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ABSTRACT 

This thesis introduces a novel approach combining Particle Filters and the L-BFGS-B 

optimization method for solving single-objective numerical optimization problems. 

The proposed method intricately marries the stochastic exploration of Particle Filters 

with the local optimization prowess of L-BFGS-B to navigate complex landscapes 

efficiently. Extensive experimentation on benchmark problems validates the 

approach's effectiveness, convergence speed, accuracy, and robustness. This fusion of 

methodologies opens new vistas for conquering diverse optimization challenges. 

Keywords: particle filters, evolutionary algorithms, optimization. 

 

 

 

 



 

 

iv 

 

ÖZ 

Bu tez, problemleri sürekli ve ayrık alanlar olarak sınıflandırmakta ve tek amaçlı 

sayısal eniyileme problemlerini çözmek için Parçacık Filtreleri ile L-BFGS-B 

eniyileme yöntemini birleştiren yeni bir yaklaşım sunmaktadır. Önerilen yöntem, 

karmaşık alanlarda verimli bir şekilde gezinmek için Parçacık Filtrelerinin stokastik 

keşfi ile L-BFGS-B'nin yerel eniyileme becerisini karmaşık bir şekilde 

birleştirmektedir. Karşılaştırmalı problemler üzerinde yapılan kapsamlı deneyler, 

yaklaşımın etkinliğini, yakınsama hızını, doğruluğunu ve sağlamlığını 

doğrulamaktadır. Metodolojilerin bu birleşimi, çeşitli optimizasyon zorluklarının 

üstesinden gelmek için yeni ufuklar açmaktadır. 

Anahtar Kelimeler: parçacık filtreleri, evrimsel algoritmalar, eniyileme. 
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Chapter 1 

INTRODUCTION 

A fundamental human pursuit that has been around for generations is optimization. 

The search for the best answers has fuelled scientific research, technical development, 

and effective decision-making from the dawn of civilization to the current day. Finding 

the greatest options among alternatives has significant effects on a variety of fields, 

including engineering, economics, logistics, and more. Here, we examine the 

categorical differences among optimization issues, their historical development, and 

the nuances of single-objective numerical optimization problems [1]. 

1.1 Optimization Problems: A Historical and Categorical Overview 

The origins of optimization can be found in prehistoric societies. The search for ideal 

areas and volumes shows that the ancient Greeks, for example, struggled with the 

optimization of geometric shapes. Early innovators like Archimedes used cutting-edge 

techniques to determine the best answers in real-world situations. But optimization 

didn't become a discipline with solid theoretical underpinnings and real-world 

applications until the development of formal mathematical modelling and computers. 

The development of linear programming in the middle of the 20th century was a 

turning point that introduced optimization to the world of rigorous mathematical 

analysis. Linear programming enabled the optimization of linear objective functions 

subject to linear constraints, revolutionising fields such as resource allocation and 

transportation planning. The simplex method, developed by George Dantzig, played a 
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crucial role in solving linear programming problems and laid the groundwork for 

further optimization techniques [2, 3]. 

1.2 Categories of Optimization Problems 

The nature of the choice variables, the existence of constraints, and the properties of 

the objective function are frequently used to describe the variety and complexity of 

optimization issues. Due to these traits, optimization issues are divided into two main 

groups: continuous optimization and discrete optimization. 

1.2.1 Continuous Optimization Problems 

Decision variables in continuous optimization problems can take on any real value 

within a given range. This category has a number of subcategories, each of which 

addresses particular optimization nuances: 

1. Unconstrained Optimization: The objective of unconstrained optimization is to 

identify the optimal value of an objective function without imposing any restrictions 

on the variables used for making decisions. Gradient-based algorithms use derivatives 

of the objective function to direct the search for the optimum, such as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) approach. The derivative-free method developed 

by Nelder-Mead iteratively updates a simplex to explore the solution space. 

2. Constrained Optimization: Constrained optimization involves optimizing the 

objective function while adhering to a set of constraints. These constraints can be 

expressed as equality or inequality conditions on the decision variables. The Sequential 

Least Squares Quadratic Programming (SLSQP) method combines quadratic 

programming and least squares optimization to efficiently navigate constrained 

optimization problems. Trust region methods, such as trust-constr, construct a trust 

region around the current solution and iteratively refine it within the constraints [4, 5]. 
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1.2.2 Discrete Optimization Problems 

Discrete optimization problems revolve around decision variables that can only take 

on distinct values, often restricted to integers or binary choices. This category includes: 

1. Integer Programming: In integer programming, decision variables are required to 

assume integer values. These problems find applications in scenarios like scheduling 

and resource allocation. The Travelling Salesman Problem (TSP), a classic example, 

seeks the shortest route visiting a set of cities and returning to the starting point. 

2. Binary Optimization: Binary optimization involves decision variables restricted to 

binary values (0 or 1). The Knapsack Problem exemplifies this category, where a 

knapsack has limited capacity, and the goal is to select items to maximise the total 

value while staying within the capacity constraint [6, 7]. 

1.2.3 Comparison and Trade-offs 

Continuous optimization methods leverage the smoothness of objective functions and 

constraints, often converging rapidly in continuous domains. However, they may 

struggle in cases involving discrete or integer decision variables, requiring techniques 

to handle these situations effectively. 

Discrete optimization methods excel when dealing with inherently discrete decision 

variables. They are well-suited for combinatorial problems that demand solutions 

satisfying discrete conditions. Yet, these methods can encounter challenges when 

addressing complex continuous landscapes or nonlinear objective functions. 

