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ABSTRACT 

This thesis addresses the pivotal challenge of predicting the SUV involved pedestrian 

crash severity and proposes improvements to existing methodologies, underscoring the 

substantial threat posed by such incidents. Utilizing a comprehensive dataset spanning 

five years from the state of Pennsylvania, USA, the study acknowledges and addresses 

the challenge of class imbalance through the application of the Synthetic Minority 

Oversampling Technique (SMOTE) for data augmentation. Methodologically, diverse 

artificial neural network (ANN) architectures are explored, with meticulous evaluation 

through K-fold cross-validation to ensure the robustness of the model. 

Descriptive statistics and correlation analyses are employed to investigate crash 

characteristics and inter-variable relationships. The outcomes underscore the efficacy 

of SMOTE in improving predictive accuracy. Beyond its primary predictive 

contributions, this research offers nuanced insights into factors impacting model 

efficacy. By addressing prevailing limitations and introducing an innovative approach 

to handling class imbalances, our research informs the development of interventions 

to enhance road safety. The findings carry crucial implications for policy and practice, 

with the ultimate goal of reducing pedestrian accidents and mitigating their severity. 

Keywords: pedestrian crash severity, road safety, artificial neural networks, SMOTE.
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ÖZ 

Bu tez, SUV kaynaklı yaya kazası ciddiyetini tahmin etme konusundaki temel zorluğu 

ele almakta ve bu tür olayların oluşturduğu önemli tehdidin altını çizerek mevcut 

metodolojilerde iyileştirmeler önermektedir. USA’nin Pennsylvania eyaletinden beş 

yılı kapsayan kapsamlı bir veri setini kullanan çalışma, veri artırma için Sentetik 

Azınlık Aşırı Örnekleme Tekniğinin (SMOTE) uygulanması yoluyla sınıf dengesizliği 

sorununu kabul ediyor ve ele alıyor. Metodolojik olarak, modelin sağlamlığını 

sağlamak için K-fold çapraz doğrulaması yoluyla titiz bir değerlendirme yapılarak 

çeşitli yapay sinir ağı (YSA) mimarileri araştırılmaktadır. 

Tanımlayıcı istatistikler ve korelasyon analizleri, çarpışma özelliklerini ve değişkenler 

arası ilişkileri araştırmak için kullanılır. Sonuçlar, SMOTE'un tahmin doğruluğunu 

artırmadaki etkinliğini vurgulamaktadır. Bu araştırma, birincil öngörü katkılarının 

ötesinde, model etkinliğini etkileyen faktörlere ilişkin incelikli bilgiler sunmaktadır. 

Araştırmamız, mevcut kısıtlamaları ele alarak ve sınıf dengesizliğini ortadan 

kaldırmak için yenilikçi bir yaklaşım sunarak, karayolu güvenliğini artırmaya yönelik 

müdahalelerin geliştirilmesine bilgi sağlamaktadır. Bulgular, yaya kazalarının 

azaltılması ve ciddiyetinin hafifletilmesi nihai hedefiyle politika ve uygulama 

açısından önemli çıkarımlar taşıyor. 

Anahtar Kelimeler: yaya çarpma şiddeti, yol güvenliği, yapay sinir ağları, SMOTE.
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Chapter 1 

INTRODUCTION 

1.1 Background and significance of the study 

According to the Fatality Analysis Reporting System (FARS) of U.S. Department of 

Transportation, traffic crashes are the leading cause of death for people aged 4 to 7 and 

16 to 20. In 2021, motor vehicle traffic collisions were the biggest cause of death for 

ages 4 through 8, 17 through 19, and 21 [1]. There are numerous factors causing this 

high rate of accident fatalities. Many traffic crashes are caused by reckless driving 

behaviors such as speeding, distracted driving, and driving under the influence of drugs 

or alcohol. Globally, vehicle ownership has increased substantially throughout the 

years. This increase contributes to traffic congestion, particularly in densely populated 

areas or during peak commute hours resulting in an increase in traffic crashes. 

According to the National Highway Traffic Safety Administration (NHTSA), there 

were 6516 pedestrians killed in traffic crashes in 2020, highest since 1990 and a 3.9% 

rise over 2019. In 2020, a pedestrian died every 81 minutes, accounting for 17% of all 

traffic fatalities on America’s roadways. 

Pedestrians, considered the most vulnerable road users (VRUs), face this vulnerability 

due to their lack of protection compared to motorized vehicles. The kinetic forces 

produced by various types of vehicles can have a considerable impact on the severity 

of pedestrian injuries when traffic crashes occur. It is important to understand that the 

severity of a car accident is determined by factors other than the physical forces 
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involved. Other factors that influence the outcome of a collision include the location 

of the impact, the use of safety measures, and the design of the vehicles. The type of 

vehicle is a key component that will be explored throughout this research. Larger and 

heavier vehicles, such as trucks or SUVs, generate larger kinetic forces due to their 

mass, which significantly influences their momentum. The design of the vehicle's front 

end also influences the severity of pedestrian injuries. Higher bumpers or hoods are 

more likely to contact pedestrians at a higher position on their bodies, resulting in more 

severe head or upper body injuries [2]. As a result, identifying the characteristics of 

such accidents and working towards reducing casualties are deemed critical. Studies 

on collisions involving Vulnerable Road Users (VRUs) play a significant role in traffic 

crash research, addressing important aspects of road safety.  

Previous studies have addressed various aspects of this matter. Different analytical 

methods were employed for investigating the factors influencing the pedestrian 

crashes, which include environmental variables, behavioral characteristics, and road 

design. Lee and Abdel-Aty (2005) studied vehicle-pedestrian collisions in Florida, and 

found that pedestrian and driver characteristics, vehicle size, and environmental 

conditions all contribute to severe injuries. Kim et al. (2008) investigated single-

vehicle single-pedestrian collisions in North Carolina, finding that parameters such as 

the age of the pedestrians, male drivers, two-way roads, overspeed, dark-lighted 

conditions, and commercial areas increase the probability of fatal pedestrian-involved 

crash. Abdul-Aziz et al. (2013) studied pedestrian-vehicle crashes in New York, 

finding that roadway features, traffic attributes, and land-use features contribute to 

severe injuries. Research has shown that factors such as pedestrians over 65 years old, 

not wearing contrasting clothing, adult drivers, the summer season, time of day, 

multilane highways, darkness, and collisions with pickup trucks increase pedestrian 
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injury severity. Vehicle type, drivers under the influence of alcohol and elderly 

pedestrians, dark lighting conditions, the presence of intersections without traffic 

lights or the absence of pedestrian crossings, and sport utility vehicles (SUVs) and 

vans contribute significantly to injury severity in urban areas. These studies highlight 

the unique factors that contribute to the severity of pedestrian injuries.  

Crash prediction tools are critical techniques in transportation safety because they 

allow us to analyze historical crash data and identify factors associated with increased 

crash risk. Crash prediction models can range from simple regression models to more 

complex models using machine learning. These models usually include a variety of 

variables, such as driver characteristics, roadway features, and environmental factors. 

By examining these variables in relation to crash outcomes, researchers can find 

patterns and correlations that might not be immediately clear. Transportation planners 

and politicians may develop strategies and measures to lower the chance of crashes 

and improve overall safety on our roads by recognizing these risk variables. 

Most traffic safety programs have aimed at reducing the frequency of pedestrian-

vehicle collisions, but only a few of these programs have focused specifically on 

reducing the risk posed to pedestrians by large and heavier vehicles. In this research, 

the focus is on investigating the impact of sport utility vehicles (SUVs) on pedestrians. 

The study aims to analyze both environmental factors and human behaviors to 

understand their influence on the severity of pedestrian crashes. The research will 

employ a machine-learning model to analyze relevant data, allowing for a 

comprehensive examination of the topic. The study intends to provide insights into the 

factors influencing SUV-related pedestrian crashes and contribute to the development 

of effective strategies for prevention and mitigation. 
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With new vehicle designs and characteristics, it is necessary to investigate their 

potential impact on pedestrian crash severity. The effectiveness and limitations of 

these new designs in preventing severe pedestrian crashes can be assessed through 

research, as well as potential challenges and opportunities for their implementation. 

Besides that, using complex modeling and simulation techniques, researchers can 

better understand the dynamics of pedestrian crashes and predict the severity of such 

crashes. The development of advanced models that incorporate various variables, such 

as the interaction between vehicles and pedestrians, human behaviour, and 

environmental factors, can provide an understanding of crash severity patterns and 

potentially facilitate effective safety interventions. 

1.2 Research objectives 

This study aims to investigate pedestrians’ crash severity with SUVs. The analysis was 

conducted in a certain geographical area and over a specified period. Crash data from 

three counties in Pennsylvania provided by the PennDOT Portal was used [3]. An 

artificial neural network model is employed to investigate the factors influencing the 

severity of pedestrian injuries. Crash severity levels are separated in order to determine 

which one is most frequently caused by SUVs. A prediction model was also developed 

to predict the severity of pedestrian injuries. 

This knowledge is essential to providing evidence-based recommendations to 

politicians, including both politicians and technical experts, by investigating the 

factors that contribute to these crashes and their consequences and implementing 

stricter safety rules, enforcement measures, and public awareness campaigns. This 

research has the potential to influence vehicle design, driver training, pedestrian 

infrastructure, and resource allocation policies to address pedestrian safety problems. 
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1.3 Research methodology 

The fundamental goal of this research was to create an ANN-based model for traffic 

crash analysis with an emphasis on accurate prediction of crash injury severity as well 

as the identification of significant contributing elements. A complete dataset 

containing numerous criteria, such as road conditions, road characteristics, driver 

behaviors, and vehicle types, was collected from the PennDOT portal. This dataset 

was fed to the ANN model, which was subjected to training in order to learn the 

complicated patterns and correlations between these variables and crash occurrences. 

The program would precisely estimate the possibility of crashes in various settings by 

employing machine learning techniques. Furthermore, the ANN model would identify 

the important contributing elements that have a substantial impact on the occurrence 

of crashes. 

1.3.1 Data collection 

Many sources offer valuable details on crash locations, categories, causes, and 

repercussions, assisting in the development of evidence-based policies and initiatives. 

One of the most important sources is data from government organizations. The 

information is gained through police department reports, insurance company 

databases, and hospital records. These resources include detailed information about 

injuries, treatment, and healthcare costs. Details regarding the severity, treatment, and 

public health consequences are recorded in hospital records. Insurance claims contain 

information about crash causes, car damage, and injury complaints, but they may not 

cover all occurrences because of private settlements or the failure of policyholders to 

file claims. Another source is a fully accessible database; most of them are developed 

with government funding and are freely accessible to the public. Access to these 
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databases is possible via specialized websites or web services that provide search and 

discovery interfaces. 

Many countries have established centralized databases to collect and store road crash 

data. These databases contain information from police reports, insurance claims, and 

other sources and provide data on crash characteristics, weather, and road hazards. 

Moreover, national or regional databases specifically dedicated to recording road crash 

fatalities are vital for understanding traffic crash mortality rates, identifying high-risk 

groups, and evaluating road safety interventions.  

Intelligent Transportation Systems (ITS) are currently one of the most essential 

sources. Massive volumes of data are collected by GPS information via on-board 

electronic equipment (OBEs). Closed-circuit television cameras (CCTV) are another 

widespread technology that captures real-time information on traffic conditions and 

incidents. 

