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ABSTARCT 

Regression analysis is a statistical method having application in all fields of scientific 

and technological studies. Theoretical concepts lead to the development of regression 

theory are examined in some detail to lay down the foundation for the application of 

the theory.  In statistics regression is mainly used to establish the kind of relationship 

between dependent and independent variables, i.e. linear or any other type. 

Moving average is a statistical method widely used for smoothing out raw data 

trajectories to obtain trends by filtering out the noise from the random fluctuations. 

The trend is an estimation of the functional behavior of the variable under study. 

This thesis is first centered on the theoretical characteristics of linear regression in 

chapter 3, examining the abstract concepts behind the regression theory, and the least 

squares method for establishing the model to be fitted from available data. Chapter 4 

is allocated for the moving average technique used as a smoother of the trajectory for 

a variable. That smooth trend can be generated for every variable.  

The fitted regression model itself can be considered a smooth functional representation 

of the response variable in relation to the predictor/s. In Chapter 5 a case study of a 

data set is undertaken, where moving average technique was implemented for 

smoothing with 2 different orders, using m = 3 and m = 6 values for averaging of a real 

life data. It became evident that the smoother the data, the lower the error measures 

will be in a regression analysis. However, too much smoothing of a variable will runs 

the risk of obtaining close to a perfect regression fit, which will not be realistic.  
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Based on the results obtained in the case study, it was then recommended that where 

large data sets are used for regression study, some smoothing can be beneficial as it 

will result in reduced estimation errors. 

Some software programs like Excel, Minitab, and S.P.S.S were all used to help in data 

processing to find the needed outputs.   

Keywords: matrix algebra, regression analysis, estimation, predictors, response, 

regression coefficient, moving average, stretched interpolated moving average.   
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ÖZ 

İstatistiksel bir metod olan regresyon analizi bilim ve teknolojinin her alanında 

kullanılabiliyor. Regresyon teorisinin geliştirilmesinde kullanılan kavramların 

uygulanabilmesi için gerekli altyapıyı oluşturmak açısından detaylı bir şekilde 

incelenmiştir. İstatistikte regresyon bağımlı ve bağımsız değişkenler arasındki ilişkiyi 

tayin etmede kullanılıyor.  

Hareketli ortalama yöntemi bir değişkene ait ham verilerin grafiğindeki aşırı 

dalgalamaları azaltma veya düzgünleştirme amaçlı kullanılıyor. Bir bakıma şansa 

bağlı aşırı dalgalanmaları filtre ediyor. Elde edilen düzgünleştirilmiş grafik değişkenin 

fonksiyonel hareketinin bir tahminisi olarak da düşünülebilir.  

Bu tezde lineer regresyonun teorik karakteristikleri Kısım 3 de ele alınmıştır. 

Regresyon teorisinin temelini oluşturan bazı soyut kavramlar, ve veriden oluşturulacak 

regresyon modelinin belirlenmesinde elzem olan en küçük kareler metodu 

incelenmiştir. Kısım 4 hareketli ortalamar metodunun incelenmesine ayrılmıştır. Her 

değişken için düzgünleştirilmiş grafiğin nasıl üretilebileceği anlatılmıştır. 

Veriden elde edilen regresyon grafiği, bağımlı değişkenin bağımsız değişken/lere olan 

ilişkisinin fonksiyonel bir temsiliyetidir. Kısım 5de yapılan uygulamada hareketkli 

ortalama metodu ile m = 3 ve m = 6 değerleri kullanılarak gerçek hayattan alınmış 

verilerin düzgünleştirilmesi yapılmıştır. Ham ve düzgünleştirilmiş veriler kullanılarak 

yapılan regresyon analizlerinden de görülmüştür ki düzgünleştirme arttıkca, 

regresyonda ortaya çıkan hata payları azalmıştır. Ancak aşırı düzgünleştirmenin 

regresyon hatalarını sıfıra doğru indireeği düşünülürse, greçekci olmadığı ortadadır. 
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Uygulamadan elde edilen sonuçlara bakarak büyük verilerin elde olduğu durumlarda 

bir miktar düzgünleştirmenin hata payların azaltmak açısından faydalı olacağı 

ortadadır.  

Bu çalışmada Excel, Minitab, ve SPSS gibi istatistik paket yazılımlardan 

fadalanılmıştır.  

Anahtar kelimeler: matrisler cebiri, regresyon analizi, tahmin, öngörü, yanıt, 

regresyon katsayısı, hareketli ortalama, esnetilmiş enterpolasyonlu hareketli ortalama.  
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Chapter 1 

INTRODUCTION 

Regression as an estimation and projection technique is a very important method, 

especially when there is a high dependence between one or more dependent variables 

(response variable/s) onto another one or more independent variables (predictor 

variable/s. On the other hand regression itself is also a kind of smoothing technique. 

To clarify this point thinking about the simple linear regression, the fitted line is in fact 

giving an average value for the dependent variable given a certain value of the 

independent variable. Hence the true data points scatter around a single line, meaning 

the scatter of points are smoothed to obtain a line. Position of the line is determined 

through the least squares method 

In this thesis chapter 2 is allocate for a brief literature review in regression and moving 

average concepts.  In chapter 3 starting with simple linear regression up to the 

multivariate multiple regression concepts together with some related theorems with 

proofs are explained in detail. At the end of each sub section following the theoretical 

explanations, a numeric example is included to highlight the application of the theory.   

Chapter 4 is devoted to the moving average concept which is widely used for trend 

generation, its relation to time series, and a summary of various moving average 

techniques. For the purpose of this thesis the simplified version of stretched 
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interpolated moving average technique (SIMA) is briefly explained and applied in the 

analysis of data.   

Chapter 5 is a case study on a multivariate data to show how to apply the theory 

covered in this thesis, and discuss its results by means of error measuring parameters 

such as MSE, RMSE, and RRMSE, giving appropriate comments, where necessary. 

Meaning of error measuring parameters are also briefly explained for clarity. Data used 

relates to forest fire of an area in northern Portugal.  Out of 4 dependent and 5 

independent variables in the original data, 2 dependent and 2 independent ones were 

considered with a data subset of 50 observations out of 517 records in the original data 

set. Obtained error measuring parameter results are tabulated for clarity. Use of 

smoothed data clearly stood out in terms of lower error measures.    
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Chapter 2 

LITERATURE REVIEW 

This chapter discusses some of the literature available on multivariate regression, 

moving average and models that have been beneficial during the course of this study. 

Various articles and publications were also examined with regard to the model being 

used and the general working title. 

The idea of regression analysis is traced back to the nineteenth century when Galton 

decided to collect information on the height of individuals as well as the height of their 

parents and upon gathering the information he decided to draw a frequency table and 

using them to classify the individuals by their height and the average height of their 

parents. Based on his studies he concluded that tall parent are more likely to have tall 

children while short children are likely to have short parents (Galton, 1989). 

As Galton work focused on biological meaning, later research undertaken by Kurl and 

Yule was aimed at detailing the theoretical and inferential statistics which brought 

about multiple regression model. (Karl Pearson, G. U. Yule,Blanchard, Norman; 

Lee,Alice, 1903) 

Least square method was introduced by Adrien-Marie Legendre a French 

mathematician in the early 1800. An American mathematician Robert Adrain also 

proposed the similar theory in 1808 (Stigler, 1980). Gauss made a publication on the 
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theory of least square in the 1821 and he further went on to add Guass-Markov theorem 

to the least square method. (Guass, 1821). 

York introduced a method of weighing (York, 1966) which was known to be the cubic 

in the sense that the cubic equation was used to determine the regression equation in a 

case of a slope of the regression. Ricker worked on the geometric mean regression, 

and on the confidence limits for the slope of the geometric mean regression, (Ricker, 

1984). 

Since the introduction of the regression analysis concept research has continued to date 

with countless contributors. A very recent study undertaken by  (Tandogdu Y. & 

Esager M., 2018) on the sensitivity of the regression parameters explaining in detail 

the simple and multivariate regression techniques and principal component analysis 

and showing the validity of the concept  via a real life data.  

Moving average (MA) technique was initially used for trend generation mostly in time 

dependent variables. Its effect is smoothing the trajectory of a raw data resulting in a 

trend line depicting an estimate of the expected trend for the variable under 

consideration.  Different approaches are taken in the generation of the moving average 

trend. Some approaches in use are simple, cumulative, weighted, and exponential MA 

techniques.  

Cumulative MA can be used when the total average starting from some point up to 

another point is needed. When different weights are to be assigned for different 

observations the weighted MA is suitable for use.  Methods of determining the weights 

may depend on the case under study, hence necessitating different techniques for their 
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computation. Some such techniques used are linearly or exponentially decreasing or 

increasing weights, depending on the need.  (Durbin, 1959). Weighted MA technique 

is widely used in finance, economy, or in some medical applications. 

On the other hand moving average can be considered to be a simple smoothing method. 

It is possible to develop advanced moving average techniques to cater for special 

situations. One such method is the moving average as a trend generator on a trajectory 

where a smooth trend is generated, such that a smooth value can correspond to every 

raw data value with the same time or space coordinate. Hence the name Stretched 

Interpolated Moving Average (SIMA). 

Use of computers in statistical computations has significantly changed the nature of 

statistical science. Ability to process huge data sets on one hand eliminated the burden 

and limitations of manual data processing, on the other hand it enabled the validation 

and applicability of certain statistical theory (Yates, 1966). Joiner in 1972 introduced 

a light version of OMNITAB 80, a statistical analysis program by NIST which was 

conceived by Joseph Hilsenrath in years 1962-1964 as OMNITAB program (minitab, 

2011). Statistical Package for the Social Sciences (SPSS) founded in 1975 and 

acquired by IBM in 2009. Another software package called Statistical Analysis System 

(SAS) was founded by two professors in 1976 from North Carolina State University 

Dr. James Goodnight and John Sall. SAS is one of the fore runner statistical packages 

that enables both the development of new ideas and theories under its modules, as well 

as providing advice in decision making based on customers data analysis. 

