.2 -tk ----

04k

06L-]-

i A S
[)

' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' '
I ik BT B e ST e e B b CE TR F e e S]
- ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' '

) T R R N R N B
0 250 500 750 100012501500 1750 2000 2250 25002750 3000 3250 3500 3750 4000
MNumber of steps

Figure 5.2: Numerical form of the excitation pulse.

The experiments was carried out using different number of PCs for comparing the
simulation time by increasing the number of PCs with fixed problem size. In addition,
the grid size (number of cells) is increased as much as possible to find a relationship

between the number of cells in the grid and the simulation time.

The computational domain size was, 240Ax X 240Ay x 40Az ,where the space cell

size was chosen as:

A=Ax=Ay=Az=1x10"1m 5.1

44

The computational domain was entirely composed of linear Lorentz material with a

dielectric permittivity given by:

Aew?
gr(w) = 14+ 2500 5.2

wi+j26w-w?

where &, = &,(®) = 1.0, Ae = %/ — 1, with &; = 2.25, w, = 4 x 10'®rad/s, and
§ = 0.28 x 10%°s~1 [6]. The computational domain was truncated by eight additional
PML layers with a quadratic conductivity profile and with a theoretical reflection

coefficient of 1075, as defined in [3].

The simulation time was carried out for the first 4000 time steps and the time step was

10—10
co

taken as At = >x , Where c,, is the speed of light in vacuum (3 x 108). The

characteristic of the parallel system used in this thesis is shown in Table 5.1.The parallel
system used in this study was composed of 1-16 PCs interconnected through 100Mbps
Ethernet. Figure 5.3 shows the total simulation time and the communication time of the

proposed parallel algorithm.

Table 5.1: FDTD parallel system characteristics.

CPU Core 2 due @ 3.0 GHz

RAM 2 Gigabytes

0OS Windows XP Professional X86 service pack 2
Compiler C++

Communication software Message Passing Interface

No. of PCs 1-16 PCs

45

2500 T T T T T I I
: : : : '| —®@— communication time
1| —M— computation time

2000

1500

1000

Time in second

500

MNumber of PCs

Figure 5.3: Total simulation time and communication time.

The performance of the proposed parallel algorithm was studied according to the

following three factors:

1. Speedup
2. Efficiency

3. Scalability

5.1 Speedup and efficiency

The speedup was calculated as:

S(P) = T(1)/T(P) 5.3

46

where T(1) the time is needed to solve the problem using one processor and T (P) is the

time needed to solve the same problem using P processors [20].

The efficiency was calculated as

E(P) = S(P)/P 5.4

Figures 5.4 and 5.5 show, respectively, the speedup and the efficiency of the proposed
parallel algorithm. For the purpose of comparison, the ideal speedup and efficiency were
also shown in Figures 5.4 and 5.5. As can be seen from Figure 5.4, almost linear
speedup was obtained when the parallel code was run on less than four processors. It
also clear from Figure 5.4 that with eight PCs, speed-up factor of 5.6348 has been
achieved. Beyond this, the efficiency of the parallel system decreases. This is due to the
fact, that as the number of processors increases, the size of each sub-domain will be too
small and hence the communication time becomes comparable to the computational time
in the sub-domain. It is important to note that the performance of the parallel system can
be improved further by using 3-D topology, which involves dividing the computational

domain inthe x,y,and z — directions [6] [21].

47

Speedup

Efficiency %

16 : : : : : : :
—&— |deal i H i 1 H

_| —— Speedup

Number of PCs

Figure 5.4: Speed-up of the parallel simulation.

20

|| —@— Ideal
1| —— Efficiency

Number of PCs

Figure 5.5: Efficiency of the parallel system.

48

5.2Scalability

The scalability evaluates the performance of the parallel algorithm as the problem size
scales proportionally to the number of processors. In this case, the computational
problem size is kept constant per processor, while the number of processors increases. In
the present study, the sub-domain size is kept fixed at 240 x 240 x 40 per processor.
Table 5.2 shows the scalability of the parallel simulation. Figure 5.6 shows the total time

and the communication time

Table 5.2: Scalability of the parallel algorithm.

P| P, P, N, N, | Computation time in sec | Communication time in sec
1 1 240 240 | 1695.71307 00.00000

2 2 480 240 | 1703.82650 91.48884

4 2 480 480 | 1705.72423 312.79285

8 4 960 480 | 1701.15015 569.74148

16 4 960 960 | 2009.66457 607.78940

P is total number of PCs, Px is number of PC in x direction, Py is number of PC iny

direction, Nz = 40.

As can be seen from these results, although the problem size is increased, there is a
slight change in the total simulation time, which is due to the communication time
between the processors. Hence, the proposed algorithm allows to solving very large

problems easily.

49

—&#— communication time

—&8— computation time

3000

2000 |-~ mmmmmdeen s
15QD | -- - mmemmdeeemmmmee e

2500 H —— total time

puUooas Ul all|

1 N e.--f H. il

B0 - mmmmmmmmdesse s s m s

MNumber of PCs

Figure 5.6: Total simulation time and the communication time of scalability.