1.3.2 Data preparation 

Historical crash data was collected from the Pennsylvania department of transportation 

that covered the period 2017-2021. Preprocessing is the initial stage of preparing data 

for analysis. The goal of preprocessing is to remove any inconsistencies, missing 

values, or outliers from the data. This also includes changing the data into an analysis-

ready format, such as normalizing or scaling the data. The next critical step in 

preparing the data for analysis is data normalization. It contributes to the elimination 

of any biases that may occur as a result of the various scales of distinct features. We 

ensure that the selected features contribute equally to the model's training process by 

scaling them, resulting in more accurate and dependable predictions.  
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The final stage in data preparation is to divide the preprocessed data into training, 

validation, and testing sets so that the performance of the ANN model developed can 

be evaluated. This is an important phase in machine learning since it allows us to 

determine how effectively the model generalizes to new data. The training set is used 

to train the model, the validation set is used to tune hyperparameters and pick the best 

model, and the testing set is used for evaluating the model's final performance. 

1.3.3 Model development 

Data-driven methodologies have gained popularity in crash analysis due to their 

advantages over traditional models. These methods do not necessitate apriori 

parametric presumptions, which may or may not be required in real-world settings. 

They can discover relationships and trends based on data without making 

predetermined assumptions, and they can handle complex and non-linear interactions 

between factors that standard statistical models may have difficulty with. For smaller 

datasets, statistical techniques are preferred. Traditional statistical methods do well at 

predicting parameters and evaluating hypotheses, allowing for a higher level of trust 

in drawing connections between variables[4].  

One complaint levelled at machine learning techniques is the difficulty in determining 

causality. Machine learning models frequently deal with a huge number of 

characteristics or variables, and predicted accuracy is prioritized over interpretability. 

While these models can find predicted associations due to the complexity of some 

machine learning algorithms, determining the specific causal elements leading to the 

predictions can be complicated [5]. 

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that focuses on the 

creation of algorithms and models that can learn from data and make predictions or 
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perform actions without being manually programmed. The goal of ML is to allow 

computers to learn and develop from experience in the same way that humans learn 

and improve over time. These algorithms evaluate and identify patterns and 

relationships in massive volumes of data. ML algorithms can generate predictions, spot 

patterns, classify or cluster data, and uncover insights that are not immediately evident 

to people by processing and learning from this data. 

Artificial Neural Networks (ANN): 

Artificial neural networks (ANNs) are advanced systems that can process information 

in an accelerated and decentralized fashion [6]. They can calculate the relationship 

between dependent and independent variables and estimate nonlinear models. These 

networks operate using error backpropagation with the purpose of minimizing the 

variance between the output of the network and the desired output. The goal of 

continuously altering the model's parameters is to get a low error and increase the 

model's accuracy. An artificial neural network is a computer framework that is roughly 

based on biological neural networks [7]. It is composed of neurons that communicate 

with each other through weighted connections. Each neuron is represented by a real 

variable, and the connections between neurons are quantified by a parameter called 

weight. There are three layers in the network: the input layer, the hidden layer, and the 

output layer, as shown in Figure 1.  

The input layer is given crash-related features or variables, such as weather, roadway 

type, vehicle characteristics, and so on. Each characteristic is represented by its own 

input node. The feature values are transmitted from the input nodes to the hidden 

layers, where the actual calculation takes place. Hidden layers, which comprise several 

nodes, conduct computations on the input data, using weights and biases to generate 
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final results. These final outcomes are then processed by an activation function, which 

adds nonlinearity to the network and assists in the capture of complicated connections. 

The output layer represents the final crash severity predictions or classifications. Each 

node in the output layer represents a different level of severity, such as minor, 

moderate, or major. The type of problem at hand determines the activation function 

employed in the output layer. The output values reflect the model's estimated 

probabilities according to each severity level. 

 

Figure 1: Structure of a typical ANN 

The following two operations: weighted sum and activation function, are used in 

calculating a layer's output (Fig. 2). 

[1] Each neuron in a layer receives input from the preceding layer, which is then 

multiplied by weights. The weighted sum is computed by adding the products of the 

input values and their weights. Mathematically, for a neuron in layer k, the weighted 

sum (yk) is calculated in equation (1) as: 

𝑦 𝑘 =  (𝑤1𝑘  ∗  𝑥1)  + (𝑤2𝑘  ∗  𝑥2) + . . . + (𝑤𝑛𝑘  ∗  𝑥𝑛)  +  𝜃              (1) 

Or,    𝑦 𝑘  = ∑ 𝑤𝑗𝑘𝑥𝑗𝑗 + 𝜃𝑘  (for layer k)                                   (2) 
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The weights define the degree of significance of each input in the overall algorithm. 

In order to reduce the error between expected and actual results, they are learned and 

modified throughout the training phase. 

[2] Following the calculation of the weighted sum, an activation function is used 

to implement non-linearity and decide the neuron's output. The weighted total is fed 

into the activation function, which provides the final output value (Eq. (3)). This 

process increases the neural network's adaptability, allowing it to simulate complicated 

correlations and detect non-linear tendencies in data. 

𝑧 𝑘 =  𝑓𝑘( ∑𝑤𝑗𝑘 𝑥 +  𝜃𝑗)                                        (3) 

Depending on the analysis objectives, various activation methods can be used. The 

sigmoid function, ReLU, and Softmax are examples of frequently utilized activation 

functions [8]. 

 

Figure 2: Structure of a neuron cell 

Multilayer perceptron (MLP) neural networks: 

Multilayer Perceptron networks are a prominent type of neural network that is used for 

a variety of applications, such as classification, regression, and recognition of patterns. 

MLP models are based on the mathematical development of Rosenblatt's perceptron 

theory from the 1950s [9]. They fall under the category of feedforward algorithms 
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because the inputs are merged with the initial weights in a summation function, and 

applied to the activation function. Each layer feeds the results of its computation to the 

next, and this continues through the hidden layers into the output layer. 

Back propagation is a method of learning that enables the MLP to systematically alter 

the network's weights in order to minimize the cost function. Back propagation must 

meet one strict criterion in order to function effectively. The function that mixes inputs 

and weights, the weighted sum, and the threshold function must be differentiable [10]. 

The following are typical steps in the training process: forward propagation, cost 

function calculation, backward propagation, and weights and biases update. Once the 

weighted sums are sent down all layers in every loop, the gradient of the Mean Squared 

Error (MSE) is calculated for all input and output units. The weights of the initial 

hidden layer are then modified with the gradient value in order to transmit it back. That 

represents the way the weights are transported back to the neural network's beginning. 

This process is repeated until a convergence criterion for each unit is reached. The 

number of hidden layers, the learning rate, the activation function, and the 

regularization parameters are all hyperparameters that must be adjusted before 

training. Making the right choice of these hyperparameters can have a considerable 

impact on network performance. 

Review on SMOTE with ANN model: 

Several studies have showed the efficiency of integrating SMOTE into ANN models. 

These studies have consistently demonstrated improvements in model performance in 

terms of accuracy, memory, F1-score, and AUC-ROC, which will be demonstrated in 

this research. Islam, Z. et al. (2021) used and compared three techniques: variational 

autoencoder (VAE), SMOTE, and ADASYN. Crash prediction models based on 
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logical regression, support vector machines, and artificial neural networks were used 

to compare the generated data of different oversampling techniques. 

The Synthetic Minority Oversampling TEchnique was introduced by Chawla et al. 

(2002) as a method for oversampling minority classes by producing synthetic data 

along the boundary portions linking related examples. This method alleviates class 

imbalance by increasing the diversity of the training data and balancing the class 

distribution. Class imbalance is a prevalent problem in many machine learning 

applications, in which one class vastly outweighs the others. This imbalance may cause 

erroneous predictions and a poor model performance. SMOTE, a popular resampling 

technique, generates computer-generated data that equalizes the class distribution and 

enhances the model's capacity to spot minority class tendencies. 

Many studies have investigated the use of SMOTE and ANN models in conjunction 

to address class imbalances [11]. The structure of the ANN, extent of complexity of 

the dataset, and evaluation measures employed in these experiments differ. Common 

findings include increased minority class recognition, improved generalization 

performance, and reduced overfitting. Elamrani Abou Elassad, Z., Mousannif, H., & 

Al Moatassime, H. (2020) have created two refined models for crash prediction using 

the well-known machine learning techniques of Support Vector Machine (SVM) and 

neural network Multilayer Perceptron (MLP). To manage the imbalanced datasets, 

SMOTE was used to balance the training sets. Abou Elassad, Z. E., Mousannif, H., & 

Al Moatassime, H. (2020) employed resampling-based programs, including Bayesian 

learners (BL), k-nearest neighbors (kNN), support vector machines (SVM), and 

multilayer perceptron (MLP) to introduce diversity among models. To ensure that the 

proposed framework provides accurate and stable decisions, an imbalanced learning 
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method using synthetic minority oversampling techniques (SMOTE) was adopted to 

address the problem of class imbalance, as collisions usually occur in rare cases. 

Proper selection of SMOTE parameters (e.g., synthetic sample numbers and balance 

ratios) is essential to avoid overfitting or underfitting. Synthetic samples introduced 

by SMOTE may include noise that may affect model performance. Careful data pre-

processing and adjustment are necessary. Synthetic sample generation can increase 

computational complexity, especially for larger datasets. 

1.3.4 Activation functions 

Activation functions are critical in defining the output of a neuron because they 

evaluate whether the neuron needs to be active depending on the weighted sum of its 

inputs. They introduce crucial non-linearity into the model to capture complex 

patterns. As a result, we must use an activation function that will render the network 

dynamic and give it the capacity to extract sophisticated and complex insights from 

data. Here are some of the commonly used AFs in ANN: 

 Sigmoid 

The sigmoid function converts the [-∞ ; +∞] input range to an S-shaped curve between 

0 and 1. Sigmoid functions are commonly employed in binary classifications because 

they compress each unit's output into a range of 0 to 1. However, they do face the 

vanishing gradient problem, which makes the network extremely difficult to optimize. 

The Sigmoid activation function (Eq. (4)) is non-linear by nature with a smooth 

derivative, as shown in figure 3. 

𝜎(𝑥) =
1

1+𝑒−𝑥                                                      (4) 
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Figure 3: Plot of the Sigmoid activation function 

 Hyperbolic Tangent (TanH) 

The Hyperbolic Tangent function has a similar structure to the Sigmoid function, 

except it transforms the input into a curve between -1 and 1. This function is often used 

in hidden ANN layers. It solves the sigmoid function's zero-centered issue, but it 

remains afflicted by the vanishing gradient problem. This function is defined in Eq. 

(5): 

tanh(𝑥) =
2

1+𝑒−2𝑥 − 1                                                                                                (5) 

 

 
Figure 4: Plot of the TanH activation function 

 Rectified Linear Unit (ReLU) 

In machine learning, ReLU is one of the most widely utilized activation functions [12]. 

ReLU resets all negative values to zero while leaving positive values unaffected. 