 



 

6 
 

Chapter 3 

REGRESSION ANALYSIS 

3.1 Regression Analysis 

Regression is a statistical method that enables the prediction of a dependent variable Y 

based on one or more than one independent variables Xi, i=1,2,…,k. It has found 

application in almost every field of study from finance to education, medical studies, 

engineering, just to mention a few. Its foundation rests on probability theory expressed 

as the expected value of a random variable, conditioned on one or more random 

variables. This concept is developed in statistics, utilizing available data on each 

variable.  There are many types of regression analysis, such as simple linear 

regression, multiple linear regression, multivariate multiple regression just to mention 

few. (Keenan Pituch & James P. Stevens, 2016) 

Multivariate regression analysis enables the establishment of the relationships between 

a   dependent variable and independent variables. In application it uses multivariate 

data sets to establish the linear relationship between the dependent variable Y and a set 

of k independent variables Xi. In multivariate regression analysis to implement the 

methodology, matrix algebra is utilized. Hence, a preview of some basic statistical 

parameters using matrix algebra is given under section 3.2.  

3.2 Descriptive Multivariate Statistics using Matrix Algebra 

In descriptive statistics the measure of central tendency of a certain variable such as 

sample mean ( x ), median ( x ), mode ( x̂ ) with n data values can be determined. 
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Measures of co-variation, and correlation between two or more variables are also 

determined.   

3.2.1 Sample Mean 

Let vector x represent the n data values that belong to a variable. That is  

1

1n

n

x

x



 
 


 
  

x  has n rows and 1 column.  

The transpose of 1nx is denoted as  
1 1 or T

n n 
x x  and   1 1 2n nx x x .

 x      

Then a multivariate data with p variables and n observations in each variable is 

represented by the data matrix n pX  as (Neil, 2002). 

 

11 12 1

21 21

1

22

1

...

...

. . . .

. . . .

. . . .

...

p

n n np

x x x

x x x

x x x

 
 
 
 

  
 
 
 
  

X   

Transpose of the data matrix X is denoted as  or  T

p n p n 
X X . Hence, 

11 21

21 22 2

1

1...

...

. . . .

. . . .

. . . .

...

n

p np n

n

T

p

x x x

x x x

x x x

 
 
 
 

  
 
 
 
  

X  

It is also worth remembering that in probability theory as the expected value or the 

first moment of the random variable X around the origin is given as   

 ( )

( )
( )  

x

X continuoxf x dx

E X
xf x X

us

discrete
 






  






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Then the sample mean of a data set of n observations obtained from the domain of a 

single random variable X can be computed as the simple arithmetic mean of the data 

given by 

n

i

i

x

x
n




 (KAREN A. RANDOLPH & LAURA L. MYERS, 2013) 

In the case of multivariate data with p variables we have a vector of sample averages 

denoted as x  where 
1 2, , , px x x    x . Using matrix algebra on the multivariate data 

x is computed as 

 
1

n
 T

x X 1   

 

11 21 1 1

12 2 2

1

1 2

22

2

... ... 1

... ... 1

. . ... . ... . .

. . ... . ... . .

. .. . ... ... .1

... ... 1

. . ... . ... . .

. . ... . ... . .

. . ... . ... .. .

... ... 1

i n

i n

iji i nj

ip npp p

x x x x

x x x x

x xx
x

x

x x x

n

x

   
   
   
  
  
  
  
   
  
  
  
  
  
  
    

1

1

11

1

1

.

.

.1

.

.

.

n

i

n

i

n

i

n

i

i

ij

ipi

x

x

x

n

x








 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  









  

Where the kth (k=1,2,…, p) variable’s mean is  

1 ,    1,2,...,

n

ik

i
k

x

x k p
n

 


 

3.2.2 Sample Variance and Covariance  

Covariance is used to measure the joint variability of two variables. It determines the 

direction of the relationship between the two variables whether variables turn to move 
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together (positive covariance) or inversely (negative covariance). When their 

covariance is 0 indicates no relationship among the variables.  

When a single variable is in question, the variation and deviation of values around the 

sample mean is of prime concern. As the expected value of difference between the 

population mean and the values of the random variable is always zero ( ) 0E X   , 

then the square of these differences is defined as the population variance  

        
2 2 var   X E X E X X           

The square root of the variance gives a measure of deviation from the mean value 

, that is the population standard deviation 
2  . This is a very useful measure and 

its equivalent in statistics is defined as  

2

1

( )

1

n

i

i

x x

s
n









. 

When dealing with multivariate case where p variables with n data values in each 

variable are given, in addition to the standard deviation of each variable, the co-

variation between the variables is of prime concern. In this respect, the covariance and 

correlation between the variables is defined in probability as  

      
    Cov                    , 1  ,2, ,p

j kj k j j k k jkX X E X X k j        X X μ       

and 

 Cor  ,   ρik
j k

ii kk

X X


 
   Respectively. 

Then the covariance matrix Σ  for p random variables 1 2, , , pX X X  can be 

expressed as a p p  matrix  
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11 12 1 1

21 22 2

1 2

1

2

2

... ...

... ...

. . ... . ... .

. . ... . ... .

    . .  .   . ... ...

... ...

  .   . ...    . ... .

  .   . ...    . ... .

  .   . ...    . ... .

... ...

j p

p

ij ipi i

p p pj pp

j

   

   

  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Σ  

The diagonal elements of the covariance matrix represents the variance of each 

variable
2;   and , , 1,2, ,ij k i j i j k p    . The off diagonal elements are the 

covariance values , ;  i,j=1,2, , and 
i jX X p i j    between the variables ,  i jX X  .  

For a given n p  multivariate data matrix the covariance is defined as 

 
    

2
2 * *

1 1 1

1 1 1

1 1 1

, 1,2, ,

n n n

jj ij j ij j ij j ij ij

i i in n n

i j p

  

      
  

 

  js s x x x x x x x x
  

Where  ij j  *

ijx x x  

Therefore 

 
   * *

1 1

1 1

1 1

 k, j 1  ,2, , p  where k   j 

n n

jk k ij ik

i in n 

   
 

  

 ij j iks x x x x x x
                 

Where  ij j  *

ijx x x  and  ik k  *

ikx x x  , the matrix multiplication of both equations 

becomes  

   2 * *

1 1

1 1
               , 1  ,2, ,   

1 1

n n
T

T

j ij ij

i i

j i j p
n n

s
 

     
 
 x x x x x xij ij j  

    * *

1 1

1 1
      , 1  ,2, ,             

1 1

n n
T

T

jk j ij ij

i i

s k j p wherek j
n n 

      
 
 x x x x x xij ik k  
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Expressing these as matrix multiplication and dividing by n-1  

 

* * * *

11 12 1 1

* * * *

21 22 2 2

* ** *

1 2

* * * *

1 2

... ...

... ...

. . ... . ... .

. . ... . ... .

     . .  .   . ... ...

... ...

  .   . ...     . ... .

  .   . ...     . ... .

  .   . ...     . ... ..

... ...

j p

j p

ij ipi i

n n nj np

x x x x

x x x x

x xx x

x x x x

 














 

* * * *

11 21 1 1

* * * *

12 22 2 2

* ** *

1 2

* * * *
1 2

... ...

... ...

. . ... . ... .

. . ... . ... .

     . .  .   . ... ...

... ...

  .   . ...     . ... .

  .   . ...     . ... .

  .   . ...     . ... ..

... ...

i n

i n

ij nji i

p p ip np

x x x x

x x x x

x xx x

x x x x


 





 













 
 
 
 
 
  
 
 
 
 
 
 
 



  

 the covariance matrix of the data matrix n pX  can be written as 

11 12 1 1

21 22 2

1 2

1

2

2

... ...

... ...

. . ... . ... .

. . ... . ... .

    . .  .   . ... ...

... ...

  .   . ...    . ... .

  .   . ...    . ... .

  .   . ...    . ... .

... ...

j p

p

ij ipi i

p p pj pp

j

s s s s

s s s s

s ss s

s s s s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S  

Elements of the covariance matrix in the j, k position are known as the covariance 

between the jth and kth variables.   

From practical point of view, standard deviation s is a measure of deviation from the 

sample mean x . The greater the s value the greater the deviation of data values from .x  

Covariance between any two variables Xi and Xj , ijs   is an indication to the 

relation between the two variables.  
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0ijs  : As one variable increase the other tend to decrease 

0ijs  : As one variable increase the other also tend to increase 

0ijs  : Is a critical value that may indicate the independence of the two variables. In 

fact if Xi and Xj  are independent, then 0ijs  , but the vice versa case is not always true. 

However, the magnitude of ijs  is not an indication of the strength of the relation 

between the variables Xi and Xj. Therefore, another measure that can indicate the 

strength of the relation between the variables Xi and Xj is needed. That is the correlation 

coefficient.  

3.2.3 Linear Correlation Coefficient 

Correlation is a measure that gives the strength and direction of the relation between 

two variables Xi and Xj. Correlation coefficient for  the random variables Xi and Xj, is 

denoted as  and 1 1   . The following can be said about   depending on the 

values it takes. 

0  : Positive correlation means that the variables Xi and Xj increases at the same 

time. 

1  : Perfect positive correlation. Any increase in one variable corresponds to the 

same amount of increase in the other. 

0  : Negative correlation. It means as one variable increase the other decrease. 

1   : Perfect negative correlation. Any increase in one variable corresponds to the 

same amount of decrease in the other. 

0  : No correlation between the two variables, or variables Xi and Xj are 

independent. 
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Linear correlation coefficient between two populations is defined by 

  Cor  ,   ρ ;   -1 1ik
j k

ii kk

X X



 

      

Here  

ik : Covariance between the variables Xi and Xk 

  ii : Variance of the variable Xi   

kk : Variance of the variable Xk     

  Consequently the correlation coefficient of a variable by itself can be expressed as 

  Cor   1
jj

j

jj jj

X


 
    

Expressing the pairwise linear correlation between the p variables of a process can be 

written as in the matrix below.  
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112

11 22 11

2 221

11 22 22 22

1 2

11 22

1 2

11 22

1 ... ...

1 ... ...

. . ... . ... .

. . ... . ... .

        .         .

...

...

       .       . ...

       .       . ..

       .       .

ij p

ii jj pp

j p

jj pp

i i

ii ii

p p

pp pp

 

     

 

     


 

   

 

   



11 12 1 1

21 22 22

              . .
...

      1
...

              .
...

              . .
. ...

              . .
... ...

.
... ...

1

... ...

... ...

.

.

ip

ii pp

pj

pp jj

j p

j p



 



 

   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


1 2

1 2

. ... . ... .

. ... . ... .

    . .  .   . ... ...

... ...

  .   . ...    . ... .

  .   . ...    . ... .

  .   . ...    . ... .

