
Automatic Sequences

Fatlonder Cakolli

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Applied Mathematics and Computer Science

Eastern Mediterranean University
July 2023

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science in Applied Mathematics and Computer Science.

Prof. Dr. Nazım Mahmudov
Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Applied
Mathematics and Computer Science.

Prof. Dr. Benedek Nagy
Supervisor

Examining Committee

1. Prof. Dr. Benedek Nagy

2. Asst. Prof. Dr. Sedef Emin

3. Asst. Prof. Dr. Müge Saadetoğlu

ABSTRACT

Finite automaton is a well known and utilized computational model. Automatic

sequences’ definition is bootstraped using the notion of finite automaton. More

specifically for the definition we use DFA (Deterministic Finite Automaton) with an

output function τ and call it DFAO (Deterministic Finite Automaton with Output).

Looking from the Chomsky’s hierarchy of languages it’s exactly the regular type ones

that the DFA model recognizes. Using the notion of finite automaton we can show

properties such as cross product of automatic sequences and composition of output

functions. Relation between morphisms and finite automaton is established for

automaticity of a sequence. Using morphisms we can have an alternative way of

treating the automatic sequences. Additionally the notion of k−Kernels is introduced

and the relation is established with automatic sequences. The interest of finding the

algebraicity of formal power series will lead to Christol’s theorem which establishes

the relation with automatic sequences, proving another way of representing automatic

sequences by the means of formal power series, a notion from the broad field of

algebra.

Keywords: automatic-sequence, formal-power-series, morphisms, finite-automaton

iii

ÖZ

Sonlu otomat, iyi bilinen ve yaygın olarak kullanılan bir hesaplama modelidir.

Otomatik dizilerin tanımı, sonlu otomat kavramı kullanılarak elde edilir. Daha

spesifik olarak, tezimizde tanım icin çıktı fonksiyonu τ’ya sahip bir DFA

(Deterministik Sonlu Otomat) kullanıp ve bunu DFAO (Çikti fonksiyonuna sahip

deterministik sonlu otomat) olarak adlandırıyoruz. Chomsky’nin dil hiyerarşisine

bakıldığında, DFA modelinin tanıdığı diller tam olarak düzenli tipteki dillerdir. Sonlu

otomat kavramını kullanarak, otomatik dizilerin direkt çarpımı ve çıktı

fonksiyonlarının birleşimi gibi özellikleri gösterebiliriz. Dizinin otomatikliği icin

morfizmalarla sonlu otomatlar arasındaki bağlantıyı kurarız. Morfizmaları kullanarak

otomatik dizileri incelemenin alternatif bir yolunu elde ederiz. Ayrıca, k−Çekirdek

kavramı tanıtılır ve otomatik dizilerle ilişkisi kurulur. Formal kuvvet serilerinin

cebirsel özelliklerini bulma ilgisi, Christol teoremi ile sonuçlanır. Bu teorem,

otomatik dizilerle bağlantı kurarak, otomatik dizileri formal kuvvet seriler

aracılığıyla, başka bir şekilde temsil etmenin mümkün olduğunu kanıtlar. Bu, cebirin

geniş bir alanından gelen bir kavramdır.

Anahtar Kelimeler: otomatik-dizi, formal kuvvet serisi, morfizmalar, sonlu-otomat

iv

Those that seek the light and shine it in the vacuum of the darkness

v

ACKNOWLEDGMENTS

The completion of this journey, representing the cyclical nature of every human

endeavor, has been made possible thanks to the invaluable guidance and mentorship

provided by professors Müge Saadetoğlu and Arran Fernandez, as well as the

unwavering support of my supervisor Benedek Nagy. I am deeply grateful to them for

their instrumental role in shaping my journey.

vi

TABLE OF CONTENTS

ABSTRACT . iii

ÖZ . iv

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . viii

LIST OF SYMBOLS AND ABBREVIATIONS . ix

1 INTRODUCTION . 1

2 AUTOMATIC SEQUENCES. 4

2.1 Languages and Finite Automaton . 4

2.1.1 Languages . 4

2.1.2 Finite Automaton . 8

2.2 Automatic Sequences . 12

2.3 Morphisms . 15

2.4 k-Kernel . 19

2.5 Formal Power Series . 21

2.5.1 Group . 21

2.5.2 Ring . 23

2.5.3 Field . 24

2.5.4 Formal Power Series and Christol’s Theorem . 25

REFERENCES . 34

vii

LIST OF FIGURES

Figure 2.1: Accepts the words w, in the base 2 representation, that contain even number

of 0’s.. 9

Figure 2.2: Sequence of the mod(2) sum of the digits for the non-negative integers w,

in the base 2 representation.. 12

viii

LIST OF SYMBOLS AND ABBREVIATIONS

τ Output function

δ

Σ

P

DFA Deterministic Finite Automaton

DFAO Deterministic Finite Automaton with Output

ix

State Transition Function

Set of symbols (Alphabet)

Set of Prime Numbers

Chapter 1

INTRODUCTION

A common way of defining sequences over non-negative integers N, which are denoted

as (an)n≥0, is to expressing it as a relation with indeterminates n ∈ N and possibly

some constants c ∈R. Instead of expressing relations explicitly between variables and

constants, another way is to have this relation using a finite automaton. Since, when

evaluated, the deterministic finite automaton model doesn’t behave as we expect for

the sequences we extend the model of deterministic finite automaton to add an output

function τ . The function τ corresponds to a deterministic finite automaton and operates

on the input of the final accepted state q ∈ Q for a given input [n]k, here [n]k denotes

the base k representation of the natural number n ∈ N. This relationship is represented

by τ(δ (q0, [n]k)). Then the output of the function τ is in some finite set ∆. Sequences

that are defined using deterministic finite automaton with output function are called

automatic sequences. An important notion that is borrowed from finite automaton is

languages, which we use to treat these automatic sequences as languages over some

alphabet. This enables to clasify a sequence as automatic or not using the tools of

formal languages and finite automaton. A sequences is automatic sequences if and

only if it forms a regular language, that is recognized by some deterministic finite

automaton.

Morphisms provide an alternative approach to defining automatic sequences, offering

a different view on their construction. In this context, one commonly used type of

morphism is the k-uniform morphism. Such morphisms, denoted by ϕ , map elements

1

a ∈ Σ to elements of fixed length k. By applying k-uniform morphisms to the elements

of an automatic sequence, we obtain a sequence of words, each of which has a fixed

length determined by k. These word sequences, generated by the morphism, provide a

symbolic representation of the automatic sequence.

k-kernels are introduced as an important concept in the study of automatic sequences.

A k-kernel of a sequence a is a finite set of subsequences that capture the essential

patterns of the sequence modulo k. In other words, a k-kernel consists of representative

subsequences that provide information about the repetition of elements in the original

sequence. [9, 11]

Formal power series play a crucial role in the study of automatic sequences, and they

are also fundamental objects in algebraic structures such as groups, rings, and

fields [5, 10]. Each term of a formal power series corresponds to a coefficient of the

sequence, with the power of the indeterminate representing the position of the

coefficient in the sequence. These power series enable us to express automatic

sequences algebraically, providing a compact representation that facilitates various

mathematical operations and analyses. In the context of algebraic structures, formal

power series possess algebraic properties similar to polynomials. They can be added,

multiplied, and composed with each other, allowing for the manipulation and

combination of automatic sequences. The addition of formal power series is carried

out by adding the corresponding coefficients term by term, while multiplication

involves the convolution of coefficients, akin to polynomial multiplication.

