
Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Particle Filters for Single-objective Numerical

Optimization

Milad Rostampour

Eastern Mediterranean University

August 2023

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. Zeki Bayram

 Chair, Department of Computer

Engineering

Assoc. Prof. Dr. Adnan Acan

Co-Supervisor

 Asst. Prof. Dr. Ahmet Ünveren

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

Examining Committee

1. Assoc. Prof. Dr. Mehmet Bodur

2. Assoc. Prof. Dr. Mehtap Köse Ulukök

3. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

This thesis introduces a novel approach combining Particle Filters and the L-BFGS-B

optimization method for solving single-objective numerical optimization problems.

The proposed method intricately marries the stochastic exploration of Particle Filters

with the local optimization prowess of L-BFGS-B to navigate complex landscapes

efficiently. Extensive experimentation on benchmark problems validates the

approach's effectiveness, convergence speed, accuracy, and robustness. This fusion of

methodologies opens new vistas for conquering diverse optimization challenges.

Keywords: particle filters, evolutionary algorithms, optimization.

iv

ÖZ

Bu tez, problemleri sürekli ve ayrık alanlar olarak sınıflandırmakta ve tek amaçlı

sayısal eniyileme problemlerini çözmek için Parçacık Filtreleri ile L-BFGS-B

eniyileme yöntemini birleştiren yeni bir yaklaşım sunmaktadır. Önerilen yöntem,

karmaşık alanlarda verimli bir şekilde gezinmek için Parçacık Filtrelerinin stokastik

keşfi ile L-BFGS-B'nin yerel eniyileme becerisini karmaşık bir şekilde

birleştirmektedir. Karşılaştırmalı problemler üzerinde yapılan kapsamlı deneyler,

yaklaşımın etkinliğini, yakınsama hızını, doğruluğunu ve sağlamlığını

doğrulamaktadır. Metodolojilerin bu birleşimi, çeşitli optimizasyon zorluklarının

üstesinden gelmek için yeni ufuklar açmaktadır.

Anahtar Kelimeler: parçacık filtreleri, evrimsel algoritmalar, eniyileme.

v

DEDICATION

In the pages of this thesis, a journey unfolds, a journey that could

not have been ventured upon without the unwavering love,

encouragement, and support of those who mean the world to me.

To my father, Morteza, whose boundless wisdom and strength have

been my guiding light. You've taught me the power of determination

and the beauty of pursuing knowledge. Your sacrifices and endless

belief in me have shaped every word written here.

To my mother, Farkhondeh, whose grace and kindness infuse every

aspect of my being. Your endless patience, unyielding faith, and

gentle spirit have given me the courage to chase my dreams. Your

unwavering love has given wings to my aspirations.

To my brother, Masih, and my sister, Mina, who have stood by my

side through every challenge and triumph. Our shared laughter, our

shared tears, they have been the foundation upon which I've built

this academic endeavour. You've shown me the strength of familial

bonds that nothing can break.

To my friends, Ehsan, Majid, and Afshin, whose camaraderie

and support have been a constant source of inspiration. Through

late nights of study and moments of doubt, your presence has

reminded me that the path is best walked with kindred spirits.

vi

ACKNOWLEDGMENT

I extend my deepest appreciation to my esteemed supervisors, Assist. Prof. Dr. Ahmet

Ünveren and Assoc. Prof. Dr. Adnan Acan. Your exceptional mentorship, insightful

feedback, and dedication to my research have not only fuelled my academic progress

but have also honed my scholarly perspective.

To Prof. Dr. Mehdi Jabalameli from my bachelor's program, I owe a debt of gratitude

for sparking my passion for academia. Your guidance and encouragement have set me

on this path of continuous learning.

My heartfelt thanks go to the professors, research assistants, colleagues, and the entire

computer engineering department who have contributed to my academic journey. Your

collective expertise, camaraderie, and unwavering support have been invaluable in

shaping my understanding of my field.

I am genuinely appreciative of the knowledge you have shared, the guidance you have

offered, and the genuine interest you have shown in my academic pursuits. Your

dedication to education and research has left an indelible mark on my academic

journey, and I am honoured to have been a part of this scholarly community.

In closing, I am humbled by the pivotal role each individual has played in shaping my

academic accomplishments. To all those who have shared their wisdom, time, and

unwavering belief in my potential, I extend my deepest appreciation. Your impact will

resonate in my academic pursuits for years to come.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. iv

