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2. ABSTRACT 

The main drawbacks in Nearest Feature Line classifier are the extrapolation and 

interpolation inaccuracies. The former can easily be counteracted by considering 

segment rather than lines. However, the solution of the latter problem is more 

challenging. Recently developed techniques tackle with this drawback by selecting a 

subset of the feature line segments either during training or testing. In this study, a 

novel framework is developed that involves a discriminative component. The 

proposed approach is based on editing the feature line segments. It involves three 

major steps namely, error-based deletion, intersection-based deletion and pruning. 

The first step compares the benefit and cost of deleting each feature line segment and 

deletes those that contribute more to the classification error. For the implementation 

of the second step, a novel measure of intersection is defined and used for line 

segments in high dimensions to delete the longest of two intersecting segments. The 

pruning step re-evaluates the retained segments by considering their distances from 

the samples belonging to the other classes. The proposed approach is evaluated on 

fifteen real datasets from different domains. Experimental results have shown that 

the proposed scheme achieves better accuracies on majority of these datasets 

compared to two recently developed extensions of the nearest feature line approach, 

namely the rectified nearest feature line segment and shortest feature line segment on 

majority of these datasets. 

Keywords: Pattern classification; nearest feature line; line segment editing; 

interpolation inaccuracy; extrapolation inaccuracy.  
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3. ÖZ 

Enyakın öznitelik çizgisi sınıflandırıcısının en önemli zayıflıkları ekstrapolasyon ve 

interpolasyon hatalarıdır. İlki çizgiler yerine çizgi parçaları kullanılarak kolaylıkla 

telafi edilebilir. Ancak, sonraki problemin çözümü daha zorludur. Son dönemde 

önerilen yöntemler bu sorunla eğitme veya sınama aşamalarında öznitelik çizgi 

parçalarının altkümelerini seçerek başa çıkmaya çalışmaktadırlar. Bu çalışmada, ayırt 

edici bileşen de içeren yeni bir çerçeve geliştirilmiştir. Önerilen yöntem öznitelik 

çizgi parçalarını azaltmaya dayanmaktadır. Bu yaklaşım hataya-dayalı silme, 

kesmeye-dayalı silme ve budama olmak üzere toplam üç basamak içermektedir. 

Birinci aşama, her öznitelik çizgi parçasını silmenin kazanım ve bedelini karşılaştırır 

ve sınıflandırma hatasına katkı yapanları siler. İkinci basamağın uygulanması için 

yeni bir kesişme tanımı yapılmış ve yüksek boyutlu öznitelik uzayında kesişen 

öznitelik parçalarının uzun olanını silmek için kullanılmıştır. Budama aşamasında, 

geriye kalan öznitelik çizgi parçaları diğer sınıflara ait eğitme verisine olan 

uzaklıkları dikkate alınarak yeniden değerlendirilmiştir. Önerilen yöntem, farklı 

alanlardaki onbeş gerçek veri kümesi üzerinde denenmiştir. Deneysel sonuçlar, 

önerilen yöntemin son yıllarda enyakın öznitelik çizgisi yaklaşımının uzantısı olarak 

geliştirilen düzeltilmiş en yakın öznitelik çizgi parçası ve en kısa öznitelik çizgi 

parçası isimli yaklaşımlara göre, veri kümelerinin çoğunda daha iyi başarım elde 

ettiğini göstermiştir. 

Anahtar Kelimeler: Örüntü sınıflandırma; en yakın öznitelik çizgisi; çizgi parçası 

seçme; interpolasyon hatası; ekstrapolasyon hatası.  
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Chapter 1 

1. 1 INTRODUCTION 

1.1 Pattern Classification 

Pattern classification is the science of labeling an unseen data as one of the known 

groups or categories [1, 2]. Some examples of data are speech signal, facial image, 

iris, handwritten word and e-mail message. Mostly, the classification algorithms 

match the input to the a priori defined categories by considering their statistical 

characteristics. 

In pattern classification problem, a class denotes a group of objects that have 

common properties. For example, in the face recognition problem, the group of 

different facial images belonging to a different person forms a class. As another 

example, if we need to design an automated system for fish packing to detect 

different types of fish, then any type of fish forms a different class.  

The first step in designing an automated classification system is defining the method 

of representing different objects. This step is problem dependent. Consider the fish 

packing problem. Raw data measurements such as length and weight, derived 

measurements or features (e.g. ratio of length to weight), a structural description such 

as length to weight ratios of different parts of the fish and spatial relationship of the 

various parts can be considered. Feature based representation approach is the most 

common. A feature is any distinctive aspect, quality or characteristic related with the 
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objects to be classified. A feature vector of an object represents a combination of 

features as an N-dimensional column vector where each entry corresponds to a 

different feature or measurement. 

Each object employed in the classification is known as a sample and a collection of 

samples is named as a dataset. For example, in face recognition problems, each 

facial image that is available in the dataset is a different sample.   

A pattern classification system is typically made up of two phases, training phase 

and test phase, as it is shown in Figure 1 [3]. The data acquisition step corresponds to 

getting the input from the physical environment by measuring physical variables 

such as recording the speech signal using a microphone or capturing the image of a 

person. Pre-processing methods tries to remove noises and redundant inputs. Feature 

extraction involves definition of measures for accurate description of raw input data. 

Small number of features may not be discriminative while larger number of features 

may lead to more complex classification models. Model estimation is used to 

compute a decision boundary or decision regions in the feature space. At the 

classification step, the classifier uses the trained model to map the input feature 

vectors onto one of the classes and this leads to the final decision for each sample. 
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`  

Figure 1: The main blocks of a pattern classification system. 

Classifiers are roughly categorized into two groups: Parametric and non-parametric 

methods. In the parametric approach, the main aim is to fit a parametric model to the 

training data and interpolate to classify test data. For instance, the parametric 

methods may assume a specific functional form for the probability density function 

and optimize the function parameters to fit the training data. Some of these methods 

are Linear Discriminant Classifiers (LDC) and Quadratic Discriminant Classifier 

(QDC) [4]. In the non-parametric methods, no assumptions are made about the 

probability density function for each class, because an assumed function may not fit 

the training data. Therefore, the non-parametric methods determine the form of the 

probability density function from the data. Some widely used non-parametric 

methods are nearest neighbor classifier, neural networks and support vector machines 

[1].  

The Nearest neighbor classifier (NN) is a simple yet effective non-parametric scheme 

that chooses the label of the nearest training sample as the final decision [5]. An 

extended version is k-NN [6] which makes the decisions by voting on the labels of 
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the k nearest neighbors of the test sample. The training phase is not intense. All data 

samples and their labels are stored. In case of real valued feature vectors, the most 

common function for the calculation of distances is the Euclidean metric [7]. 

Although, it is easy to implement and debug, k-NN approach has some disadvantages 

which are namely high computational cost and sensitivity to the outliers [6]. 

Moreover, there is a need for large number of samples for reasonable performance. 

In particular, as a geometrical neighborhood approach, the performance increases as 

the number of training samples increases [1]. It is known that the error of k-NN 

approaches to Bayes error rate as the number of samples goes to infinity [1]. 

However, in practice there will be limited number of samples due to practical 

restrictions in their collection. In cases where the training data is limited, the training 

data will not be able to represent the characteristics of the pattern classes and hence 

the performance of the k-NN will be below acceptable limits. To counteract the data 

insufficiency problem, nearest feature line (NFL) method is proposed as an extension 

of nearest neighbor approach [5]. 

