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ABSTRACT

The main drawbacks in Nearest Feature Line classifier are the extrapolation and
interpolation inaccuracies. The former can easily be counteracted by considering
segment rather than lines. However, the solution of the latter problem is more
challenging. Recently developed techniques tackle with this drawback by selecting a
subset of the feature line segments either during training or testing. In this study, a
novel framework is developed that involves a discriminative component. The
proposed approach is based on editing the feature line segments. It involves three
major steps namely, error-based deletion, intersection-based deletion and pruning.
The first step compares the benefit and cost of deleting each feature line segment and
deletes those that contribute more to the classification error. For the implementation
of the second step, a novel measure of intersection is defined and used for line
segments in high dimensions to delete the longest of two intersecting segments. The
pruning step re-evaluates the retained segments by considering their distances from
the samples belonging to the other classes. The proposed approach is evaluated on
fifteen real datasets from different domains. Experimental results have shown that
the proposed scheme achieves better accuracies on majority of these datasets
compared to two recently developed extensions of the nearest feature line approach,
namely the rectified nearest feature line segment and shortest feature line segment on

majority of these datasets.

Keywords: Pattern classification; nearest feature line; line segment editing;

interpolation inaccuracy; extrapolation inaccuracy.
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Enyakin 6znitelik ¢izgisi siniflandiricisinin en énemli zayifliklar ekstrapolasyon ve
interpolasyon hatalaridir. ilki ¢izgiler yerine ¢izgi parcalar1 kullanilarak kolaylikla
telafi edilebilir. Ancak, sonraki problemin ¢6ziimii daha zorludur. Son dénemde
Onerilen yontemler bu sorunla egitme veya smama asamalarinda Oznitelik cizgi
parcalarimin altkiimelerini segerek basa ¢ikmaya caligmaktadirlar. Bu ¢alismada, ayirt
edici bilesen de igeren yeni bir cerceve gelistirilmistir. Onerilen yontem &znitelik
cizgi parcalarimi azaltmaya dayanmaktadir. Bu yaklasim hataya-dayali silme,
kesmeye-dayali silme ve budama olmak iizere toplam ii¢ basamak icermektedir.
Birinci asama, her 6znitelik ¢izgi parcasini silmenin kazanim ve bedelini karsilastirir
ve smiflandirma hatasma katki yapanlari siler. ikinci basamagm uygulanmas igin
yeni bir kesisme tanmimi yapilmig ve yiliksek boyutlu 6znitelik uzayinda kesisen
Oznitelik pargalarinin uzun olanim silmek i¢in kullanilmistir. Budama agamasinda,
geriye kalan Oznitelik ¢izgi parcalari diger siniflara ait egitme verisine olan
uzakliklar1 dikkate alinarak yeniden degerlendirilmistir. Onerilen yéntem, farkl
alanlardaki onbes gercek veri kiimesi iizerinde denenmistir. Deneysel sonuglar,
Onerilen yontemin son yillarda enyakin 6znitelik ¢izgisi yaklagiminin uzantis1 olarak
gelistirilen diizeltilmis en yakin Oznitelik ¢izgi parcast ve en kisa Oznitelik ¢izgi
parcasi isimli yaklagimlara gore, veri kiimelerinin ¢ogunda daha iyi basarim elde

ettigini gdstermistir.

Anahtar Kelimeler: Oriintii siniflandirma; en yakin dznitelik ¢izgisi; ¢izgi parcasi

secme; interpolasyon hatasi; ekstrapolasyon hatasi.
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Chapter 1

INTRODUCTION

1.1 Pattern Classification

Pattern classification is the science of labeling an unseen data as one of the known
groups or categories [1, 2]. Some examples of data are speech signal, facial image,
iris, handwritten word and e-mail message. Mostly, the classification algorithms
match the input to the a priori defined categories by considering their statistical

characteristics.

In pattern classification problem, a class denotes a group of objects that have
common properties. For example, in the face recognition problem, the group of
different facial images belonging to a different person forms a class. As another
example, if we need to design an automated system for fish packing to detect

different types of fish, then any type of fish forms a different class.

The first step in designing an automated classification system is defining the method
of representing different objects. This step is problem dependent. Consider the fish
packing problem. Raw data measurements such as length and weight, derived
measurements or features (e.g. ratio of length to weight), a structural description such
as length to weight ratios of different parts of the fish and spatial relationship of the
various parts can be considered. Feature based representation approach is the most

common. A feature is any distinctive aspect, quality or characteristic related with the



objects to be classified. A feature vector of an object represents a combination of
features as an N-dimensional column vector where each entry corresponds to a

different feature or measurement.

Each object employed in the classification is known as a sample and a collection of
samples is named as a dataset. For example, in face recognition problems, each

facial image that is available in the dataset is a different sample.

A pattern classification system is typically made up of two phases, training phase
and test phase, as it is shown in Figure 1 [3]. The data acquisition step corresponds to
getting the input from the physical environment by measuring physical variables
such as recording the speech signal using a microphone or capturing the image of a
person. Pre-processing methods tries to remove noises and redundant inputs. Feature
extraction involves definition of measures for accurate description of raw input data.
Small number of features may not be discriminative while larger number of features
may lead to more complex classification models. Model estimation is used to
compute a decision boundary or decision regions in the feature space. At the
classification step, the classifier uses the trained model to map the input feature

vectors onto one of the classes and this leads to the final decision for each sample.



Training phase

Data N Pre- Feature N Model Class
Acquisition processing Extraction Estimation Models
Data Pre- Feature . . Class
Acquisition ~ processing - Extraction | Classification Model
Decision
Test phase

Figure 1: The main blocks of a pattern classification system.

Classifiers are roughly categorized into two groups: Parametric and non-parametric
methods. In the parametric approach, the main aim is to fit a parametric model to the
training data and interpolate to classify test data. For instance, the parametric
methods may assume a specific functional form for the probability density function
and optimize the function parameters to fit the training data. Some of these methods
are Linear Discriminant Classifiers (LDC) and Quadratic Discriminant Classifier
(QDC) [4]. In the non-parametric methods, no assumptions are made about the
probability density function for each class, because an assumed function may not fit
the training data. Therefore, the non-parametric methods determine the form of the
probability density function from the data. Some widely used non-parametric

methods are nearest neighbor classifier, neural networks and support vector machines

[1].

The Nearest neighbor classifier (NN) is a simple yet effective non-parametric scheme
that chooses the label of the nearest training sample as the final decision [5]. An

extended version is k-NN [6] which makes the decisions by voting on the labels of



the k nearest neighbors of the test sample. The training phase is not intense. All data
samples and their labels are stored. In case of real valued feature vectors, the most

common function for the calculation of distances is the Euclidean metric [7].