... ...

ij ipi i

p p pj pp

  

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When a random sample of p variables and n observations are given, the pairwise linear 

correlation coefficients between the variables Xi and Xk (i, k = 1,2, …, n) can be 

computed as  

 ik
ik

ii kk

s
r

s s
   

where  

iks : Covariance between the variables Xi and Xk 
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iis : Variance of the variable Xi   

kks : Variance of the variable Xk     

Note that 1 1r   . 

 1           i 1,2, ,pii
ii

ii ii

s
r

s s
      

Then the linear correlation matrix for p variables becomes 

112

11 22 11

2 221

11 22 22 22

1 2

11 22

1 2

11 22

1 ... ...

1 ... ...

. . ... . ... .

. . ... . ... .

        .         .

...

...

       .       . ...

       .       . ..

       .       .

ij p

ii jj pp

j p

jj pp

i i

ii ii

p p

pp pp

s ss

s s

s ss

s s s s s s

R
s s

s s s s

s s

s s s s

   



11 12 1 1

21 22 22

              . .
...

      1
...

              .
...

              . .
. ...

              . .
... ...

.
... ...

1

... ...

... ...

.

.

ip

ii pp

pj

pp jj

j p

j p

s

s s

s

s s

r r r r

r r r r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


1 2

1 2

. ... . ... .

. ... . ... .

    . .  .   . ... ...

... ...

  .   . ...    . ... .

  .   . ...    . ... .

  .   . ...    . ... .

... ...

ij ipi i

p p pj pp

r rr r

r r r r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example 1: A data containing 3 observations associated with 2 variables is been 

considered for computation and explanation: 

 x1 represent the number of bikes rented  
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x2 represent the temperature under which the bikes were rented 

4 4

3 5

5 9

 
 
 
  

X =  

x1                x2 

4                   4 

3                   5 

5                   9 

and the mean of the vectors was calculated using the sample mean formula by  

 

1

1 2

1

4 3 5 4 5 9
4         6

3 3

n

i

i

x x
n

x x





   
   



  

The matrix deviations represented by ;  1,2d i ix i  X x   

 

              X           X      

4 4 4 6 0 2

3 5   4 6 1 1

5 9

       

4

 

6 1   3

dX

     
     

   
     
          

  

Taking the sum of squares and cross products (SSCP) as is the product of 
T

d dX X  

where 
'

dX   is just the transpose of   𝑿𝑑 

0 2
0 1    1 2 4

  1 1
2 1    3 4 14

1 3

T

d d

 
    

              

X X   

Obtained deviation sums of squares forms the numerator in the formula when 

computing the variances for each variable.  

 
 

2

2 1

1

n

iii
x x

n








S   
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Covariance between the variables x1 and x2 is 

 
  1 1 2 21

12
1

n

i ii
x x x x

n


 





S   

The deviation value for the ith observation for x1 is    1 1 2 2    i ix x and x x   is the 

deviation value for ith observation for x2 . 

The matrix of variances and covariances S is obtained as 

 

1

2 4 1 21

4 14 2 72

SSCP

n




   
    

   

S

S

  

We therefore say that 1 and 7 are the variance and 2 is the covariance for the variables 

x1 and x2.  

The linear correlation coefficient between the two variables is given by  

 ik
ik

ii kk

s
r

s s
   

𝑟12 =
4

√2√14
= 𝑟21 = 0.76 

𝑅 = [
1 0.76

0.76 1
] 

3.2.4 Estimating  and Σ μ   

Sample mean vector x  obtained from a random sample represented by the n×p matrix 

X, is an unbiased and consistent estimator of 𝞵 which is the mean vector of the p 

variables from where the sample is taken. Then the estimator of 𝞵 can be written 

as ˆ μ x .    
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Estimating the population covariance matrix Σ for a multivariate distribution, the 

covariance matrix obtained from n×p data set. Theorem 1 given below has its proof in 

the reference (Tandogdu Y. & Esager M., 2018) 

Theorem 1: A random sample X1, X2, ... , Xn with joint distribution having mean vector 

𝞵, Σ  as its covariance matrix, will have a sample covariance matrix 
1

n

n 
S  which is 

an  unbiased estimator of Σ .  

3.3 The General Probabilistic Regression Model 

In probability theory the regression of a random variable Y, on to another random 

variable X necessitates the two r.v.s have a joint probability distribution f(x,y). Then 

the regression of Y on X is defined as  

( , )
( )

( )
Y x

f x y
E f Y X x E

f x


 
      

 
     3.3.1 

This is the general expression for the regression of Y on X. Similarly the regression of 

X on Y can be written as 

( , )
( )

(y)
X y

f x y
E f X Y y E

f


 
      

 
.     3.3.2 

The concept can be extended to k random variables 1 2, , , kX X X , with multivariate 

joint probability distribution 1 2( , , )kf x x x , leading to multivariate regression 

expressions. To highlight this concept the following example will be used 

Example 1: The joint probability density function f(x,y) is given below.  

23
;               0 x 1,0 y 1

( , ) 2

0           ;              elsewhere

x y
f x y


    

 


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Regression equation of Y on X, and X on Y, can be determined following the 

methodology explained. 

 If X and Y can be shown to be independent by satisfying the f(x,y) = f(x)f(y) condition, 

then it is not possible to find the kind of regression relation between X and Y.  

For checking the independence of the r.v.s we need the marginal densities. (Ronald E. 

Walpole, Raymond H. Myers, Sharon L. Myers,Keying Ye, 2011) 

1
2

0

1 1
;   0 1

2 2

1
2

0

3
f(x)= f(x, y)dy = (x+ y )dy = xy+ y x x

2
      

2
1

2 2

0

3 1 3
;   0 1

2 2 2 2

1
2

0

3 x
f(y)= f(x, y)dx = (x+ y )dx = + xy y y

2
      

Then applying the independence condition we have  

2 23 1 1 3

2 2 2 2
f(x, y)= f(x)f(y) x y x y

  
      

  
. Hence X and Y not independent.  

Regression of X on Y  

2
2

2
2

1 2 2

2 2

0

3
( , ) 2 32( )

1 3(y) 1 3

2 2

2 3 4 9
;  0 1

1 3 6(1 3 )

X y

x y
f x y x y

E f X Y y E E E
f y

y

x y y
x dx y

y y



 
     

                
 

 
   

 

 

Regression of Y on X  

2
2

1 2

0

3
( , ) 2 32( )

1( ) 2 1

2

2 3 3 4
;  0 1

2 1 4(1 2 )

Y x

x y
f x y x y

E f Y X x E E E
f x x

x

x y x
y dx x

x x



 
     

                
 

 
   

 
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3.4 Statistical Linear Regression Model  

Bivariate probabilistic regression model is based on the abstract definition given in 

equations 3.5.1 and 3.5.2. However, in application a bivariate or multivariate joint 

probability density function is not available. Hence, using available data from the 

process under study and adhering to the rules of probability, the statistical regression 

model is developed.   

3.4.1 The Simple Linear Regression Model 

This is the model that can be expressed with a linear equation 0 1Y x     . Here y 

is the dependent variable and x the independent variable, 0 and 1  are the y intercept 

and the slope of the regression line respectively,  represents the random error. The 

random error is assumed to have mean zero and variance
2 , i.e. ( ) 0E   ,

2( )Var   . Without the random error, the model would become a deterministic one, 

not allowing the use of probabilistic approach, and estimation of the dependent 

variable. While 0 1Y x      is the ideal and unknown model, it can be estimated 

by using available data for the variables X and Y.   

On the other hand while the response and predictor variables are continuous, in 

application the data is discrete in nature and is used to estimate the model regression 

equation by determining the parameters of the fitted model. Hence, the theory used in 

determining the parameters of the fitted model will be based on the discrete data 

analysis concepts. 

We know 0 1Y x      theoretical linear regression model. It has an estimator  
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0 1 ,i iy b b x e    

0 1,  b b : Regression coefficients. 

 ie : Residual or error. 

However, for every different data set used from the same population a different fitted 

model 0 1
ˆ ˆŷ b b x  will be obtained. Here the hat used on 0 1  ˆ ˆŷ, b , b  indicates that they 

are estimators of corresponding 0 1  y, b , b  parameters. Since the error 

ˆ , 1,2, ,i i ie y y i n    always has a mean zero does not appear in the fitted model. 

The fitted model must be such that 2

1

ˆ( )
n

i i

i

x x


 must be minimum. That is: 

2 2 2

0 1

1 1 1

ˆ ˆˆ( ) ( ( ))
n n n

i i i i

i i i

e y y y b b x
  

        must be minimum. This is achieved by the 

least squares method.  For the simple linear regression the method works as follows 

 
0 1

0 1 1
ˆ ˆˆ

i i i

i i i i

y b b x e

e y y y b b x

  

    
 

 

2

0 1

1 1

0 1

10

0 1

11

( )

(SSE) ˆ ˆ2 ( ) 0
ˆ

(SSE) ˆ ˆ2 x ( ) 0
ˆ

n n

i i i

i i

n

i i

i

n

i i i

i

SSE e y b b x

y b b x
b

y b b x
b

 





   


    




    



 





  

Rearranging yields the normal equations 

0 1 1 1

2

0 11 1 1

ˆ ˆ

ˆ ˆ

n n

i ii i

n n n

i i i ii i i

nb b x y

b x b x x y

 

  

 

 

 

  
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From the simultaneous solution of the normal equations the fitted linear regression 

equation parameters are obtained as  

  

 
1 1 1 1

1 2 2

2 1

1 1

ˆ

n n n

n
i i i i

i i xyi i i i

n
n n

xxii
i i

i i

n x y x y
x x y y S

b
Sx x

n x x

   



 

  
         

 
  
 

   

 

 

  
1

1 1
0 1

ˆ ˆ

n n

i i

i i

y b x

b y b x
n

 



  
 

  

Pit hole to be avoided. When substituting x values in the regression equation, such 

values should not be far below the minimum or far above the maximum values in the 

data set. Such values will result in unreliable prediction of the dependent variable Y.  

Definition 1: Determination of the smallest x value below the xmin and largest x value 

above the xmax can be done following the steps below: 

i. Standardize the predictor data. 

ii. Find the zmin and zmax value corresponding to the xmin and xmax respectively. 

iii. Determine the zmin - 1 and zmax+1 values 

iv. Compute the limit x values corresponding to the z values found in step iii 

by assuming  and x s as point estimators of the population parameters

 and    respectively. Call these Lx   and Ux .  

