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  ABSTRACT 

The finite difference time domain (FDTD) method is the most wide spread time domain 

numerical simulation technique for solving Maxwell equations. The advantages of this 

method is that it is conceptually simple, and it is simple to be implemented for solving 

complicated electromagnetic problems. This method, however, is computationally 

expensive in terms of computational time and memory storage requirement. In this 

thesis, parallel finite difference time domain (FDTD) algorithm is presented for 

modeling open region dispersive electromagnetic applications. The algorithm is based 

on spatial partitioning of the problem geometry into adjacent non-overlapping sub-

domains using the two-dimensional topology. The communication among the 

neighboring processors is carried out by using the message-passing-interface (MРI) 

library. The performance of the proposed algorithm parallel system, which is composed 

of (1-16) PCs interconnected through 100Mbps Ethernet, was illustrated for a point 

source radiating in three-dimensional Lorentz dispersive domain. It has been shown that 

with eight processors, a speedup factor of 5.6348 is obtained. On the other hand when 

the problem is distributed among many processors, the speedup decreases. This is 

because the communication time between neighboring processors becomes comparable 

to the computation time. Also, it has been found that the algorithm not only speed up the 

computations but also increases the maximum solvable problem size. 

Keywords: Finite Difference Time Domain (FDTD), Message Passing Interface (MPI), 

Maxwell equations, Electromagnetic Applications. 
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ÖZ 

Zamanda Sonlu Farklar Alanı Yöntemi (FDTD), Maxwell denklemlerinin çözümünde 

kullanılan en popüler sayısal simulasyon zaman alanı yöntemlerden birisidir. Bu 

yöntemin avantajları kavramsal olarak basit olması ve karışık elektromagnetik 

problemlerin çözümünde uygulanmasının kolay ve basit olmasıdır. Fakat, aynı zamanda 

bu yöntem hesaplama için harcanan zaman ve hafıza depolama koşulları bakımından 

pahalı bir yöntem olarak bilinmektedir. Bu tezde parallel sonlu farklar zaman alanı 

algoritmasının (FDTD)   açık alanlı dağıtımcı elektromagnetik uygulamaların 

modellenmesinde kullanımı sunulmaktadır.   Adı geçen algoritma iki boyutlu topoloji 

yöntemi kullanılarak geometrik problemlerin birbiriyle örtüşmeyen, bitişik alt alanlara 

bölünmesine dayanmaktadır.  Bitişik işlemcilerin arasındaki iletişim ise mesaj iletme 

(MРI) kütüphanesi  tarafından sağlanmaktadır. 100Mbps Ethernet aracılığıyle bağlanan 

(1-16) bilgisayarlardan oluşan algoritmik paralel sistemin performansı, üç boyutlu 

Lorentz dağıtıcı alanı aracılığıyla yayılan nokta kaynak olarak gösterilmiş ve sekiz adet 

işlemci aracılığıyle (5.6348) değerine sahip hızlanma faktörü elde edilmiştir. Diğer 

taraftan problem birçok işlemci arasında dağıtıldığı zaman iletişim zamanının 

hesaplanma zamanı ile kıyaslanabilir olmasından dolayı hızlanma faktörünün düştüğü 

ortaya çıkmıştır. Bütün bu bulgulara ek olarak adı geçen algoritma hesaplamayı 

hızlandırmakta ve aynı zamanda çözülebilecek problem büyüklüğünü de artırmaktadır.    

 

Anahtar kelimeler: Zamanda Sonlu Farklar Alanı Yöntemi (FDTD), Message Passing 

Interface (MPI),, Maxwell denklemleri, Elektromanyetik Uygulamalar 
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Chapter 1 

INTRODUCTION 

The finite difference time domain (FDTD) [1] method has become the state-of-the-art 

method for solving Maxwell’s equations in complex geometries. It is based on Yee´s 

algorithm developed in 1966 [2]. Yee chose a geometric relationship for the spatial 

sampling of the vector component of the electric and magnetic fields that enables 

representing both the differential and integral forms of Maxwell’s equations in a robust 

manner. This method is still used frequently for solving many problems in 

electromagnetic area, because it is simple and efficient method to solve Maxwell's 

equation in discrete time. The FDTD method calculates the electric field and the 

magnetic field by discretizing the Maxwell equations in time and space. After 

discretizing the Maxwell equations, it is easy to obtain the electric fields and the 

magnetic fields in the computation domain. The computation domain is simply the space 

where the simulation is performed, and it is divided into unit cells. Each unit cell within 

the computational domain must be associated with electric and magnetic fields. Then, 

the material of each cell within the computation domain must be specified, and it can be 

a free-space, metal, dielectric, or boundary cell. When solving open region problem 

absorbing boundary conditions (ABCs) are needed to limit the computation domain. The 

perfectly matched layer (PML) [3] has been shown to be one of the most widely used 

FDTD ABCs. 
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To model a large problem by using the FDTD method, huge memory and CPU time are 

required. By using parallel technique, both the CPU time and memory storage 

requirements can be decreased. Parallel computing algorithms are based on splitting the 

computational domain into sub-domains among a network of computers, for instance, 

PCs and workstation. In each subdomain, the computation of the electric and the 

magnetic fields on the sub-domain boundary cells require information from the 

neighboring subdomains, hence each PC need to transmit and receive information with 

neighboring sub-domains. This transmission is done by using the massage passing 

interface (MРI) system [4]. 

