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ABSTRACT 

Biometric studies over the years have made the usage of physiological traits in human 

authentication technologies popular around the world. More recent studies in this field 

have given rise to more reliable, faster and user friendly security systems. One of the 

relatively new area of this field is hand vein biometrics where vascular patterns of 

hands are used for human recognition. This has some advantages over other 

physiological traits such as inherent spoof-proof attribute, lack of occlusion and 

noninvasiveness. Additionally, vein patterns can be captured from different parts of 

the hand, which could in turn be used in a multimodal system. Multimodal systems are 

generally preferred because they ensure a more robust and secure system compared to 

unimodal frameworks.  

In general, this study introduced a hand vein database named FYO with multiple hand 

vein datasets for palm, dorsal and wrist vein for the purpose of implementing hand 

vein multimodal biometric systems. Subsequently, feature descriptors such as 

Histogram of Oriented Gradients, Gabor filter and Binarized Statistical Image 

Features, and Convolutional Neural Network models such as AlexNet, VGG-16, 

VGG-19 and ResNet-50 are applied to show the efficiency of the proposed 

methodologies. Varieties of architectures for improving the robustness of hand vein 

recognition systems in both unimodal and multimodal forms are proposed in this study. 

Additionally, all experiments performed with the datasets acquired are similarly 

carried out on datasets from publicly available databases such as Badawi, Bosphorus, 

PUT, Tongji Contactless Palm Vein database and VERA, while the performances of 

the proposed systems are effectively compared to similar studies in the field. 
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ÖZ 

Yıllar boyunca yapılan biyometrik çalışmalar, insan kimlik doğrulama teknolojilerinde 

fizyolojik özelliklerin kullanımını dünya çapında popüler hale getirmiştir. Bu alandaki 

daha yakın tarihli çalışmalar, daha güvenilir, daha hızlı ve kullanıcı dostu güvenlik 

sistemlerine yol açmıştır. Bu alanın nispeten yeni olan alanlarından biri, ellerin 

vasküler örüntülerinin insan tanımasında kullanıldığı el damar biyometrisidir. Bunun, 

doğal sahtekarlığa karşı koruma özelliği, tıkanıklık olmaması ve invaziv olmama gibi 

diğer fizyolojik özelliklere göre bazı avantajları vardır. Ek olarak, elin farklı 

bölgelerinden damar desenleri yakalanabilir ve bu da çoklu bir sistemde kullanılabilir. 

Çok modlu sistemler, tek modlu çerçevelere göre daha sağlam ve güvenli bir sistem 

sağladıkları için genellikle tercih edilir. 

Genel olarak, bu çalışma, el damarı için çoklu biyometrik sistemlerini uygulamak 

amacıyla avuç içi, el sırtı ve bilek damarı için çoklu el damarı veri kümeleriyle FYO 

adlı bir el damarı veritabanını sunmuştur. Daha sonra, Yönlendirilmiş Gradyanların 

Histogramı (HOG), Gabor filtresi ve İkili İstatistiksel Görüntü Öznitelikleri (BSIF) 

gibi öznitelik tanımlayıcıları ve AlexNet, VGG-16, VGG-19 ve ResNet-50 gibi 

Evrişimli Sinir Ağı (CNN) modelleri uygulanmıştır. Bu çalışmada hem tek modlu hem 

de çok modlu formlarda el damarı tanıma sistemlerinin sağlamlığını geliştirmek için 

çeşitli mimariler önerilmiştir. 

Ek olarak, elde edilen veri setleri ile yapılan tüm deneyler, Badawi, Bosphorus, PUT, 

Tongji Temassız Avuçiçi Damar veri tabanı ve VERA gibi kamuya açık veri 

tabanlarından alınan veri kümeleri üzerinde benzer şekilde gerçekleştirilirken, 
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sistemlerin performansı literatürdeki benzer çalışmalarla etkili bir şekilde 

karşılaştırılmıştır. 

Anahtar Kelimeler: Çok modlu biyometri, Öznitelik kaynaşımı, El damarı tanıma, El 

sırt damarı, Avuç içi damarı, Bilek damarı, CNN modelleri, BSIF. 
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   Chapter 1 

1. INTRODUCTION 

  Background 

Biometric systems and technologies have become very popular and successful in 

recent times for person recognition and authentication and there have been several 

types of physiological modalities/traits proposed and implemented with ranging level 

of efficiency, ease of use, user’s willingness to use them and robustness in the face of 

alterations such as rotation, color changes due to cosmetics, and impediments [1]. 

Multimodal biometric systems have become the favored type of these systems because 

of its capability to deal with most of the issues around biometrics and physiological 

traits. For example, they are more likely to be spoof-proof because of the high level of 

effort it will take to acquire and present multiple fake parts of the body of the same 

person. They are also more robust and effective in comparison to unimodal systems as 

they produce better results in the face of anomalies such as orientation, rotation, 

contrast and color [2], this has consequently led to significant attention in the hand 

vein field of biometrics.  

Figure 1.1 shows the network of veins on human hands; it can be seen that patterns 

can be obtained from different parts of the hand with proper devices. Hence, palmar 

vein patterns which consists of common palmar digital arteries and superficial palmar 

arch, dorsal vein pattern made up of dorsal metacarpal veins, dorsal venous arch and 

intercapitular veins and wrist vein pattern composed of intermediate antebrachial vein 
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and perforating veins can be identified and cropped for human identification. Due to 

the location of the vein, under the skin, it has an innate feature which makes it 

relatively immune to spoof attack [3]. Additionally, the evolution of low-cost devices 

that have the ability to effectively capture vein patterns from different area of the body 

in a fast manner has also made hand vein favored in authentication systems requiring 

high security. 

 
Figure 1.1: Human hand venous network. Adapted from [4]. 

A hand vein database composed of three datasets; dorsal, palm and wrist vein, was 

introduced in this study. The data were acquired with the aid of a relatively cheap 

medical device for vein detection, equipped with near infrared-light source camera. 

The images were acquired from willing volunteers who were mainly staff and students 

of Eastern Mediterranean University. In literature, there is no multimodal vein 
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database including the aforementioned three traits available and a few unimodal vein 

databases exist. After the construction of the multimodal vein database, person 

identification by employing robust feature extractors, such as Binarized Statistical 

Image Features (BSIF), Gabor Filters, and Histogram of Oriented Gradients (HOG), 

is carried out using the datasets as well as other available datasets for proper 

comparison.  

Similarly, individual hand vein traits were used for unimodal biometric systems both 

with handcrafted feature extraction methods and deep learning models. The 

experiments include, a palm vein recognition system where a texture-based descriptor 

(BSIF) was combined with a deep learning based model, a wrist vein based biometric 

system where texture-based feature descriptors (BSIF, HOG and 2D Gabor filter) were 

combined at the decision level, dorsal hand vein based recognition system using score-

level combination of overlapping regions as well as comparison with other fusion 

algorithms. Another experiment is the analysis of color models being utilized in hand 

vein recognition systems, and a proposal to fuse multiple color space channels for a 

more robust palm vein recognition system, among others. 