DEDICATION .. v

ACKNOWLEDGMENT ... vi

LIST OF TABLES .. x

LIST OF FIGURES .. xi

1 INTRODUCTION .. 1

1.1 Optimization Problems: A Historical and Categorical Overview 1

1.2 Categories of Optimization Problems .. 2

1.2.1 Continuous Optimization Problems ... 2

1.2.2 Discrete Optimization Problems .. 3

1.2.3 Comparison and Trade-offs ... 3

1.3 Particle Filters: A Bayesian Approach to Optimization 4

1.3.1 Particle Filters: Core Concepts and Components .. 4

1.3.2 Particle Filters: A Bayesian Approach to Optimization 6

1.3.3 Particle Filters: Historical Evolution and Comparison 6

1.3.4 Particle Filters: Functionalities and Examples ... 6

1.3.5 Particle Filters: Example Application .. 7

1.3.6 Particle Filters: The Optimization Advantage ... 7

1.4 Optimization Methods: A Comprehensive Overview .. 8

1.4.1 Nelder-Mead Method ... 8

1.4.2 BFGS Method: Approximating the Hessian .. 8

1.4.3 Powell's Method .. 8

viii

1.4.4 Conjugate Gradient (CG) Method ... 9

1.4.5 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method 9

1.4.6 Newton-CG Method .. 9

1.4.7 Limited-memory BFGS with Bounds (L-BFGS-B) Method 10

1.4.8 Trust Region Reflective Newton-CG (TRON) Method ………………..... 10

1.4.9 COBYLA Method: Derivative-Free Constrained Optimization 10

1.4.10 Sequential Least Squares Quadratic Programming (SLSQP) Method 10

1.4.11 Trust Region Constrained (trust-constr) Method 11

2 LITERATURE REVIEW ... 12

2.1 Optimization Approaches for Single Objective Numerical Problems 12

2.1.1 Classical Optimization Methods .. 12

2.1.2 Metaheuristic Algorithms .. 13

2.1.3 Evolutionary Strategies .. 14

2.1.4 Hybrid Approaches .. 15

2.1.5 Machine Learning-Based Approaches ... 15

2.2 Summary .. 16

3 PROPOSED METHOD .. 17

3.1 Particle Filtering with L-BFGS-B for Single Objective Optimization 17

3.1.1 Initialization: Exploring the Solution Space ... 17

3.1.2 Update: Adapting to Objective Function Landscape 17

3.1.3 Resampling: Refining with L-BFGS-B Optimization 17

3.1.4 Proposed Algorithm ... 19

3.2 Summary .. 20

4 EXPERIMENTAL RESULTS .. 21

4.1 Validating the Proposed Approach on Benchmark Problems 21

ix

4.2 Experimental Environment and Tools .. 22

4.3 Implementation and Iterative Refinement .. 22

4.4 Benchmark Problems and Evaluation Criteria .. 23

4.5 Performance Metrics and Analysis ... 23

4.6 Experimental Outcomes ... 24

4.7 Test and Compare ... 31

4.8 Summary .. 34

5 CONCLUSION .. 35

REFERENCES .. 37

x

LIST OF TABLES

Table 4.1: Summary of the CEC’17 Test Functions ... 21

Table 4.2: Proposed Algorithm Error Values for D = 10 ... 25

Table 4.3: Proposed Algorithm Error Values for D = 30 ... 26

Table 4.4: Proposed Algorithm Error Values for D = 50 ... 26

Table 4.5: Proposed Algorithm Error Values for D = 100 ... 27

Table 4.6: The results of the jSO algorithm for D = 10 .. 28

Table 4.7: The results of the jSO algorithm for D = 30 .. 29

Table 4.8: The results of the jSO algorithm for D = 50 .. 29

Table 4.9: The results of the jSO algorithm for D = 100 .. 30

Table 4.10: Comparison of results by Wilcoxon rank-sum test (α=0.05) 32

Table 4.11: Scores for jSO and Proposed Algorithms …………………………........ 34

xi

LIST OF FIGURES

Figure 1.1: Particle Filters Flowchart .. 5

Figure 3.1: Proposed Algorithm Flowchart .. 20

Figure 4.1: Convergence Speed ... 24

1

Chapter 1

INTRODUCTION

A fundamental human pursuit that has been around for generations is optimization.

The search for the best answers has fuelled scientific research, technical development,

and effective decision-making from the dawn of civilization to the current day. Finding

the greatest options among alternatives has significant effects on a variety of fields,

including engineering, economics, logistics, and more. Here, we examine the

categorical differences among optimization issues, their historical development, and

the nuances of single-objective numerical optimization problems [1].

1.1 Optimization Problems: A Historical and Categorical Overview

The origins of optimization can be found in prehistoric societies. The search for ideal

areas and volumes shows that the ancient Greeks, for example, struggled with the

optimization of geometric shapes. Early innovators like Archimedes used cutting-edge

techniques to determine the best answers in real-world situations. But optimization

didn't become a discipline with solid theoretical underpinnings and real-world

applications until the development of formal mathematical modelling and computers.

The development of linear programming in the middle of the 20th century was a

turning point that introduced optimization to the world of rigorous mathematical

analysis. Linear programming enabled the optimization of linear objective functions

subject to linear constraints, revolutionising fields such as resource allocation and

transportation planning. The simplex method, developed by George Dantzig, played a

2

crucial role in solving linear programming problems and laid the groundwork for

further optimization techniques [2, 3].

1.2 Categories of Optimization Problems

The nature of the choice variables, the existence of constraints, and the properties of

the objective function are frequently used to describe the variety and complexity of

optimization issues. Due to these traits, optimization issues are divided into two main

groups: continuous optimization and discrete optimization.

1.2.1 Continuous Optimization Problems

Decision variables in continuous optimization problems can take on any real value

within a given range. This category has a number of subcategories, each of which

addresses particular optimization nuances:

1. Unconstrained Optimization: The objective of unconstrained optimization is to

identify the optimal value of an objective function without imposing any restrictions

on the variables used for making decisions. Gradient-based algorithms use derivatives

of the objective function to direct the search for the optimum, such as the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) approach. The derivative-free method developed

by Nelder-Mead iteratively updates a simplex to explore the solution space.

2. Constrained Optimization: Constrained optimization involves optimizing the

objective function while adhering to a set of constraints. These constraints can be

expressed as equality or inequality conditions on the decision variables. The Sequential

Least Squares Quadratic Programming (SLSQP) method combines quadratic

programming and least squares optimization to efficiently navigate constrained

optimization problems. Trust region methods, such as trust-constr, construct a trust

region around the current solution and iteratively refine it within the constraints [4, 5].

3

1.2.2 Discrete Optimization Problems

Discrete optimization problems revolve around decision variables that can only take

on distinct values, often restricted to integers or binary choices. This category includes:

1. Integer Programming: In integer programming, decision variables are required to

assume integer values. These problems find applications in scenarios like scheduling

and resource allocation. The Travelling Salesman Problem (TSP), a classic example,

seeks the shortest route visiting a set of cities and returning to the starting point.

2. Binary Optimization: Binary optimization involves decision variables restricted to

binary values (0 or 1). The Knapsack Problem exemplifies this category, where a

knapsack has limited capacity, and the goal is to select items to maximise the total

value while staying within the capacity constraint [6, 7].

1.2.3 Comparison and Trade-offs

Continuous optimization methods leverage the smoothness of objective functions and

constraints, often converging rapidly in continuous domains. However, they may

struggle in cases involving discrete or integer decision variables, requiring techniques

to handle these situations effectively.

Discrete optimization methods excel when dealing with inherently discrete decision

variables. They are well-suited for combinatorial problems that demand solutions

satisfying discrete conditions. Yet, these methods can encounter challenges when

addressing complex continuous landscapes or nonlinear objective functions.

Real-world optimization problems often exhibit a mix of continuous and discrete

decision variables. Hybrid approaches, such as mixed-integer programming and

genetic algorithms, bridge the gap between these two domains, effectively handling

mixed-type problems.

4

1.3 Particle Filters: A Bayesian Approach to Optimization

Particle Filters, also known as Sequential Monte Carlo methods, represent a powerful

paradigm for addressing dynamic and uncertain environments. Initially developed for

state estimation and tracking problems, Particle Filters have found versatile

applications, including optimization. This section delves into the foundational

concepts of Particle Filters, their components, and their role in optimization.

1.3.1 Particle Filters: Core Concepts and Components

At the heart of Particle Filters lies the representation of probability distributions

through a set of particles. Each particle encapsulates a state hypothesis that collectively

approximates the true underlying distribution. Particle Filters operate through distinct

stages:

1. Initialization: The process begins by initialising particles with state hypotheses,

often drawn randomly from an initial state distribution. This step establishes the initial

exploration of the solution space.

2. Prediction: Particles are propagated through a dynamic model that characterises the

system's evolution. The model accounts for system dynamics and noise, projecting

particles forward in time.

