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ABSTRACT 

Fingerprints, palm veins, face recognition, DNA, palm print, hand geometry, iris 

recognition, retina, voice, gait, signature, and other physical or behavioral features 

have long been employed in biometric systems. The finger knuckle print is a new 

biometric feature that has piqued the interest of academics in recent years. Recently it 

was discovered that the skin's knuckle image pattern comprises of wrinkles or lines, 

and that the texture pattern created by the finger knuckle is very unique in each user, 

making the surface unique for biometric identification. The minor finger knuckle 

patterns can be utilized as standalone biometric patterns or in conjunction with the 

major finger knuckle patterns to increase performance. A vast number of research 

suggest that multibiometric fusion and multi-modality employed can greatly increase 

the biometric identification system's recognition rate, anti-attack, and resilience which 

might be incredibly useful in forensics applications and other related domains. In this 

study, a multimodal biometric system which combines minor and major finger 

knuckles is developed and experimented on PolyU-FKP finger knuckles datasets. 

Feature extraction techniques used include hand-crafted feature extraction descriptors, 

PCA and BSIF, CNN models, AlexNet and modified AlexNet. 

The results obtained showed that major finger knuckle system fared better in both PCA 

and BSIF, accounting for the clearer patterns on the major finger knuckle, based on 

early testing results comparing it to the minor finger knuckle system. Additionally, the 

outcomes demonstrate that when the two traits are mixed at different phases, the 

system is noticeably improved, particularly in the case of PCA, where up to 15.1% 

improvement was achieved. The best accuracy overall obtained is a 100% in AlexNet 

model. 
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ÖZ 

Parmak izleri, avuç içi damarları, yüz tanıma, DNA, avuç izi, el geometrisi, iris tanıma, 

retina, ses, yürüyüş, imza ve diğer fiziksel veya davranışsal özellikler uzun süredir 

biyometrik sistemlerde kullanılmaktadır. Parmak eklemi izi, son yıllarda 

akademisyenlerin ilgisini çeken yeni bir biyometrik özelliktir. Son zamanlarda, derinin 

boğum görüntü deseninin kırışıklıklardan veya çizgilerden oluştuğu ve parmak 

boğumunun oluşturduğu doku deseninin her kullanıcıda çok benzersiz olduğu ve 

yüzeyi biyometrik tanımlama için benzersiz kıldığı keşfedildi. Küçük parmak eklemi 

modelleri, performansı artırmak için bağımsız biyometrik modeller olarak veya ana 

parmak eklemi modelleriyle birlikte kullanılabilir. Çok sayıda araştırma, kullanılan 

multibiyometrik füzyon ve çoklu modalitenin, adli tıp uygulamalarında ve diğer ilgili 

alanlarda inanılmaz derecede yararlı olabilecek biyometrik tanımlama sisteminin 

tanıma oranını, saldırı önleme ve esnekliğini büyük ölçüde artırabileceğini 

göstermektedir. Bu çalışmada, minör ve majör parmak boğumlarını birleştiren 

multimodal bir biyometrik sistem geliştirilmiş ve PolyU-FKP parmak boğumları veri 

kümeleri üzerinde denenmiştir. Kullanılan özellik çıkarma teknikleri, el yapımı özellik 

çıkarma tanımlayıcıları, PCA ve BSIF, CNN modelleri, AlexNet ve değiştirilmiş 

AlexNet'i içerir. 

Elde edilen sonuçlar, majör parmak eklemi sisteminin hem PCA hem de BSIF'de daha 

iyi sonuç verdiğini gösterdi; bu, onu küçük parmak eklemi sistemiyle karşılaştıran ön 

test verilerine göre, ana parmak eklemindeki daha net desenleri açıklıyor. Sonuçlar 

ayrıca, iki seviye ayrı aşamalarda birleştirildiğinde, özellikle PCA durumunda, 

%15,1'e varan iyileşmenin sağlandığı sistemde gözle görülür bir iyileşme olduğunu 
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göstermektedir. Genel olarak elde edilen en iyi doğruluk, AlexNet modelinde 

%100'dür. 

Anahtar Kelimeler: Büyük parmak eklemi, Küçük parmak eklemi, Füzyon 

yöntemleri, Biyometri, Tanıma. 
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Chapter 1 

INTRODUCTION 

Biometric features are increasingly being used in personal authentication systems due 

to their reliability in comparison to more conventional approaches such as token 

passwords and PIN numbers. Fingerprints, palm print, face recognition, DNA, palm 

veins, signature, hand geometry, voice, iris recognition, retina, gait and other 

behavioral or physical features have long been employed in biometric systems. Recent 

studies have demonstrated that the image pattern of wrinkles or lines on the skin, 

together with the texture pattern generated by the knuckles of each individual's fingers, 

makes the surface a useful instrument for biometric identification. The knuckle image 

has a random roughness that makes each person stand out. The restored knuckle image 

is noted to have exceptionally steady local and global properties. The data can then be 

utilized to verify the identity of specific users [1]. Biometric features-based personal 

identification is gaining popularity these days since it is more trustworthy than 

previous approaches and has a wide range of applications. Academics' interest in the 

finger knuckle print has increased in recent years. Finger knuckle prints are the 

inherent skin patterns that form at the knuckles of the back of the hand. According to 

recent study, the finger knuckle print is extremely rich in textures and may be utilized 

to uniquely identify a person. Hand-based biometrics have a better user acceptability, 

and this new characteristic has the added benefit of being less susceptible to harm. In 

published works, the researchers' acquisition procedures and strategies for finger 

knuckle-based recognition systems are detailed [2]. The fingerprint at the knuckles is 
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a relatively new biometric. It has a lot of texture and has curved line structures. The 

finger knuckle print has been subjected to several image processing techniques 

previously utilized in personal identity biometric systems, with promising results. 

The patterns on the finger knuckles were examined utilizing feature, decision, and 

score-level fusion to combine the major and minor fingerknuckles to ascertain human 

identity. Dorsal Finger knuckle patterns are extracted using three distinct feature 

extraction methods. For feature extraction of the major and minor dorsal finger 

knuckles, PCA, BSIF and AlexNet models are used. The experiments were carried out 

and the results showed the performance of each model in  biometrics recognition of a 

person. The studies are carried out using the PolyU-FKP finger knuckle database, 

which is open to the public. Images in this database are entirely in bitmap (*.bmp) 

format and are divided into two portions of segmented Major and Minor Finger 

Knuckles, each having 2515 dorsal finger knuckle images from 503 subjects. 

1.1 Statement of the Problem 

“Biometric systems” can be broadly categorized as ‘unimodal’ (i.e., establishing 

identity utilizing a single biometric data source) and ‘multibiometric systems’ (i.e., 

utilizing several biometric data sources) [3]. And yet, there are a number of flaws in 

unimodal biometric systems, including a high error rate, poor usability, the potential 

for these systems to be hacked, and other issues (e.g., aging)[4]. A different approach 

is multibiometrics, which combines data from various biometric sources. The data 

sources may include many implementations of identical modality, a number of 

biometric techniques, several different sensor prototypes for identical modality, or 

multiple feature extraction techniques for a single modality. Numerous studies, both 

theoretical and practical, have demonstrated that multimodal biometric systems 
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outperform unimodal systems when assessing performance [5]. Enhancing recognition 

rates is the primary practical motivation for researching and combining various 

biometric modalities. The use of finger knuckles in multibiometric systems has drawn 

a lot of interest in the literature because it is a relatively new concept. 