 Thesis Contribution 

This study established FYO database, a publicly available multimodal vein database 

named after the main contributors of the project. The database consists of three 

datasets; palm, dorsal and wrist vein, thereby providing valuable data to explore and 

aid research work in the area of hand vein patterns as traits in multimodal 

authentication systems. Currently available hand vein databases were also reviewed in 

this study. 
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Consequently, the study proposed and implemented different unimodal and 

multimodal hand vein biometric systems, combining the strength of multiple traits as 

well as multiple algorithms (handcrafted methods and deep learning models) in 

different studies to enhance and improve hand vein biometric systems. 

 Thesis Layout 

The first chapter presents what encouraged this study and an overview of experiments 

in this thesis. Chapter 2 gives a review of related research works especially in the field 

of hand vein biometrics as well as datasets that have been established for the purpose 

of biometric research. Chapter 3 provides a review of hand vein databases available in 

literature and compared them to FYO database established in the course of this study, 

while Chapter 4 gives proposed methods for human recognition using hand vein 

patterns. Chapter 5 shows results of performed experiments in this study and related 

discussions while Chapter 6 discusses the conclusions drawn from our studies and 

proposed future direction of our work. 
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   Chapter 2 

2. LITERATURE REVIEW 

Several research works in biometrics have been carried out over the years, resulting in 

numerous algorithms for biometrics, from face recognition and identification studies 

[5] to palm print and finger print recognition systems [6]. There are also iris 

recognition systems [7], ear pattern recognition systems [8] and hand shape and 

geometry recognition systems [9] among numerous studies that exist in literature. 

 Hand Vein Biometrics 

This study focused on traits that can be found in different areas of the hand in the form 

of vein patterns. We identified that vein patterns can be captured from four parts of the 

hand; palm, finger, wrist vein and back of the hand (dorsal).  These characteristics 

represent four different hand vein biometric traits that can be employed for human 

recognition. Three of these traits were captured and used in this study. 

2.1.1 Dorsal Vein  

Although hand vein biometrics is relatively new, there have been numerous research 

work in this area. Some studies in dorsal vein biometrics include; texture features and 

shape clue combination for hand dorsal vein pattern recognition [10], four alternative 

feature sets fusion on hand vein images for person identification [11], hand vein 

authentication using line segments extracted using Hough transform matched by 

modified Hausdorff distance [12], and improvement of smartphone recognition 

technology with dorsal vein pattern extracted using oriented FAST and rotated BRIEF 

(ORB) algorithm [13].  
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Other studies include a multimodal system which combines finger vein and dorsal vein 

features using monogenic local binary pattern and Improved Gaussian Matched Filter 

(IGMF) for human recognition [14], dorsal vein recognition through fractal technique 

computed by box counting method for tissue properties identification and SUAS 

database acquisition [15], and three trait multimodal system which fuses dorsal, palm 

and wrist vein patterns combining both Binarized Statistical Image Features and a 

CNN-based model [3]. Samples of hand dorsal images acquired from different datasets 

that have been used in related studies are shown in Figure 2.1.  

 
Figure 2.1: Samples of acquired hand dorsal vein and their corresponding ROIs 

2.1.2 Palm Vein  

Palm vein as a physiological modality is the most common in hand vein biometrics. 

Studies in this field include; non-vein pixels determination using a bank of directional 

filters to obtain line-based features from palm images [16], graphic depiction of palmar 

vein patterns where vein patterns are seen as blocks and then distance between blocks 

are viewed as edges, where the blocks are segmented with the aid of a randomly 

generated value which employees a key given to ensure a secure system [17]. Another 

 



7 

 

related study is a palm vein recognition system which applies competitive coding 

algorithm to multi-scale LBP, and optimized by ant colony optimization allowing the 

system work perfectly even with noisy images or low quality images [18].  

There has also been multiple review of the processes used in palm vein authentication 

and recognition systems especially methods for classification and feature identification 

and extraction [19] and compared to similar modalities such as finger vein and finger 

print [20]. Samples of palm images available different datasets that have been used in 

related studies are shown in Figure 2.2. 

 
Figure 2.2: Samples of acquired palm vein images and corresponding ROIs 

2.1.3 Wrist Veins  

Although wrist vein modality is least used vascular trait for human recognition, 

numerous research works in this area exist as well, including; wrist vein feature 

extraction aided by spatial and orientation attributes of vein networks [21], using scale 

invariant algorithms such as SIFT, SURF and ORB for wrist vein recognition [22]. 

This is because the wrist also has an easily identifiable neurovascular structure, 

providing sufficiently distinct anatomical features that can be used for identification 
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and authentication. The location of the wrist in the body and since it is relatively 

usually free from makeup and cosmetics, it is an easily accessible part of the body 

[23]. 

Wrist vein has also been fused with other traits to obtain more robust identification 

systems, such as combining wrist vein with palm vein pattern and using 2D Gabor as 

feature extraction algorithm [24], and combining wrist vein features from both right 

and left hands of volunteers through a combinatory algorithm which obtains two 

binarized images one based on local thresholding and another by global thresholding, 

and then multiply them [25] among others. Furthermore, with the abundant use of 

smartphones today, the availability of ever improving imaging features, and biometric 

authentication being incorporated, research works that employ wrist vein pattern in 

smartphones for person identification with the aid of infrared camera has been 

proposed [26]. Samples of wrist images acquired from different datasets that have been 

used in related studies are shown in Figure 2.3. 

 
Figure 2.3: Samples of acquired wrist vein images and their ROIs 
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   Chapter 3 

3. HAND VEIN DATABASES 

Datasets are an essential part of biometric research, such that their availability or lack 

of it determines how far a research study could go. We therefore established a hand 

vein database in this study comprising of three distinct datasets (hand dorsal, palmar 

and wrist); the details are given in this chapter. We also examined publicly available 

hand vein databases in this chapter, especially those that are relevant to this study. 

 Database Acquisition 

The images of the database were obtained using a cheap medical device for vein 

detection. The device has a 1/3 inch infrared complementary metal-oxide 

semiconductor camera (CMOS) bounded by twelve infrared LED as light sources. It 

was designed with the ability to detect veins in any place on the human body, weight, 

age and skin color notwithstanding. The acquisition process was carried out using a 

laptop connected to the vein finder with a USB cord. Therefore, captured images can 

be viewed and saved in PNG format of size 800 x 600 x 24. 

The device comes with an adjustable holder capable of adjusting up to 360 degree 

angles clamed unto a stand that equally adjustable in length. However, there is a need 

for some uniformity in the acquisition process for consistency, hence a fixed position 

was adopted throughout the acquisition process as shown in Figure 3.1. The acquisition 

process lasted for about a month. The height of the camera from the ground was 

maintained at 35cm, while three hand guides (7cm high) were constructed, one for 
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each hand vein modality. The guides are necessary in order to reduce rotation of the 

hand and guide users more easily. Consequently, volunteers’ hands were about 26-28 

cm from the sensor, depending trait and hand size.  