Composition, on the other hand, entails substituting one power series into another,

leading to the generation of new power series. By leveraging the algebraic properties

of formal power series, we can explore the relationships between sequences and

2

investigate various algebraic structures associated with automatic sequences. For

instance, the set of formal power series with coefficients in a field forms a ring,

denoted as the ring of formal power series over that field. The study of formal power

series within the realm of automatic sequences provides a uniquee framework for

investigating their algebraic properties and exploring connections to other areas of

mathematics. Automatic sequences and the algebraicity of formal power series are

closely intertwined concepts. An automatic sequence is a sequence that can be

defined using a deterministic finite automaton with an output function. On the other

hand, the algebraicity of a formal power series refers to the property of the series

being a solution to a polynomial equation with coefficients in a given field. There is a

strong connection between automatic sequences and the algebraicity of formal power

series. Specifically, a sequence is automatic if and only if its corresponding

generating formal power series is algebraic. This means that the properties of being

automatic and algebraic are equivalent for sequences and their corresponding formal

power series. The algebraicity of a formal power series implies that it satisfies a

polynomial equation, which can provide insights into the underlying structure and

behavior of the automatic sequence it represents. Conversely, if a sequence is known

to be automatic, then we can infer the existence of a polynomial equation that governs

its behavior [13]. The connection between automatic sequences and the algebraicity

of formal power series provides a uniquee approach for studying and understanding

these fundamental mathematical objects. The objective of this work is to provide a

succinct overview of automatic sequences [7, 13].

3

Chapter 2

AUTOMATIC SEQUENCES

On the simplest way, automatic sequences are sequences of numbers on a given base

that are generated by deterministic finite automaton with output (DFAO). Among the

ways to defining automatic sequences is using a DFAO and the chapter’s 2.1 focus

is to introduce the notion of finite automaton with the extended model with output

known as DFAO and languages [19]. On chapter 2.2 we formally define automatic

sequences and explore its properties. Chapter 2.3 is focused on morphisims between

sets, and the establishing the equivalent representation of automatic sequences. On

chapter 2.4 we will introduce an equivalent way to DFAO that is called k-Kernel and

explore its properties. The goal of Chapter 2.5 is to show an alternative representation,

by Christol’s theorem, of automatic sequences using formal power series.

2.1 Languages and Finite Automaton

2.1.1 Languages

Symbols, and words—together with languages which are defined over these

symbols—are central pieces to the conceptualization of a computational model

explored on the next section. We are very well familiar with these notions, of symbols

that are used to make words and collection of words that make up a language, from

the daily use a language. An alphabet is a non-empty finite set of symbols which has

been denoted by the symbol Σ. Generally for any k ∈ N, where, k ≥ 2 then the set

Σk = {0,1, ...,k−2,k−1}.

4

is defined as an alphabet of order k. A commonly, non-exhaustive, list of alphabets

include:
Σ2 = {0,1},binary alpabet,

Σ3 = {0,1,2}, ternary alphabet,

Σ10 = {0,1,2,3,4,5,6,7,8,9},decimal alphabet.

The juxtapostion of symbols of a given alphabet is defined as word. For instance, we

let the word 10010 be defined over the alphabet Σ = {0,1}. We let the symbol ε

denote the empty word. An intrinsic property of words is their length, which is the

number of positions with symbols over a given alphabet that are used to make that

word. For the empty word ε , it is natural to call that it has the property of having the

length equal to zero, |ε| = 0. For a ∈ Σ and x ∈ Σ∗, the |x|a denotes the number of

symbols a that occur on the word x. Powers of the alphabet Σ is to be understood as

the set of words of a given length k. Irrespective of the alphabet Σ for k = 0 we have

Σ0 = {ε}. Σ∗ denotes the set of all words of finite length over the alphabet Σ. Using

the set notation we have the equality

Σ
∗ = Σ

0 ∪Σ
1 ∪Σ

2....

Similarly the meaning of notation Σ+ is defined as

Σ
+ = Σ

1 ∪Σ
2 ∪Σ

3....

A useful operation on the set Σk is the concatenation operator. For any z ∈ Σk, it can be

expressed as a concatination of words x,y ∈ Σk which is denoted z = xy. Importantly,

for x,y ∈ Σk, xy = x if and only if y = ε. And for x,y ∈ Σk, xy = yx if and only if x = y.

That is, concatenation operator is not cummutative. For a word x = spq we say p, with

|p| ≥ 1, is a subword or factor of x, then for s, with |s| ≥ 1, it is said to be a prefix of x,

s is said to be a proper prefix of x if pq ̸= ε where |s| ≥ 1, and we say q, with |q| ≥ 1,

5

is a suffix of x. Let x = a1a2...an be a word and 1 ≤ i ≤ n, the ith symbol is defined as

x[i] = ai, and if we have i, j such that 1 ≤ i ≤ n and i−1 ≤ j ≤ n, then a finite subword

of the word x starting from i to j is expressed as follows: x[i, j] = aiai+1...a j.

For an alphabet Σ and the set Σ∗, as denoted above, a subset L of Σ∗ is defined as a

language over Σ.

Example 2.1: Some languages over specified alphabet:

Set of prime numbers over the binary alphabet:

{10,11,101,111, ...}

Set of words with equal number of 0′s and 1′s:

{ε,10,01,0011,1100, ...}

Given that the notion of languages is already in place, introduction of common

operations on them naturally follows [2]. For given languages L,L1,L2 ⊆ Σ∗, the

product of languages is defined as the set

L1L2 = {wx : w ∈ L1,x ∈ L2}.

For languages, similar to the alphabets, we define L0 = {ε}. For i ≥ 1 we define Li

as LLi−1. The Kleene closure operator is defined as L∗ =
⋃

i≥0 Li. The quotient of

languages is defined as the set

L1/L2 = {x ∈ Σ
∗ : ∃y ∈ L2 such that xy ∈ L1}.

An important class of languages that bears a central role to automatic sequences is the

class of regular languages. Regular expressions are defined over the alphabet Σ in

conjunction with the special symbols {ε, /0,(,),+,∗}, which are not elements of the

alphabet Σ [2]. When evaluation regular expressions the ∗ operator represents the

6

Kleene’s closure and is evaluated first, followed by the concatenation, and then by +

which represents union. Additionally parentheses within the regular expression x are

used to represent grouping of a regular expression. We denote /0 as a basic regular

expression that refers to empty language, ε as a basic regular expression that refers to

{ε} language, and for every a ∈ Σ as a basic regular expression that refers to the

language {a}. By utilizing the aforementioned operators and adhering to the

precedence order, we combine these elementary regular expressions to construct

another regular expressions. These expressions, denoted as x, define a set of regular

language L(x). On the Example 2.2 is shown a regular language specified using

regular expression.