1.2 Significance of the Study 

To improve biometric identification accuracy and uniqueness, this thesis identified 

human identity by analyzing finger knuckle patterns utilizing Feature, Decision, and 

Score level fusion of major and minor finger knuckles. We use three different feature 

extraction methods to get the knuckle patterns from the dorsal finger. The finger 

knuckles provide a secure and trustworthy means of identification due to their 

individual shape, ridge count, and curvature. At the fusion stage, the major and minor 

dorsal knuckles of the finger are analyzed, and features are extracted using Principal 

Component Analysis (PCA), Binarized Statistical Image Feature  (BSIF), and the 

AlexNet models. 

1.3 Literature Review 

Biometric systems have been in use for quite some time, and they typically make use 

of fingerprints, palm veins, hand geometry, DNA, palm print, iris identification, facial 

recognition, retina, voice, gait, and signature, among other physical or behavioral 

aspects. It has only recently been found that the texture pattern formed by the finger 

knuckle is particularly distinct in each user, making the surface a unique for biometric 

identification since it consists of wrinkles or lines. The knuckle image has a random 

roughness that makes each person stand out. The restored knuckle image is noted to 

have exceptionally steady local and global properties. The identity of some users may 

then be verified using this data [1].  
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Finger knuckle print is a biometric characteristic that has only existed for a few years. 

It contains a substantial amount of roughness and curved line structures. The finger 

knuckle print has been subjected to several image processing techniques previously 

utilized in personal identity biometric systems with promising results. The finger 

knuckle print has recently been discovered to be extremely rich in textures and can be 

utilized to uniquely identify a person. Hand-based biometrics have a better user 

acceptability, and this new characteristic has the added benefit of being less susceptible 

to harm. In the literature, the researchers' acquisition methods and strategies for 

recognition systems based on finger knuckle print are explained in [2].  

Automated biometrics identification using images of finger knuckles is gaining 

popularity among researchers due to its potential applications in human forensics and 

biometrics. Inspecting the juncture of the distal and middle phalanx bones reveals 

patterns of the finger knuckles. On the surface of the finger, these patterns are created. 

It is possible to employ the minor finger knuckle patterns separately or in conjunction 

with the major finger knuckle patterns to enhance performance. In the literature, finger 

knuckle patterns from images taken over time are shown to be stable, and the 

experimental results gave new information about how finger patterns can be used in 

forensics and biometrics [6]. Finger knuckle patterns can be used both openly and 

covertly for the purpose of identifying a suspect.  

In [7], a method of personal authentication combines the Contourlet Transform-based 

Feature Extraction Method with the Angular Geometric Analysis-based Feature 

Extraction Method. Furthermore, current studies only focused on the proximal phalanx 

knuckle region, but "geometric and textural" analysis methodologies incorporate 
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feature information from both the major and minor knuckle. In addition, results from 

all four tests reveal that the state-of-the-art has significantly improved. 

People can be identified by their unique patterns of bone, tissue, and skin at the 

knuckles of their fingers. There has been some research into the possibility of using 

the unique patterns created by the metacarpal and proximal phalanx joints of the 

fingers for biometric authentication purposes. Contactless imaging allows for the 

automatic segmentation and normalization/enhancement of the region of interest in 

palm dorsal pictures, adjusting for factors such as lighting, scale, and position. Several 

methods in the spatial and spectral domains are used to assess the efficiency of the 

matching of normalized knuckle images [8]. 

Usha and Ezhilarasan [9] makes a substantial contribution to a new approach by the 

analysis of the 'geometric and texture' features of finger knuckles for use in a personal 

recognition system. In their first method, the authors combined extracted pattern 

elements to improve accuracy. The study of the knuckle texture characteristic is 

performed utilizing the Curvelet-transform, which is a multi-resolution transform. 

With the least number of Curvelet coefficients, this Curvelet transform can 

approximate curved singularities. Finger knuckle patterns are represented using the 

"Curvelet-transform" since they are made up of lines and curves. The image of the 

finger knuckles is segmented into Curvelet bands using the "Curvelet-transform," also 

known as the "Curvelet knuckle". Finally, each Curvelet knuckle is subjected to PCA 

using the covariance matrix produced from its Curvelet coefficient. 

On the other hand, Fingerback surface images are used to probe and create a novel 

method of individual authentication. Finger knuckle bending creates a one-of-a-kind 
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texture pattern that can be used as a biometric identifier. Finger geometry features can 

be acquired concurrently from the same image at the same time to improve the user-

identification accuracy of such a system. By standardizing the fingerback surface shots 

from each user, we may reduce the scale, translation, and rotational variances in the 

knuckle images may be reduced [10]. 

In addition, the performance of a finger knuckle recognition system is heavily 

influenced by biometric factors. Every person has their own skin patterns that are 

unique to them. These designs can be seen on both the interior and exterior of the 

finger joints. According to a recent study, these patterns have a lot of roughness and 

can be utilized to identify the person. This paper is an attempt to look at the numerous 

ways that have been utilized in the past for obtaining data and constructing systems 

based on it. In the literature, the comparative performance of the various approaches 

is also discussed [11]. 

Furthermore, authentication is based on a variety of physical and behavioral traits. 

Behavioral traits include a person's voice, electrocardiogram (ECG), 

electroencephalogram (EEG), keystroke, handwriting and lip movements in addition 

to physical details like their face, fingerprint, iris, retina, palm print, finger vein, and 

finger knuckle print. Because of these tangible features, finger knuckle print is 

currently one of the most discussed subjects in the scientific community. Low-cost 

gadgets are employed to capture the image since it is easily accessible; it cannot be 

taken by others, and so on. According to Sathiya and Palanisamy, the finger knuckle 

print contains a plethora of merits and limits [12]. 
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Additionally, another study looks into the full dorsal surface of the finger for human 

identity, which might be incredibly useful in forensics and related domains. 

Furthermore, this research proposes a novel method for improving performance by 

extracting and integrating finer knuckle geometric and textural features simultaneously 

via score level fusion. The "Angular Geometric Analysis Method" (AGAM) is used to 

produce the geometric features, which use extracted angular-based features for unique 

identification. To identify the specific features of the local texture of a newly acquired 

finger's back knuckle, the authors employed the Feature Extraction from Textures as 

"Completed Local Ternary Pattern" generation method (CLTP), "2D Log Gabor Filter" 

(2DLGF), and "Fourier - Scale Invariant Feature Transform" (F-SIFT) methods [13]. 

Moreover, security solutions based on hand biometrics are a fantastic option for both 

access management and individual authentication. In [14], the authors introduced a 

novel multimodal biometric system that uses finger geometry and inner knuckle prints 

to authenticate users. In addition, knuckle prints of varying sizes are employed. They 

also provided a statistical method for selecting finger geometry features. Different 

methods of biometric fusion are analyzed, and the results of experiments showed that 

the proposed system achieves high recognition rates. 

A novel approach to individual authentication is proposed [15], which makes use of 

deep learning techniques. Fingernail plates and knuckle features are used together in 

the approach. Biometric information was extracted from three digits of the hand 

(index, middle, and ring) using low-resolution dorsal images of the hand. Both 

attributes are mined for deep learning features using a custom-built Convolutional 

Neural Network (CNN). These elements have been included at the score and ranking 

levels for a number of different combinations. 
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Rathod and Science [16] used a finger knuckle print image as an evidence of person 

identification. Finger knuckle lines, creases, folds, and other surface characteristics 

can be used alone or in concert with other biometrics to establish identity. The 

improvement of a finger knuckle based biometric ID framework is proposed in that 

research. After pre-processing and upgrading information from knuckle surface, the 

framework joins Local Binary Pattern (LBP) for feature extraction. For individual 

identification, the framework also employs the Bernoulli classifier as a coordinating 

classifier. 

