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ABSTRACT 

This study investigates the application of deep learning and machine learning 

techniques for the classification of sulfur-based concrete samples based on porosity, 

which is an important property that affects the strength, durability, and permeability of 

concrete. 

The first part of the research focused on creating a unique dataset of sulfur-based 

concrete samples and calculating features such as porosity. The percentage porosity 

was then calculated, and images were labeled as low porosity or high porosity based 

on the percentage of porosity. The images of physical samples were automatically 

annotated by image processing techniques to create a dataset. 

The second part of the study aimed to train and test a neural network to predict and 

classify samples based on porosity. We classified concrete images into two separate 

classes of low and high porosity using a basic Convolutional Neural Network (CNN) 

and transfer learning with a pre-trained model such as AlexNet. Porosity was 

calculated as the distribution of air voids and aggregates through the concrete sample. 

The comparison of two of the best models and finding the accuracy and other 

performance metrices of the networks were done using confusion matrices. 

The conclusion of this study shows that pre-trained models with transfer learning, such 

as AlexNet, can be used to accurately and automatically classify sulfur-based concrete 

samples based on porosity, which could lead to faster and more efficient quality control 

of concrete production. This study also sets the stage for further research into the 

application of artificial intelligence methods in the field of civil engineering, as it 
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offers a new method for classifying and predicting the characteristics of construction 

materials such as concrete. In future studies, the dataset created in this study can also 

be used for regression analyses. 

Keywords: Machine Learning, Deep Learning, Sulfur-based Concrete, Image 

Classification, Convolutional Neural Networks 
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ÖZ 

Bu çalışmada, betonun mukavemetini, dayanıklılığını ve geçirgenliğini etkileyen 

önemli bir özellik olan gözenekliliğe dayalı kükürt bazlı beton numunelerinin 

sınıflandırılması için derin öğrenme ve makine öğrenme tekniklerinin uygulanması 

araştırılmaktadır. 

Araştırmanın ilk kısmında, kükürt bazlı beton numunelerden oluşan bir veri tabanı 

oluşturmaya ve gözeneklilik gibi özellikleri hesaplamaya odaklandı. Daha sonra 

gözeneklilik yüzdesi hesaplandı ve görüntüler, gözeneklilik yüzdesine göre düşük 

gözeneklilik veya yüksek gözeneklilik olarak etiketlendi. Fiziksel numunelerin 

görüntüleri, bir veri seti oluşturmak için görüntü işleme teknikleriyle otomatik olarak 

tanımlandı. 

Çalışmanın ikinci kısmında, gözenekliliğe dayalı örnekleri tahmin etmek ve 

sınıflandırmak için bir sinir ağını eğiterek test etmek amaçlandı. Temel bir 

Konvolüsyonel Sinir Ağı (CNN) ve AlexNet gibi önceden eğitilmiş bir model 

kullanılarak somut görüntüler düşük ve yüksek gözeneklilik olarak iki ayrık sınıfına 

ayrıştırldı. Gözeneklilik, hava boşluklarının ve agregaların beton numunesi boyunca 

dağılımı olarak hesaplandı. En iyi iki modelin karşılaştırılması ve ağların doğruluk ve 

diğer performans ölçümlerinin bulunması karışıklık matrisleri kullanılarak yapılmıştır. 

Bu çalışmanın sonucu, AlexNet gibi transfer öğrenmeli önceden eğitilmiş modellerin, 

beton üretiminin daha hızlı ve daha verimli kalite kontrolüne yol açabilecek 

gözenekliliğe dayalı kükürt bazlı beton numunelerini doğru ve otomatik olarak 

sınıflandırmak için kullanılabileceğini göstermektedir. Bu çalışma aynı zamanda, 
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beton gibi yapı malzemelerinin özelliklerinin sınıflandırılması ve tahmin edilmesi için 

yeni bir yöntem sunduğundan, inşaat mühendisliği alanında yapay zeka yöntemlerinin 

uygulanmasına yönelik daha fazla araştırma için zemin oluşturmaktadır. Gelecekteki 

çalışmalarda, bu çalışmada oluşturulan veri seti regresyon analizleri için de 

kullanılabilecektir. 

Anahtar Kelimeler: Makine Öğrenimi, Derin Öğrenme, Kükürt Bazlı Beton, Görüntü 

Sınıflandırma, Konvolüsyonel Sinir Ağları 
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Chapter 1 

INTRODUCTION 

In civil engineering and concrete production, air voids inside the product can be very 

important for the strength and usability of concrete. To find out these metrics, the first 

step is to calculate the porosity and find the distribution of the voids and aggregates 

throughout the different parts of the product. Some studies have been done to detect 

voids and aggregates to calculate the porosity and find other properties such as 

compressive strength [1]. 

Inspection of concrete health and construction is one of the most important aspects of 

civil engineering. These days, with the help of Machine Learning (ML) and artificial 

intelligence, inspectors can manage to visit more cases with accurate information about 

cracks and voids inside buildings or concrete in a shorter time. In the civil engineering 

field, experts are trying to come up with different combinations of concrete for better 

strength. One of the most crucial factors in concrete compressive strength is porosity, 

which can be calculated by experts by counting the number of voids and adding the 

sum of their diameters. 

When we have a large amount of data, this porosity analyses process can be time-

consuming. Therefore, we can use deep learning and artificial intelligence to 

automatically find voids from images and calculate the porosity for each sample. After 

that, we can train a network with these data to predict the porosity distribution based 
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on different mixture possibilities and the distribution of aggregate materials inside 

those samples. 

Deep Learning (DL) techniques, specifically Convolutional Neural Networks (CNNs), 

have been used in research to detect voids and cracks in regular concrete samples [2]. 

In these methods, images of concrete samples are used as input to train a CNN model 

to classify the samples as either having air voids or air bubbles inside them. There are 

also many pre-trained models, such as AlexNet [3] and ResNet50 [4], that can help the 

learning process and achieve better results in a shorter training time. The use of pre-

trained models such as AlexNet or ResNet50 could be very useful in our case, as it can 

help to speed up the training process. 

AlexNet is a type of CNN for image classification. It uses images with dimensions of 

227 by 227 pixels and contains eight layers. The first five layers are convolutional 

layers, and the remaining three layers are fully connected layers. The last output of the 

network is connected to a 1000-way softmax layer to distribute the results into 1000 

class labels. To speed up the training process, a non-linear function called ReLU 

(Rectified Linear Units) is applied to the outputs of all layers (both convolutional 

layers and fully connected layers). The other advantages of this network are applying 

Local Response Normalization (LRN) to help generalization by implementing a form 

of lateral inhibition and using overlapping pooling through the network to reduce the 

top-1 and top-5 error rates and prevent the model from overfitting. This model also 

uses dropout in the first two fully connected layers to help the model learn more 

features. 
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Data augmentation is one of the most important aspects of the AlexNet model. The 

model uses data augmentation techniques such as translating the image, horizontally 

reflecting the images, and changing the intensity of the RGB channels to reduce 

overfitting and improve the model's ability to generalize. The model is trained using 

Stochastic Gradient Descent (SGD) with a stack size of 128 samples, momentum of 

0.9, and weight decay of 0.0005. The learning rate is adjusted manually throughout 

training, typically dividing by 10 when the validation error rate stops improving. The 

weights in each layer are initialized from a Gaussian distribution with zero mean and 

a standard deviation of 0.01. Neuron biases in certain layers are initialized with a 

constant of 1 to provide the ReLUs with positive inputs and accelerate the early stages 

of learning. Neuron biases in the remaining layers are initialized with the constant 0. 