Although, it is easy to implement and debug, k-NN approach has some disadvantages
which are namely high computational cost and sensitivity to the outliers [6].
Moreover, there is a need for large number of samples for reasonable performance.
In particular, as a geometrical neighborhood approach, the performance increases as
the number of training samples increases [1]. It is known that the error of k-NN
approaches to Bayes error rate as the number of samples goes to infinity [1].
However, in practice there will be limited number of samples due to practical
restrictions in their collection. In cases where the training data is limited, the training
data will not be able to represent the characteristics of the pattern classes and hence
the performance of the k-NN will be below acceptable limits. To counteract the data
insufficiency problem, nearest feature line (NFL) method is proposed as an extension

of nearest neighbor approach [5].

NFL aims to generalize the representational capacity of the training data by
considering lines passing through each pair of samples from the same class that are
named as feature lines (FL) [5]. With the use of lines, NFL is generally argued to add
information to the given data. NFL is originally proposed and successfully used for
the face recognition problem [5]. However, it has been proved to achieve
consistently better performance than the NN in terms of the error rate in many real
and artificial data [8]. Classification by NFL is done by computing the distances
from the test sample to all feature lines where the class to which nearest feature line

belongs is selected as the final decision.



NFL has two major drawbacks, namely the interpolation and extrapolation
inaccuracy [9]. Interpolation inaccuracy occurs when a feature line is defined using
samples that are far away from each other. Such lines may pass through the regions
where other classes exist. Consequently, such a line may be computed as the nearest
for the samples belonging to a different class. The extrapolation inaccuracy occurs
when a feature line passes through samples that are away from the test point [10]. In
the NN and k-NN methods, for N training samples in a given class, N distances are
computed. However, NFL suffers from increased computational complexity as well

since N(N-1)/2 feature lines are defined using N samples [5].

It should be noted that NFL based approaches are employed for the classification
problems involving real valued features. The main reason is that the concept of

generalization using feature lines is not sensible in the case of binary features.

Following this technique, several editions are developed to reduce the error and/or
the computational cost. Center-based nearest neighbor (CNN) [11] was proposed to
reduce the computational cost of the NFL method by using center-based feature
lines. The center-based feature lines are defined as the lines passing through each
training sample and the center of all samples belonging to the class [9, 11]. During
classification, the decision is made by finding the nearest center-based feature line to
the query point. Experiments have shown that CNN achieves enhanced performance
compared to NN and comparable performance with NFL [11]. Another approach for
reducing the computational cost is the nearest neighbor line (NNL) [12]. It uses the
line through the nearest pair of samples from each class during the classification

phase. In other words, a single line for each class is considered. Experiments on face



recognition have shown that NNL has much lower computation time and achieves

competitive performance compared to the NFL method [13].

More advanced methods are also proposed mainly to suppress the interpolation and
extrapolation inaccuracies. The rectified nearest feature line segment technique
(RNFLS) [14] uses FL segments so as to avoid extrapolation inaccuracy where a
feature line segment (FLS) is defined as the region of a FL that is in between the
corresponding samples. In order to suppress the interpolation inaccuracy, it removes
all the FLSs trespassing the territory of other classes where, the territory of each class
is defined as the union of the territories of all samples belonging to the same class
and the sample territory is defined as a hyper-sphere centered at the point under
concern with radius equal to distance to the nearest neighbor from a different class.
During classification, if the projection point is on the extrapolation segment, it is

replaced by nearest point of the FLS.

Shortest feature line segment (SFLS) [9] avoids extrapolation inaccuracy by using
FLSs as in RNFLS. It also avoids interpolation inaccuracy in some cases by choosing
the shortest FLS which satisfies a specific geometric relation. The decision is made
by finding the smallest hyper-sphere that contains the test sample. There is not a FLS

deletion step during training.

In summary, efforts for improving the accuracy of NFL mainly focus on using a
subset of FLSs either by permanently deleting or by disregarding those that do not
satisfy pre-specified constraints. However, selection of subsets of FLSs is not done in
a discriminative way. In other words, FLS subsets are not determined by directly

taking into account the classification error.



1.2 Objectives

As described above some FLSs can cause interpolation inaccuracy. As an alternative
approach to improve the performance to the NFL, editing can be applied to remove
the feature lines leading to misclassification. In other words, the deletion of the FLSs
can be one in a discriminative way. In fact, editing is extensively studied for
improving the performance of k-NN classifier, especially in the case of outliers and
noisy training data. Editing can be considered as selection of a subset of the training
data which provides the highest classification accuracy on the training set. The idea
of editing is proposed by Wilson where the edited nearest neighbor approach deletes
the training samples whose label do not agree with its neighbors [15]. The idea is
then extended into the multiedit algorithm by Devijver and Kittler which applies
edited nearest neighbor algorithm in a repeated way [16]. The use of Genetic

algorithms for this purpose is also widely considered [4, 17].

The major aim of this study is to propose an editing based selection of feature line
segments to reduce the interpolation inaccuracy in NFL. The proposed method is
based on the iterative evaluation of deleting FLSs in three steps namely error-based

deletion, intersection-based deletion and pruning.

The error-based deletion step takes into account the classification accuracy on the
training set in deciding to keep or delete a FLS. Score computation is firstly
performed. For each segment, we calculate and record the number of correct and
incorrect classification that it makes (negative and positive scores, respectively).
Then, the sum of positive and negative scores is computed for each segment. The

resultant scores are sorted in ascending order. The deletion of the top-rank segment is



investigated. If, by removing the corresponding segment, a better accuracy is
achieved, it is permanently deleted. After deletion of a FLS, the scores are re-
computed. This step is repeated until there is no more segment that needs to be

deleted.

In the second step, the intersection of segments is investigated. If two segments from
different classes intersect, the longer segment is removed. For multiple dimensional
feature spaces, intersections of segments rarely occur. However they may be close to
each other, still leading to interpolation inaccuracy. In multiple dimensional case, if
the minimum distance between two FLSs is below a threshold, they are considered as

intersecting segments and the longer is deleted.

As a last step, pruning is being applied. The aim of this step is to delete the FLSs that
are very close to samples from a different class. More specifically, for a given
training sample, if the nearest FLS belongs to a different class and it is closer than
the nearest sample from the same class, the FLS is considered as a candidate for
deletion. Although they are not making any misclassification in training phase, such
FLSs have the risk to harm the model in the testing phase. Experiments on artificial

data have shown that this improves the margin of the resultant decision boundary.

During testing, NFL is applied on the remaining FLSs. The proposed approach is
evaluated on fifteen datasets, majority of which are from the UCI machine learning
repository [18]. Experimental results have shown that the proposed approach
provides better accuracies compared to NFL, RNFLS and SFLS on 14, 11 and 12

datasets, respectively.



1.3 Layout of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents a brief literature
review. The proposed method is presented in Chapter 3. Chapter 4 presents the
experimental results on three artificial and fifteen real datasets. Chapter 5 lists the

conclusion drawn from this study.