Moreover, literature work of Kumar [17] is the first of its kind to present similar imges 

of entirely contactless finger knuckles in various poses in prospect of detecting entirely 

contactless finger knuckle images captured in a variety of positions. To improve 

efficiency, the authors present a novel method for automatically normalizing and 

aligning images of contactless finger knuckles. The research results show that 

normalization and matching algorithms can differentiate between finger knuckles in 

various positions. Integrating information from the spatial and spectral domains yields 

useful additional clues and enhanced performance. 

The study of Finger Texture (FT) [18] has received a lot of interest as a biometric trait 

in recent years. Because it possesses different human-specific traits of apparent lines, 

wrinkles, and ridges dispersed around the inside surface of all fingers, it can provide 

efficient human recognition performance. Furthermore, such pattern structures are 

dependable, unique, and consistent throughout a person's lifetime. Finger Textures 

alone can be used to create effective biometric systems (FTs). Al-Nima et al. [18] 

presented a detailed review of the relevant Finger Textures (FT) investigations. They 

also discussed the major limitations and challenges of using Finger Textures (FT) as a 
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biometric feature, as well as practical suggestions for improving Finger Textures 

research (FT). 

In terms of accuracy and processing speed in [19],  deep learning-based algorithms 

and machine learning approaches have performed better for image recognition. The 

authors suggested modified designed of Convolutional Neural Network (CNN) by 

adding two normalization procedures to two of the layers. The network was 

accelerated via the batch normalizing normalization procedure. In the fully connected 

layer of CNN, Softmax classifier was used to categorize faces while CNN architecture 

was utilized to extract features that distinguished faces. In the experiment part, Georgia 

Tech Database revealed that the recommended technique improved face recognition 

performance with better recognition outcomes. 

In [20], the authors introduced a novel approach to person identification based on the 

finger knuckle pattern by employing a deep rule-based (DRB) classifier with multiple 

layers of neural networks (FKP). The proposed approach is fully automated and data-

driven. The classifier for DRB, on the other hand, is generic and may be used to solve 

a wide range of classification and prediction issues. The results of the experiment 

prove that the "DRB" classifier can be useful in "FKP-based" biometric identification 

systems. 

Using Finger-Knuckle-Print (FKP) databases, Arora et al. [21]  attempted to solve the 

identifying issue that has arisen. It is through identification that the uniqueness of a 

query inside the FKP sample is determined. Each template in the database must be 

compared to the FKP query to determine which sample best fits the criteria. It's a 

computational approach for really large datasets that takes a long time and costs a lot 
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of money. In order to improve the identification process, it is required to employ a 

technique that can reduce the search space and restrict the number of comparisons. The 

term "indexing" is used to describe this method. For a given FKP sample, it 

continuously generates a small candidate list of a defined size for searching. The study 

introduces FKPIndexNet, which learns similarity-preserving hash codes, for creating 

an index table. Using a unique autoencoder network, it learns feature embeddings with 

high intra-class and low inter-class similarity. The authors tested the proposed method 

on two publicly accessible FKP databases, PolyU-FKP and IITD-FKP. 

Finger knuckle print (FKP) is a biometric that uses a person's hands to verify their 

identity. In pattern recognition, one of the biggest issues is the high dimensionality of 

the visual characteristics extracted. The proposed FKP system utilizes a multi-

algorithm fusion technique founded on subspace algorithms at the feature level. In 

[22], the authors presented a novel feature-selection algorithm for finger knuckle 

detection called the Modified Magnetotatic Bacterial Optimization Approach 

(MMBOA). It picks out relevant and useful characteristics to improve classification 

precision. The unique feature of this bacteria has an impact on the development of a 

new optimization technique. Finger knuckle is used to extract hybrid features like 

Eigen and Fisher (EiFi). When compared to unimodal identifiers, the results show a 

substantial improvement. 

Heidari and Chalechale [23] introduced a deep learning strategy for human 

authentication using dorsal aspects of the hand. Fingernail (FN) and finger knuckle 

print (FKP) impressions from the ring, middle, and index fingers are used in the 

proposed method. The proposed method was evaluated on a variety of hand skin 

identification, denoising, and knuckle and fingernail extraction tasks. Using a 
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multimodal biometric method, the suggested system's authentication performance is 

enhanced and it becomes more resistant to spoofing attempts. AlexNet is used as a pre-

trained model in a deep learning approach based on Convolutional Neural Networks. 

The authors proposed combining data from multiple levels of hand pictures through 

normalization and fusion techniques. The experimental results show that the suggested 

biometric system outperforms the state-of-the-art in terms of accuracy, reliability, and 

longevity. 

Finger knuckle print, along with fingerprint and palm print, is a biological trait that 

gives human hands a distinct texture. There has been a lot of attention paid to the 

single-mode identification system's hand shape and finger knuckle print, both at home 

and abroad. Multiple studies have shown that increasing the number of biometrics used 

in a biometric identity system increases its recognition rate, security, and longevity. 

Images of finger knuckle prints can now be recognized using a technique that 

combines both global and local properties [24]. One technique that helped with 

recognition times was Principal Component Analysis. Extracting features from 

textures that accurately depict details required the use of a local feature, and the Local 

Binary Patterns (LBP) operator was used for this purpose. To combine universal and 

particular features, a two-layer serial fusion method is recommended. 

The fusion of major and minor finger knuckles will be examined in this thesis using a 

number of fusion methodologies, including decision-level fusion and score-level 

fusion. Several feature extraction methods will be applied to images of minor and 

major finger knuckle patterns in order to identify the patterns. On finger knuckle 

biometrics for identity verification, feature extraction techniques like Principal 

Component Analysis, Binarized Statistical Image Features, and Convolutonal Neural 
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Networks will be investigated. The tests will be performed on databases for finger 

knuckles that are open to the public, like PolyU-FKP. The outcomes of fusing together 

finger knuckle patterns from the main and minor phalanges will be described in the 

final chapter of the thesis. 
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Chapter 2 

 

DORSAL FINGER KNUCKLE PATTERNS FOR 

PERSON IDENTIFICATION 

This chapter explain the texture patterns of individual dorsal finger knuckle for person 

identification. Figure 0.1 shows Pattern Regions of Major-Minor dorsal finger 

knuckle. 

2.1 Major and Minor Dorsal Finger Knuckle Patterns 

The accuracy of personal identification can be increased by merging many features, 

such as major and minor knuckle patterns, from a single dorsal image of a finger. Some 

research studies compared linear and nonlinear methods for combining match scores, 

with the goal of fusing minor and major knuckle patterns [6] [19]. To assess the 

stability of the finger knuckles, finger dorsal images from a number of subjects were 

collected over a period of more than 5 years. The feature extraction and matching 

technique described in [6] may be used to compare images taken at different times to see if 

finger knuckle patterns are consistent over time. Randomly textured patterns appear to be 

extremely distinguishable in images of the second minor knuckle from different 

fingers or subject. As shown in Figure 0.1, such designs typically have folds, lines, 

and wrinkles of variable thickness that change as the finger progresses. The procedure 

for comparing images of the second minor knuckle is explored and described in detail 

in [8]. Forensic images may only reveal the minor knuckle parts of a finger if the hair 

covers the major knuckle pattern. Due to this difficulty, the use of both the major and 

minor components is now required [10].  
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Figure 2.1: Pattern Regions of Major-Minor dorsal finger knuckle [5] 

2.2 Region of Interest (ROI) Extraction 

Every FKP image needs its own unique coordinate system. These coordinates can be 

used to trim an area of interest (ROI) from the source image in preparation for feature 

extraction [25]. To improve personal identification methods based on ‘major-minor’ 

finger knuckle shapes, particular Region of Interest image extraction is required [5]. 