In the Civil Engineering department's material laboratory, samples are stored without 

any containers and the temperature is not controlled. We can investigate the potential 

effects of these conditions on our samples, such as the relationship between 

temperature or humidity and compressive strength of concrete. These samples have 

been created within a year and they have different built dates. For future studies, new 

samples can be created with the same mixture by also adding the ages of samples to 

the dataset. This allows us to determine if the age of the sample affects our program 

for finding porosity and compressive strength. 
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The research questions addressed in this thesis are as follows: 

•  How can we automatically detect the number and diameter of voids in concrete 

samples to find out the distribution of porosity (low or high)? 

•  How can we create a classification dataset based on the distribution of voids or 

porosity? 

•  Which type of models are most suitable for this classification problem? 

In response to the above research question, this thesis makes three main contributions. 

First, it proposes a novel method for automatically detecting the number and diameter 

of voids in concrete samples, thereby determining the level of porosity. Second, it 

creates a classification dataset based on the distribution of voids or porosity. Third, it 

evaluates the performance of different models for this classification problem. 

The other part of our study is to create a usable dataset in the future. Every image 

processing dataset needs to be labeled for interesting features. The process of labeling 

is called image annotating. There are many ways and tools for annotating pictures such 

as text annotation, shapes annotation, brush/pen/pencil tools, highlighter, color 

masking, stamp, sticky notes/comment boxes, underline/strikethrough, polygon/RoI 

(Region of Interest), and hotspots. However, the process of labeling images dataset for 

image processing tasks and using it with machine learning techniques is particularly 

important and it needs to be more detailed.  Therefore, some of the mentioned tools 

may not be useful for these types of tasks. Bounding Box Annotation is the most used 

annotation tool, and it is mostly applicable to object detection tasks. It draws a 

rectangular box boundary around the objects of interest in an image. Another method 

is Polygon Annotation, which uses polygon shapes around the objects of interest 

instead of a rectangular box. Semantic Segmentation and Instance segmentation are 
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also methods for classification and detection tasks. Mask Annotation is another method 

that uses distinct colors for different classes inside an image. We employed python and 

other tools to create masked images for this dataset for future studies. 

The use of the OpenCV library in Python has been proven to be effective in 

automatically detecting voids. Identifying the features that will provide the best results 

is also an important part of this study. This library is also useful for generating dataset 

and determining diameter counts. It enables the creation of masked images featuring 

annotated voids. Utilizing the capabilities of this Python library, porosity percentage 

can be computed through void pixel quantification. Furthermore, it facilitates image 

preservation and masking for later applications. Civil experts also furnish information 

about sample composition and porosity. This information can be added to our new 

dataset for future use via machine learning. With the help of programming languages 

such as Python and MATLAB, we can convert each image to a binary array and try to 

classify the porosity of these concrete samples. 

The cracks and aggregates within the specimens will not be investigated in this study. 

Our colleague has conducted various tests, including assessing the impact of water 

pressure on each sample and other pertinent analyses, within their expertise. As a 

result, potential future investigations could integrate these tests with a machine 

learning model to forecast their influence on distinct material compositions. It is worth 

noting that we have retained two distinct mask images, augmenting our dataset to 

potentially enhance or diversify our analytical capabilities for various tasks. 

The limitation of this idea is the discrepancy between the way machines work and the 

real world. There are many areas where machine learning can be applied, but it is 
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challenging to apply it directly to civil engineering problems. Machine learning models 

that are simulated in the lab often fail in real-world tests. This is usually due to a data 

mismatch between the data used to train and test the machine learning model and the 

data it encounters in the real world, a phenomenon known as data shift. 

This research can help students and researchers in the material field to simplify the 

process of detecting patterns in their materials, especially when they are working with 

large amounts of data. As we mentioned earlier, it can be applied to any engineering 

discipline to detect patterns and make future predictions. This experimental study aims 

to shed light on the potential models and methods that can be used for concrete image 

analysis by creating a state-of-the-art dataset of over 3,000 images. The purpose of this 

thesis is to first create a unique dataset from concrete samples and then train a network 

to predict whether each image is of low or high porosity. 

This thesis makes significant contributions to the larger body of knowledge in several 

important ways, including the following: 

• The creation of a dataset: Here, we present a one-of-a-kind dataset consisting 

of sulfur-based concrete samples. We place an emphasis on characteristics such as 

porosity, and created separated mask files which will serve as a valuable resource for 

future research. 

• Model Benchmarking: Through a comparison of a basic CNN and transfer 

learning model, this investigation attempts to provide significant insights into the ideal 

methodologies for similar classification tasks. 
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1.1 Thesis Overview 

This thesis investigates the results of two different deep learning-based machine 

learning models for predicting porosity classes of sulfur concrete sample images, 

namely low porosity, and high porosity. This brief overview section provides an outline 

of the various chapters and their individual objectives. Chapter 1 introduces the thesis, 

states the problem, discusses the limitations and benefits of this research, and presents 

potential future studies. It also provides an overall view of the whole thesis. Chapter 2 

offers a thorough literature review of the techniques developed to calculate the porosity 

inside any type of concrete, especially sulfur concretes. Additionally, this chapter 

examines previous studies on machine learning models, edge detection techniques, and 

previous usage of transfer learning algorithms, particularly AlexNet. Chapter 3 

outlines the research goals, the novelty of the dataset, and provides an overview of the 

methodology employed. Additionally, a detailed explanation of methodology used 

through the study for both creating the dataset and training the network is presented. 

Chapter 4 presents the separate results for both networks’ training and testing phases. 

It also presents a validation test with 100 excluded images and provides comparison 

of the models, their results, and metrics. Finally, this chapter discusses the future study 

potentials related to this type of research and dataset. Chapter 5 concludes this research 

and discusses the applicability of the dataset and method in real-world and other 

engineering fields.   



8 

Chapter 2 

LITERATURE REVIEW 

The application of detecting objects through pictures with the help of ML and deep 

neural networks has been around for more than a decade [5]. It has a very flexible 

usage from detecting lunar crates inside a telescope picture [6] to identifying atoms 

inside a microscopic image [7]. However, the usage of ML algorithms for Structural 

Health Monitoring tasks, such as bridge crack detection and tunnels health conditions 

did not become popular until 2006 [8].  

