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ABSTRACT

The impact of the Generalized Uncertainty Principle (GUP) on Hawking particle

emission in a rotating linear dilaton black hole (RLDBH) spacetime is examined in

this thesis. The concerned study presents a thermal emission model for black holes

(BHs) that incorporates the influence of gravitational lens particles through GUP

during the quantum tunneling process. The findings suggest that with GUP support,

the temperature of Hawking radiation decreases as GUP parameters increase and rises

with an increasing BH mass. The thesis also delves into the repercussions of these

discoveries on the information loss paradox and adjusted entropy, while also

exploring the potential utilization of astrophysical data to confirm GUP effects. In

conclusion, our work underscores the significant role of GUP in the thermal emission

of non-asymptotically flat (NAF), stationary BHs and its capacity to shed light on the

intricate relationship between astrophysics and quantum gravity.

Keywords: Hawking Radiation, GUP, Linear Dilaton, Quantum Tunneling, Black

Holes
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ÖZ

Bu tezde, genelleştirilmiş belirsizlik ilkesi’nin (GUP), dönen doğrusal dilaton kara

delik uzayzamanında Hawking parçacık emisyonu üzerindeki etkisi incelenmektedir.

Bu çalışma, kütleçekim mercek parçacıklarının GUP aracılığıyla kuantum tünelleme

sürecindeki etkisini içeren kara delikler için bir termal emisyon modeli

sunulmaktadır. Elde edilen bulgular, GUP desteği ile Hawking radyasyonunun

sıcaklığının GUP parametreleri arttıkça azaldığını ve artan siyah delik kütleleri ile

arttığını önermektedir. Tez ayrıca bu keşiflerin bilgi kaybı paradoksu ve ayarlanmış

entropi üzerindeki etkilerini incelemekte ve aynı zamanda GUP etkilerini doğrulamak

için astrofizik verilerinin potansiyel kullanımını araştırmaktadır. Sonuç olarak,

çalışmamız, GUP’un asimptotik olarak düz olmayan, durağan kara deliklerin termal

emisyonunda oynadığı önemli rolü ve astrofizik ile kuantum kütleçekimi arasındaki

karmaşık ilişkiyi aydınlatma kapasitesini vurgulamaktadır.

Anahtar Kelimeler: Hawking Radyasyonu, GUP, Doğrusal Dilaton, Kuantum

Tünelleme, Kara Delikler
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Chapter 1

INTRODUCTION

Black holes (BHs) [1] have captured the imagination of physicists due to their

extraordinary properties and the potential they hold for shedding light on fundamental

questions in physics, particularly those related to the nature of spacetime and the

behavior of matter under extreme conditions. Hawking radiation explaining the

escape of particles from BHS through quantum phenomena remains at the centre of

the study of BH thermodynamics [2–7]. The precise mechanism behind this radiation

is still under investigation, leaving a variety of open questions in the scientific

literature.

The generalised uncertainty principle (GUP) [8–13], which arises from the junction

of quantum physics and gravity, modifies Heisenberg’s uncertainty principle (HUP).

GUP places a fundamental limitation on our ability to accurately measure certain

pairs of properties such as position and momentum. In the last few years, there has

been growing interest in exploring the influence of GUP on the behavior of BHs, as

evidenced by the references [14–19]. GUP effects alter the emission of Hawking

radiation and impact the dynamics of BHs, as discussed in detail in [20] and its

related sources. Moreover, it has been demonstrated that GUP influences the entropy

of BHs and may be able to resolve the information loss dilemma, a persistent problem

in theoretical physics [21–24]. According to the information loss paradox, the

principles of unitarity and quantum physics are violated when quantum data

contained within matter that is absorbed by a BH becomes irreversibly lost. The
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introduction of entropy corrections for BHs, dependent on the Planck length as the

basic scale of quantum gravity, offers a potential resolution to this dilemma [25]. For

a comprehensive note on the information loss paradox, the soft particles and

Faddeev-Jackiw quantization via conformal diagrams, see [26].