Chapter 2

LITERATURE REVIEW

2.1 The Nearest Neighbor Approach (NN)

The Nearest Neighbor approach which was proposed in 1967 labels an unseen query
sample as the same label of the nearest training sample [19]. As a non-parametric
rule it is the simplest yet effective and popular method. Despite its simplicity, it has
several advantages. For example, it can learn from a small set of samples, there is no
pre-processing task, new information can be added at runtime and may give

competitive performance with many other advanced classification techniques [20].

*

*
® %x=u
o q

* *
o

Figure 2: An illustration for the operation of the NN rule.

Consider the query point g given in Figure 2 where there are two different classes.
For the given query point, the nearest training sample belongs to class ‘ *’. Hence,

it is similarly labeled as ‘*’. Since the NN rule utilizes only the label of the nearest

10



neighbor, the remaining training samples are ignored. In case of noisy training data,

this method may lead to large number misclassifications.

An extension to the NN rule is the k-NN approach. In this method, larger numbers of
neighbors (K) are considered where voting over the labels of the k nearest samples is
performed to compute the most likely class. The most common distance measure
used to find the nearest samples is the Euclidean distance [7]. A major disadvantage
of the NN and k-NN methods is the time complexity of making predictions when

compared to many other methods.

Figure 3: The k-NN approach considers a wider neighborhood.

In Figure 3 let k = 3. The nearest three samples for the query point q are x;, x,, and

x3. By applying voting, q is labeled as the class represented by “®”.

Similar to NN, the classification performance of k-NN increases as the number of
training samples increases.

2.2 Nearest Feature Line (NFL) Method

The objective of the nearest feature line method which was originally proposed for

face recognition is to generalize the representational capacity of data samples using

11



lines passing through each pair of samples belonging to the same class [5]. This
technique is expected to be superior to NN especially in cases where the training data

1s limited.

The NFL approach is a two-step scheme. The first step corresponds to the
construction of feature lines (FL). In the second step, the query point is projected to
all FLs and the distances from the projection points to the query point are computed.
During classification; the class to which the nearest line belongs is selected as the

label of the query point.

Figure 4: Classification using the NFL method in a subspace represented by
FLs passing through each pair of samples within the same class.

Let Xy denote the FL passing through x and y as shown in Figure 4. Let p denote
the projection point of g on Xy which can be computed as

p=x+puly—x)

where p is the position parameter that is defined as

_(q=x).(y —x)
oy —xlI?

The symbol °.” represents the dot product. The parameter u describes the position of

p relative to X and y. When u < 0, p is on backward extrapolation part of Xy. When

12



u>1, p is on forward extrapolation part of Xy and p is on interpolation part if
0<u<1 When u=0,pisonx and g = 1 means that p is on y as illustrated in

Figure 5.

u>1

forward
O<u<i extrapolation

. art
feature line segment P

or

u<o interpolation
part
backward
extrapolation
part

Figure 5: The position parameter values.

The distance from the query point to the FL is defined as

d(q,xy) = llg = pll
where ||. || denotes the Euclidean distance. Assuming that p; and q; represent the ith
entries in the corresponding vectors and D is the vector dimensionality, d is

computed as

d =llg—pll = V(@1 —p)? + (@2 = p2)? + -+ =

Let N, denote the number of samples that belong to class ¢ where there are C classes.

In this case, the total number of FLs can be calculated as

Nc(Nc_l)

N, =Y
L =17,

13



It is obvious that the number of FLs grows fast as the number of training samples

increases. Hence, NFL is computationally more demanding than NN.

Although the NFL method is successful in improving the classification ability of the
NN approach, there is room for further improvements [12]. It has two main sources
of errors, namely the interpolation and extrapolation inaccuracies. The extrapolation
inaccuracy mainly occurs in a low dimensional feature space when a sample pair is
far away from the query point [14]. An example is presented in Figure 6. The query
point q belongs to the class “*, but is classified to class “®” although x, and x, are
far away. This error in caused by the backward extrapolation part of the FL X7x, that

belongs to the class denoted by “®”.

Figure 6: Extrapolation inaccuracy in NFL.

The interpolation inaccuracy occurs when a FL passes through samples that are away
from each other and trespasses a cluster of a different class. Interpolation inaccuracy
creates inconsistency in classification decision. Consider the example presented in
Figure 7. ¢ is misclassified as class “®” although it belongs to the class represented

by 113 * ”.

14



Figure 7: Interpolation inaccuracy in NFL.

In order to avoid the above-mentioned weaknesses, some extensions of NFL are
proposed. Two most widely known schemes are the rectified nearest feature line

segment and the shortest feature line segment.
2.3 Rectified Nearest Feature Line Segment (RNFLS)

In RNFLS, both extrapolation and interpolation inaccuracies are suppressed [14].
The first step of RNFLS is to define a subspace named as nearest feature line
segment subspace (NFLS-subspace). This subspace is defined as the union of FL
segments (FLS) where the forward and backward extrapolation parts are discarded.
During testing, in order to implement this, RNFLS firstly finds the projection point
on all FLs. If, for a particular FL, the projection point is on either of the extrapolation
parts, the nearest endpoint is chosen to be the projection point for calculating the FL
distance. When the projection point is on the interpolation part, that point is
considered in the distance computation as in the NFL method. Consider the example
presented in Figure 8. The projection of g, is in the forward extrapolation part of
X,%;. Hence, the nearest sample, i.e. x, is considered instead of p,. Consequently,

since no extrapolation segments are used, there will be no extrapolation inaccuracy.
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Figure 8: NFLS subspace used by RNFLS for avoiding extrapolation
inaccuracy.

The NFLS-subspace denoted by S is the set of line segments which passes through
each pair of samples of the same class. The NFLS-subspace for class ¢ can be

represented as

Se={(@x)|1<i,j < N,x; €c,xj €ci # j}

where x; and x; are samples belonging to class ¢, X;xjis the line segment

connecting x; and x;, and N is the number of samples that belong to class C.

During testing, the distance from a query point q to the NFLS-subspace is calculated

as

d(q'gc) = minye§cllq =,

where y depends on the position parameter, . For a particular FLS X; %5, if 0 < u <
1, since the projection point is between x; and x;, d(q,5;) = llg — pll. On the other
hand, d(q, S~C) =|lqg —x;|l when u <0 (backward extrapolation part) and

d(q,gc) = ||q - xj” when u > 1 (forward extrapolation part).
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In order to avoid the interpolation inaccuracy, RNFLS deletes the FLSs trespassing
the other classes. The resultant subspace is named as the rectified nearest feature line
segment subspace (RNFLS-subspace). In order to compute the trespassing segments,
sample and class territories are firstly defined. The sample territory is defined as the
hyper-sphere whose radius is equal to the distance from the sample and its nearest
neighbor from a different class. Assume that x; belongs to class ¢; and x;, belongs to
a different class, ¢;. The radius, 7y; of the sample territory T, is defined as

_ min
T

i VXk,Cr#*Ci ”xi - xk”'

Hence,

Ty, = {x €eRP| flx—x; || < T}

The territory of class c; is defined as the union of all sample territories belonging to

the same class as
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Figure 9: Territories of the samples are shown by dotted lines whose union
constitutes the class territory. The segment X; X is removed because it
trepasses the territory of the other class.