Images of the surface can be useful for finding the condition of a concrete structure, 

but there are many other factors that cannot be seen in images. In recent years, experts 

have developed many techniques to understand what is happening inside the concrete 

structure. As stated in [9], the best way to obtain the samples from inside is the non-

destructive techniques. According to Flah’s review article, techniques that are used for 

condition assessments inside a concrete structure have been divided into two main 

categories: vibration-based and image based [8]. Vibration-based and image-based 

techniques can be used for concrete condition assessment. However, as the thesis study 

is based on detecting voids inside microscopic images of sulfur-based concrete 

samples, we focused on Imaged based techniques.  

Until now, some studies have investigated cracks inside concrete sample images based 

on their features, these features can be extracted for any images and also, they are 
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different in many criteria, such as patterns [11] [12], using multi-resolution analysis to 

select cracks inside images [13] or finding edges to help identify diameter of cracks 

inside a sample for detecting the patterns [14]. However, in 2021, an automated crack 

pattern recognition method based on DISTS index (a CNN method) was invented to 

classify features of cracks based on structural or non-structural patterns inside images 

from real world and it can predict cracks with 96% accuracy [11]. One of the biggest 

challenges is to automatically identify cracks from an image containing actual cracks 

and crack-like noise patterns such as dark shadows, stains, lumps, and holes, which 

are often seen in concrete structures. In Kim’s study, authors came up with a method 

that filters input images based on the Hessian matrix to remove noises and the 

outcomes showed it can easily classify crack from non-cracks based on the shape and 

direction of them [14]. For this study, we have access to more than a hundred samples 

of a new type of concrete based on sulfur. Our aim in this study is to detect air voids 

inside them to calculate the porosity. Based on the porosity and the mixture of samples, 

the compressive strength of the future samples also can be predicted [15].  

A comparison for prediction of compressive strength of concrete sample has been 

carried out in [15] using ML techniques via “R” software environment and employed 

three-dimensional reconstruction methods for mapping the images to machine. 

Active and passive are the main subcategories for 3D reconstruction methods [16]. 

The first researcher who studied the automated version of this type of photography 

was Wolter [17]. However, one of the most popular ways for obtaining pictures, which 

is Binocular Stereo, was invented by Biskup [18]. Since we want to obtain our images 

with a microscope or smartphone, this method is well suited for such applications. In 

another study, Girshick [19] presented the images as pixel segmentation to detect 
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objects accurately by hierarchy of features. This algorithm has since been used in many 

areas such as autonomous driving [20], face detection [10], and image search engines 

[21].  

The main advantage of this method with ML and especially Deep Learning (DL) is the 

ability to learn the features of each pixel and use that to detect objects inside the 

pictures more accurately [19]. In contrast to reconstruction methods, there are other 

methods that can detect objects with other features such as Crater Detection Algorithm 

(CDA) for detecting lunar craters. Although this algorithm has a completely different 

nature with our concrete samples, it can still be useful for our research to detect voids 

inside the images. As we mentioned before, the CDA algorithm is a crater detection 

algorithm that can find the lunar crater and based on the diameter and other features it 

can prepare a catalogue about that [22]. This algorithm can be used in our study for 

finding the diameter of voids. In the other area, Yaman studied the calculation of 

porosity based on the voids inside the concrete samples and for the accurate result they 

need to find more than 2,000 voids and their diameter inside each sample, which makes 

this task a time-consuming and labor-intensive process [23].  

Although many features can be used, finding compressive strength is one of the most 

prominent features for concrete production and predicting compressive strength based 

on porosity and mixture. These techniques to detect voids inside concrete samples have 

been studied in [15] and are compared together based on accuracy and speed. The 

method called Image thresholding in OTSU algorithm changes the image to black and 

white and defines a threshold value to separate the voids from the rest of the image 

[24].  
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2.1  Edge Detection 

Edge detection algorithms are used to detect the edges of the voids inside an image. 

There are some popular techniques such as Canny edge detection or Sobel edge 

detection [13]. Another algorithm called Blob detection is also useful for identifying 

the voids in the image. These algorithms look for connected areas based on the pixels 

that have similarity in the color or intensity and can be used to locate the voids in the 

image [5]. 

2.2  Transfer Learning 

In the past decade, CNNs have revolutionized the field of image classification. The 

hierarchical structure of CNNs allows them to learn spatial hierarchies of features 

automatically and adaptively from images [3]. Krizhevsky's work on the AlexNet was 

instrumental in propelling the utility of deep learning in image classification tasks.  

The scholarly work written by Krizhevsky [3], commonly referred to as the AlexNet 

paper, was a notable milestone in the domain of deep learning and computer vision 

[3]. Before 2012, the dominant approaches used for addressing image classification 

tasks used conventional image processing methods and shallow machine learning 

algorithms. 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was a popular 

benchmark where these methods were tested. The primary contribution of this paper 

was the introduction of a deep CNN called AlexNet, which significantly outperformed 

all the other techniques in the 2012 ImageNet challenge. The network architecture was 

deep (compared to prior standards) with 8 layers - 5 convolutional layers followed by 

3 fully connected layers. This study used the Rectified Linear Unit (ReLU) as the 
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activation function, which was found to train the network several times faster than tanh 

and sigmoid. To reduce overfitting in the fully connected layers, they introduced the 

"dropout" technique, a regularization method where a subset of neurons is randomly 

ignored during training, which helps in achieving a more robust model. Additionally, 

the team used data augmentation techniques like random cropping, flipping, and RGB 

color shifts to artificially expand the training dataset, improving performance and 

robustness.  

Localized response normalization helped the model handle a wide range of activations, 

ensuring that the neuron outputs don't become too high or too low. Instead of the 

common practice of using average pooling, the team used overlapping max pooling, 

which reduced the top-1 and top-5 error rates.  

Due to the model's deep architecture, traditional CPUs were insufficient for training. 

Authors in this study used two Nvidia GTX 580 GPUs for training, marking one of the 

pioneering uses of GPUs for deep learning tasks. The design was such that the GPUs 

communicated only in certain layers, ensuring efficient parallel computation. The 

massive reduction in error rate achieved by AlexNet on the ImageNet challenge was 

groundbreaking. The success of this deep learning approach spurred a flurry of interest 

and subsequent advancements in deep learning, solidifying neural networks' position 

as the go-to technique for computer vision problems. 

 Transfer learning is very useful for many applications like object recognition [26], 

identifying logos inside an image [27], and descriptive text generator for an image 

[28].  For training a network faster and with less data than a common neural network 

there are pre-trained models such as resNet50 or AlexNet. The study of these kinds of 
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networks has been done previously and showed that these networks can be useful for 

this goal in training a network. 