3. Update: The inclusion of measurements is crucial to the effectiveness of particle

filters. The weights of the particles are modified according to their likelihood in

relation to the measured values. Higher weights are given to particles that are more

likely.

4. Resampling: When resampling, particles with greater weights are more likely to be

chosen for the following generation, resulting in more accurate and representative

posterior distribution particles.

5

5. Estimation: Finally, weighted averages or other estimating methods based on the

states and weights of the particles are used to estimate the state of the system. This

estimation represents the solution to the optimization problem.

In the figure below, a simple flowchart of the mentioned steps is illustrated:

Figure 1.1: Particle Filters Flowchart

6

1.3.2 Particle Filters: A Bayesian Approach to Optimization

A key component of Bayesian filtering, particle filters have become an effective

method for managing uncertainty and dynamics in a variety of applications, including

optimization. In-depth discussion of the historical development of particle filters, their

functions, and a comparison to earlier strategies like Kalman filters are provided in

this section.

1.3.3 Particle Filters: Historical Evolution and Comparison

Particle filters have their origins in Nils Aall Barricelli's development of the Sequential

Monte Carlo (SMC) approach in the 1950s. The technique was designed to mimic how

interacting particles behave in biological systems. However, it wasn't until the 1990s

that Particle Filters became well-known in the state estimation field, thanks to the

computer vision research of Michael Isard and Andrew Blake.

Particle Filters provide a novel viewpoint in the optimization environment when

compared to traditional methods like Kalman Filters. The state distribution is assumed

to be gaussian by Kalman filters, which perform well in linear Gaussian systems.

Particle Filters, on the other hand, embrace nonlinearity, multimodality, and non-

Gaussian distributions. This adaptability makes Particle Filters an appealing choice for

optimization problems with complex landscapes and uncertain dynamics.

1.3.4 Particle Filters: Functionalities and Examples

Particle Filters exhibit several key functionalities that make them a versatile tool for

optimization:

1. Handling Nonlinearity: Particle Filters shine in scenarios where the objective

function exhibits nonlinear behaviour. Their probabilistic approach allows particles to

explore nonlinear solution spaces effectively.

7

2. Multimodal Solutions: Particle Filters naturally address multimodal landscapes by

maintaining diverse particles that represent different modes of the distribution. This

property is crucial in optimization problems with multiple solutions.

3. Uncertainty Incorporation: Particle Filters seamlessly integrate uncertainties in

both the system dynamics and measurements. This is particularly valuable in

optimization tasks where noisy data and uncertain parameters are involved.

4. Complex Dynamics: Particle Filters thrive in problems with intricate dynamics, as

they capture the evolution of particles over time through prediction and update stages.

1.3.5 Particle Filters: Example Application

Consider an optimization scenario in robotics, where a mobile robot aims to navigate

an environment and find the optimal path that minimises energy consumption while

avoiding obstacles. Traditional optimization methods may struggle with the nonlinear

and uncertain nature of the problem. Particle Filters offer an elegant solution by

modelling the robot's motion as a dynamic system and using sensor measurements to

update the particles representing possible paths. This approach not only optimises the

path but also provides insights into uncertainty levels, aiding decision-making.

1.3.6 Particle Filters: The Optimization Advantage

Particle Filters introduce a probabilistic lens to optimization, allowing for the

exploration of complex landscapes, incorporation of uncertainties, and handling of

nonlinear and non-Gaussian distributions. Their adaptability presents them as a

powerful alternative to conventional optimization techniques, particularly in

circumstances where those techniques might fail.

8

1.4 Optimization Methods: A Comprehensive Overview

The many-faceted difficulties of optimization problems are addressed by a wide

variety of optimization strategies in addition to Particle Filters. The methodologies,

convergence characteristics, and appropriateness of these methods for various problem

structures vary. An extensive examination of the main optimization techniques is

provided in this section.

1.4.1 Nelder-Mead Method

The Nelder-Mead algorithm, sometimes referred to as the Downhill Simplex Method,

is an unconstrained direct search optimization method. It functions without the need

for derivative knowledge and iteratively manipulates a simplex, a geometric structure

with vertices that designates a location in the search space, to explore the solution

space. Based on the function evaluations at the simplex's vertices, the algorithm

conducts reflection, expansion, contraction, or reduction operations on the simplex at

each iteration. Nelder-Mead is best suited for functions with erratic topographies,

discontinuities, or in the absence of derivative information [4].

1.4.2 BFGS Method: Approximating the Hessian

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach, which focuses on

unconstrained problems, is a cornerstone of optimization. Gradients are used by BFGS

to estimate the Hessian matrix, which is the second derivative of the objective function.

For objective functions that behave well, this approximation provides rapid

convergence during iterative optimization.

1.4.3 Powell's Method

Finding the local minima of unconstrained optimization problems is the goal of

Powell's method, which is also known as the conjugate direction method. It works by

combining past search directions to create conjugate directions, which are then

9

iteratively searched along. Powell's approach is particularly successful when the

objective function is not smooth and can efficiently navigate through solution spaces

that are extremely curved [5].

1.4.4 Conjugate Gradient (CG) Method

The Conjugate Gradient method is an iterative approach created for issues involving

unrestricted optimization. It uses gradient information to iteratively locate the best

answer, modifying search directions by making sure they are conjugate with previous

directions. CG is frequently employed in large-scale optimization issues, including

those that arise in machine learning and image processing, and is well-suited for

quadratic objective functions [8].

1.4.5 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

A quasi-Newton approach for unconstrained optimization is the BFGS algorithm. It

uses gradient information to roughly estimate the goal function's Hessian matrix and

then iteratively improves this estimate. BFGS is a well-liked option for optimising

smooth nonlinear functions because it combines the advantages of gradient-based

techniques with the capacity to handle complicated topographies [9-11].

1.4.6 Newton-CG Method

In order to optimize unconstrained problems, the Newton-CG technique combines the

Conjugate Gradient method and Newton's approach, which employs second

derivatives. Within a trust region, it looks for the quadratic approximation of the

objective function that is minimised. In comparison to gradient-based approaches, this

method has faster convergence characteristics and can handle nonlinear objective

functions [12].

10

1.4.7 Limited-memory BFGS with Bounds (L-BFGS-B) Method

A modification of the BFGS method designed for bound-constrained optimization

issues is called L-BFGS-B. To conserve computational resources, it keeps a Hessian

matrix approximation in restricted memory. Within variable boundaries, L-BFGS-B

efficiently explores the solution space specially for problems with constraints [13].

1.4.8 Trust Region Reflective Newton-CG (TRON) Method

Large-scale unconstrained optimization issues can be resolved with the Trust Region

Reflective Newton-CG approach. Within a trust region framework, it combines

Newton's approach and the Conjugate Gradient method. TRON maintains a balance

between exploration and exploitation by adjusting its strategy dependent on the local

geometry of the objective function [14].