 
Figure 3.1: Data acquisition process 

The acquisition of the three modalities was done successively in less than one minute. 

There are approximately 10 seconds apart from each acquisition, while a second 

session starts right after the first. Figure 3.2 shows samples of images captured using 

the described setup. 

 
(a)                                     (b)                                           (c) 

Figure 3.2: Samples of acquired images (a) dorsal, (b) palmar, (c) wrist 
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A total of 160 volunteers mainly from Turkey, North Cyprus, Nigeria, and from other 

neighboring Middle Eastern and African countries participated in the acquisition 

process. We acquired sample images from both hands of every subject in two 

independent sessions with one image per session from each hand and trait. This sums 

up to 4 images per trait and 12 images per individual. The total images in each dataset 

is 640 giving a total of 1940 samples in the database. The age range of the volunteers 

is shown in Figure 3.3, where it can be seen that it ranges from 17 to 63 and male to 

female ratio is 69.27% to 30.73% representing 111 to 49 individuals since there are 

160 subjects [3]. The database is publicly available to researchers only upon request 

at a webpage provided by the university: https://fyo.emu.edu.tr/, a screenshot of the 

website is provided in Appendix A. A sample of the application form for the database, 

as available on the website, is shown in Appendix B. 

 
Figure 3.3: Volunteers' age distribution 

https://fyo.emu.edu.tr/
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 Related Databases 

Hand vein databases with similar features as our database were reviewed in this 

subsection. The aim is to examine how they can be used in our multimodal biometric 

experiments while also comparing them to our database.  

 PUT hand vein pattern database was introduced in 2011; the first publicly 

available dataset for vein recognition. It consists of palm and wrist vein 

datasets with a total of 2400 samples. The data were obtained from both left 

and right hands of 50 individuals, adding up to 100 unique hand vein patterns 

for both palm and wrist vein [27]. 

 Tongji contactless database is a relatively sizeable database composed of palm 

vein and palm print images obtained from 300 subjects which include 108 

females and 192 males. Their ages ranged from 20 to 50 years. The acquisitions 

were carried out in two sessions where 10 images per trait were captured from 

both left and right hands, respectively. Consequently, the database is composed 

of a total of 12,000 images captured from 300 people [28].  

 VERA palm vein database was established at Idiap Research Institute in 

Martigny and Haute Ecole Spécialisée, Switzerland. It has a total of 2200 

samples taken from 110 different volunteers. The data were taken in 2 sessions 

and in 2 different locations, where 5 samples were acquired from each hand of 

participants. The average age of volunteers in the database was 33 years, 

ranging between 18 and 60 years [29]. 

 Bosphorus hand vein database contains 1200 left hand images from 100 

volunteers taken in 4 sessions to represent different physical conditions that 
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human hands could be subjected to before presenting the hand for recognition 

purpose in real-life. The activities include: 

i. carrying a 3 kg bag for about a minute before image acquisition,  

ii. squeezing an elastic ball by opening and closing repeatedly for about a 

minute  

iii. placing an ice pack on the hand to cool it 

iv. Normal condition. 

Three sample images were taken per subject in each session [11].  

 Badawi database was taken from 50 volunteers but from both hands of each 

person, coming to 100 hand vein classes. It has a total of 500 sample images, 

acquired by taken 5 images from both left and right hands of indiviuals at 

varying intervals [30]. 

 SUAS hand vein database was collected at Sakarya University of Applied 

Sciences, Turkey. The volunteers included 80 male and 75 females and the 

images were taken using infrared camera. There are a total of 919 sample 

images comprising of 3 samples per hand [31]. 

 CASIA Multi-Spectral Palmprint Image Database has a total of 7200 palm vein 

sample images obtained from 100 volunteers. The samples were captured in 

two sessions where six palm images were captured simultaneously with six 

varying electromagnetic spectrums (460 nm, 630 nm, 700 nm, 850 nm, 940nm 

and white light) [32]. 

Table 3.1 shows a comparison of other publicly available hand vein databases with 

our acquired database. It shows that majority of hand vein databases have only one 
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vein trait except PUT and our database (FYO) which are composed of two and 

three traits, respectively. 

Table 3.1: Hand vein databases comparison 

Database Badawi Bosphorus PUT SUAS Tongji VERA FYO 

Subjects 50 100 50 155 300 110 160 

Male/Female -- 58/42 -- 80/75 192/108 70/40 111/49 

Left/Right 

hands 

2 2 2 2 2 2 2 

Sessions 1 4 3 1 2 2 2 

Samples per 

session 

5 3 4 3 10 5 1 

Total number 

of samples 

500 1575 2400 919 12000 2200 1920 

Dorsal √ √ -- √ -- -- √ 

Palm -- -- √ -- √ √  √ 

Wrist -- -- √ -- -- -- √ 
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   Chapter 4 

4. METHODOLOGY 

The objective of this thesis is to propose multimodal biometric methods where hand 

vein patterns are used as biometric traits.  The study explored different ways of 

combining physiological traits and feature extraction methods in a view to propose and 

implement more robust biometric authentication systems. Hence, various multimodal 

set-ups were examined in the study, including multimodal authentication system which 

combines features extracted from palm vein, dorsal vein and wrist vein. Hand dorsal 

vein authentication system proposed segments images into five overlapping regions 

and combines CNN models’ prediction from each of the segments. Other proposed 

methods use only one biometric trait but combine multiple algorithms. This include 

palm vein recognition system which combines a texture-based descriptor method with 

a CNN model while another palm vein biometric system combines three CNN models 

at the decision level. A third system based on palm vein explored different color 

models by combining the most contributing channel from each of them for a more 

reliable authentication system. The wrist vein system combines decisions from three 

texture-based descriptors. The feature extraction methods and the several proposed 

systems are explained in the following subsections. 

 Methods Used 

Feature extraction methods used in this study can be categorized into two types: 

handcrafted methods (mainly texture based feature extraction methods including 

HOG, Gabor and BSIF) and deep learning methods (where CNN models such 
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AlexNet, ResNet-50, VGG-16 and VGG-19 were modified to reduce training time). 

The algorithms are explained in the following subsections. 

4.1.1 Handcrafted Descriptors 

Handcrafted descriptors are feature descriptors where the set of filters have been hand-

picked by the designers; they rely on the knowledge of experts to define a common 

way of extracting features from images. They can be grouped into different types based 

on their construction and usage, ranging from point-wise-based, graph-based, and 

texture-based, among others. A few of texture-based descriptors were used in this 

study which are explained below. 