2.3  Convolutional Neural Networks (CNNs) for Image Classification 

Image classification has been a central topic of research in computer vision for several 

years. The task involves categorizing a given image into one of several predefined 

classes. The classification can be binary (where the image can belong to one of two 

possible categories) or multi-class (where the image can belong to one of more than 

two categories). In this part of the literature review, we discuss some of the pivotal 

works that have shaped the development of image classification for both binary and 

multiple classes. 

The process of binary image classification, which involves the classification of images 

into two separate classes, is commonly utilized as an initial stage in many classification 

tasks. Image classification has diverse applications across several fields. For instance, 

it is utilized in medical imaging to differentiate between abnormal and normal tissues. 

Additionally, it is employed in spam detection to identify photos as either spam or non-

spam. The publication by Razavian [29] is widely regarded as a foundational 

contribution to the domain of deep learning for binary categorization. The research 

demonstrates the effectiveness of employing characteristics derived from pre-trained 

convolutional neural network (CNN) models for various image recognition tasks. 

The incorporation of many classes into binary classifiers poses intrinsic challenges. 

One often adopted approach entails the utilization of the one-vs-all strategy, whereby 

a binary classifier is trained for each specific class in contrast to all remaining classes. 

However, it is important to acknowledge that CNNs have exhibited their proficiency 
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in efficiently managing numerous categories. The phenomenon is demonstrated 

through the notable accomplishments of prominent networks such as VGG, Inception, 

and ResNet in the ImageNet challenge, which encompasses an impressive array of 

1000 classes [30], [31], [32]. 

With the rapid progress in deep learning, there are emerging trends and challenges in 

image classification. Issues like interpretability of models, adversarial attacks, and 

incorporation of attention mechanisms have gained traction [33]. 

The paper "Attention is All You Need" by Vaswani [34] introduced a novel architecture 

called the "Transformer" which has since become the backbone for many state-of-the-

art models in Natural Language Processing (NLP) and even some image-related tasks. 

Before this work, most sequence-to-sequence tasks in NLP were dominated by 

recurrent models like LSTMs or GRUs. While effective, these models process 

sequences step-by-step, which can be computationally intensive, especially for long 

sequences. The Transformer architecture replaced recurrence with the self-attention 

mechanism. In layman's terms, instead of processing sequences word-by-word, the 

self-attention mechanism enables the model to concentrate on different parts of the 

input text at the same time. This "attention" distributes importance to various input 

elements based on their relevance, enabling more parallel processing, and capturing 

dependencies regardless of their distance in the sequence. The architecture itself 

consists of an encoder and decoder stack. Each encoder has multiple identical layers 

with two sub-layers: a multi-head self-attention mechanism and a simple position-wise 

fully connected feed-forward network. The decoder has an additional multi-head 

attention layer to attend to the encoder's output. Importantly, to maintain sequence 

order without recurrence, they introduced position encoding, added to the input 
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embeddings at the bottoms of the encoder and decoder stacks. This work led to 

significant improvements in translation tasks, setting new state-of-the-art benchmarks. 

Its architecture's scalability and effectiveness soon became foundational, leading to 

models like BERT, GPT, and many others, revolutionizing the NLP field. While the 

paper primarily dealt with NLP tasks, the concept of attention and the Transformer 

architecture found its way into other domains, including computer vision. For image 

classification and generation tasks, certain modifications and adaptations of the 

Transformer model have been explored. In essence, [34] shifted the paradigm by 

demonstrating the power of attention mechanisms, proving that models don't 

necessarily need to rely on recurrence or convolution to achieve high performance in 

sequence-based tasks. 

Image classification, whether binary or multi-class, has witnessed significant 

advancements with the advent of deep learning. While CNNs have dominated the 

landscape, continuous research has led to refinement in techniques, promising even 

better performance and more generalized applications in the future. 
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Chapter 3 

METHODOLOGY 

This chapter explains the methodology employed in the thesis. It begins by detailing 

the sample creation process. Subsequently, the chapter delves into the procedures 

involved in capturing and preparing a dataset of over 3,600 JPEG-formatted images. 

The annotation of these images is then discussed, with an exploration of both 

automated and manual annotation methods, as well as the creation of masks for future 

image segmentation studies. This chapter also outlines the calculation of porosity 

based on the distribution of air voids within the sulfur-based concrete samples. Lastly, 

the process of labeling the dataset as either low or high, with the assistance of a civil 

expert, is described. The upcoming session at the end will focus on the process of 

testing and training using two specific models, namely the Convolutional Neural 

Network (CNN) and AlexNet. Additionally, the session will cover the creation of an 

additional independent test set to enhance the accuracy of the outcomes. Lastly, the 

session will discuss the rationale of utilizing CNNs and Transfer Learning. 

3.1  Samples Creation and Preparation Process 

Samples of this study are created in the laboratory of Civil Engineering department of 

Eastern Mediterranean University laboratory from sulfur-based concretes. These types 

of concrete are created by combining different aggregates, natural materials such as 

gravel, crushed stone, and recycled concrete and chemical materials such as High-

Density Polyethylene (HDPE) polymer or Linear Low-Density Polyethylene (LLDPE) 

polymer inside a temperature-controlled heating mixer as shown in Figure 3.1.  
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Figure3.1: Temperature-controlled Heating Mixer 

These aggregates help to increase the strength of the concrete products by providing a 

framework for the hardened material, as well as helping to reduce shrinkage and 

cracking and the porosity is the air voids between these aggregates that will reduce the 

overall strength of the products. The created samples (see Figure 3.2) were sliced into 

5 cm sections for the next step. The next stage before the image capturing part was 

washing the sliced samples surface with water and drying them out. This helps remove 

any extra dust or aggregates remained after slicing process and increases the visibility 

of voids and aggregate’s colors on the surface of concrete samples. 

 
Figure3.2: Sulfur-based Concrete Samples 
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3.2  Dataset Creation and Preparation Process 

The smartphone camera was utilized in Macro mode, positioned on a magnetic stand, 

and operated using voice command functionality. The camera was placed 10 cm away 

from the sample on a white surface. The magnetic stand and voice command feature 

are employed to save images without altering the camera's position. This is important 

because it ensures that the images are captured with a high level of detail. Some 

examples of images captured using this method are visible in Figure 3.3.  

 
Figure 3.3: A Sample Captured Image in Original Size 

The utilization of near zero angle lighting was implemented in the image capture 

procedure, as per the investigation conducted by Hong. This methodology entailed the 

utilization of the side lights of a microscope that was equipped with adjustable 

illumination tubes, as shown in Figure 3.4. The study conducted by Hong emphasized 

the effectiveness of this lighting technique in capturing photographs where voids have 

a deeper appearance as a result of shadow presence. The objective of utilizing this 

methodology was to streamline the process of automatic annotation and improve the 

overall efficiency of the OpenCV library [25].  
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Figure 3.4: Microscope with Adjustable Lights 

The dimensions of the original captured images are 1160 by 2576 pixels. This image 

size is quite sufficient to capture the voids with other details such as distribution of 

aggregates from surface of the concrete. A total of 1800 images in jpg format were 

obtained from over 100 samples. The images were captured from various sections of 

the samples, covering both low and high porosity regions. Additionally, different areas 

of the samples were included based on the color and distribution of aggregates. This 

approach aimed to enhance the diversity of the dataset and facilitate the extraction of 

additional features by the model, as depicted in Figure 3.5. 