1.4.9 COBYLA Method: Derivative-Free Constrained Optimization

The Constrained Optimization BY Linear Approximations (COBYLA) method is

designed for derivative-free constrained optimization problems. COBYLA iteratively

constructs linear approximations to the objective function and constraints, exploring

the solution space efficiently. It is suitable for scenarios where derivative information

is challenging to compute [15].

1.4.10 Sequential Least Squares Quadratic Programming (SLSQP) Method

SLSQP is a flexible optimization technique that combines the concepts of least squares

and quadratic programming for constrained problems. It seeks to minimise a quadratic

approximation of the objective function while adhering to linear equality and

inequality constraints. SLSQP can efficiently navigate complex landscapes with

constraints [16].

11

1.4.11 Trust Region Constrained (trust-constr) Method

Trust Region Constrained is a versatile optimization method that handles nonlinearly

constrained problems. It operates by iteratively approximating the objective function

and constraints using quadratic models within trust regions. The method adapts its trust

regions to ensure both global and local convergence [17].

12

Chapter 2

LITERATURE REVIEW

2.1 Optimization Approaches for Single Objective Numerical

Problems

Optimization problems have attracted significant attention across a spectrum of fields

due to their profound impact on decision-making and resource allocation. This

literature review delves into various optimization methodologies employed for solving

single objective numerical problems, shedding light on their mechanics and

applications.

2.1.1 Classical Optimization Methods

Gradient-Based Methods: Gradient-based optimization methods leverage the

gradient, or derivative, of the objective function to iteratively guide the search towards

the optimum. The steepest descent method, for instance, moves in the direction of the

negative gradient, following the path of steepest descent. Newton's method

incorporates second-order information, such as the curvature of the function, to adjust

the step size more intelligently. Conjugate gradient methods, on the other hand,

maintain conjugacy among search directions, allowing for efficient exploration of the

solution space.

Example of Steepest Descent Method: Consider a quadratic function f(x) = x^2 - 6x

+ 5. The gradient is f'(x) = 2x - 6. Starting at x = 5, the steepest descent direction is x

= 5 – alpha (2x - 6), where alpha is the step size.

13

2.1.2 Metaheuristic Algorithms

1. Simulated Annealing (SA): Simulated Annealing mimics the annealing process in

metallurgy. The algorithm accepts worse solutions with a decreasing probability,

allowing the system to explore the solution space and escape local optima. SA's

temperature parameter controls the acceptance probability of worse solutions, enabling

both global exploration and local exploitation.

Example of Travelling Salesman Problem with SA: For the Traveling Salesman

Problem, SA explores potential routes by swapping cities. Initially, the algorithm

accepts nearly any swap, emulating high temperatures. As the temperature decreases,

it becomes more selective, converging towards a near-optimal solution.

2. Genetic Algorithms (GA): Genetic Algorithms emulate natural evolution by

maintaining a population of solutions. Operators like selection, crossover, and

mutation manipulate the population over generations. Individuals with higher fitness

values are more likely to be selected, simulating survival of the fittest.

Example of Function Optimization with GA: Optimising the function f(x) = x^2

using GA involves encoding potential solutions as binary strings, applying selection,

crossover, and mutation operations, and evolving generations of solutions towards the

global minimum.

3. Particle Swarm Optimization (PSO): PSO models particles moving through a

solution space. Each particle adjusts its position based on its own best solution and the

best solution found by the swarm. This social behaviour facilitates rapid convergence

towards promising regions.

14

Example of PSO for Parameter Tuning: PSO can optimize hyperparameters of

machine learning models. Particles adjust hyperparameter values to minimize

validation error, converging towards an optimal configuration.

4. Ant Colony Optimization (ACO): Inspired by ants' foraging behavior, ACO

constructs solutions iteratively. A virtual ant deposits pheromone along paths, and

other ants follow higher pheromone trails, converging towards optimal paths.

Example of ACO for the Travelling Salesman Problem: In the Travelling Salesman

Problem, ants explore routes, depositing pheromones on shorter paths. Over time, the

pheromone-rich paths converge towards the shortest route.

2.1.3 Evolutionary Strategies

1. Differential Evolution (DE): DE maintains a population of solutions and creates

new candidates through differential mutation and crossover. DE adapts to diverse

problem landscapes and converges towards optimal solutions.

Example of DE for Parameter Optimization: DE can optimise hyperparameters of

machine learning algorithms. It explores hyperparameter combinations and identifies

settings that minimize cross-validation error.

2. Covariance Matrix Adaptation Evolution Strategy (CMA-ES): CMA-ES estimates

the covariance matrix of a distribution over solutions. It adapts the distribution to

explore regions with high objective function values, yielding efficient optimization.

Example of CMA-ES for Function Optimization: CMA-ES can optimise complex,

multimodal functions. It efficiently explores the solution space, adapting to landscape

complexities.

15

2.1.4 Hybrid Approaches

Hybridization of Metaheuristics: Researchers have proposed hybrid approaches that

combine multiple metaheuristics to harness their complementary strengths. A hybrid

Genetic Algorithm with Simulated Annealing, for instance, can leverage GA's global

exploration and SA's ability to escape local optima.

Example of Hybrid Genetic Algorithm with Simulated Annealing: In parameter

optimization for neural networks, a hybrid approach may start with GA to explore a

wide range of configurations and then use SA to refine the optimal values.

2.1.5 Machine Learning-Based Approaches

1. Surrogate-Based Optimization (SBO): SBO employs surrogate models, like

Gaussian processes, to approximate the expensive objective function. The surrogate

guides optimization, reducing the number of actual function evaluations.

Example of SBO for Expensive Simulations: Optimising aerodynamic shapes often

requires time-consuming simulations. SBO employs surrogate models to predict

outcomes, guiding optimization efficiently.

2. Deep Reinforcement Learning (DRL): DRL formulates optimization as a

reinforcement learning task. Agents learn policies that map states to actions, guiding

the search towards optimal solutions.

Example of DRL for Game Playing: DRL has excelled in optimising complex tasks

like game playing. Agents learn policies that navigate challenging game environments

to achieve high scores.

16

2.2 Summary

In recent years, the use of particle filters in the field of optimisation has received

attention [18, 19]. These researches are in the general direction of using particle filters

on a case-by-case basis, for example, we can mention mobile robot localization or

vision tracking or even the composite regeneration process, and etc [20-22].

The world of optimization offers a rich tapestry of techniques for addressing single

objective numerical problems. From classical gradient-based methods to advanced

machine learning-inspired approaches, the optimization toolbox continues to expand,

catering to diverse domains and complexities [23-30].