The major and minor areas' ROI traits are present in the database that was used for this 

thesis. 

The ROI templates were derived according to the following steps: 

 All the dorsal views of fingers that were collected have been converted to 

binary. In this procedure, Otsu's thresholding approach was utilized. 

 Images are denoised by selectively erasing the isolated pixels, leaving only the 

longest object (the finger) in focus. 

 In order to determine where the fingertip is on each image's convex hull, the 

finger's binarized shape has been adopted. 

 To get rid of the background image, the fingertip's location hiding has been 

utilized. 
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 The methods of moment have been applied to estimate the orientation of the 

fingers from the binarized image, comparable to the technique in [26]. 

 The minor finger knuckle region may be segmented using coarse segmentation, 

which excludes the major finger knuckle region and the majority of the 

fingernail. 

The aforementioned segmentation method makes some uneasy assumptions regarding 

the greatest distance between nails and fingers since it relies on the prediction that the 

major finger knuckle area will be located in the middle of the produced finger dorsal 

image. Then, operations to inspect and remove nails are performed on the resulting 

coarsely segmented image, which divide the image into segments. By computing the 

resultant width image, the scale normalization factor is determined. By employing an 

edge detection method, the minor knuckle's anatomical center can be pinpointed. 

Segmenting the major/minor knuckle region of the finger dorsal image into a fixed-

size chunk of 160 by 180 pixels, as shown in Figure 0.2, and locating its center in the 

resulting edge detection image are the required steps. 

 

 
Figure 2.2:Image of a sample of finger knuckles showing various regions [5]. 
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Chapter 3 

FEATURE EXTRACTION METHODS AND 

MATCHING 

This chapter explains the feature extraction methods used for finger knuckle 

recognition in this study. PCA, BSIF and AlexNet are used in this study for feature 

extraction and/or classification. Additionally, the matching process is described in 

detail. 

3.1 Feature Extraction Methods 

The approaches for feature extraction we used in this thesis include Principal 

Component Analysis, Binarized Statistical Image Features and Convolutional Neural 

Network architecture, namely AlexNet. 

3.1.1 Principal Component Analysis  

Performing a PCA analysis entails three steps: calculating eigenvalues, eigenvectors, 

and feature vector covariance matrices. These templates can be made smaller while 

still retaining the most critical features by using an approach that combines feature 

extraction with dimension reduction [27]. To calculate mean feature vectors, equation 

(1) is used: 

Mean (�̅�) =
1

𝑛
 ∑ 𝑎𝑖

𝑛
𝑖=1     (1) 

where 𝑎𝑖 is image vector. 



17 

 

In order to obtain (𝑎𝑖 − 𝐴�̅�) and (𝑏𝑖 − 𝐵�̅�), we divide the image mean by the image 

vector respectively, let each vector be represented as a mean-centered image. In order 

to generate the covariance vectors of the covariance matrix, equation (2) is used: 

cov(𝑎, 𝑏) =
∑ (𝑎𝑖−𝐴𝑖̅̅ ̅) (𝑏𝑖−𝐵𝑖̅̅ ̅) 𝑛

𝑖=1

𝑛
    (2) 

where  𝐴�̅� and 𝐵�̅� represent the average vector value and the two parameters 𝑎𝑖 and 

𝑏𝑖represent the current values of �̅� and �̅�.  As a whole, there are n rows. To obtain 

eigenvalues of the covariance matrix, the following equation (3) is applied: 

det(𝑐𝑜𝑣(𝑎,𝑏) − 𝐼) = 0     (3) 

The eigenvector V in equation (4) is then calculated for each eigenvalue λ as follows: 

det(𝑐𝑜𝑣(𝑎,𝑏) − 𝜆𝐼)𝑉 = 0    (4) 

3.1.2 Binarized Statistical Image Features  

The BSIF, a local image descriptor, is used to implement binarized statistical image 

features. Implementing BSIF requires binarizing the outputs of linear convolution 

filters. We utilized BSIF to learn a collection of convolution filters using an 

unsupervised model and Independent Component Analysis (ICA). Both the major and 

minor dorsal finger knuckle images can be represented by these trained filters, which 

calculate the responses of each pixel to the learnt convolution filter. Every pixel's 

binary string is considered as Local descriptor in terms of image intensity patterns 

surrounding that pixel [5]. 

In this thesis, we employed open-source filters that had been trained on 503 × 5 × 2 

images. In order to generate the BSIF filters, we first subtract a "mean" value from 

each patch, apply Principal Component Analysis to minimize the number of 

dimensions, and finally apply Independent Component Analysis. Finally, the filter 
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response 𝑥𝑖 in equation (5) is obtained when we feed in a finger knuckle pattern image 

(input image 𝐼) of size 𝑚 × 𝑛 and a filter (of the same size, output image, 𝐹𝑖). 

𝑥𝑖 = ∑ 𝐼(𝑚, 𝑛)𝐹𝑖(𝑚, 𝑛)𝑚,𝑛      (5) 

Binary representation of the convolution filter with parameters 𝑖 = {1,2,3, … … 𝑚}, 

where  𝐹𝑖  is an integer representing a "statistically independent filter" whose outputs 

may be computed using (6) in parallel, yields the string [5]. 

𝑏𝑖 = {
1 𝑖𝑓 𝑥𝑖 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (6) 

where 𝑥𝑖 is filter response. 

The BSIF descriptor emphasizes the importance of both the filter's size and its 

length (𝑖). It is possible that a single, fixed-length filter would not be able to 

appropriately generalize finger knuckle patterns of varying intensities, sizes, and 

orientations [5]. 

In Figure 0.1, an example of a dorsal finger knuckle image that has been modified with 

BSIF filters is shown. The primary input region of interest (ROI) for the finger knuckle 

image is seen in Figure 0.1(a). Figure 0.1(b) displays the results of a BSIF filter with 

output dimensions of 9x9 and 15x15 and bit lengths of 12, while Figure 0.1 (c) displays 

the input ROI of a minor finger knuckle image. Figure 0.1(d) shows the outcomes of 

the minor dorsal finger knuckle image's separate convolution ROI using BSIF filters, 

size of 9x9 and 15x15, and bit lengths of 12 bits. 
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Figure 3.1:: ROI Image For the Major and Minor Dorsal Finger Knuckles and Their 

Respective BSIF Filters Output with Dimensions Of 9x9, 15x15, And Length 12 bits 

3.1.3 AlexNet 

AlexNet is a Convolutional Neural Network model that consists of five convolution 

layers followed by the activation functions ReLU, Batch Normalization and Maxpool. 

The framework is a series of convolution layers whose filter sizes range from 3 x 3 to 

11 x 11 kernel. Filters range in number from 96 to 384 throughout the layers. The 

structure is finished off with a Dropout layer, fully connected layer, and Softmax 

function [28]. The layers of the model are described in the following subsections.  

3.1.3.1 Batch Normalization 

When normalizing a network's activation sets, it is possible to do it in batches. In this 

case a nonlinearity in the elements and an affine transformation is considered: 

𝑧 = 𝑔(𝑊𝑢 + 𝑏)     (7) 

The model's optimization targets are denoted by 𝑊 and 𝑏, respectively. Function 𝑔(. ) 

stands for the non-linearity function known as ReLU. Batch normalization is 

performed on all convolutional layers and all connected layers. As an additional step 
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before reaching non-linearity, the batch normalization transform is introduced through 

normalizing equation (8).  