MРI system is a standard specification for message passing library, which is used on 

different platforms, ranging from massively parallel structures to networks of computers, 

MPI provides a rich range of abilities, and support different program languages like 

Fortran, assembly language, Pascal, ANSI C, C++, Python, and also support new version 

of MatLab. And there are other software doing same parallel jobs for instance, PVM 

(Parallel Virtual Machine) is a software package that permits a heterogeneous collection 

of Unix and/or Windows computers hooked together by a network to be used as a single 

large parallel computer. MРICH2 [5], which is used throughout this thesis for carrying 

out the MРI standard, it is a high-performance and widely porTable implementation of 

the Message Passing Interface (MРI) standard (both MРI-1 and MРI-2), MPICH2 is 

distributed as source (with an open-source, freely available license). It has been tested on 

several platforms, including Linux (on IA32 and x86-64), Mac OS/X (PowerPC and 

Intel), Solaris (32- and 64-bit), and Windows. 
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MРI standard supports the growth of parallel application in windows platforms. There 

are many parallel FDTD algorithms available to solve electromagnetic problems [6], but 

all of these algorithms are suiTable only for lossless, non-dispersive electromagnetic 

applications. In [6], although MPI-FDTD parallel approach is presented for frequency 

depended material, it must be noted that this approach is limited to source-free domains. 

In this thesis, we extend the parallel FDTD formulation for modeling dispersive as well 

as non-dispersive problems. We have simulated three-dimensional (3-D) cartesian 

domain entirely composed of Lorentz material [7], and it has been shown that the 

parallel algorithm can speed up the computation, and it is able to solve bigger problems 

size. It has been shown that with eight processors, a speedup factor of (5.6348) is 

obtained. On the other hand, when the program is distributed among many processors, 

the speedup decreases, because the communication times become comparable to the 

computation time. 

The thesis is organized as follow. A shortcut review of conventional FDTD algorithm is 

given in Chapter 2. Chapter 3 deals with parallelizing the FDTD algorithm. In Chapter 4, 

parallel implementations of FDTD using MРI is described. Chapter 5 gives the 

simulation result, and finally conclusions and future work are given in Chapter 6. 
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Chapter 2 

INTRODUCTION TO THE FINITE DIFFERNCE TIME 

DOMAIN METHOD 

2.1 Basics of Finite Difference Time Domain Algorithm 

Considering a three dimensional (3-D) dispersive domain, the frequency domain of 

Maxwell’s curl equations can be written as: 

     ̅           ̅         2.1 

      ( ) ̅         ̅        2.2 

where    is for frequency domain variable,     √      ⁄  ,       ( ), is the 

speed of light,   ̅ is the electrical field vector,  ̅ is the magnetic field vector,    is the 

electric permittivity,    is the magnetic permeability, and   ( ) is the relative 

permittivity of the domain, which can be written for Lorentz dispersive material, for 

example, as: 

  ( )     
     

 

  
         

        2.3 

where      
  
  ⁄    , with       ( ),     is the resonance radial frequency, and 

  is the damping constant. In a rectangular coordinator system, equations (2.1) and (2.2) 

are decomposed into six scalar equations. The FDTD method solve these scalar 

equations in the time domain by applying the central difference approximation to the 
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time and space derivatives according to Yee´s algorithm [2]. Based on equations (2.1) 

and (2.2) the following six scalar field equations can be obtained as [8]: 

    

  
  

 

√    
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√    
(
   

  
   

   

  
)        2.8 
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)        2.9 

where              fields are related to   ,   , and    respectively as: 

  ( )     ( )            2.10 

  ( )     ( )            2.11 

  ( )     ( )            2.12 
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Equations (2.4) – (2.12) from the basic algorithm for modeling electromagnetic wave 

interaction with arbitrary three-dimensional objects.    

2.2 YEE’s FDTD Algorithm 

 

Figure 2.1: Typical unit cell in Yee FDTD algorithm [9]. 

The basics FDTD algorithm was introduced by Yee in 1966 [2]. The first step of this 

algorithm is based on dividing the domain into rectangular cells with dimension of    

(        ), where             , are respectly the space cell size in the           

directions. Figurе 2.1 shows a typical Yee´s FDTD unit cell. Every unit cell associated 

with six field’s component:              for electric fields and              for 

magnetic fields. For each cell, all of H field’s components are located at faces of the cell 

and all of E field’s components are located at the edges of the cell [2]. 

 𝑦 

 𝑧 

 𝑥 
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The steps of Yee´s algorithms are summarized as bellow [10]:  

1- Replace all space and time derivatives with their finite differences so that the electric 

and magnetic fields are staggered in both space and time. 

2- Solve the resulting difference equations to obtain “the update equations” that express 

the          future fields in terms of the       past fields. 

3- Evaluate the magnetic fields one time-step into the future so they are known 

(effectively they become past fields). 

4- Evaluate the electric fields one time-step into the future so they are now known 

(effectively they become past fields). 

5- Repeat the previous steps until the fields have been obtained over the desired 

duration.  

Based on the above algorithm,            fields, for example can be written in FDTD 

by using (2.5), (2.9) and (2.12), as follow: 

             ⁄⁄

    ⁄               ⁄⁄

    ⁄  
   

  
  [

            ⁄
             ⁄

 

                ⁄
              ⁄

 ]      2.13 

          ⁄
               ⁄

  
   

  
 [
      ⁄        ⁄

    ⁄         ⁄        ⁄

     ⁄  

                 
    ⁄                  

    ⁄
]     2.14 

          ⁄
     

  

  
           ⁄
    

 

  
[
              ⁄

               ⁄
   

              ⁄
               ⁄

   ]      2.15 

where (i, j, k) is cell´s position, (n) is time step,                        are given by. 
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        2.15c 

and 
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        2.15e 

        
  

 
    

      
  
   

 
       2.15f 

2.3 Absorbing Boundary Conditions (ABC) 

Recently many of the FDTD applications are considered to be unbounded ones. Since 

the limitation in computer storage abilities, the computation domain must be finite. For 

these application of FDTD, is required to truncate the domain by introducing artificial 

outer boundaries. The boundaries need to be designed to absorb outgoing waves without 

reflection into the simulated domain. In recent years, an efficient absorbing boundary 

condition (ABC) referred as the perfectly matched layer (PML) [3] [6], introduced by 

the Berenger [3] has been widely used. This kind of ABC is used to surround the 

computational boundary with appropriate values of electrical and magnetical 

conductivities. The PML region at the domain boundaries include electric and magnetic 
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conductivity that gradually increase in the PML region the absorb outgoing 

electromagnetic waves.   