ReLU's popularity is based on its higher training performance when compared to other 
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activation functions such as the logistic and the hyperbolic tangent. This activation 

function is highly computationally effective and contributes to resolving the vanishing 

gradient problem [13]. The challenge of the vanishing gradient emerges when the 

gradients in the backpropagation process become extremely small, causing the weights 

to stop updating effectively. ReLU helps by maintaining a derivative of 1 for positive 

inputs, preventing gradient from vanishing. However, for negative inputs, the gradient 

is 0, leading to dead neurons. To address this issue, variants like Leaky ReLU and 

Parametric ReLU have been introduced [14]. The following is the definition of this 

function (Eq. (6)): 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)                                                                                              (6) 

 

Figure 5: Plot of the ReLU activation function 

 Softmax 

The Softmax function is often employed in the output layer of a multi-class 

classification ANN. It consists of several sigmoid functions. It takes a vector of real 

values as input and turns it into a probability distribution with the total of all 

probabilities equal to one. The function returns the probability for each data point that 

can be expressed as follows (Eq. (7)): 
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𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

                                                      (7) 

Where,  

𝑧 = input vector 

𝑒𝑧𝑖 = standard exponential function for input vector 

𝑘 = number of subclasses in the multi-class predictor 

𝑒𝑧𝑗 = standard exponential function for output vector 

1.3.5 Model Evaluation and Validation 

The purpose of building a prediction model is to accurately predict data that has never 

been observed before. The approach to model training in machine learning entails 

exposing the model to a training dataset in order to learn the basic patterns and 

correlations between the independent features and the target variable. Once properly 

trained, the model should be able to make accurate predictions on new data that has an 

identical distribution as the training dataset. To evaluate a model's performance, 

several crucial evaluation measures are frequently employed. One of the key metrics 

is accuracy, which evaluates the proportion of accurately identified cases compared to 

the total number of cases. However, accuracy alone is not enough to evaluate the 

model's performance, particularly in unbalanced data sets where one class dominates 

the others. Other metrics, like precision, recall, and F1 score are used to overcome the 

constraints of accuracy. Precision expresses the model's ability to prevent false 

positives by measuring the fraction of real positive predictions over the total projected 

positives. Recall computes the proportion of true positives among all positive cases, 

emphasizing the model's capacity to recognize all positive situations. The F1 score 

includes precision and recall, resulting in a comprehensive metric that takes both false 

positives and false negatives into account. Evaluation criteria such as macro-average 

precision, recall, F1 score, cross-entropy loss, and confusion matrix are utilized for 
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multi-class classification. The macro-average computes metrics separately for every 

class before calculating the average. The confusion matrix, on the other hand, is a 

tabular summary of what the model predicts in comparison to the actual classes. 

 Confusion matrix 

A confusion matrix is frequently used to assess the effectiveness of classification 

models, which are designed to predict a categorical class for each input. It is a two-

dimensional matrix in which the rows represent the actual values and the columns 

represent the predicted values, along with the sum of the predictions. As illustrated in 

Figure 6, the matrix depicts the number of true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN) that resulted from the model. 

 

Figure 6: Representation of the confusion matrix 

 Accuracy 

Accuracy is a regularly used metric for assessing classification models, and it reflects 

the proportion of successfully categorized cases (including TP and TN) compared to 

the total number of cases in the data. It is presented as a percentage, and higher 

accuracy often represents improved model performance. It is computed as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Note: TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative. 
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 Precision 

Precision is the fraction of true positive predictions divided by the entire number of 

positive predictions made by the model (which includes both TP and FP predictions). 

It evaluates a model's ability to correctly detect positive occurrences. It is calculated 

as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 Recall 

Recall, also known as sensitivity, is an important evaluation statistic used in both 

binary and multi-class classification problems. The percentage of true positive 

predictions divided by the total number of actual cases in the class (which includes 

both TP and FN predictions) is calculated as recall. A high recall score shows that the 

model has a small percentage of false negatives, implying that it can recognize positive 

examples effectively. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 F1 score 

The F1 score is beneficial in situations where both precision and recall are important 

and must be addressed simultaneously. This is especially critical in imbalanced data, 

in which the model can reach high accuracy by picking the majority class while doing 

poorly on the minority class. The F1 score goes from 0 to 1, with 1 indicating exact 

precision and recall and 0 indicating unsatisfactory in precision, recall, or both. It is 

measured as follows: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
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1.4 Contributions 

The central research question that this study aims to address is: How do SUVs 

influence the severity of pedestrian crashes, and what are the significant contributing 

factors to such crash severity? 

This study provides insights into the patterns and correlations between SUV-involved 

pedestrian crashes and their severity by analyzing crash data from Pennsylvania over 

five years. Understanding these factors may assist in the development of targeted 

interventions and policies aimed at lowering the frequency and severity of crashes. 

The creation of a prediction model based on an artificial neural network is an advanced 

approach for predicting crash occurrences. Machine learning techniques allow for a 

more accurate estimation of the likelihood of crashes under various conditions, thereby 

assisting in proactive crash prevention strategies. 

This research has focused on identifying important factors that influence crash 

occurrence and have a practical impact. By identifying the most influential factors, 

transportation authorities can prioritize interventions, better allocate resources to 

address these elements, and mitigate their negative effects. The establishment of ANN-

based crash analysis models not only provides valuable tools for this specific research 

but also prepares the foundations for future research. This approach can apply to 

different regions and periods and contribute to a broader understanding of the 

dynamics and factors of crashes in different contexts. 
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Chapter 2 

LITERATURE REVIEW 

2.1  Overview of traffic crash analysis 

In recent years, the analysis and forecasting of traffic crashes have become major 

concerns for researchers. As a result, it is increasingly interested in developing 

accurate methods for predicting road crashes, with the goal that authorities and 

policymakers can undertake specific strategies and preventive actions to reduce the 

occurrence and severity of crashes. In order to address this issue, academics have been 

investigating numerous methodologies and techniques for predicting traffic crashes. 

Spatial analysis, machine learning, hybrid models, and big data analytics are all 

important tools used to improve crash forecasting. Spatial analysis uses Geographic 

Information Systems (GIS) and spatial statistical techniques to identify high-risk areas 

or crash hotspots. In machine learning algorithms, techniques such as use decision 

trees, random forests, support vector machines, and artificial neural networks are used 

to analyze crash data and develop predictive models. Big data analytics techniques 

such as data mining, machine learning, and natural language processing can uncover 

valuable insights and improve the accuracy of crash predictions. 

Traffic crash analysis is the process of examining and studying traffic crashes to gain 

insights into their causes, contributing factors, and consequences. The analysis 

includes collecting and analyzing various types of crash data, including information 

about vehicles, road conditions, environmental factors, and driver behavior. The 



 

21 

results of traffic crash analysis often include determining the underlying causes of 

crashes, identifying contributing factors, assessing countermeasures, and developing 

preventive measures. Data are collected from various sources, including police reports, 

witness reports, crash reconstruction studies, medical records, and traffic surveillance 

systems. To properly analyze and interpret data, statistical methods, data visualization 

techniques, and machine modeling are used. The ultimate objective is to reduce 

crashes, injuries, and deaths and to develop safer transportation infrastructure for 

everyone. 

2.2  History and evolution of traffic crash analysis 

In the early days of transportation, there was not much formal knowledge about traffic 

crashes and their causes. Crash investigations relied heavily on informal proof, witness 

statements, and police reports. Rather than addressing broader trends or cumulative 

concerns, the emphasis was on determining the immediate cause of an event. 

In the 1980s, road safety audits were launched as a proactive approach to crash 

analysis. The purpose of these audits was to identify possible dangers and make the 

required adjustments. Crash simulation approaches improved as technology advanced. 

To reenact incidents, crash investigators began employing computer simulations, 

mathematical models, and forensic investigations. This enabled investigators to 

examine the order of events, vehicle dynamics, and factors influencing crash severity.  

Traffic crash analysis has evolved as our understanding of transportation safety and 

data collection methods has improved. In the early 20th century, statistical analysis 

played an important role in identifying traffic crashes. Researchers began collecting 

data on crashes, injuries, and fatalities in order to discover trends and patterns. Basic 



 

22 

statistical methods were used to examine crash data and calculate crash rates. The 

availability of large-scale data and progress in data analytics have changed crash 

analysis in recent years. Many countries have created extensive databases to collect 

detailed information on traffic crashes. Furthermore, with the development of 

technology, crash analysis techniques have become more sophisticated. For example, 

machine learning and data mining use data to detect trends and risk factors and develop 

predictive models for crash prevention. 

2.3  Studies related to traffic crash analysis 

2.3.1 Key factors in traffic crash analysis 

 Human behaviors 

Understanding how human behavior interacts with the driving environment could be 

beneficial in determining crash causes and developing effective preventative 

strategies. Driver distraction is one of the most crucial variables to consider. Drivers 

are more likely to be distracted while driving by their phones or other devices. This 

can result in reduced reaction times and a higher risk of collisions. Fatigue and 

drowsiness can also contribute to crashes involving tired drivers who struggle to stay 

attentive and focused on the road. Another significant cause is impaired driving, which 

includes driving while under the influence of drugs or alcohol. This can seriously 

impair a driver's ability to make informed decisions and respond promptly in an 

emergency. 

Another aspect to be considered is the driver characteristics. Age is an important factor 

because older drivers may have decreased visual acuity, reaction times, and cognitive 

processing speed. They may also encounter difficulties with divided attention and 

navigating unfamiliar roads. Younger, inexperienced drivers, on the other hand, are 
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more likely to engage in risky behaviors, such as speeding or distracted driving. 

Another critical factor is driver experience, as new drivers, particularly teenagers, have 

little on-road experience and are more likely to make mistakes. However, as drivers 

gain experience, they improve their ability to recognize and manage potential risks. It 

should be noted that passivity and overconfidence in experienced drivers could also 

lead to risky behavior. 

In a study conducted by Tay, R., et al. (2011), the findings revealed male drivers were 

more likely than female drivers to be involved in catastrophic and fatal crashes. When 

compared to younger drivers, older drivers were less likely to be involved in major 

and fatal crashes. Alcohol-impaired drivers were more likely to be involved in deadly 

crashes. The characteristics of pedestrians, such as age, sex, and location, are important 

factors in the severity of pedestrian-vehicle crashes. Pedestrians over the age of 65 

were more likely to be seriously injured and fatally harmed. Rashid, H. M. S., & Ismail, 

K. H. (2022) have identified human error as a significant factor contributing to the 

severity of injuries in these crashes. Single people and children were found to be more 

involved in car crashes, potentially because of distractions and risk-taking behaviors. 

Using cell phones while driving has been identified as a prominent cause of crashes 

among young drivers. 

 Vehicle characteristics 

Vehicle characteristics have a significant impact on the severity of crashes and the 

likelihood of injuries or fatalities. The size and weight of the vehicle, its speed and 

acceleration capabilities, braking performance, and overall structural integrity are 

some of the key vehicle characteristics that are frequently considered in crash analysis. 

Other factors to consider include safety features such as airbags, seat belts, and anti-
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lock brakes, as well as the vehicle's age and maintenance history.  It is found that higher 

speeds are associated with more severe crashes, longer stopping distances, and reduced 

control, ultimately amplifying the severity of injuries sustained by vehicle occupants 

[15]. The literature also emphasizes the crucial role of adequate visibility in safe 

driving. It explains that the design and condition of headlights, taillights, turn signals, 

and reflective materials on vehicles play a key role in visibility, especially in low-light 

conditions or inclement weather.  

Understanding the characteristics of different types of vehicles is also vital for crash 

analysis. Each vehicle type possesses unique traits that affect its maneuverability, 

stability, visibility, and vulnerability in crashes.  

Passenger cars are the most common type of vehicle on the road. They are deemed 

stable and easy to maneuver. However, they are prone to rollovers in specific 

circumstances, particularly when taking sharp turns at high speeds. This characteristic 

can make them more susceptible to crashes in certain situations. Trucks and buses, on 

the other hand, are larger and heavier than passenger cars. This size and weight make 

maneuvering and stopping quickly more challenging for their drivers compared to 

passenger cars. Furthermore, trucks and buses have wider blind areas, making it more 

difficult for drivers to see other vehicles or people in their path. By considering these 

factors, crash investigators can gain a more complete understanding of what caused a 

specific crash and how it could have been avoided. Ulfarsson, G. F., & Mannering, F. 