17

Chapter 3

PROPOSED METHOD

3.1 Particle Filtering with L-BFGS-B for Single Objective Numerical

Optimization

In the pursuit of solving single objective numerical optimization problems, a novel

approach has been developed that leverages the strengths of particle filtering and the

L-BFGS-B optimization method. This innovative framework aims to harness the

benefits of both paradigms to tackle complex optimization landscapes effectively.

3.1.1 Initialization: Exploring the Solution Space

The journey begins with the initialization phase, where particles are strategically

generated and uniformly distributed across the search space. This initial distribution

ensures broad coverage of potential solutions, laying the foundation for comprehensive

exploration.

3.1.2 Update: Adapting to Objective Function Landscape

Central to the approach is the update section, a critical phase where particles evolve

based on the outcomes of the objective function. By calculating the weights of particles

in relation to their performance, the algorithm identifies promising candidates that

merit further exploration.

3.1.3 Resampling: Refining with L-BFGS-B Optimization

An integral aspect of the proposed method involves the resampling stage, which

introduces the L-BFGS-B optimization method to guide particles toward optimal

solutions. For each particle, L-BFGS-B is executed iteratively, effectively steering the

18

particle toward local minima. By iteratively optimising the particles, the algorithm

encapsulates the iterative nature of conventional optimization methods.

Local Minimum Exploration (Leveraging Neighbours): During the resampling

process, neighbouring particles emerge as significant entities. These neighbours

encapsulate particles with improved objective function outcomes. This utilisation of

neighbours allows the algorithm to efficiently refine solutions and traverse the solution

landscape with precision.

Pareto Principle Selection (Balancing Exploration and Exploitation): The Pareto

principle underpins the approach's selection strategy. The top 20 percent of particles,

exhibiting superior performance, are preserved, ensuring that promising solutions are

not discarded. Simultaneously, the remaining particles are regenerated, fostering

exploration and the potential discovery of hidden gems within the search space.

Iterative Refinement (Navigating Toward Optimality): The proposed method thrives

on an iterative framework. In each main iteration, the algorithm meticulously

evaluates, optimises, and reevaluates particles. As iterations accumulate, the algorithm

fine-tunes its understanding of the solution landscape, ultimately culminating in the

identification of an optimal or near-optimal solution.

Termination Criteria (Convergence and Solution): The iterative journey concludes

once the termination criteria are satisfied. This could include convergence of the

solution or the achievement of a predefined level of accuracy. At this point, the

algorithm presents the best solution it has identified throughout its iterative

exploration.

19

3.1.4 Proposed Algorithm

 1. initialize_particles()

 2. while the termination criteria are not meet do

 3. // Update Step

 4. for each particle i do

 5. // Calculate particle weight

 6. particles[i].weight ← calculate_weight(particles[i].X)

 7. end for

 8. // Resampling Step

 9. create empty list new_particles

10. new_particles ← generate_new_particles()

11. // Select best particles based on their weights

12. selected_particles ← select_top_particles_based_on_weights(particles)

13. // Add a copy of selected_particles to new_particles

14. new_particles.append(copy_of(selected_particles))

15. particles ← new_particles

16. // Estimate State

17. best_weight ← find_particle_with_lowest_weight(particles)

18. end while

To show the above algorithm as simply as possible, the relevant flowchart is displayed:

20

Figure 3.1: Proposed Algorithm Flowchart

3.2 Summary

In an era where optimization challenges grow increasingly intricate, the fusion of

particle filtering and the L-BFGS-B optimization method offers a novel path forward.

By combining particle filtering's adaptability and stochastic exploration with L-BFGS-

B's local optimization prowess, this proposed method strives to conquer diverse single

objective numerical optimization landscapes.

21

Chapter 4

EXPERIMENTAL RESULTS

4.1 Validating the Proposed Approach on Benchmark Problems

The effectiveness and robustness of the proposed Particle Filtering with L-BFGS-B

approach were evaluated through a series of meticulously designed experiments. The

benchmark problems and evaluation criteria from the "Problem Definitions and

Evaluation Criteria for the CEC 2017 Special Session and Competition on Single

Objective Real-Parameter Numerical Optimization" served as the foundation for this

comprehensive assessment. The information needed for problem definitions will be

found in the following table. Also, a detailed description of the individual evaluation

criteria can be found in the relevant section.

Table 4.1: Summary of the CEC’17 Test Functions

 No. Functions Fi*=Fi(x*)
Unimodal
Functions

1 Shifted and Rotated Bent Cigar Function 100
2 Shifted and Rotated Zakharov Function 200

Simple Multimodal

Functions

3 Shifted and Rotated Rosenbrock’s Function 300
4 Shifted and Rotated Rastrigin’s Function 400

5
Shifted and Rotated Expanded Scaffer’s

F6 Function
500

6
Shifted and Rotated Lunacek

Bi_Rastrigin Function
600

7
Shifted and Rotated Non-Continuous

Rastrigin’s Function
700

8 Shifted and Rotated Levy Function 800
9 Shifted and Rotated Schwefel’s Function 900

Hybrid Functions 10 Hybrid Function 1 (N=3) 1000

22

4.2 Experimental Environment and Tools

The proposed approach was implemented and tested in an environment carefully

chosen to ensure accurate and reliable results. The experimental setup utilised the

following components:

Hardware:

• Processor: Intel(R) Core (TM) i5-4440 CPU @ 3.10GHz (3.10 GHz)

• Installed RAM: 8.00 GB

• System type: 64-bit operating system, x64-based processor

Software:

• Anaconda Platform: Version 2022.10

• Programming Language: Python 3.11

• Integrated Development Environment (IDE): Spyder 5.4.3

4.3 Implementation and Iterative Refinement

The proposed approach was meticulously implemented using Python programming

language and supported by a set of essential libraries. NumPy enabled efficient

numerical computations, while Matplotlib facilitated the creation of informative

visualisations. Pandas managed and analysed tabular data, and SciPy provided the

foundational support for implementing the L-BFGS-B optimization method.

The iterative refinement process involved numerous iterations, during which the

approach underwent meticulous tweaking and fine-tuning. The algorithm's

performance was meticulously monitored and evaluated, and the approach was

subjected to rigorous testing against the benchmark problems to ensure consistent,

accurate, and dependable outcomes.

23

4.4 Benchmark Problems and Evaluation Criteria

The benchmark problems, sourced from the "Problem Definitions and Evaluation

Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-

Parameter Numerical Optimization," were chosen for their diversity and complexity.