 

Figure 2.2: 2-D domain surrounded by PML at its boundary. 

Anisotropic PML (APML) [11] is the collective formulation of Berenger PML. In this 

context, Maxwell´s equation (2.1) and (2.2) can be applied in PML region with addition 

of some mathematical expressions that express the specifications of medium as follow: 

      ̅ ( )     ̅         ̅       2.16 

     ( )   ̅( )     ̅         ̅       2.17 

where    is for frequency domain variable,   ̅( )    is the APML permittivity, 

  ̅ ( )     is the APML permeability defined as [11] [12]: 
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  ̅( ) =  ̅ ( ) = 

[
 
 
 
  
    

  
    

  
     

  ]
 
 
 
 

       2.18 

with     (          ) are given by  

      
  

    
          2.19 

where    is the APML conductivity profile along the   – coordinate designed to absorb 

the outgoing waves with minimal reflections defined as: 

      (
    
 
)          2.20 

where    is the maximum conductivity,   is the PML conductivities ,    is the PML / 

Computational domain interface, and m is the order of the polynomial. The benefit of 

PML is attenuating the electromagnetic wave without reflection. It’s important to note 

that (2.16) and (2.17) can also be applied in the inner domain by setting the APML 

conductivity to zero, i.e.,      . Figure 2.2 shows inner FDTD region and the PML 

region. 

2.4 FDTD discretization of PML equations 

Using equations (2.16) and (2.17), the   -field component, as an example, can be 

written as: 

     ( ) 
(   

  

     
) (  

  
     

 )

(   
  
     

) 
      (

   

  
   

   

  
)      2.21 
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Equation (2.21) can be rearranged as: 

   (  
  

     
 )       (

   

  
   

   

  
)      2.22 

where    is given by  

    
(   

  

     
) 

(   
  
     

) 
            2.23 

and    is related to     through 

      ( )            2.24 

Using the invers Fourier transforms relation,   ⇒    ⁄ , (2.22), and (2.23) can be 

written in the time domain as  

   

  
  

  

  
       (

   

  
   

   

  
)       2.25 

and 

   

  
  

  

  
     

   

  
  

  

  
           2.26 

Using the FDTD algorithm, (2.25) and (2.26) can be written in the discrete time domain 

as 

          ⁄
     

   
 

   
           ⁄

   
    

 
 
 

   
  [

       ⁄        ⁄
    ⁄           ⁄        ⁄

    ⁄

           ⁄      ⁄
    ⁄          ⁄      ⁄

    ⁄
]   2.27 
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          ⁄
     

   
 

   
           ⁄

  
      ⁄
 

   
 [           ⁄

     
      ⁄
 

      ⁄
            ⁄

 ]  2.28 

 

where    
 , (for,           ), is given by  

   
               ⁄         2.29 

Finally, to compute the     from     , it is required to discretize  (2.24) by the 

methodology used in (2.15). To apply the above equation in the inner region, it is 

required to eliminate the APML conductivity, i.e. 

                    2.30 
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Chapter 3 

PARALLELIZING THE FDTD ALGORITHM 

3.1 Introduction 

The idea behind of parallel processing is to divide the whole problem into sub-problems 

that can be computed concurrently. Nowadays, some different architectures, that can 

provide parallelism have been introduced., A multi-processor computer is an example 

that has a number of processors. The classification of multi-processor computers are 

categorized as [13] : 

 Shared memory 

 Distributed memory 

 Distributed shared memory  

In shared memory, the memory module and the processor are connected by mean of an 

interconnection network as shown in Figure 3.1. This means that all processors shares 

the primary memory, but each processor has its own cash memory [14]. 
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Figure 3.1: Shared memory multi-processor computers [15]. 

In distributed memory, there is an interconnection network but the difference is that each 

processor has its own private (main) memory interconnection and support message 

passing rather than memory reading and writing as shown in Figure 3.2 [14].  

 

Figure 3.2: Distributed memory Model [16]. 

This class can be categorized into two categories 

 Single instruction multiple data (SIMD). 

 Multiple instruction multiple data (MIMD). 

SIMD computers are typically an array of processing elements, all connected to a 

common control host processor by way of one or more processors in the array. MIMD 
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computers are a group of processors executing one or more operating systems, 

coordinating or synchronizing their operation, and exchanging data and controlled by 

mean of message passing [17]. Finally, the distributed shared memory (DSM) 

implements the shared memory model in distributed systems, which have no physical 

shared memory. The shared memory model provides a virtual address space shared 

between all Processors as shown in Figure 3.3. 

 

Figure 3.3: The distributed shared memory (DSM) [18]. 

Parallel processing gives a good solution to reduce computation time for problems that 

require huge processing time to run on high-performance workstation. Although the 

parallel processing reduces computation time, which is required to solve the problem in 

sequential mode, the parallel processing required extra task in terms of parallel 

computation, which is not required in serial processing mode. These additional tasks 

which will increase the operation times of parallelism are. 
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 Processing Idle time 

 Synchronization 

 Inter-processor communication overhead 

Process idle time depending on how much service and application are running in the PC 

and CPU time reserved for each service or application. Synchronization, it is pointing to 

synchronizing for one process, which is running on a multi-processor. And finally, inter-

processor communication overhead takes additional CPU time, when a remote processor 

needs to send and receive data. 