This thesis mainly focuses on rotating linear dilaton black holes (RLDBHs) which are

known for their potential connection to dark matter, and therefore, act as a possible

candidate for addressing fundamental open questions in both cosmology and

astrophysics [27–34]. Dark matter [35] is a hypothetical form of matter believed to

account for a substantial portion of the material in the universe, remaining invisible as

it does not interact with light. In contrast, the dilaton, a scalar field originating from

string theory, is believed to be pervasive in space and may influence the formation of

BHs [36]. Recent studies suggest a potential link between the dilaton field and dark

matter, offering RLDBHs as a plausible explanation for certain dark matter

characteristics. Interactions between the dilaton field and dark matter particles

affecting the motion of stars and galaxies, as described in references [33, 37], may

explain phenomena such as galaxies rotating at velocities higher than what visible

matter can account for. Throughout this work, unless explicitly stated, we employ

natural units where G = h̄ = c = kB = 1 and adopt the metric signature (+,−,−,−).

The structure of the current thesis is as follows: In Sections 1.1 and 1.2, we present

an overview of Hawking radiation and introduce the physical characteristics of non-

asymptotically flat (NAF) RLDBH spacetime metrics. In Chapter 1.3, we apply the

Parikh-Wilczek quantum tunneling technique [38]. The subsequent section provides

a concise introduction to GUP. In Section 2.1, we delve into the entropy of RLDBHs

and the temperature adjustments brought about by GUP. To conclude, we summarise

2



our research and offer some closing remarks in Chapter 3.
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1.1 Hawking Radiation

In 1974, Stephen Hawking introduced the theoretical concept known as "Hawking

radiation" whose foundation lies in the idea that nothing in the universe truly lacks

activity [39]. Although this concept might initially appear perplexing quantum fields

exist in empty space, even in the absence of mass, particles, or quanta of energy. The

conventional explanation posits that these fields can generate pairs of "virtual

particles," typically comprising a particle-antiparticle pair, which rapidly annihilate

one another since they do not need to possess zero energy. However, in the vicinity of

a BH, it is conceivable for one of these particles to venture into the BH, becoming lost

forever, while the other escapes as Hawking radiation, as described. Nevertheless, it is

worth noting that this explanation, although frequently employed, is not

all-encompassing. In fact, the description of how gravity affects spacetime as per

General Relativity is what underpins the phenomenon of Hawking radiation.

According to HUP, it is not possible to know with absolute certainty how much

energy a quantum field has or when a given energy can be exactly assigned to it. This

is due to the fact that quantum fields in empty space adhere to this principle. The

differing gravitational curvatures of spacetime regions cannot reach a consensus on

the energy of the quantum fields because a gravitational field bends spacetime and

influences the local passage of time. It is this variation in vacuum energy at various

points within a BHs gravitational field that leads to the generation of the so-called

"virtual particles."

We understand that there is 1
2 h̄ω energy in every wave mode, even in its vacuum state,

including extremely high frequencies. Over time, these variations transform into real

exit modes. These modes are highly redshifted, and as time progresses, their redshift

intensifies. However, even when the redshift reaches an exceptionally high value, there
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is always a remarkably high-frequency component in the ongoing wave whose vacuum

fluctuations shift to the desired frequency. The name "Hawking radiation" is attributed

to these redshifted waves that transforms from being virtual to real.

When the Unruh effect and the equivalence principle are applied to the event horizons

of BHs, Hawking radiation ensues. An observer approaching a BH’s event horizon

must accelerate to prevent being drawn in. This accelerating observer perceives a

continuous stream of particles emanating from the local acceleration horizon, altering

direction, and eventually descending freely back into the BH. This process maintains

local thermal equilibrium, signifying that a finite temperature is attained when

extending this thermal bath to infinity. This suggests that some of the particles that the

horizon emits become outward Hawking radiation instead of being reabsorbed [40].

1.2 Physical Traits of RLDBH

In this section, we provide a concise overview of RLDBH spacetime, which was

originally introduced by Clement et al [27].The theory of

Einstein-Maxwell-Dilaton-Axion (EMDA) gravity can be thought of as a simplified

version of the bosonic part of D = 4, N = 4 supergravity [41]. The action for the

EMDA gravity theory reads [27]:

S =
1

16π

ˆ
d4x

√
−g

[
−R+2∂µφ∂

µ
φ +

1
2

e4φ
∂µA∂

µA− e−2φ FµνFµν −AFµν F̃µν

]
,

(1.1)

where the pseudoscalar axion field is denoted as A, and the dilaton field is represented

by φ . The electromagnetic field strengths of A is Abelian vector field this vector field in

which the order of vector operations does not affect the result and its dual counterparts

are symbolized as F and F̃ , respectively. Additionally, R corresponds to the Ricci

scalar. In addition to the static black hole solution outlined in the EMDA theory (1.1),

ref. [27] provides an explicit metric for RLDBH spacetime that eliminates the need for
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the NUT charge, as discussed in [42]:

ds2 =
∆

r0r
dt2 − r0r

[
dr2

∆
+dθ

2 + sin2
θ
(
dφ − a

r0r
dt
)2
]