L. (2004) found that in single-vehicle collisions, pickup and SUV drivers had a higher 

percentage of severe injuries than passenger car drivers, according to the data.  In a 

study conducted by Oikawa, S., et al. (2016), the findings revealed that the risks of 

serious injury and death rose with increasing vehicle travel speeds for both sedans and 
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light passenger cars. The study also evaluated the chances of serious pedestrian injuries 

with sedans and discovered that the risks of serious injury were higher in the middle-

aged group compared to the early-aged group. 

 Road conditions 

Road conditions have a substantial effect on the frequency and severity of crashes. 

Weather conditions such as rain, mist, or ice can make roadways dangerous and disable 

visibility, expanding the danger of an crash. These conditions might lead to higher 

stopping distances and make it troublesome for drivers to preserve viable control of 

their cars. Furthermore, the road surface's condition might impact vehicle handling. 

Potholes, uneven surfaces, loose gravel, or debris on the road can cause vehicles to 

lose traction or exhibit unexpected changes in behavior, potentially resulting in an 

crash. 

Road signs and indicators that are clear and visible are critical for guiding drivers and 

alerting them to possible dangers. Faded or absent signs, poor lane lines, or insufficient 

signaling can lead to confusion or inaccurate lane changes, all of which can lead to an 

crash. Another component that can increase the chance of an crash is heavy traffic 

congestion. In congested traffic, impatience and dangerous actions such as tailgating, 

rapid lane changes, or running red lights can occur, leading to crashes. 

This study by Cheng, W., et al. (2023) found that collisions on wet-skid surfaces are 

more likely to result in severe injuries compared to collisions on dry surfaces. 

Switching from a dry road surface to a wet and slippery one increases the probability 

of a fatal injury by 3.38%. They also discussed the impact of light conditions on the 

severity of crashes. The study found that crashes that occurred at night without 

sufficient lighting were more likely to result in severe injuries compared to crashes 
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that happened during the day. The article suggests several measures to address these 

issues. Lee, D., et al. (2023) found that ice-covered streets increase the probability of 

severe crashes, likely due to decreased maneuverability and compromised visibility. 

Bad weather, including rain and snow, can worsen these conditions and contribute to 

crashes that are more serious. 

 Road geometry 

Road geometry can have a significant impact on the behavior of drivers, car handling, 

and overall safety. The physical aspects of the road, such as its layout, alignment, and 

curvature, are referred to. Poor alignment, such as unexpected changes in direction or 

sudden curves, can catch drivers off guard and increase the risk of an crash. The design 

of intersections is critical to traffic safety. Crashes can be affected by factors like the 

type of intersection and the availability of designated turning lanes. Lane size 

influences driver actions and vehicle interactions. Tight lanes can make it difficult for 

drivers, especially heavy cars, to manage, increasing the possibility of an crash. 

Koramati, S., et al. (2023) stated that road geometry had been found to be a crucial 

determinant influencing the severity of the crash. Among the twelve different types of 

road geometric features, straight roads were shown to cause the highest number of 

collisions, followed by curved roads and four-arm junctions. Previous research has 

also found that traveling over a long and straight stretch with a few activity paths 

within the same course increases the potential of a run-off collision, especially when 

the paths are small. Lee, D., et al. (2023) looked at how road type, intersection type, 

and road conditions influence the possibility of serious injury in crashes. The research 

includes reference situations such as four-way intersections, roundabouts, ramps, 

driveways, and diverse road conditions. Four-way crossroads and driveways, 

according to the research, are less likely to result in severe injury crashes. This is 
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because automobiles must halt or slow down at these crossroads, resulting in enhanced 

care. Roundabouts and ramps, on the other hand, are more likely to be related to 

severe-injury crashes. It was explained that roundabouts have low visibility, making it 

difficult for drivers to identify vehicles approaching the roundabout. 

2.3.2 Methods for crash severity modelling 

To determine and comprehend the relationships between the attributes in connection 

to the severity of the crash, methods such as statistical models and machine learning 

models have been applied. However, ML models are gaining popularity because they 

can discover interactions between variables that would be challenging to predict 

directly using statistical models and can handle and interpret massive datasets. 

 Statistical models 

Binary logit, binary probit, Bayesian ordered probit, Bayesian hierarchical binomial 

logit, generalized ordered logit, mixed generalized ordered logit, multinomial logit, 

multivariate probit, ordered logit, and ordered probit are some of the statistical models 

that have been used in the literature to conduct traffic injury severities. Many 

researchers have noted that statistical modeling has limitations because it generates 

hypotheses about data distribution and predetermines the relationship between the 

target and the independent variables. Statistical models can be classified into three 

categories:  

[1] Models with binary results: Binary injury-severity outcomes, such as injury vs. 

non-injury collisions or fatal vs. non-fatal collisions, have been studied using 

conventional discrete outcome models such as the binary logit and binary probit 

models.  

[2] Models with ordered discrete results: In crash severity modeling, it is critical 

to account for the ordinal distribution of injury data (such as starting with no damage 
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to minor injury to serious injury to fatal injury). Traditional ordered probability models 

have been frequently used to account for the categorical structure of the data. 

[3] Models with non-ordered multinomial discrete results: In the analysis of crash 

injury severity data, models that neglect to account for the ordinal character of injury 

data have also proven prevalent. While such models do not account for the ordering of 

injury-severity outcomes, they do not suffer from some constraints imposed by classic 

ordered probit and logit models. 

Table 1: Previous studies using different statistical models 

Model used Previous studies 

Binary 

Bayesian hierarchical binomial logit 

Wang, X., & Abdel-Aty, M. 

(2008).  

Huang, H., Chin, H. C., & 

Haque, M. M. (2008).  

Bayesian ordered probit 

Xie, Y., Zhang, Y., & Liang, 

F. (2009).  

Karabulut, N. C., & Ozen, 

M. (2023).  

Binary logit / probit 

Moudon, A. V., Lin, L., Jiao, 

J., Hurvitz, P., & Reeves, P. 

(2011).  

Kononen, D. W., Flannagan, 

C. A., & Wang, S. C. (2011).  

Gong, Y., Lu, P., & Yang, 

X. T. (2023). 

Lidbe, A., Adanu, E. K., 

Tedla, E., & Jones, S. 

(2022). 

Sobhani, A., Young, W., & 

Logan, D. (2011, 

September).  

Bivariate binary probit 

Russo, B. J., Yu, F., & 

Smaglik, E. J. (2023).  

Lee, J., Abdel-Aty, M., & 

Choi, K. (2014).  

Li, L., Hasnine, M. S., Nurul 

Habib, K. M., Persaud, B., & 

Shalaby, A. (2017).  

Ordered discrete Bivariate ordered probit 

Yamamoto, T., & Shankar, 

V. N. (2004).  

Chiou, Y. C., Fu, C., & Ke, 

C. Y. (2020).  

Russo, B. J., Savolainen, P. 

& Anastasopoulos, P. C. 

(2014).  
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A copula-based multivariate 

Ahmad, N., Gayah, V. V., & 

Donnell, E. T. (2023).  

Huang, H., Ding, X., Yuan, 

C., Liu, X., & Tang, J. 

(2023).  

Bhowmik, T., Rahman, M., 

Yasmin, S., & Eluru, N. 

(2021).  

Generalized ordered logit 

Song, D., Yang, X., 

Anastasopoulos, P. C., Zu, 

X., Yue, X., & Yang, Y. 

(2023).  

Zhao, L., Wang, C., Yang, 

H., Wu, X., Zhu, T., & 

Wang, J. (2023). 

Mphekgwana, P. M. (2022).  

Non-ordered 

multinomial 

discrete 

Multinomial logit models 

Adanu, E. K., Dzinyela, R., 

& Agyemang, W. (2023). 

Islam, S. M., Washington, 

S., Kim, J., & Haque, M. M. 

(2023).  

Sequential logit and probit models 

Xu, C., Tarko, A. P., Wang, 

W., & Liu, P. (2013).  

Jung, S., Qin, X., & Noyce, 

D. A. (2010).  

Mixed logit models 

Obaid, I., Alnedawi, A., 

Aboud, G. M., Tamakloe, 

R., Zuabidi, H., & Das, S. 

(2022).  

Hasan, A. S., Orvin, M. M., 

Jalayer, M., Heitmann, E., & 

Weiss, J. (2022).  

Rezapour, M., & Ksaibati, 

K. (2022). 

 

 Machine-learning models 

Machine learning (ML) is a branch of artificial intelligence that enables real-time data 

analysis, decision-making, and record preparation, as well as self-learning for 

computers with limited, sophisticated coding. ML algorithms can detect significant 

risk variables and provide helpful guidance for crash prevention measures by 

processing massive volumes of data. Through integrating new data, machine-learning 

algorithms can constantly learn and increase their accuracy. 
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Machine-learning approaches that can undertake crash severity analysis include 

random forest (RF), support vector machines (SVM), Bayesian networks (BN), genetic 

algorithms (GAs), and artificial neural networks (ANN), as illustrated in Table 2. 

These models can reveal hidden correlations and nonlinear associations among 

features and crash severity that would not be obvious using typical statistical methods. 

Table 2: Previous studies using machine learning models 

Models Previous studies 

Decision Trees 
Lee and Li (2015); Toran Pour et al. (2017); 

Mafi et al. (2018); Montella et al. (2020) 

Artificial Neural 

Networks 

Kunt et al. (2011); Sameen and Pradhan (2017); Das et al. 

(2018); Zheng et al. (2019) 

Random Forests Mafi et al. (2018); Tang et al. (2019); Jiang et al. (2020) 

Support Vector 

Machines 

Abdel-Aty (2014); Iranitalab and Khattak (2017); Gu et al. 

(2018); Hadjidimitriou et al. (2020); Xi et al. (2019) 

K-nearest Neighbours 
Beshah and Hill (2010); Gu et al. (2018); Montella et al. 

(2020)  

Naïve Bayes Kwon et al. (2015); Jeong et al. (2018); Yahaya et al. (2019) 

 

2.4  Current state of research on traffic crash analysis 

The present status of road crash analysis includes a mix of disciplines combining data 

collection, sophisticated analytics, behavioral research, and developing technology. 

Researchers have been attempting to improve data collection methods, such as 

combining data from multiple sources to get full crash data. However, traffic crash 

investigations have progressed beyond conventional police reports. Researchers and 

traffic safety authorities have integrated data from many sources, such as road cameras, 

GPS devices, car sensors, and feeds from social networks. Analysts can acquire a 

broader understanding of collision scenarios and the variables contributing to them by 

merging these various data sources. The use of machine learning and data mining 

approaches to examine large-scale crash datasets has been assessed. These strategies 

are useful in the detection of unnoticed trends and patterns, the prediction of crash 
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hotspots, and the classification of crash types. Furthermore, new visualization methods 

and computer simulations have proven to be beneficial for traffic crash investigation. 