Assume that the time require to solve a given problem using serial algorithm on a single 

processor is  ( ) , and denoting   ( ) as the time needed to solve the same problem on 

   processors using a parallel algorithm, we define the speedup as 

         
 ( )

 ( )
          3.1 

It is important to note that the computation time of the parallel part will be decreased, 

when the number of processors is increased, but the communication time will be 

increased, and the synchronization’s time will be raised up, which limiting speedup’s 

factor [13]. 
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3.2 Domain decomposition 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Two dimensional (2-D) domain decompostion. 

A regularly explored option to exploit parallelism is to split up the domain into 

subdomains that can be worked in parallel by multiple processors. The advantage of this 

approach is that if the subdomains need to share data, they can do so with short 

messages. The domain can be decomposed using one-dimensional (1-D) or two-

dimensional (2-D) topology. In this thesis, 2-D topology, as shown in Figure 3.4 used as 

it is found to be more efficient than the 1-D topology, especially for large number of 

processors. As shown in Figure 3.4. 
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3.3 FDTD method in parallel 

 

Figure 3.5: Communications at the boundaries of a sub-domain for the 2-D 

topology. 

Using the 2-D topology, the computational domain is divided into subdomains along the 

  and   directions, where each subdomain is assigned to one processor, as shown in 

Figurе 3.5. To update the field components at the sub-domain boundaries, data from the 

neighboring sub-domains are needed. The inter-processor communication among the 

neighboring processors is carried out by using the MРI library. Figurе 3.5 shows the data 

need to be exchanged between neighboring sub-domains. For the communication 

purpose, ghost layers located at the edges of the sub-domains are used. The MРI system 

is used to exchange data between processors. To calculate    at the cells located at the 

left boundary of a subdomain, the values of     from the subdomain on its left are 

needed. Also, this subdomain must send the values of     at cells located at the right 

boundary to the subdomain on its right. Similarly, to calculate     at the cells located at 

the lower boundary of a subdomain, the values of      from the lower subdomain are are 



19 

 

needed. Also, this subdomain must send the values of      at cells located at its upper 

boundary to the upper subdomain. To calculate      at the cells located at the right 

boundary of the subdomain, the values of     from the right subdomain are needed. This 

subdomain should also send the values of    at the cells located at the left boundary to 

the left subdomain. Similarly, to calculate       at the cells located at the upper boundary 

of the subdomain, the values of     from the upper subdomain are needed. Also, this 

subdomain should send the values of      at the cells located at its lower boundary to the 

lower subdomain. Finally, the steps for the proposed parallel algorithm can be 

summarized as: 

1. MРI initialization: Initialize the MРI execution environment. 

2. Reading of simulation parameters. 

3. Creation of the 2-D topology 

4. At each time step, perform the following: 

4.1 Update the E-fields (electric fields) and other auxiliary variables in each sub-

domain. 

4.2 Exchange E-fields (electric fields) with the neighbor subdomains by using 

the MРI library functions. 

4.3 Update the H-fields (magnetic fields) in each sub-domain. 

4.4 Exchange H-fields (magnetic fields) with the neighbor sub-domains by using 

the MРI library functions. 

       5. MРI finalization. 
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Chapter 4 

PARALLEL IMPLEMETATION USING MРI SYSTEM 

4.1 Introduction 

In this thesis, the parallel implementation of the FDTD algorithm on a network of PCs 

has been examined. The regularity of the computational grid makes the decomposition 

into a networked PCs relatively straightforward. Each PC is allocated a block of the 

computational grid and handles the calculations of the   and    fields of the cells in that 

block. When cells on a block boundary need data from their neighbors in adjacent blokes 

in order to update the   and    fields in each iteration, these data are transferred 

between the PCs over the local area network (LAN) connection. 

A SIMD type problem, like FDTD algorithm, on a system of networked PCs can be 

implemented by using a Single Program Multiple Data (SPMD) computing model. The 

SPMD model gives each PC a copy of the same program and requires each PC to 

communicate with its neighboring PCs. In the parallel implementation of the FDTD 

algorithm, each PC runs the same parallel code and requires closest neighbor 

communication between cells [13]. 

To provide communication between PCs over the LAN, MРI is used as a message 

passing system. It provides a flexibility to design and implement a parallel application 

based on a distributed memory model. MРICH2 [5] version 1.4.1p1 is a sTable 
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release used for the implementation of the parallel code. The code is written in C 

language using the Microsoft Visual C++ 2010 as the application package. 

The parallel code is organized in a master and worker's PCs (server-client). There is just 

one master PC and one or more worker's PCs. The master is responsible for both the 

data Input/Output, and the update function, where the workers are responsible for the 

calculations of the E and H fields only. Both master PC and workers PCs calculate their 

private data then master receives all the results from the worker's PCs. 

4.2 Message passing interface (MРI) 

The Message Passing Interface (MРI) is a standardized and porTable message passing 

system designed by a group of researchers from academia and industry to function on a 

wide variety of parallel computers [4]. The standard defines the syntax and semantics of 

a core of library routines useful for a wide range of users who write porTable message-

passing programs in FORTRAN or C [4]. MРI has gained wide acceptance in the 

parallel computing community and it is available on a wide variety of platforms, ranging 

from massively parallel systems to network of computers, or workstations. 

In the MРI programming model, a computation comprises one or more processes, which 

are grouped inside a communicator. The communicator defines the communication 

context. A process has a local memory and an execution unit. Thus, one process cannot 

directly access variables in another process’s memory. Because of this reason, processes 

communicate by calling MРI library functions in order to send and receive messages 

between each other [12]. 



22 

 

4.2.1 MРI functions 

The required communication between processors is very simply to be handled using 

MРI. In this thesis, communication was implemented using the MРICH2 library 

integrated into C source code. MРI provides around 200 functions, and it covers a wide 

range of parallel programs solutions in different fields. In this thesis, eleven functions 

were were used. These eleven functions are given in Table 4.1 [18]. 