Computation of the rectified space is illustrated in Figure 9. The sample territories of
the class represented by “®” are shown by circles. The territory of the class
represented by “®”, T, is obtained as the union of all three circles. The FLS x;x; is

trespassing T, and hence it is deleted.

Let UCL. denote the set of FLSs that belong to the class ¢; which trespass other

class(es). The RNFLS-subspace of ¢; is defined as

where

Uci = {(xmxn )|E|cy, Ci # Cy NXppXy, € S~Ci ANXmXn NTe, # (Z)}
and ‘\’ is set difference operator.
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It should be noted that, as seen in Figure 9, ¥;%; N T, # @. Hence, X;x, € S;. On

the other hand, X;x3 € S} since ;%3 N T, = (.

Classification in RNFLS-subspace is similar to the NFLS-subspace. However, in this

step, fjl. that is the set of remaining segments are employed during the classification.

X3 X,

(c)
Figure 10: Classification using the RNFLS-subspace.

Figure 10 illustrates classification using the RNFLS approach. Part (a) shows the
sample territories of y;, y,, and y3 using dotted circles. Segments x; X3 and X, X3 are
deleted. Part (b) shows the sample territories of x;, x,, and x3. Segments y;y, and
y,y3; are deleted. In part (c), the projection of the query point q; is on the

interpolation part of the segment x;x,. Thus, d(q, x;x; ) = d(q,p,). For the query
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point g,, the projection point is on the forward extrapolation part of the line segment

y1Y3. Therefore, d(q, y1y3) = d(q,y3).

2.4 Shortest Feature Line Segment (SFLS)

As an alternative approach to overcome the inaccuracies of NFL, Han et al. [9]
recently proposed the shortest feature line segment technique. SFLS aims to find the
shortest FLS considering the geometric relation constraints between the query point
and FLSs instead of calculating the FL distances. This approach does not have any

pre-processing step.

During classification, hyper-spheres that are centered at the midpoints of all FLSs are
considered where the length of a given segment is equal to the diameter of the
corresponding hyper-sphere. SFLS finds the smallest hyper-sphere which contains
the query point (inside or on that hyper-sphere). For a given test sample, all FLSs for
which the query point is inside or on the coresponding hyperspheres are firstly
tagged. Then, the shortest tagged FLS is found. The class that the corresponding
segment belongs is computed as most likely. It should be noted that, as in RNFLS,

there will be no extrapolation inaccuracy problem since segments are used.

Figure 11: Classification of g in SFLS.
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In the examplar case presented in Figure 11, the query point q is labeled as the class
represented by “®” because the smallest hypersphere that contains this point is

formed by a FLS from that class.

In order to determine whether a given test sample g is contained by a hypersphere

formed by x; and x;, the angle « between gXx; and gXx; which is defined as

_ 180 arccos ((q -x)7(q - xj))
m g [l

is firstly computed. If 0 < a < 90, the feature line is not tagged because the query
point is not inside or on the hypersphere. On the other hand, if 90 < a < 180, the
FLS is tagged as a candidate because the geometric contraint is satisfied. Figure 12

illustrates three possible cases. In part (a), @ < 90 and hence X;X; is not tagged. In

parts (b) and (c), X;X;s are tagged.

X; X; Xi
X g \%/*xj
a
y q
1 q
(a) (b) (c)

Figure 12: Geometric relation between the query point and FL segment.

In some cases, there may not be any tagged segment for the query sample. The
corresponding query point is either rejected or the nearest neighbor method is applied

to make the final decision.
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2.5 Comparing NFL, RFLS, and SFLS

NFL is originally proposed to counteract the major weakness in the NN method
which is its high error rate in cases where small number of training samples exist. It
has two drawbacks, namely the interpolation and extrapolation inaccuracies. RNFLS
can counteract the two inaccuracies existing in the NFL method leading to better
classification performance. The compuaional complexity is also reduced due to
deleting some segments. However, the order of reduction is problem dependent. The
computational complexity of SFLS is also less than NFL [9]. SFLS supresses the
extrapolation inaccuracy. However, it is able to counteract the interpolation

inaccuracy only in some cases.
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Chapter 3

EDITED NEAREST FEATURE LINE APPROACH

As mentioned in Chapter 1, editing corresponds to removing some prototypes from
the training data. The main idea in the edited NFL (eNFL) is to delete the feature line
segments that lead to interpolation inaccuracies. The approach consists of three
major steps, namely error-based deletion, intersection-based deletion and pruning. In
each step, some segments are iteratively removed from the training data by
considering several criteria. At the end of the iterations, a subset of the feature line

segments are preserved which form a reduced subspace for each class.

It should be noted that, since the proposed approach employs only segments as in
RNFLS and SFLS techniques presented in Chapter 2, the extrapolation inaccuracy

does not occur.
3.1 Error-based FLS Deletion

The main idea is that the FLSs obtained using samples that are far away from each
other are mainly expected to contribute more to the misclassification rate than correct
classification and hence they should be deleted. The first step of eNFL involves
ranking all FLSs by taking into account the number of correct classifications and
misclassifications they participate. In other words, the benefit of employing each
individual FLS is investigated. This is done by taking each sample out of the training

set one by one to be utilized as a query point and recording the nearest FL.S. Then,
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the numbers of times each FLS participates in correct classification and

misclassification are computed. The decision about deletion is based on these scores.

As an example, assume that there are four training samples from class <%’ and five
from class ‘®’ as shown in part (a) of Figure 13. Let us take x, out of the training set
and assume that it is a query point. The nearest FLS to x; is X3X,. Although x,
belongs to class ‘®’, because of X3X,, it is labeled as class ‘%, This means that
X3X, leads to a misclassification. By removing X3X,, the query point x, will be
classified correctly as ‘®’ since X5Xg will be computed as the nearest FLS in this
case. However, by removing a FLS, the benefits obtained by correcting some
misclassification may be lost due to new misclassifications. For instance, although
deleting x3X, leads to a correct decision for x,, two new misclassifications occurs. In
order to clarify this, consider the case presented in part (b) where X4 is left out of the
training data. In this case, due to deleting X3x, that is the nearest FLS for that
sample, it is misclassified since X5Xg is now the nearest FLS. Assume that we
similarly take x4 out of the training data as illustrated in part (c). In this case, due to
deleting X3x,, this sample is also misclassified since x5Xg is again the nearest FLS.
Consequently, before removing xsx,, there was one misclassification and after
removing it, two misclassifications occurred. Hence, removing this FLS may not be a
good idea. The decision to delete a segment or not should be made after taking into
account the new labels generated by the remaining FLSs for the training samples for

which the corresponding FLS used to be the nearest before its deletion.
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Figure 13: Choosing different samples for the evaluation of nearest FLSs.
The samples x,, xq and x, are taken out in parts (a), (b) and (c)

respectively.