NFL aims to generalize the representational capacity of the training data by 

considering lines passing through each pair of samples from the same class that are 

named as feature lines (FL) [5]. With the use of lines, NFL is generally argued to add 

information to the given data. NFL is originally proposed and successfully used for 

the face recognition problem [5]. However, it has been proved to achieve 

consistently better performance than the NN in terms of the error rate in many real 

and artificial data [8]. Classification by NFL is done by computing the distances 

from the test sample to all feature lines where the class to which nearest feature line 

belongs is selected as the final decision. 
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NFL has two major drawbacks, namely the interpolation and extrapolation 

inaccuracy [9]. Interpolation inaccuracy occurs when a feature line is defined using 

samples that are far away from each other. Such lines may pass through the regions 

where other classes exist. Consequently, such a line may be computed as the nearest 

for the samples belonging to a different class. The extrapolation inaccuracy occurs 

when a feature line passes through samples that are away from the test point [10]. In 

the NN and k-NN methods, for N training samples in a given class, N distances are 

computed. However, NFL suffers from increased computational complexity as well 

since N(N-1)/2 feature lines are defined using N samples [5].  

It should be noted that NFL based approaches are employed for the classification 

problems involving real valued features. The main reason is that the concept of 

generalization using feature lines is not sensible in the case of binary features. 

Following this technique, several editions are developed to reduce the error and/or 

the computational cost. Center-based nearest neighbor (CNN) [11] was proposed to 

reduce the computational cost of the NFL method by using center-based feature 

lines. The center-based feature lines are defined as the lines passing through each 

training sample and the center of all samples belonging to the class [9, 11]. During 

classification, the decision is made by finding the nearest center-based feature line to 

the query point. Experiments have shown that CNN achieves enhanced performance 

compared to NN and comparable performance with NFL [11]. Another approach for 

reducing the computational cost is the nearest neighbor line (NNL) [12]. It uses the 

line through the nearest pair of samples from each class during the classification 

phase. In other words, a single line for each class is considered. Experiments on face 
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recognition have shown that NNL has much lower computation time and achieves 

competitive performance compared to the NFL method [13].  

More advanced methods are also proposed mainly to suppress the interpolation and 

extrapolation inaccuracies. The rectified nearest feature line segment  technique 

(RNFLS) [14] uses FL segments so as to avoid extrapolation inaccuracy where a 

feature line segment (FLS) is defined as the region of a FL that is in between the 

corresponding samples. In order to suppress the interpolation inaccuracy, it removes 

all the FLSs trespassing the territory of other classes where, the territory of each class 

is defined as the union of the territories of all samples belonging to the same class 

and the sample territory is defined as a hyper-sphere centered at the point under 

concern with radius equal to distance to the nearest neighbor from a different class. 

During classification, if the projection point is on the extrapolation segment, it is 

replaced by nearest point of the FLS.  

Shortest feature line segment (SFLS) [9] avoids extrapolation inaccuracy by using 

FLSs as in RNFLS. It also avoids interpolation inaccuracy in some cases by choosing 

the shortest FLS which satisfies a specific geometric relation. The decision is made 

by finding the smallest hyper-sphere that contains the test sample. There is not a FLS 

deletion step during training. 

In summary, efforts for improving the accuracy of NFL mainly focus on using a 

subset of FLSs either by permanently deleting or by disregarding those that do not 

satisfy pre-specified constraints. However, selection of subsets of FLSs is not done in 

a discriminative way. In other words, FLS subsets are not determined by directly 

taking into account the classification error. 
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1.2 Objectives 

As described above some FLSs can cause interpolation inaccuracy. As an alternative 

approach to improve the performance to the NFL, editing can be applied to remove 

the feature lines leading to misclassification. In other words, the deletion of the FLSs 

can be one in a discriminative way. In fact, editing is extensively studied for 

improving the performance of k-NN classifier, especially in the case of outliers and 

noisy training data. Editing can be considered as selection of a subset of the training 

data which provides the highest classification accuracy on the training set. The idea 

of editing is proposed by Wilson where the edited nearest neighbor approach deletes 

the training samples whose label do not agree with its neighbors [15]. The idea is 

then extended into the multiedit algorithm by Devijver and Kittler which applies 

edited nearest neighbor algorithm in a repeated way [16]. The use of Genetic 

algorithms for this purpose is also widely considered [4, 17].  

The major aim of this study is to propose an editing based selection of feature line 

segments to reduce the interpolation inaccuracy in NFL. The proposed method is 

based on the iterative evaluation of deleting FLSs in three steps namely error-based 

deletion, intersection-based deletion and pruning. 

The error-based deletion step takes into account the classification accuracy on the 

training set in deciding to keep or delete a FLS. Score computation is firstly 

performed. For each segment, we calculate and record the number of correct and 

incorrect classification that it makes (negative and positive scores, respectively). 

Then, the sum of positive and negative scores is computed for each segment. The 

resultant scores are sorted in ascending order. The deletion of the top-rank segment is 
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investigated. If, by removing the corresponding segment, a better accuracy is 

achieved, it is permanently deleted. After deletion of a FLS, the scores are re-

computed. This step is repeated until there is no more segment that needs to be 

deleted.  

In the second step, the intersection of segments is investigated. If two segments from 

different classes intersect, the longer segment is removed. For multiple dimensional 

feature spaces, intersections of segments rarely occur. However they may be close to 

each other, still leading to interpolation inaccuracy. In multiple dimensional case, if 

the minimum distance between two FLSs is below a threshold, they are considered as 

intersecting segments and the longer is deleted. 

As a last step, pruning is being applied. The aim of this step is to delete the FLSs that 

are very close to samples from a different class. More specifically, for a given 

training sample, if the nearest FLS belongs to a different class and it is closer than 

the nearest sample from the same class, the FLS is considered as a candidate for 

deletion. Although they are not making any misclassification in training phase, such 

FLSs have the risk to harm the model in the testing phase. Experiments on artificial 

data have shown that this improves the margin of the resultant decision boundary.  

During testing, NFL is applied on the remaining FLSs. The proposed approach is 

evaluated on fifteen datasets, majority of which are from the UCI machine learning 

repository [18]. Experimental results have shown that the proposed approach 

provides better accuracies compared to NFL, RNFLS and SFLS on 14, 11 and 12 

datasets, respectively.  
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1.3 Layout of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 presents a brief literature 

review. The proposed method is presented in Chapter 3. Chapter 4 presents the 

experimental results on three artificial and fifteen real datasets. Chapter 5 lists the 

conclusion drawn from this study.  
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Chapter 2 

2. 2 LITERATURE REVIEW 

2.1 The Nearest Neighbor Approach (NN) 

The Nearest Neighbor approach which was proposed in 1967 labels an unseen query 

sample as the same label of the nearest training sample [19]. As a non-parametric 

rule it is the simplest yet effective and popular method. Despite its simplicity, it has 

several advantages. For example, it can learn from a small set of samples, there is no 

pre-processing task, new information can be added at runtime and may give 

competitive performance with many other advanced classification techniques [20]. 

 

Figure 2: An illustration for the operation of the NN rule. 

Consider the query point q given in Figure 2 where there are two different classes. 

For the	given	query	point,	the nearest training sample belongs to class ‘’.	Hence,	

it	is	similarly	labeled	as	‘’.	Since the NN rule utilizes only the label of the nearest 

 ݍ

 ଵݔ
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neighbor, the remaining training samples are ignored. In case of noisy training data, 

this method may lead to large number misclassifications.  