Real-world optimization problems often exhibit a mix of continuous and discrete 

decision variables. Hybrid approaches, such as mixed-integer programming and 

genetic algorithms, bridge the gap between these two domains, effectively handling 

mixed-type problems. 
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1.3 Particle Filters: A Bayesian Approach to Optimization 

Particle Filters, also known as Sequential Monte Carlo methods, represent a powerful 

paradigm for addressing dynamic and uncertain environments. Initially developed for 

state estimation and tracking problems, Particle Filters have found versatile 

applications, including optimization. This section delves into the foundational 

concepts of Particle Filters, their components, and their role in optimization. 

1.3.1 Particle Filters: Core Concepts and Components 

At the heart of Particle Filters lies the representation of probability distributions 

through a set of particles. Each particle encapsulates a state hypothesis that collectively 

approximates the true underlying distribution. Particle Filters operate through distinct 

stages: 

1. Initialization: The process begins by initialising particles with state hypotheses, 

often drawn randomly from an initial state distribution. This step establishes the initial 

exploration of the solution space. 

2. Prediction: Particles are propagated through a dynamic model that characterises the 

system's evolution. The model accounts for system dynamics and noise, projecting 

particles forward in time. 

3. Update: The inclusion of measurements is crucial to the effectiveness of particle 

filters. The weights of the particles are modified according to their likelihood in 

relation to the measured values. Higher weights are given to particles that are more 

likely. 

4. Resampling: When resampling, particles with greater weights are more likely to be 

chosen for the following generation, resulting in more accurate and representative 

posterior distribution particles. 
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5. Estimation: Finally, weighted averages or other estimating methods based on the 

states and weights of the particles are used to estimate the state of the system. This 

estimation represents the solution to the optimization problem. 

In the figure below, a simple flowchart of the mentioned steps is illustrated: 

 

Figure 1.1: Particle Filters Flowchart 
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1.3.2 Particle Filters: A Bayesian Approach to Optimization 

A key component of Bayesian filtering, particle filters have become an effective 

method for managing uncertainty and dynamics in a variety of applications, including 

optimization. In-depth discussion of the historical development of particle filters, their 

functions, and a comparison to earlier strategies like Kalman filters are provided in 

this section. 

1.3.3 Particle Filters: Historical Evolution and Comparison 

Particle filters have their origins in Nils Aall Barricelli's development of the Sequential 

Monte Carlo (SMC) approach in the 1950s. The technique was designed to mimic how 

interacting particles behave in biological systems. However, it wasn't until the 1990s 

that Particle Filters became well-known in the state estimation field, thanks to the 

computer vision research of Michael Isard and Andrew Blake. 

Particle Filters provide a novel viewpoint in the optimization environment when 

compared to traditional methods like Kalman Filters. The state distribution is assumed 

to be gaussian by Kalman filters, which perform well in linear Gaussian systems. 

Particle Filters, on the other hand, embrace nonlinearity, multimodality, and non-

Gaussian distributions. This adaptability makes Particle Filters an appealing choice for 

optimization problems with complex landscapes and uncertain dynamics. 

1.3.4 Particle Filters: Functionalities and Examples 

Particle Filters exhibit several key functionalities that make them a versatile tool for 

optimization: 

1. Handling Nonlinearity: Particle Filters shine in scenarios where the objective 

function exhibits nonlinear behaviour. Their probabilistic approach allows particles to 

explore nonlinear solution spaces effectively. 
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2. Multimodal Solutions: Particle Filters naturally address multimodal landscapes by 

maintaining diverse particles that represent different modes of the distribution. This 

property is crucial in optimization problems with multiple solutions. 

3. Uncertainty Incorporation: Particle Filters seamlessly integrate uncertainties in 

both the system dynamics and measurements. This is particularly valuable in 

optimization tasks where noisy data and uncertain parameters are involved. 

4. Complex Dynamics: Particle Filters thrive in problems with intricate dynamics, as 

they capture the evolution of particles over time through prediction and update stages. 

1.3.5 Particle Filters: Example Application 

Consider an optimization scenario in robotics, where a mobile robot aims to navigate 

an environment and find the optimal path that minimises energy consumption while 

avoiding obstacles. Traditional optimization methods may struggle with the nonlinear 

and uncertain nature of the problem. Particle Filters offer an elegant solution by 

modelling the robot's motion as a dynamic system and using sensor measurements to 

update the particles representing possible paths. This approach not only optimises the 

path but also provides insights into uncertainty levels, aiding decision-making. 

1.3.6 Particle Filters: The Optimization Advantage 

Particle Filters introduce a probabilistic lens to optimization, allowing for the 

exploration of complex landscapes, incorporation of uncertainties, and handling of 

nonlinear and non-Gaussian distributions. Their adaptability presents them as a 

powerful alternative to conventional optimization techniques, particularly in 

circumstances where those techniques might fail. 
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1.4 Optimization Methods: A Comprehensive Overview 

The many-faceted difficulties of optimization problems are addressed by a wide 

variety of optimization strategies in addition to Particle Filters. The methodologies, 

convergence characteristics, and appropriateness of these methods for various problem 

structures vary. An extensive examination of the main optimization techniques is 

provided in this section. 