1

Figure 14: An example where a FLS can be deleted, leading to a decrease in
the error rate.

3

2

As another example, consider the scatter plot presented Figure 14. Let us take x; out
of the training set and assume that it is a query point. The nearest FLS to x; is X;X3.

which belongs to the other class. Deleting this FLS will lead to a correct



classification for x;. It can be seen that, due to this deletion, new misclassifications

are not generated. Hence, removing this FLS should be taken into consideration.

In order to determine the FLSs to be deleted, this step firstly records the number of

samples which each FLS leads to correct or incorrect decision as positive or negative
scores, respectively. Positive score of each segment p, (x’ﬁq ) denotes the number of
correctly classified samples where X; X; is computed as the nearest FLS and the
negative score, p_ (5(?95 ) denotes the number of misclassified samples where X; Xj is

computed as the nearest FLS. For the example presented in Figure 13, p, (X3%;) = 2

and p_(x3x,) = 1. The total score of a segment is defined as

p(x’{ic]-) = p+(x’{5cj) — p_(x’{fc]-), L #], X% €c.

Hence, we obtain p(x3x;) as

p(x,) =2—-1=1.

When p > 0, the accuracy is expected to decrease if the segment is deleted.

However, if p < 0, the segment should be considered as a candidate to be removed.

Let }[fo) denote the relevant set of the FLS X;X;, which is defined as the set of

training samples for which X;X; is the nearest. This set may be empty for some

segments which means that they are not used for any of the samples.

The pseudo code of this step is as follow:
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S ={x;}, : set of all samples

F = {xixj}xi,xje(:k : set of all FLSs
forn=1to N
F'=F\ {xnxj}jin

XpXg = arg minm«] d(xn, x’{icj)
if label (x,X;) = label(x;,)
pt (%) = pt(5%,) + 1

else
p~(Xpxy) = p‘(xpxq) +1
end
end

After the p values are computed for all FLS, they are sorted in ascending order and
the following procedure is applied to the FLSs starting from the top to determine the
segments to be deleted. The main idea is to take into consideration the performance

of the remaining FLSs on }[’7‘?’5 for making the final decision. The updated score of
a FLS, p*(x’{a’cj) is firstly calculated as the number of samples in ﬂ-[f;x—} that are

correctly classified by the remaining FLSs after X;X; is deleted. Then, if p*(x'ﬁ'c]-) >
p(x'{icj-), it means that deleting segment x;X; will contribute to correct classification
and hence it is deleted. The deletion is also done in the case of equality since keeping
the FLS does not contribute to the classification accuracy. After a FLS is deleted, the
scores are re-computed for all remaining FLSs and ranking is updated. The procedure

described above is repeated until p*(x’{a”c]-) < p(x’{a”c]-) for the top ranked FLS.

It should be noted that this step is mainly useful for removing misleading FLSs that
are located close to the nonlinear decision boundaries and are formed using samples

that are away from each other. Figure 14 is an example for this case.
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In the example presented in Figure 13, the feature line X3X, is found to be useful.
However, it is clearly seen that it leads to interpolation inaccuracy. In other words, it
is trespassing the region of another class. In fact, deletion of such lines should be
reconsidered by employing an alternative criterion which is done in the intersection-
based deletion step described below.

3.2 Intersection-based Deletion

In a 2-dimensional space, the interpolation inaccuracy can be easily detected by
computing the intersecting feature line segments. In this study, the intersection-based
deletion step is applied for this purpose. The main idea is to delete the longer
segment in the case of an intersecting pair of segments. As an example, consider
Figure 15, where the FLS Xx;X, has an intersection point o with xX3x,. Since X3X, is
longer, i.e. ||x, — x3|| > [|x; — x4 ||, X33 is deleted. The main logic behind deleting
longer segments is the fact that interpolation inaccuracy is generally caused due to
the segments through the samples that are far away from each other. If the length of

both segments is exactly same, the segment to be deleted is randomly selected.

X3

X4
X1

Figure 15: Two FLSs that intersect with each other.

In higher dimensional space, intersection of two FLSs is less likely to occur.

However, in some regions of the feature space, it is possible that they may be very
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close to each other, still leading to the interpolation inaccuracy. In multiple
dimensional case, if the minimum distance between two FLSs is below a threshold,

they are considered as intersecting segments and the longer is deleted.

In order to implement this rule, the threshold should be defined. Intuitively, when the
segments are too short, the threshold should be too small. The threshold should be
larger for longer FLSs. This is analogous to considering a hyper-sphere in shortest
feature line segment approach. Remember that a FLS is tagged only if the query
point is within the corresponding hyper-sphere that has the radius defined as the half

of the segment length.

In this thesis, we studied two strategies for setting the threshold, . The first strategy
is to assign a fixed value. The value of the threshold may be optimally estimated for

each dataset.

As an alternative approach, for a given FLS denoted by X;X;, we can consider hyper-

cylinders having the base radius defined as

_ i — ]|

Tfi‘,T] B

and B is a design parameter. The base radius is proportional with the length of the
segment. Then, two segments are defined to be intersecting if the distance between
the FLSs is less than the base radius of the hyper-cylinder defined for the shorter

FLS. More specifically, the segments X; X, and X3x, are assumed to intersect if
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d(xlxz, X3X4) < min(rm, Tm)

Hence, 7 = min(rm,rm). This means that the minimum distance between the
FLSs should be smaller than the base radius of the thinner hyper-cylinder. In other
words, the whole cross-section of the thinner hyper-cylinder should be completely
within the thicker one and it should include the longer FLS in the region around the
minimum distance. Figure 16 presents an illustration for the proposed scheme. Two
exemplar segments are given with the corresponding hyper-cylinders as shown on
the left. The segments, x;X, and X3Xx, are assumed to be intersecting if the hyper-
cylinder corresponding to X; X, is passing through the hyper-cylinder corresponding
to X3x, and the distance between X, X, and x3X, is less than the base radius of the
hyper-cylinder corresponding to X;X;. On the right, three possible cross-section
views are presented. The two segments are intersecting only in the case (a). The

computation of the smallest distance is presented in the Appendix.

rx3x4

,”0 X,

Figure 16: An illustration for the cylinder based distance model.