An extension to the NN rule is the k-NN approach. In this method, larger numbers of 

neighbors (k) are considered where voting over the labels of the k nearest samples is 

performed to compute the most likely class. The most common distance measure 

used to find the nearest samples is the Euclidean distance [7]. A major disadvantage 

of the NN and k-NN methods is the time complexity of making predictions when 

compared to many other methods.  

 

Figure 3: The k-NN approach considers a wider neighborhood. 

In Figure 3 let ݇ ൌ 3. The nearest three samples for the query point q are ݔଵ,  ଶ, andݔ

 .”ଷ. By applying voting, q is labeled as the class represented by “ݔ

Similar to NN, the classification performance of k-NN increases as the number of 

training samples increases.  

2.2 Nearest Feature Line (NFL) Method 

The objective of the nearest feature line method which was originally proposed for 

face recognition is to generalize the representational capacity of data samples using 

 ݍ
 ଵݔ

 ଶݔ

 ଷݔ
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lines passing through each pair of samples belonging to the same class [5]. This 

technique is expected to be superior to NN especially in cases where the training data 

is limited. 

The NFL approach is a two-step scheme. The first step corresponds to the 

construction of feature lines (FL). In the second step, the query point is projected to 

all FLs and the distances from the projection points to the query point are computed. 

During classification; the class to which the nearest line belongs is selected as the 

label of the query point.  

 

Figure 4: Classification using the NFL method in a subspace represented by 
FLs passing through each pair of samples within the same class. 

Let  ݕݔതതത denote the FL passing through ݔ and ݕ as shown in Figure 4. Let ݌ denote 
the projection point of ݍ on ݕݔതതത which can be computed as 

݌ ൌ ݔ ൅ ݕሺߤ െ  ሻݔ

where ߤ is the position parameter that is defined as 

ߤ ൌ
ሺݍ െ .ሻݔ ሺݕ െ ሻݔ

ݕ‖ െ ଶ‖ݔ
 

The symbol ‘.’ represents the dot product. The parameter ߤ describes the position of 

p relative to x and y. When ߤ ൏  തതത. Whenݕݔ is on backward extrapolation part of ݌ ,0

݀ሺݍ, ሻݕݔ ݕ

ݔ

ݍ

݌
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ߤ ൐  is on interpolation part if ݌ തതത andݕݔ is on forward extrapolation part of ݌ ,1

0 ൏ ߤ ൏ 1. When ߤ ൌ ߤ and ݔ is on ݌ ,0 ൌ 1	 means that ݌ is on ݕ as illustrated in 

Figure 5. 

 

Figure 5: The position parameter values. 

The distance from the query point to the FL is defined as  

݀ሺݍ, ሻݕݔ ൌ ݍ‖ െ  ‖݌

where ‖. ‖ denotes the Euclidean distance. Assuming that ݌௜ and ݍ௜ represent the ith 

entries in the corresponding vectors and D is the vector dimensionality, d is 

computed as 

݀ ൌ ݍ‖ െ ‖݌ ൌ ඥሺݍଵ െ ଵሻଶ݌ ൅ ሺݍଶ െ ଶሻଶ݌ ൅ ⋯ ൌ ඩ෍|ݍ௜ െ ௜|ଶ݌
஽

௜ୀଵ

 

Let ௖ܰ denote the number of samples that belong to class ܿ where there are C classes. 

In this case, the total number of FLs can be calculated as 

௅ܰ ൌ ∑ ே೎ሺே೎ିଵሻ

ଶ
஼
௖ୀଵ . 

0 ൏ ߤ ൏ 1 

feature line segment 
or 

interpolation 
part 

ߤ ൐ 1 

forward 
extrapolation 

part 

ߤ ൏ 0 

backward 
extrapolation 

part 

 ݔ

ݕ
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It is obvious that the number of FLs grows fast as the number of training samples 

increases. Hence, NFL is computationally more demanding than NN. 

Although the NFL method is successful in improving the classification ability of the 

NN approach, there is room for further improvements [12]. It has two main sources 

of errors, namely the interpolation and extrapolation inaccuracies. The extrapolation 

inaccuracy mainly occurs in a low dimensional feature space when a sample pair is 

far away from the query point [14]. An example is presented in Figure 6. The query 

point q belongs to the class “”, but is classified to class “” although ݔଵ and ݔଶ are 

far away. This error in caused by the backward extrapolation part of the FL ݔଵݔଶതതതതതത that 

belongs to the class denoted by “”. 

 

Figure 6: Extrapolation inaccuracy in NFL. 

The interpolation inaccuracy occurs when a FL passes through samples that are away 

from each other and trespasses a cluster of a different class. Interpolation inaccuracy 

creates inconsistency in classification decision.  Consider the example presented in 

Figure 7. q is misclassified as class “” although it belongs to the class represented 

by “”.  

 ݍ

 ଵݔ
 ଶݔ

 ଷݔ

 ସݔ
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Figure 7: Interpolation inaccuracy in NFL. 

In order to avoid the above-mentioned weaknesses, some extensions of NFL are 

proposed. Two most widely known schemes are the rectified nearest feature line 

segment and the shortest feature line segment.  

2.3 Rectified Nearest Feature Line Segment (RNFLS) 

In RNFLS, both extrapolation and interpolation inaccuracies are suppressed [14]. 

The first step of RNFLS is to define a subspace named as nearest feature line 

segment subspace (NFLS-subspace). This subspace is defined as the union of FL 

segments (FLS) where the forward and backward extrapolation parts are discarded. 

During testing, in order to implement this, RNFLS firstly finds the projection point 

on all FLs. If, for a particular FL, the projection point is on either of the extrapolation 

parts, the nearest endpoint is chosen to be the projection point for calculating the FL 

distance. When the projection point is on the interpolation part, that point is 

considered in the distance computation as in the NFL method. Consider the example 

presented in Figure 8. The projection of ݍଶ is in the forward extrapolation part of 

 ,ଶ. Consequently݌ ଶ is considered instead ofݔ .ଶതതതതതത. Hence, the nearest sample, i.eݔଵݔ 

since no extrapolation segments are used, there will be no extrapolation inaccuracy. 

 ݍ

 ଵݔ

 ଶݔ

 ଷݔ

 ସݔ
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Figure 8: NFLS subspace used by RNFLS for avoiding extrapolation 
inaccuracy. 

The NFLS-subspace denoted by ሚܵ is the set of line segments which passes through 

each pair of samples of the same class. The NFLS-subspace for class ܿ can be 

represented as 

ሚܵ௖ ൌ ൛൫ݔపሶ	ݔఫሶ 	෧൯ห1 ൑ ݅, ݆ ൑ ௖ܰ, ௜ݔ ∈ ܿ, ௝ݔ ∈ ܿ, ݅ ് ݆ൟ  

where ݔ௜	 and ݔ௝ are samples belonging to class c, ݔపሶ	ݔఫሶ 	෧ is the line segment 

connecting ݔ௜ and ݔ௝, and ௖ܰ is the number of samples that belong to class c.  