Table 4.1: MPI library functions. 

1 MРI_Init Initialize the MРI execution environment 

2 MРI_Comm_rank Determines the rank of the calling process in the 

communicator 

3 MРI_Comm_size Determines the size of the group associated with a 

communicator 

4 MРI_Cart_create Makes a new communicator to which topology 

information has been attached 

5 MРI_Cart_coords Determines process coords in Cartesian topology given 

rank in group 

6 MРI_Cart_shift Returns the shifted source and destination ranks, given a 

shift direction and amount 

7 MРI_Comm_free Marks the communicator object for de-allocation 

8 MРI_Wtime Returns an elapsed time on the calling processor 

9 MРI_Send Performs a blocking send 

10 MРI_Recv Blocking receive for a message 

11 MРI_Finalize Terminates MРI execution environment 

 

 

 

 

 

 



23 

 

4.2.2 MРI Initialization 

Before the execution of the parallel programs, it is needed to indicate the number of 

processes to be used from the operating-system command line. Each parallel program is 

required to determine the number of processes used and the identifier, or rank, of each 

process. At the beginning of each parallel program, the first MРI instructions concern 

providing of those data which are obtained by the following functions [12]. 

 MРI_Init(int *argc, char ***argv) 

Initialize the MРI execution environment, with the parameter of 

argc:  [input] Pointer to the number of arguments  

argv:  [input] Pointer to the argument vector  

MРI_Init, is called prior to any calls to other MРI routines. Its purpose is to initialize the 

MРI environment. Calling MРI_Init more than once during the execution of a program 

will lead to an error. This routine must be called before any other MРI routine. The MРI 

standard does not say what a program can do before an MРI_Init or after an 

MРI_Finalize [19]. 

 MРI_Comm_rank (MРI_Comm comm,int *rank) 

Determines the rank of the calling process in the communicator, with the parameter of 

comm:  [input] communicator (handle)  

rank:  [output] rank of the calling process in the group of communicator 

(integer)  
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MРI_COMM_RANK indicates the rank of the process that calls it in the range from 

(zero to (size-1)), where size is the return value of MРI_Comm_size [19]. 

 MРI_Comm_size(MРI_Comm comm, int *size) 

Determines the size of the group associated with a communicator, with the parameter of 

comm:  [input] communicator (handle)  

size:  [output] number of processes in the group of communicator  (integer)  

This function indicates the number of processes involved in a communicator. For 

MРI_COMM_WORLD, it indicates the total number of processes available [19]. 

 MРI_Cart_create ( MРI_Comm comm_old,  int ndims,  int *dims,  int *periods,  

int reorder,  MРI_Comm *comm_cart ) 

Makes a new communicator to which topology information has been attached, with the 

parameter of  

comm_old: [input] input communicator (handle)  

ndims:  [input] number of dimensions of cartesian grid (integer)  

dims:  [input] integer array of size ndims specifying the number of processes in 

each dimension  

periods: [input] logical array of size ndims specifying whether the grid is periodic 

(true) or not (false) in each dimension  

reorder: [input] ranking may be reordered (true) or not (false) (logical)  
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comm_cart: [output] communicator with new Cartesian topology (handle)  

MРI_CART_CREATE, returns a handle to a new communicator to which the Cartesian 

topology information is attached If reorder = false then the rank of each process in the 

new group is identical to its rank in the old group. Otherwise, the function may reorder 

the processes If the total size of the Cartesian grid is smaller than the size of the group of 

comm, then some processes are returned MРI_COMM_NULL [19]. 

 MРI_Cart_coords(  MРI_Comm comm,  int rank,  int maxdims,  int *cords ) 

Determines process coordinators in cartesian topology given rank in group, with the 

parameter of 

comm:  [input] communicator with cartesian structure (handle)  

rank:  [input] rank of a process within group of comm (integer)  

maxdims: [input] length of vector coords in the calling program (integer)  

coords: [output] integer array (of size ndims) containing the Cartesian coordinates of 

specified process (integer)  

The inverse mapping, rank-to-coordinates translation is provided by MРI_Cart_coords 

[19]. 

 MРI_Cart_shift(  MРI_Comm comm,  int direction,  int displ,  int *source,  int 

*dest ) 

Returns the shifted source and destination ranks, given a shift direction and amount, with 

the parameter of 
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comm:  [input] communicator with cartesian structure (handle)  

direction: [input] coordinate dimension of shift (integer)  

displ:  [input] displacement (> 0: upwards shift, < 0: downwards shift) (integer)  

source: [output] rank of source process (integer)  

dest:  [output] rank of destination process (integer) [19]. 

 MРI_Comm_free(MРI_Comm *comm) 

Marks the communicator object for de-allocation, with the parameter of 

comm:  [input] Communicator to be destroyed (handle)  

This routine frees a communicator, because the communicator may still be in use by 

other MРI routines [19]. 

 MРI_Wtime(void) 

Returns an elapsed time on the calling processor, returns a floating-point number of 

seconds, representing elapsed wall-clock time since some time in the past [19]. 

 MРI_Send(  void *buf,  int count,  MРI_Datatype datatype,  int dest,  int tag,  

MРI_Comm comm ) 

Performs a blocking send, with the parameter of 

buf:  [input] initial address of send buffer (choice)  

count:  [input] number of elements in send buffer (nonnegative integer)  
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datatype: [input] datatype of each send buffer element (handle)  

dest:  [input] rank of destination (integer)  

tag:  [input] message tag (integer)  

comm:  [input] communicator (handle)  

This routine may block until the message is received by the destination process [19]. 