Then the x values to be substituted in the regression equation should be taken from the 

( Lx  and Ux ) interval. 

Example: The data given in Table 3.1 represents the age and Urea levels in people 
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Table 3. 1: Age of people and Ln Urea levels for 15 persons 

Age (X) Urea (Y) StdScr X 

39 1.526 -1.72282 

44 1.686 -1.40996 

45 1.548 -1.34739 

55 1.131 -0.72167 

58 1.988 -0.53395 

60 1.099 -0.40881 

67 1.386 0.0292 

71 2.002 0.279489 

72 2.617 0.342061 

74 1.917 0.467206 

76 1.723 0.59235 

76 2.054 0.59235 

81 2.054 0.905211 

89 2.262 1.405789 

91 2.701 1.530933 
 

The fitted linear regression equation for the data from Table 3.1, where the response 

variable is Urea level (Y) and the predictor (X) is the age, is obtained as y = 0.5428 + 

0.0196x.  

Based on this data the Urea level of a person can be predicted for the ages between the 

min 39 and max 91 with no hesitation. However, any age value below 39 and above 

91 has to have its limits according to the logic given Definition 1. The scatter plot of 

the z scores for the X values given in Figure 3.1 is clearly indicating a good symmetry 

in the distribution of the data. Therefore, according to definition 1, the lowest Lx
 and 

highest Lx
values that can safely be substituted in the fitted model are computed as: 

For Lx :    -1.72282 - 1 = -2.72282.  

Then 
66.53

2.723 23.02
15.98

L

x x
z x x





 
       

For Lx : 1.53 + 1 = 2.53Then 
66.53

2.53 106.95
15.98

U

x x
z x x





 
       
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Figure 3. 1: The z scores of the predictor X clearly indicating the existence of 

symmetry in the data 

3.4.1.1 Mean and Variance of Least Squares Estimators 

The unknown regression model parameters β0 and β1 are estimated based on some 

randomly collected data. The computed regression parameters b0 and b1 based on the 

data are just realizations of the random variables B0 and B1. Then B0 and B1 are 

unbiased estimators of β0 and β1 respectively. To find the mean and variance for B1 we 

proceed as follows.  

The intercept parameter is computed as 
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1

1

B   C
n

ii

i

Y


   

It is also a fact that independent random variable 1 2, ,..., nX X X  have a normal 

distribution with mean 𝜇1, 𝜇2, 𝜇3, … , 𝜇𝑛 and variance 𝜎1, 𝜎2, 𝜎3, … , 𝜎𝑛 respectively. 

Then the random variable 

 1 1 2 2 a a  an nX X XY       

Will follow a normal distribution with  

 
1 1 2 2 3 3μ  a μ a μ a μ  a μY n n       

and  

 
2 2 2 2 2

1 1 2 2 3 3 a a a  aY n    nσ σ σ σ σ   .  

It follows that 
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It can also be shown that
0 0     and variance of B0 is 
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3.4.1.2 Analysis of Variance in Simple Regression ANOVA  

Every sum of square is divided by the required degree of freedom to obtain the mean 

of the sum of squares stemming from regression and mean sum of squares stemming 

from the error. The summarizing of the decomposition associated with y in terms of 
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an ANOVA the variation are converted into variance by dividing by its degree of 

freedom which helps in finding the goodness of fit associated to the regression line  

In ANOVA the null hypothesis is set in a way that the regression is not significant and 

the alternative is written to cover the fact that the regression is significant at a certain 

significance level, for example 5%. Rejecting the null hypothesis will lead to 

concluding that the regression coefficient is significant on the basis that the calculated 

value of the statistic is found or fall in the critical region. Accepting the null hypothesis 

will lead to the conclusion that the regression coefficient is not significant on the basics 

that calculated value of the statistic which falls outside the critical region. F 

distribution is used for the hypothesis test. Based on the given significance level and 

the degrees of freedom the critical f value is read from the F table. The computed F 

value also called the test statistic is used in determining whether the null hypothesis is 

acceptable or not. The test statistic or F statistic is computed as  F
MSR

MSE
 . 

The null hypothesis for testing any of the regression parameters i  to decide whether 

it is zero or not, 

 0H :  0i    

Alternative as  

 1H :   0i    
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Table 3. 2: ANOVA Associated with Simple Regression 

Origin of 

variation 

 (SS)  (D.F) Mean 

square  

F-statistic  

REGRESSION (SSR) 1  MSR= 

SSR 

1 
 

 𝐹 =
MSR 

MSE 
 

ERROR  (SSE) n-2  MSE= 

SSE 

n−2 
 

 

TOTAL (SST) n-1   

 

Explained variation divided by the total variation is the coefficient of determination 

and is given by  

 2 2SSR 
r                         0  r 1

SST 
     

The greater or bigger coefficient of determination 2r , the more accurate the fitted 

model will be.  

For a numeric example see Appendix A, Example 1. 

3.4.2 Multiple Linear Regression 

The regression process in the presence of more than one independent variable X1, X2 

,…,Xp  upon which a single response variable Y depends, is named as the multiple 

linear regression analysis. This model can be expressed as 
(p 1) 11 (p 1) 1n nn     

  y X β ε . Here  

β : Coefficients of the regression vector, y : Observations of dependent variable, ε : 

Vector residuals. 

Writing the elements of the system openly we have 
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11 21 1 01 1

12 22 2 12 2

1 2

1

1
, , , .

1

p

p

n n pn pn n

x x xy

x x xy

x x xy

 

 

 

      
      
         
      
      
         

y X β ε  

Then an individual element of the vector y will be 

0 1 1i k ky x x         

The true but unknown coefficients β are estimated using the coefficients 
0 1, , , kb b b  

that are computed from the data collected from a process of interest. Error sum of 

squares must be minimum. The sum of square of the errors is   

2

1

( )
n

i i

i

ˆSSE y y


  , 

Expressing in matrix format SSE and carrying out necessary algebraic manipulation 

(Tandogdu Y. & Esager M., 2018)   X X b = X y  is obtained. From here the 

parameters ib can be found as   
-1

b X X X y . 

The estimators  0 1, , , kb b b  of  0 1, , , k   are obtained by assuming that the 

random errors  0 1, , , ,k    are independent and all having the same distributed with 

mean ( ) 0iE   , variance 2( )iVar   . Hence, it can be shown that the parameters 

 0 1, , , kb b b are unbiased estimators to  0 1, , , k   respectively.  

The variance-covariance matrix of the estimators  0 1, , , kb b b  is 
21A . Variance 

of the estimators are on the main diagonal and the off-diagonal elements are the 

covariances. When there are p independent variables (predictors), inverse of A  can in 

general be written as  
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00 01 0

10 11 11 1

0 1

( )

p

p

p p pp

c c c

c c c

c c c

 

 
 
  
 
 
  

A X X  

Then we have 

2 2

2

,   1,2, ,

( , ) ,   

i

i j

b ii

b b i j ij

c i p

Cov b b c i j

 

 

 

  
 

To emphasize the importance of certain multiple regression related concepts some 

theorems are given. 

Theorem 4.1. In a multivariate linear regression problem subtracting the estimated 

values from the true ones of a response variable is expressed as a function S(b). Then 

 
2

1
ˆ( )

n

i ii
S y y


 b   or     ( )S   b y Xb y Xb .  

It can be shown that the estimate b or β̂  of β  is obtainable when X is full rank 1k n   

with ˆ . -1
β = (XX) Xy  

The following properties of the estimators in the classical least squares can be written. 

1. 
1ˆ ( ) β XX Xy has

2 1ˆ ˆ( ) ,  ( ) ( ) .E Var   β β β XX  (Tandogdu Y. & Esager 

M., 2018)       

2. Expectation of error vector ε̂  is zero and covariance    

2 1ˆCov( ) ( ( ) )  ε σ I X XX X .         

3. Similarly 
2ˆ( ) ( 1)E n k   ε ε σ .          

Theorem 4.2: If   y X β ε , 
2ˆ ˆ( ) ,cov( ) .E  ε 0 ε σ I  and X has full rank k+1, then 

for any vector of constants h the estimator 0 0
ˆ ˆ ˆ

k kh h    h β  of h β  gives the 
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minimum variance as 1 1 .n nhY h Y   h Y  For proof see (Tandogdu Y. & Esager M., 

2018)       

Regression parameters β̂  and error sum of squares ˆ ̂ε ε  have sampling distributions 

which are indisputably important for assessing the influence of independent variables 

in regression analysis. Theorems 4.3 and 4.4 are given without proof to further clarify 

this concept. 

Theorem 4.3. Let the multiple linear regression Y = Zβ ε  with full rank p+1 be 

given. Error vector ε  has normal distribution (mean vector 0 and variance vector 2 I

). β ’s maximum likelihood estimator corresponds to the least squares estimator of ˆ .β  

It can also be shown that 
1( )ˆ  β ZZ XY  is normally distributed with β  being its mean  

and e 
2 1( ) Z Z  its variance. There is no dependence between β̂  and ˆˆ  ε Y Zβ . 

Additionally   2ˆ ˆn   ε ε follows the 
2 2

1n r     distribution. It must be remembered 

that  the maximum likelihood estimator of 2  is 2̂ . 

Theorem 4.4 Let Y = Zβ ε  r+1 being the full rank, and ε  normally distributed 

2( , )N 0 I  Then for β  the 1   confidence area can be determined as 

2

1, 1( )

ˆ( )

ˆ( ) ( 1) ,r n rr s F   

  

   

U β β ZZ

V β β
  

UV  

here 1, 1( ) r n rF    is the F value above which the probability is   in the F distribution. 

Interval within which the i  values will fall with probability  1   is 
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2 0.5

ˆ 1, 1( )
ˆ (( 1) ) ,  1,2, ,  

i
i r n rr F i r

         

 If T Z Z  then 
2

ˆ
i

  is the is represented by the diagonal elements of the sample error 

variance multiplied by the inverse of matrix T.  

An example to highlight the concepts discussed in this section see Example 2 in 

Appendix A. 

3.4.3 Multivariate Multiple Linear Regression (MMLR) 

Sometimes on may need to determine the linear relationship between multiple 

response (dependent) variables with multiple predictors (independent) variables. The 

technique employed to determine the regression equations is named multivariate 

multiple linear regression (MMLR). That is the model determines the values of several 

dependent variables under the influence of predictor. 