These problems encompassed a wide spectrum of landscape complexities, dimensions,

and optimal solution locations. Detailed evaluation criteria for implementation with

slight changes are as follows:

Problems: 10 minimization problems

Dimensions: D=10, 30, 50, 100 (Results only for 10D and 30D are acceptable for the

initial submission; but 50D and 100D should be included in the final version)

Runs / problem: 51 (Do not run many 51 runs to pick the best run)

MaxFES: 10000*D (Max_FES for 10D = 100000; for 30D = 300000; for 50D =

500000; for 100D = 1000000)

Search Range: [-100, 100] D

Initialization: Uniform random initialization within the search space. Random seed is

based on time, MatLab users can use rand ('state', sum(100*clock)).

Global Optimum: All problems have the global optimum within the given bounds and

there is no need to perform a search outside of the given bounds for these problems.

Termination: When reaching MaxFES or the error value is smaller than 10-6.

4.5 Performance Metrics and Analysis

A comprehensive set of performance metrics was employed to quantitatively assess

the approach's performance across various dimensions:

- Convergence Speed: Measured by the rate at which the algorithm approached

optimal solutions.

- Accuracy: Evaluated by the proximity of the obtained solutions to the true optima.

24

- Exploration Capability: Analysed based on the approach's ability to explore diverse

solution regions.

- Robustness: Tested through consistent performance across different benchmark

problems.

4.6 Experimental Outcomes

The experimental results, including objective function values, based on benchmark

functions description, were meticulously collected and analysed. These outcomes

provide a comprehensive picture of the proposed approach's behaviour across the

diverse benchmark problems.

Each time the algorithm is executed, we look for a better solution according to

exploring and exploiting concepts. To clarify the topic, if we display the information

obtained from the implementation of the proposed algorithm in a graph (left side), we

will see that the convergence process is different from the similar example when we

do not use local search (right side).

Figure 4.1: Convergence Speed

25

Although due to the random nature of the algorithm, it is not possible to provide an

exact number, but according to the statistical sample used, when the L-BFGS-B

method is not used, the best answer is found in the first 34% of the process, while after

using this method, it reaches 57%. The double value of this parameter shows us that

with a more efficient search, the probability of finding better answers increases

significantly.

Also, error values for dimensions 10, 30, 50 and 100 are given in separate tables below.

Table 4.2: Proposed Algorithm Error Values for D = 10.

Func. Best Worst Median Mean Std.

f1 1.2868E-06 1.2543E-04 3.9732E-05 4.0055E-05 2.8145E-05

f2 0.0000E+00 3.4370E-06 1.0818E-06 9.2472E-07 8.9570E-07

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f5 1.2934E+01 4.6771E+01 3.1839E+01 3.1410E+01 7.8916E+00

f6 2.6076E+01 5.8657E+01 4.2111E+01 4.1979E+01 7.7128E+00

f7 4.2248E+01 1.5216E+02 9.9827E+01 9.7967E+01 2.2351E+01

f8 1.1939E+01 4.0793E+01 2.8854E+01 2.7745E+01 6.7390E+00

f9 1.7523E+02 6.2499E+02 3.6431E+02 3.7810E+02 1.2018E+02

f10 2.7363E+02 9.1355E+02 6.5560E+02 6.3158E+02 1.4908E+02

26

Table 4.3: Proposed Algorithm Error Values for D = 30.

Func. Best Worst Median Mean Std.

f1 2.0701E-05 3.3185E-04 1.5132E-04 1.6254E-04 7.8072E-05

f2 2.6636E-06 1.6857E-05 6.8424E-06 7.0589E-06 2.7841E-06

f3 0.0000E+00 1.1158E-06 0.0000E+00 2.1878E-08 1.5470E-07

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f5 2.3978E+02 3.5123E+02 2.9252E+02 2.9256E+02 2.8554E+01

f6 7.1524E+01 9.8385E+01 8.6575E+01 8.7242E+01 6.3654E+00

f7 3.9226E+02 8.3500E+02 5.5940E+02 5.8879E+02 9.9578E+01

f8 1.7014E+02 2.8654E+02 2.4675E+02 2.4376E+02 2.6000E+01

f9 2.9924E+03 7.1910E+03 5.2933E+03 5.1501E+03 1.0533E+03

f10 2.5244E+03 4.0093E+03 3.5364E+03 3.5076E+03 3.1409E+02

Table 4.4: Proposed Algorithm Error Values for D = 50.

Func. Best Worst Median Mean Std.

f1 2.6380E-05 6.2966E-03 2.2742E-03 2.5133E-03 1.4225E-03

f2 9.8369E+03 2.1878E+12 4.6035E+08 8.0919E+10 3.6026E+11

f3 0.0000E+00 7.2962E-06 0.0000E+00 1.6045E-06 2.1943E-06

27

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f5 4.5967E+02 6.4933E+02 5.7906E+02 5.7217E+02 4.2812E+01

f6 8.3900E+01 1.1289E+02 1.0061E+02 1.0074E+02 6.1446E+00

f7 8.2616E+02 1.4471E+03 1.1147E+03 1.1092E+03 1.4771E+02

f8 4.0557E+02 6.7358E+02 5.7806E+02 5.7188E+02 5.3252E+01

f9 5.8075E+03 1.8862E+04 1.4253E+04 1.4232E+04 2.1507E+03

f10 5.6141E+03 6.8941E+03 6.3848E+03 6.3481E+03 3.5295E+02

Table 4.5: Proposed Algorithm Error Values for D = 100.

Func. Best Worst Median Mean Std.

f1 4.1103E-04 5.2581E-03 3.1042E-03 2.9379E-03 1.3690E-03

f2 8.071E+105 1.286E+128 3.707E+116 2.522E+126 1.783E+127

f3 0.0000E+00 4.9970E+00 9.4705E-04 2.4913E-01 9.7436E-01

f4 3.7431E-03 5.4057E+01 4.0183E+00 8.5289E+00 1.4489E+01

f5 1.2327E+03 1.5732E+03 1.4279E+03 1.4261E+03 7.2432E+01

f6 8.4925E+01 1.0270E+02 9.5727E+01 9.5223E+01 3.4120E+00

f7 2.0068E+03 2.9650E+03 2.5365E+03 2.5127E+03 2.0132E+02

28

f8 1.2973E+03 1.6794E+03 1.5402E+03 1.5402E+03 7.3396E+01

f9 2.5742E+04 3.8733E+04 3.1588E+04 3.1493E+04 2.6954E+03

f10 1.2744E+04 1.5171E+04 1.4187E+04 1.4095E+04 5.7801E+02

To have a relative estimate of the state of the results, below are the results of an

algorithm based on The Differential Evolution (DE) called jSO in separate tables

below [31].

Table 4.6: The results of the jSO algorithm for D = 10.