To successfully examine crash data, researchers are creating enhanced visualization 

and simulation software. These tools can produce 3D representations of crashes, 

simulate situations, and evaluate the efficacy of various safety measures. There have 

been advancements in Intelligent Transportation Systems (ITS), which provide 

prospects for improving traffic crash analysis. To improve safety, researchers have 

been investigating the implementation of vehicle-to-vehicle and vehicle-to-

infrastructure communication networks. To prevent crashes while improving the 

circulation of traffic, these technologies provide real-time data transmission, collision 

mitigation, and traffic control. The development of linked vehicle technology has 

created new opportunities for traffic crash investigation. Sensors and communication 

features in vehicles can offer real-time data on speed, location, and probable crash 

risks. Many industries consider the use of artificial intelligence (AI) to improve their 

productivity and consumer interactions. Transportation engineering has been no 

exception. AI techniques such as image recognition and natural language processing 

have been employed to advance traffic crash investigations. AI-powered systems, for 

example, can scan surveillance camera data automatically to discover possible risks or 

identify driving habits connected with crashes. 
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Chapter 3 

METHODOLOGY 

3.1  Data collection methods 

Researchers have frequently used established databases to address specific research 

questions. These databases include data compiled by government agencies, research 

institutions, or other entities. Additional analyses of existing datasets can help save 

valuable time and money while drawing insightful conclusions. This study used the 

publicly available database from the PennDOT portal in Pennsylvania. 

Because this study included numerical data and required statistical analysis to reach 

accurate and generalizable findings, a quantitative approach was used. A quantitative 

method is suitable for determining the prevalence of a particular occurrence or 

investigating the links between various factors. 

Pennsylvania Department of Transportation (PennDOT): 

The Pennsylvania Department of Transportation facilitated the secure and effective 

conveyance of individuals and commodities. It is responsible for overseeing and 

enhancing Pennsylvania's enormous network of highways, bridges, trains, and airports. 

PennDOT oversees roads, public transportation in cities and rural areas, terminals, 

railways, and ports. It was founded in 1911 and is directly responsible for 

approximately 40,000 miles of roads and approximately 25,400 bridges. The state 

highway system is maintained, restored, and expanded by 11,579 PennDOT personnel. 

The personnel operate from the Harrisburg headquarters and ten additional districts 
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(Fig. 7) and they have facilities in all 67 counties. PennDOT also manages the state's 

12.1 million vehicle registrations and 10.1 million driver licenses and identification 

cards, as well as safety and emission inspection programs. 

 

Figure 7: PennDOT interactive map [16] 

The Pennsylvania Department of Transportation's (PennDOT) crash database is a 

comprehensive source of information on crashes involving vehicles that occur in 

Pennsylvania. This database is a useful tool for road safety assessments, research, and 

legislation. It includes an array of specific data on each crash, such as the time and 

location of the incident, the types of cars involved, and the number of people injured 

or killed. Furthermore, the database records pertinent aspects that might have led to 

the collision, such as weather, road features, driver behavior, and any probable alcohol 

or drug use. Furthermore, the collision database combines information from various 

sources, such as police reports, hospital records, and crash reports provided by 

individuals involved in crashes. This multi-source strategy ensures that crash data are 

comprehensive and accurate, allowing transport officials, legislators, and researchers 
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to detect patterns, high-risk regions, and underlying causes of traffic collisions. This 

information is then gathered, processed, and stored in the PennDOT crash database. 

The database is updated regularly to guarantee that the information is recent and 

reliable, making it a significant resource for road safety analysis and decision-making 

in Pennsylvania. 

The Pennsylvania Department of Transportation (PennDOT) utilizes various data-

collection instruments to gather information for its crash database. Common devices 

include crash report forms, computerized crash reporting systems, speedometers and 

sensors, weather observatories, road assessment forms, surveys, geographic 

information systems (GIS), automatic traffic recorders (ATRs), and collision 

investigation teams. These tools aid in the preservation of precise and up-to-date data 

on traffic, crashes, and other transportation-related variables, thereby guaranteeing the 

safety and efficiency of PennDOT. 

PennDOT data framework: 

Upon accessing the PennDOT database portal, an extensive dataset can be obtained, 

structured into eight distinct CSV files, each catering to a specific category of 

information. These files, denoted as COMMVEH, CRASH, CYCLE, FLAG, 

PERSON, ROADWAY, TRAILVEH, and VEHICLE, collectively offer a 

multifaceted insight into vehicular incidents.  

The COMMVEH file contains pertinent details concerning commercial vehicles, such 

as carrier information, cargo body types, and official registration numbers. 
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The CRASH file encapsulates essential crash-related data, including geographical 

dimensions such as county and municipality; temporal aspects such as time, day of the 

week, and month of the year; and quantifiable counts of elements such as individuals, 

vehicles, unbelted occupants, and fatalities. 

The CYCLE file contains information related to motorcycle and pedal cycle 

involvement, emphasizing variables such as helmet use, suitable gear, and 

supplemental items such as side packs. 

The FLAG file is a collection of binary indicators (0=No, 1=Yes) that serves to filter 

inquiries by denoting crash-related elements, such as the existence of a drunk driver, 

mobile phone usage, running on red light, motorbike involvement, and a variety of 

other determinants. 

The PERSON file provides information on all individuals involved in the crash, 

including age, sex, drug and alcohol test results, and vehicle seating positions.  

The ROADWAY file contains information regarding the highways involved, 

including route identifiers, sections, roadway types, and other defining characteristics. 

The TRAILVEH file contains information regarding towed trailers, including several 

categories and types associated with the vehicles involved. 

Finally, the VEHICLE file contains information about all vehicles involved in the 

crash, including body type, movement characteristics, spatial positioning, and other 

vehicle-related parameters. Collectively, these files comprehensively contribute to a 
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robust and intricate representation of vehicular incidents within the PennDOT 

database. 

 

Figure 8: PennDOT database framework [17] 

3.2  Overview of collected data 

Data filtration was conducted by focusing on three prominent counties, namely 

Allegheny, Montgomery, and Philadelphia, out of the 67 counties within 

Pennsylvania. The rationale behind this selection is based on the substantial volume of 

data points represented by these specific counties compared to the remaining regions 

as seen in Fig. 9. To streamline the analytical process, many columns that did not 

contribute significantly to the analysis were removed, resulting in a refined dataset that 

contained 33 pertinent parameters. Table 3 presents a categorized display of the 

parameters involved within the model training process. 
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Figure 9: Top 3 counties of crash occurrences in Pennsylvania 

Table 3: Final parameters included in model training 

Crash characteristics Driver condition Pedestrian characteristics 

TIME_OF_DAY_Afternoon 

TIME_OF_DAY_Evening 

TIME_OF_DAY_Morning 

TIME_OF_DAY_Night 

SPEEDING_RELATED 

RUNNING_RED_LT 

INJ_SEVERITY 

MATURE_DRIVER 

YOUNG_DRIVER 

AGGRESSIVE_DRIVING 

DRINKING_DRIVER 

DRUGGED_DRIVER 

DISTRACTED 

UNBELTED 

AGE_GROUP_[0,10] 

AGE_GROUP_[10,20] 

AGE_GROUP_[20,30] 

AGE_GROUP_[30,40] 

AGE_GROUP_[40,50] 

AGE_GROUP_[50,60] 

AGE_GROUP_[60,60+] 

SEX 

 

Road condition Vehicle characteristics 

RDWY_ALIGNMENT_Curve_Left 

RDWY_ALIGNMENT_Curve_Right 

RDWY_ALIGNMENT_Straight 

INTERSECT_TYPE_Four-way_intersection 

INTERSECT_TYPE_Mid_Block 

INTERSECT_TYPE_T_intersection 

ILLUMINATION 

ROAD_CONDITION 

SIGNALIZED_INT 

INTERSECTION 

TRAVEL_SPD 

 

In the context of traffic-crash data analysis, imbalances often arise because of the small 

percentage of crashes on particular routes, typically resulting in sparse crash data. 

Addressing this issue requires careful consideration, as traditional approaches of 

undersampling non-collision data to align with crash data quantities may mistakenly 
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ignore several valuable non-crash incidents. To ensure the integrity of the model 

training, it is necessary to correct this disparity by employing an oversampling 

technique specifically customized to crash data. Failure to do so might lead to an unfair 

bias towards non-collision occurrences within the model's performance. 

To address this challenge effectively, data augmentation was performed in this study. 

The Synthetic Minority Oversampling Technique (SMOTE), a well-known method 

particularly suited for Artificial Neural Network (ANN) models, was employed. 

SMOTE contributes to the enhancement of crash data representation, thereby yielding 

a more balanced and representative dataset that is essential for robust model training 

and accurate predictions. 

3.2.1 Preprocessing of PennDOT data 

To gather reliable insights into my research project, a stratified sampling method was 

embarked upon. The rationale behind stratified sampling was to ensure the 

representation of different subgroups in the dataset. By dividing the dataset into 

specific strata, the sample was more likely to capture the diversity present in a large 

dataset. 

For this thesis, a comprehensive dataset was created by consolidating data from 2017 

to 2021. This involved merging information from the Crash, Flag, Vehicle, and Person 

sub-datasets into a unified dataset. The merging process was accomplished by 

connecting data points through the Crash Recorder Number (CRN), a unique identifier 

present in every sub-dataset file to identify each crash. 

Next, focus was placed on specific groups that aligned with the research objective, 

which examined crashes involving SUVs and pedestrians across various age ranges. 
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To achieve this, the dataset was filtered using relevant criteria. Specifically, instances 

were selected where PERSON_TYPE from the PERSON file equaled 2, signifying 

pedestrians, and VEH_TYPE from the VEHICLE file equaled 6, representing SUVs. 

As a result, the dataset only contained information about crashes involving SUVs and 

pedestrians. 

By honing these key variables, the aim is to intricate relationship between pedestrian 

activity and SUV presence, seeking valuable insights that might shape road safety 

measures and urban planning strategies. 

To further refine the analysis, parameters from each sub-dataset were carefully 

selected. This process entailed considerable preprocessing and data manipulation, as 

parameter choices were iteratively adjusted based on considerations such as data 

availability and relevance to the analysis. 

In the context of preprocessing, new columns were incorporated into the existing 

dataset. The AGE_GROUP variable was introduced based on the AGE parameter 

sourced from the PERSON file. This variable was discretized into bins representing 

10-year intervals, spanning from 0 to 10 years, 10 to 20 years, and so forth, culminating 

in the final bin denoting individuals aged 60 years and above. Additionally, a 

TIME_OF_DAY feature was derived from the HOUR_OF_DAY attribute. The 

categorization was established as follows: 6 a.m. to 12 p.m. was designated as 

Morning, 12 p.m. to 6 p.m. as Afternoon, 6 p.m. to 12 a.m. as Evening, and 12 a.m. to 

6 a.m. as Night. 

The INJ_SEVERITY parameter within the PERSON file originally employed the 

following numerical values: 0 for no injury, 1 for fatal injury, 2 for suspected serious 
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injuries, 3 for suspected minor injuries; and 4 for possible injuries. To align with the 

KABCO classification system, these labels were subsequently transformed: 0 was 

mapped to 'O’, 1 to 'K’, 2 to 'A’, 3 to 'B’, and 4 to 'C’. This parameter serves as the 

target variable within the forthcoming predictive model, a topic that will be discussed 

in subsequent sections. 

In its initial iteration, the dataset encompassed 41 distinct parameters, collectively 

covering a range of collision-related parameters ranging from spatial and temporal 

attributes to pedestrian attributes and driver conditions. Ultimately, the initial 

compilation of the dataset consists of approximately 169,000 unique crash instances. 

3.3  Data analysis techniques 

The preparation and preprocessing of data is an essential part of any analytical process. 