(1.2)

in which

∆ = r2 −2Mr+a2, (1.3)

and the fields in the background are supplied by

F =
1√
2

[
r2 −a2cos2θ

r0r2 dr∧dt +asin2θdθ ∧
(
dφ − a

r0r
dt
)]

, (1.4)

e−2φ = r0rχ, (1.5)

A =−r0acosθ χ, (1.6)

where
χ = (r2 +a2cos2(θ))−1 (1.7)

In the meantime, the spacetime’s rotation and background charge are indicated by

the physical parameters a and r0, respectively. Metric (1.2) was actually obtained

by applying a specific solution-generating method to the Kerr metric. The spacetime

metric is essentially the static linear dilaton metric, but it exhibits different behavior as

it approaches infinity, as demonstrated by (1.2). Its behavior is similarly distinct from

the Kerr metric’s behavior near r = 0. Concerning the Kerr metric, it is possible to

extend the metric to negative r by passing through a disc located at r = 0. On the other

hand, r = 0 in Eq. (1.3) represents a timelike line singularity. Due to this, the Penrose

diagrams of the metric (1.1) differ from those of the Kerr spacetime but remain the

same for all three scenarios (a2 < M2, a2 = M2, and a2 > M2). Instead, they show

similarities to the Penrose diagrams of the Reissner-Nordström care such that charge

is replaced by a.

Instead, they bear a resemblance to the Penrose diagrams of the Reissner-Nordström

spacetime, in which the rotation parameter a (or angular momentum) takes the place

6



of the charge.

We shall now describe the thermodynamic characteristics of the RLDBH. It should be

recognized right away that M, which was present in the solution, is no longer the ADM

mass. The mass computation of Brown and York [43], who established the mass for

NAF spacetimes, may be used to compute the pertinent thermodynamic quantities in

order to derive the first law of BH physics. The following is the relationship between

the mass parameter M and the quasilocal mass M̃ of the RLDBH:

M = 2M̃, (1.8)

and the angular momentum J is given by

2J = ar0. (1.9)

The statistical Hawking temperature TRLDBH , the Bekenstein-Hawking entropy

SRLDBH , and the angular velocity ΩRLDBH of the RLDBH are given by [44]

TRLDBH =
κ

2π
=

r+− r−
4πr0r+

, (1.10)

ΩRLDBH =
a

r0r+
, (1.11)

SRLDBH = πr0r+, (1.12)

in which r± = M±
√

M2 −a2 correspond to the positions of the inner and outer (event)

horizons, respectively. The first law of BH mechanics can be verified to hold for the

RLDBH using the thermodynamical constants described above:

dM̃ = TRLDBHdSRLDBH +ΩRLDBHdJ (1.13)

It should be noted that the electric charge takes the form

Q =
r0√

2
(1.14)

It is worthy to recall that in, Eq. (1.13), the quantity Q does not appear. This is
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characteristic of linear dilaton backgrounds, where the differentiations, as indicated in

Eq. (1.13), are performed with the electric charge Q held constant. In this context, the

background charge is equivalent to the electric charge Q. Furthermore, the entropy [45]

at extremality is expressed as follows, and the extremality condition is given by M = a:

SRLDBH(T = 0) = πr0a. (1.15)

As evident from the previous explanation, extremal BHs have the smallest event

horizon area, which in turn means that the entropy linked to these BHs is also

minimised. Consequently, the entropy of an extremal BH is usually significantly less

than that of a non-extremal BH (1.15).

1.3 Hawking Radiation of RLDBH via Quantum Tunnelling

Technique

As is well-known, the WKB approximation furnishes information regarding the

following tunneling rate at which an s-wave tunnels from inside to outside the event

horizon of a BH:

Γ = Γ0 exp(−2ImI ), (1.16)

where I represents the action of the tunneling particle, and Γ0 stands for a

normalization factor. Nevertheless, as the radiation emitted from a BH adheres to the

Boltzmann distribution in a traditional sense, it is possible to assert the following

regarding the rate at which energy particles are emitted from the BH’s horizon:

Γ = Γ0 exp(−βE), (1.17)

where
β =

1
T
, (1.18)

corresponds to the inverse temperature (T ) and it is known as the Boltzmann constant

[3]. Then, the imaginary component of the action for a tunneling particulate can be
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estimated in terms of a s-wave, as mentioned in the Ref. [14]:

ImI = Im
ˆ pr

0

ˆ rh(M−E)

rh(M)
d prdr, (1.19)

where r is the distance from the BH’s center and M represents the BH’s initial mass

overall. M − E represents the BH’s final mass following the radiation released by

the particle that has its energy tunnelled out. The following outcome is obtained by

applying Hamilton’s equations of motion:

·
r =

dH
d pr

=
d(M−ω)

d pr
, (1.20)

where

d pr =
d(M−ω)

·
r

(1.21)

If we substitute the above expressions in integral (1.19), we get

ImI = Im
ˆ E

0

ˆ rh(M)

rh(M−E)

dr
·
r

dω. (1.22)

It is worth noting that the majority of the radiation spectrum is often dominated by

zero-mass particles since BHs typically have very low Hawking temperature

values [46]. A tunneling particle with negligible mass travels along a radial path

characterized by a null geodesic in the context of an s-wave. The generic metric

expression of RLDBH spacetime (1.2) can be redefined as follows:

ds2 =
r2 −2Mr+a2 cos2 θ

r0r
dt2 − r0r

r2 −2Mr+a2 dr2 − r0rdθ
2 (1.23)

− r0r sin2
θdφ

2 +2asin2
θdtdφ

It is reasonable to assume that for an observer at spatial infinity, the radiation from a

spinning BH maintains spherical symmetry. This enables us to describe the tunneling

process of a spinning BH in terms of the s-wave approximation. However, as a particle

tunnels through the rotating event horizon, it will interact with and be influenced by
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the BH’s spin. In such circumstances, the tunneled particle will exhibit motion in the

φ direction at a non-zero rate of change, dφ ̸= 0. To account for this motion, we

can employ a reference frame that rotates in synchronization with the BH’s horizon’s

motion over time. To achieve this, we apply a coordinate transformation based on the

rotation, as follows:

φ = φ
′+Ωht, (1.24)

which leads to

dφ = dφ
′+Ωhdt, (1.25)

and

dφ
2
= dφ

′2 +2Ωhdφdt +Ω
2
hdt2, (1.26)

where the angular velocity of a spinning BH’s event horizon is Ωh, a constant:

Ωh =
gtφ

gφφ

∣∣∣∣
r=rh

=
a

r0rh
. (1.27)

From this point onward, we will employ the equisymbol "rh = r+" to represent the

event horizon of the RLDBH. When observers are positioned at this horizon within

a rotating reference frame, they will observe that the BH’s angular speed, denoted as

"Ωh," equals zero: Ωh(rh) = 0. This phenomenon arises due to their close proximity

to the event horizon, hindering their detection of the black hole’s rotation.

Within this co-rotating reference frame, a particle will not experience the gravitational

attraction resulting from the BH’s spin. This is due to the spontaneous occurrence of

particle tunneling at the horizon. Consequently, the particle undergoing tunneling

displays no motion in the degrees of freedom represented by φ ′. Hence, it is a valid

assumption to consider that dφ ′ = 0, indicating that there is no change in the φ ′
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coordinate as the particle tunnels through the horizon.

In contrast, when analyzing Hawking radiation using a quantum tunneling approach,

we reevaluate the RLDBH metric (1.22) within the co-rotating reference system by

setting θ = 0, representing the equatorial plane. As a result, metric (1.22) transforms

in the following manner:

ds2 |θ=0=
r2 −2Mr+a2

r0r
dt2 − r0r

r2 −2Mr+a2 dr2. (1.28)

On the horizon, grr =
r0r

r2−2Mr+a2 is singular, and we have to remove that coordinate

singularity. To accomplish this, we pass to the Painlevé coordinate system:

dt = dT −

√
grr(r)−1

Gtt(r)
dr, (1.29)

dt2 = dT +
grr −1
Gtt(r)

dr2 −2

√
grr −1
Gtt(r)

dtdr, (1.30)

where

Gtt(r) =
(r− r−)(r− r+)

r0r
, (1.31)

which transforms the metric into

ds2 = GttdT 2 −2
√

Gtt(grr −1)dT dr−dr2. (1.32)

As is well-known, in the case of null geodesics, i.e., ds2 = 0, we obtain

ṙ
X

=
√

Gtt(r)grr(r), (1.33)

in which

1−X =
√

1−grr(r) (1.34)