 BSIF 

Binarized Statistical Image Features (BSIF) is a texture-based feature descriptor 

originally proposed for face recognition and texture classification. Local Binary 

Patterns (LBP) and Local Phase Quantization (LPQ) descriptors are the 

foundation/basis on which this method was built. LBP and LPQ model the 

neighborhood of every pixel as a binary code which are gotten filtering the image with 

a set of manually constructed linear filters. The feedbacks of the filters are 

subsequently binarized by quantization algorithm. Hence, each bit of the code string 

corresponds to responses of different filters after it has been binarized. These methods 

have shown to be effective, recording outstanding performance in several pattern 

recognition studies. 

On the other hand, a bank of filters in BSIF were automatically obtained from a set of 

natural images as oppose to the manually crafted filters used in LPQ and LBP [33].  
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 M-BSIF 

The filter bank in BSIF is made up of filters of different odd square sizes, ranging from 

5×5 to 17×17, meaning that there are seven different sizes for each filter. Additionally, 

there are also varying length of the filters, ranging from 5 to 12. These different sizes 

and depth gives a total of 57 filters in the BSIF bank. However, in this study, we 

proposed choosing five filter sizes that performed best; this would be determined by a 

preliminary studies to identify the best performing filters. Subsequently, filters with 

12 depth was chosen, and the five highest sizes. M-BSIF is therefore described as a 

BSIF feature description/extraction technique that uses five kernels. 

 Gabor Filter 

Gabor filter is a linear filter which got its name from Dennis Gabor, its originator. It 

has been shown to effectively analyze texture of images and favored for detecting 

edges and shapes. A band-pass spatial filter with the ability to choose both spatial 

frequency and orientation is known as a 2-D Gabor filter. Its sinusoid wave impulse 

response function is surrounded by a Gaussian function with oscillation orientation 

and frequency. 

The result of filtering an image with 2D Gabor filters is a complex value of imaginary 

and real parts. The process is carried out by convolving through sample image using 

both the imaginary components responses to kernels and the real components [34, 35]. 

 HOG 

Histogram of Oriented Gradients (HOG) is another common texture based descriptor 

favored for objects identification. The algorithm counts the occurrences of gradient 

orientation within a portion of an image, this is done throughout the image. The values 

of gradients are first generated using horizontal and vertical one dimensional masks. 

The second step is the grouping the gradients into units/cells and obtaining the 
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histograms of all units. Then determine the orientation of each unit by rated polls 

drawn from every pixel in the unit according to the gradient values obtained earlier. 

Finally, the strength of gradients are normalized locally, this is carried by 

segmenting/categorizing units in the same neighborhood together into larger blocks. 

With the help of this normalization step, changes illumination, contrast and others are 

resolved. The descriptor is developed by joining the elements of the histograms of 

normalized cell from each of the identified blocks [36, 37]. 

4.1.2 Deep Learning Methods 

A number of popular and successful CNN models were used in this study, namely 

AlexNet, VGG-16, VGG-19 and ResNet-50. They are explained below along with the 

changes made. 

 AlexNet 

AlexNet is a CNN model made up of five convolution layers and each of these layers 

are followed by an activation function called ReLU, and Batch Normalization and 

Maxpool layers. The original structure is composed of different filter sizes in different 

convolution layer, between 3 x 3 and 11 x 11 kernels. The number of filters in the 

layers range from 96 to 384. A Dropout layer, a Fully-connected layer and Softmax 

function ends the structure after the five layers [38].  

In this study, however, the number of kernels in each convolution layer has been 

reduced drastically to greatly decrease computation time involved in the training 

process while still maintaining the efficiency of the model. The resultant architecture 

is presented in Figure 4.1. In addition, 3 x 3 filter size was upheld for each 

convolutional layer all through the model in this experiment as oppose to different 
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kernel sizes used in the original AlexNet model. Table 4.1 shows the level of 

modification in the modified version in comparison with the original model. 

Table 4.1: AlexNet CNN model filter reduction  

Layer Original Modified 
Reduction 

percentage 

First layer 11 x 11 x 96 3 x 3 x 32 66.67% 

Second layer 5 x 5 x 256 3 x 3 x 64 75.00% 

Third layer 3 x 3 x 384 3 x 3 x 128 66.67% 

Fourth layer 3 x 3 x 384 3 x 3 x 128 66.67% 

Fifth layer 3 x 3 x 256 3 x 3 x 64 75.00% 

 

 
Figure 4.1: Modified AlexNet structure 

 VGG-16 

VGG-16 is another CNN model which was introduced in 2014 at the Imagenet 

competition. It has sixteen convolution layers corresponding to its name. Therefore, 

the structure has a large network, regarded as one of the high achieving CNN models. 

All its convolutional layers has 3 x 3 kernels and ReLU activation. However, 

convolutional layers, are grouped into five layers as shown in Figure 4.2 where the 
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first layer is made up of 2 convolution layers, the second layer is also made up of 2 

convolution layers, while the third, fourth and last layers have 3 convolution layers 

each). Each layer is followed by Batch Normalization and Maxpool layers of size 2 x 

2 and two strides. At the end, there are a couple of Fully-connected layers, as well as 

a Softmax function which is used to normalize the output; setting them to between 0 

and 1. The number of filters in convolution layer range from 64 to 512 [39]. 

 
Figure 4.2: Modified VGG-16 architecture 

 VGG-19  

Similar to VGG-16, the number 19 in VGG-19 corresponds to the nineteen 

convolutional layers that exist in the model. It has all the attributes of VGG-16 but one 

additional convolutional layer has been added to third, fourth and fifth layers of the 

model as shown in Figure 4.3. The same filter reduction as in the aforementioned 

VGG-16 model is applied to this model as well. Table 4.2 presents the changes in the 
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number of kernels both in the modified version of VGG-16 and VGG-19 models 

proposed in this study as well as the original [40]. 

Similar to AlexNet, however, the original VGG-16 and VGG-19 were modified in this 

study by reducing the amount of filters in every layer as shown in Figure 4.2 and Figure 

4.3, respectively, in order to decrease training time while still maintaining the 

efficiency of the CNN model. Table 4.2 shows the percentage reduction in filter per 

layer. 

Table 4.2: VGG-16 and VGG-19 filter reduction 

Layer Original Modified 
Reduction 

percentage 

First layer 

Second layer 

Third layer 

Fourth layer 

Fifth layer 

64 

128 

256 

512 

512 

32 

64 

96 

128 

128 

50.00% 

50.00% 

62.50% 

75.00% 

75.00% 

 

 
Figure 4.3: Modified VGG-19 architecture 
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 ResNet-50 

ResNet-50 is another CNN model, a variant of the original model called Residual 

networks (ResNet). It is made up of blocks (Convolution and Identity blocks) built to 

address the gradient vanishing problem of deep learning models, giving it a rather 

different structure compared to AlexNet and VGG. The structure is characterized by 

shortcuts to jump over some layers which give them the ability to train really deep 

networks without caring about vanishing gradient. The structure of the model is 

represented in Figure 4.4. 