For each dependent variable the MMLR model can explicitly be expressed as 

01 11 1 1 1;   1,2,...,ml r rY z z l               (Tandogdu Y. & Esager M., 2018)           

1

2
= 

m







 
 
 
 
 
 

ε  is the random error vector with ( ) ,  Var( )=E ε 0 ε Σ  

It becomes evident that for different response variables, corresponding errors to can 

have the same correlation. 

The vector of response variables are as follows.   

1 2[ , , , ]j j j jmY Y Y Y  

The data represented by the predictor variables is, 

 0 1, , , ,j j jkx x x  1,2, , .j n   
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Vector of errors for each response variable is 

1 2= [ , , , ] j j j jm  ε  

The matrix with data is written similar to the multivariate regression model.   

10 11 1

20 21 2

( (r 1))

0 1

=

r

r

n

n n nr

x x x

x x x

x x x

 

 
 
 
 
 
 

X                                                                    

Similarly the response variables expressed as a ( )n mY  matrix, (Tandogdu Y. & Esager 

M., 2018)   

Regression coefficients matrix will be of size  

((r 1) )m β , 

and the error matrix will be ( )n mε  . 

Applying the least square estimation method to the MMLR system the regression 

coefficients can expressed as  

1

( ) ( )
ˆ  ( )i i

 β XX Xy
 

Keeping in mind that there exists m regression coefficients  

1( )  and  A X X B = X Y   

ˆ β AB  can be written. 

Response values ˆˆ  =  Y Xβ  and errors are ˆˆ  ε Y Y    

In MMLR the columns of X, predicted values Ŷ , the residuals ε̂ , must satisfy the 

orthogonality condition.  

Analysis of variance in multivariate multiple regression can be summarized as given 

in Table 3.3. 
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Table 3. 3: Multivariate Multiple Analysis of Variance 

source of 

variation 

(source) 

(SSCP) (D.F) mean square  F-

STATISTIC  

Treatment SSCP 

between 

treatment  

 r-1  MST= 
𝐒𝐒𝐂𝐏𝐓  

 r−1 
  𝐹 =

MST 

MSE 
=  

9190.88 

𝟑𝟒𝟓𝟎.𝟓𝟓 
= 2.66  

Error  SSCP 

between 

treatment 

   n-r MSE= 
𝐒𝐒𝐂𝐏𝐄  

 n−r
  

TOTAL  (SSCT) 

CORRECT

ED 

 n-1   

 

3.4.4 Assumptions under the Linear Regression  

 Linearity  

This implies that a linear combination of the predictor variables gives the mean 

of the dependent variable and the coefficients are determined from the fitted 

model 

 Linearly independent predictor/s 

 Assume that observations are independent of each other. Thus correlation 

between sequential observations, or auto-correlation, turns out to be an issue 

associated with time series data that is.  

 Probability distribution of the errors has constant variance  

 Homoscedasticity of errors which refers to equal variance around the 

regression line. 
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3.4.5 Nonlinear Regression 

While the topic covered in this thesis is predominantly linear regression, inclusion of 

a brief note is deemed necessary to remind the future reader that regression does not 

start and end with linear regression.  From linear regression we know that the 

regression model requires the relationship between variables be linear thus been seen 

as the best fitted straight line relationship between the response and predictor variables.  

In the preliminary study of available data the statistician may be convinced the 

relationship between the response and predictor variables is not linear. Depending on 

the behavior exhibited in the for instance scatter plot, one may decide to use an 

exponential, a polynomial, or some other kind of model to represent the expected 

relationship 
2 1 2 21 1

, ,..., , ,..., , ,...,
,  ,  

k l kY X Y X X X Y Y Y X X X
    in the simple, multiple, or multivariate 

multiple cases respectively.  

For nonlinear regression ordinary least squares (OLS) approach can be used to obtain 

the curve that best fits to the data, with minimized sum of squares and expected value 

of  residuals being zero. 

Sometimes using transformation techniques, the nonlinear relation between the 

response and predictor can be converted to linear, enabling the application of 

regression techniques used in linear regression.  

For example given the following exponential model representing the relation between 

the response (Y) and predictor (X)  

 ,   and  real non-zero constantsbx uy ae u a   

a logarithmic transformation will yield  
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      ln y ln bx ln ua     

This is a linear relation between Y and X, and linear regression rules can be applied. 

However, obtained results will have to be back transformed by applying the anti-log 

process, to enable their proper interpretation.  
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Chapter 4 

MOVING AVERAGES 

Moving average technique was initially used for trend generation in time or space 

dependent variables. In essence it’s a process that can also be applied to time series. 

But in place of time any space interval can also be used.  Taking any set of observations 

of a variable measured at successive period of time or space results in a time or space 

dependent sequence 𝑌𝑡, where t belongs to the set of integers and denotes the 

time/space steps. A time series is deterministic, if it is expressed as a known function 

of time  𝑌𝑡 =  f (t). If X is a random variable and 𝑌𝑡 = 𝑋 (𝑡),  then Yt is called a 

stochastic time series.   Analysis of data in time series aims at prediction, description 

and control of the process under study. Trend generation is a process that generates a 

graphical or functional behavior of the variable under study over a period of time or 

an interval of space. Observations may be spaced out at fixed time or space intervals. 

They may be spaced out at unequal time or space intervals as well. Lag is the difference 

in time or space between an observation and a previous one. Thus 𝑌𝑡−𝑘    lags 𝑌𝑡 by k 

periods. When observations are at fixed distance apart, the lag is also fixed. In the case 

of irregularly spaced data, different approaches have to be taken regarding the lag. For 

example taking a fixed length as a lag, such that there is at least one observation in it, 

and in case of more than one observation averaging these and assigning the average to 

the lag.  
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 For trend generation some of widely used methods are kernel, splines, moving average 

smoothing techniques. In this study we opted for the use of the moving average 

technique. Its effect is smoothing the trajectory of a raw data resulting in a trend line 

depicting an estimate of the expected trend for the variable under consideration.  

Different approaches are taken in the generation of the moving average trend. Some 

approaches in used are simple, cumulative, weighted, exponential moving average 

techniques, just to mention a few.  

Finding the average from a starting point up to some final point is required, the 

cumulative moving average can be used. In certain applications higher weights are 

desired to be allocated for more recent data.  In such cases the weighted moving 

average is used.  Different weight determination techniques are employed. 

Determination of weights can be achieved using techniques based on linear or 

exponentially decreasing order. (Durbin, 1959). Application fields include finance, 

economy, medical applications, just to mention some.   

In a way the moving average is a smoothing method, encompassing a range of 

sophisticated moving average methods. One such method is the moving average as a 

trend generator on a trajectory where a smooth trend is generated, such that a smooth 

value can correspond to every raw data value with the same time or space coordinate. 

Hence the name Stretched Interpolated Moving Average (SIMA).  

The underlying function f  in a random process ( )X   is unknown. Using data collected 

at p  different locations an idea can be acquired about the function f.  Prediction of the 

underlying random function governing the random process from available 

observations is a hard work, as data tends to include random errors due to various 
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reasons. Assuming the data does not include any errors some simple linear 

interpolation methods may adequately represent ( )X  . Some kind of smoothing is 

necessary when the errors ε are present in order to have a more accurate appreciation 

of the process ( )X  . 

Assume the  process ( )X   be represented by ( ) ,  1, ,i i iY X t i n    . The data matrix 

Y has 2 2

e  
Y

Σ I . 

It must be pointed out that the fitting of ordinary least squares function is in fact a kind 

of smoothing. However, all data points are assumed to have equal weights that 

becomes a handicap when data are not observed at regular time or space intervals.  

In this thesis the stretched moving average method which is a simple version of the 

stretched interpolated moving average SIMA (Tandoğdu Y., Çıdar İ. Ö., 2013) Will 

be used. Interpolation part is not considered necessary, as the aim is to smooth the data 

using different lag intervals to find out the level of smoothing by comparing error 

measures such as root mean square deviation (RMSD) or relative root mean square 

deviation (RRMSD).  

In the SIMA method the obtained moving average values at a given lag interval are 

stretched to cover the whole length of the trajectory, hence averaged values 

coordinates will be different to those of the data values. Then smoothed average values 

corresponding to actual data coordinates can be computed by interpolation.  
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 Let random variable Y  represent the obtained average values. Assume ip  data values 

Xij  are collected at equal distance apart on the thi  trajectory. Then MA is given by  

                                            
11

,  2 ,  1, , ,  1, ,
m l

il ij i

j l

Y X m p i n l M
m

 



     .      

Where each lag contains m+1 data values, and m is data points used for averaging. M 

is the number of obtained average values and is given by 1M p m   .   

Here the obtained M moving average values are not assigned any coordinate on the 

trajectory, except they are computed sequentially starting from the first data point. The 

purpose is just to compare the effect of smoothing against regression smoothing.  

Example 4.1: A data set consisting of 20 observations with 2 independent and a 

response variable is used. Predictor variables are; 

X1: Area of a house in ft2 x(100). 

X2: Assessed value in thousand dollars 

Y: Price the house sold. 

A moving average with m = 4 is used resulting in a smoothed data set of 17 smooth 

observations. These are given in Table 4.1. 
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Table 4. 1: Raw data with 20 observations and moving average data with m = 4 

 Raw data  Moving aver data m = 4 

 X1 X2 Y  X1 X2 Y 

1 15.31 57.30 74.80   15.27 60.88 72.93 

2 15.20 63.80 74.00   15.09 65.28 72.95 

3 16.25 65.40 72.90   15.62 65.13 73.45 

4 14.33 57.00 70.00   15.18 63.83 73.23 

5 14.57 74.90 74.90   15.32 64.00 74.10 

6 17.33 63.20 76.00   15.49 59.38 74.00 

7 14.48 60.20 72.00   14.63 57.48 73.38 

8 14.91 57.70 73.50   14.81 58.08 73.25 

9 15.25 56.40 74.50   14.69 59.50 72.63 

10 13.89 55.60 73.50   14.60 60.45 73.73 

11 15.18 62.60 71.50   15.78 63.35 76.98 

12 14.44 63.40 71.00   15.79 61.98 76.10 

13 14.87 60.20 78.90   18.62 68.53 83.85 

14 18.63 67.20 86.50   19.66 70.63 85.13 

15 15.20 57.10 68.00   18.85 68.85 80.75 

16 25.76 89.60 102.00   19.56 71.15 85.75 

17 19.05 68.60 84.00   17.21 65.20 79.25 

18 15.37 60.10 69.00 
    

19 18.06 66.30 88.00 
    

20 16.35 65.80 76.00 
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Smoothing effect of the moving averaging process is clearly visible in Figure 4.1 

showing the raw and moving average graphs for the variable assessed value for the 

houses (X2). 