 
Figure 3.5: Different Parts of The Samples 

Subsequently, the photos were divided in half to extend our dataset and optimize the 

images for the training phase. A sample cropped image is available in Figure 3.6. This 

process enabled us to increase the sample size of our dataset to 3600 images in jpg 
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format. In the preparation phase, a thorough examination was conducted on all 3600 

photographs in order to identify and eliminate those that exhibited noise, blurriness, 

incompleteness, or were deemed useless. Some examples of these unusable images are 

shown in Figure 3.7. 

 
Figure 3.6: Cropped Image to Half Size 

 
Figure 3.7: Example of Removed Images from Dataset 

3.3 Image Annotation and Mask Creation 

The succeeding applications involved the utilization of the OpenCV library in the 

Python programming language to find and annotate the air voids, following the image 

cropping procedure. The first step was to find the voids inside images by converting 

them to grayscale and trying to fill the voids based on their darker color and shadow. 

After many different tries, this goal was achieved with the mentioned threshold in 

Figure 3.8. The detection in this part mostly fulfills the function of automatically 

annotating the photos. 
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Figure 3.8: Suitable Threshold for OpenCV2 Library 

The diagram is for the code snippet: “ret, thresh = cv2.threshold(gray, 55, 255, 

cv2.THRESH_BINARY_INV)” of OpenCV2 Python Library. This code applies a 

thresholding operation to a grayscale image using OpenCV library. The resulting 

image is stored in the variables "ret" and "thresh". The thresholding is performed using 

a threshold value of 55, where pixel values below this threshold are set to 255 (white). 

As can be seen in Figure 3.9, the automatic detection is not 100% accurate. The 

mistakes were fixed by manually annotating the images with image editing tools such 

as Adobe Photoshop. This careful annotation process yielded excellent results, as 

demonstrated in Figure 3.10. 

 
Figure 3.9: First Try to Annotate the Images Automatically 
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Figure 3.10: Second Try to Annotate the Images Manually 

In the process of annotating the images, red pixels were used to represent voids. The 

same red color was used to manually fill in any undetected voids inside the samples. 

the mistakenly detected aggregates were also removed to clarify our dataset and 

calculate percentage of the porosity. 

The main purpose of filling the voids was to count the number of red pixels later to 

calculate porosity percentage of that sample. Furthermore, the annotated images in 

both monochrome (black and white) and colorized versions (purple and yellow) were 

saved for dataset further applications. As mentioned before, there are many ways to 

annotate an image for computer vision tasks. One the most useful methods is to create 

mask images based on distinct colors. Different masked versions can be seen in 

Figure3.11 and Figure3.12.  
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Figure 3.11: Purple and Yellow Masks 

 
Figure 3.12: Black and White Masks 

3.4  Porosity Calculation 

After the image annotation and mask creation process, another OpenCV Python script 

was used to calculate the sum of the red areas in pixels and save it with the equivalent 

image name in an Excel file. The porosity percentage was then easily found by dividing 

the sum of the red areas by the area of the image. The first few rows of the created 

dataset are shown in Figure 3.13. 

𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (%) =
𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
× 100 

The concept of porosity in materials such as concrete refers to the presence of empty 

spaces or voids within the material. In the present study, the aim was to ascertain the 

percentage of porosity by evaluating the ratio of voids (shown by red pixels in the 

annotated photos) to the total area of the concrete sample. 
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The annotated images used in our study used red pixels to indicate voids present in the 

concrete. Therefore, the sum of these red pixels provides a direct measurement of the 

total empty area present in the image. The area of an image can be determined by 

multiplying its width and height in pixels. The area depicted in the illustration 

encompasses the entirety of the sample area, encompassing both solid and empty 

spaces. 

The relative fraction of voids in the sample can be determined by calculating the ratio 

of the sum of red pixels (representing the void area) to the total image area. This ratio 

yields a numerical value ranging from 0, indicating the absence of voids, to 1, 

representing a complete void presence. To express a proportion as a percentage, it is 

necessary to multiply the ratio by 100. This conversion allows for a more easily 

comprehensible measure in the context of porosity analysis. 

The justification for using this formula is based on the fundamental concept of 

percentage calculation. This principle involves dividing the part (voids) by the whole 

(total sample area) and then multiplying the result by 100 to represent it as a 

percentage. The formula provides a numerical assessment of porosity, facilitating the 

ability to make comparisons and conduct further research. In the context of practical 

applications, this percentage can be likened to the process of physically quantifying 

the empty spaces within a given sample and then representing them as a proportion of 

the sample's overall volume. 

The consideration of porosity in the design of concrete mixes is a crucial factor that 

significantly impacts the overall performance and long-term durability of concrete 

structures. Various techniques exist for determining the porosity of concrete 
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specimens, which are dependent on factors such as the sample's type and dimensions, 

the available instrumentation, and the desired level of precision. 

The helium pycnometer method is widely employed for determining the porosity of 

concrete samples. The procedure involves quantifying the volume of a concrete 

specimen with a helium pycnometer, a specialized apparatus that employs helium gas 

as a medium. The porosity of the concrete sample (𝜑) can be calculated using the 

following formula [35]: 

𝜑 =
𝑉ℎ − 𝑉𝑏

𝑉ℎ
 

Where the volume of helium gas displaced by the concrete sample is denoted by Vh, 

and the bulk volume of the concrete sample is denoted by Vb, both in centimeters. 

The study used a pixel-based approach to estimate porosity. This provides a 

computerized method for measuring a parameter that is typically measured through 

more time-consuming physical measurements. By utilizing image processing 

techniques and the pixel-based representation of annotated images, it is possible to 

effectively compute the porosity percentage for a significant quantity of concrete 

samples. 

With the help of a civil engineering expert, all the samples with porosity less than or 

equal to 3.5 percent were labeled as low porosity class, and the others as high porosity 

class as shown in Figure 3.13. 
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Figure 3.13: First Few Rows of the Dataset 

3.5  Training and Testing  

Two distinct models were employed in the training process of the network to classify 

the data according to the given labels. In order to conduct the training and testing 

procedure, MATLAB was chosen due to its beneficial attributes of speed and 

simplicity, particularly in the context of classification problems. 