Example 2.2: Regular language specified by the regular expression x = (10)∗:

L(x) = {ε,10,1010,101010, ...}

Example 2.3: Regular language specified by the regular expression x = 1(10)∗1:

L(x) = {11,1101,11010101, ...}

Following lemma shows a trivial property of finite languages.

Lemma 2.1: Finite languages are regular.

Proof. Using the + operator we construct regular expression, for the finite language

L = {w1,w2,w3, . . . ,wi}, as the concatenation of all the words w ∈ L.

An infinite sequence a= a0a1a2 . . . where ai ∈Σ, ∀i∈N is called right-sided sequence,

and can be see as a map from N to Σ.

Example 2.4: Consider the right-infinite word (or sequence) denoted as (qn)n≥0 =

7

11001000010000001 . . . , known as the characteristic sequence of perfect squares. In

this sequence, qn is equal to 1 if n is a perfect square, and 0 otherwise.

Maps from infinite set N to the finite set Σ is the set [1]

Σ
ω = {(an) : a0a1 · · · ∈ Σ},

which we call the set of right-sided infinite sequences. Similary we define left-sided

infinite sequence ...a−3a−2a−1a0 as a map from Z− to Σ. And the set of all left-sided

infinite sequences over the alphabet Σ is denoted by ωΣ. Two-sided infinite sequence

...a−3a−2a−1a0.a1a2... over the alphabet Σ is defined as a map from Z to Σ. Similarly

the set of all two-sided infinite sequences over the alphabet Σ is denoted by ΣZ. For a

two-sided infinite sequence w = . . .a−3a−2a−1a0.a1a2 . . . we define

L(w) = . . .a−3a−2a−1a0,

R(w) = a1a2a3 . . .

as left-sided and right-sided infinite sequences, correspondingly.

A non-empty finite word x is considered to be a right-infinite word denoted as xω , and

it is referred to as a purely periodic word. An infinite word w = xyω , where y is a

non-empty word, is known as an ultimately periodic word. If w is ultimately periodic,

it can be expressed in the form xyω , where x and y are finite words with y not being the

empty word. Then, x is referred to as a preperiod of w [1].

2.1.2 Finite Automaton

A finite automaton is a computation model that is a restricted version of more

universal computation model called Turing machines. Since, the reason that we’re

considering finite automaton is for defining automatic sequences, we are containing

this chapter to only discussing the DFAO model. For some input word (or

8

sequence)—whose representation is related to the finite automaton—that is read with

each state transition and if finite automaton reaches the terminal state and there are no

more symbols of the input sequence to be read then the input word (or sequence) is

said to have been accepted by the deterministic finite automaton (DFA). Unlike its

non-deterministic version—where the transition function that depends on the current

state and current symbol of the input takes values on a set of states—DFA’s transition

function that similary depends only on the current state and the current symbol of the

input determines the only next state that it can move on. The set of words that are

accepted by DFA is called the language of automaton. A graph representation of a

DFA is given on the Figure 2.1, where the arrow with no label pointing to the cicrcle

indicates the initial state, each arrow with a label(symbol) indicates the next state

given the current state and if that symbols is read. A special accepting state is marked

with double circles. Each state as represented by circles is named, conventionally, by

the symbols qi, i ≥ 0. Formally we proceed with the definitions of DFA model and it’s

q0

1

q1
0

0

1

Figure 2.1: Accepts the words w, in the base 2 representation, that contain even
number of 0’s.

version with output DFAO.

Definition 2.1: A DFA is defined by a 5-tuple denoted as:

9

M = (Q,Σ,δ ,q0,F) (2.1)

where,

Q is a finite set of states,

Σ is a finite set of symbols (alphabet),

δ is a transition function defined as: δ : Q×Σ → Q,

q0 is an initial state, where q0 ∈ Q

F is a set of final states, where F ⊆ Q.

For w = w0...wn, with w ∈ Σ∗, starting with δ (q0,w0) then the transition function

δ (δ (qi),w j), where 0 ≤ j ≤ n, is applied for each symbol and where qi is one of the

finite states from the previous iteration of transition function. In the case where the

word w is the empty word ε , the transition function δ (q,w) returns the current state q

for any state q in the set of states Q. Then the language L(M) accepted by a given

DFA M is,

L(M) = {w ∈ Σ
∗ : δ (q0,w) ∈ F}.

Having these definitions of DFA and it’s corresponding language the following

properties are derived.

Theorem 2.1: For a given M, with m states, that generates L = L(M), the language

L = Σ∗\L can be generated by some DFA with exactly the same number states.

Proof. Given that L is generated by M = (Q,Σ,δ ,q0,F), we can define another DFA

M′ = (Q,Σ,δ ,q0,Q\F). It is evident that the language L, which is the complement of

L, can be generated by M′. Therefore, M′ generates L.

10

While it has already been shown, on the previous section on languages, that regular

expressions are a way to specify languages and we also have a way of generating

languages using DFA, the Kleene’s theorem [1], tells that the only languages that DFA

accepts are the ones that are specified with regular expressions. The following lemma

is a commonly used tool to show a language is non-regular.

Lemma 2.2 (Pumping Lemma): Let L ⊆ Σ∗ be a regular language. Then, there

exists an integer n ≥ 1, depending on DFA of L, such that ∀w ∈ L with |w| ≥ n it can

be decomposed on w = xyz, where x,y,z ∈ Σ∗ and |xy| ≤ n, |y| ≥ 1, such that the

words xyiz ∈ L,∀i ≥ 0.

Proof. Let L be regular language as given and a corresponding DFA with designated

number of states n. We take a word w ∈ L such that |w| ≥ n. Then it must be the case

that for some i ≥ 1 and j > i, the transition function δ (q0,w[0...i]) = δ (q0,w[0... j]).

Therfore we split w = xyz where x = w[0...i],y = w[j, j+ c], for some c ≥ 1, and z is

the rest of the sequence of the word w starting at the j+ c+1th position.

Importantly, following we have the definition of DFAO model, which is a DFA model

extended with an additional output function τ.

Definition 2.2: We define a DFAO M as a 6-tuple:

M = (Q,Σ,δ ,q0,∆,τ). (2.2)

Here Q,Σ,δ ,q0 are as defined on Definition 2.1. With the ∆ being finite set of output

symbols. And essentially, τ : Σ∗ → ∆, being the output function. In this case M

defines the Mk : Σ∗ → ∆, which is called finite-state function also denoted as

fM(w) = τ(δ (q0,w)).

11

Similar to DFA, the DFAO is represented on the Figure 2.2, where states are lebeled

by the q/a indicating the output a = τ(q) for the current state q.

q0/0

0

q1/1
1

1

0

Figure 2.2: Sequence of the mod(2) sum of the digits for the non-negative integers w,
in the base 2 representation.

It would be expected that the DFAO is very related, in terms of languages that it

generates, with DFA and the next theorem stated below makes that relation

explicit [1].

Theorem 2.2: For any DFAO M = (Q,Σ,δ ,q0,∆,τ), where Q,Σ,δ ,q0,∆,τ are given

then for every d ∈ ∆ the set

Id(M) = {w ∈ Σ
∗ : τ(δ (q0,w)) = d}

forms a regular language.