During testing, the distance from a query point q to the NFLS-subspace is calculated 

as 

݀൫ݍ, ሚܵ௖൯ ൌ min௬∈ௌሚ೎‖ݍ െ  ,‖ݕ

where y depends on the position parameter, ߤ. For a particular FLS ݔపሶ	ݔఫሶ 	෧ , if 0 ൏ ߤ ൏

1, since the projection point is between ݔ௜ and ݔ௝, ݀൫ݍ, ሚܵ௖൯ ൌ ݍ‖ െ  On the other .‖݌

hand, ݀൫ݍ, ሚܵ௖൯ ൌ ݍ‖ െ ߤ ௜‖ whenݔ ൏ 0 (backward extrapolation part) and 

݀൫ݍ, ሚܵ௖൯ ൌ ฮݍ െ ߤ ௝ฮ whenݔ ൐ 1 (forward extrapolation part). 

 ଶ݌

 ଵݔ

 ଶݔ

 ଶݍ

 ଵݍ

 ଵ݌
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In order to avoid the interpolation inaccuracy, RNFLS deletes the FLSs trespassing 

the other classes. The resultant subspace is named as the rectified nearest feature line 

segment subspace (RNFLS-subspace). In order to compute the trespassing segments, 

sample and class territories are firstly defined. The sample territory is defined as the 

hyper-sphere whose radius is equal to the distance from the sample and its nearest 

neighbor from a different class. Assume that ݔ௜ belongs to class ܿ௜ and ݔ௞ belongs to 

a different class, ܿ௞. The radius, ݎ௫೔ of the sample territory ௫ܶ೔ is defined as 

௫೔ݎ ൌ
௠௜௡

∀௫ೖ,௖ೖஷ௖೔
௜ݔ‖ െ  .‖௞ݔ

Hence, 

௫ܶ೔ ൌ ሼݔ ∈ Թ஽|		‖ݔ െ ‖	௜ݔ ൏  .௫೔ሽݎ

The territory of class ܿ௜ is defined as the union of all sample territories belonging to 

the same class as 

௖ܶ೔ ൌ ራ ௫ܶ೔
௫೔∈௖೔
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Figure 9: Territories of the samples are shown by dotted lines whose union 
constitutes the class territory. The segment ݔଵݔଶ෧ is removed because it 

trepasses the territory of the other class. 

Computation of the rectified space is illustrated in Figure 9. The sample territories of 

the class represented by “” are shown by circles. The territory of the class 

represented by “”, •ܶ is obtained as the union of all three circles. The FLS ݔଵݔଶ෧ is 

trespassing •ܶ and hence it is deleted. 

Let ෩ܷ௖೔ denote the set of FLSs that belong to the class ܿ௜ which trespass other 

class(es). The RNFLS-subspace of ܿ௜ is defined as 

ሚܵ௖೔
∗ ൌ ሚܵ௖೔ ∖ ෩ܷ௖೔ 

where 

	 ෩ܷ௖೔ ൌ ቄሺݔ௠ݔ௡		෧ ሻቚ∃ܿ௬, ܿ௜ ് ܿ௬ ∧ ෧		௡ݔ௠ݔ ∈ ሚܵ௖೔ ∧ ෧		௡ݔ௠ݔ ∩ ௖ܶ೤ ് ∅ቅ 

and ‘∖’ is set difference operator. 

 ଵݔ

 ଶݔ

 ଷݔ

 ସݔ

 ହݔ

 ଵݕ

 ଶݕ
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It should be noted that, as seen in Figure 9, ݔଵݔଶ	෧ ∩ •ܶ ് ∅. Hence, ݔଵݔଶ෧ ∉ ሚܵ⋆∗. On 

the other hand, ݔଶݔଷ෧ ∈ ሚܵ⋆∗ since ݔଶݔଷ෧ ∩ •ܶ ൌ ∅. 

Classification in RNFLS-subspace is similar to the NFLS-subspace. However, in this 

step, ሚܵ௖೔
∗  that is the set of remaining segments are employed during the classification. 

 
 

 
(a) (b) 

 

(c) 
Figure 10: Classification using the RNFLS-subspace. 

Figure 10 illustrates classification using the RNFLS approach. Part (a) shows the 

sample territories of ݕଵ, ݕଶ, and ݕଷ using dotted circles. Segments ݔଵݔଷ෧ and ݔଶݔଷ෧ are 

deleted. Part (b) shows the sample territories of ݔଵ, ݔଶ, and ݔଷ. Segments ݕଵݕଶ෧ and 

ଷ෧ݕଶݕ  are deleted. In part (c), the projection of the query point ݍଵ is on the 

interpolation part of the segment ݔଵݔଶ෧. Thus, ݀ሺݍ, ሻ	ଶ෧ݔଵݔ ൌ ݀ሺݍ,  ଵሻ. For the query݌
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point ݍଶ, the projection point is on the forward extrapolation part of the line segment 

,ݍଷ෧. Therefore, ݀ሺݕଵݕ ଷ෧ሻݕଵݕ ൌ ݀ሺݍ,  .ଷሻݕ

2.4 Shortest Feature Line Segment (SFLS) 

As an alternative approach to overcome the inaccuracies of NFL, Han et al. [9] 

recently proposed the shortest feature line segment technique. SFLS aims to find the 

shortest FLS considering the geometric relation constraints between the query point 

and FLSs instead of calculating the FL distances. This approach does not have any 

pre-processing step. 

During classification, hyper-spheres that are centered at the midpoints of all FLSs are 

considered where the length of a given segment is equal to the diameter of the 

corresponding hyper-sphere. SFLS finds the smallest hyper-sphere which contains 

the query point (inside or on that hyper-sphere). For a given test sample, all FLSs for 

which the query point is inside or on the coresponding hyperspheres are firstly 

tagged. Then, the shortest tagged FLS is found. The class that the corresponding 

segment belongs is computed as most likely. It should be noted that, as in RNFLS, 

there will be no extrapolation inaccuracy problem since segments are used. 

 

Figure 11: Classification of q in SFLS. 
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In the examplar case presented in Figure 11, the query point ݍ is labeled as the class 

represented by “” because the smallest hypersphere that contains this point is 

formed by a FLS from that class. 

In order to determine whether a given test sample q is contained by a hypersphere 

formed by ݔ௜ and ݔ௝, the angle α between ݔݍపሶ෦  and ݔݍఫሶ෦  which is defined as 

ߙ ൌ
180
ߨ

.
arccos ቀሺݍ െ ݍ௜ሻ்൫ݔ െ ௝൯ቁݔ

పሶ෦ݔݍ‖ ‖. ฮݔݍఫሶ෦ ฮ
 

is firstly computed. If 0 ൑ α ൏ 90, the feature line is not tagged because the query 

point is not inside or on the hypersphere. On the other hand, if 90 ൑ α ൑ 180, the 

FLS is tagged as a candidate because the geometric contraint is satisfied. Figure 12 

illustrates three possible cases. In part (a), ߙ ൏ 90 and hence ݔపሶݔఫሶ෦  is not tagged. In 

parts (b) and (c), ݔపሶݔఫሶ෦ s are tagged. 

 

Figure 12: Geometric relation between the query point and FL segment. 

In some cases, there may not be any tagged segment for the query sample. The 

corresponding query point is either rejected or the nearest neighbor method is applied 

to make the final decision. 