𝑥 =  𝑊𝑢 +  𝑏.     (8) 

The input layer 𝑢 should be normalized since it reflects the output of another non-

linear layer whose distribution may shift during training. Also, the covariance shift is 

reduced and the first and second phases of the input layer are constrained. Because 

equation (8) is symmetric and has a non-sparse distribution, normalization increases 

the likelihood that the excitation function's distribution will remain stable. 

Because the mean subtraction may cancel out the effects of bias b, we may discard b 

and rewrite the formula in equation (7) as in (9): 

𝑧 =  𝑔(𝐵𝑁(𝑊𝑢 ))     (9) 

At each layer where the BN transform is used, we optimize a set of two 

parameters, 𝛾(𝑘) 𝑎𝑛𝑑 𝛽(𝑘) is optimized. 

Normalization is also required for convolutional layers to respect the convolutional 

property, which allows us to normalize the same feature maps with different 

components in different locations. In order to achieve this goal, mini-batch activations 

from each site are normalized. All activations in a given feature map undergo the same 

linear modification. 

3.1.3.2 Convolutional Layer  

The central building component of a Convolutional Network, namely the 

Convolutional Layer, is responsible for the bulk of the computation. Feature extraction 

is the primary goal of the Convolution layer, whose input data is an image. 

Convolution preserves the spatial relationship between pixels by discovering their 

properties from small squares of the input image. Through the use of a network of 
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plastic neurons, the original image gets deformed during training. The output image 

includes an activation map (sometimes called a feature map) that is fed into the next 

convolutional layer [19]. 

3.1.3.3 Pooling Layer  

The pooling layer reduces the size of all activation maps, but retains the most important 

information. In order to separate the input images, non-overlapping rectangles are 

employed. Each region is down-sampled using a non-linear procedure, such as average 

or maximum. Positioned in the middle of a series of convolutional layers, this one 

allows for greater generalization, faster convergence, and resistance to translation and 

distortion [19]. 

3.1.3.4 ReLU Layer 

ReLU is a non-linear process that makes use of rectifier devices. Negative values in 

the feature map are converted to zero in a pixel-by-pixel, element-by-element 

procedure. 

Equation (7) is an expression for the ReLU activation function: 

𝑓(𝑥) = max(0, 𝑥)    (10) 

In cases when the input is less than or equal to 0, the response is also 0, in all other 

cases it is equal to the input. The output of the ReLU function is rather sparse as a 

result of its characteristics, which can speed up network convergence and enhance the 

classification skills of the CNN as follows: 

𝑓`(𝑥) {
0, 𝑥 ≤ 0
1, 𝑥 > 0

    (11) 
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Since equation (11) gradient is only saturated when 𝑥 > 0, 𝑓`(𝑥) = 1; the issue of 

gradient dispersion may be mitigated during backward propagation, and the 

parameters of CNN can be updated rapidly. 

3.1.3.5 Fully Connected Layer 

A completely linked layer connects every filter in the layer before and after it. The 

convolutional, pooling, and ReLU layers produce high-level input image attributes. 

The fully connected layer uses these properties to sort incoming images by training 

dataset. The last pooling layer, or fully connected layer, feeds characteristics to the 

classifier using Softmax activation. 

In this study, the major/minor finger knuckles biometric characteristic was fused at the 

decision and scoring levels using a deep learning-based convolutional neural network 

architecture. Several hidden layers and parameters make up a CNN, making it a type 

of deep neural network. Applications include "natural language processing" and 

"image processing", and it seeks to detect patterns in images directly. CNNs typically 

have two sections to their structure. The first stage, which is typically referred to as 

feature extraction, combines convolutional and pooling layers. Classification, the 

second phase, employs completely connected layers. The CNN architecture is made 

up of multiple layers that fall into three categories: The first three stages are 

convolutional, pooling, and fully-connected [29]. 

3.1.3.6 Convolutional part 

The CNN stage is essential at the moment. In order to isolate specific aspects of the 

input, it typically consists of multiple layers. These layers are designed to extract 

features from the input images using trainable kernels or filters. In contrast to the first 
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layer's collection of broad characteristics like edges, corners, textures, and lines, the 

subsequent layers are responsible for extracting finer details [29]. 

3.1.3.7 Pooling section  

This section reduces the quantity of data used and the computational complexity by 

subsampling the convolutional layer results. Consequently, it renders our system 

resistant to little changes. Max or Mean Pooling are options [29]. 

Full-Connected component Convolutional and pooling layer output data are prominent 

characteristics (fine details) of the source image as in Figure 0.2. This section's goal is 

to classify the output features into different categories. Traditional artificial neural 

networks (ANNs) have a fully connected layer that produces a probability for each 

classification label using a softmax activation function (by means of a loss function 

referred to as cross-entropy loss) [29]. 

 
Figure 3.2:CNN Model I (Original AlexNet) 

3.1.4 Modified AlexNet 

In this thesis, we use feature, score and decision-level fusion in both two models 

(Model1 and Model2) of Convolutional Neural Networks that are based on deep 

learning. Numerous studies have demonstrated how effective CNN is at solving image 

classification issues [28]. However, in this research, the computing time required to 

train the model was considerably lowered by drastically reducing the number of 
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kernels in each convolution layer. In this experiment, we also employed a consistent 

filter size of 3 x 3 throughout all convolution layers, as opposed to the original AlexNet 

model's usage of variable kernel sizes. 

Figure 0.3 illustrates Model II with lower filters compared to "AlexNet model" ModelI 

CNN Model II (Modified AlexNet) characteristics are as follows: 

 32 distinct filters of size 3x3 are included in the first layer, and 2x2 filters are 

used for Max pooling. 

 Max pooling is done with 64 distinct filters of size 3 x 3 in the second layer. 

 The third and fourth layers each include 96 distinct 3x3 filters, and 2 x 2 filters 

are used for Max pooling. 

 Max pooling is implemented with 128 distinct filters of size 3 x 3 in the fifth 

layer. 

 
Figure 3.3: CNN Model II (Modified AlexNet) [29] 

Table 3.1 compares the updated AlexNet model’s level alteration to the original 

AlexNet model. A different number of filters are used in Model II as shown in 

Figure 0.3, a second model that is comparable to Model I (Original AlexNet). The last 

layers of Model II (modified AlexNet) are Dropout, Fully-connected plus Softmax, 

and Classification. To achieve low training error, deep learning often needs thousands 
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of training samples. The datasets created by the Keras data generator modifies images 

by changing their brightness, width, and height as well as small rotation, shear, and 

zoom. These improved the training and testing results [28]. CNN Model I (Original 

AlexNet) and Model II (Modified AlexNet) are both implemented using Python.  

Table 3.1: Original and Modified AlexNet Model. 

Layer Original (Model I) Modified (Model II) 

First Layer 11 x 11 x 96 3 x 3 x 32 

Second Layer 5 x 5 x 256 3 x 3 x 64 

Third Layer 3 x 3 x 384 3 x 3 x 128 

Fourth Layer 3 x 3 x 384 3 x 3 x 128 

Fifth Layer 3 x 3 x 64 3 x 3 x 64 

3.2 Matching System 

In this chapter we explain the Nearest-Neighbor classifier. The similarity or 

dissimilarity between the query trait and the saved template is measured by comparing 

two sets to the minimum possible distance (score). 