2.2 Automatic Sequences

As stated at the start of the chapter, automatic sequences is the focal point of this

work that is achieved by DFAO and other alternative means explored on the upcoming

sections. In a non-formal way a sequence (an)n≥0 where each of its terms an are values

of the output function τ , corresponding to some DFAO M, that is applied on the final

state for the reading of the input w is said to be automatic sequence [1]. Since the

12

sequences (an)n≥0 are defined for n ∈ N but the input alphabet Σ of DFAO M can be

of any order k ≥ 2 we explicitly note it by k−DFAO M to indicate the input bases of

DFAO M. That is, for the sequence (an)n≥0 each n ∈ N is feed to DFAO M in the base

k representation.

Definition 2.3: k-Automatic Sequences. An infinite sequence (an)n≥0 over the finite

alphabet ∆ is said to be k-automatic if there exists a corresponding k-DFAO M =

(Q,Σk,δ ,q0,∆,τ) such that for every n ∈N, we have an = τ(δ (q0,w)), where w = [n]k.

The definition can be further clarified by considering the example of the Thue-Morse

sequence.

Example 2.5: Thue-Morse Sequence. As can be observed from the Figure 2.2 the

sequence t = (tn)n≥0 is 2-automatic. Some of the first few terms are presented below:

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

tn = 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 ...

Using the definition above we can observe that for some input that is read to k−DFAO

M it may be possible to have another similar input i.e. by having more leading zeros,

and yet the k−DFAO M would produce a different output in each case, which leads

to inconsistency. For instance the number [2]10 is exactly the same as [02]10 but by the

definitions they can produce different outputs. The following theorem eliminates the

ambiguity [1].

Theorem 2.3: A sequence (an)n≥0 is k− automatic if and only if there exists a k−

DFAO M such that an = τ(δ (q0, [n]k)) for all n ∈ N.

13

Proof. =⇒: Follows by the Definition 2.3

⇐=: Given a k-DFAO M = (Q, Σk, δ , q0, ∆, τ), we construct the k −DFAO M
′
=

(Q′,Σk,δ
′
,q

′
0,∆,τ

′
) as follows:

Q′ = Q∪q′0,

δ
′(q,a) = δ (q,a) for all q ∈ Q and a ∈ Σk,

δ
′(q′0,a) =


δ (q0,a) if a ̸= 0,

q′0 if a = 0,

τ
′(q) = τ(q) for all q ∈ Q,

τ
′(q′0) = τ(q0).

It is evident that τ ′(δ ′(q′0,0
i[n]k)) = τ(δ (q0, [n]k)) for all i,n ∈ N.

Lemma 2.3: If L is a regular language then languages that are created be removing

leading and trailing zeros of each w ∈ L are regular.

Proof. Consider the set Ck := {ε}∪ (Σk \{0})Σ∗
k which correspond to some DFA M.

Then the obtained regular language with leading zeros removed is rlz(L) = (LR/0∗)R∩

Ck, by the properties of regular languages under intersection, reversal, and quotient.

Similarly the regular language with trailing zeros removed is rtz(L) = (L/0∗)∩ (Ck)
R.

The following is presented an alternative definition of automatic sequences, which will

be further explored in the section on k-kernels. This definition usese the concept of k-

fibers, denoted as Ik(a,d), for corresponding sequence a = (an)n≥0 which is defined

as the set of all residue classes [n]k such that an = d, where d is an element of ∆ and

k ≥ 2 [18].

14

Lemma 2.4: The sequence a = (an)n≥0 over ∆ is k-automatic if and only if each k-

fiber Ik(a,d) forms a regular language for every d ∈ ∆.

Theorem 2.4: If a sequence (bn)n≥0 differs from a k-automatic sequence (an)n≥0

only in a finite number of terms, then (bn)n≥0 is also a k-automatic sequence.

Proof. Let M = (Q,Σk,δ ,q0,∆,τ) be a k-DFAO that generates the sequence (an)n≥0.

When the two sequences (an)n≥0 and (bn)n≥0 differ for a finite set of input values n,

the modification occurs in the functions τ,δ . Thus from M, we can define the DFAO

M′ = ({p0, p1, . . . , pn}∪Q,Σk,δ
′, p0,Γ,τ

′) that generates the sequence (bn)n≥0.

2.3 Morphisms

With some of the context already given on the previous sections the title of this

section indicates the initiation of the journey to morphisms way of defining automatic

sequences. The notion of homomorphisim is already familiar concept in the feld of

analysis and topology, which we will shortly call it a morphism, with the only

requirement that will be imposed is that for any map h from Σ∗ to ∆∗ and for all

x,y ∈ Σ∗ the map h is linear with respect to the operator of concatenation i.e.

h(xy) = h(x)h(y). Based on the given condition, it is evident that once the function h

is established for all individual elements x in Σ, it can be naturally extended to

encompass the entire set Σ∗. Consequently, it follows that h(ε) = ε .

In the case where Σ is equivalent to ∆ and for a given morphism h, we introduce

the concept of an implicit morphism as follows. Define h0(a) as simply equal to a,

and for any a ∈ Σ, then, for all i ≥ 1 we recursively define hi(a) = h(hi−1(a)) [1].

The following example uses the notion of morphisms to define Thue-Morse sequence,

which is already define using DFAO on the previous section.

15

Example 2.6: When Σ is equal to ∆, we define a mapping h such that h(0) = 01 and

h(1) = 10. By repeatedly applying h, we find that h2(0) = 0110 and h3(0) = 0110101.

For any given morphism h : Σ∗ → ∆∗ we have the following properties:

Width h is defined as the maximum length among all images of symbols in Σ under

h: Width(h) = maxa∈Σ |h(a)|. Depth h refers to the cardinality of the symbol set Σ:

Depth(h) = |Σ|. Size h represents the sum of the lengths of all images of symbols in Σ

under h: Size(h) = ∑a∈Σ |h(a)|. We introduce the notion of uniform morphism which

allows us to classify the morphisms in finer classes. A morphism h : Σ∗ → ∆∗ is called

a k-uniform morphism if, for some constant k, the length of the image of any symbol

a ∈ Σ under h is always equal to k, denoted as |h(a)|= k. A morphism h : Σ∗ → ∆∗ is

called expanding if the length of the image of every symbol a ∈ Σ under h is greater

than or equal to 2, i.e., |h(a)| ≥ 2. h is non-erasing if ̸ ∃a ∈ Σ such that h(a) = ε . For

a ∈ Σ if there exists some integer i ≥ 1 such that hi(a) = ε then we say that a is mortal.

We associate the set of mortal letters Mh to each morphism h. We denote as exp(h)

the mortality exponent of h that is the least integer i ≥ 0 such that hi(a) = ε for all

a ∈ Mh. For a morphism h : Σ∗ → Σ∗, we have the following definitions: If there exists

a sequence a ∈ Σ∗ such that h(a) = a, then we say that a is a fixed point of h. Let a ∈ Σ

be a sequence such that for some morphisim h we have that h(a) = ax with x /∈ M∗
h . In

this case, we say that the morphisim h is prolongable on a. Now, we define an infinite

sequence w as follows:

w = hω(a) := axh(x)h2(x) . . .