In the first attempt, a basic CNN with 2 convolution layers was used as supervised 

learning with provided labels. RGB coded images of size 227x227 pixels were 

presented to the network with a learning rate of 0.0001 as a constant value, a batch size 

of 16, and the network was trained for 100 epochs to calculate accuracy. The initial 

layer of our CNN consisted of a 2D convolution layer. This layer included 20 filters, 

each with a kernel size of 5x5 pixels. A batch normalizer layer was then used to 

normalize the activations of the neurons in the convolutional layer. In the implemented 

code, after batch normalizer layer the ReLU activation function was employed to the 

inputs. A 2D Max pooling layer was then used to reduce the spatial dimensions (width 

and height) of the input volume to 2x2 pixels and contain important features of the 

input for the next convolution layer. The last part sends the input features to the 50 

classes followed by another ReLU activation function. This layer is then connected to 

a fully connected layer with 2 classes.  Finally, the softmax function was used on the 
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outputs of the previous fully connected layer. The softmax function transforms its 

inputs into a probability distribution, meaning that the output of each neuron will be a 

value between 0 and 1, and the sum of all the neuron outputs will be 1. This makes it 

easy to interpret the output of each neuron in the final fully connected layer as the 

network's confidence that the input belongs to the respective class. The samples were 

also shuffled every epoch to get better results during the training process. The layers 

of this architecture can be seen in Figure 3.14.  

 
Figure 3.14: CNN Model Architecture 

In the subsequent network, transfer learning was implemented by leveraging a pre-

trained model known as AlexNet, which is available in the Deep Learning Toolbox of 

MATLAB. The input images were presented as 227 by 227 pixels in RGB colored 

format with the same criteria explained before. The learning rate was 0.0001, the batch 

size was 16 and the network was trained for 100 epochs before reaching the results. 

To take advantage of the features that the pre-trained AlexNet model had learnt and 

use them as a springboard for a new job (a process known as transfer learning), the 

final three layers of the pre-trained network were used. The final layers of the pre-

trained network, which stand in for fully connected layers, were then taken out and 
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replaced with new layers that are better suited to the brand-new task of identifying 

porosity. 

Following that, a fully connected layer with 2 neurons per class was built to represent 

low and high porosity. The learning rates, weights and biases in this layer were 

specially modified using the parameters "WeightLearnRateFactor" and 

"BiasLearnRateFactor", both of which were set to 20. The global learning rate was 

multiplied by the learning rate factor. Therefore, in this instance, the weights and biases 

in this layer would learn at a rate that is 20 times faster than the overall learning rate. 

For both networks, 80 percent of the images were used for training, 20 percent of the 

images were used for testing and, and around 100 images were kept out of this process 

for future testing and validation. The layers of the AlexNet architecture are presented 

in Figure 3.15. 

 
Figure 3.15: AlexNet Model Architecture 
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3.6  Validation Procedure 

A crucial aspect of our investigation was to evaluate the robustness and generalizability 

of the constructed models. This was achieved through a meticulous validation 

procedure. Here is a comprehensive explanation of our validation methodology: 

• The selection of cross-validation was made to evaluate the performance of our 

model on data that had not been previously seen. Cross-validation is a widely 

accepted technique in the field of machine learning. The proposed approach 

involves dividing the initial dataset into two distinct subsets: an 80% training 

set, which is used to train the model, and a 20% validation set, which is used 

to assess the model's performance. By performing this action iteratively and 

calculating the mean of the results, we have a more precise approximation of 

the performance of the model. 

• The binary classification problem was established with the primary aim of 

categorizing concrete samples into two distinct groups, namely low and high 

porosity. The default binary classification setting in MATLAB was used to 

ensure that the validation procedure adhered to industry norms. 

• The validation process was conducted every 120 epochs during the training 

phase. An epoch is defined as a full iteration in which all training instances are 

sent through the network in both forward and backward directions. By 

conducting validation at regular intervals of 120 epochs, we implemented a 

systematic approach to continuously check the performance of the model. The 

regular validation process facilitated the early detection of any indications of 

overfitting and verified that the model was effectively acquiring the desired 

features from the dataset. 
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• The selection of AlexNet, a widely recognized neural network design, was 

based on its documented efficacy in the domain of image categorization tasks. 

The selected software, MATLAB, provides comprehensive support for 

AlexNet, facilitating smooth integration and optimizing the training and 

validation procedures. In addition, we relied on the optimal parameters of 

MATLAB's default settings, which have been developed through extensive 

research and practical implementation in various real-world scenarios. 

• The outcome of the validation process was assessed by periodically analyzing 

the validation results, which were generated every 120 epochs. These results 

served as a diagnostic tool for evaluating the performance of the model. If there 

is a substantial discrepancy between the model's performance on the validation 

set and its performance on the training set, this could suggest the presence of 

difficulties such as overfitting. Consequently, it may be required to make 

improvements to the model. 

In brief, the validation procedure was meticulously constructed to ensure 

comprehensiveness and rigor, utilizing the advanced functionalities of MATLAB and 

the well-established architecture of AlexNet. By employing diligent monitoring and 

employing cross-validation techniques, we ensured that the predictions generated by 

our model were not only precise when applied to the training data, but also 

generalizable to novel, unobserved data.  
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Chapter 4 

RESULTS and DISCUSSIONS 

The training procedure involved the utilization of two distinct networks: a simple CNN 

and a pre-trained model known as AlexNet. Both networks were trained and assessed 

on a dataset of images representing low and high porosity sulfur-based concrete. The 

networks were subjected to further examination by utilizing an independent set of 

images in order to calculate the metrics. The results obtained from each model are 

presented and discussed in the following sections. 

4.1  Customized Simple Convolutional Network 

The Convolutional Neural Network model explained in Chapter 3 was trained over 80, 

100, and 160 epochs with different criteria, such as different batch size and different 

learning rates. The best results were achieved with 100 epochs, a constant learning rate 

of 0.0001 and a batch size of 16. Over this period, the accuracy of the model gradually 

improved, as visualized in the training accuracy chart (see Figure 4.1). By the end of 

the training process, the CNN achieved an accuracy rate of 85.86% on the test data, 

demonstrating a respectable level of performance in classifying concrete samples 

based on porosity. The blue line depicts the accuracy rate observed during the training 

phase, while the black line represents the validation accuracy recorded at intervals of 

120 epochs.  
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Figure 4.1: Training Accuracy of Proposed CNN Model for 100 Epochs 

 
Figure 4.2: CNN Model Confusion Matrix (After 100 Epochs) 

The confusion matrix (see Figure 4.2) highlights some instances of misclassification.  

4.2  AlexNet Model 

The AlexNet model was trained with the same training parameters as the CNN model, 

including the constant learning rate of 0.0001, a batch size of 16 and 100 epochs. As 

shown in the training accuracy chart (see Figure 4.3), the AlexNet model achieved a 

higher accuracy rate of 93.15% on the test data than the CNN model.  
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Figure 4.3: Training Accuracy of Proposed AlexNet Model for 100 Epochs 

The confusion matrix for the AlexNet model (see Figure 4.4) indicates fewer instances 

of misclassification compared to the CNN model, confirming its superior performance 

on this task.  