3.2.1 Finger Knuckle Matching 

Images of finger knuckles, especially after being enhanced or augmented, can reveal a 

seemingly random texture pattern that is strikingly unique across fingers. Images of 

minor/major finger knuckles can be matched using a number of feature extraction 

strategies, both in the spatial and spectral domains [30]. In order to evaluate 

effectiveness, this thesis makes use of deep learning (AlexNet), Principal Component 

Analysis and Binarized Statistical Image Features.  

3.2.2 Matching Module and Normalization of Scores 

For the purpose of matching in this thesis, we have employed the nearest-neighbor 

classifier, which employs the cosine Mahalanobis distance. The similarity or 
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dissimilarity between the query trait and the saved template is measured using (12) by 

comparing the two sets to the minimum possible distance (score). 

Let's assume  𝑋𝑖 and  𝑉𝑗 are the query and template "feature" vectors for the images in 

the database, then 

𝑑𝑀𝑎(𝑋𝑖, 𝑋𝑗) = (𝑋𝑖 − 𝑋𝑗)
𝑇

𝐶−1(𝑋𝑖 − 𝑋𝑗)            (12) 

where 𝐶 is the covariance matrix, in this case. Matching score was converted to [0, 1] 

using the ‘min-max normalization’ model approach before decision was made. A set 

of matching scores, 𝑉𝐾, are calculated from the given normalization scores, where 𝐾 =

1,2,3 … … . , 𝑛.  

VK
′ =  

VK−min

max−min
                (13) 

where 𝑉𝐾
′  stands for the scores after normalization. The ultimate choice regarding the 

individual (accept/reject) is made using this normalized score. 

The degree of similarity between the feature test and feature train vectors is calculated 

in the matching score step of the CNN architecture. The high match score usually 

represents the true score, or the identity of the targeted person [29]. In this respect, the 

fusion at the level of the matching score stands out for its transparency and efficient 

performances and is thus the most important. To increase accuracy of biometric 

identification system we, combined the extracted features of major and minor finger 

knuckles are combine in this thesis. 

A final matching score can be produced using a variety of fusion rules [31] as follows: 

 Simple Sum Rule: The final matching scores are added together under this rule. 

The formula (14) is as follows: 
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𝑆 =  1
𝑁⁄ ∑ 𝑆𝑖

𝑁
𝑖=1                  (14) 

 Product Rule: Is calculated using equation (15) by multiplying all of the 

matching scores together. 

    𝑆 =  1
𝑁⁄ ∏ 𝑆𝑖

𝑁
𝑖=1               (15) 

 Minimum Rule: It is determined using the minimal matching score in the 

manner shown in equation (16). 

𝑆 = min (𝑆𝑖)             (16) 

 Maximum Rule: It is determined using the highest matching score as in 

equation (17).  

𝑆 = max (𝑆𝑖)               (17) 

 Weighted Sum Rule: Similar to the sum rule equation (18), it governs the 

process through which fusion is generated as follows: 

𝑆 = ∑ 𝑤𝑖𝑆𝑖
𝑁
𝑖=1       (18) 

where 𝑤𝑖  is a weighted average of the matching scores for the 𝑖𝑡ℎbiometric 

characteristic of the 𝑘𝑡ℎ individual as in equation (19) 

𝑤𝑖 =

1
∑ 1

𝐸𝐸𝑅𝑖
⁄𝑁

𝑖=1
⁄

𝐸𝐸𝑅𝑖
         (19) 

 Weighted Product Rule: This rule is calculated using equation (20) in a manner 

identical to the preceding Product Rule using the same formula as follows: 

𝑆 =  ∏ 𝑤𝑖𝑆1
𝑁
𝑖=1                        (20) 

 where 𝑤𝑖 is weight of matching score and 𝑆1 is matching score. 

The biometric identification system's classification determination will be based on the 

fusion's final score [29]. 

 



28 

 

 

Chapter 4 

PROPOSED SYSTEMS 

This study suggests a novel approach to biometric identification based on the 

extraction of characteristics from the major and minor finger knuckle. Binarized 

Statistical Image Feature, Principal Component Analysis and the Convolutional 

Neural Network model are used in the initial step to locate significant feature points 

and extract feature information from them. A vector representation of the retrieved 

features from each registered finger knuckle  image is stored.  Each of these recorded 

vectors' pieces of data are combined to make one larger vector. To reach a conclusion, 

a weighted Euclidean distance is calculated between the input vector and the reference 

vector.  

There are 4 steps in the proposed method as follows: 

 Step 1: ROI extraction .  

 Step 2: Implementation of BSIF, PCA and AlexNet  to extract features. 

 Step 3: Methods of Fusion ( i.e Feature, Score and Decision Level Fusion) .     

 Step 4: A decision-making classifier that can identify a person .  

Figure 4.1 depicts the four steps involved in using the proposed dorsal finger knuckle 

patterns for personal identification system.  
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Figure 4.1:Proposed system showing the major and minor personal identifying areas 

on the dorsal finger knuckle. 

4.1  Preprocessing Stage 

Preprocessing and ROI extraction of features are performed for the major and minor 

knuckle regions from the finger back surface (FBKS). During the acquisition phase, it 

aligns the images of the finger knuckles, and then uses those images to construct the 

proximal and distal knuckle areas, as well as the surface of the finger's back knuckles 

with their own coordinate systems [7].  

The back of the finger is made up of the metacarpal joint, the proximal interphalangeal 

(PIP) joint, and the distal phalangeal (DIP) joint. However, most of the published 

works concentrate on combining proximal and distal knuckle patterns for 

identification purposes [13]. 

Furthermore, acquired finger knuckle print is preprocessed in order to locate a specific 

knuckle region with significant attributes for reliable individual identification. 

Because the FKP images are acquired in diverse settings with scaling, translational, 

and rotational variations, the region of interest (ROI) segmentation method is 

necessary. A sample section of 90 x 180 pixels is cut from the collected finger knuckle 
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print (FKP) to obtain its sub-image. Empirical analysis was used to determine the pixel 

size detailed in [12][9]. 

Additionally, Normalization, scaling, rotation, and picture segmentation are examples 

of pre-processing techniques. There are numerous feature descriptors that the DRB 

classifier can employ, as well as the Parallel Fuzzy Rule Base (FRB) layer, which 

includes system startup, preparation, and updating, as well as the production of fuzzy 

rules [20]. 

4.2 Feature Extraction Stage 

When examining images of knuckles, you may notice an irregular texture pattern that 

appears to be somewhat different in each finger. Minor finger knuckle images were 

utilized to evaluate the matching accuracy using a number of feature extraction 

techniques, including Local Binary Patterns (LBP), 1-D Log-Gabor Filter, and Band 

Limited Phase Only. An abundance of information on correlation can be found in the 

literature [6]. Individual authentication for finger knuckle surface detection was 

provided by [7] using a mixture of geometric and textural data. Three different 

methods—the Random Transform, the Gabor Wavelet Transform and a combination 

of features from matched fingers were used to get the characteristics of the surface of 

the finger knuckles. In addition, the Completed Local Ternary Patterns (CLTP), 2D 

Log Gabor Filters (2DLGF) and Fourier Scale-invariant Feature Transform techniques 

are used to extract local texture feature information from the knuckle regions of the 

proximal and distal fingers. The aforementioned methods of texture creation represent 

different aspects of data, as described in [13] [18] [20]. 
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Once the desired texture was located, a rapid discrete Curvelet transform was applied 

to the region of interest (ROI) of a "finger knuckle print". Since finger knuckle texture 

patterns are curved, the Curvelet transformation method will work well for 

characterizing finger knuckle print details  [12] [9]. Moreover, curved lines and folds 

dominate the magnified knuckle image. It is important to look for curved lines and 

creases on the knuckles. The features of the knuckles are then extracted. In addition, 

two appearance-based methods, Principal Component Analysis and Linear 

Discriminant Analysis, are employed [24]. The PCA and LDA are linear 

transformations that speed up computation and save money  [22].  