 ݍ

 ௜ݔ

 ݍ

 ݍ

 ௜ݔ ௜ݔ

 ௝ݔ ௝ݔ ௝ݔ
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 ߙ ߙ
 ߙ



22 

2.5 Comparing NFL, RFLS, and SFLS 

NFL is originally proposed to counteract the major weakness in the NN method 

which is its high error rate in cases where small number of training samples exist. It 

has two drawbacks, namely the interpolation and extrapolation inaccuracies. RNFLS 

can counteract the two inaccuracies existing in the NFL method leading to better 

classification performance. The compuaional complexity is also reduced due to 

deleting some segments. However, the order of reduction is problem dependent. The 

computational complexity of SFLS is also less than NFL [9]. SFLS supresses the 

extrapolation inaccuracy. However, it is able to counteract the interpolation 

inaccuracy only in some cases. 
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Chapter 3 

3. 2 EDITED NEAREST FEATURE LINE APPROACH 

As mentioned in Chapter 1, editing corresponds to removing some prototypes from 

the training data. The main idea in the edited NFL (eNFL) is to delete the feature line 

segments that lead to interpolation inaccuracies. The approach consists of three 

major steps, namely error-based deletion, intersection-based deletion and pruning. In 

each step, some segments are iteratively removed from the training data by 

considering several criteria. At the end of the iterations, a subset of the feature line 

segments are preserved which form a reduced subspace for each class.   

It should be noted that, since the proposed approach employs only segments as in 

RNFLS and SFLS techniques presented in Chapter 2, the extrapolation inaccuracy 

does not occur. 

3.1 Error-based FLS Deletion 

The main idea is that the FLSs obtained using samples that are far away from each 

other are mainly expected to contribute more to the misclassification rate than correct 

classification and hence they should be deleted. The first step of eNFL involves 

ranking all FLSs by taking into account the number of correct classifications and 

misclassifications they participate. In other words, the benefit of employing each 

individual FLS is investigated. This is done by taking each sample out of the training 

set one by one to be utilized as a query point and recording the nearest FLS.  Then, 
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the numbers of times each FLS participates in correct classification and 

misclassification are computed. The decision about deletion is based on these scores.  

As an example, assume that there are four training samples from class ‘’ and five 

from class ‘’ as shown in part (a) of Figure 13. Let us take ݔ଻ out of the training set 

and assume that it is a query point. The nearest FLS to ݔ଻ is xଷxସ෧. Although ݔ଻ 

belongs to class ‘’, because of  xଷxସ෧, it is labeled as class ‘’. This means that 

xଷxସ෧ leads to a misclassification. By removing xଷxସ෧, the query point ݔ଻ will be 

classified correctly as ‘’ since xହx෧଼ will be computed as the nearest FLS in this 

case. However, by removing a FLS, the benefits obtained by correcting some 

misclassification may be lost due to new misclassifications. For instance, although 

deleting ݔଷݔସ෧ leads to a correct decision for ݔ଻, two new misclassifications occurs. In 

order to clarify this, consider the case presented in part (b) where ݔଽ is left out of the 

training data. In this case, due to deleting ݔଷݔସ෧ that is the nearest FLS for that 

sample, it is misclassified since ݔହݔ෧଼ is now the nearest FLS. Assume that we 

similarly take ݔ଺ out of the training data as illustrated in part (c). In this case, due to 

deleting ݔଷݔସ෧, this sample is also misclassified since ݔହݔ෧଼ is again the nearest FLS. 

Consequently, before removing ݔଷݔସ෧, there was one misclassification and after 

removing it, two misclassifications occurred. Hence, removing this FLS may not be a 

good idea. The decision to delete a segment or not should be made after taking into 

account the new labels generated by the remaining FLSs for the training samples for 

which the corresponding FLS used to be the nearest before its deletion.  
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(a) (b) 

 

(c) 
Figure 13: Choosing different samples for the evaluation of nearest FLSs. 

The samples ݔ଻, ݔଽ and ݔ଺ are taken out in parts (a), (b) and (c) 
respectively. 

 

Figure 14: An example where a FLS can be deleted, leading to a decrease in 
the error rate. 

As another example, consider the scatter plot presented Figure 14. Let us take ݔଵ out 

of the training set and assume that it is a query point. The nearest FLS to ݔଵ is xଶxଷ෧. 

which belongs to the other class. Deleting this FLS will lead to a correct 
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classification for ݔଵ. It can be seen that, due to this deletion, new misclassifications 

are not generated. Hence, removing this FLS should be taken into consideration. 

In order to determine the FLSs to be deleted, this step firstly records the number of 

samples which each FLS leads to correct or incorrect decision as positive or negative 

scores, respectively. Positive score of each segment ߩା൫ݔపሶ	ݔఫሶ 	෧൯ denotes the number of 

correctly classified samples where ݔపሶ	ݔఫሶ 	෧  is computed as the nearest FLS and the 

negative score, ିߩ൫ݔపሶ	ݔఫሶ 	෧൯ denotes the number of misclassified samples where ݔపሶ	ݔఫሶ 	෧ is 

computed as the nearest FLS. For the example presented in Figure 13, ߩାሺݔଷݔସ෧ሻ ൌ 2 

and ିߩሺݔଷݔସ෧ሻ ൌ 1. The total score of a segment is defined as 

ఫሶ෦ݔపሶݔ൫ߩ ൯ ൌ ఫሶ෦ݔపሶݔା൫ߩ	 ൯ െ	ିߩ൫ݔపሶݔఫሶ෦ ൯,			݅ ് ݆, ,௜ݔ		 ௝ݔ ∈ ܿ.   

Hence, we obtain ߩሺݔଷݔସ෧ሻ as 

ସ෧ሻݔଷݔሺߩ ൌ 2 െ 1 ൌ 1. 

When ߩ ൐ 0, the accuracy is expected to decrease if the segment is deleted. 

However, if ߩ ൏ 0, the segment should be considered as a candidate to be removed. 

Let ࣢௫ഢሶ௫ണሶ෧  denote the relevant set of the FLS ݔపሶݔఫሶ෦ , which is defined as the set of 

training samples for which ݔపሶݔఫሶ෦  is the nearest. This set may be empty for some 

segments which means that they are not used for any of the samples. 

The pseudo code of this step is as follow: 
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ܵ ൌ ሼݔ௜ሽ௜ୀଵ
ே 	   : set of all samples 

ܨ ൌ ൛ݔపሶݔఫሶ෦ ൟ
௫೔,௫ೕ∈஼ೖ

  : set of all FLSs 

for n=1 to N 
ᇱܨ  ൌ ఫሶ෧ൟݔ௡ݔ൛	\	ܨ

௝ஷ௡
 

௤෧ݔ௣ݔ  ൌ argmin௫ഢሶ௫ണሶ෧ ݀൫ݔ௡, ఫሶ෦ݔపሶݔ ൯ 
 if label (ݔ௣ݔ௤෧ ) = label(ݔ௡) 
௤෧൯൅ݔ௣ݔା൫ߩ = ௤෧ሻݔ௣ݔାሺߩ   1 
 else 
௤෧൯൅ݔ௣ݔ൫ିߩ = ௤෧ሻݔ௣ݔሺିߩ   1 
 end 
end 
 

After the ߩ values are computed for all FLS, they are sorted in ascending order and 

the following procedure is applied to the FLSs starting from the top to determine the 

segments to be deleted. The main idea is to take into consideration the performance 

of the remaining FLSs on ࣢௫ഢሶ௫ണሶ෧  for making the final decision. The updated score of 

a FLS, ߩ∗൫ݔపሶݔఫሶ෦ ൯ is firstly calculated as the number of samples in ࣢௫ഢሶ௫ണሶ෧  that are 

correctly classified by the remaining FLSs after ݔపሶݔఫሶ෦  is deleted. Then, if ߩ∗൫ݔపሶݔఫሶ෦ ൯ ൒

ఫሶ෦ݔపሶݔ൫ߩ ൯, it means that deleting segment ݔపሶݔఫሶ෦  will contribute to correct classification 

and hence it is deleted. The deletion is also done in the case of equality since keeping 

the FLS does not contribute to the classification accuracy. After a FLS is deleted, the 

scores are re-computed for all remaining FLSs and ranking is updated. The procedure 

described above is repeated until ߩ∗൫ݔపሶݔఫሶ෦ ൯ ൏ ఫሶ෦ݔపሶݔ൫ߩ ൯ for the top ranked FLS. 