1.4.1 Nelder-Mead Method 

The Nelder-Mead algorithm, sometimes referred to as the Downhill Simplex Method, 

is an unconstrained direct search optimization method. It functions without the need 

for derivative knowledge and iteratively manipulates a simplex, a geometric structure 

with vertices that designates a location in the search space, to explore the solution 

space. Based on the function evaluations at the simplex's vertices, the algorithm 

conducts reflection, expansion, contraction, or reduction operations on the simplex at 

each iteration. Nelder-Mead is best suited for functions with erratic topographies, 

discontinuities, or in the absence of derivative information [4]. 

1.4.2 BFGS Method: Approximating the Hessian 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach, which focuses on 

unconstrained problems, is a cornerstone of optimization. Gradients are used by BFGS 

to estimate the Hessian matrix, which is the second derivative of the objective function. 

For objective functions that behave well, this approximation provides rapid 

convergence during iterative optimization. 

1.4.3 Powell's Method 

Finding the local minima of unconstrained optimization problems is the goal of 

Powell's method, which is also known as the conjugate direction method. It works by 

combining past search directions to create conjugate directions, which are then 
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iteratively searched along. Powell's approach is particularly successful when the 

objective function is not smooth and can efficiently navigate through solution spaces 

that are extremely curved [5]. 

1.4.4 Conjugate Gradient (CG) Method 

The Conjugate Gradient method is an iterative approach created for issues involving 

unrestricted optimization. It uses gradient information to iteratively locate the best 

answer, modifying search directions by making sure they are conjugate with previous 

directions. CG is frequently employed in large-scale optimization issues, including 

those that arise in machine learning and image processing, and is well-suited for 

quadratic objective functions [8]. 

1.4.5 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method 

A quasi-Newton approach for unconstrained optimization is the BFGS algorithm. It 

uses gradient information to roughly estimate the goal function's Hessian matrix and 

then iteratively improves this estimate. BFGS is a well-liked option for optimising 

smooth nonlinear functions because it combines the advantages of gradient-based 

techniques with the capacity to handle complicated topographies [9-11]. 

1.4.6 Newton-CG Method 

In order to optimize unconstrained problems, the Newton-CG technique combines the 

Conjugate Gradient method and Newton's approach, which employs second 

derivatives. Within a trust region, it looks for the quadratic approximation of the 

objective function that is minimised. In comparison to gradient-based approaches, this 

method has faster convergence characteristics and can handle nonlinear objective 

functions [12]. 
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1.4.7 Limited-memory BFGS with Bounds (L-BFGS-B) Method 

A modification of the BFGS method designed for bound-constrained optimization 

issues is called L-BFGS-B. To conserve computational resources, it keeps a Hessian 

matrix approximation in restricted memory. Within variable boundaries, L-BFGS-B 

efficiently explores the solution space specially for problems with constraints [13]. 

1.4.8 Trust Region Reflective Newton-CG (TRON) Method 

Large-scale unconstrained optimization issues can be resolved with the Trust Region 

Reflective Newton-CG approach. Within a trust region framework, it combines 

Newton's approach and the Conjugate Gradient method. TRON maintains a balance 

between exploration and exploitation by adjusting its strategy dependent on the local 

geometry of the objective function [14]. 

1.4.9 COBYLA Method: Derivative-Free Constrained Optimization 

The Constrained Optimization BY Linear Approximations (COBYLA) method is 

designed for derivative-free constrained optimization problems. COBYLA iteratively 

constructs linear approximations to the objective function and constraints, exploring 

the solution space efficiently. It is suitable for scenarios where derivative information 

is challenging to compute [15]. 

1.4.10 Sequential Least Squares Quadratic Programming (SLSQP) Method 

SLSQP is a flexible optimization technique that combines the concepts of least squares 

and quadratic programming for constrained problems. It seeks to minimise a quadratic 

approximation of the objective function while adhering to linear equality and 

inequality constraints. SLSQP can efficiently navigate complex landscapes with 

constraints [16]. 
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1.4.11 Trust Region Constrained (trust-constr) Method 

Trust Region Constrained is a versatile optimization method that handles nonlinearly 

constrained problems. It operates by iteratively approximating the objective function 

and constraints using quadratic models within trust regions. The method adapts its trust 

regions to ensure both global and local convergence [17]. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Optimization Approaches for Single Objective Numerical 

Problems 

Optimization problems have attracted significant attention across a spectrum of fields 

due to their profound impact on decision-making and resource allocation. This 

literature review delves into various optimization methodologies employed for solving 

single objective numerical problems, shedding light on their mechanics and 

applications. 

2.1.1 Classical Optimization Methods 

Gradient-Based Methods: Gradient-based optimization methods leverage the 

gradient, or derivative, of the objective function to iteratively guide the search towards 

the optimum. The steepest descent method, for instance, moves in the direction of the 

negative gradient, following the path of steepest descent. Newton's method 

incorporates second-order information, such as the curvature of the function, to adjust 

the step size more intelligently. Conjugate gradient methods, on the other hand, 

maintain conjugacy among search directions, allowing for efficient exploration of the 

solution space. 

Example of Steepest Descent Method: Consider a quadratic function f(x) = x^2 - 6x 

+ 5. The gradient is f'(x) = 2x - 6. Starting at x = 5, the steepest descent direction is x 

= 5 – alpha (2x - 6), where alpha is the step size. 
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2.1.2 Metaheuristic Algorithms 

1. Simulated Annealing (SA): Simulated Annealing mimics the annealing process in 

metallurgy. The algorithm accepts worse solutions with a decreasing probability, 

allowing the system to explore the solution space and escape local optima. SA's 

temperature parameter controls the acceptance probability of worse solutions, enabling 

both global exploration and local exploitation. 