The following sections describe the steps taken in data preprocessing, which provide 

the basis for a robust and informed analysis. After data preprocessing, a complete 

process of detailed refinement and organization was undertaken to produce the final 

iteration of the dataset, allowing integration into the model. First, the missing values 

and labels of unknown were eliminated in all columns. In addition, some columns, 

which were excessive for the requirements of the analysis, were removed. Following 

these procedures, an investigation of the interrelationships between existing features 

was conducted. A filter mechanism was established based on specific fixed attributes 

to reduce the dimensions of an extensive set of data. These attributes included 

exclusive consideration of urban areas, road conditions classified as dry or wet, and 

the categorical classification of intersections, especially mid-block, four-way 

intersections, and T-intersections, among others. 
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After the data preprocessing phase, the next step was data processing. However, a 

prerequisite is ensuring the appropriate scaling of the data. This process guarantees 

uniformity in the scope and distribution of characteristics, avoiding unnecessary 

domination of a particular attribute at different scales. One-hot encoding was applied 

to facilitate the representation of categorical variables. This method converts 

categorical attributes into a binary matrix and enables the incorporation of such 

attributes into the analysis [18]. In the case of the target variable, INJ_SEVERITY, 

which shows an internal ordinal structure, an alternative encoding strategy called 

ordinal encoding was used. Ordinary encoding preserves the hierarchical relationship 

between the different levels of the categorical variable, thus capturing the inherent 

order of the severity levels. This coding method ensures that the model can effectively 

distinguish and use severity levels during the learning process. 

Table 4: Final categorical parameters before scaling 

Categorical Parameters Features 

COUNTY 

02 - Allegheny 

46 - Montgomery 

67 - Philadelphia 

CRASH_YEAR 

2017 

2018 

2019 

2020 

2021 

CRASH_MONTH 

January 

February 

March 

April 

May 

June 

July 

August 

September 

October 

November 

December 
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Categorical Parameters Features 

DAY_OF_WEEK 

Sunday 

Monday 

Tuesday 

Wednesday 

Thursday 

Friday 

Saturday 

TIME_OF_DAY 

Morning 

Afternoon 

Evening 

Night 

AGE_GROUP 

[0,10] 

[10,20] 

[20,30] 

[30,40] 

[40,50] 

[50,60] 

[60,60+] 

RDWY_ALIGNMENT 

Curve Left 

Curve Right 

Straight 

INTERSECT_TYPE 

Four-way intersection 

Mid-Block 

T-intersection 

INJ_SEVERITY 

0 (C – Minor Injury) 

1(B – Moderate Injury) 

2 (A – Major Injury) 

3 (K – Killed) 

Table 5: Final binary parameters 

Binary Parameters Features 

SEX 
1 (Female) 

0 (Male) 

INTERSECTION 0 (No), 1 (Yes) 

SIGNALIZED_INT 0 (No), 1 (Yes) 

ROAD_CONDITION 
1 (Dry) 

0 (Wet) 

ILLUMINATION 
1 (Daylight) 

0 (Dark_streetlights) 

AGGRESSIVE_DRIVING 0 (No), 1 (Yes) 



 

43 

Binary Parameters Features 

DRINKING_DRIVER 0 (No), 1 (Yes) 

DRUGGED_DRIVER 0 (No), 1 (Yes) 

SPEEDING_RELATED 0 (No), 1 (Yes) 

RUNNING_RED_LT 0 (No), 1 (Yes) 

DISTRACTED 0 (No), 1 (Yes) 

UNBELTED 0 (No), 1 (Yes) 

MATURE_DRIVER 0 (No), 1 (Yes) 

YOUNG_DRIVER 0 (No), 1 (Yes) 

 

3.3.1 Model architecture 

The architecture of the model involves several steps for constructing, training, and 

evaluating an artificial neural network (ANN) for predicting pedestrian crash severity. 

The model architecture can be broken down into the following components (Fig. 10): 

The training and testing data were divided into features and labels, respectively. 

Features are selected criteria related to pedestrian crashes, whereas labels represent the 

severity of the injuries. Both the training and testing datasets were transformed into 

‘NumPy’ arrays and shuffled to ensure randomness. In the context of machine learning 

and data analysis, NumPy is used for handling numerical data and performing 

computations such as matrix operations, statistical calculations, and data manipulation. 

The K-fold cross-validation technique was employed with a specified number of folds 

(in this case, 10) to partition the training data into subsets for training and validation 

purposes. This technique helps assess the generalization performance of the model 

across different subsets of data. 
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A sequential neural network model is constructed within the loop for each fold. The 

model was sequentially composed of layers, starting with a hidden layer of 120 

neurons. The layer uses the Parametric Rectified Linear Unit (PReLU) activation 

function, L2 regularization for both the bias and kernel, and the He uniform 

initialization method. This is followed by a batch normalization layer to improve 

convergence and speed up the training. The output layer consists of four units (for the 

four classes of injury severity) and uses a Softmax activation function for the 

probability distribution. The model was compiled using the Adam optimizer at a 

specified learning rate. The chosen loss function is sparse categorical cross-entropy, 

suitable for multi-class classification tasks, and 'accuracy' is chosen as the metric for 

evaluation. For each fold, training and validation data were extracted based on the 

current fold indices. The model was trained on the training data using a fitting method. 

The training process involved iterating through epochs (200 epochs are used) with a 

batch size of 16. After each epoch, the training accuracy and model loss were recorded. 

After training, the model was evaluated on the validation data to obtain validation loss 

and accuracy. The model's predictions on the validation data were used to compute a 

classification report, including precision, recall, and F1-score for each class of injury 

severity. This report provides detailed insights into the model's performance for each 

fold. For each fold, metrics, such as validation accuracy and loss, are saved in order to 

analyze the model's performance across different subsets of data. The classification 

reports are also saved, providing a comprehensive view of the model's performance in 

each class. This ANN architecture should train and evaluate the model iteratively using 

cross-validation to ensure that the model's performance is robust and consistent across 

different data divisions. The selection of activation functions, normalization, batch 
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normalization, and assessment metrics all help to capture complex patterns and 

relationships in the data, ultimately improving pedestrian crash prediction accuracy. 

 

Figure 10: Flowchart of the model architecture 

3.4  Software and tools 

To analyze the data in this study, several instrumental software and tools were used to 

facilitate examination and model development. Python 3.9, TensorFlow 2.12, and 

Keras 2.12 are the key components in implementing artificial neural network models 

(ANNs). Python is a widely used and versatile programming language used to perform 

data manipulation, preprocessing, and analysis tasks. Python is known for its 

readability and extensive libraries, and provides an effective environment for 

orchestrating complex data operations [19]. TensorFlow, a well-known open-source 
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machine-learning framework, plays a central role in the construction and training of 

ANN models. Its computational graph architecture allows for efficient numerical 

calculations, which makes it particularly suitable for large-scale data analysis and 

model optimization tasks [20]. Keras is a high-level network API integrated into 

TensorFlow that provides a simplified interface for building and training complex 

network architectures. Its user-friendly design has accelerated the process of defining 

model layers, loss functions, and optimization algorithms, thereby improving the 

development and experimental phases of ANN models [21]. The combination of 

Python, TensorFlow, and Keras contributed to the methodological rigor of the data 

analysis efforts. This integrated software toolbox facilitates the exploration of complex 

patterns and relationships in the dataset while simultaneously enabling the 

construction of complex ANN models for predictive purposes. Furthermore, it is worth 

noting that this integration of software tools exemplifies a comprehensive approach to 

utilizing modern technologies in the pursuit of insightful data analysis, thereby 

enhancing the academic integrity and practical implications of the study's findings. 

The development of an artificial neural network (ANN) model in TensorFlow was an 

essential part of the study's data analysis methodology. The architecture of the ANN 

model is characterized by its complex arrangement of interconnected layers, which 

contribute to the model's ability to extract meaningful data patterns and make accurate 

predictions. 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1  Descriptive statistics and discussion 

4.1.1 Descriptive statistics 

Summary statistics provide information about the distribution and characteristics of 

the various attributes of the dataset. Within the reported collisions, the data show the 

frequency of various behaviors, circumstances, and demographic characteristics. 

These observations can help comprehend the dataset patterns and potential links. The 

Count column indicates the number of instances for each feature, providing a measure 

of sample size. The Mean column shows the average value of the feature across all 

instances, while the Std column denotes the standard deviation, indicating the 

dispersion of values around the mean.  

Table 6: Descriptive statistics of model features (one-hot encoded data version) 
 count mean std min 25% 50% 75% max 

TRAVEL_SPD 1619 0.295 0.163 0 0.220 0.266 0.358 0.908 

TIME_OF_DAY_Afternoon 1619 0.394 0.489 0 0 0 1 1 

TIME_OF_DAY_Evening 1619 0.296 0.457 0 0 0 1 1 

TIME_OF_DAY_Morning 1619 0.241 0.428 0 0 0 0 1 

TIME_OF_DAY_Night 1619 0.069 0.254 0 0 0 0 1 

AGE_GROUP_[0,10] 1619 0.166 0.372 0 0 0 0 1 

AGE_GROUP_[10,20] 1619 0.193 0.395 0 0 0 0 1 

AGE_GROUP_[20,30] 1619 0.179 0.384 0 0 0 0 1 

AGE_GROUP_[30,40] 1619 0.116 0.320 0 0 0 0 1 

AGE_GROUP_[40,50] 1619 0.092 0.289 0 0 0 0 1 

AGE_GROUP_[50,60] 1619 0.095 0.293 0 0 0 0 1 

AGE_GROUP_[60,60+] 1619 0.159 0.366 0 0 0 0 1 

RDWY_ALIGNMENT_Curve_

Left 
1619 0.027 0.163 0 0 0 0 1 
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RDWY_ALIGNMENT_Curve_

Right 
1619 0.038 0.190 0 0 0 0 1 

RDWY_ALIGNMENT_Straight 1619 0.933 0.251 0 1 1 1 1 

INTERSECT_TYPE_Four-

way_intersection 
1619 0.400 0.490 0 0 0 1 1 

INTERSECT_TYPE_Mid_Block 1619 0.482 0.500 0 0 0 1 1 

INTERSECT_TYPE_T_intersec

tion 
1619 0.118 0.323 0 0 0 0 1 

AGGRESSIVE_DRIVING 1619 0.636 0.481 0 0 1 1 1 

DRINKING_DRIVER 1619 0.051 0.221 0 0 0 0 1 

DRUGGED_DRIVER 1619 0.033 0.178 0 0 0 0 1 

SPEEDING_RELATED 1619 0.250 0.433 0 0 0 0.5 1 

RUNNING_RED_LT 1619 0.096 0.294 0 0 0 0 1 

SIGNALIZED_INT 1619 0.348 0.476 0 0 0 1 1 

INTERSECTION 1619 0.518 0.500 0 0 1 1 1 

DISTRACTED 1619 0.130 0.336 0 0 0 0 1 

UNBELTED 1619 0.200 0.400 0 0 0 0 1 

MATURE_DRIVER 1619 0.184 0.388 0 0 0 0 1 

YOUNG_DRIVER 1619 0.180 0.385 0 0 0 0 1 

SEX 1619 0.636 0.481 0 0 1 1 1 

ILLUMINATION 1619 0.684 0.465 0 0 1 1 1 

ROAD_CONDITION 1619 0.847 0.360 0 1 1 1 1 

INJ_SEVERITY 1619 0.689 0.584 0 0 1 1 3 

 

The presented summary statistics table (Table 6) offers valuable insights into the 

characteristics of one-hot encoded features within a dataset. The time of day influences 

incident occurrence, with afternoon accounting for the majority at 39.4%, followed by 

evening (29.6%), morning (24.1%), and night (6.9%). This indicates a pattern where 

incidents are more frequent during daylight hours, possibly due to higher traffic 

volumes and visibility. Age group distributions exhibited varying proportions, with the 

60 and above category being the most prevalent at 15.9%. Most incidents occurred on 

straight road alignments (93.3%), while mid-block intersections made up 48.2% of the 

incidents. Aggressive driving behavior is notable, present in approximately 63.6% of 

cases, whereas occurrences of drinking and drug-related driving are less common 

(5.1% and 3.3%, respectively). The high prevalence of aggressive driving behavior is 

noteworthy, suggesting that it may be a contributing factor to many incidents. In 
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contrast, while drinking and drug-related driving are less common, they do occur. 