After substituting Eqs. (1.33) in (1.22), the imaginary part of the tunneling particle’s

action becomes
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ImI = Im
ˆ E

0

ˆ rh(M)

rh(M−E)

dr

X
√

Gtt(r)grr(r)
dω (1.35)

After multiplying the numerator and denominator parts, separately, by ð = 2−X , we

obtain

ImI ≊ Im
ˆ E

0

ˆ rh(M)

rh(M−E)

√
Gtt(r)
grr(r)

ðdωdr. (1.36)

Since grr(r) exhibits singularity at the horizon, one can express grr(r) for the metric of

a four-dimensional spinning BH as follows:

grr(r) = Y (r)(r− rh)
−1, (1.37)

where

Y (r) = rr0(r− r−)−1. (1.38)

Equation (1.38) is a function that is regular on the horizon. By substituting Eq. (1.37)

into Eq. (1.33), we find out

ImI = Im
ˆ E

0

ˆ rh(M)

rh(M−E)

Y (rh)(1+
√

1− r−rh
Y (rh)

)

r− rh

√
grr(rh)

Gtt(rh)
dωdr. (1.39)

The integral equation (1.39) now exhibits a pole at rh. By adding an extremely small

imaginary component to the variable r and enabling the integration path to create a

semicircular contour around the pole, it is possible to compute the integration of the

radial component. This strategy leads to the following results:

ImI

2π
=

ˆ E

0
Y (rh)

√
grr(rh)

Gtt(rh)
dω (1.40)

It is a reasonable deduction to make that the energy (E) of the particle involved in

tunneling is significantly less than the total mass (M) of the black hole; namely, E is

much smaller than M. Consequently, when we consider Eq. (1.41), we can simplify
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the expression within the integral to a constant value. This leads us to the following

result:

ImI

2πE
= Y (rh)

√
grr(rh)

Gtt(rh)
. (1.41)

Since (Gtt(r),grr(r)) → 0 around the event horizon (rh), we can expand them as

follows

grr(r)≈ grr′(rh)(r− rh)+ ..., (1.42)

Gtt(r)≈ G
′
tt(rh)(r− rh)+ .... (1.43)

where “ . . . ” seen in Eqs. (1.42) and (1.43) present the high-order terms of (r− rh)

and prime “′” symbol denotes the derivative with respect to r. From Eq. (1.42), we get

grr′(rh) =
1

Y (rh)
. (1.44)

Substituting Eqs (1.42) and (1.43) in (1.41), the near-horizon version of the action can

be rewritten

ImI ≈ 2πE√
G′

tt(rh)
Y (rh)

. (1.45)

Eventually Eq. (1.17), which stands for computing the tunneling rate (1.16) and it is

equivalent to Eq. (1.18) having the Boltzmann constant, is derived

ImI =
πE

κ(rh)
(1.46)

By matching Eqs. (1.45) and (1.46), the surface gravity is obtained as

κ(rh) =

√
G′

tt(rh)Y−1(rh)

2
, (1.47)

which yields the surface temperature of the RLDBH:

13



TH =

√
G′

tt(rh)Y−1(rh)

4π
. (1.48)

Hence, we successfully derived the Hawking temperature (1.48) utilizing the quantum

tunneling method. Additionally, the surface gravity of the RLDBH spacetime can be

computed through the implementation of the timelike Killing vector [46]:

κ(rh) = lim
r→rh

∂r
√

Gtt√
grr

= lim
r→rh

∂rGtt√
4grrGtt

. (1.49)

It is widely acknowledged that near the event horizon, κ(rh) remains constant, as per

the principles of BH thermodynamics [47]. Hence, it can be assessed at any angle θ0.

By substituting Eqs. (1.42) and (1.43) into Eq. (1.49), we derive

κ(rh) =

√
G′

tt(rh)Y−1(rh)

2
, (1.50)

After a concise comparison between Eqs. (1.47) and (1.50), it is evident that both

equations yield identical surface gravities. Moreover, it is a firmly established fact that

κ(rh) remains constant at the horizon. Therefore, the specific determination for the

surface gravity of the RLDBH, derived from Eq. (1.50), should remain unaffected by

the parameter θ . Put differently, the surface gravity and the Hawking temperature,

expressed in Eqs. (1.47) and (1.48), respectively, will persist unchanged regardless of

the value assigned to the parameter θ .
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Chapter 2

GENERALIZED UNCERTAINTY PRINCIPLE

HUP, a fundamental concept in quantum physics, has been historically modified to

incorporate minimal-length effects into quantum mechanics [48–50]. Consequently,

as we approach the Planck scale, the uncertainty in the position operator reaches a

global minimum, leading to the emergence of the GUP (see [51] and references therein

for detailed information). GUP extends beyond HUP by integrating concepts from

relativistic physics and quantum gravity.