Example of Travelling Salesman Problem with SA: For the Traveling Salesman 

Problem, SA explores potential routes by swapping cities. Initially, the algorithm 

accepts nearly any swap, emulating high temperatures. As the temperature decreases, 

it becomes more selective, converging towards a near-optimal solution. 

2. Genetic Algorithms (GA): Genetic Algorithms emulate natural evolution by 

maintaining a population of solutions. Operators like selection, crossover, and 

mutation manipulate the population over generations. Individuals with higher fitness 

values are more likely to be selected, simulating survival of the fittest. 

Example of Function Optimization with GA: Optimising the function f(x) = x^2 

using GA involves encoding potential solutions as binary strings, applying selection, 

crossover, and mutation operations, and evolving generations of solutions towards the 

global minimum. 

3. Particle Swarm Optimization (PSO): PSO models particles moving through a 

solution space. Each particle adjusts its position based on its own best solution and the 

best solution found by the swarm. This social behaviour facilitates rapid convergence 

towards promising regions. 
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Example of PSO for Parameter Tuning: PSO can optimize hyperparameters of 

machine learning models. Particles adjust hyperparameter values to minimize 

validation error, converging towards an optimal configuration. 

4. Ant Colony Optimization (ACO): Inspired by ants' foraging behavior, ACO 

constructs solutions iteratively. A virtual ant deposits pheromone along paths, and 

other ants follow higher pheromone trails, converging towards optimal paths. 

Example of ACO for the Travelling Salesman Problem: In the Travelling Salesman 

Problem, ants explore routes, depositing pheromones on shorter paths. Over time, the 

pheromone-rich paths converge towards the shortest route. 

2.1.3 Evolutionary Strategies 

1. Differential Evolution (DE): DE maintains a population of solutions and creates 

new candidates through differential mutation and crossover. DE adapts to diverse 

problem landscapes and converges towards optimal solutions. 

Example of DE for Parameter Optimization: DE can optimise hyperparameters of 

machine learning algorithms. It explores hyperparameter combinations and identifies 

settings that minimize cross-validation error. 

2. Covariance Matrix Adaptation Evolution Strategy (CMA-ES): CMA-ES estimates 

the covariance matrix of a distribution over solutions. It adapts the distribution to 

explore regions with high objective function values, yielding efficient optimization. 

Example of CMA-ES for Function Optimization: CMA-ES can optimise complex, 

multimodal functions. It efficiently explores the solution space, adapting to landscape 

complexities. 
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2.1.4 Hybrid Approaches 

Hybridization of Metaheuristics: Researchers have proposed hybrid approaches that 

combine multiple metaheuristics to harness their complementary strengths. A hybrid 

Genetic Algorithm with Simulated Annealing, for instance, can leverage GA's global 

exploration and SA's ability to escape local optima. 

Example of Hybrid Genetic Algorithm with Simulated Annealing: In parameter 

optimization for neural networks, a hybrid approach may start with GA to explore a 

wide range of configurations and then use SA to refine the optimal values. 

2.1.5 Machine Learning-Based Approaches 

1. Surrogate-Based Optimization (SBO): SBO employs surrogate models, like 

Gaussian processes, to approximate the expensive objective function. The surrogate 

guides optimization, reducing the number of actual function evaluations. 

Example of SBO for Expensive Simulations: Optimising aerodynamic shapes often 

requires time-consuming simulations. SBO employs surrogate models to predict 

outcomes, guiding optimization efficiently. 

2. Deep Reinforcement Learning (DRL): DRL formulates optimization as a 

reinforcement learning task. Agents learn policies that map states to actions, guiding 

the search towards optimal solutions. 

Example of DRL for Game Playing: DRL has excelled in optimising complex tasks 

like game playing. Agents learn policies that navigate challenging game environments 

to achieve high scores. 
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2.2 Summary 

In recent years, the use of particle filters in the field of optimisation has received 

attention [18, 19]. These researches are in the general direction of using particle filters 

on a case-by-case basis, for example, we can mention mobile robot localization or 

vision tracking or even the composite regeneration process, and etc [20-22]. 

The world of optimization offers a rich tapestry of techniques for addressing single 

objective numerical problems. From classical gradient-based methods to advanced 

machine learning-inspired approaches, the optimization toolbox continues to expand, 

catering to diverse domains and complexities [23-30]. 
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Chapter 3 

PROPOSED METHOD 

3.1 Particle Filtering with L-BFGS-B for Single Objective Numerical 

Optimization 

In the pursuit of solving single objective numerical optimization problems, a novel 

approach has been developed that leverages the strengths of particle filtering and the 

L-BFGS-B optimization method. This innovative framework aims to harness the 

benefits of both paradigms to tackle complex optimization landscapes effectively. 

3.1.1 Initialization: Exploring the Solution Space 

The journey begins with the initialization phase, where particles are strategically 

generated and uniformly distributed across the search space. This initial distribution 

ensures broad coverage of potential solutions, laying the foundation for comprehensive 

exploration. 

3.1.2 Update: Adapting to Objective Function Landscape 

Central to the approach is the update section, a critical phase where particles evolve 

based on the outcomes of the objective function. By calculating the weights of particles 

in relation to their performance, the algorithm identifies promising candidates that 

merit further exploration. 