Principal Component Analysis, Binarized Statistical Image Feature and deep learning 

based AlexNet are used to extract characteristics of the major and minor knuckles in 

this thesis. Extracted features from the finger knuckles were used for matching on the 

Feature, Score, and Decision levels of the biometric system's fusion framework. 

4.3  Feature-Level Fusion (FLF) 

By including the major and minor dorsal finger knuckle into a unimodal system, 

recognition performance is improved. To evaluate the whole biometric system, we use 

the PolyUFK dataset (version 1.0). After the features for each attribute have been 

extracted separately, the fusion approach is used using the serial rule to generate a 

novel pattern for classification and decision making by combining facial and iris 

characteristics. Based on these two feature extraction methods, two multimodal 

biometric systems are developed, as illustrated in Figure 0.2. The following equation 

(21) explains how the serial rule works [27]: 

    𝐹𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑀𝑖 = {𝑈𝑀𝑎2 … … 𝑈𝑀𝑎𝑞 , 𝑉𝑀𝑖1, 𝑉𝑀𝑖1 … … … … . 𝑉𝑀𝑖𝑚}          (21) 
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where 𝑈𝑀𝑎2 denote Major finger knuckle features with vector size q and 𝑉𝑀𝑖𝑚 is 

assigned as the Minor finger knuckle feature with vector size m, when both m and q 

are unequal.  

In this dissertation, features are extracted independently from each finger knuckle 

image before being fused together to form a single vector of features for each 

individual. Both the major and minor dorsal finger knuckle features are included in 

this final feature vector (feature level fusion). 

When fusing images from the same format and source, the features from the numerous 

biometric attributes are in the same range, making fusion faster and more accurate 

without the need for normalization. The Nearest Neighbor classifier  is applied with a 

Manhattan distance strategy, same as in the unimodal setting [28]. 
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Figure 4.2: Biometric Finger Knuckle System with Feature Level Fusion of Major 

and Minor Finger Knuckles 

4.4  Score-Level Fusion (SLF) 

Multibiometric systems frequently use the fusion at the score level[27]. In this method, 

each unimodal system's recognition results are calculated individually, and once the 

scores have been compiled, a multimodal system is created to enhance the system's 

overall performance, as shown in Figure 0.3 below. Before beginning the classification 

process, the score vectors for each feature (Major and Minor finger knuckles) are 

generated independently and normalized as at the minimal EER value. The second step 

involves combining the Major and Minor scores using the Sum Rule. The selection is 

made using the minimum threshold necessary to ensure the maximum performance of 

the fused system [32]. 
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𝑆𝐶𝑖 =
𝑆𝐶𝑖−𝑚𝑖𝑛𝑠𝑐𝑖

𝑚𝑎𝑥𝑠𝑐𝑖−𝑚𝑖𝑛𝑠𝑐𝑖
                     (22) 

𝐹𝑠𝑐𝑜𝑟𝑒 = ∑ (𝑆𝐶𝑀𝑎𝑖
𝑀
𝑖 + 𝑆𝐶𝑀𝑖𝑖          (23) 

where 𝑆𝐶𝑀𝑎𝑖 and 𝑆𝐶𝑀𝑖𝑖 are the scores for the facial and iris biometric samples, and 𝑆𝐶𝑖 

is the normalized score for the facial and iris biometric samples. The score vector 

sample has a minimum value of 𝑖 and a maximum value of 𝑀, where 𝑖 is the minimum 

number of biometric systems and 𝑀 is the maximum number of biometric systems. 

Figure 0.3 shows the process followed to create four multimodal systems using the 

score-level fusion method. 

 
Figure 4.3: Score Level Fusion of Major and Minor Finger Knuckle Biometric 

System 

4.4  Decision-Level Fusion (DLF) 

Combining features taken from CNN decisions for each biometric attribute is done via 

decision level fusion [28]. After combining the two (major and minor knuckle) 

decisions, the CNN comes at its final decision utilizing a Weighted Rule. Every 
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classifier is modified to restore its marginal distance from the decision hyperplane 

(opinion). A feature vector of size k, which reflects the number of approaches, groups 

opinions into categories [33]. Each decision yields either the proper recognition (True) 

or the wrong recognition (False) as shown in Figure 0.4. The weight presented to a 

true decision is 1, while the weight given to a false decision is 0. To arrive at the final 

decision, the weights of the two features are combined and tested against a 0.9 

threshold. However, when there are two minimum scores, a random selection is done 

at >0.9 threshold. 

 
Figure 4.4: Major and Minor Finger Knuckle Biometric System Based on The 

Decision Level Fusion Technique. 
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Chapter 5 

EXPERIMENTS AND RESULTS 

In this section, we thoroughly test the Hong Kong Polytechnic University's (v1.0) 

publicly available finger knuckle images database and assess its performance using 

five different experiments. The first set of experiment is conducted on Major Finger 

Knuckle Recognition System, while the second set is based on Minor Finger Knuckle 

Recognition System. Fusion based experiments are performed based on Feature-level 

Fusion of Major and Minor Finger Knuckle Recognition System, Score-level Fusion 

of Major and Minor Finger Knuckle Recognition System and Decision-level Fusion of 

Major and Minor Finger Knuckle Recognition System. Afterwards comparison of 

experimental results using PCA, BSIF and AlexNet are presented. 

5.1  Database Descriptions 

The evaluation of the database used in this study was performed using the freely 

available knuckle image database (version 1.0) from Hong Kong Polytechnic 

University [5]. 2515 dorsal images of fingers from 503 individuals are stored in the 

database. Each dorsal finger image has its major and minor knuckles annotated as 

regions of interest by the owner of the database. Nearly 88% of the people in this 

dataset are under the age of 30. Bitmap (*.bmp) is the format used by these images. 

There are 5 images for each variety of finger. However, we used 5030 images for major 

and minor knuckles each with 503 x 5 = 2515 images. Table 0.1 shows dataset 

description used in descriptors PCA and BSIF. 
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Meanwhile, for the purpose of reducing training error, deep learning often needs 

training samples in thousands. However, the Hong Kong Polytechnic University 

dataset do not have as many as required quantity, consequently we created more 

images from the datasets using Keras data generator, which makes tiny but noticeable 

changes to the images such as shear-0.15, rotation-100, shift_width-0.05, zoom-0.2 

and shift_height-0.02, brightness, etc. As a result, the total number of images increases 

to 12,575 (503x5x5= 12,575) images. Table 0.2 demonstrate dataset augmentation 

details used in AlexNet and Modified AlexNet models. 

Table 5.1: Major and Minor Finger Knuckle Dataset Description Used with PCA and 

BSIF Methods 

Dataset Trait Model Subject Total 

Images 

Train 

image 

Test 

image 

PolyU 

Knuckle V1 

major and 

minor dorsal 

finger 

knuckle  

PCA 503 503x5=2515 1509 1006 

BSIF 503 503x5=2515 1509 1006 

 

 

Table 5.2: Major and Minor Finger Knuckle Dataset Augmentation Description Used 

with AlexNet and Modified AlexNet Methods 

Dataset Trait Model Subject Total Images Train 

image 

Test 

image 

PolyU 

Knuckle 

V1 

major 

and 

minor 

dorsal 

Finger 

knuckle  

AlexNet 

Model I 

(Original 

AlexNet) 

503 503x5x5= 

12575 

10060 2515 

AlexNet 

Model II 

(Modified 

AlexNet) 

503 503x5x5= 

12575 

10060 2515 

 

5.2  Experimental Results 

The experiments carried out can be categorized into two phases; first phase is the 

recognition system using unimodal finger knuckles, namely major and minor, 



38 

 

respectively. The second phase is the combination of the two systems at either the 

feature, score or decision level explained in Chapter 4. The feature extraction is 

performed using handcrafted feature extraction descriptors, PCA and BSIF described 

in Chapter 3, as well as CNN model AlexNet and its modified version. The system for 

recognition using minor finger knuckles is exactly the same with the major finger 

knuckles system. 