Unlike the conventional uncertainty principle, GUP suggests the potential existence

of a fundamental upper limit on accurately determining both position and

momentum1 . The notion that our comprehension of space and time might blur or

become ambiguous at extremely small scales or high energies is frequently associated

with GUP. It proposes a fundamental restriction on our ability to precisely determine

particle location and momentum. This concept arises in the effort to reconcile

quantum mechanics with general relativity, the theory that explains gravity on a

cosmic scale. The primary objective of quantum gravity theories is to provide a

unified framework for these two fundamental branches of physics.

In various theoretical frameworks, GUP manifests in different forms. However, a

common modification to HUP involves introducing additional terms, besides the

1 This chapter is primarily cited from [52]
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reduced Planck constant (h̄), dependent on the Planck length (lP) and the speed of

light (c). A generic form for representing GUP in one-dimensional space is as

follows:

∆x∆p ⩾
h̄
2
(1+α

2(∆p)2). (2.1)

It proves that there is a minimal length ∆x ⩾ h̄α , where α is a positive constant

independent of the uncertainties associated with momentum and position, ∆p and ∆x,

and x and p, respectively. [x, p]GUP = ih̄(1 + α2 p2) is the commutation relation for

GUP, where p and x stand for the momentum operators and positions, respectively.

Thus, the modified HUP relation is used to eliminate the divergence in the brick-wall

model, as described in [53]. Utilising the corrected state density provided by the GUP,

the statistical entropy of many BHs has also been computed [54]. The findings thus

demonstrate the finite nature of the statistical entropy of the near-horizon quantum

state density.

In contrast, we examine GUP within the framework of tunneling formalism and

compute the quantum-corrected Hawking temperature and entropy for a self-dual BH

using the Hamilton-Jacobi technique. Now, let us commence our investigation using

the GUP [55, 56]:

∆x∆p ⩾ h̄(1− αlP
h̄

∆p+
α2l2

P

h̄2 (∆p)2), (2.2)

in which lP is the Planck length (≈ 10−35m). Now, Eq. (2.2) can be written as follows:

∆pGUP ⩾
h̄(∆x+αlP)

2α2l2
P

1−

√
1−

4α2l2
P

(∆x+αlP)2

 , (2.3)

where the negative sign is our choice. Considering that lP
∆x is significantly smaller in

comparison to unity, we can expand the preceding equation using the Taylor series:
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∆pGUP ⩾
1

2∆x

[
1− α

2∆x
+

α2

2(∆x)2 + . . .

]
, (2.4)

in which lP and h̄ are set to 1, so GUP becomes

∆x∆p ⩾ 1 (2.5)

Proceeding now with the saturated version of the uncertainty principle, one gets

ξ ∆x ⩾ 1 (2.6)

Thus, given the saturated version of HUP and ∆x ∆p ⩾ 1, where ξ is the quantum

particle’s energy, Eq. (2.4) becomes

ξQGC ⩾ ξ
1

2∆x

[
1− α

2∆x
+

α2

2(∆x)2 + ...

]
. (2.7)

The quantum tunneling rate for a quantum particle with ξQGC

Γ ≃ exp(−2ImI ) = exp(
ξQGC

TQGC
), (2.8)

where QGC temperature is TQGC. Comparing Eq. (2.8) with the Boltzmann factor now

yields

TQGC ⩾ TH

[
1− α

2∆x
+

α2

2(∆x)2 + ...

]−1

. (2.9)

Thus, one can obtain QGC-entropy [13] by applying the law of BH thermodynamics:

SQGC =

ˆ
κdAh

8πTQGC
=

ˆ
THdAh

4TQGC
. (2.10)

2.1 GUP-corrected Temperature and Entropy of RLDBH

HUP is expanded upon by GUP, which considers the implications of quantum

gravity [16, 57]. It implies that there is a minimal length that may be seen, which

changes the uncertainty connections between the momentum and position.