 

Figure 4. 1: Raw and moving average graphs for the assessed values of houses 

Due to the smoothing effect of the moving average process, when regression is 

applied to the smooth data, obtained regression equation will result in lower error 

values. This is an expected effect and in the case of repeated sampling the moving 

average manifests itself as an efficient trend generator (Tandoğdu Y., Çıdar İ. Ö., 

2013; Tandoğdu Y., Çıdar İ. Ö., 2013). 

Obtained error measures MSD, RMSD, and RRMSD results from the application of 

simple linear regression (Y on X1, Y on X2 ), and multiple linear regression (Y on X1, 

X2 ), techniques to the raw and smoothed data are given in Table 4.1 and 4.2 

respectively. In all cases it is evident that the error levels obtained from the smoothed 

data is lower. 
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Table 4. 2: Obtained error measures from applying regression to raw data. 

SOURCE R SSE MSD RSMD RRMSD 

 1  y on x   0.913 205.29765 10.26488 3.203886 0.041854 

 2    y on x   0.786 472.8031 23.64015 4.862114 0.063516 

 1 2  ,y on x x   0.915 201.2602 10.06301 3.172225 0.04144 

 

Table 4. 3: Obtained error measures from applying regression to smoothed data. 

SOURCE R SSE MSD RSMD RRMSD 

1  y on x  0.972 18.807505 1.106324 1.051819 0.013739 

2    y on x  O.841 99.76221 5.868365 2.422471 0.031644 

1 2  ,y on x x  0.974 17.793482 1.046675 1.023072 0.013364 
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Chapter 5 

APPLICATION 

5.1 Case Study of the Application  

Multivariate regression and moving averages topics are explained in chapters 3 and 4. 

The main topic of the thesis is linear regression. To highlight the effect of smoothing 

on the results of regression one of the smoothing techniques, namely stretched moving 

averaging is used for smoothing the data. Then regression techniques are applied to 

both raw and smoothed data. This will bring into focus from application point of view 

all topics covered in this thesis.  Main yard sticks to be used for the assessment of 

results are mean square error (MSE), root mean square deviation (RMSD), and relative 

root mean square deviation (RRMSD).  

Expressing these parameters openly 

2

1

ˆ( )
n

i i

i

y y

MSE
n

RMSD MSE











 

The RRMSD is especially useful as it expresses the RMSD value as a percentage of 

the average response values y , and is expected to be 0 < RMSD < 1.  

RMSD
RRMSD

y
  
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Depending on the value of RMSD the following can be said about the quality of the 

fitted regression model. (Milan Despotovic, Vladimir Nedic, Danijela Despotovic, 

Slobodan Cvetanovic, 2015) 

RMSD value Quality of fitted model 

RMSD < 0.1 Excellent 

0.1 < RMSD < 0.2 Good 

0.2 < RMSD < 0.3 Fair 

RMSD > 0.3 Poor 

 

5.2 Data used in this Case Study  

This data was created by Paulo Cortez and Anibal Morais (Univ. Minho) in 2007. 

(data.world, 2002). P. Cortez and A. Morais worked on the data (Paulo Cortez, Anibal 

Morais1, 2007) 

This data relates to forest fire of an area in northern Portugal with 517 observations. 

The fire weather indexes are considered as the dependent variables. These are fine fuel 

moisture code (FFMC), duff moisture code (DMC), drought code(DC) and initial 

spread index (ISI) as 1 2 3 4, ,  , y y y and y  respectively. 5 independent variables are 

temperature, relative humidity, wind, rain and area represented by 

1 2 3 4 5 , , ,   x x x x and x  respectively.  

From the original data temperature 1( )x  and relative humidity 2( )x  are selected as 

independent variables, while fine fuel moisture code (FFMC 1( )y ) and duff moisture 

code (DMC 2( )y ) were selected as the dependent variables. For many statistical 
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computations a sample size of over 30 is considered adequate, hence for this case study 

50 observations were taken into account. See Appendix II for this data.  

 5.2 Descriptive Statistics for Raw and Moving Average Data  

A glance at some simple statistics for the variables FFMC 1( )y , DMC 2( )y , TEMP (

1x ), RH 2( )x  gives a preliminary idea about the nature of the data. Table 5.1 is a 

summary of these statistics for the raw data. 

Table 5. 1: Summary statistics about raw and moving average data 

 Variable Mean x  StDev s Median x  Q1 Q3 

R
aw

 d
at

a 
 

FFMC 1( )y  90.286 4.748 91.00     89.825 92.500      

DMC  2( )y  82.69 38.89 84.00 43.70       120.05       

Tmp ( 1x ) 17.962 5.160 18.25 14.475     21.825       

R.H  2( )x  45.46 18.51      41.00 33.00       51.75         

M
.A

v
. 
m

=
3
  

FFMC 1( )y  90.399 2.680 91.183 89.642    92.283 

DMC  2( )y  84.63 31.43      84.20 61.20     108.18 

Tmp ( 1x ) 18.237 3.011     18.32 16.017   19.833 

R.H  2( )x  45.53 9.64      43.83 39.33    50.17 

M
.A

v
. 
m

=
6

 

FFMC 1( )y  90.379 1.711     90.717 89.242    91.825     

DMC  2( )y  86.68 23.67      88.95 66.08      102.49     

Tmp ( 1x ) 18.434 2.002      18.30 17.058    19.817     

R.H  2( )x  45.25 6.90       42.33 40.67      49.50      

 

From the above data it can be seen that the standard deviation for all

Raw data > M.Av. ( =3) > M.Av. ( 6)m m  . This is a direct result of smoothing the 

data via the moving averaging process.   

From these statistics for the raw data it can be observed that the variables  
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FFMC 1( )y ,  DMC 2( )y , and temperature ( 1x ) are fairly symmetrically distributed as 

their x x . 

R.H  2( )x  is positively skewed (skewed towards right) as x x . 

After smoothing with m = 3, FFMC 1( )y ,  DMC 2( )y , and temperature ( 1x ) are fairly 

symmetrically distributed as their x x . 

R.H  2( )x  is positively skewed (skewed towards right) as x x . 

After smoothing with m = 6, DMC 2( )y , and temperature ( 1x ) are fairly symmetrically 

distributed as their x x . 

R.H  2( )x  is still positively skewed (skewed towards right) as x x . 

5.3 Multivariate Analysis for Raw and Data Obtained from Moving 

Averaging 

Graphs are drawn for all (xi, yi) pairs in order to see the effect of moving average 

smoothing on the trend of the data. Figure 5.2 is the graph of raw 1x  versus the raw, 

and moving average values obtained from m = 3 and  m = 6 smooth cases of y1. 

Similarly Figures 5.2, 3, and 4 are the graphs of 1x  versus y2 , 2x  versus y1 , and  2x  

versus y2  for the same variables. Effect of smoothing due to moving averaging process 

is clearly visible in all graphs. Numerical assessment of the smoothing becomes more 
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evident when regression is applied to the smooth data, results of which are summarized 

in Table 5.1.  

 

Figure 5. 1: 1 1y x versus the raw, and moving average values obtained from m = 3 

and  m = 6 smooth cases of y1 

 

Figure 5. 2: 2 1y x between  the raw, and moving average values obtained from m = 3 

and  m = 6 smooth 
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Figure 5. 3: 1 2y x between the raw, and moving average values obtained from m = 3 

and  m = 6 smooth cases 

 

Figure 5. 4: 2 2y x  between the raw, and moving average values obtained from m = 3 

and  m = 6 smooth case 

Regression analysis of the response variables 1 2 1,y y x , 1 2 2,y y x , and 1 2 1 2, ,y y x x  are 

undertaken and parameters used for the assessment of the quality of regression are 

given in Table 5.2 
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Table 5. 2: R, MSD, RMSD, and RRMSD values from raw and smooth data for the 

regression cases 

  
1 2 1,y y x  1 2 2,y y x  1 2 1 2, ,y y x x  

R
aw

 d
at

a 
R 0.268 

0.427 

0.257 

0.032 

0.91 

0.61 

MSD 20.49 

1213.12 

20.63 

1480.83 

20.27 

924.75 

RMSD 4.53 

34.83 

4.54 

38.48 

4.50 

30.41 

RRMSD 0.050 

0.421 

0.050 

0.465 

0.050 

0.368 

M
. 
A

v
r.

 m
=

 3
 

R 0.224 

0.673 

0.032 

0.089 

0.806 

0.763 

MSD 6.684 

529.032 

7.027 

958.908 

6.579 

0.404 

RMSD 2.585 

23.001 

2.651 

30.966 

2.565 

20.088 

RRMSD 0.029 

0.272 

0.029 

0.366 

0.028 

0.237 

M
. 
A

v
r.

 m
 =

 6
 

R 0.164 

0.707 

0.071 

0.055 

0.261 

0.835 

MSD 2.787 

273.923 

2.850 

546.278 

2.669 

165.520 

RMSD 1.669 

16.551 

1.688 

23.373 

1.633 

1.634 

RRMSD 0.018 

0.191 

0.019 

0.270 

0.018 

0.148 

 

From the above statistic it can been seen that the MSD and associated parameters 

RMSD and RRMSD are maximum in the regression undertaken using the raw data. 

They decrease as the number of values used in the moving average process increase as 

expected. This trend is valid for all 3 regressions ( 1 2 1,y y x , 1 2 2,y y x , and 1 2 1 2, , )y y x x

used.  
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Chapter 6 

CONCLUSION 

This study was aimed at exploring some theoretical characteristics of linear regression 

starting with simple linear regression, proceeding up to the multivariate multiple linear 

regression.  As regression inherently harbors smoothing, it was considered informative 

to compare its performance when data is smoothed using one of the smoothing 

techniques that is widely used. Moving average technique was implemented for 

smoothing with 2 different lags, namely using lag with m = 3 and lag with m = 6 values 

for averaging. Clearly the larger the lag of the moving average, the smoother the 

obtained trend will be.    

This idea of seeing the relation between the regression and the smoothed regression a 

case study was undertaken in chapter 5. The graphical representation of smoothing raw 

data via moving average technique is clearly visible in Figures 5.1, 2, 3, and 4. 