 
Figure 4.4: AlexNet Model Confusion Matrix (After 100 Epochs) 

4.3  Performance Metrics 

Based on the parameters provided in confusion matrix shown in Figure 4.5, it is 

possible to compute five performance metrics, namely Accuracy, Precision, Recall, 

F1-Score, and Specificity. 
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Figure 4.5: Binary Class Confusion Matrix Schema 

True Positive (TP): samples had been classified correctly for positive class.  

False Positive (FP): samples had been classified correctly for negative class. 

True Negative (TN): samples had been classified falsely for positive class, but they 

belong to negative class. 

False Negative (FN): samples had been classified falsely for negative class, but they 

belong to positive class. 

Accuracy: this metric tells us how many samples out of all the ones in the test set were 

correctly classified. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

Precision: This metric tells us how many samples that the model predicted to be in the 

positive class actually fell into that category. 

Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
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Recall: This metric tells us the proportion of samples really belong to the positive class 

out of all samples.  In other words, it tells us the percentage of samples that were 

correctly classified as positive. 

Recall =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

F1-Score: This metric gives us the sum of the accuracy and recall scores for the class 

that performed positively. 

F1 − Score =
(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

Specificity: This metric tells us the proportion of samples in the data set that were 

correctly predicted to be in the negative class, out of all samples in the data set. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
 

The metrics were derived based on the confusion matrices of both networks. 

4.4  Performances of Deep Learning Models 

The results for the CNN model are depicted in Figure 4.6. The outcomes for the 

AlexNet model can be seen in Figure 4.7. Based on the results in Table 4.1, the 

comparison chart illustrated in Figure 4.8, presents a comparative analysis of the two 

networks conducted over a span of 100 epochs. It is evident that the AlexNet model 

showed superior performance compared to the CNN model across all metrics. The pre-

trained AlexNet model's higher accuracy is due to its existing knowledge base, which 

allowed for a more effective transfer learning process. 
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Figure 4.6: CNN Model Metrics After 100 epochs 

 
Figure 4.7: AlexNet Model Metrics After 100 epochs 

Table 4.1: Results for 100 Epochs 

 AlexNet CNN 

Accuracy 93.15% 85.86% 

Precision 92.97% 84.32% 

Recall 94.25% 88.89% 

F1-Score 93.61% 86.55% 

Specificity 91.90% 82.69% 
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Figure 4.8: Performance Comparison of Network Models After 100 Epochs 

Comparing the performance of the two models, AlexNet clearly outperformed the 

employed CNN model, demonstrating a higher classification accuracy of 93.15% 

against 85.86%. The superior performance of AlexNet can be attributed to its pre-

trained network's extensive learning on a large-scale image dataset. This gave it a 

distinct advantage, especially in the feature extraction stage of the model. 

The loss charts for both models (see Figures 4.9 and 4.10) visually represent the 

progression of loss values throughout epochs during the training process, with the 

orange line serving as a depiction of this evolution. The loss function measures the 

discrepancy between the predicted outputs produced by the model and the actual target 

values found in the training dataset.  

The primary objective during the training procedure of a neural network is to minimize 

this loss. As time progresses, there is a noticeable pattern of diminishing loss, 

indicating that the model is gaining knowledge and improving its ability to make 

predictions. It also offers insights into the learning process by providing an 

understanding of how quickly or slowly the models learned to classify the images and 
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where potential adjustments to the learning rate or other parameters might be 

beneficial. 

The loss value of the model on the validation dataset is represented by the black line 

in the loss plots, which visually demonstrates the evolution of training over epochs. 

The validation dataset is a separate and unique set of data that has not been utilized by 

the model throughout the training process. The objective of employing this 

methodology is to evaluate the efficacy of the model on unseen data, while also 

monitoring the presence of overfitting. 

 
Figure 4.9: CNN Model Training Loss 

 
Figure 4.10: AlexNet Model Training Loss 

The effect of varying the number of epochs on the training process has been studied. 

We evaluated the performances of the networks at 80, 100, and 160 epochs with similar 

hyperparameters. The results for the first training with 160 epochs and its hyper 

parameters are shown in Table 4.2. 
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Table 4.2: Performance Evaluation of The Models After 160 epochs (Learning 

rate=0.0001, Batch size=16) 

 AlexNet CNN 

Accuracy 91.69% 82.80% 

Precision 91.89% 79.19% 

Recall 92.64% 87.72% 

F1-Score 92.27% 83.24% 

Specificity 90.60% 78.13% 

Based on the data shown in Table 4.2, it is evident that the performance of our network 

in terms of porosity classification is superior when trained for 100 epochs compared 

to a higher number of epochs. 

The results for the second training with 80 epochs and its hyper parameters are shown 

in Table 4.3. 

Table 4.3 Performance Evaluation of The Models After 80 epochs (Learning 

rate=0.0001, Batch size=16) 

 AlexNet CNN 

Accuracy 92.42% 85.13% 

Precision 89.19% 80.81% 

Recall 96.49% 90.61% 

F1-Score 92.70% 85.43% 

Specificity 88.37% 80.06% 

As previously seen in Table 4.1, the results obtained with 100 epochs are slightly better 

than the results obtained with 80 epochs. Therefore, the optimal number of epochs for 

training was selected as 100 for classify porosity. 

The comparison of confusion matrices for different number of epochs is presented in 

Figure 4.11 and 4.12. 
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Figure 4. 11: AlexNet Model Confusion Matrices 

 
Figure 4.12: CNN Model Confusion Matrices 

In conclusion, the results point to the efficacy of using AlexNet for the classification 

of sulfur-based concrete images based on porosity. While the simple CNN model 

employed also demonstrated a satisfactory performance, its lower accuracy suggests 

that there is room for improvement, perhaps by adjusting the architecture or fine-

tuning the training parameters. 

These findings pave the way for further research into the application of deep learning 

techniques in the field of civil engineering, particularly in the analysis and 

classification of construction materials. Future work could consider the incorporation 

of additional pre-trained models, larger datasets, or alternative deep learning 

techniques. 
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4.5  Comparative Analysis of Models on Independent Test Samples   

To further assess the model's ability to generalize, an additional dataset including 100 

sulfur-based concrete samples images was employed for the purpose of testing with 

saved models. The images indicated above, which differed from the initial set of 3,600 

images used for training and testing, portrayed specimens of the same concrete 

samples.  

The inclusion of these photographs was not incorporated at any point throughout the 

training or initial testing process. Among the entirety of the 100 photographs, 47 were 

identified as low porosity, while the remaining 53 were characterized as high porosity. 

The confusion matrix for independent test samples is shown in Figure 4.13 for CNN 

model, and the results of the performance metrics are shown in Figure 4.14.  