Each Convolution block is made up of two parallel lines of convolution layers 

concatenated at the end. The first line is composed of three sequential convolution 

layers followed by ReLU activation and batch normalization. On the other hand, the 

second line is made up of one convolution layer as shown in Figure 4.5. Similarly, the 

identity blocks are made up of a line of three sequential convolution layers with ReLU 

activation and batch normalization in each layer. However, the second line in this case 

only concatenates the initial input with the output of the first line as shown in Figure 

4.5 [41, 42]. 

  

 
Figure 4.4: ResNet-50 architecture 
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Figure 4.5: Convolution block and identity block of ResNet-50 

Similar to AlexNet and VGG, the number of kernels per convolution layer was also 

decreased in this model. The changes made are shown in Table 4.3 where it can be 

seen that at least 50% reduction has been made at each stage of the model from stage 

2 to stage 5. 

Table 4.3: Filter reduction per stage in ResNet-50 

Stage 
Original 

Filters 1,2,3 

Modified 

Filters 1,2,3 

Percentage 

Reduction 

2 64, 64, 256 32, 32, 128 50% 

3 128, 128, 512 32, 32, 128 75% 

4 256, 256, 1024 64, 64, 256 75% 

5 512, 512, 2048 128, 128, 512 75% 

 

 Proposed Multimodal Biometric Systems 

Multimodal biometric systems combines the evidence or information presented by 

more than one sources of information in order to deal with shortcomings of unimodal 

systems. Unimodal biometric systems are often confronted by varieties of issue such 
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as noisy data, intra-class variations, non-universality, spoof attacks, and high error 

rates. These can be addressed by employing a multimodal system in place of unimodal 

system [42]. 

One common pre-processing step is the region of interest (ROI) specification and 

trimming. This is because hand vein sample images in all modalities are usually taken 

along with some parts of the background/surrounding/place-holder. Identifying and 

cropping out the ROI in other to eliminate the background and other areas of the hand 

that are not required in this study, such as fingers, upper parts of the hand. A semi-

automatic process is used for this process. It involves identifying the best fitting 

dimension that best fits the ROI for all samples and employing it to crop every image. 

Furthermore, there may be samples that are badly cropped, the samples are checked to 

remove those that are badly cropped. The process of identifying the best fit dimension 

and cropping is repeated for this set. This continues till all images are trimmed as 

desired. 

The following sub-sections gives three types of multimodal systems proposed in this 

study in details. Firstly, combination of multiple traits (that is, vein patterns from 

palmar, dorsal and wrist areas of the hand) and combining features from different 

segments of an image are explained in section 4.2.1. Secondly, section 4.2.2 explains 

methods of combining feature descriptors, such as combining CNN models and 

handcrafted descriptors for palm vein recognition, fusion of handcrafted methods in 

wrist vein biometrics and combination of scores from three CNN models for palm vein 

biometrics. Lastly, another architecture which combines channels of different color 

models for palm vein biometrics is explained in section 4.2.3. 
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4.2.1 Multi-Traits 

Most multimodal biometrics combine features of multiple traits to obtain a more robust 

system, such as combining face features and iris features, or fusing palm print and 

finger print features etc. either at the feature level, score level or at the decision level. 

Combination of feature from the palm vein, wrist vein and dorsal vein was carried out 

in this study in two separate experiments. A third experiment in this category fuses 

features from defined segments of an image; only one biometric is used in a multi-

modal structure. 

 Fusion of Dorsal, Palm and Wrist Vein Biometrics 

Dorsal vein, palmar vein and wrist vein features are combined in two separate 

experiments. The first is illustrated in Figure 4.6, where hand-crafted feature 

descriptors, namely BSIF, Gabor and HOG, were used to obtain features from hand 

vein images from three parts described in this study: dorsal vein, palm vein and wrist 

vein. The features of these separate areas are combined before being used to 

recognition, depicting a Feature-Level Fusion process. 

 
Figure 4.6: Multimodal structure for texture-based feature descriptors  
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The second method in this category is depicted in Figure 4.7 where same hand vein 

images as the first method are used (dorsal, palm and wrist). However, deep learning 

methods; AlexNet, VGG-16 and VGG-19, were used for feature extraction in this case. 

Furthermore, decision level fusion was used in this case for combining the traits 

together. 

 
Figure 4.7: Multimodal CNN model structure 

 Hand Dorsal Vein Recognition System 

The proposed system uses five overlapping vein image regions as used in the palm 

vein recognition experiment. It trains these regions separately by a CNN architecture 

and then combines the obtained CNN predictions using score-level fusion. The steps 

are illustrated in Figure 4.8. Firstly, it involves pre-processing stage where input 

images are converted into required dimension, and then, the images are enhanced by 

removing noise after cropping out background areas. The overlapping areas of the 

images are identified as in the previous experiment and each of them is used in its 

corresponding CNN training module, followed by classification module which 

generates five different sets of scores for each test sample. These scores are added 
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together and they are employed in the determination of the class a test sample belongs 

to.  

 
Figure 4.8: Dorsal vein recognition using separately trained five overlapping regions 

As part of pre-processing, ROIs are re-sized to 214 x 214 pixels, while a region is 

defined as 128x128 pixels. Therefore, the overlapping regions are 128x128 kernels 

shifted to the corners of the image, that is, top-left, top-right, bottom-left and bottom-
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right corners of the ROI images. However, the middle overlapping region is 128x128 

pixels centered at the center of the ROI image. Image enhancement using histogram 

equalization is also carried. Histogram equalization is a well-known image 

enhancement technique that can be used to improve contrast in images. This can 

potentially remove noise from images, and make vein pattern more distinctive. 

In the last phase of pre-processing stage, ROI images are categorized as training and 

test sets. Then from training images, for each overlapping region type, namely; Top-

Left (TL), Top-Right (TR), Bottom-Left (BL), Bottom-Right (BR) and Middle (M), a 

training set is formed. Hence, there are five training sets which are Training-set TL 

(for TL region), Training-set TR (for TR region), Training-set BL (for BL region), 

Training-set BR (for BR region) and Training-set M (for M region). Class labels are 

assigned to every region in the training set. 

Training of the system is done with the AlexNet based CNN model described in the 

previous session. Datasets used were from Badawi, Bosphorus and FYO databases. 

However, the sample size of each of the above named datasets are too small for training 

in deep learning. Training samples generally perform better when they are about 5000 

samples or more. Therefore data reinforcement was performed using Keras data 

generator which creates new images using parameters such as varying zoom, height 

and width shift, brightness adjustment, and applying slight rotation on the original 

images. Consequently, the datasets used for testing the CNN models were organized 

as below: 

 Badawi: 11 new images were generated for each sample in the original dataset 

(500 images, 5 samples per person), summing up to an aggregate of 5500 
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images, 5000 of which were for training (about 91 percent), and 500 were used 

as test samples.  

 Bosphorus: 5 new images were generated for each sample in the original 

dataset (1200 images, 12 samples per person), summing up to a total of 6000 

images with 60 samples per subject. 90 percent of the augmented dataset was  

 FYO: The generated dorsal vein dataset already available in database was used. 