Following the application of multiple and multivariate regression techniques on the 

same raw and smoothed data sets has clearly shown the effect of smoothing by means 

of reduced errors as summarized in Table 5.2. 

Noteworthy benefits of smoothing the data before applying regression are 

i. Number of observations should be large or very large, i.e. in the order of 

hundreds or thousands to realize the real benefit of smoothing. 
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ii. High fluctuations in the observed values, especially in the response 

variable/s yielding high variation from the general trend of the data is 

partially eliminated. 

iii. Reduced error level obtained from the regression of smooth data compared 

to error levels obtained from regressing the raw data enables more sound 

estimation and projections for the future. 

Therefore, it can be recommenced that especially in the case where large data sets are 

to be used for regression study, some smoothing can be beneficial as it will result in 

reduced estimation errors. 
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Appendix A: Examples 

Example 1: A data containing 5 observation with 2 variables is used for the 

computation where X represent temperature and where Y is representing rented bikes.  

Rented Bike Count        

y 

Temperature(°C)  

x 

507 -0.4 

390 -1.4 

402 -2.2 

389 -2.7 

259 -3.2 

For the above data the fitted regression equation is computed as  

 

 ˆ 528.243 70.12275

389.4

y

y

 



x

 

Now calculating sum of square regression 

Y X 

                        
                 ŷ           (𝒚̂ − 𝒚̅) (𝒚̂ − 𝒚̅)𝟐 

507 -0.4 500.1939 110.7939 12275.29 

390 -1.4 430.07115 40.67115 1654.142 

402 -2.2 373.97295 -15.42705 237.9939 

389 -2.7 338.911575 -50.488425 2549.081 

259 -3.2 303.8502 -85.5498 7318.768 

     
1947  1946.99978 -0.000225 24035.27 

 

Therefore the sum of square regression = 24035.27 

Now we calculate total sum of square  
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       Y        X (𝐲 − 𝒚̅)    (𝐲 − 𝒚̅)𝟐 

507 -0.4 117.6 13829.76 

390 -1.4 0.6 0.36 

402 -2.2 12.6 158.76 

389 -2.7 -0.4 0.16 

259 -3.2 -130.4 17004.16 

    
1947 -1.98 0 30993.2 

 

Therefore the total sum of square is = 30993.2 

Now calculating sum of square error  

       Y       X 

                                  

   

                     ŷ   (𝒚 − 𝒚̂) (𝐲 − 𝒚̂)𝟐 

507 -0.4 500.1939 6.8061 46.323 

390 -1.4 430.0712 -40.0712 1605.697 

402 -2.2 373.973 28.02705 785.5155 

389 -2.7 338.9116 50.08842 2508.85 

259 -3.2 303.8502 -44.8502 2011.54 

     
1947  1947 0.000225 6957.926 

 

Therefore the sum of square error = 6957.926 

Since we know the values of SSE, SSR and SST already we then use them to find the 

rest. 

SSE=6957.926   SSR=24035.27   and SST=30993.2   n=5 

Therefore our table becomes  

 

Table A1: ANOVA associated with Simple Regression for the example  
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(SOURCE)  (SS) (D.F) MEAN 

SQUARE  

F-

STATISTIC  

REGRESSION (SSR)= 

24035.27  

1  MSR= 

24035.27  

F = 10.363 

ERROR  (SSE)= 

6957.926    

3  MSE= 

2319.308 

 

TOTAL (SST)= 

30993.2    

4   

 

 2 24035.27
0.775501

30993.2  
r     

Computations of the example related with the analysis of variance in multiple linear 

regression. 

Example 2: A data containing 5 observation with 4 variables is used for the 

computation where x1 represent temperature, x2 represent humidity, x3 represent 

humidity and where y is representing rented bikes. 

Table A2: Raw data used 

Rented Bike Count Temperature (°C) Humidity (%) Wind speed 

507 -0.4 47 1.1 

390 -1.4 47 2.1 

402 -2.2 46 1.8 

389 -2.7 48 3.5 

259 -3.2 50 1.6 
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1 0.4 47 1.1 507
1 1 1 1    1

1 1.4 47 2.1 390
0.4 4.4 2.2 2.7 3.2

             =1 2.2 46 1.8 402
47 47 46 48 50

1 2.7 48 3.5 389
1.1 2.1 1.8 3.5 1.6

1 3.2 50 1.6 259

   
    

         
     
    

     
       

 yTX X  

  T
X X  

1 0.4 47 1.1
1 1 1 1    1

1 1.4 47 2.1
0.4 4.4 2.2 2.7 3.2

 1 2.2 46 1.8
47 47 46 48 50

1 2.7 48 3.5
1.1 2.1 1.8 3.5 1.6

1 3.2 50 1.6

5 9.9 238 10.1

9.9 24.49 475 21.91

238 475 11338 481

10.1 21.91 481.2 23.67

 
   

       
    
   

   
    



  





 
 
 
 
 

  

 
-1

T
X X  

425.6 9.3 9.1 4.8

9.2 0.5 0.2 0.3

9.1 0.2 0.2 0.1

4.8 0.3 0.1 0.4

   
 


 
 
 
 

 

T
X y  

507
1 1 1 1    1 1947

390
0.4 4.4 2.2 2.7 3.2 3512.3

 402
47 47 46 48 50 92273

389
1.1 2.1 1.8 3.5 1.6 3876.2

259

 
    
         
     
    
    
     

 

 β̂ 
-1

T T
X X X y  
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425.6 9.3 9.1 4.8 1947 1183.5

9.2 0.5 0.2 0.3 3512.3 66.7

9.1 0.2 0.2 0.1 92273 14.9

4.8 0.3 0.1 0.4 3876.2 23.7

       
     
 

      
      
     
     

  

      ˆ 1183.468 66.68709 14.9123  23.66191Y    1 2 3x x x   

The vector of the fitted value is  

 ˆŷ = Xβ   

 

1 0.4 47 1.1 481.9
1183.5

1 1.4 47 2.1 438.9
66.7

1 2.2 46 1.8 393.4
14.9

1 2.7 48 3.5 370.4
23.7

1 3.2 50 1.6 262.3

   
    

     
     
    

     
       

  

The residual becomes   

 ˆ ˆe  y - y  

 

507 481.9 25.1

390 438.9 48.9

402 393.4 8.6

389 370.4 18.6

259 262.3 3.3

     
     


     
      
     
     
          

  

And residual sum of square is   

 ˆ ˆ ˆ2 T
ε = ε ε   

  

25.1

48.9

25.1 48.9 8.6 18.6 3.3 3450.68.6

18.6

3.3

 
 

 
    
 
 
  

  

  =ˆ  3450.5ˆ 67ˆ2 T
ε = ε ε  

Table 3.5 
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        Y         x (𝐲 − 𝒚̅) (𝐲 − 𝒚̅)𝟐 

507 -0.4 117.6 13829.76 

390 -1.4 0.6 0.36 

402 -2.2 12.6 158.76 

389 -2.7 -0.4 0.16 

259 -3.2 -130.4 17004.16 

    
1947 -1.98 0 30993.2 

 

Therefore the total sum of square = 30993.2  

Now we calculate sum of square regression  

    1183.468 66.68709 14.9123  23.66191(ˆ )Y    1 2 3x x x   

Rented 

Bike 

Count Temperature Humidity 

Wind 

speed 
𝒚̂   

𝒚̂ −  𝒚̅ (𝒚̂ − 𝒚̅)𝟐 

507 -0.4 47 1.1 481.9432 92.54317 8564.237 

390 -1.4 47 2.1 438.918 49.51799 2452.031 

402 -2.2 46 1.8 393.382 3.98204 15.85664 

389 -2.7 48 3.5 370.4391 -18.9609 359.5141 

259 -3.2 50 1.6 262.3134 -127.087 16151.01 

       
389.4      27542.65 

 

Therefore the sum of square regression = 27542.65 

 2 27542.65 
  0.8886675142 
30993.2 

r     
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Table A3: ANOVA for Multiple Regression for the example   

 (SOURCE)  (SS)  (D.F) MEAN 

SQUARE  

F-

STATISTIC  

Regression  (SSR)=  3  MSR=  

27542.65  

3 

= 9190.88 

 𝐹 =
MSR 

MSE 
=  

9190.88 

𝟑𝟒𝟓𝟎.𝟓𝟓 
= 2.66  

Error   (SSE)=    1 MSE= 
𝟑𝟒𝟓𝟎.𝟓𝟓 

1
  

TOTAL  (SST)=  4   

 

Example highlighting the concepts in multivariate multiple linear regression  

(MMLR). 

Example 3: In business environment it is common practice that the amount purchased 

of a certain product depends on many characteristics represented by variables. 

Similarly the quality of a product also depends on various variables. In this example it 

is given that the amount purchased (y1) and the quality (y2) depends on the palatability 

(x1) and the texture (x2) of the product. A small data set of 5 observations are taken to 

highlight the application of MMLR technique. 

 

Table A4: Amount purchased (y1) and the quality (y2) as dependent, palatability (x1) 

and the texture (x2) as independent variables of a product. 
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purchase 

(y1) 

quality 

(y2) 

palatability 

(x1) 

Texture 

(x1)  

507 44 47 57 

390 58 47 66 

402 28 46 41 

389 44 48 74 

259 59 50 49 

 

Expressing the dependent and independent variables as matrices Y and X. 

 

1 47 57 507 44

1 1 1  1   11 47 66 390 58

           47 47 46 48 50      1 46 41 402 28

57 66 41 74 491 48 74 389 44

1 50 49 259 59

   
   

    
     
    
     

      

TX X Y =  

Proceeding with necessary computations using matrix operations to obtain the 

regression parameters 

 T
X X  

 

1 47 57

1 1 1  1   1 5 238 2871 47 66

 47 47 46 48 50 238 11338 136691 46 41

57 66 41 74 49 287 13669 171631 48 74

1 50 49

 
 

    
     
    
       

  

 

 
-1

T
X X  

 

246.9 5.15 0.02

5.15 0.12 0.001

0.02 0.001 0.001

  
 
 
 
   

  

T
X Y  
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507 44

1 1 1  1   1 390 58 1947 233

47 47 46 48 50 402 28 92273 11144

57 66 41 74 49 389 44 112598 13631

259 59

 
 

    
     
    
       

  

 

Finally the solution of the matrix equation using the data he parameters β̂  are found.  