It should be noted that this step is mainly useful for removing misleading FLSs that 

are located close to the nonlinear decision boundaries and are formed using samples 

that are away from each other. Figure 14 is an example for this case.  
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In the example presented in Figure 13, the feature line xଷxସ෧ is found to be useful. 

However, it is clearly seen that it leads to interpolation inaccuracy. In other words, it 

is trespassing the region of another class. In fact, deletion of such lines should be 

reconsidered by employing an alternative criterion which is done in the intersection-

based deletion step described below. 

3.2 Intersection-based Deletion 

In a 2-dimensional space, the interpolation inaccuracy can be easily detected by 

computing the intersecting feature line segments. In this study, the intersection-based 

deletion step is applied for this purpose. The main idea is to delete the longer 

segment in the case of an intersecting pair of segments. As an example, consider 

Figure 15, where the FLS ݔଵݔଶ෧ has an intersection point ݋ with ݔଷݔସ෧. Since ݔଷݔସ෧ is 

longer, i.e. ସݔ‖ െ ‖ଷݔ ൐ ଶݔ‖ െ  ସ෧ is deleted. The main logic behind deletingݔଷݔ ,‖ଵݔ

longer segments is the fact that interpolation inaccuracy is generally caused due to 

the segments through the samples that are far away from each other. If the length of 

both segments is exactly same, the segment to be deleted is randomly selected. 

 

Figure 15: Two FLSs that intersect with each other. 

In higher dimensional space, intersection of two FLSs is less likely to occur. 

However, in some regions of the feature space, it is possible that they may be very 
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close to each other, still leading to the interpolation inaccuracy. In multiple 

dimensional case, if the minimum distance between two FLSs is below a threshold, 

they are considered as intersecting segments and the longer is deleted.  

In order to implement this rule, the threshold should be defined. Intuitively, when the 

segments are too short, the threshold should be too small. The threshold should be 

larger for longer FLSs. This is analogous to considering a hyper-sphere in shortest 

feature line segment approach. Remember that a FLS is tagged only if the query 

point is within the corresponding hyper-sphere that has the radius defined as the half 

of the segment length.  

In this thesis, we studied two strategies for setting the threshold, ߬. The first strategy 

is to assign a fixed value. The value of the threshold may be optimally estimated for 

each dataset.  

As an alternative approach, for a given FLS denoted by ݔపሶݔఫሶ෦ , we can consider hyper-

cylinders having the base radius defined as 

௫ഢሶ௫ണሶ෧ݎ ൌ
ฮݔ௜ െ ௝ฮݔ

β
 

and β is a design parameter. The base radius is proportional with the length of the 

segment. Then, two segments are defined to be intersecting if the distance between 

the FLSs is less than the base radius of the hyper-cylinder defined for the shorter 

FLS. More specifically, the segments ݔଵݔଶ෧	and	ݔଷݔସ෧	 are assumed to intersect if 
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݀ሺݔଵݔଶ෧,ݔଷݔସ෧ሻ ൏ min൫ݎ௫భ௫మ෧ , ௫య௫ర෧ݎ ൯.	

Hence, ߬ ൌ min൫ݎ௫భ௫మ෧ , ௫య௫ర෧ݎ ൯. This means that the minimum distance between the 

FLSs should be smaller than the base radius of the thinner hyper-cylinder. In other 

words, the whole cross-section of the thinner hyper-cylinder should be completely 

within the thicker one and it should include the longer FLS in the region around the 

minimum distance. Figure 16 presents an illustration for the proposed scheme. Two 

exemplar segments are given with the corresponding hyper-cylinders as shown on 

the left. The segments, ݔଵݔଶ෧ and ݔଷݔସ෧ are assumed to be intersecting if the hyper-

cylinder corresponding to ݔଵݔଶ෧ is passing through the hyper-cylinder corresponding 

to ݔଷݔସ෧ and the distance between ݔଵݔଶ෧	and	ݔଷݔସ෧ is less than the base radius of the 

hyper-cylinder corresponding to ݔଵݔଶ෧. On the right, three possible cross-section 

views are presented. The two segments are intersecting only in the case (a). The 

computation of the smallest distance is presented in the Appendix. 

 

Figure 16: An illustration for the cylinder based distance model. 

The design parameter, ߚ controls the number of deleted segments. A larger ߚ leads 

to smaller radiuses and hence smaller number of deletions. For a classification 

problem where distances between training samples is high, a larger value of ߚ should 
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be used to avoid large number of deletions. When the training samples are very 

close, a small number should be chosen for ߚ	to enforce some deletions. Thus, the 

value of ߚ is depending on the distribution of samples in the feature space. In this 

study, we studied different settings and also an exhaustive search method to select 

the best fitting β ∈ {2,3,4,5} using 3-fold cross-validation. 

The pseudo code of this step is as follow: 

ܨ ൌ ൛ݔపሶݔఫሶ෦ ൟ
௫೔,௫ೕ∈஼ೖ

  : set of all FLSs remaining after Error-based deletion 

Let |ܨ| ൌ  ܭ
Let ሚ݂௞ denote kth FLS in F 
for k = 1 to K 
 for m=k+1 : K 
  if ݀൫ ሚ݂௞, ሚ݂௠൯ ൑ ߬ 
   if ฮ ሚ݂௞ฮ ൐ 	 ฮ ሚ݂௠ฮ 
    delete ሚ݂௞ 
   else 
    delete ሚ݂௠ 
   end 
  end 
 end 
end 
 

3.3 Pruning 

Majority of the FLSs leading to interpolation inaccuracy are expected to be deleted in 

the first two steps described above. However, the FLSs that are located near the 

decision boundary where overlaps among different classes occur are generally 

retained. As it will be verified by the simulations presented in next chapter, a small 

percentage of the FLSs are deleted in the first step which means that the FLSs that 

are close to the boundary may contribute to the misclassification rate during testing. 

In the pruning step, the FLSs that are very close to samples from a different class are 

deleted. More specifically, for a given training sample, if the nearest FLS belongs to 
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a different class and it is closer than the nearest sample from the same class, the FLS 

is a candidate for deletion.  

 

Figure 17: An exemplar case to describe pruning step. 