It has 6400 images (20 samples per subject). Similarly, 90 percent of the dataset 

was for training, while remaining was used to test the system. 

4.2.2 Multi-Descriptors 

Another type of multimodal system structure is where feature extraction algorithms or 

methods are combined instead of features. The following subsections present proposed 

multimodal biometric systems of this type, including two palm vein systems where 

one combines a CNN model with features extracted from defined overlapping 

segments of the image by a handcrafted descriptor (BSIF) while the second one 

combines three CNN models (AlexNet, VGG-16 and VGG-19) at the decision level. 

Other systems include a dorsal vein system which combines five CNN models 

obtained from five overlapping regions at the score level and a wrist vein system which 

combines decisions of three texture-based descriptors (M-BSIF, HOG and 2D Gabor 

Filter). 

 Palm Vein Recognition System 

A palm vein biometric recognition method that combines a texture-based method with 

a CNN-based method was proposed in this study. The structure is presented in Figure 

4.9. The texture-based system obtains features from five overlapping regions of ROI 

of palm vein sample images using BSIF described in the previous subsection. The 
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scores are obtained by matching the training sets with test sets which are then fused in 

this study to obtain one of the decisions of the system.  

 
Figure 4.9: Palm vein recognition which combines BSIF in five regions with CNN 

models 
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The sub-regions are defined as middle region, top-left corner region, top-right corner 

region, bottom-left corner region, bottom-right corner region similar to the system in 

section 4.2.1.2. The ROI image is first resized to 500 × 450 pixels while each region 

is defined as 300 × 250 pixels. The middle region is therefore a 300 × 250 pixels box 

centered at the middle of the image. The other four regions are windows of 300 × 250 

pixels pushed to the top-right, top-left, bottom-right and bottom-left corners of the 

ROI. Match scores of the regions are fused using score-level fusion to obtain a single 

match score vector which is employed in classification process to classify test samples. 

The second method is a CNN model: AlexNet. The model is trained to obtain the 

second decision. The final decision of the system is achieved by combining both 

decisions gotten above by a Weighted OR Rule. Every decision outputs either true 

recognition or false recognition. A true decision is assigned 1, while false decisions 

get 0 weight. Subsequently, the weights are added and measured a threshold of 0.9 to 

arrive at the final decision of the system.  

Figure 4.10 shows sample palm vein images from different datasets used in the 

experiment, namely; CASIA, FYO, PUT, VERA and Tongji palm vein datasets. 

 
Figure 4.10: Sample palm vein images from different database and corresponding ROI 
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 Wrist Vein Recognition System 

This system integrates the fortitude of three different common methods, M-BSIF, 2D 

Gabor and HOG that are all texture-based feature descriptors. This is because texture 

descriptors are relatively prominent in biometric studies with numerous studies 

attesting to their efficiency. The implementation and validation of this system was 

performed on two datasets from FYO and PUT databases. The system is presented in 

Figure 4.11 where three methods were combined. The structure is made up of three 

phases; pre-processing, feature extraction, and algorithm combination.  

In the preprocessing phase, the ROI is obtained. The second phase is the feature 

extraction processes. It include separate feature extractions by M-BSIF, that is BSIF 

with multiple filters described in subsection 4.1.2, 2D Gabor and HOG. However, in 

the case of 2D Gabor, histogram is performed pro to feature extraction in order to 

increase the image contrast, thereby making features more easily observable. 

Third phase of the system is the Decision-Level Fusion and classification of sample 

tests. The three decisions are obtained at the phase, Decision I from M-BSIF, Decision 

II from 2D-Gabor and Decision III from HOG. Weight of 1 is given to correct 

recognition and incorrect recognition gets 0 in each of the methods. This brings the 

weights range for each sample to between 0 and 3. Therefore a threshold of 1.9 is fixed 

to reach a final decision for the system. FYO and PUT wrist vein datasets were used 

in this study. 
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Figure 4.11: Wrist vein authentication system using multiple texture-based feature 

descriptors 

 Palm Vein Recognition System with CNN Models 

This study combined three CNN models, namely, VGG-16, VGG-19 and AlexNet, 

using the modified versions presented in the previous section. This palm vein 

recognition system was experimented on three palm vein datasets obtained from 

VERA, PUT and FYO databases. The structure of the system is shown in Figure 4.12. 
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The system involves acquiring three separate decisions, one for each CNN models 

used; Decision I comes from VGG-16, Decision II from VGG-19 while Decision III 

is from AlexNet. A binary results of either True or False is expected for each of the 

models. Hence, weight of 1 is given to correct recognition and incorrect recognition 

gets 0. All weights are summed up per test sample. Therefore, in the final decision, 

weights 2 and 3 are given True as the overall outcome of the system, while False is for 

weights 0 and 1. 

Similar to the previous experiment, however, there is a need for data augmentation 

using Keras data generator in order to increase sample images. The sample images 

were increased to 6400 samples in FYO, 6000 samples in PUT and 5500 samples in 

VERA. Subsequently, we organized test-set and training datasets as below: 

 FYO: 5760 images in the training set (18 images per individual), Test-set: 640 

(2 images per individual) 

 PUT: 5400 images in the training set (54 images per individual), Test-set: 600 

(6 images per individual) 

 VERA: 4950 images in the training set (45 images per individual), Test-set: 

550 (5 images per individual). 
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Figure 4.12: Multi-CNN models for palm vein recognition 

4.2.3 Multi-color spaces 

Another palm vein system which explored different color models by combining the 

most contributing channel from each of them for a more reliable authentication system 

is proposed here. The method identifies that the best channel from each of five chosen 

color spaces (R from RGB, X from XYZ, Y from YUV, L from LAB and V from 
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HSV). These channels are used to a train a CNN model separately, consequently 

generating five different predictions which are combined at the decision level. 

There are different color models in use in different areas of our life. Color models are 

abstract computative representation of color according to how they are perceived. The 

representation is in form of tuples of numbers, typically as three components. On the 

other hand, color spaces are specific organization of colors which supports 

reproducible representations of color either in analog or a digital representation and 

this representations are supported by various technological devices [43].  

Application of color space information has been applied pattern recognition research 

works as well as in computer vision related works, such as analyzing RGB, YCbCr 

and L𝛼𝛽 to examined the pros of applying color information on a region-based face 

authentication system [44], and combining RGB and HSV color spaces for recognizing 

Iraqi currencies by average color estimation from database of currencies for stronger 

recognition [45]. 

There has also been research about human skin detection method by combining RGB, 

HSV and YCbCr color models in images [46], comparative study of color 

segmentation by a vector quantization algorithm called Kekre median codebook 

generation in YCbCr, RGB, and HSV color spaces [47], and comparative study of 

HSV and YCbCr color spaces in nucleus of white cells detection [48].  
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In this study, different color spaces were examined, they are grouped into five types 

according to their origin and their structure. They are categories are explained below. 