The design parameter, § controls the number of deleted segments. A larger £ leads
to smaller radiuses and hence smaller number of deletions. For a classification

problem where distances between training samples is high, a larger value of § should
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be used to avoid large number of deletions. When the training samples are very
close, a small number should be chosen for  to enforce some deletions. Thus, the
value of 8 is depending on the distribution of samples in the feature space. In this
study, we studied different settings and also an exhaustive search method to select
the best fitting p € {2,3,4,5} using 3-fold cross-validation.

The pseudo code of this step is as follow:

F = {x’{fj} . : set of all FLSs remaining after Error-based deletion
xl,xJECk
Let |F| =K
Let f;, denote k™ FLS in F
fork=1toK
for m=k+1 : K
if d(fi. fm) ST
if ||l > [1m]
delete f
else
delete f;,,
end
end
end
end
3.3 Pruning

Majority of the FLSs leading to interpolation inaccuracy are expected to be deleted in
the first two steps described above. However, the FLSs that are located near the
decision boundary where overlaps among different classes occur are generally
retained. As it will be verified by the simulations presented in next chapter, a small
percentage of the FLSs are deleted in the first step which means that the FLSs that
are close to the boundary may contribute to the misclassification rate during testing.
In the pruning step, the FLSs that are very close to samples from a different class are

deleted. More specifically, for a given training sample, if the nearest FLS belongs to
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a different class and it is closer than the nearest sample from the same class, the FLS

1s a candidate for deletion.

Figure 17: An exemplar case to describe pruning step.

Consider the exemplar case presented in Figure 17. Let X;X, be a FLS that is not
deleted by any of the first two steps. Consider the sample x,. Let d; denote the
distance to the nearest sample from same class, d, denote the length of x;Xx, and d
denote distance to nearest FLS from any of the other classes. Segment x;x; should
be deleted if d < d; and d, > d;. It means that a FLS is removed if it is closer to a
training sample from another class than its nearest neighbor from the same class and

its length is longer than this distance. The pseudo code of this step is as follow:

F = {x’{fj}x' eieC : set of all FLSs remaining after Intersection-based deletion
A jElk

Let |[F| =K

Let f;, denote k™ FLS in F

Letx, € C,

forn=1toN

fi = arg ming, d(xn,fi) fi & C,

Xy = argminy, d(x,, x;) where x,,x; € C,

if d(xp, fi) <~||xnxk|| && ||x x|l < ||fk||
delete f

end
end
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After the application of these steps, the FLSs retained are used during testing. The
effect of each step is studied by considering three artificial datasets. The following
chapter firstly presents the simulations on artificial data and then on fifteen real

datasets.
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Chapter 4

EXPERIMENTAL RESULTS

4.1 Experiments on Artificial Data

In order to evaluate the proposed scheme, three 2-D artificial datasets are employed.
These datasets are two-spirals, rings, and cone-torus. Two-spirals dataset contains

two spirals generated as follows:

Feature 1 = 6 cos(6)

spiral 1: {
Feature 2 = 6sin(0)

Feature 1 = 6 cos(6 + m)

spiral 2: {
Feature 2 = 6 sin(0 + )

Figure 18 shows two hundred samples generated by equal increments of 8 from m/2
to 3w and then polluted by zero-mean Gaussian noise with standard deviation 0.5.

The horizontal and vertical axes correspond to two different features.

34



6 nwz te o
* * T ey # o
% o b )
w
ar = e * o %
e ® * .J * ®

o ®
4 L o why X ™
o M A
B :. e
®ee, .,
BF * @

Figure 18: Scatter plot for the two-spirals dataset.

Rings data has two classes and contains two hundred samples that are generated as

follows:

Feature 1 = cos(0)
Inner ring: {
Feature 2 = sin(6)

Feature 1 = 2cos(0)
Outer ring: {
Feature 2 = 2sin(6)

The data are created by increasing the value of 8 from 0 to 2w in equal steps. The
data are then polluted by Gaussian noise whose mean is zero and standard deviation

is 0.1. Rings dataset is plotted in Figure 19.
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Figure 19: Scatter plot for the rings dataset.

Cone-torus data contains eight hundred samples in three classes. The scatter plot is

presented in illustrated in Figure 20.

Figure 20: Scatter plot for the cone-torus dataset.

Each dataset is randomly divided into two parts. The first part is used for training and

the other for testing.
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Using the training data, the feature lines obtained for the class % are illustrated in
Figure 21, Figure 22, and Figure 23 for the datasets considered. It is obvious that
classification errors using NFL should be expected to be very high in all three
datasets since the FLs are overlapping with the samples of the other class(es). Our
simulation studies show that the classification error is 38.00% in rings, 43.00% in

two-spirals, and 44.25% in cone-torus dataset when the test data are considered.

Figure 21: NFL feature space for class '*' in the two-spirals dataset.
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Figure 23: NFL feature space for class '*' in the cone-torus dataset.

Figure 24, Figure 25, and Figure 26 present the NFLS feature space respectively for
two-spirals, rings and cone-torus datasets for different classes. It can be seen in the

figures that the error rates should be due to the interpolation inaccuracy.
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Figure 24: NFL segments for class '*' of the two-spirals dataset.

Figure 25: NFL segments for class '®' of the rings dataset.
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Figure 26: NFL segments for class '®' of the cone-torus dataset.

Our simulation studies show that the classification errors are reduced from 38.00% to
23.00% in rings, from 43.00% to 32.00% in two-spirals, and from 55.75% to 22.55%
in cone-torus dataset when the test data are considered. It can be concluded that,
avoiding the extrapolation inaccuracy by using FLSs instead of feature lines, the

error rates can be significantly reduced.

By applying the error-based deletion step, the number of segments deleted in two-
spirals, rings and cone-torus datasets are 25, 28, and 102 respectively. Compared to
total number of segments (2450, 2450, and 30773) these numbers can be considered
as small. However, the number of deletions are observed to be much larger in the

case of real data as it is presented in section 4.2.

Figure 27, Figure 28, and Figure 29 show the deleted segments after applying the
first step. It can be seen that the deletions are reasonable and help to counteract the

interpolation inaccuracy.

40



2_
1_
u.
LJ
L ]
Ak .
2k
33 2 1 0 1 2 3

Figure 27: Deleted segments after applying error-based deletion step for
class '*' of the two-spirals dataset.

Figure 28: Deleted segments after applying error-based deletion step for
class '®' of the rings dataset.
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Figure 29: Deleted segments after applying error-based deletion step for
class '®' of the cone-torus dataset.