Here, hω(a) represents the infinite concatenation of a, followed by x, followed by h(x),

followed by h2(x), and so on.

16

As shown on the Example 2.6, Thue-Morse sequence is defined using uniform

morphisims. In the next lemma, which will be utilized in Cobham’s theorem, we will

establish a distinctive relationship between automatic sequences and k-uniform

morphisms.

Lemma 2.5: Let w = h(w) = a0a1a2... be an infinite sequence of some k-uniform

morphism h. Then h(ai) = akiaki+1...aki+k−1.

Proof. For a finite word a0a1...ai, we have

h(a0a1...ai) = a0a1...aki+k−1.

Then h(a0a1...ai−1)h(ai) = (a0a1...aki−1)(akiaki+1...aki+k−1).

Theorem 2.5: For an integer k ≥ 2, the sequence a = (an)n≥0 is k-automatic if and

only if there exists a k-uniform morphism h and an element a ∈ Σ such that hω(a) is a

fixed point of h and a is the image of the coding function τ applied to hω(a).

Proof. ⇐=: Suppose that a = τ(w), where τ : ∆ → ∆′ is the coding function and w =

ϕ(w) for a k-uniform morphism ϕ : ∆∗ → ∆∗. Let w = w0w1 . . . where w ∈ ∆∗. We can

construct a k-DFAO M as follows: Set the initial state q0 of M to be w0. For any state

q in M and input b ∈ Σk, define the transition function δ (q,b) as the bth letter of ϕ(q).

By induction, we will show that for all n ≥ 0 it is true that wn = δ (q0, [n]k) . First,

the base case n = 0 is trivially true since δ (q0, [0]k) = δ (q0,ε) = q0 = w0. Now, lets

assume that the statement holds for all i < n and prove it for n. Let [n]k = n1n2 . . .nt ,

where 0 ≤ nt < k and n = kn′+nt . We can deduce the following:

17

δ (q0, [n]k) = δ (q0,n1n2 . . .nt)

= δ (δ (q0, [n′]k),nt)

= δ (wn′,nt) (by the induction hypothesis)

= the nt th symbol of ϕ(wn′) (by the definition of δ)

= wkn′+nt (using the previous lemma)

= wn.

Now, let τ be a coding function, and consider the sequence a = (an)n≥0. We can

express an as follows:

an = τ(wn) = τ(δ (q0, [n]k)).

=⇒: Assuming that (an)n≥0 is a k-automatic sequence generated by some k-DFAO

M, we want to show that it corresponds to the image under τ of a fixed point w =

w0w1w2 . . . of the morphism ϕ .

We define the morphism ϕ for each q ∈ Q as:

ϕ(q) := δ (q,0)δ (q,1) . . .δ (q,k−1).

Let w be a fixed point of the morphism ϕ , starting with q0. Then, we will prove by

induction that δ (q0,y) = w[y]k for all y ∈ Σ∗. For the base case where |y|= 0, we have

δ (q0,ε) = q0 = w0, which satisfies the condition. Now, assuming that δ (q0,y) = w[y]k

holds for all |y|< i, we will show it holds true for |y|= i. Let y = xa where a ∈ Σk. We

can deduce the following:

18

δ (q0,y) = δ (q0,xa)

= δ (δ (q0,x),a) (using the definition of δ)

= δ (w[x]k ,a) (by the induction hypothesis)

= ϕ(w[x]k)a (using the definition of ϕ)

= wk[x]k+a (by the definition of ϕ)

= w[xa]k

= w[y]k .

Consequently, we can conclude that an = τ(δ (q0, [n]k)) = τ(wn), which means that

(an)n≥0 is the image under coding τ of a fixed point w of the morphism ϕ

2.4 k-Kernel

Already on the section of automatic sequences we have introduced the notion of k-

fibers, which will play a central role in this section. In this section the relation between

automatic sequences and k-kernels will be established [14].

Definition 2.4: For an infinite sequence a = (an)n≥0, the k-kernel of a is defined to be

the set of subsequences

Kk(a) = {(akin+ j)n≥0 : i ≥ 0 and 0 ≤ j < ki}.

The following is an example k-kernels for the commonly used Thue-Morse sequence.

Example 2.7: Consider the Thue-Morse sequence t = (tn)n≥0 as defined above. We

can determine the 2-kernel of the sequence t as follows:

K2(t) = {t, t̄}.

where t̄ represents the complement of t. The elements of the 2-kernel satisfy the

19

recursive relationships: t2n = tn and t2n+1 = (tn +1) mod 2.

The next theorem points to the relation between automatic sequences and k-kernels.

Theorem 2.6: Let k ≥ 2. The sequence a = (an)n≥0 is k-automatic if and only if the

set Kk(u) is finite.

Proof. =⇒: Let a = (an)n≥0 be the given sequence, and let M = (Q,Σk,δ ,q0,∆,τ) be

the corresponding k-DFAO. We know that for any t ≥ 0:

an = τ(δ (q0,(n)R
k 0t)), for all n ≥ 0.

Now, consider a word w = w0w1 . . .wi, where |w| = i. Let q = δ (q0,wR), and let

[w]k = ∑1≤i≤r wikr−i = j. We can observe that (kin+ j)k = (n)kw for all n ≥ 0. In

particular, when n = 0, we have (kin+ j)k = (j)k. Furthermore, w = 0t(j)k for some

t ≥ 0. We can now proceed as follows:

δ (q0,(kin+ j)R
k) = δ (q0,(j)R

k) = δ (q0,(j)R
k 0t) = δ (q0,wR) = q = δ (q,(0)R

k).

Thus, we have shown that the sequence (akin+ j)n≥0 is generated by the k-DFAO M.

Since there are only a finite number of states q, it follows that Kk(a) is a finite set.

⇐=: Let us assume that Kk(a) is a finite set. In this case, we can partition Σ∗
k into a finite

number of disjoint equivalence classes. Where two words w and x in Σ∗
k are equivalent,

denoted as w ≡ x, if and only if ak|w|n+[w]k = ak|x|n+[x]k
for all n ≥ 0 [1]. To construct a

corresponding k-DFAO based on this equivalence relation, we define: The set of states

Q as Q = {[x] : x ∈ Σ∗
k}, where [x] represents the equivalence class containing x. The

transition function δ as δ ([x],b) = [xb] for all [x] ∈ Q and b ∈ Σk. The output function

τ as τ([w]) = a[w]k for all [w] ∈ Q. The initial state q0 as [ε], which is the equivalence

class containing the empty word. Using the equivalence relation defined above, we

20

can observe that for any [x], [w] ∈ Q and b ∈ Σk, we have δ ([x],b) = δ ([w],b) and

τ(δ ([x],b)) = τ(δ ([w],b)).

2.5 Formal Power Series

We begin by presenting the foundational concepts of algebra, including groups, rings,

and fields. Then we continue the section with the introduction of the notion of formal

Laurent series and its subset, formal power series. We examine the properties of the

elements within the ring of formal Laurent series [8]. Crucially, we investigate how a

formal Laurent series can be characterized as either algebraic or transcendental,

drawing insights from their connection to k-automatic sequences. In conclusion, we

highlight Christol’s theorem, which asserts that a formal Laurent series is algebraic if

and only if there exists a relationship between its coefficients and a k-automatic

sequence [6, 8, 16, 17].