 Category 1: RGB is the standard color representation in digital imaging 

known as an additive model, it is the only one in this category. RGB stands for 

the colors red, green, and blue. Colors are added together in this model to make 

up what is perceived on the digital screens. A digital screen creates tiny pixels 

that, when observed under a magnifying glass, one of red, green and blue colors 

can be seen [43]. A typical illustration of this color model is shown in Figure 

4:13. 

 
Figure 4.13: Additive RGB color channel representation. Adapted from [49] 

 Category 2: XYZ was introduced in 1931 by the Commission internationale 

de l'éclairage (CIE) which translates to International Commission on 

Illumination in English. It is a gamma correction (linear transformation) of 

RGB.  It is also the only color space in this category. The X-channel 

corresponds approximately to the red/green part of a color, the Y-channel 
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corresponds approximately to the lightness, while the Z-value corresponds to 

the blue/yellow part of a color. The values in X ranges from 0 to 95, it ranges 

from 0 to 100 in the Y-channel while the Z-value ranges between 0 and 109 

[50]. Figure 4.14 shows a typical illustration XYZ from RGB color model. 

 
Figure 4.14: XYZ representation from RGB. Adapted from [50] 

 Category 3: LAB and LUV are non-linear transformation of XYZ. They were 

developed by CIE in 1976. In LAB, The L component represents the lightness 

in the color, that is, a white object may have an L value of about 100 while a 

black object will have close to 0. Hue is the color tone of a color while chroma 

is the level of saturation of a color represented by channels A and B of the color 

model as shown in Figure 4.15. Colors with high chroma will be bright or clear, 

while colors with low chroma will be dull [51, 52]. 
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Figure 4.15: LAB color model formation structure. Adapted from [52] 

 Category 4: HSV and HSL are cylindrical transformation of RGB as shown 

Figure 4.16. The channels of these models represents saturation, hue and 

value/lightness [53]. 

 
Figure 4.16: Color structure of HSV and HSL [53] 

 Category 5: YCbCr and YUV: These models are formed by linear 

transformation of RGB based on the formulas shown in Figure 4.17. Simple 
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mathematical calculation performed on each pixel by the given formulas, can 

be used to transform from RGB to YUV or YCbCr and back to RGB. 

 

 
Figure 4.17: YCbCr and YUV formation from RGB.  

Sample palm vein images in the different color spaces used are shown in Figure 4.18, 

where it can be seen that all the different color spaces represents images in different 

ways or formats. 

 
Figure 4.18: Sample hand vein images in different color spaces 

The proposed architecture for person identification in this study is combination of 

decisions from different color categories mentioned above on palm vein images. This 
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architecture is shown in Figure 4.19, where the decisions from five channels are 

combined for one final decision of the system. The system is based on modified CNN 

models discussed in the previous sessions. 

 
Figure 4.19: Five channels combination for palm vein recognition system 
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   Chapter 5 

5. RESULTS AND DISCUSSION 

Experimental results from the various hand vein experiments carried out in this study 

are presented in this chapter and analyzed. Six different experiments as highlighted in 

Chapter 4 are conducted. They include multimodal authentication systems where 

features extracted from palm vein, hand dorsal vein and wrist vein which are combined 

using different fusion technique; these experiments were carried out using both 

handcrafted descriptors and CNN models, and as much as 100 percent accuracy was 

recorded across the datasets and algorithms used [3]. The proposed hand dorsal vein 

authentication system segments images into five overlapping regions and combines 

CNN models’ prediction from each of the segments using score-level fusion. 

Single biometric trait was used in other experiments while combining multiple 

algorithms. These include a palm vein recognition system which combines a texture-

based descriptor method (BSIF) with a CNN model (AlexNet) described in Chapter 4. 

The results showed approximately 100 percent accuracy across all palm vein datasets 

used [54]. Similarly, the presented wrist vein system combines three texture-based 

descriptors (M-BSIF, HOG and 2D Gabor) at the decision level to obtain relatively 

comparable accuracy of 95.63 percent [55]. 

Furthermore, another palm vein biometric system combines three CNN models 

(AlexNet, VGG-16 and VGG-19) at the decision level; the experimental results show 
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that this system is at least 99 percent accurate across all three datasets used [56]. Lastly, 

a third authentication system based on palm vein explored different color models by 

combining the most contributing channel from each of them for a more reliable 

authentication system. The technique combines decisions from models trained with 

channels R of RGB, X of XYZ, Y of YUV, L of LAB and V of HSV and obtained 

approximately 100 percent accuracy across three CNN models (ResNet-50, VGG-19 

and AlexNet). 

 Result of Multi-Trait Systems 

The preliminary stage of this system involve experiments on individual vein biometric 

trait to determine their individual efficiency before combining them with other traits. 

This was implemented using three handcrafted feature extractors and the AlexNet 

CNN model discussed section 4.1.2.1. The corresponding results in Table 5.1 show 

good performances in general for the CNN model as well as BSIF, which performed 

best among the handcrafted methods. 

Table 5.1: Unimodal system results 
Feature 

Extraction  

Approach  

PUT  

(Palm)  

PUT  

(Wrist)  

VERA  

(Palm)  

Tongji  

(Palm)  

Badawi  

(Dorsal)  

Bosphorus 

(Dorsal)  

FYO 

(Palm)  

FYO 

(Dorsal)  

FYO 

(Wrist)  

BSIF  91.00  82.25  91.45  99.67  95.50  80.17  95.94  95.31  92.50  

Gabor  90.75  80.00  90.91  99.93  89.50  59.00  80.00  82.50  83.44  

HOG  80.00  65.25  82.55  99.90  79.00  39.00  48.44  52.81  50.94  

AlexNet 100.00  98.33  99.20  94.67  98.67  100.00  99.53  99.38  98.13  

 

The main goal of this proposed system, however, is a stronger biometric systems which 

combines hand vein traits like the three traits available in our database. This was done 

by applying feature-level fusion; for the hand-crafted feature descriptors, and decision-
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level fusion; for the CNN architecture, to raise the robustness of the biometric 

authentication system. We also carried out the same experiment using PUT datasets 

since the database is compose of two vein traits; palm and wrist. The results in Table 

5.2 show that this system improves the accuracy of the authentication system to 100% 

in BSIF and the CNN model. 