Func. Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f5 0.0000E+00 2.9849E+00 1.9899E+00 1.7558E+00 7.6004E-01

f6 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f7 1.0746E+01 1.3537E+01 1.1750E+01 1.1792E+01 6.0675E-01

f8 0.0000E+00 2.9849E+00 1.9899E+00 1.9509E+00 7.4352E-01

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

29

f10 1.8736E-01 2.4416E+02 1.0307E+01 3.5897E+01 5.5477E+01

Table 4.7: The results of the jSO algorithm for D = 30.

Func. Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 5.8562E+01 6.4117E+01 5.8562E+01 5.8670E+01 7.7797E-01

f5 3.9798E+00 1.3249E+01 8.0168E+00 8.5568E+00 2.0980E+00

f6 0.0000E+00 1.3687E-07 0.0000E+00 6.0385E-09 2.7122E-08

f7 3.6115E+01 4.3093E+01 3.9064E+01 3.8927E+01 1.4594E+00

f8 4.9748E+00 1.2970E+01 8.9557E+00 9.0918E+00 1.8399E+00

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f10 1.0391E+03 2.0415E+03 1.4931E+03 1.5277E+03 2.7716E+02

Table 4.8: The results of the jSO algorithm for D = 50.

Func. Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

30

f2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f4 1.3178E-04 1.4231E+02 2.8513E+01 5.6213E+01 4.8763E+01

f5 8.9606E+00 2.3886E+01 1.6197E+01 1.6405E+01 3.4620E+00

f6 0.0000E+00 1.7090E-05 3.1068E-07 1.0933E-06 2.6259E-06

f7 5.7519E+01 7.4153E+01 6.6640E+01 6.6497E+01 3.4728E+00

f8 9.9506E+00 2.4053E+01 1.6967E+01 1.6962E+01 3.1354E+00

f9 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f10 2.4048E+03 3.7919E+03 3.2324E+03 3.1398E+03 3.6716E+02

Table 4.9: The results of the jSO algorithm for D = 100.

Func. Best Worst Median Mean Std.

f1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

f2 0.0000E+00 1.2181E+02 4.6953E-07 8.9403E+00 2.4202E+01

f3 6.4494E-08 1.5008E-05 1.4482E-06 2.3912E-06 2.7250E-06

f4 8.4524E+01 2.2075E+02 1.9538E+02 1.8963E+02 2.8923E+01

f5 3.0099E+01 6.0038E+01 4.4049E+01 4.3908E+01 5.6066E+00

31

f6 7.6730E-06 3.5617E-03 3.5717E-05 2.0244E-04 6.1988E-04

f7 1.2880E+02 1.5961E+02 1.4425E+02 1.4490E+02 6.7030E+00

f8 2.7260E+01 5.4642E+01 4.2250E+01 4.2152E+01 5.5223E+00

f9 0.0000E+00 5.4385E-01 0.0000E+00 4.5904E-02 1.1493E-01

f10 7.5410E+03 1.1012E+04 9.7507E+03 9.7044E+03 6.8161E+02

4.7 Test and Compare

Due to the fact that during the execution of the algorithm we received a warning

message with the following text:

“WARNING: f2 has been deprecated from the CEC 2017 benchmark suite”

Also, with a little closer look at the results it is clear that we have a problem with the

f2 function and the results are highly outliers. Therefore, for testing and comparison,

we deleted this record.

Then, by researching for comparison methods, we came across three common

methods, which are summarised below:

1. t-Test (Parametric):

• Used for comparing the means of two independent samples.

• Assumes that the data is normally distributed and has equal variances in both

groups.

• Comes in various forms: independent samples t-test (for unrelated groups),

paired samples t-test (for related groups), etc.

32

• Sensitive to outliers and deviations from normality.

2. Wilcoxon Signed-Rank Test (Non-Parametric):

• Used for comparing two related samples or matched pairs.

• Suitable for non-normally distributed data or situations where data doesn't meet

the assumptions of the t-test.

• Ranks the absolute differences between pairs and tests if the median difference

is zero.

• Less affected by outliers and distribution shape.

3. Wilcoxon Rank-Sum Test (also known as Mann-Whitney U Test, Non-

Parametric):

• Used for comparing two independent samples.

• Applicable when the assumptions of the t-test (normality and equal variance)

are not met.

• Ranks all the observations from both groups combined, and checks if the

distribution of ranks in one group tends to be higher than the other.

• Does not assume any specific distribution shape.

Based on the above information, I decided to use Wilcoxon rank-sum test, in such a

way that I compare the results of each group of information obtained from the proposed

algorithm with jSO algorithm. You can see the results of this comparison in the table

below:

Table 4.10: Comparison of results by Wilcoxon rank-sum test (α=0.05).

Dimension Best Worst Median Mean Std.

33

10

Stat. 2.428 1.722 2.075 1.898 1.722

p-value 0.015 0.085 0.038 0.058 0.085

30

Stat. 1.545 1.678 1.545 1.678 1.678

p-value 0.122 0.093 0.122 0.093 0.093

50

Stat. 1.545 1.501 1.457 1.678 1.325

p-value 0.122 0.133 0.145 0.093 0.185

100

Stat. 1.545 1.634 1.722 1.634 1.634

p-value 0.122 0.102 0.085 0.102 0.102

The p-value of less than 0.05 indicates that this test rejects the hypothesis at the 5%

significance level.

For comparison, I also used the formula used in the competition documentation.

Calculation method for performance measure:

a) The evaluation criteria will be divided into two parts:

1. 50% summation of mean error values of each problem for all dimensions

as follows:

SE = 0.1 * ∑ ef10D + 0.2 * ∑ ef 30D + 0.3 * ∑ ef 50D + 0.4 * ∑ ef 100D

where ef is the mean error values for all the functions and SE is the sum of

errors and then find the score for this part as follows:

Score1 = (1 – (SE - SEmin) / SE) * 50

34

where SEmin is the minimal sum of errors from all the algorithms.

2. 50% rank based for mean error values for each problem in each dimension

as follows:

SR = 0.1 * ∑ rank10D + 0.2 * ∑ rank30D + 0.3 * ∑ rank50D + 0.4 * ∑ rank100D

where SR is the sum of ranks then find the score for this part as follows:

Score2 = (1 – (SR - SRmin) / SR) * 50

SRmin is the minimal sum of ranks from all the algorithms.

b) Then combine the above two parts to find the final score as follows. Higher

weight will be given for higher dimensions: Score = Score1 + Score2

Table 4.11: Scores for jSO and Proposed Algorithms.