2.5.1 Group

A group is a fundamental algebraic structure that captures the essence of symmetry

and transformation [12].

Definition 2.5: A group G is a set equipped with a binary operation that combines

any two elements a,b ∈ G to produce another element in G. For G to be considered a

group, it must satisfy following axioms:

Associativity: that is,(ab)c = a(bc), ∀a,b,c ∈ G.

Identity: there is an element (called the identity) e ∈ G such that ae = ea = a, ∀a ∈ G.

Inverses: for each element a ∈ G, there is an element a−1 ∈ G, called an inverse of a, such that

aa−1 = a−1a = e.

Example 2.8: The group of integers under addition: The set of all integers, denoted

21

by Z, forms a group under the operation of addition. The closure property is satisfied

since adding any two integers results in another integer. The identity element is 0, and

every integer has an inverse (the negative of that integer) that when added yields the

identity element.

Example 2.9: The group of 2× 2 invertible matrices over C: The set of all 2× 2

matrices with non-zero determinants forms a group under matrix multiplication. The

identity element is the 2×2 identity matrix, and every matrix in this set has an inverse

(its inverse matrix) that when multiplied yields the identity matrix. That is,a1 b1

c1 d1

×

a2 b2

c2 d2

=

a1a2 +b1c2 a1b2 +b1d2

c1a2 +d1c2 c1b2 +d1d2

=

1 0

0 1

 .

Example 2.10: The set Rn, consisting of all n-tuples (a1,a2, ...,an) where each

component belongs to R, forms a group under componentwise addition. In other

words, the operation of adding two n-tuples (a1,a2, ...,an) and (b1,b2, ...,bn) is

defined as (a1 + b1,a2 + b2, ...,an + bn). The closure property is satisfied since the

sum of any two n-tuples in Rn is still an n-tuple in Rn. The identity element is the

n-tuple (0,0, ...,0), where each component is zero. Finally, for any n-tuple

(a1,a2, ...,an), its inverse is the n-tuple (−a1,−a2, ...,−an), as the sum of an n-tuple

with its componentwise additive inverse yields the identity element. Thus, Rn under

componentwise addition forms a group.

The order of a group, whether it is finite or infinite, refers to the number of elements it

contains. It is denoted by |G|, where G represents the group. The order represents the

cardinality or size of the group, indicating the total count of distinct elements within

it. For a finite group, the order is a positive integer, while for an infinite group, the

22

order is considered to be infinite. In a group G, the order of an element g refers to the

smallest positive integer n such that raising g to the power of n results in the identity

element e of the group. This concept is denoted as gn = e. If there is no such positive

integer n that satisfies this condition, we say that g has infinite order.

Example 2.11: Consider the group U(15) = {1,2,4,7,8,11,13,14}. This group has

an order of 8, meaning it contains 8 elements. To determine the order of a specific

element, such as 13, we compute the sequence of powers: 131 ≡ 13 (mod 15), 132 ≡ 4

(mod 15), 133 ≡ 7 (mod 15), and 134 ≡ 1 (mod 15). Thus, the order of the element

13, denoted as |13|, is 4.

2.5.2 Ring

Certain sets possess inherent properties that make them suitable for two fundamental

binary operations: addition and multiplication. Well-known examples include the

integers, integers modulo n, real numbers, matrices, and polynomials. When these

sets are treated as groups, the primary focus is typically on addition, with

multiplication often overlooked. However, there are numerous scenarios where it

becomes essential to consider both addition and multiplication simultaneously. To

address this need, the abstract concept of a ring arises as a powerful mathematical

tool.

Definition 2.6: A ring R is defined as a set equipped with two binary operations:

addition (denoted by a + b) and multiplication (denoted by ab). These operations

satisfy several properties for all elements a, b, and c belonging to the ring R. These

properties include:

23

1. Commutativity of addition: a+b = b+a.

2. Associativity of addition: (a+b)+ c = a+(b+ c).

3. Additive identity: there is an element 0 ∈ R such that a+0 = a for all a ∈ R.

4. Additive inverse: For every element a ∈ R , there exists an element (−a) in R such that

a+(−a) = 0.

5. Distributive law: a(b+ c) = ab+ac, and (b+ c)a = ba+ ca.

Example 2.12: Consider the set Zn = {0,1, . . . ,n− 1} equipped with the operations

of addition and multiplication modulo n. It can be observed that Zn forms a ring with

unity 1, where the unity element is the residue class 1 modulo n. Furthermore, within

Zn, there exists a subset of elements called units, denoted by U(n), which consists of

the elements that possess multiplicative inverses.

Example 2.13: Consider the set Z[x] consisting of all polynomials in the variable x

with integer coefficients. With the operations of ordinary addition and multiplication,

Z[x] forms a commutative ring with unity, where the unity element is the polynomial

f (x) = 1.

2.5.3 Field

By extending the concept of a ring, we introduce a structure known as a field. An

additional property is introduced that allows for the existence of multiplicative inverses

for nonzero elements in the field.

Definition 2.7: A field F is defined as a set equipped with two binary operations:

addition (denoted by a + b) and multiplication (denoted by ab). These operations

satisfy several properties for all elements a, b, and c belonging to the field F. These

24

properties include:

1. Commutativity of addition and multiplication: a+b = b+a, and a ·b = b ·a

2. Associativity of addition and multiplication: (a+b)+ c = a+(b+ c) and

(a ·b) · c = a · (b · c).

3. Additive and multiplicative identity: there is an element 0,1 ∈ F such that

a+0 = a, a ·1 = a for all a ∈ F.

4. Additive inverse: For every element a ∈ R , there exists an element (−a)

in R such that a+(−a) = 0.

5. Multiplicative inverse: For every element a ̸= 0 ∈ F , there exists an element

a−1 in F such that a ·a−1 = 1.

6. Distributive law: a · (b+ c) = a ·b+a · c.

Example 2.14: Consider the finite field GF(7) = {0,1,2,3,4,5,6} where addition

and multiplication are performend through modular arithmetic with respect to prime

number 7. For the number 2 the multiplicative inverse is: 2 ·4 ≡ 1 (mod 7).

2.5.4 Formal Power Series and Christol’s Theorem

To start, initialy the concept of ring of polynomials over the commutative ring R is

defined.

Definition 2.8: Let R be a commutative ring, then the set

R[X] = {anXn +an−1Xn−1 + · · ·+a1X +a0 | ai ∈ R and n ≥ 0}

is the ring of polynomials over R with X being the indeterminate, and the non-zero

term aiX i with highest exponent i determines the degree of a specific polynomial.

25

The addition and multiplication are naturally defined for the elements of R[X] [15].

For p,q ∈ R[X] which are given as p(X) = anXn + an−1Xn−1 + · · ·+ a1X + a0 and

q(X) = bnXn + bn−1Xn−1 + · · ·+ b1X + b0, addition is: (p+ q)(X) = (an + bn)Xn +

(an−1 +bn−1)Xn−1 · · ·+(a1 +b1)X +(a0 +b0). And multiplication is: (p×q)(X) =

a0b0 +(a0b0 +a1b0)X +(a0b2 +a1b1 +a2b0)X2 + . . .