Figure 30 to Figure 35 present the deleted and remaining FLSs after applying
intersection-based deletion step. The number of deleted segments is 454 for rings,

1451 for the two-spirals and 15101 for the cone-torus dataset.
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Figure 30: Remaining segments after applying intersection-based deletion
step for class '*' of the two-spirals dataset.
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Figure 31: Deleted segments after applying intersection-based deletion step
for class "' of the two-spirals dataset.
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Figure 32: Remaining segments after applying intersection-based deletion
step for class '®' of the rings dataset.
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Figure 33: Deleted segments after applying intersection-based deletion step
for class '®' of the rings dataset.

Ak

Figure 34: Remaining segments after applying intersection-based deletion
step for class '®' of the cone-torus dataset.
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Figure 35: Deleted segments after applying intersection-based deletion step
for class '®' of the cone-torus dataset.

The remaining and deleted FLSs after applying the pruning step are presented in

Figure 36 to Figure 41 respectively for rings, two-spirals and cone-torus datasets.
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Figure 36: Remaining segments after applying the pruning step for class '*'
of the two-spirals dataset.
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Figure 37: Deleted segments after applying the pruning step for class '*' of
the spirals dataset.
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Figure 38: Remaining segments after applying the pruning step for class '®’
of the rings dataset.
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Figure 39: Deleted segments after applying the pruning step for class '®' of
the rings dataset.

Ak

Figure 40: Remaining segments after applying the pruning step for class '®
of the cone-torus dataset.
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Figure 41: Deleted segments after applying the pruning step for class '®' of
the cone-torus dataset.

The effect of pruning can be clearly seen by comparing Figure 30 and Figure 36 for
two-spirals or by comparing Figure 32 and Figure 38 for the rings dataset. The
deletions mainly modify the decision boundaries, removing the feature lines that are
very close to the samples of a different class. At the end of pruning step the number
of deleted segments are 552 for the rings, 1674 for the two-spirals and 17210 for the

cone-torus dataset.

Table 1 presents the total number of FLSs deleted in each step of the algorithm and
the numbers of deletions are also presented for the RNFLS algorithm. It can be seen
that the numbers of deleted segments are comparable on cone-torus dataset whereas
the proposed algorithm deletes smaller number of segments for the rings and two-
spirals dataset. In fact, larger number of deleted segments corresponds to reduced
computational complexity during testing. This can also be achieved by the proposed
scheme by choosing smaller 3 value in higher dimensional space. However, the

primary performance criterion of this study is the classification accuracy rather than
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the number of deletions. In fact, if a given scheme deletes more segments at the

expense of the accuracy, this is not desired. In this study, the proposed approach is

compared with the reference systems in terms of both the number of segments

employed and the accuracies achieved on fifteen real datasets.

Table 1: Number of deleted segments.

Datasets | Error- |Intersection-based Pruning eNFL eNFL RNFLS
based deletion for each class Total Percentage
deletion

rings 0+25 0+454 0+552 552 22.53 1113
two- 13+15 692+849 803+871 1674 68.33 2090

spirals

cone- | 3+374+62|363+3167+11571 | 1318+3729+12163 17210 55.93 17359
torus

4.2 Experiments on Real Data

The experiments are conducted on twelve datasets from the UCI machine repository,

"Clouds" and "Concentric" from ELENA and "Australian" from IAP TC 5 datasets.

Table 1 presents the description of the datasets including the number of classes,

number of features and the number of samples.
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Table 1: Characteristics of the datasets.

dataset Number of Number of Number of
classes features samples

Australian 2 42 690
Cancer 2 9 683
Clouds 2 2 5000
Concentric 2 2 2500
Dermatology 6 34 366
Haberman 2 3 306
Heart 2 13 303
Ionosphere 2 34 351
Iris 3 4 150
Pima 2 8 768
Spect 2 22 267
Spectf 2 44 267
Wdbce 2 30 569
Wine 3 13 178
Wpbc 2 32 194

In order to compare different approaches, the hold-out method is employed to
generate the training and test sets. The given data is randomly divided into two equal
parts. The first part is used for training and the second part is used for testing. The
data are normalized using zero-mean unit-variance normalization method where the
normalization parameters are estimated using the training data. This procedure is
repeated ten times to compute ten train/test splits. The simulations are done for each
split and the average accuracies are reported. For "clouds" and "concentric", 10% of
the data is used for training and 90% for testing. The average accuracies achieved
using the reference systems are presented in Table 2. It can be easily seen in the table
that both RNFLS and SFLS surpasses NFL on majority of the datasets. More
specifically, RNFLS provides better accuracies than NFL on 12 datasets and SFLS
provided better accuracies on 10 datasets. On the other hand, the performances of

SFLS and RNFLS are comparable.
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Table 2: The average accuracies achieved on ten independent simulations.

Dataset NFL RNFLS SFLS
Australian 79.85 79.88 81.28
Cancer 95.04 96.86 96.77
Clouds 65.09 86.48 86.94
Concentric 63.58 97.23 96.87
Dermatology 96.15 95.27 95.55
Haberman 70.66 69.41 70.07
Heart 78.34 79.27 78.54
Ionosphere 84.11 90.74 89.09
Iris 87.73 94.00 94.40
Pima 68.23 73.02 71.77
Spect 80.38 81.50 80.23
Spectf 76.33 78.13 78.88
Wdbc 94.33 96.13 95.60
Wine 96.14 95.80 94.77
Wpbc 71.24 73.61 70.10
Average 80.48 85.82 85.39

The accuracies achieved by the proposed scheme are presented in Table 3 for fixed
and minimum segment length based thresholding approaches. The second column
provides the accuracies for T = 1. The following four columns present the accuracies
achieved for five different § values. The last column presents the scores achieved
when the best-fitting value of § is computed by applying 3-fold cross-validation on
the training data. As it illustrated in Figure 42, each training set is randomly
partitioned into three subsets for this purpose. Two subsets are used for training and
the remaining for evaluation. This procedure is repeated three times and the £ value
providing the best average result over all three partitions is selected. The parameter
tuning described above is done for each of the ten train/test splits separately. During
testing, the best-fitting value is considered. It should be noted that, for § < 2 and
B > 5 the average accuracies achieved are generally worse compared to f in the
interval [2,5]. Because of this, we employed 2 < f <5 for computing the best-

fitting f value.
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Figure 42: Splitting the training data into three folds for the tuning of g.

White parts denote the evaluation data.

Table 3: The accuracies achieved by the proposed approach. The best scores
achieved for each datasets are presented in boldface.