Senal @ 118 X 60 =20 ‘

250 500 750 1000 1250 1500 1750 2000 2260 2500 2750 3000 3250 3500 3750 4000

1

Mumber of steps

I
el @ 118 XB0 X 20 |

Paral

||||||||||

|
250 a00 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000

sahjen 23

1]

Mumber of steps

Figure 5.7: Ez-field as recorded in 4-PCs at 118 X 60 X 20.

50

Finally, the response of E, at the point 118 X 60 X 20 was also examined. Figure 5.7
shows E, versus time as obtained by the serial and parallel. From Figure 5.7, we can see,

the serial and the parallel approach give same result but in a shorter time in the case of

parallel.

o1

Chapter 6

CONCLUSIONS

In this thesis, we had designed and implemented 3-D parallel algorithm, for modeling
wave propagation in dispersive medium by using the MPI system incorporate with
Anisotropic perfectly matched layer. The performance of the parallel algorithm has
been studied for simulating a point source radiating in a 3-D Lorentz dispersive

material domain.

The domain geometry is divided into non-overlapping sub-domains using the 2-D
topology. It has been shown that with eight processors, a speedup factor of 5.6348
was obtained. In the other hand, when the program is distributed among many
processors, the speedup decreases because the communication times become
comparable to the computation time. Also it has been found, the algorithm not only

speed up computations but also increases the maximum solvable problem size.

As a future study, the presented formulations can be extended for modeling
electromagnetic waves interactions with human tissues like mobile phone radiations

effect on human head, and this issue is under investigations.

52

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

A. Taflove, "The finite-difference time-domain method,” in Computational

Electrodynamics, Artech House, Boston, Mass., 2000.

K. Yee, "Numerical solution of initial boundary value problems involving
maxwell's equations in isotropic media," IEEE Transactions on Antennas and

Propagation, vol. 14, no. 3, p. 302-307, 1966.

J. Berenger, "A perfectly matched layer for the absorption of electromagnetic
waves," Journal of Computational Physics, vol. 114, no. 2, p. 185-200, October

1994,

M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, "MPI: the
complete reference," in Scientific and Engineering Computation, vol.1, 2nd. edtion

,ISBN 978-0262692151, The MIT Press, September 19, 1998.

"MPICH2," [Online]. Available:

http://www.mcs.anl.gov/research/projects/mpich2/.

O. Ramadan, "An efficient MPI-based parallel wave-equation FDTD algorithm for
dispersive electromagnetic applications”, The 5th International Conference on

Information Technology, (ICIT'11), Amman, Jordan, May 11-3, 2011.

53

[7]1 R. Ziolkowski, "Time-derivative Lorentz material model-based absorbing boundary
condition,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 10, pp.

1530 - 1535, Oct 1997.

[8] D. M. Sullivan, "Electromagnetic simulation using the FDTD method," in electrical

engineering and computer science, IEEE Press, 2000.

[9] Y. cell. [Online]. Available: http://fdtd.wikispaces.com/The+Yee+Cell.

[10] J. B. Schneider, "Understanding the finite-difference time-domain method," in
electrical engineering and computer science, Lecture notes by John Schneider,

September 4, 2012.

[11] S. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the
truncation of FDTD lattices,” IEEE Transactions on Antennas and Propagation,

Vol. 44 , no. 12, pp.1630 - 1639, Dec 1996.

[12] A. Oyko, "Efficient parallel algorithm for modelling open region finite differnce

time domain grids,” P.hD thesis, Eastern Mediterranean University, 2008.

[13] A. Oyko, "Parallel implementation of the FD-TD method using MPI," M.thesis,

Eastern Mediterranean University, 2001.

[14] G. R. Andrews, "Foundations of multithreaded, parallel, and distributed
programming,” in application of parallel systems, ISBN- 978-0201357523, 1st.

Edition, Addison Wesley, December 10, 1999.

54

[15] P. A. Kaminsky, "Parallel java a unified API for shared memory and cluster parallel
programming in 100% java," [Online]. Available:

http://www.cs.rit.edu/~ark/lectures/pj04/fig03.png.

[16] Dauger, "Parallel programming paradigms - processors and memory," [Online].

Available: http://daugerresearch.com/vault/DistributedMemoryModel.gif.

[17] K. Hwang, Z. Xu, "Scalable parallel computing: technology, architecture,
programming,” in parallel and distributed computing, Mishawaka IN U.S.A, ISBN-

978-0070317987, 1st. edition, McGraw-Hill, 1998.

[18] P. H. Oser, "Technical design issues," 8 6 2001. [Online]. Available:

http://www.oser.org/~hp/ds/img12.gif.

[19] "web pages for MPI routines,” [Online]. Available:

http://www.mcs.anl.gov/research/projects/mpi/www/www3/.

[20] A.D. Tinniswood, P.S.Excell, M. Whittle and Spicer, "Parallel computation of
large-scale FDTD problems,” Third International Conference on Computation in

Electromagnetics, no. 420, pp. 7 - 12, 10-12 April 1996.

[21] J. A. Six, "Development of a 1-dimentional parallel FDTD algorithm,” May 1999.

55

56

	OLE_LINK60
	OLE_LINK46
	OLE_LINK33
	OLE_LINK10
	OLE_LINK11
	MPI_Comm_free
	bookmark0