Researchers have been examining how GUP affects a number of fundamental

phenomena, such as the thermodynamics of BH’s, in recent years. The role of GUP
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corrections in the entropy evaluations of charged and revolving BHs have been an

active research topic [12, 58]. Therefore, in this thesis, the influence of such

corrections on RLDBH entropy will be examined. In light of this, let us examine the

Lense-Thirring effect, a gyroscopic precession that is observable [59] and which may

be acquired by the dragging coordinate transformation (1.24) that produces the

following metric:

ds2 =
r2 −2Mr+a2 cos2 θ

r0r
dt2 − r2 −2Mr+a2

r0r
dr2 − r0r sin2

θdφ
′2 − r0rdθ

2 (2.11)

For a scalar field, the Klein-Gordon equation (KGE) with GUP takes the following

form: [20, 60, 61].

−(ih̄)2
∂

t
∂tΨ = [(ih̄)2

∂
i
∂i +m2

p]× [1−2αGUP(ih̄)2
∂

i
∂i +m2

p]Ψ (2.12)

In this context, mp represents the mass of the scalar particle, while αGUP refers to the

GUP parameter. The semi-classical WKB approximation technique can be utilized to

address the generalized KGE (2.12) as described in reference [62]. For this purpose,

one can employ the following assumption:

Ψ(t,r,θ ,φ) = exp
(

i
h̄

S(t,r,θ ,φ)
)
, (2.13)

in which S(t,r,θ ,φ ) represents the forbidden tunnelling action. For the action, we can

utilize the following Hamilton-Jacobi ansatz [52, 63] to account for the symmetries of

metric (2.11):

S(t,r,θ ,ψ) =−Et +W (r)+K(θ)+ jφ +C, (2.14)

where E represents energy, j represents the particle’s angular momentum, and C is a

complex constant. In the leading order of h̄, the following is obtained by substituting

action (2.14) in Eq. (2.13):
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r0r
r2 −2Mr+a2 E2 =

r2 −2Mr+a2

r0r
W ′(r)2 +

j2

r0r sin2
θ
+

K′(θ)2

r0r

+m2
p

[
1−2αGUP

(
r2 −2Mr+a2

r0r

)
W ′(r)2 − 2αGUP j2

r0r sin2
θ
− 2αGUPK′(θ)2

r0r
−2αGUPm2

p

]
.

(2.15)

Therefore, the integral solution obtained from the radial part (which ignores the higher-

order elements of (αGUP) is as follows:

W (r) =±
ˆ

Edr√
∆(1−2αGUPm2

p)
, (2.16)

Remember that ∆ was defined as ∆ = r2 − 2Mr + a2. Subsequently, the path of the

contour can be modified to compute the integral around the singularity at rh, which

allows us to obtain the following result:

W (r+) =
iπE

2
√

1−2αGUPm2
p

r0r+√
M2 −a2

. (2.17)

Consequently, the following method can be used to calculate the RLDBH’s Hawking

temperature using GUP:

T GUP
RLDBH =

√
M2 −a2

2πr0r+

√
1−2m2

pαGUP. (2.18)

In relation to the preceding formula, as αGUP approaches zero, the GUP-modified

Hawking temperature reverts to the original Hawking temperature (1.10). Figure 2.1

illustrates the growth of GUP effect (αGUP) concerning BH mass and its efficacy in

reducing the Hawking temperature.

Quantum physics textbooks typically derive the standard HUP (∆x∆p ⩾ 1) and its fully

realized version, as discussed in references [64,65], in scenarios where the GUP effect

is absent (αGUP = 0).

ξ ∆x ⩾ 1, (2.19)
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The energy of the quantum-scale particle is represented by ξ . However, the energy

associated with quantum gravity corrected (QGC) is obtained via Refs. [58, 66] by

accounting for the GUP:

ξQGC ⩾ ζ [1− αGUP

2∆x
+

α2
GUP

(∆x)2 + ...]. (2.20)

Referring to Anacleto et al.’s publications [64, 65], one can estimate the quantum

tunneling rate of a quantum particle with ξQGC by

Γ ≃ exp [− ImS] = exp
[
−

ξQGC

TQGC

]
, (2.21)

in which TQGC represents the QGC temperature and it reads

TQGC = TH

[
1− αGUP

2∆x
+

α2
GUP

(∆x)2 + ...

]−1

(2.22)

In light of the ongoing investigations [64, 65], the alteration in x, denoted as ∆x, can

be attributed to Ah
π

, where Ah represents the area of the event horizon. Consequently,

applying the first law of BH thermodynamics, the calculation of the GUP corrected

entropy is as follows:

SGUP
RLDBH =

ˆ
κdAh

8πTQGC
=

ˆ
THdAh

4TQGC
(2.23)

=

ˆ
dAh

4
[1− παGUP

2Ah
+

π2α2
GUP

A2
h

+ ...]