Consider the exemplar case presented in Figure 17. Let ݔଵݔଶ෧ be a FLS that is not 

deleted by any of the first two steps. Consider the sample ݔସ. Let ݀ଵ denote the 

distance to the nearest sample from same class, ݀ଶ denote the length of ݔଵݔଶ෧ and ݀ 

denote distance to nearest FLS from any of the other classes. Segment ݔଵݔଶ෧ should 

be deleted if ݀ ൏ ݀ଵ and ݀ଶ ൐ ݀ଵ. It means that a FLS is removed if it is closer to a 

training sample from another class than its nearest neighbor from the same class and 

its length is longer than this distance. The pseudo code of this step is as follow: 

ܨ ൌ ൛ݔపሶݔఫሶ෦ ൟ
௫೔,௫ೕ∈஼ೖ

 : set of all FLSs remaining after Intersection-based deletion 

Let |ܨ| ൌ  ܭ
Let ሚ݂௞ denote kth FLS in F 
Let ݔ௡ ∈  ௡ܥ
 
for n = 1 to N 
 ሚ݂

௞ ൌ argmin௙ሚഢሶ ݀൫ݔ௡,
ሚ݂
୧൯ , ሚ݂௜ ∉  ௡ܥ

௞ݔ  ൌ argmin௫೔ ݀ሺݔ௡, ௜ሻݔ 	where	ݔ௡, ௜ݔ ∈  ௡ܥ

 if ݀൫ݔ௡, ሚ݂௞൯ ൏ ‖௞෧ݔ௡ݔ‖ && ‖௞෧ݔ௡ݔ‖ ൏ ฮ ሚ݂௞ฮ 
  delete ሚ݂௞ 
 end 
end 
 

ଶݔ ଵݔ

ସݔ

ଷݔ

݀ 

݀ଵ

݀ଶ
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After the application of these steps, the FLSs retained are used during testing. The 

effect of each step is studied by considering three artificial datasets. The following 

chapter firstly presents the simulations on artificial data and then on fifteen real 

datasets. 
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Chapter 4 

4. 2 EXPERIMENTAL RESULTS 

4.1 Experiments on Artificial Data 

 In order to evaluate the proposed scheme, three 2-D artificial datasets are employed. 

These datasets are two-spirals, rings, and cone-torus. Two-spirals dataset contains 

two spirals generated as follows: 

	:1	݈ܽݎ݅݌ݏ ൝
1	݁ݎݑݐܽ݁ܨ ൌ ߠ cosሺߠሻ

	
2	݁ݎݑݐܽ݁ܨ ൌ ሻߠሺ	sinߠ

 

	:2	݈ܽݎ݅݌ݏ ൝
1	݁ݎݑݐܽ݁ܨ ൌ ߠ cosሺߠ ൅ ሻߨ

	
2	݁ݎݑݐܽ݁ܨ ൌ ߠ sinሺߠ ൅ ሻߨ

 

Figure 18 shows two hundred samples generated by equal increments of ߠ from 2/ߨ 

to 3ߨ and then polluted by zero-mean Gaussian noise with standard deviation 0.5. 

The horizontal and vertical axes correspond to two different features. 
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the number of deletions. In fact, if a given scheme deletes more segments at the 

expense of the accuracy, this is not desired. In this study, the proposed approach is 

compared with the reference systems in terms of both the number of segments 

employed and the accuracies achieved on fifteen real datasets. 

Table 1: Number of deleted segments. 

Datasets Error- 
based 

deletion 

Intersection-based 
deletion 

Pruning 
for each class 

eNFL 
Total 

eNFL 
Percentage 

RNFLS

rings 0+25 0+454 0+552 552 22.53 1113 
two-

spirals 
13+15 692+849 803+871 1674 68.33 2090 

cone-
torus 

3+37+62 363+3167+11571 1318+3729+12163 17210 55.93 17359 

 

4.2 Experiments on Real Data 

The experiments are conducted on twelve datasets from the UCI machine repository, 

"Clouds" and "Concentric" from ELENA and "Australian" from IAP TC 5 datasets. 

Table 1 presents the description of the datasets including the number of classes, 

number of features and the number of samples.  
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Table 1: Characteristics of the datasets. 

dataset  Number of 
classes 

Number of 
features 

Number of 
samples 

Australian 2 42 690 
Cancer 2 9 683 
Clouds 2 2 5000 
Concentric 2 2 2500 
Dermatology 6 34 366 
Haberman 2 3 306 
Heart 2 13 303 
Ionosphere 2 34 351 
Iris 3 4 150 
Pima 2 8 768 
Spect 2 22 267 
Spectf 2 44 267 
Wdbc 2 30 569 
Wine 3 13 178 
Wpbc 2 32 194 

 

In order to compare different approaches, the hold-out method is employed to 

generate the training and test sets. The given data is randomly divided into two equal 

parts. The first part is used for training and the second part is used for testing. The 

data are normalized using zero-mean unit-variance normalization method where the 

normalization parameters are estimated using the training data. This procedure is 

repeated ten times to compute ten train/test splits. The simulations are done for each 

split and the average accuracies are reported. For "clouds" and "concentric", 10% of 

the data is used for training and 90% for testing. The average accuracies achieved 

using the reference systems are presented in Table 2. It can be easily seen in the table 

that both RNFLS and SFLS surpasses NFL on majority of the datasets. More 

specifically, RNFLS provides better accuracies than NFL on 12 datasets and SFLS 

provided better accuracies on 10 datasets. On the other hand, the performances of 

SFLS and RNFLS are comparable. 
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Table 2: The average accuracies achieved on ten independent simulations. 

Dataset NFL RNFLS SFLS 
Australian 79.85 79.88 81.28 
Cancer 95.04 96.86 96.77 
Clouds 65.09 86.48 86.94 
Concentric 63.58 97.23 96.87 
Dermatology 96.15 95.27 95.55 
Haberman 70.66 69.41 70.07 
Heart 78.34 79.27 78.54 
Ionosphere 84.11 90.74 89.09 
Iris 87.73 94.00 94.40 
Pima 68.23 73.02 71.77 
Spect 80.38 81.50 80.23 
Spectf 76.33 78.13 78.88 
Wdbc 94.33 96.13 95.60 
Wine 96.14 95.80 94.77 
Wpbc 71.24 73.61 70.10 
Average 80.48 85.82 85.39 

 

The accuracies achieved by the proposed scheme are presented in Table 3 for fixed 

and minimum segment length based thresholding approaches. The second column 

provides the accuracies for ߬ ൌ 1. The following four columns present the accuracies 

achieved for five different ߚ values. The last column presents the scores achieved 

when the best-fitting value of ߚ is computed by applying 3-fold cross-validation on 

the training data. As it illustrated in Figure 42, each training set is randomly 

partitioned into three subsets for this purpose. Two subsets are used for training and 

the remaining for evaluation. This procedure is repeated three times and the ߚ value 

providing the best average result over all three partitions is selected. The parameter 

tuning described above is done for each of the ten train/test splits separately. During 

testing, the best-fitting value is considered. It should be noted that, for ߚ ൏ 2 and 

ߚ ൐ 5 the average accuracies achieved are generally worse compared to ߚ in the 

interval [2,5]. Because of this, we employed 2 ൑ ߚ ൑ 5 for computing the best-

fitting ߚ value. 
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In the following context, we will refer the proposed fixed threshold system for ߬ ൌ 1 

as the eNFL scheme. Comparing the results in Tables 2 and 3, it can be seen that 

eNFL provides better accuracies compared to NFL, RNFLS and SFLS on 14, 11 and 

12 datasets respectively. 

eNFL is also compared with the references in terms of the ranking performances. 

More specifically, the performances achieved by the proposed and reference systems 

in terms of their ranks when sorted using average accuracies are computed. The 

results are presented in Table 4. For instance, in the case of "Australian" dataset, 

eNFL is the best and RNFLS is the third best system. As seen in the table, eNFL has 

remarkably better performance compared to the reference systems. 