3.1.3 Resampling: Refining with L-BFGS-B Optimization 

An integral aspect of the proposed method involves the resampling stage, which 

introduces the L-BFGS-B optimization method to guide particles toward optimal 

solutions. For each particle, L-BFGS-B is executed iteratively, effectively steering the 
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particle toward local minima. By iteratively optimising the particles, the algorithm 

encapsulates the iterative nature of conventional optimization methods. 

Local Minimum Exploration (Leveraging Neighbours): During the resampling 

process, neighbouring particles emerge as significant entities. These neighbours 

encapsulate particles with improved objective function outcomes. This utilisation of 

neighbours allows the algorithm to efficiently refine solutions and traverse the solution 

landscape with precision. 

Pareto Principle Selection (Balancing Exploration and Exploitation): The Pareto 

principle underpins the approach's selection strategy. The top 20 percent of particles, 

exhibiting superior performance, are preserved, ensuring that promising solutions are 

not discarded. Simultaneously, the remaining particles are regenerated, fostering 

exploration and the potential discovery of hidden gems within the search space. 

Iterative Refinement (Navigating Toward Optimality): The proposed method thrives 

on an iterative framework. In each main iteration, the algorithm meticulously 

evaluates, optimises, and reevaluates particles. As iterations accumulate, the algorithm 

fine-tunes its understanding of the solution landscape, ultimately culminating in the 

identification of an optimal or near-optimal solution. 

Termination Criteria (Convergence and Solution): The iterative journey concludes 

once the termination criteria are satisfied. This could include convergence of the 

solution or the achievement of a predefined level of accuracy. At this point, the 

algorithm presents the best solution it has identified throughout its iterative 

exploration. 
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3.1.4 Proposed Algorithm 

 1. initialize_particles() 

 2. while the termination criteria are not meet do 

 3.     // Update Step 

 4.     for each particle i do 

 5.         // Calculate particle weight 

 6.         particles[i].weight ← calculate_weight(particles[i].X) 

 7.     end for 

 8.     // Resampling Step 

 9.     create empty list new_particles 

10.    new_particles ← generate_new_particles() 

11.    // Select best particles based on their weights 

12.    selected_particles ← select_top_particles_based_on_weights(particles) 

13.    // Add a copy of selected_particles to new_particles 

14.    new_particles.append(copy_of(selected_particles)) 

15.    particles ← new_particles 

16.    // Estimate State 

17.    best_weight ← find_particle_with_lowest_weight(particles) 

18. end while 

To show the above algorithm as simply as possible, the relevant flowchart is displayed: 
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Figure 3.1: Proposed Algorithm Flowchart 

3.2 Summary 

In an era where optimization challenges grow increasingly intricate, the fusion of 

particle filtering and the L-BFGS-B optimization method offers a novel path forward. 

By combining particle filtering's adaptability and stochastic exploration with L-BFGS-

B's local optimization prowess, this proposed method strives to conquer diverse single 

objective numerical optimization landscapes. 
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Chapter 4 

EXPERIMENTAL RESULTS 

4.1 Validating the Proposed Approach on Benchmark Problems 

The effectiveness and robustness of the proposed Particle Filtering with L-BFGS-B 

approach were evaluated through a series of meticulously designed experiments. The 

benchmark problems and evaluation criteria from the "Problem Definitions and 

Evaluation Criteria for the CEC 2017 Special Session and Competition on Single 

Objective Real-Parameter Numerical Optimization" served as the foundation for this 

comprehensive assessment. The information needed for problem definitions will be 

found in the following table. Also, a detailed description of the individual evaluation 

criteria can be found in the relevant section. 

Table 4.1: Summary of the CEC’17 Test Functions 

 No. Functions Fi*=Fi(x*) 
Unimodal 
Functions 

1 Shifted and Rotated Bent Cigar Function 100 
2 Shifted and Rotated Zakharov Function 200 

Simple Multimodal 

Functions 

3 Shifted and Rotated Rosenbrock’s Function 300 
4 Shifted and Rotated Rastrigin’s Function 400 

5 
Shifted  and  Rotated  Expanded  Scaffer’s  

F6 Function 
500 

6 
Shifted and Rotated Lunacek 

Bi_Rastrigin Function 
600 

7 
Shifted and Rotated Non-Continuous 

Rastrigin’s Function 
700 

8 Shifted and Rotated Levy Function 800 
9 Shifted and Rotated Schwefel’s Function 900 

Hybrid Functions 10 Hybrid Function 1 (N=3) 1000 
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4.2 Experimental Environment and Tools 

The proposed approach was implemented and tested in an environment carefully 

chosen to ensure accurate and reliable results. The experimental setup utilised the 

following components: 

Hardware: 

• Processor: Intel(R) Core (TM) i5-4440 CPU @ 3.10GHz (3.10 GHz) 

• Installed RAM: 8.00 GB 

• System type: 64-bit operating system, x64-based processor 

Software: 

• Anaconda Platform: Version 2022.10 

• Programming Language: Python 3.11 

• Integrated Development Environment (IDE): Spyder 5.4.3 

4.3 Implementation and Iterative Refinement 

The proposed approach was meticulously implemented using Python programming 

language and supported by a set of essential libraries. NumPy enabled efficient 

numerical computations, while Matplotlib facilitated the creation of informative 

visualisations. Pandas managed and analysed tabular data, and SciPy provided the 

foundational support for implementing the L-BFGS-B optimization method. 