= SRLDBH − παGUP

8
ln(4πr0r+)−

π2α2
GUP

32πr0r+
+ ...,

wherein SRLDBH was given in Eq. (1.12). We now wish to underscore the significance

of this modified entropy. It is widely accepted that a BH’s entropy is intricately linked

to the count of microstates corresponding to a specific macroscopic configuration.

With the Hawking radiation exhibiting apparent thermal characteristics and lacking

specific correlations with the information that fell into the BH, the information loss

paradox becomes relevant [21, 67]. This raises the question of whether the radiation
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truly carries information about the initial condition of the material that formed the BH

or if it has been irretrievably lost. This conflict challenges the fundamentals of

quantum physics, which dictate the continuous preservation of information.

The inclusion of GUP in the calculation of BH entropy provides an updated

description of the microstates accessible to a BH. This modification offers a potential

resolution to the information paradox by suggesting that BHs might retain certain

remnants or indications of the absorbed information [21, 68]. Figure 2.2 unmistakably

demonstrates that, in comparison to a BH with the same mass (RLDBH), entropy

decreases as the αGUP parameter increases. However, this reduction in entropy

elevates the possibility of information leakage from the BH. This finding concerning

RLDBH further corroborates our earlier study [68] on the static linear dilaton black

hole (SLDBH). The study indicated that quantum gravity effects are crucial not only

in resolving the information paradox for the SLDBH but also in establishing a

nonzero statistical correlation.

In essence, the physical significance of GUP-corrected entropy lies in its potential to

provide insights into the behavior of BHs concerning quantum physics. It provides a

way out of the information conundrum and increases our understanding of spacetime

and gravity’s basic quantum characteristics.
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αGUP =5αGUP=0 αGUP=50 αGUP=100

T GUP
RLDBH

Figure 2.1: T GUP
RLDBH versus M plots for various αGUP values. The plots are determined

by Eq. (2.18). The physical parameters are chosen as a = 5, mGUP = 0.01, and r0 = 1.

αGUP=0

αGUP=5

αGUP=50

S
GUP

RLDBH

Figure 2.2: SGUP
RLDBH versus M plots for various αGUP values. The plots are determined

by Eq. (2.13). The physical parameters are selected as a = 5, mGUP = 0.01, and
r0 = 1.
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Chapter 3

SUMMARY AND CONCLUSIONS

The quantum thermodynamics of RLDBH has been explored within this thesis. The

primary objectives of this investigation were twofold: 1) to compute the alterations in

temperature and entropy associated with RLDBH due to GUP, and 2) to determine the

Hawking temperature of the RLDBH using the null-geodesic tunneling approach

elucidated by Parikh and Wilczek [38]. To achieve those aims, we have employed the

technique of dragging coordinate systems. Specifically, we have reduced the

four-dimensional spacetime of a spinning BH to a three-dimensional slice within that

particular coordinate system [69]. To preserve the original structure of spacetime, we

have utilized an event horizon-following coordinate system. This method effectively

nullifies the influence of the angular parameter φ of a tunneling particle. The obtained

results indicate that the temperature of thermal radiation emitted the RLDBH, as

determined by the quantum tunneling technique, aligns with the statistical Hawking

temperature (1.10). Consequently, we have successfully demonstrated the complete

segregation of the Klein-Gordon equation associated with GUP within the framework

of large scalar field propagation in the geometry of RLDBH. This segregation has

been achieved using the Hamilton-Jacobi approach. Subsequently, we have revisited

the quantum tunneling framework to accurately compute the Hawking temperature

for RLDBH, modified by GUP, as expressed in Eq. (2.8). Additionally, we have

established the Hawking temperature for QGC, as depicted in Eq. (2.12), utilizing the

entropy derived from GUP [70], outlined in Sec. 2.1. Notably, both temperatures
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converge to the standard Hawking temperature (1.10) when the αGUP = 0 condition is

met. Building upon our previous research [52] on the RLDBH, it was illustrated in

Fig. 2.2 that SGUP
RLDBH decreases with an increasing αGUP parameter. This implies a

heightened potential for extracting additional information from the respective BH.

Overall, our findings demonstrate that Hawking radiation of the RLDBH is

quantitatively affected by the GUP, potentially introducing subtle features in the

energy spectrum or other radiation properties. Future space-based observatories could

help discover GUP effects by enabling more thorough studies of BHs and their

radiation, like the Laser Interferometer Space Antenna (LISA) project [71].
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