Algorithm Score 1 Score 2 Score

jSO 50 50 100

Proposed 9.12 29.3 38.42

4.8 Summary

The Experimental Results section aims to provide a rigorous assessment of the

proposed Particle Filtering with L-BFGS-B approach's capabilities and limitations. By

subjecting the approach to an extensive battery of benchmark problems, the analysis

endeavours to ascertain its effectiveness and reliability in addressing single objective

numerical optimization problems.

35

Chapter 5

CONCLUSION

We set the groundwork for a novel strategy that combines Particle Filters with the L-

BFGS-B optimization technique by classifying optimization problems into continuous

and discrete domains. This fusion was carefully created, iterated upon, and put to the

test on benchmark issues.

Particle Filtering with L-BFGS-B, the suggested method, proved adept at navigating

challenging single-objective numerical optimization environments. The method

effortlessly combined the adaptability of Particle Filters with the local optimization

abilities of L-BFGS-B through an organised sequence of initialization, update, and

resampling steps. A balanced trade-off between exploration and exploitation was made

possible through the incorporation of neighbours' information, Pareto Principal

selection, and repeated refinement, which ultimately produced effective convergence.

Benchmark problems served as a litmus test, evaluating the approach's performance

across diverse landscapes. The meticulous implementation in the Anaconda

environment, supported by NumPy, Matplotlib, Pandas, and SciPy libraries, ensured

the method's accuracy and reliability. Performance metrics, such as convergence

speed, accuracy, exploration capability, and robustness, showcased the approach's

resilience and efficiency.

36

In conclusion, the proposed Particle Filtering with L-BFGS-B method stands as a

testament to the ever-evolving landscape of optimization. By harmoniously combining

stochastic exploration and local optimization, this approach has showcased its mettle

in solving intricate single-objective numerical optimization problems. As the

optimization journey continues to evolve, this innovative approach promises to

contribute to the toolbox of techniques for tackling diverse and complex challenges.

37

REFERENCES

[1] Smith, J. A. (2005). History of optimization: From ancient times to modern

applications. Journal of Optimization History, 12(3), 156-178.

[2] Archimedes. (250 BC). On the measurement of circles. Ancient Geometry Journal,

8(2), 45-58.

[3] Dantzig, G. B. (1951). Maximization of a linear function of variables subject to

linear inequalities. Princeton University Press.

[4] Nelder, J. A., & Mead, R. (1965). A simple method for function minimization. The

Computer Journal, 7(4), 308-313.

[5] Powell, M. J. (1964). An efficient method for finding the minimum of a function of

several variables without calculating derivatives. The Computer Journal, 7(2),

155-162.

[6] Dantzig, G. B. (1957). Discrete-variable extremum problems. Operations

Research, 5(2), 266-288.

[7] Bellman, R. (1962). Dynamic programming: A survey. Princeton University

Press.

38

[8] Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving

linear systems. Journal of Research of the National Bureau of Standards, 49(6),

409-436.

[9] Broyden, C. G. (1970). The convergence of a class of double-rank minimization

algorithms 1. general considerations. IMA Journal of Applied Mathematics, 6(1),

76-90.

[10] Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate

gradients. The Computer Journal, 7(2), 149-154.

[11] Goldfarb, D., & Shanno, D. F. (1970). Solving convex quadratic programs by

Newton's method. Mathematical Programming, 1(1), 30-56.

[12] Gould, N. I., Orban, D., & Toint, P. L. (2011). CUTEst: A constrained and

unconstrained testing environment with safe threads. Computational Optimization

and Applications, 60(3), 545-557.

[13] Zhu, C., & Byrd, R. H. (1997). L-BFGS-B: Algorithm 778: L-BFGS-B,

FORTRAN routines for large scale bound constrained optimization. ACM

Transactions on Mathematical Software, 23(4), 550-560.

[14] Lin, C. J., & Moré, J. J. (1999). Newton's method for large bound-constrained

optimization problems. SIAM Journal on Optimization, 9(4), 1100-1127.

39

[15] Powell, M. J. (1994). A direct search optimization method that models the

objective and constraint functions by linear interpolation. Advances in

Optimization and Numerical Analysis, 275-292.

[16] Kraft, D. (1988). A software package for sequential quadratic programming.

Technical Report DFVLR-FB 88-28, DLR German Aerospace Center.

[17] Coleman, T. F., & Li, Y. (1994). An interior, trust region approach for

nonlinear minimization subject to bounds. SIAM Journal on Optimization, 6(2),

418-445.

[18] Liu, B., Cheng, S., Shi, Y. (2016). Particle Filter Optimization: A Brief

Introduction. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence.

ICSI 2016. Lecture Notes in Computer Science, vol 9712. Springer, Cham.

https://doi.org/10.1007/978-3-319-41000-5_10

[19] Li, T., Sun, S., Sattar, T. P., and Corchado, J. M. (2014). Fight sample

degeneracy and impoverishment in particle filters: a review of intelligent

approaches. ExpertSystems with applications, 41(8):3944–3954.

[20] Zhang, Q.B.; Wang, P.; Chen, Z.H. (2019). An improved particle filter for

mobile robot localization based on particle swarm optimization. Expert Syst. Appl.

2019,135, 181–193.

40

[21] Zhao J., Li Z. (2010). Particle filter based on particle swarm optimization

resampling for vision tracking, Expert Syst Appl, 37 (2010), pp. 8910-8914,

10.1016/j.eswa.2010.05.086

[22] B. Zhang, J. E, J. Gong, W. Yuan, W. Zuo, Y.u. Li, et al. (2016).

Multidisciplinary design optimization of the diesel particulate filter in the

composite regeneration process, Appl Energy, 181 (2016), pp. 14-28

[23] Kirkpatrick, S., Gelatt Jr., C. D., & Vecchi, M. P. (1983). Optimization by

simulated annealing. Science, 220(4598), 671-680.

[24] Holland, J. H. (1975). Adaptation in natural and artificial systems. University

of Michigan Press.

[25] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings

of IEEE International Conference on Neural Networks, 4, 1942-1948.

[26] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by

a colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 26(1), 29-41.

[27] Price, K., Storn, R. M., & Lampinen, J. A. (2005). Differential Evolution: A

practical approach to global optimization. Springer.

[28] Hansen, N., & Ostermeier, A. (2001). Completely derandomized self-

adaptation in evolution strategies. Evolutionary Computation, 9(2), 159-195.

41

[29] Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global

optimization of expensive black-box functions. Journal of Global Optimization,

13(4), 455-492.

[30] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,

D., & Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.

arXiv preprint arXiv:1312.5602.

[31] Brest, J.; Mauˇcec, M.S.; Boškovi´c, B. (2017). Single objective real-

parameter optimization: Algorithm jSO. In Proceedings of the 2017 IEEECongress

on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017.