Environmental factors indicated that incidents primarily occurred under illuminated 

conditions (68.4%) and on roads with favorable conditions (84.7%). Injury severity 

levels showed variability, with an average severity level of approximately 0.689 and a 

range of 0 to 3. A standard deviation of 0.584 indicates notable variability. 

4.1.2 Frequency distribution 

This study used a dataset that contains information on numerous factors that contribute 

to injury severity levels from a variety of traffic crashes. The frequency distribution 

table shown below depicts the proportions of the various severity levels for each key 

feature (Table 7). 

Table 7: Frequency distribution of model features in injury severity classes 

 Injury Severity Levels 

Features 
Binary input 

(0,1) 
Minor Moderate Major Fatal 

AGE_GROUP_[0,10] 1 = YES 20% 15% 6% 8% 

AGE_GROUP_[10,20] 1 = YES 15% 21% 32% 34% 

AGE_GROUP_[20,30] 1 = YES 17% 18% 15% 25% 

AGE_GROUP_[30,40] 1 = YES 11% 12% 18% 17% 

AGE_GROUP_[40,50] 1 = YES 9% 10% 3% 0% 

AGE_GROUP_[50,60] 1 = YES 10% 9% 13% 8% 

AGE_GROUP_[60,60+] 1 = YES 18% 15% 13% 8% 

SEX 

0 = Male 35% 36% 45% 83% 

1 = Female 65% 64% 55% 17% 

MATURE_DRIVER 1 = YES 18% 18% 19% 25% 

YOUNG_DRIVER 1 = YES 21% 15% 34% 33% 
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Features 
Binary input 

(0,1) 
Minor Moderate Major Fatal 

INTERSECTION 1 = YES 49% 54% 55% 33% 

SIGNALIZED_INT 1 = YES 31% 37% 37% 33% 

INTERSECT_TYPE_Four-

way_intersection 
1 = YES 36% 43% 40% 25% 

INTERSECT_TYPE_Mid_Block 1 = YES 51% 46% 45% 67% 

INTERSECT_TYPE_T_intersection 1 = YES 13% 11% 15% 8% 

RDWY_ALIGNMENT_Curve_Left 1 = YES 2% 2% 7% 25% 

RDWY_ALIGNMENT_Curve_Right 1 = YES 3% 4% 9% 25% 

RDWY_ALIGNMENT_Straight 1 = YES 94% 94% 84% 50% 

ROAD_CONDITION 

0 = Wet 16% 15% 19% 0% 

1 = Dry 84% 85% 81% 100% 

ILLUMINATION 

0 = Dark_ 

streetlights 
27% 32% 58% 75% 

1 = 

Daylight 
73% 68% 42% 25% 

TIME_OF_DAY_Afternoon 1 = YES 41% 40% 27% 8% 

TIME_OF_DAY_Evening 1 = YES 27% 30% 48% 42% 

TIME_OF_DAY_Morning 1 = YES 28% 22% 6% 17% 

TIME_OF_DAY_Night 1 = YES 4% 8% 19% 33% 

UNBELTED 1 = YES 16% 21% 40% 33% 

RUNNING_RED_LT 1 = YES 7% 11% 12% 8% 

SPEEDING_RELATED 1 = YES 33% 20% 28% 50% 

AGGRESSIVE_DRIVING 1 = YES 69% 61% 55% 75% 

DRINKING_DRIVER 1 = YES 3% 5% 16% 17% 

DRUGGED_DRIVER 1 = YES 4% 3% 1% 0% 
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The frequency distribution table reveals the following major observations and 

implications: 

• Incidents involving female and male drivers show distinct patterns in terms of 

injury outcomes. Notably, crashes involving female drivers tend to result in fewer fatal 

injuries than those involving male drivers. This gender-based disparity in injury 

severity implies the existence of potential differences in driving behaviors or 

physiological responses to crashes between the two sexes. 

• An analysis of incidents involving mature drivers reveals intriguing trends in 

the distribution of injury severity. These incidents tend to exhibit a balanced 

distribution of injury severity levels, encompassing minor-to-major injuries. However, 

incidents involving young drivers display a high proportion of major and fatal injuries, 

indicating a pressing need for targeted interventions to enhance the safety of young 

drivers on the road. 

• The type of road alignment is closely linked to injury outcomes in crashes. 

Specifically, incidents occurring on left curve road alignments have been associated 

with a higher proportion of major and fatal injuries. This trend may be attributed to the 

challenges posed by navigating curves, potentially leading to a higher likelihood of 

severe crashes. Similarly, right-curve road alignments also exhibit an elevated 

proportion of major and fatal injuries, which could indicate driver behavior on curved 

roads. 

• Incidents occurring on wet roads revealed distinctive injury patterns. Such 

crashes display a slightly higher proportion of major injuries; however, the absence of 

fatal injuries raises intriguing questions. The absence of fatal injuries on wet roads 
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might suggest the adoption of lower speeds by drivers during adverse weather 

conditions, thereby contributing to a reduction in the severity of crashes. 

• The role of illumination in crashes cannot be understood, particularly under 

low-visibility conditions. Incidents that transpire under darker conditions with 

streetlights have demonstrated a significant correlation with major and fatal injuries. 

This underscores the critical importance of proper lighting infrastructure for road 

safety, particularly during times of reduced visibility. Moreover, the timing of crashes 

during the day has implications on injury severity. Incidents occurring at night and in 

the evening consistently exhibit higher proportions of major and fatal injuries. These 

findings underscore the heightened risks associated with reduced visibility and 

potentially increased fatigue during these times of day. 

• Speeding-related incidents present distinct injury severity patterns. Crashes 

linked to speeding tend to have a notable proportion of major injuries. This observation 

can be attributed to the amplified impact forces resulting from higher speeds, leading 

to more severe injury outcomes. Aggressive driving behaviors are associated with a 

high percentage of injuries across all severity levels, including fatal injuries. The 

pronounced proportion of fatal injuries in incidents involving aggressive driving 

underscores the inherent dangers associated with such behaviors. 

4.1.3 Discussion 

 Demographic Factors 

Age and gender play pivotal roles in shaping the outcomes of traffic incidents. For the 

age groups ranging from 0 to 60+, a discernible trend emerged where the proportion 

of major and fatal injuries increased with age until the 10-20 age group, at which point 

the likelihood of severe injury peaked. Notably, the absence of fatal injuries among 



 

53 

individuals aged 40-50 raises intriguing questions about the risk profile of this age 

group. Gender disparities are evident, with a lower proportion of fatal injuries observed 

among female drivers than among their male counterparts. This gender-based variance 

underscores the potential influence of physiological differences, driving behavior, and 

risk-taking tendencies. 

 Environmental Factors 

The environment in which traffic incidents occur also significantly influences injury 

severity. Incidents transpiring at intersections, especially signalized ones, display a 

heightened prevalence of major and fatal injuries. This suggests the complexities and 

potential conflicts inherent in intersections that warrant targeted safety measures. Road 

conditions have a substantial impact as incidents transpiring on wet roads are linked 

to a relatively higher proportion of major injuries. Notably, crashes occurring on 

straight road alignments resulted in fewer severe injuries, highlighting the intrinsic 

safety of such segments. Similarly, different times of the day and illumination levels 

demonstrated distinct distributions of injury severity. Nighttime and evening incidents 

consistently exhibited higher proportions of major and fatal injuries, emphasizing the 

importance of adequate lighting and heightened caution during these periods. 

 Behavioral and Human Factors 

Human behavior and driver attributes further contribute to injury severity outcomes. 

The analysis revealed a disconcerting pattern among young drivers, where a substantial 

proportion of incidents lead to major and fatal injuries. Conversely, mature drivers 

appeared to have a more balanced distribution of injury severity levels. Aggressive 

driving behaviors, speeding, and running red lights correlated with higher proportions 

of moderate and major injuries, exposing the inherent risks associated with such 
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practices. The presence of moderate injuries in incidents involving distracted driving 

underscores the multifaceted nature of the impact of distractions on road safety. 

Notably, impaired driving due to alcohol consumption and drug use consistently yields 

a higher proportion of major and fatal injuries, indicating the grave consequences of 

such behaviors. 

4.2  Correlation analysis 

Correlation matrices are important analytical tools for determining relationships 

between different factors in a dataset. It provides an organized image of how variables 

interact with each other and provides useful insights into possible patterns and 

relationships. 

The principal diagonal of the matrix comprises unitary values, reflective of attributes 

correlating perfectly with themselves, yielding a correlation coefficient of one. The 

remaining entries within the matrix denote the correlations between the pairs of 

attributes. Positive values denote a positive correlation, whereas negative values 

indicate a negative one. The absolute values of these coefficients show the robustness 

of the correlation between the attributes. 

It is critical to emphasize that this correlation does not imply causation. The observed 

correlations provide valuable insights and avenues for future investigation; however, 

they do not imply immediate cause-and-effect relationships between the variables. 

Furthermore, although the correlation matrix offers useful insights, careful 

consideration of domain expertise combined with advanced statistical analyses is 

required if the goal is to establish more robust relationships or make predictions based 

on these variables. 
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Figure 11: Correlation matrix of the SMOTE augmented data 

The correlation matrix includes the correlation coefficients that define the 

relationships between various variables. The degree and direction of the linear 

correlations between variable pairs are represented by these coefficients. An inspection 

of the correlation matrix yields the following observations and insights: 

Examination of the presented variables yields noteworthy insights into the associations 

between specific driving behaviors, intersection characteristics, road conditions, and 

injury severity in vehicular crashes. An evident relationship emerged between travel 

speed, denoted as TRAVEL_SPD, and crashes linked to speeding, as indicated by the 

positive coefficient. This relationship aligns with common intuition, as heightened 

travel speeds amplify the inherent crash risk. Furthermore, the coefficients pertaining 
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to the AGGRESSIVE_DRIVING and DISTRACTED variables reveal their respective 

contributions to crash occurrence. Positive coefficients underscore the heightened 

likelihood of crashes when such behaviors are present.  

The investigation extends to intersection-related factors, wherein the coefficients for 

the INTERSECTION, SIGNALIZED_INT, and different INTERSECT_TYPE 

variables provide insights into the relationships between intersections and crashes. 

Notably, the affirmative coefficients for SIGNALIZED_INT underscore an 

augmented propensity for crashes at signalized intersections. The presence of the 

variable RUNNING_RED_LT was significant, indicating a heightened crash 

likelihood associated with red light violations. 