The iterative refinement process involved numerous iterations, during which the 

approach underwent meticulous tweaking and fine-tuning. The algorithm's 

performance was meticulously monitored and evaluated, and the approach was 

subjected to rigorous testing against the benchmark problems to ensure consistent, 

accurate, and dependable outcomes. 
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4.4 Benchmark Problems and Evaluation Criteria 

The benchmark problems, sourced from the "Problem Definitions and Evaluation 

Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-

Parameter Numerical Optimization," were chosen for their diversity and complexity. 

These problems encompassed a wide spectrum of landscape complexities, dimensions, 

and optimal solution locations. Detailed evaluation criteria for implementation with 

slight changes are as follows: 

Problems: 10 minimization problems 

Dimensions: D=10, 30, 50, 100 (Results only for 10D and 30D are acceptable for the 

initial submission; but 50D and 100D should be included in the final version) 

Runs / problem: 51 (Do not run many 51 runs to pick the best run) 

MaxFES: 10000*D (Max_FES for 10D = 100000; for 30D = 300000; for 50D = 

500000; for 100D = 1000000) 

Search Range: [-100, 100] D 

Initialization: Uniform random initialization within the search space. Random seed is 

based on time, MatLab users can use rand ('state', sum(100*clock)). 

Global Optimum: All problems have the global optimum within the given bounds and 

there is no need to perform a search outside of the given bounds for these problems. 

Termination: When reaching MaxFES or the error value is smaller than 10-6. 

4.5 Performance Metrics and Analysis 

A comprehensive set of performance metrics was employed to quantitatively assess 

the approach's performance across various dimensions: 

- Convergence Speed: Measured by the rate at which the algorithm approached 

optimal solutions. 

- Accuracy: Evaluated by the proximity of the obtained solutions to the true optima. 



 

 

24 

 

- Exploration Capability: Analysed based on the approach's ability to explore diverse 

solution regions. 

- Robustness: Tested through consistent performance across different benchmark 

problems. 

4.6 Experimental Outcomes 

The experimental results, including objective function values, based on benchmark 

functions description, were meticulously collected and analysed. These outcomes 

provide a comprehensive picture of the proposed approach's behaviour across the 

diverse benchmark problems. 

Each time the algorithm is executed, we look for a better solution according to 

exploring and exploiting concepts. To clarify the topic, if we display the information 

obtained from the implementation of the proposed algorithm in a graph (left side), we 

will see that the convergence process is different from the similar example when we 

do not use local search (right side). 

 

Figure 4.1: Convergence Speed 
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Although due to the random nature of the algorithm, it is not possible to provide an 

exact number, but according to the statistical sample used, when the L-BFGS-B 

method is not used, the best answer is found in the first 34% of the process, while after 

using this method, it reaches 57%. The double value of this parameter shows us that 

with a more efficient search, the probability of finding better answers increases 

significantly. 

Also, error values for dimensions 10, 30, 50 and 100 are given in separate tables below. 

Table 4.2: Proposed Algorithm Error Values for D = 10. 

Func. Best Worst Median Mean Std. 

f1 1.2868E-06 1.2543E-04 3.9732E-05 4.0055E-05 2.8145E-05 

f2 0.0000E+00 3.4370E-06 1.0818E-06 9.2472E-07 8.9570E-07 

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f5 1.2934E+01 4.6771E+01 3.1839E+01 3.1410E+01 7.8916E+00 

f6 2.6076E+01 5.8657E+01 4.2111E+01 4.1979E+01 7.7128E+00 

f7 4.2248E+01 1.5216E+02 9.9827E+01 9.7967E+01 2.2351E+01 

f8 1.1939E+01 4.0793E+01 2.8854E+01 2.7745E+01 6.7390E+00 

f9 1.7523E+02 6.2499E+02 3.6431E+02 3.7810E+02 1.2018E+02 

f10 2.7363E+02 9.1355E+02 6.5560E+02 6.3158E+02 1.4908E+02 
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Table 4.3: Proposed Algorithm Error Values for D = 30. 

Func. Best Worst Median Mean Std. 

f1 2.0701E-05 3.3185E-04 1.5132E-04 1.6254E-04 7.8072E-05 

f2 2.6636E-06 1.6857E-05 6.8424E-06 7.0589E-06 2.7841E-06 

f3 0.0000E+00 1.1158E-06 0.0000E+00 2.1878E-08 1.5470E-07 

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f5 2.3978E+02 3.5123E+02 2.9252E+02 2.9256E+02 2.8554E+01 

f6 7.1524E+01 9.8385E+01 8.6575E+01 8.7242E+01 6.3654E+00 

f7 3.9226E+02 8.3500E+02 5.5940E+02 5.8879E+02 9.9578E+01 

f8 1.7014E+02 2.8654E+02 2.4675E+02 2.4376E+02 2.6000E+01 

f9 2.9924E+03 7.1910E+03 5.2933E+03 5.1501E+03 1.0533E+03 

f10 2.5244E+03 4.0093E+03 3.5364E+03 3.5076E+03 3.1409E+02 

Table 4.4: Proposed Algorithm Error Values for D = 50. 