Dataset Fixed Minimum segment length based threshold optimum
thieih(ild 5 =2 =3 5 =4 5 =5 B
Australian 81.60 80.00 81.74 81.80 81.63 81.92
Cancer 96.69 96.60 96.77 96.86 96.98 96.80
Clouds 87.13 87.13 86.41 86.72 87.13 87.13
Concentric 97.48 97.48 97.48 97.48 97.48 97.48
Dermatology | 95.71 95.88 95.71 95.71 95.71 95.82
Haberman 7151 70.79 70.20 70.13 69.67 71.12
Heart 79.87 80.00 79.93 79.80 79.80 79.80
Ionosphere 91.09 86.57 90.46 90.74 90.74 90.63
Iris 93.07 94.00 94.40 94.13 94.00 94.40
Pima 73.54 71.72 72.76 73.07 73.10 72.79
Spect 80.98 80.45 80.60 81.05 80.98 80.45
Spectf 78.35 77.90 78.73 78.73 78.73 78.35
Wdbc 96.20 96.34 96.37 96.27 96.23 94.61
Wine 97.28 97.39 97.39 97.27 97.27 97.39
Wpbc 72.78 74.85 73.61 72.99 72.99 74.12
Average 86.22 85.81 80.41 86.15 80.35 86.19

The best scores achieved for each dataset are presented in boldface. It can be seen in

the table that the best-fitting value of 8 is problem dependent. By employing the

best-fitting value of 8, the highest scores are achieved on six datasets. However, the

simpler system corresponding to T = 1 achieved comparable performance, even

providing a slightly better average accuracy. The results clearly show that the

proposed hyper-cylinder based approach has the potential to provide improved

accuracies compared to the fixed threshold scheme. However, employing a better

scheme for tuning the threshold parameter £ is essential.
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In the following context, we will refer the proposed fixed threshold system for 7 = 1
as the eNFL scheme. Comparing the results in Tables 2 and 3, it can be seen that
eNFL provides better accuracies compared to NFL, RNFLS and SFLS on 14, 11 and

12 datasets respectively.

eNFL is also compared with the references in terms of the ranking performances.
More specifically, the performances achieved by the proposed and reference systems
in terms of their ranks when sorted using average accuracies are computed. The
results are presented in Table 4. For instance, in the case of "Australian" dataset,
eNFL is the best and RNFLS is the third best system. As seen in the table, eNFL has

remarkably better performance compared to the reference systems.

The numbers of segments deleted RNFLS and eNFL are presented in Table 5. The
total number of segments for each dataset is presented in the second column. On the
average, approximately half of the total numbers of segments are deleted by both
RNFLS and eNFL where RNFLS is found to delete approximately 20% more
compared to eNFL. On "Australian", "Dermatology", "Heart", "lonosphere" and
"Wine", the number of segments deleted by RNFLS is much above the average
compared to eNFL. However, on all these datasets, eNFL performed better. It can be
concluded that deleting more segments does not necessarily lead to a better scheme
in terms of classification accuracy. On the contrary, useful segments may be lost. It

should also be noted that, in SFLS, there is not segment deletion during training.
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Table 4: The performances achieved by the proposed and reference systems
in terms of their ranks when sorted using average accuracies.

Dataset NFL SFLS RNFLS eNFL
Australian 3
Cancer
Clouds
Concentric
Dermatology
Haberman
Heart
Ionosphere

Iris
Pima
Spect
Spectf
Wdbce
Wine
Wpbc
Average
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Table 5: The total number of segments in each dataset and the number of
deleted segments for four different schemes.

Dataset Total number of segments | RNFLS eNFL
Australian 30117 26893 11112
Cancer 31671 3034 3259
Clouds 62250 40586 45492
Concentric 16681 8524 7594
Dermatology 3305 1403 257

Haberman 7148 4946 5132
Heart 5736 5041 2946
Ionosphere 8281 3509 844

Iris 900 112 150

Pima 40036 27546 23497
Spect 5943 2115 2483
Spectf 5930 2605 2017
Wdbce 21496 3930 3845
Wine 1341 820 137

Wpbc 2954 2391 1635
Average 16252.6 8897 7360
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As a final remark, it should be mentioned that, for the "Dermatology" dataset which
has 6 classes, the performance of NFL is the best among all other classifiers and this
is the only dataset that the proposed method provided inferior performance compared

to NFL.
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Chapter 5

CONCLUSION AND FUTURE WORK

The focus of this study was to edit segments employed by the NFL classifier and
propose a new approach to suppress the interpolation inaccuracy of NFL. The
proposed approach is composed of three steps namely, error-based deletion,
intersection-based deletion and pruning. The characteristics of the steps applied are
clarified by running the proposed system on three real datasets where the deleted and

retained segments are presented

The proposed method is evaluated on fifteen different datasets from different
domains and improved accuracies are achieved compared to NFL, RNFLS and SFLS

on 14, 11 and 12 datasets respectively.

By ranking the accuracies achieved by the schemes considered, it is observed that the

proposed method ranked best on 11 datasets and second on 3 datasets.

The proposed method is also evaluated in terms of the number of deleted segments. It
is observed that, on the average over fifteen datasets, approximately half of the total
number of segments are deleted by both RNFLS and eNFL where RNFLS is found to

delete approximately 20% more compared to eNFL.

There are two major topics that should be further explored. The first is the optimal

estimation of 7 using the training data instead of using the constant one. The other is
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to explore better schemes for the computation of § in hyper-cylinder based approach.
Instead of 3-fold cross validation, the leave-one-out error estimation scheme can be

considered.
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Minimum Distance between Two Lines in N-Dimensional

Space

The minimum distance between two segments (line) is the length of the line while is

perpendicular to both of the lines [21].

Let x;and x, denote two points that belong to class ‘®’ and x; and x, belongs to
class “*x’. Let p; and p, denote the unique points when the two lines are closet
where d is the unique minimum as illustrated in Figure 43. It can be shown that
these points are unique when the lines are not parallel [21]. When, XX, and X,X; are
not parallel and do not intersect each other, p;p, joining these points in unique and

perpendicular to both segments.

X1

Figure 43: Minimum distance between two lines.

Xo—=X X4a—X . . . . .
Letu = —||x2 xl 1 and v = ”x‘* x3” denote the unit vectors in the directions presented in
27 A1 4—A3

Figure 43. p; and p, can be written as

pP1=Xx1 +su
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Py =x3 +tv

where s,t € R. Let w = (p, — p;), where d = ||w||. We can rewrite w as

w = (x; — x3) + (su—tv) = wy + (su — tv).

Since, w is perpendicular to u and v,

uw=20

v.w =

Substituting w in the expressions above, we get

u.wy+suu—tuv=20

v.wy + sv.v —tv.v = 0.

Rewriting, we obtain

(uw.u)s — (v.v)t = —u.w,

(v.uw)s — (v.v)t = —u. wy.

Letting a =u.u, b=u.v, c=v.v, d=u.w, and e =v.wy, s and t can be

obtained as
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be — cd

ac — b?
__ae—bd
~ ac — b2
hence, w can be computed as
ae — bd

W=p, =P =X3+—5U—
P2 —P1 37T e — b2

be — cd

- v
ac — b?

(ae — bd)u — (be — cd)v

w=(x;3—x)+

After computing w, d is obtained as d = ||w||.
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