Cross validation was performed for Binarized Statistical Image Feature (BSIF), 40% 

of the dataset was used for testing while 60% was used for training, the dataset used 

for training and testing were swapped for a second session of training and testing. 

Hence, we end up with two results in each case. The average of the two results is taken 

as the true accuracy of the system. However, the same process was performed for 

Principal Component Analysis (PCA). 

Similarly, for AlexNet, 80% of the dataset were used for training while 20% were used 

for testing. For cross validation, a second set of training and testing datasets were used 

for second training and testing. The average of the two results was also taken as the 

true accuracy of the system as in BSIF and PCA. 

Experimental results for the first phase shown in Table 5.3 indicates that the major 

finger knuckle system produces better result in both PCA and BSIF with 65.86 and 

91.90 percent, respectively. These accounts for 3% better performance in both cases. 

Table 5.3: Major and Minor Finger Knuckles experiments compared to fusion 

methods with PCA and BSIF in terms of Accuracy (%) 

Experiment Accuracy 

using 

BSIF 

Accuracy 

using  

PCA 
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Major Knuckles 91.90% 65.86% 

Minor Knuckles 88.37% 62.535 

Feature Level Fusion (FLF) 93.14% 59.15% 

Score Level Fusion (SLF) 93.14% 76.64% 

Decision Level fusion (DLF) 95.33% 80.97% 

Experimental results for the second phase are also presented in  

Table 0.3 for handcrafted methods. The results reveal that combining the two images 

(that is major and minor finger knuckles) offer better results across all three fusion 

methods tested except in the case of feature-level fusion of PCA features. Out of the 

three fusion approaches, decision level fusion yielded the best results with accuracy of 

95.33% in BSIF and 80.97% in PCA. These account for approximately 3.6% 

improvement compared in respect to the standalone systems in BSIF and as much as 

15.1% improvement when PCA is used.  

Table 5.4: Major and Minor Finger Knuckle Experiments Compared to Fusion 

Methods with AlexNet in terms of Accuracy (%) 

Experiment Accuracy using 

AlexNet (Model I) 

Accuracy using 

AlexNet (Model II) 

Major Knuckles 97.97% 98.05% 

Minor Knuckles 98.25% 98.01% 

Score Level Fusion (SLF) 100% 99.72% 

Decision Level Fusion (DLF) 99.89% 99.36% 

 

The deep learning aspect of the experiment is shown in Table 0.4 where results of 

AlexNet (Model I) and modified AlexNet (Model II) are presented.  The results show 

that both models performed relatively close to one another with an accuracy of 

approximately 98% in major finger knuckle and minor finger knuckle systems. Two 

fusion methods, score and decision level fusion were employed in this case. Original 
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AlexNet (Model I) performed slightly better in these cases, reaching a 100% accuracy 

under score level fusion. 

5.3  Comparison with Existing Studies  

The proposed system is also compared with the state-of-the-art, including those from 

[5, 15, 29, 34] and the findings are shown in Table 0.5. Both a unimodal system and a 

multimodal system are compared in terms of their recognition results. According to 

Table 0.5, the proposed method outperforms the system developed in [5], using either 

the minor or major finger knuckle for unimodal system under identification, but [29] 

shows even higher performance, with a recognition rate of 99.93%. It can also be seen 

that the suggested approach performs better than the researches in [5, 15, 34] with the 

exception of [29], which performs equally well in terms of the fusion of modalities 

with a 100% recognition rate. 

While both the proposed system and the study in [5] used the same dataset, these 

systems employed different approaches. In [5], BSIF, PCA and Feature level fusion 

are applied to the major knuckles, minor knuckle, and full finger, however in the 

proposed technique, BSIF, PCA AlexNet and Feature, Score, and Decision level fusion 

are applied to the major and minor finger knuckles. 

Table 5.5: Comparison With The State-Of-The-Art 
Ref.   

No 

Publ. 

year 

Trait Method Database Total 

images 

Unimodal 

Recognition 

rate 

Multimodal 

Recognition 

rate 

[34] 2017 Nail 

plate of 

index, 

middle, 

and ring 

fingers 

deep CNN ImageNet 5 

images/178 

users = 890 

images per 

modality 

N/A 98% 

[15] 2019 Knuckle 

and nail 

plate of 

index, 

middle 

AlexNet ImageNet 5 

images/178 

users = 890 

images per 

modality 

N/A 97.19% 
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and ring 

fingers 

[29] 2020 Left 

Index, 

Left 

Middle, 

Right 

Index 

and 

Right 

Middle 

fingers 

Convolutional 

Neural 

Network 

(CNN) 

PolyU-FKP 4 by 12 by 

165 = 7920 

images 

99.93% 100% 

[5] 2021 Major, 

Minor 

and 

dorsal 

finger 

knuckle 

BSIF, 

PCA+LDA 

PolyU 

Knuckle V1 

5 

images/503 

users= 

2515 per 

modality 

95.43% 99.60% 

Proposed 

system 
2023 Major 

and 

Minor 

dorsal 

finger 

knuckle 

AlexNet, 

BSIF and 

PCA 

PolyU 

Knuckle V1 

5 

images/503 

users= 

2515 per 

modality  

98.25% 100% 

 

The proposed system in unimodal is better than most of the systems in the literature 

and it can be stated that it achieves superior result whenever multimodal recognition 

using both major and minor finger knuckles is employed. 
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Chapter 6 

CONCLUSION 

In recent years, scholars have become intrigued by a novel biometric trait called the 

finger knuckle print. Recent research has shown that the image pattern of the skin's 

knuckles is made up of wrinkles or lines, and that each user's finger's knuckle textu re 

pattern is quite distinctive, making the surface unique for biometric identification. It is  

common knowledge that using a combination of traits can improve a biometric 

system's accuracy. Hence, this study explored the advantage of using multiple human 

traits in biometrics to create strong human recognition system. The experiments 

include using minor and major finger knuckles  in a multimodal biometric system. 

Feature extraction methods include handcrafted feature extraction descriptors, namely 

Principal Component Analysis (PCA) and Binarized Statistical Image Feature (BSIF)
.  

Deep learning based Convolutional Neural Network (CNN) models, namely AlexNet 

and modified AlexNet have been used successfully in this study.  

Preliminary experimental results comparing the individual accuracy of the major 

finger knuckle system and the minor finger knuckle system reveal that the former 

performed better in both PCA and BSIF due to the presence of clearer patterns on the 

major finger knuckles . However, this is not so in CNN models. Fusing the two traits 

at different stages show significant improvement in the system, especially in the case 

of PCA where as much as 15.1% improvement was made. The overall best accuracy 

achieved is a 100% accuracy reached by AlexNet model when score level fusion is 

used. 



43 

 

As a future work, other finger knuckle datasets may be employed to increase the 

validity of the experimental results. Additionally, various deep learning architectures 

such as ResNet, VGG-19, MobileNet, etc. should be used for finger knuckle 

recognition. 
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