Func. Best Worst Median Mean Std. 

f1 2.6380E-05 6.2966E-03 2.2742E-03 2.5133E-03 1.4225E-03 

f2 9.8369E+03 2.1878E+12 4.6035E+08 8.0919E+10 3.6026E+11 

f3 0.0000E+00 7.2962E-06 0.0000E+00 1.6045E-06 2.1943E-06 
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f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f5 4.5967E+02 6.4933E+02 5.7906E+02 5.7217E+02 4.2812E+01 

f6 8.3900E+01 1.1289E+02 1.0061E+02 1.0074E+02 6.1446E+00 

f7 8.2616E+02 1.4471E+03 1.1147E+03 1.1092E+03 1.4771E+02 

f8 4.0557E+02 6.7358E+02 5.7806E+02 5.7188E+02 5.3252E+01 

f9 5.8075E+03 1.8862E+04 1.4253E+04 1.4232E+04 2.1507E+03 

f10 5.6141E+03 6.8941E+03 6.3848E+03 6.3481E+03 3.5295E+02 

Table 4.5: Proposed Algorithm Error Values for D = 100. 

Func. Best Worst Median Mean Std. 

f1 4.1103E-04 5.2581E-03 3.1042E-03 2.9379E-03 1.3690E-03 

f2 8.071E+105 1.286E+128 3.707E+116 2.522E+126 1.783E+127 

f3 0.0000E+00 4.9970E+00 9.4705E-04 2.4913E-01 9.7436E-01 

f4 3.7431E-03 5.4057E+01 4.0183E+00 8.5289E+00 1.4489E+01 

f5 1.2327E+03 1.5732E+03 1.4279E+03 1.4261E+03 7.2432E+01 

f6 8.4925E+01 1.0270E+02 9.5727E+01 9.5223E+01 3.4120E+00 

f7 2.0068E+03 2.9650E+03 2.5365E+03 2.5127E+03 2.0132E+02 
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f8 1.2973E+03 1.6794E+03 1.5402E+03 1.5402E+03 7.3396E+01 

f9 2.5742E+04 3.8733E+04 3.1588E+04 3.1493E+04 2.6954E+03 

f10 1.2744E+04 1.5171E+04 1.4187E+04 1.4095E+04 5.7801E+02 

To have a relative estimate of the state of the results, below are the results of an 

algorithm based on The Differential Evolution (DE) called jSO in separate tables 

below [31]. 

Table 4.6: The results of the jSO algorithm for D = 10. 

Func. Best Worst Median Mean Std. 

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f5 0.0000E+00 2.9849E+00 1.9899E+00 1.7558E+00 7.6004E-01 

f6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f7 1.0746E+01 1.3537E+01 1.1750E+01 1.1792E+01 6.0675E-01 

f8 0.0000E+00 2.9849E+00 1.9899E+00 1.9509E+00 7.4352E-01 

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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f10 1.8736E-01 2.4416E+02 1.0307E+01 3.5897E+01 5.5477E+01 

Table 4.7: The results of the jSO algorithm for D = 30. 

Func. Best Worst Median Mean Std. 

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f4 5.8562E+01 6.4117E+01 5.8562E+01 5.8670E+01 7.7797E-01 

f5 3.9798E+00 1.3249E+01 8.0168E+00 8.5568E+00 2.0980E+00 

f6 0.0000E+00 1.3687E-07 0.0000E+00 6.0385E-09 2.7122E-08 

f7 3.6115E+01 4.3093E+01 3.9064E+01 3.8927E+01 1.4594E+00 

f8 4.9748E+00 1.2970E+01 8.9557E+00 9.0918E+00 1.8399E+00 

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f10 1.0391E+03 2.0415E+03 1.4931E+03 1.5277E+03 2.7716E+02 

Table 4.8: The results of the jSO algorithm for D = 50. 

Func. Best Worst Median Mean Std. 

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f4 1.3178E-04 1.4231E+02 2.8513E+01 5.6213E+01 4.8763E+01 

f5 8.9606E+00 2.3886E+01 1.6197E+01 1.6405E+01 3.4620E+00 

f6 0.0000E+00 1.7090E-05 3.1068E-07 1.0933E-06 2.6259E-06 

f7 5.7519E+01 7.4153E+01 6.6640E+01 6.6497E+01 3.4728E+00 

f8 9.9506E+00 2.4053E+01 1.6967E+01 1.6962E+01 3.1354E+00 

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f10 2.4048E+03 3.7919E+03 3.2324E+03 3.1398E+03 3.6716E+02 

Table 4.9: The results of the jSO algorithm for D = 100. 

Func. Best Worst Median Mean Std. 

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

f2 0.0000E+00 1.2181E+02 4.6953E-07 8.9403E+00 2.4202E+01 

f3 6.4494E-08 1.5008E-05 1.4482E-06 2.3912E-06 2.7250E-06 

f4 8.4524E+01 2.2075E+02 1.9538E+02 1.8963E+02 2.8923E+01 

f5 3.0099E+01 6.0038E+01 4.4049E+01 4.3908E+01 5.6066E+00 
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f6 7.6730E-06 3.5617E-03 3.5717E-05 2.0244E-04 6.1988E-04 

f7 1.2880E+02 1.5961E+02 1.4425E+02 1.4490E+02 6.7030E+00 

f8 2.7260E+01 5.4642E+01 4.2250E+01 4.2152E+01 5.5223E+00 

f9 0.0000E+00 5.4385E-01 0.0000E+00 4.5904E-02 1.1493E-01 

f10 7.5410E+03 1.1012E+04 9.7507E+03 9.7044E+03 6.8161E+02 

4.7 Test and Compare 

Due to the fact that during the execution of the algorithm we received a warning 

message with the following text: 

“WARNING: f2 has been deprecated from the CEC 2017 benchmark suite” 

Also, with a little closer look at the results it is clear that we have a problem with the 

f2 function and the results are highly outliers. Therefore, for testing and comparison, 

we deleted this record. 