 
Figure 4.13: Confusion Matrix for Independent Test Samples of CNN model 
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Figure 4.14: Metrics for CNN Model with Independent Test Samples 

The second analysis was performed for AlexNet architecture. The confusion matrix for 

100 test samples and performance results are shown in Figure 4.15 and 4.16 

respectively. 

 
Figure 4.15: Confusion Matrix for Independent Test Samples of AlexNet model 
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Figure 4.16: Metrics for AlexNet model with Independent Test Samples 

4.6  Improving the Accuracy of Porosity Detection with Object 

Detection Algorithms 

The existing methodology employed in the thesis has laid the groundwork for the 

examination of porosity through the utilization of image processing techniques. 

However, there is a wide range of possibilities for further improvement and expansion 

in this area. One area of inquiry that has promise for future investigation involves the 

incorporation of sophisticated object identification algorithms, such as YOLO (You 

Only Look Once), into our existing technique. 

YOLO is a real-time object detection algorithm that is widely recognized for its 

proficiency in identifying objects in images with little latency. The utilization of 

YOLO can facilitate the expedited detection of voids inside concrete samples, thus 

augmenting the overall efficiency of the system. The YOLO architecture is specifically 

built to achieve a high level of precision. Using this technique has the potential to 

enhance the accuracy of void detection in images, thus facilitating more precise 

calculations of porosity. 
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Unlike conventional approaches that sequentially examine individual image regions, 

YOLO performs a holistic analysis of the entire image in a single iteration. This can 

be beneficial in situations where multiple voids are densely packed and can be 

identified simultaneously. Advanced object detectors such as YOLO reduce false 

positives by undergoing extensive training on large datasets. These detectors are highly 

proficient in distinguishing the object of interest from extraneous noise. Integrating the 

YOLO framework has the potential to mitigate false positives, thus enhancing the 

accuracy of porosity calculations by only considering genuine voids. 

Future research should explore the possibility of enhancing the dataset by including a 

wider range of diverse photos depicting various concrete samples. This would result 

in an expanded dataset for YOLO's training, hence enhancing its robustness. 

To cater to our specific application, it is necessary to perform fine-tuning on the YOLO 

model using a custom dataset consisting of concrete photographs. Although YOLO is 

initially pre-trained in a wide range of classes, this additional training is essential to 

optimize its performance for our specific task. The process entails fine-tuning the last 

layers of the YOLO network using our dataset, with the objective of enhancing its 

ability to reliably identify voids. Evaluation and validation are essential steps 

following the integration of YOLO, as they allow for a comprehensive assessment of 

the system's performance. An analysis of the outcomes obtained from the original 

system and the YOLO-integrated system would yield valuable insights regarding the 

enhancements accomplished. 

In conclusion, the rapid evolution of the computer vision field necessitates the 

integration of cutting-edge algorithms such as YOLO, which can yield substantial 
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improvements in the performance of systems like ours. The incorporation of this 

technology has the potential to enhance accuracy and facilitate the development of 

real-time applications, such as on-site porosity detection in construction projects. 

4.7  Limitations of The Study 

This study offers significant contributions to the field of sulfur-based concrete sample 

categorization through the application of deep learning techniques. However, it is 

important to recognize the presence of certain inherent limitations in this research. 

The investigation solely employed photos with a resolution of 1160 pixels by 2576 

pixels. This particular resolution may fail to encompass intricate details that could 

prove essential in the determination of porosity. The potential for disparate outcomes 

exists when employing a higher resolution, while a lower resolution may fail to capture 

essential particulars. The potential for bias in the model may arise due to its 

dependence on a singular image size, particularly when considering practical scenarios 

that involve encountering images of diverse resolutions. 

The process of image capturing through which photos of the concrete samples were 

obtained may potentially result in inconsistencies. When employing the Macro mode 

feature on a smartphone, it is possible to observe small discrepancies in lighting, angle, 

or focus among the captured photographs when maintaining a distance of 10 cm. The 

task of maintaining consistent lighting conditions for each sample can be difficult, 

even when using near-zero angle lighting to enhance the visibility of voids by making 

them appear darker. Even the slightest deviation has the potential to impact the lucidity 

and coherence of the visual representations, thus influencing the training process of 

the neural networks. 
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The method of slicing the samples at intervals of 5 cm may not fully encompass the 

entire range of porosity variations within an individual sample. Increasing the 

precision of the slicing intervals may result in obtaining more accurate and 

comprehensive images that effectively capture the variations in porosity within the 

sample. However, if the slicing process is not executed with a high level of precision, 

it may potentially result in the introduction of inconsistencies. 

The investigation was carried out under a controlled setting, predominantly within the 

laboratory of the Civil department. This could potentially constrain the model's ability 

to make generalizations that are applicable to real-world situations that may exhibit 

varying conditions. For example, in the context of an outdoor construction 

environment, the samples under investigation could have been influenced by a range 

of environmental conditions that were not taken into account within the scope of this 

study. 

Using smartphone cameras, as convenient as they may be, may not have the same 

precision as dedicated imaging devices due to hardware limitations. Variations arising 

from disparities in smartphone models, lenses, and software may produce 

discrepancies that are absent in the context of more standardized laboratory equipment. 

Given the aforementioned constraints, it is important to exercise prudence when 

generalizing the outcomes of this investigation to wider scopes or alternative 

environments. Future research endeavors could potentially benefit from the inclusion 

of a broader spectrum of image resolutions, the implementation of more meticulously 

regulated imaging environments, and the potential integration of specialist imaging 

apparatus to ensure greater uniformity in outcomes. 
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Chapter 5 

CONCLUSION 

In this study, we investigated the performance of two deep learning models, a simple 

CNN and a pre-trained AlexNet model, for classifying sulfur-based concrete images 

based on porosity. We found that the AlexNet model achieved a higher accuracy rate 

(93.15%) than the simple CNN model (85.86%). This superior performance is likely 

due to the AlexNet model's pre-trained weights, which provide it with a better 

understanding of the underlying features of the images.  

We also found that the optimal number of epochs for both models was 100. This 

suggests that training for longer periods of time does not necessarily lead to improved 

performance. 

The results of this study suggest that deep learning has the potential to be a valuable 

tool for materials analysis in civil engineering. Future research should explore the use 

of additional pre-trained models and alternative deep learning approaches to further 

improve the performance of these models. 

We believe that these findings are significant because they suggest that deep learning 

can be used to develop robust and accurate models for materials analysis. This has the 

potential to revolutionize the way that materials are characterized and evaluated and 

could lead to significant improvements in the design and construction of civil 

engineering structures. 
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Future research in this area should focus on developing deep learning models that are 

even more accurate and robust. This could be achieved by using larger and more 

diverse datasets, and by exploring alternative deep learning architectures. 

We believe that the results of this study have the potential to make a significant 

contribution to the field of civil engineering. We hope that our findings will inspire 

other researchers to explore the use of deep learning for materials analysis. 
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