The numbers of segments deleted RNFLS and eNFL are presented in Table 5. The 

total number of segments for each dataset is presented in the second column. On the 

average, approximately half of the total numbers of segments are deleted by both 

RNFLS and eNFL where RNFLS is found to delete approximately 20% more 

compared to eNFL. On "Australian", "Dermatology", "Heart", "Ionosphere" and 

"Wine", the number of segments deleted by RNFLS is much above the average 

compared to eNFL. However, on all these datasets, eNFL performed better. It can be 

concluded that deleting more segments does not necessarily lead to a better scheme 

in terms of classification accuracy. On the contrary, useful segments may be lost. It 

should also be noted that, in SFLS, there is not segment deletion during training. 
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Table 4: The performances achieved by the proposed and reference systems 
in terms of their ranks when sorted using average accuracies. 

Dataset NFL SFLS RNFLS eNFL 
Australian 4 2 3 1 
Cancer 4 2 1 3 
Clouds 4 2 3 1 
Concentric 4 3 2 1 
Dermatology 1 3 4 2 
Haberman 2 3 4 1 
Heart 4 3 2 1 
Ionosphere 4 3 1 1 
Iris 4 1 1 2 
Pima 4 3 1 1 
Spect 3 4 1 1 
Spectf 4 1 3 1 
Wdbc 4 2 1 1 
Wine 2 4 3 1 
Wpbc 3 4 1 2 
Average 3.40 2.67 2.07 1.33 

 

Table 5: The total number of segments in each dataset and the number of 
deleted segments for four different schemes. 

Dataset Total number of segments RNFLS eNFL 
Australian 30117 26893 11112 
Cancer 31671 3034 3259 
Clouds 62250 40586 45492 
Concentric 16681 8524 7594 
Dermatology 3305 1403 257 
Haberman 7148 4946 5132 
Heart 5736 5041 2946 
Ionosphere 8281 3509 844 
Iris 900 112 150 
Pima 40036 27546 23497 
Spect 5943 2115 2483 
Spectf 5930 2605 2017 
Wdbc 21496 3930 3845 
Wine 1341 820 137 
Wpbc 2954 2391 1635 
Average 16252.6 8897 7360 
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As a final remark, it should be mentioned that, for the "Dermatology" dataset which 

has 6 classes, the performance of NFL is the best among all other classifiers and this 

is the only dataset that the proposed method provided inferior performance compared 

to NFL. 
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Chapter 5 

5. 2 CONCLUSION AND FUTURE WORK 

The focus of this study was to edit segments employed by the NFL classifier and 

propose a new approach to suppress the interpolation inaccuracy of NFL. The 

proposed approach is composed of three steps namely, error-based deletion, 

intersection-based deletion and pruning. The characteristics of the steps applied are 

clarified by running the proposed system on three real datasets where the deleted and 

retained segments are presented 

The proposed method is evaluated on fifteen different datasets from different 

domains and improved accuracies are achieved compared to NFL, RNFLS and SFLS 

on 14, 11 and 12 datasets respectively. 

By ranking the accuracies achieved by the schemes considered, it is observed that the 

proposed method ranked best on 11 datasets and second on 3 datasets.  

The proposed method is also evaluated in terms of the number of deleted segments. It 

is observed that, on the average over fifteen datasets, approximately half of the total 

number of segments are deleted by both RNFLS and eNFL where RNFLS is found to 

delete approximately 20% more compared to eNFL. 

There are two major topics that should be further explored. The first is the optimal 

estimation of ߬ using the training data instead of using the constant one. The other is 
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to explore better schemes for the computation of ߚ in hyper-cylinder based approach. 

Instead of 3-fold cross validation, the leave-one-out error estimation scheme can be 

considered. 
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7. 2 Minimum Distance between Two Lines in N-Dimensional 

Space 

The minimum distance between two segments (line) is the length of the line while is 

perpendicular to both of the lines [21].  

Let ݔଵand ݔଶ denote two points that belong to class ‘’ and ݔଷ and ݔସ belongs to 

class ‘’. Let ݌ଵ and ݌ଶ denote the unique points when the two lines are closet 

where ݀ is the unique minimum as illustrated in Figure 43.  It can be shown that 

these points are unique when the lines are not parallel [21]. When, ݔଵݔଶ෧ and ݔଶݔଷ෧ are 

not parallel and do not intersect each other, ݌ଵ݌ଶ෧ joining these points in unique and 

perpendicular to both segments.  

 

Figure 43: Minimum distance between two lines. 

Let ݑ ൌ ௫మ–௫భ
‖௫మି௫భ‖

 and ݒ ൌ ௫రି௫య
‖௫రି௫య‖

 denote the unit vectors in the directions presented in 

Figure 43. ݌ଵ and ݌ଶ can be written as  

ଵ݌ ൌ ଵݔ ൅ 	ݑݏ

 ଵݔ

ଶݔ

ସݔ

 ଷݔ

ଵ݌

ଶ݌

݀ 

 ݒ

 ݑ
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ଶ݌ ൌ ଷݔ ൅  ݒݐ

where ݏ, ݐ ∈ Թ. Let ݓ ൌ ሺ݌ଶ െ ݀ ଵሻ, where݌ ൌ  as ݓ We can rewrite .‖ݓ‖

ݓ ൌ ሺݔଵ െ ଷሻݔ ൅ ሺݑݏ െ ሻݒݐ ൌ ଴ݓ ൅ ሺݑݏ െ  .ሻݒݐ

Since, ݓ is perpendicular to ݑ and ݒ, 

ݓ.ݑ ൌ 0	

ݓ.ݒ ൌ 0	

Substituting ݓ in the expressions above, we get 

.ݑ ଴ݓ ൅ .ݑݏ ݑ െ .ݑݐ ݒ ൌ 0	

.ݒ ଴ݓ ൅ .ݒݏ ݒ െ .ݒݐ ݒ ൌ 0.	

Rewriting, we obtain 

ሺݑ. ݏሻݑ െ ሺݒ. ݐሻݒ ൌ െݓ.ݑ଴	

ሺݒ. ݏሻݑ െ ሺݒ. ݐሻݒ ൌ െݓ.ݑ଴.	

Letting ܽ ൌ .ݑ ܾ ,ݑ ൌ .ݑ ܿ ,ݒ ൌ .ݒ ݀ ,ݒ ൌ ݁ ଴ andݓ.ݑ ൌ  can be ݐ and ݏ ,଴ݓ.ݒ

obtained as 
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ݏ ൌ
ܾ݁ െ ܿ݀
ܽܿ െ ܾଶ

	

ݐ ൌ
ܽ݁ െ ܾ݀
ܽܿ െ ܾଶ

	

hence, ݓ can be computed as 

ݓ ൌ ଶ݌ െ ଵ݌ ൌ ଷݔ ൅
ܽ݁ െ ܾ݀
ܽܿ െ ܾଶ

ݑ െ ଵݔ െ
ܾ݁ െ ܿ݀
ܽܿ െ ܾଶ

	ݒ

ݓ ൌ ሺݔଷ െ ଵሻݔ ൅
ሺܽ݁ െ ܾ݀ሻݑ െ ሺܾ݁ െ ܿ݀ሻݒ

ሺܽܿ െ ܾଶሻ
.	

After computing ݓ, ݀ is obtained as ݀ ൌ  .‖ݓ‖