For F being a field, then the field of fractions of F [X] consists of elements f/g where

f ,g ∈ F [X] and g ̸= 0. This field of fractions over F is denoted by F(X). Any other

property of the algebraic structures, whenever used in some other theorems, is assumed

and not proven here.

Definition 2.9: For a ring R, the set

R[[X]] = {a0 +a1X +a2X2 + . . . | ai ∈ R and i ≥ 0}

forms a ring, where each element represents a formal power series.

In the context of formal power series, the concept of convergence is not applicable or

relevant [11]. Addition and multiplication is performed by treating the series similarly

to polynomials. For p,q ∈ R[[X]] where p(X) = Σ∞
i∈NaiX i and q(X) = Σ∞

i∈NbiX i we

have, (p+q)(X) = Σ∞
i∈N(ai+bi)X i and (p×q)(X) = Σ∞

n∈N(Σ
n
k=0akbn−k)Xn. Following

we let F be a field and have the definition of formal Laurent series.

Definition 2.10: Let F be a field, the set

F((X)) = {Σ
∞
i≥NaiX i | ai ∈ F and N ∈ Z}

is defined as the field of formal Laurent series.

26

Similar to the fields C, or R that we define algebraicity of elements of thereof, the

definition of algebraicity for formal Laurent series follows

Definition 2.11: Let p ∈ R((X)) with coefficients over R(X). Then p is said to be

algebraic over R(X) if there exists elements f0(X), f1(X) . . . fn(X) ∈ R(X) not all zero,

such that f0 + f1 p1 + · · ·+ fn pn = 0

The following we have examples of algebraic formal power series.

Example 2.15: Let f be the formal power series over F2 given by

f (X) = X +X2 +X4 + . . .= ∑
i≥0

X2i
.

We can observe that this series is algebraic since,

f (X2) = f (X)−X ,

therefore,
f (X)2 + f (X)+X = 0.

Example 2.16: Let T (X) = ∑n≥0 tnXn, where (tn)n≥0 represents the sequence already

defined on the Example 2.5. Now, lets analyze the expression of T (X):

T (X) = ∑
n≥0

tnXn

= ∑
n≥0

t2nX2n + ∑
n≥0

t2n+1X2n+1

= ∑
n≥0

tnX2n +X ∑
n≥0

(tn +1)X2n

= T (X2)+XT (X2)+X
1

1−X2 .

From this expression, we can deduce, over the field F2, that the series is algebraic.

Example 2.17: Let F(X) over the non-negative integers N and be defined by

27

F(X) = 1+X +2X2 +3X3 +5X4 + . . .

It can be seen that the coefficients of the series are fibonaci series, then we have

F(X) = ∑
n≥0

FnXn

= F0 +F1 + ∑
n≥2

FnXn

= 1+X + ∑
n≥2

(Fn−1 +Fn−2)Xn

= 1+X +X ∑
n≥2

Fn−1Xn−1 +X2
∑
n≥2

Fn−2Xn−2

= 1+X +X(F(X)−1)+X2F(X)

= 1+XF(X)+X2F(X)

=
1

1−X −X2

We arrange the equality to get

(1−X −X2)F(X)−1 = 0.

Hence the series F(X) is algebraic over N.

The former two examples are instances of formal power series defined over finite fields,

for which the Christol’s theorem is used to show the algebraicity of it in terms of its

relation with p-automatic sequences.

We represent formal Laurent series ∑n≥N anXn by the equivalance class[
∑
n≥0

ak+nXn,k
]

The equivalence relation is established by shifting the terms of a formal Laurent

series [4]. Specifically, for any given formal Laurent series S, j,k ∈ N, and n ∈ Z, the

equivalence relation is defined as:

28

[X jS,n− j] = [XkS,n− k],

where S belongs to the ring of formal Laurent series F [[X]].

Definition 2.12: Operations on equivalance classes of formal Laurent Series are

defined as follows:

For addition:

[S,n]+ [T,n] = [S+T,n].

For multiplication:

[S,n]+ [T,m] = [ST,n+m].

Definition 2.13: For 0 ≤ i < q we define a linear transformation

Γi,q : Fq[[X]]→ Fq[[X]]

with

Γi,q

(
∑
n≥0

anXn
)
= ∑

n≥0
aqn+iXn.

Lemma 2.6: For a formal power series F ∈ Fq[[X]] with i,q ∈N, q ≥ 1 and 0 ≤ i < q,

the following property holds

F(X) = ∑
n≥0

anXn = ∑
0≤i<q

X i
Γi,q(F(X))q.

Proof. For a given F ∈ Fq[[X]] we have

29

F(X) = ∑
n≥0

anXn

= ∑
0≤i<q

∑
n≥0

aqn+iXqn+i

= ∑
0≤i<q

X i
∑
n≥0

aqn+iXqn

= ∑
0≤i<q

X i
(

∑
n≥0

aqn+iXn
)q

= ∑
0≤i<q

X i
Γi,q(F(X))q.

Lemma 2.7: For formal power series F,G ∈ Fq[[X]] with i,q ∈N, q ≥ 1 and 0 ≤ i < q,

the following property holds

Γi,q(Fq·G) = F ·Γi,q(G).

Proof. For F,G as give, we have

Γi,q(Fq·G) = Γi,q

((
∑
k≥0

akXk
)q(

∑
j≥0

b jX j
))

= Γi,q

((
∑
k≥0

akXqk
)(

∑
j≥0

b jX j
))

= Γi,q

(
∑
n≥0

Xn
(

∑
k, j≥0,

qk+ j=n

akb j

))

= ∑
n≥0

Xn
(

∑
k, j≥0,

qk+ j=qn+i

akb j

)

= ∑
n≥0

Xn
(

∑
0≤k≤n

akbq(n−k)+i

)
= ∑

k≥0
akXk

(
∑
n≥k

bq(n−k)+iX
n−k

)
= ∑

k≥0
akXk

(
∑
n≥0

bqn+iXn
)

= F ·Γi,q(G).

30

We extend the definition of the Γi,q(S) operator to Bi,q([S,aq]) = [Γi,q(S),a] which is

defined over the equivalance classes of formal Larent series.

Then, for A,B ∈ F((X)), all q, i ∈ N and 0 ≤ i < q similarly to Lemma 2.7 we have

Bi,q(A·Bq) = Bi,q(A)·B (2.3)

Lemma 2.8: Let F ∈Fq[[X]] be formal power series, where q= pn. F is algebraic over

Fq(X) if and only if there exists non-zero polynomials A0(X), . . . ,At(X), such that

A0F +A1Fq + · · ·+AtAqt
= 0.

Lemma 2.9: The sequence a = (an)n≥0 defined over the finite field Fq is q-automatic

if and only if there exists a finite set of formal power series F satisfying the following

conditions: For every formal power series F(X) = ∑n≥0 anXn associated with a, we

have F ∈ F. For every G ∈ F and every 0 ≤ i < q, Γi,q(G) belongs to F.

Proof. Consider the set Kq(a) = {a1,a2, . . . ,ai}, where a j represents the j-th element

of the q-kernel of the sequence a.