Considering injury severity, discernible patterns surface through coefficients related 

to diverse variables concerning INJ_SEVERITY. In particular, positive coefficients 

connected to DRINKING_DRIVER and DRUGGED_DRIVER accentuate the 

augmented severity of injuries stemming from crashes involving intoxicated drivers. 

4.3  Model results 

Table 8 provides a comprehensive overview of the different architectural 

configurations and augmentation methods utilized within the scope of the study. The 

aim of this analysis is to investigate the performance of distinct artificial neural 

network (ANN) models in predicting pedestrian crash severity. Each model is 

characterized by its augmentation method, number of hidden layers, nodes, activation 

function, K-fold parameter, and epoch count. Additionally, the table presents key 

performance metrics, including training accuracy, training loss, validation accuracy, 

and validation loss, for each respective configuration. 
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Table 8: Evaluation of different ANN architectures 

Model 
Augmentation 

method 

Hidden 

layers 
Nodes 

Activation 

Function 

K-

fold 
Epochs 

Training 

accuracy 

Training 

loss 

Validation 

accuracy 

Validation 

loss 

ANN-1 None 2 
100 - 

70 
ReLU 10 300 0.9446 0.2597 0.6181 1.0667 

ANN-2 None 1 100 ReLU 10 300 0.9777 0.1496 0.6158 1.0790 

ANN-3 None 1 100 ReLU 10 200 0.9537 0.2654 0.6111 0.9987 

ANN-4 Oversampled 1 80 PReLU 7 200 0.9079 0.2616 0.7368 0.6082 

ANN-5 Oversampled 1 100 PReLU 10 200 0.9327 0.2010 0.7427 0.5880 

ANN-6 SMOTE 1 100 PReLU 8 200 0.9876 0.0685 0.8968 0.3008 

ANN-7 SMOTE 1 100 PReLU 10 200 0.9820 0.0685 0.9006 0.3008 

 

The models are denoted as ANN-1 through ANN-7, with each corresponding to a 

specific set of architectural attributes. ANN-1 to ANN-3 are trained without 

augmentation, while ANN-4 to ANN-7 are trained with oversampling or Synthetic 

Minority Over-sampling Technique (SMOTE) augmentation methods. The utilization 

of augmented data is aimed at addressing class imbalance concerns, potentially 

enhancing the model's capacity to discern patterns accurately (Fig. 12). 

Across the spectrum of models, variations in hidden layer counts, neuron quantities, 

activation functions, and K-fold parameters are evident. Epoch counts also vary among 

the models, with training epochs ranging from 200 to 300. Training and validation 

accuracy metrics exhibit a range of values, reflecting the models' abilities to learn from 

the training data and generalize to the validation dataset. Similarly, training and 

validation loss values provide insights into the models' convergence rates and 

generalization performances. 

In conclusion, this table encapsulates the nuanced interplay between architectural 

parameters and augmentation methods within the context of ANN models for 
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predicting pedestrian crash severity. The tabulated results serve as a valuable reference 

point for evaluating and contrasting the efficacy of different model configurations, 

aiding in the identification of optimal approaches to achieve accurate predictions in 

the field of traffic safety analysis. 

Several key observations can be drawn from the presented table, shedding light on the 

performance and characteristics of the different artificial neural network (ANN) 

models in predicting pedestrian crash severity: 

• Augmentation Impact: Models employing data augmentation techniques 

(ANN-4 to ANN-7) exhibit improved validation accuracy compared to those without 

augmentation (ANN-1 to ANN-3). This suggests that oversampling and SMOTE 

contribute positively to addressing class imbalance issues, enhancing the models' 

ability to generalize and predict accurately. 

• Activation Function Influence: The choice of activation functions, primarily 

ReLU and PReLU, appears to have varying effects on model performance. While both 

activation functions are employed across different models, their impact on accuracy 

and loss differs, highlighting the significance of activation functions in influencing the 

network's learning dynamics. 

• Hidden Layer Variability: The number of hidden layers and neurons within 

these layers varies among the models. Models with fewer hidden layers (e.g., ANN-2 

and ANN-3) demonstrate competitive validation accuracy compared to those with 

additional hidden layers (e.g., ANN-1). This suggests that increasing model 

complexity through more layers does not necessarily guarantee improved predictive 

performance. 
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• Epochs and Convergence: The number of training epochs spans a range from 

200 to 300. While models with higher epoch counts may exhibit improved training 

accuracy, this does not necessarily translate to better validation accuracy. It 

underscores the importance of monitoring validation performance to avoid overfitting 

and optimize model generalization. 

• Performance Discrepancies: Noticeable variations exist between training and 

validation accuracy, as well as training and validation loss, across the models. While 

some models achieve high training accuracy, their validation accuracy remains lower, 

indicating potential overfitting. Such disparities emphasize the necessity of monitoring 

model performance on validation data to ensure robust predictions. 

• SMOTE's Efficacy: Models employing SMOTE augmentation (ANN-6 and 

ANN-7) consistently demonstrate high validation accuracy, suggesting that SMOTE's 

synthetic oversampling helps in generating informative samples that enhance the 

model's ability to recognize complex patterns in the data. 

The observed trade-offs between training accuracy, validation accuracy, training loss, 

and validation loss underscore the importance of finding the right balance during 

model training. Optimizing these metrics collectively is crucial to ensuring the model's 

ability to generalize effectively. These insights contribute to a deeper understanding 

of the factors influencing model efficacy and assist in refining model design for 

accurate predictions in the realm of traffic safety analysis. 
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Figure 12: Comparison of the evaluation metrics across the model with data 

augmentation techniques 

The provided confusion matrix in Fig. 13 portrays the performance of a multi-class 

classification model for injury severity prediction. The model effectively predicts 

Moderate Injury instances with 769 accurate classifications, while Minor Injury 

predictions are reasonably accurate in 473 instances. Challenges arise in classifying 

the rarer Major Injury and Fatal classes, with only 65 and 12 instances correctly 

predicted, respectively. Confusion between Minor Injury and Moderate Injury classes, 

as well as Minor Injury and Major Injury, indicates potential difficulty distinguishing 

between similar injury levels.  

While the matrix offers valuable insights, a comprehensive evaluation of precision, 

recall, and F1-score metrics is essential for a nuanced assessment. Imbalanced class 

distributions can influence model performance, suggesting a need for techniques such 

as resampling and hyperparameter tuning. 
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Figure 13: Confusion matrix of the classification model 

The models exhibit a consistent pattern of accuracy, macro-average metrics, and 

weighted-average metrics across all folds, as seen in Table 9. This stability suggests 

that the models are generalizing well to different subsets of the data and are not 

excessively overfitting to any fold. The overall accuracy of 90% suggests that the 

models are proficient at correctly classifying injury severity. The prediction accuracy 

of 83.6% offers a comprehensive indication of the model's overall performance in 

making accurate predictions across the different classes. It is noteworthy to mention 

that, during the training process, the model achieved a notably high training accuracy 

of 99.34%, reflecting its capacity to learn from the training data and capture intricate 

patterns. The corresponding training loss of 0.0374 further highlights the model's 

efficiency in minimizing errors during training. Moreover, the balanced metrics across 

different classes underscore the models’ ability to handle the multi-class nature of the 

prediction task effectively. 
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Across all folds, there is remarkable consistency in the precision, recall, and F1-score 

metrics for different classes of injury severity (Minor Injury, Moderate Injury, Major 

Injury, and Fatal). This suggests that the models are maintaining stable performance 

across various subsets of the data. The consistency observed in both macro and 

weighted average metrics further highlights a balanced distribution of performance 

across different injury severity classes, enhancing the models' reliability in capturing 

the intricacies of each class. The lower precision and F1 scores observed in the 

categories of Minor and Moderate Injuries, despite a higher volume of data points, can 

potentially be explained by the utilization of Synthetic Minority Over-sampling 

Technique (SMOTE) during the training phase. SMOTE is a well-recognized strategy 

for addressing class imbalance, involving the generation of synthetic instances for the 

minority class to achieve a balanced dataset. Although this technique effectively 

augments the representation of under-represented classes, it may introduce 

complexities into the decision boundaries, potentially affecting the model's capacity to 

accurately differentiate between various severity classes [22].  

Table 9: Model evaluation metrics across the K-folds 

Model 

Evaluation 

Prediction accuracy 83.6% 

Avg. 

Precision 

Avg.  

Recall 

Avg.  

F1-score 
Cross-validation results 

Minor Injury 0.838 0.848 0.837 

Mean Accuracy: 0.9051 

(±0.0085) 

Mean Loss: 0.2836 

(±0.0269) 

Moderate 

Injury 
0.848 0.801 0.822 

Major Injury 0.97 0.973 0.972 

Fatal 0.972 1 0.985 
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Chapter 5 

CONCLUSION 

5.1 Conclusion of the study 

This study focuses on predicting the SUV involved pedestrian crash severity using 

ANN models. Different model architectures are explored, with varied parameters and 

augmentation techniques. Augmenting data with SMOTE consistently improves 

validation accuracy, addressing class imbalance. Activation functions, hidden layers, 

and epochs influence model performance, while SMOTE proves effective in 

enhancing predictive accuracy.  

The results of the analysis indicate a clear improvement over existing approaches, 

particularly in addressing class imbalance concerns. Models employing data 

augmentation techniques, such as oversampling and SMOTE, consistently 

demonstrated higher validation accuracy compared to those without augmentation. 

The ANN-6 model and the ANN-7 model, utilizing SMOTE augmentation, achieved 

validation accuracies of 89.68% and 90.06% respectively, surpassing the validation 

accuracies of non-augmented models, which were approximately 62%. 

The exploration of activation functions, hidden layers, and epochs revealed nuanced 

impacts on model performance. Activation functions like PReLU exhibited superior 

performance in certain model architectures, leading to improved validation accuracy 

and lower validation loss. The ANN-6 model and the ANN-7 model, both utilizing 
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PReLU activation, achieved validation losses of 0.3008, significantly lower than the 

losses observed in models employing ReLU activation, which ranged from 0.5880 to 

1.0790. 

The models show stable performance across K-folds, and their evaluation metrics 

show high accuracy, precision, recall, and F1-score. The confusion matrix highlights 

accurate classifications, particularly for minor and moderate injuries. The models 

maintain consistent performance across different injury severity classes, ensuring 

reliable predictions. 

In conclusion, the study integrates SMOTE into ANN models for crash prediction, 

addressing class imbalance and improving predictive accuracy. Descriptive statistics 

and correlation analysis provide insights into crash characteristics and relationships 

among variables. The improvements demonstrated by the model highlight the efficacy 

of this approach in accurately predicting pedestrian crash severity involving SUVs.  

Model results underscore the importance of architecture parameters and augmentation 

techniques, demonstrating the models' ability to accurately predict pedestrian crash 

severity and guiding the development of targeted interventions for safer roads. 

5.2 Future work 

In future work, further enhancing the predictive capabilities of the models could 

involve integrating additional datasets pertaining to pedestrian behavior, road 

infrastructure, weather conditions, and vehicle characteristics. By utilizing these 

diverse sources of information, the models can better capture factors influencing 

pedestrian crash severity, leading to more comprehensive and accurate predictions. 

Additionally, investigating methods to enhance interpretability of artificial neural 
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networks, such as feature importance analysis and model visualization techniques, can 

empower stakeholders and decision-makers to better understand the underlying factors 

driving the model predictions. This increased transparency and understanding of the 

model's decision-making process can foster trust and facilitate the implementation of 

targeted interventions aimed at improving pedestrian safety on roadways. 
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