 MРI_Recv(  void *buf,  int count,  MРI_Datatype datatype,  int source,  int tag, 

  MРI_Comm comm,  MРI_Status *status ) 

Blocking receive for a message, with the parameter of 

buf:  [output] initial address of receive buffer (choice)  

count:  [input] maximum number of elements in receive buffer (integer)  

datatype: [input] datatype of each receive buffer element (handle)  

source: [input] rank of source (integer)  

tag:  [input] message tag (integer)  

comm:  [input] communicator (handle)  

status:  [output] status object (Status) 

The receive buffer consists of the storage containing count consecutive elements of the 

type specified by data-type, starting at address buf [19].   
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 MРI_Finalize(void) 

Terminates MРI execution environment  

This routine cleans up all MРI state. Once this routine is called, no MРI routine (even 

MРI_INIT) may be called [19]. 

4.3 MРICH2 installation and configuration 

MРICH2 is a high-performance and widely porTable implementation of the Message 

Passing Interface (MРI) standard (both MРI-1 and MРI-2) [5], as the goals of MPICH 

team are: 

 1: to provide an MPI implementation that efficiently supports different computation and 

communication platforms including commodity clusters (desktop systems, shared-

memory systems, multicore architectures), high-speed networks (10 Gigabit Ethernet, 

InfiniBand, Myrinet, Quadrics) and proprietary high-end computing systems (Blue 

Gene, Cray). 

2: to enable cutting-edge research in MPI through an easy-to-extend modular framework 

for other derived implementations. 

MPICH is distributed as source (with an open-source, freely available license). It has 

been tested on several platforms, including Linux (on IA32 and x86-64), Mac OS/X 

(PowerPC and Intel), Solaris (32- and 64-bit), and Windows. 
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The MРICH2 library aimed to implement all the functionality specified by the MРI 

standard in an efficient and porTable fashion. Due to its characteristics, MРICH served 

as a development base for many other implementations, which addressed different 

operating systems and architectures [13]. 

4.3.1 Installation MРI's system 

In this thesis we had download of MРICH2 version 1.4.1p1. It is sTable release version 

of MРICH2 for windows platforms X86 systems. For installing and preparing, 

computers used in this thesis have the following specification shown in Table 4.2, and 

the example of the system´s network with three workers and one master, is shown in 

Figure 4.1. 

Table 4.2: Parallel system specification 

CPU: Core 2 due @ 3.0 GHz 

RAM: 2 Gigabytes 

OS: Windows XP Professional X86 service pack 2 

 

Figure 4.1: Master/Worker example. 
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To guarantee install without problems, the following steps are came out. We need first, 

to make new user account with administrator privileges on all PCs with secure 

password. All PCs should have the same user account name and password.  

Second, login in the new account, double click on the execution file (mpich2-1.4.1p1-

win-ia32.exe), the wizard will begin, follow the wizard and accept license agreement, 

and don’t change the installation directory, then click "Close" bottom to finish wizard. 

Before  run the program, the following steps should be done.  

 Press Start bottom; click on run type "cmd" and click Enter. Command window 

will open 

 Type in the command window "cd C:\Program Files\MРICH2\bin" then hit 

Enter, 

 Type " smpd.exe -install" and hit Enter. 

 Type "smpd.exe –sethosts <host name>", you can take computer name from 

these steps, after doing it click Enter:  

 Right click on My computer 

 Select Properties 

 Select Computer Name tab, copy full computer name and exchange it with 

<host name> 

 Finally, type "smpd.exe -restart" and click Enter and close command window. 
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Now, we need to enter account information such as user name and password. Press start 

bottom, click programs, MРICH2, and then click on "wmpiregister" then Figure 4.2 will 

appear  

 

Figure 4.2: MРI register's window. 

Enter user name in account field and enter password in password field. Then click 

Register then click ok. After these steps, the installation of the system finished.  

4.3.2 MРICH2 configuration 

MРICH2 provide GUI utility, which makes the process work easier than using command 

window. After finish of install MРICH2 on all PCs, a program called "wmpiexec.exe" 

appears under Programs in the Start menu list, click on MРICH2, finally, click on 

wmpiexec.exe, Figurе 4.3 showing main window of wmpiexec to start a parallel job 

under Windows 
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Figure 4.3: MРICH2 main window. 

After building the project with Visual C++ 2010, the execution file should be distributed 

among all PCs in the system with same path of execution file in master PC. Then at the 

application field click on brows bottom and specify the execution file project; "Number 

of processes" is for specifying the number of PCs that will do the parallel project, 

because each PC will take one process, and we should specify the address of all PCs in 

parallel system to make communication work, checkbox on "more option" as shown in 

Figurе 4.4. 
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Figure 4.4: MРICH2 main window with more option activated. 

Now, after active more option in main window, all PCs addresses specified in the host 

field, as shown in Figure 4.4, for instance, parallel system of 4 PCs. Finally, to execute 

the system, press Execute bottom, to make parallel system begin execute parallel project 

that specified in main window of program. Then system monitor and program message 

appear in big field down of "Show Command" bottom and field. 
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4.3.3 Visual studio 2010 configuration 

For building code program, the editor of visual C, need some additional configuration to 

work with MРI's libraries. After open visual studio 2010 and creating a new project, 

right click at the project's name, click properties, go to configuration properties, then 

C/C++, then select general, then click  additional include directories then add new, then 

add the following path: "C:\program files\MРICH2\include", as shown in Figure 4.5. 

 

Figure 4.5: Editor configuration. 

Next step, click linker, then go to general, and then select additional library directories, 

double click, add new, and add this path: "c:\program files\MРICH2\lib" as shown in 

Figurе 4.6. 
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Figure 4.6: Libraries directories of MPI. 

Finally, click input then, go to dependencies then, add these libraries 

cxx.lib, fmpich2.lib, fmpich2g.lib, fmpich2s.lib, mpe.lib and mpi.lib. as shown in Figurе 

4.7. These are a functions library that you needed under editor for building parallel 

applications. 
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Figure 4.7: Additional of library dependencies. 