 ˆ β
-1

T T
X X X Y  

 

246.9 5.15 0.02 1947 233 2451.16 233.9

  5.15 0.12 0.001 92273 11144 45.40 0.45

0.02 0.001 0.001 112598 13631 1.73 0.31

       
          
     
           

  

From obtained 

2451.16 233.94

ˆ 45.40 0.45

1.73 0.31

 
 

  
 
  

β the fitted regression equations for the 

response variables Y1 and Y2 are written as 

1 1 2

2 1 2

ˆ 2451.16 45.404 1  .732953

ˆ 233.938 0.45217  0.310137

y x x

y x x

  

   
  

Using matrix operations the predicted value are computed as 

 ˆŷ = Xβ   

 

1 47 57 415.9 43.2

1 47 66 2451.16 233.9 431.5 46.0

1 46 41 45.40 0.45 433.6 32.7

1 48 74 1.73 0.31 400 54.0

1 50 49 265.9 57.2

   
   

    
      
    
     

      

  

RESIDUALS SUM OF SQURES CROSS PRODUCT  

ˆ ˆe  y - y  
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507 415.9492 91.05077

390 431.5458 41.5458

402 433.626 31.626

389 400.0054 11.0054

259 265.8735 6.87353

     
     


     
       
     

     
          

  

 

44 43.16415 0.835855

58 45.95538 12.04462

28 32.68228 4.68228

44 53.95615 9.95615

59 57.24205 1.757954

     
     
     
       
     

     
          

  

 ˆ ˆ ˆ2 T
ε = ε ε  

 

 

 

91.05077

41.5458

91.05077    41.5458     31.626      11.0054     6.87353   11184.8731.626

11.0054

6.87353

0.835855

12.04462

0.835855   1  2.04462    4.68228   9.95615   1  .757954 4.68228

9.

 
 

 
     
 
 
  

  



269.9105

95615

1.757954

 
 
 
  
 
 
  
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Appendix B: Data  

Raw data used in the case stuy in Chapter 5. 

FFMC(y1) DMC(y2) Temp(x1) RH(x2) 

86.2 26.2 8.2 51.0 

90.6 35.4 18 33.0 

90.6 43.7 14.6 33.0 

91.7 33.3 8.3 97.0 

89.3 51.3 11.4 99.0 

92.3 85.3 22.2 29.0 

92.3 88.9 24.1 27.0 

91.5 145.4 8.0 86.0 

91.0 129.5 13.1 63.0 

92.5 88.0 22.8 40.0 

92.5 88.0 17.8 51.0 

92.8 73.2 19.3 38.0 

63.5 70.8 17.0 72.0 

90.9 126.5 21.3 42.0 

92.9 133.3 26.4 21.0 

93.3 141.2 22.9 44.0 

91.7 35.8 15.1 27.0 

84.9 32.8 16.7 47.0 

89.2 27.9 15.9 35.0 

86.3 27.4 9.3 44.0 

91.0 129.5 18.3 40.0 

91.8 78.5 19.1 38.0 

94.3 96.3 21.0 44.0 

90.2 110.9 19.5 43.0 

93.5 139.4 23.7 32.0 

91.4 142.4 16.3 60.0 

92.4 117.9 19.0 34.0 

90.9 126.5 19.4 48.0 

93.4 145.4 30.2 24.0 

93.5 149.3 22.8 39.0 

94.3 85.1 25.4 24.0 

88.6 91.8 11.2 78.0 

88.6 69.7 20.6 37.0 

91.7 75.6 17.7 39.0 

91.8 78.5 21.2 32.0 

90.3 80.7 18.2 62.0 
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90.6 35.4 21.7 24.0 

90.0 41.5 11.3 60.0 

90.6 43.7 17.8 27.0 

88.1 25.7 14.1 43.0 

79.5 60.6 23.3 37.0 

90.2 96.9 18.4 42.0 

94.8 108.3 16.6 54.0 

92.5 88.0 19.6 48.0 

90.1 82.9 12.9 74.0 

94.3 85.1 25.9 24.0 

90.9 126.5 14.7 70.0 

94.2 62.3 23.0 36.0 

87.2 23.9 11.8 35.0 

87.6 52.2 11.0 46.0 

 

MOVING AVERAGE OF ORDER 3 

        Y1          Y2         X1         X2 

89.1 35.1 13.6 39.0 

90.9 37.5 13.6 54.3 

90.5 42.8 11.4 76.3 

91.1 56.6 14. 75.0 

91.3 75.2 19.2 51.7 

92.0 106.5 18.1 47.3 

91.6 121.3 15.1 58.7 

91.7 121.0 14.6 63 

92 101.8 17.9 51.3 

92.6 83.1 20.0 43.0 

82.9 77.3 18.0 53.7 

82.4 90.2 19.2 50.7 

82.4 110.2 21.6 45.0 

92.4 133.7 23.5 35.7 

92.6 103.4 21.5 30.7 

89.9 69.9 18.2 39.3 

88.6 32.2 15.9 36.3 

86.8 29.4 14. 42.0 

88.8 61.6 14.5 39.7 

89.7 78.5 15.6 40.7 

92.4 101.4 19.5 40.7 

92.1 95.2 19.9 41.7 

92.7 115.5 21.4 39.7 

91.7 130.9 19.8 45.0 

92.4 133.2 19.7 42.0 
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91.6 128.9 18.2 47.3 

92.2 129.9 22.9 35.3 

92.6 140.4 24.1 37.0 

93.7 126.6 26.1 29.0 

92.1 108.7 19.8 47.0 

90.5 82.2 19.1 46.3 

89.6 79.0 16.5 51.3 

90.7 74.6 19.8 36.0 

91.3 78.3 19.0 44.3 

90.9 64.9 20.4 39.3 

90.3 52.5 17.1 48.7 

90.4 40.2 16.9 37.0 

89.6 37.0 14.4 43.3 

86.1 43.3 18.4 35.7 

85.9 61.1 18.6 40.7 

88.2 88.6 19.4 44.3 

92.5 97.7 18.2 48.0 

92.5 93.1 16.4 58.7 

92.3 85.3 19.5 48.7 

91.8 98.2 17.8 56.0 

93.1 91.3 21.2 43.3 

90.8 70.9 16.5 47.0 

89.7 46.1 15.3 39.0 

 

MOVING AVERAGE OF ORDER 6 

       y1        y2        x1        x2 

90.1 45.9 13.8 57.0 

91.1 56.3 16.4 53.0 

91.3 74.7 14.8 61.8 

91.4 89.0 14.5 66.8 

91.5 98.1 16.9 57.3 

92.1 104.2 18.0 49.3 

92.1 102.2 17.5 50.8 

87.3 99.2 16.3 58.3 

87.2 96.0 18.6 51.0 

87.6 96.6 20.8 44.0 

87.7 105.5 20.8 44.7 

87.6 96.8 20.3 40.7 

86.2 90.1 19.9 42.2 

90.5 82.9 19.7 36.0 

89.7 66.4 17.7 36.3 

89.4 65.8 16.4 39.5 
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89.2 55.3 15.73 38.5 

89.6 65.4 16.7 41.3 

90.5 78.4 17.2 40.7 

91.2 97.0 18.5 40.2 

92.0 116.2 19.7 42.8 

92.3 114.2 19.8 41.8 

92.1 122.2 19.8 43.5 

92.0 130.4 21.4 40.2 

92.5 136.8 21.9 39.5 

92.7 127.8 22.2 38.2 

92.2 119.3 21.3 41.2 

91.6 111.3 21.6 41.7 

91.7 102.9 21.3 40.2 

91.4 91.7 19.8 41.5 

90.9 80.2 19.1 45.3 

90.3 72.0 18.4 45.3 

90.5 63.6 18.5 42.3 

90.8 59.2 18.0 40.7 

90.2 51.0 17.4 41.3 

88.2 47.9 17.7 42.2 

88.7 50.6 17.8 38.8 

88.9 62.8 16.9 43.8 

89.3 70.5 18.3 41.8 

89.2 77.1 17.5 49.7 

90.3 87.0 19.5 46.5 

92.2 98.0 18.0 52.0 

92.8 92.2 18.8 51.0 

91.5 78.1 18.0 47.8 

90.8 72.2 16.6 47.5 

 

Graphs  

FFMC(y1) DMC(y2) temp(x1) RH(x2) 

86.2 26.2 8.2 51.0 

90.6 35.4 18.0 33.0 

90.6 43.7 14.6 33.0 

91.7 33.3 8.3 97.0 

89.3 51.3 11.4 99.0 

92.3 85.3 22.2 29.0 

92.3 88.9 24.1 27.0 

91.5 145.4 8.0 86.0 

91.0 129.5 13.1 63.0.0 
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92.5 88.0 22.8 40.0 

92.5 88.0 17.8 51.0 

92.8 73.2 19.3 38.0 

63.5 70.8 17.0 72.0 

90.9 126.5 21.3 42.0 

92.9 133.3 26.4 21.0 

93.3 141.2 22.9 44.0 

91.7 35.8 15.1 27.0 

84.9 32.8 16.7 47.0 

89.2 27.9 15.9 35.0 

86.3 27.4 9.3 44.0 

91.0 129.5 18.3 40.0 

91.8 78.5 19.1 38.0 

94.3 96.3 21.0 44.0 

90.2 110.9 19.5 43.0 

93.5 139.4 23.7 32.0 

91.4 142.4 16.3 60.0 

92.4 117.9 19.0 34.0 

90.9 126.5 19.4 48.0 

93.4 145.4 30.2 24.0 

93.5 149.3 22.8 39.0 

94.3 85.1 25.4 24.0 

88.6 91.8 11.2 78.0 

88.6 69.7 20.6 37.0 

91.7 75.6 17.7 39.0 

91.8 78.5 21.2 32.0 

90.3 80.7 18.2 62.0 

90.6 35.4 21.7 24.0 

90.0 41.5 11.3 60.0 

90.6 43.7 17.8 27.0 

88.1 25.7 14.1 43.0 

79.5 60.6 23.3 37.0 

90.2 96.9 18.4 42.0 

94.8 108.3 16.6 54.0 

92.5 88.0 19.6 48.0 

90.1 82.9 12.9 74.0 

94.3 85.1 25.9 24.0 

90.9 126.5 14.7 70.0 

94.2 62.3 23.0 36.0 

87.2 23.9 11.8 35.0 

87.6 52.2 11.0 46.0 
 