=⇒: We construct the set for F as follows

F=

{
∑
n≥0

ai
nXn : 1 ≤ i ≤ r

}
,

and we see that if we let a = a1, then F ∈ F.

⇐=: By observing that ∑n≥0 ai
nXn ∈ F, we can deduce that the cardinality of Kq(a) is

less than or equal to the cardinality of F. Therefore, we can conclude that the q-kernel

is a finite set.

Following is the Christol’s theorem, which as stated at the beginning, establishes a

relation between algebraicity of elements of F((X)) and a corresponding p-automatic

31

sequence.

Theorem 2.7: Let a = (ai)i≥0 be a sequence over ∆, with ∆ being a non-empty finite

set. Let q = pn for some prime p ∈ P and n ∈ N. Then the sequence a is a

p-automatic if and only if there exists an injective map β : ∆ → Fq and n ≥ 1 such

that the formal power series ∑i≥0 β (ai)X i is algebraic over the Fq(X).

Proof. =⇒: To make β an injective map we pick n such that |∆| ≤ pn. By

the [3][p.109, proposition 3.5] we know that the sequence a = (an)n≥0 is also

q-automatic. Then by Theorem 2.6 we let the Kq(a) = {a1,a2, . . . ,ad}, where a = a1.

Define the formal power series as follows

Fj(X) = ∑
n≥0

a j
nXn, for 1 ≤ j ≤ d.

Then,

Fj(X) = ∑
0≤r≤(q−1)

∑
0≤m

a j
qm+rX

qm+r (2.4)

= ∑
0≤r≤(q−1)

X r
∑

0≤m
a j

qm+rX
qm. (2.5)

By 2.4 we see that the Fj(X) is on a span of vector space generated by the bases

vectors F1(Xq),F2(Xq), . . .Fd(Xq). But similarly, we have that Fi(Xq) is linear

combination of the bases vectors F1(Xq2
),F2(Xq2

), . . .Fd(Xq2
). Applying the same

reasoning, we can conclude that for any j in the range 1 ≤ j ≤ d and any k in the

range 0 ≤ k ≤ d, the power series Fj(Xqk
) can be expressed as linear combinations of

the base vectors F1(Xqd+1
),F2(Xqd+1

), . . . ,Fd(Xqd+1
). However, the dimension of the

vector space spanned by the base vectors F1(Xqd+1
),F2(Xqd+1

), . . . ,Fd(Xqd+1
) over the

field Fq(X) is at most d. Consequently, the power series Fj(X),Fj(Xq), . . . ,Fj(Xqd
)

are linearly dependent over Fq(X). Specifically, when j = 1, we can deduce that

F1(X) is algebraic over Fq(X).

32

⇐=: Let F(X) = ∑i≥0 aiX i be algebraic over Fq(X). Then by Lemma 2.8 we know

that there exists polynomials A0(X), . . . ,At(X) with A0(X) ̸= 0 such that

∑
0≤i≤t

Ai(X)F(X)qi
= 0.

Let G = F(X)
A0(X) , with G = ∑1≤i≤t CiGqi

, where Ci = −AiA
qi−2
0 . For

N = max(degA0,maxi degCi), define

F=
{

H ∈ Fq((X)) : H = ∑
0≤i≤t

DiGqi
,Di ∈ Fq[X], degDi ≤ N

}
.

Let H ∈ F, then

Bi,q(H) = Bi,q

(
D0G+ ∑

1≤i≤t
DiGqi

)
= Bi,q

(
∑

1≤i≤t
(D0Ci +Di)Gqi

)
= ∑

1≤i≤t
Bi,q(D0Ci +Di)Gqi

.

Here the degD0, degDi, degCi ≤ N, then deg(D0Ci +Di)≤ 2N therefore

deg(Bi,q(D0Ci +Di))≤
2N
q

≤ N.

By the Lemma 2.9 we have that the sequence a is q-automatic.

33

REFERENCES

[1] Jean-Paul Allouche, Jeffrey Shallit (2003) Automatic Sequences Theory,

Applications, Generalizations, Cambridge University Press.

[2] Géza Horváth, Benedek Nagy (2014) Formal Languages and Automata Theory,

Typotex.

[3] Samuel Eilenberg (1974) Automata, languages, and machines. Volume A,

Academic Press.

[4] Joost Winter (2015) Erratum to various proofs of Christol’s theorem, Citeseer.

[5] David S. Dummit, Richard M. Foote (2004) Abstract Algebra, John Wiley and

Sons, Inc.

[6] N. Pytheas Fogg (2002) Automatic sequences and transcendence, Lecture Notes in

Mathematics, 2002 Springer Berlin Heidelberg.

[7] Hu, Yining (2018) Transcendence of L(1,χs)/Π and automata. Journal of Number

Theory, 187, 215-232.

[8] Xiao-Xiong Gan, Dariusz Bugajewski (2011) On formal Laurent series. Bull.

Brazilian Math. Soc, 42(3), 415-437.

34

[9] Adamczewski, B., & Bell, J. P. (2012). On vanishing coefficients of algebraic

power series over fields of positive characteristic. Inventiones mathematicae,

187(2), 343-393.

[10] Adamczewski, B., & Cassaigne, J. (2006). Diophantine properties of real

numbers generated by finite automata. Compositio Mathematica, 142(6), 1351-

1372.

[11] Allouche, J. P., & Shallit, J. (1992). The ring of k-regular sequences. Theoretical

Computer Science, 98(2), 163-197.

[12] Carstensen-Opitz, C., Fine, B., Moldenhauer, A., & Rosenberger, G. (2019).

Abstract Algebra. In Abstract Algebra. De Gruyter.

[13] Allender, E., Arvind, V., & Mahajan, M. (2003). Arithmetic complexity, Kleene

closure, and formal power series. Theory of Computing Systems, 36, 303-328

[14] Han, G., & Hu, Y. (2019). On the automaticity of sequences defined by the

continued fractions arXiv preprint arXiv:1908.02384.

[15] Norman, C. (2012). The Polynomial Ring F [x] and Matrices over F [x]. Finitely

Generated Abelian Groups and Similarity of Matrices over a Field, 165-202.

[16] Bostan, A., & Raschel, K. (2021). Transcendence in Algebra, Combinatorics,

Geometry and Number Theory. Springer International Publishing.

35

[17] Wu, W. (2020). Stieltjes continued fractions related to the paperfolding sequence

and Rudin-Shapiro sequence. Advances in Applied Mathematics, 118, 102040.

[18] Meduna, A. (2012). Automata and languages: theory and applications. Springer

Science & Business Media.

[19] Rigo, M. (2014). Formal languages, automata and numeration systems 1:

Introduction to combinatorics on words (Vol. 1). John Wiley & Sons.

36

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	2 AUTOMATIC SEQUENCES
	2.1 Languages and Finite Automaton
	2.1.1 Languages
	2.1.2 Finite Automaton

	2.2 Automatic Sequences
	2.3 Morphisms
	2.4 k-Kernel
	2.5 Formal Power Series
	2.5.1 Group
	2.5.2 Ring
	2.5.3 Field
	2.5.4 Formal Power Series and Christol's Theorem

	REFERENCES