4.4 Program description 

The program calculates the E and H fields at each cell in a (2-D) topology. In the 

program, the computational domain, with dimensional     is decomposed equally for 

computation on P PCs; where X is the long of the x-dimension of the computational 

grid, Y is the long of the y-dimension of the computational grid, and P is the number of 

PCs used in the simulation [13].  

In this thesis, the parallel implementation of the 3-D FDTD algorithm in dispersive 

medium has been examined. The parallelization of the given FDTD algorithms is 

performed using the 2-D topologies. For the communications between the neighboring 
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processors, MРI_Send and MРI_Recv of communications functions have been 

implemented with MРI library.  

The parallel code is written in ANSI C language using the MS Visual C++ 2010 as the 

application package. The parallel codes are organized in a master-worker fashion. There 

is only one master processor and one or more worker processors (in this thesis up to 16 

worker processors were used). The master processor is responsible for both data I/O and 

calculations of the E-field and the  -field components at the cells in its subdomain, 

where each worker processor is responsible only for the calculations of the E-field and 

the  -field components at the cells in its subdomain. During the execution, both master 

and worker processors calculate the field components in their own subdomain 

concurrently. After the execution of the field´s components, each worker processor 

sends its part of the result to the master processor and terminates its process, where the 

master processor receives this result from the worker processors, prints them together 

with its own result and then terminates its process. 

At the beginning of the execution, each processor defines the program parameters such 

as the problem size, the number of time steps, etc. Then, each processor initialize the 

MРI communication system, determines the number of processors to be used in the 

execution and its own processor identifier with the following MРI instructions: 

 MРI_Init (&argc, &argv) 

 MРI_Comm_size (MРI_COMM_WORLD, &nproc); 

 MРI_Comm_rank (MPl_COMM_WORLD, &procid); 



38 

 

where MРI_COMM_WORLD is the default communicator, which indicates all 

processors involved in the execution. The function MРI_Comm_size gets the number of 

processors and stores it in nproc, and function MРI_Comm_rank gets the identifier of 

the current processor and stores it in procid. Then, each processor defines the Cartesian 

topology on the 3-D computational domain [4]. 

4.4.1 Two Dimensional Cartesian domain topology. 

The 2-D Cartesian topology of processors is created by the following function: 

MРI_Cart_create (MРI_COMM_WORLD, ndims, &dims, &periods, reorder, 

&comm cart ) 

where: ndims = 2, refer to 2D topology, communication with x and y,  

dims[0] = number of processors in the x-direction,  

dims[1] = number of processors in the y-direction, 

periods[0], periods[1], and reorder are defined as zero in each program, which mean we 

are using default communicator ranking order [4]. To determine the new processor 

identifier, the Cartesian coordinates and the neighboring processors in the Cartesian 

topology, the following functions are used for each processor: 

MРI_Comm_rank (comm _cart, &procidcart); 

MРI_Cart_coords (comm_cart, procidcart, ndims, &proccoord); 

MРI_Cart_shift (comm_cart, rightleft, right, &left_n, & right_n); 

MРI_Cart_shift (comm_cart, updown, up, &down_n, &up_n); 
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where: ndim: is equal 2 for 2-dimentional, left_n: is the left buffer node, right_n: is the 

right buffer node, down_n: is the down buffer node, up_n: is the up buffer node , 

rightleft = 0: is x-directional exchanging data, right = 1: is the number of moving steps, 

updown = 1: is y-directional exchanging data, and up = 1: is the number of moving 

steps. MРI_Comm_rank, gets the identifier of the current processor in the Cartesian 

topology and stores it in procidcart (process id cartesian), MРI_Cart_coords,  gets the 

coordinates of the current processor in the Cartesian topology and stores in proccoord, 

the first function of MРI_Cart_shift, gets the identifiers of the left and the right 

neighbors along the x-direction and stores in left_n and right_n, respectively, and the 

second function of MРI_Cart_shift, gets the identifiers of the down and the up neighbors 

along the y-direction and store in down_n and up_n, respectively. 

When the number of processors in the x-direction and the y-direction and the processor 

coordinates are determined, each processor calculates the values of nx and ny to define its 

subdomain size.             , where         are volume size of sub domain at each 

PC,        , is the number of cells in Z direction, and determines the starting point of 

the subdomain along the x-direction and the y-direction. Then, each processor initializes 

the values of the field components and the additional auxiliary variables at each cell in 

its subdomain. At each time step, each processor calculates the required field 

components and the additional auxiliary variables and then, communicates the calculated 

field components between the related neighboring processors. The general form of the 

program structure and the program flowchart are given in Figure 4.8 and Figure 4.9, 

respectively. 
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Figure 4.8: Structure of the program.  



41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Flowchart of the parallel FDTD program. 
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First step in this algorithm is Initialize the MРI execution environment. Then reading 

simulation´s parameters. After this step, the algorithm deals with parallel topology, it is 

required to create of the 2-D topology, now at each time step, the algorithm perform the 

following 

 Update the E-fields (electric fields) and other auxiliary variables in each sub-

domain. 

 Exchange E-fields (electric fields) with the neighbor subdomains by using the 

MРI library functions. 

 Update the H-fields (magnetic fields) in each sub-domain. 

 Exchange H-fields (magnetic fields) with the neighbor sub-domains by using the 

MРI library functions. 

And, then increase the iteration number, then checking if the iteration number is it 

greater than number of steps, if it is yes, go to terminate the algorithm by MРI 

finalization, if it is not, repeat previous steps until iteration number be greater than 

number of steps, finally algorithm collect results in master PC and print the collected 

results, then the algorithm, goes to terminating.
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Chapter 5 

SIMULATION STUDY 

In this chapter, the simulation results of the proposed parallel FDTD algorithms, which 

is used for solving Maxwell’s equations in 3-D dispersive medium, are presented. The 

simulation cartesian domain is shown in Figure 5.1. 