Then, by researching for comparison methods, we came across three common 

methods, which are summarised below: 

1. t-Test (Parametric): 

• Used for comparing the means of two independent samples. 

• Assumes that the data is normally distributed and has equal variances in both 

groups. 

• Comes in various forms: independent samples t-test (for unrelated groups), 

paired samples t-test (for related groups), etc. 
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• Sensitive to outliers and deviations from normality. 

2. Wilcoxon Signed-Rank Test (Non-Parametric): 

• Used for comparing two related samples or matched pairs. 

• Suitable for non-normally distributed data or situations where data doesn't meet 

the assumptions of the t-test. 

• Ranks the absolute differences between pairs and tests if the median difference 

is zero. 

• Less affected by outliers and distribution shape. 

3. Wilcoxon Rank-Sum Test (also known as Mann-Whitney U Test, Non-

Parametric): 

• Used for comparing two independent samples. 

• Applicable when the assumptions of the t-test (normality and equal variance) 

are not met. 

• Ranks all the observations from both groups combined, and checks if the 

distribution of ranks in one group tends to be higher than the other. 

• Does not assume any specific distribution shape. 

Based on the above information, I decided to use Wilcoxon rank-sum test, in such a 

way that I compare the results of each group of information obtained from the proposed 

algorithm with jSO algorithm. You can see the results of this comparison in the table 

below: 

Table 4.10: Comparison of results by Wilcoxon rank-sum test (α=0.05). 

Dimension Best Worst Median Mean Std. 
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10 

Stat. 2.428 1.722 2.075 1.898 1.722 

p-value 0.015 0.085 0.038 0.058 0.085 

30 

Stat. 1.545 1.678 1.545 1.678 1.678 

p-value 0.122 0.093 0.122 0.093 0.093 

50 

Stat. 1.545 1.501 1.457 1.678 1.325 

p-value 0.122 0.133 0.145 0.093 0.185 

100 

Stat. 1.545 1.634 1.722 1.634 1.634 

p-value 0.122 0.102 0.085 0.102 0.102 

The p-value of less than 0.05 indicates that this test rejects the hypothesis at the 5% 

significance level. 

For comparison, I also used the formula used in the competition documentation. 

Calculation method for performance measure: 

a) The evaluation criteria will be divided into two parts: 

1. 50% summation of mean error values of each problem for all dimensions 

as follows: 

SE = 0.1 * ∑ ef10D + 0.2 * ∑ ef 30D + 0.3 * ∑ ef 50D + 0.4 * ∑ ef 100D 

where ef is the mean error values for all the functions and SE is the sum of 

errors and then find the score for this part as follows: 

Score1 = (1 – (SE - SEmin) / SE) * 50 
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where SEmin is the minimal sum of errors from all the algorithms. 

2. 50% rank based for mean error values for each problem in each dimension 

as follows: 

SR = 0.1 * ∑ rank10D + 0.2 * ∑ rank30D + 0.3 * ∑ rank50D + 0.4 * ∑ rank100D 

where SR is the sum of ranks then find the score for this part as follows: 

Score2 = (1 – (SR - SRmin) / SR) * 50 

SRmin is the minimal sum of ranks from all the algorithms. 

b) Then combine the above two parts to find the final score as follows. Higher 

weight will be given for higher dimensions: Score = Score1 + Score2 

Table 4.11: Scores for jSO and Proposed Algorithms. 

Algorithm Score 1 Score 2 Score 

jSO 50 50 100 

Proposed 9.12 29.3 38.42 

4.8 Summary 

The Experimental Results section aims to provide a rigorous assessment of the 

proposed Particle Filtering with L-BFGS-B approach's capabilities and limitations. By 

subjecting the approach to an extensive battery of benchmark problems, the analysis 

endeavours to ascertain its effectiveness and reliability in addressing single objective 

numerical optimization problems. 
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Chapter 5 

CONCLUSION 

We set the groundwork for a novel strategy that combines Particle Filters with the L-

BFGS-B optimization technique by classifying optimization problems into continuous 

and discrete domains. This fusion was carefully created, iterated upon, and put to the 

test on benchmark issues. 

Particle Filtering with L-BFGS-B, the suggested method, proved adept at navigating 

challenging single-objective numerical optimization environments. The method 

effortlessly combined the adaptability of Particle Filters with the local optimization 

abilities of L-BFGS-B through an organised sequence of initialization, update, and 

resampling steps. A balanced trade-off between exploration and exploitation was made 

possible through the incorporation of neighbours' information, Pareto Principal 

selection, and repeated refinement, which ultimately produced effective convergence. 

Benchmark problems served as a litmus test, evaluating the approach's performance 

across diverse landscapes. The meticulous implementation in the Anaconda 

environment, supported by NumPy, Matplotlib, Pandas, and SciPy libraries, ensured 

the method's accuracy and reliability. Performance metrics, such as convergence 

speed, accuracy, exploration capability, and robustness, showcased the approach's 

resilience and efficiency. 
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In conclusion, the proposed Particle Filtering with L-BFGS-B method stands as a 

testament to the ever-evolving landscape of optimization. By harmoniously combining 

stochastic exploration and local optimization, this approach has showcased its mettle 

in solving intricate single-objective numerical optimization problems. As the 

optimization journey continues to evolve, this innovative approach promises to 

contribute to the toolbox of techniques for tackling diverse and complex challenges. 
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