 

Figure 5.1: Cartesian domain with execution pulse. 

The excitation pulse applied at the center of domains as shown in Figure 5.1. The form 

of the excitation pulse as shown in Figure 5.2 
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Figure 5.2: Numerical form of the excitation pulse. 

The experiments was carried out using different number of PCs for comparing the 

simulation time by increasing the number of PCs with fixed problem size. In addition, 

the grid size (number of cells) is increased as much as possible to find a relationship 

between the number of cells in the grid and the simulation time. 

The computational domain size was,                    ,where the space cell 

size was chosen as: 

                          5.1 
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The computational domain was entirely composed of linear Lorentz material with a 

dielectric permittivity given by: 

  ( )    
    

 

  
         

        5.2 

where      ( )     ,    
  
  ⁄   , with        ,        

       , and 

               [6]. The computational domain was truncated by eight additional 

PML layers with a quadratic conductivity profile and with a theoretical reflection 

coefficient of      , as defined in [3]. 

The simulation time was carried out for the first 4000 time steps and the time step was 

taken as      

 
     

   

  
, where   , is the speed of light in vacuum (     ). The 

characteristic of the parallel system used in this thesis is shown in Table 5.1.The parallel 

system used in this study was composed of 1-16 PCs interconnected through 100Mbps 

Ethernet. Figurе 5.3 shows the total simulation time and the communication time of the 

proposed parallel algorithm. 

Table 5.1: FDTD parallel system characteristics. 

CPU Core 2 due @ 3.0 GHz 

RAM 2 Gigabytes 

OS Windows XP Professional X86 service pack 2 

Compiler C++ 

Communication software Message Passing Interface 

No. of PCs 1-16 PCs 
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Figure 5.3: Total simulation time and communication time. 

The performance of the proposed parallel algorithm was studied according to the 

following three factors:  

1. Speedup 

2. Efficiency  

3. Scalability 

5.1 Speedup and efficiency 

The speedup was calculated as: 

 ( )     ( )  ( )         5.3 
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where  ( )  the time is needed to solve the problem using one processor and  ( ) is the 

time needed to solve the same problem using   processors [20].  

The efficiency was calculated as 

 ( )     ( )               5.4 

Figures 5.4 and 5.5 show, respectively, the speedup and the efficiency of the proposed 

parallel algorithm. For the purpose of comparison, the ideal speedup and efficiency were 

also shown in Figures 5.4 and 5.5. As can be seen from Figure 5.4, almost linear 

speedup was obtained when the parallel code was run on less than four processors. It 

also clear from Figure 5.4 that with eight PCs, speed-up factor of 5.6348 has been 

achieved. Beyond this, the efficiency of the parallel system decreases. This is due to the 

fact, that as the number of processors increases, the size of each sub-domain will be too 

small and hence the communication time becomes comparable to the computational time 

in the sub-domain. It is important to note that the performance of the parallel system can 

be improved further by using 3-D topology, which involves dividing the computational 

domain in the                        [6] [21]. 
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Figure 5.4: Speed-up of the parallel simulation. 

 

Figure 5.5: Efficiency of the parallel system. 
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5.2 Scalability 

The scalability evaluates the performance of the parallel algorithm as the problem size 

scales proportionally to the number of processors. In this case, the computational 

problem size is kept constant per processor, while the number of processors increases. In 

the present study, the sub-domain size is kept fixed at 240 x 240 x 40 per processor. 

Table 5.2 shows the scalability of the parallel simulation. Figurе 5.6 shows the total time 

and the communication time 

Table 5.2: Scalability of the parallel algorithm. 

P                   Computation time in sec Communication time in sec 

1 1 1 240 240 1695.71307  00.00000 

2 2 1 480 240 1703.82650  91.48884 

4 2 2 480 480 1705.72423  312.79285 

8 4 2 960 480 1701.15015 569.74148 

16 4 4 960 960 2009.66457  607.78940 

 

P is total number of PCs, Px is number of PC in x direction, Py is number of PC in y 

direction, Nz = 40. 

As can be seen from these results, although the problem size is increased, there is a 

slight change in the total simulation time, which is due to the communication time 

between the processors. Hence, the proposed algorithm allows to solving very large 

problems easily. 
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Figure 5.6: Total simulation time and the communication time of scalability. 

 

 

Figure 5.7: Ez-field as recorded in 4-PCs at 118 X 60 X 20. 



51 

 

Finally, the response of    at the point 118 X 60 X 20 was also examined. Figurе 5.7 

shows    versus time as obtained by the serial and parallel. From Figure 5.7, we can see, 

the serial and the parallel approach give same result but in a shorter time in the case of 

parallel. 
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Chapter 6 

CONCLUSIONS 

In this thesis, we had designed and implemented 3-D parallel algorithm, for modeling 

wave propagation in dispersive medium by using the MРI system incorporate with 

Anisotropic perfectly matched layer. The performance of the parallel algorithm has 

been studied for simulating a point source radiating in a 3-D Lorentz dispersive 

material domain. 

The domain geometry is divided into non-overlapping sub-domains using the 2-D 

topology.  It has been shown that with eight processors, a speedup factor of 5.6348 

was obtained. In the other hand, when the program is distributed among many 

processors, the speedup decreases because the communication times become 

comparable to the computation time. Also it has been found, the algorithm not only 

speed up computations but also increases the maximum solvable problem size. 

As a future study, the presented formulations can be extended for modeling 

electromagnetic waves interactions with human tissues like mobile phone radiations 

effect on human head, and this issue is under investigations. 
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