Table 5.2: Multi-trait system results 

Feature 

Extraction  
Approach 

PUT DB FYO DB 

Palm + Wrist 
Dorsal + 

Palm 

Dorsal + 

Wrist 

Palm + 

Wrist 

Dorsal + 

Palmar+ 

Wrist 

BSIF 94.00 99.06 98.13 100.00 100.00 

Gabor 96.50 93.13 94.06 94.06 97.50 

HOG 84.00 70.31 71.25 70.31 82.50 

AlexNet 100.00 100 99.27 99.83 100.00 

 

 

 

 Hand Dorsal Vein Recognition System 

A preliminary experiment was carried out in order to show that each region is different 

in composition by checking the entropy of each overlapping region. Entropy is a 

measure of the degree of randomness in an image given by the following equation: 

 𝐻 = − ∑ 𝑝𝑗
𝑘
𝑗=1 𝑙𝑜𝑔2(𝑝𝑗)                                                       (5.1) 

where k is the number of grey levels/ normalized histogram in the image, and 𝑝𝑗  is the 

probability or frequency of occurrence of each grey level [57]. The entropies are shown 

in Table 5.3, where the lowest total entropy value is shown for the middle region which 

implies that the middle part is the most stable segment generally. 
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Table 5.3: Sum of entropies of each region based on FYO dataset 

Region Sum of entropies in the 

dataset 

Top-Left 9128.50 

Top-Right 9265.13 

Middle 8564.34 

Bottom-Left 9147.63 

Bottom-Left 9307.43 

 

Subsequently, experiments were performed to ascertain the performance of the 

proposed system as well as experiments on other algorithm and systems in order to 

compare the results with similar studies. BSIF and M-BSIF which have been used in 

similar experiments were also implemented using the same datasets to compare 

corresponding results to the proposed method. These methods are some of the most 

efficient texture-based methods in the literature. For further comparison, we 

implemented the CNN model which takes the ROI as a whole, to compare our method 

where separate training of five regions were carried out. For all these implementations, 

the aforementioned training and test datasets were used. The results (accuracies) 

shown in Table 5.4 showed that our proposed system earned the best accuracy for each 

of the datasets. 
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Table 5.4: Hand dorsal vein recognition results 

                              Database  

            Method 

 

Badawi Bosphorus FYO Average 

Handcrafted 

methods 

BSIF 98.20 92.42 95.00 95.21 

M-BSIF 98.20 94.41 96.88 96.50 

CNN models 

AlexNet 99.00 99.67 98.90 99.19 

VGG16 97.60 98.50 94.37 96.82 

CNN (5 regions)  

SLF Fusion 

AlexNet 99.70 99.83 99.84 99.79 

VGG16 99.60 99.83 99.38 99.60 

 

Additionally, we explored other fusion techniques that have been used in literature for 

score level fusion rather than the traditional techniques where values are only 

normalized and appended. For example, symmetric addition of scores has been 

proposed [58] while Weighted Quasi-Arithmetic Mean (WQAM) for fusion at the 

score stage in multi-biometric systems was proposed in [59]. WQAM involve the 

mathematical functions such as trigonometry functions, cosine, sine and tangent along 

with some defined weight for score level fusion. General formula of M for this method 

is given as follows: 

𝑀(𝑠) = 𝑓−1(∑ 𝑤𝑗𝑓(𝑠𝑗)𝑛
𝑗=1 ),                                                            (5.2)  

where s is the input sample, f is the mathematical function and 𝑓−1 is its corresponding 

inverse, while 𝑤𝑗 is weight assigned to each score. The weights add up to 1. 

Therefore, WQAM functions adapted from [59] were used to compare the original 

SLF in this study. The results given both in Tables 5.5 and 5.6 for experiments carried 
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out on AlexNet and VGG-16, respectively, indicate that the system works effectively 

across different score level fusion techniques. 

Table 5.5: Accuracy of score level fusion techniques in AlexNet 

Fusion Method Badawi Bosphorus FYO 

Normal SLF 
99.70 99.83 99.84 

W
Q

A
M

 

f M    

 sin(
𝜋

2
s) 2

𝝅
arcsin(s) (∑ 𝑤𝑗sin(

𝝅

𝟐
𝑠𝑗)

𝑛

𝑗=1

) 

99.80 99.92 100.00 

cos(
𝜋

2
s) 2

𝝅
arccos(s) (∑ 𝑤𝑗cos(

𝝅

𝟐
𝑠𝑗)

𝑛

𝑗=1

) 

99.40 99.42 99.06 

tan(
𝜋

2
s) 2

𝝅
arctan(s) (∑ 𝑤𝑗tan(

𝝅

𝟐
𝑠𝑗)

𝑛

𝑗=1

) 

99.30 99.08 99.06 

𝑠𝑟 

(∑ 𝑤𝑗(𝑠𝑗)𝑟

𝑛

𝑗=1

)

1/𝑟

 

99.40 99.33 98.91 

 𝑟𝑠 

𝑙𝑜𝑔𝑟 (∑ 𝑤𝑗𝑟𝑠𝑗

𝑛

𝑗=1

) 

99.70 100.00 100.00 

 

Table 5.6: Accuracy of score level fusion techniques in VGG16 

Fusion Method Badawi Bosphorus FYO 

Normal SLF 99.60 99.83 99.38 

W
Q

A
M

 

f=sin(
𝜋

2
s) 100.00 100.00 99.53 

f=cos(
𝜋

2
s) 98.90 98.70 99.06 

f=tan(
𝜋

2
s) 98.20 98.20 98.44 

f= 𝑠𝑟 98.90 98.70 98.59 

f= 𝑟𝑠 100.00 100.00 99.69 
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 Palm Vein Recognition System 

Table 5.7 presents different experimental results carried out on the proposed palm vein 

recognition system. It shows that several other experiments were also carried out along 

with the proposed system for the purpose of comparison. The table show that the 

system proposed here attained the best results across all datasets, with accuracies as 

much as 100% in some of the datasets used. Furthermore, different data fusion 

algorithms were examined for the sake of comparison (Feature-level fusion, Score-

level fusion, Decision-level fusion). The results also showed that score-level fusion 

out-performed the other methods and therefore was the preferred fusion method for 

fusing the five overlapping regions proposed. 

Table 5.7: Palm vein authentication results 

                      Database 

Method   

CASIA  FYO  PUT  Tongji  VERA 

BSIF  96.25 95.00  98.00  98.33  99.77 

BSIF (Middle region)  92.17  88.13  97.50  98.33 98.86 

BSIF (FLF 5 regions)  97.33  95.63  98.00  99.00  99.77 

BSIF (DLF 5 regions) 95.25  87.19  97.50  98.33  99.32 

BSIF (SLF 5 regions) 

(Decision I) 

97.33  95.94  98.00  98.83  99.55 

AlexNet (Decision II)  95.17  98.91  91.50  98.00  94.55 

Proposed method  99.83  100.00  99.00  100.00  100.00 
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 Wrist Vein Authentication System  

Over-fitting is often a concern at the training phase, therefore, to prevent over fitting 

in the system, we carried out cross validation in each of the wrist vein experiment as 

follows: 

 FYO wrist vein dataset is made up of samples taken in sessions, and there is 

only one image per session. Therefore, the first session was employed for 

training and while the second one was employed for testing. And for cross-

examination, these sessions were swapped to carry out the experiment second 

time, that is; the second session was used to train the system while the first was 

to test the system. The average outcome of the two attempts was taken as the 

mean accuracy of the system. 

 PUT dataset was captured in three sessions with 4 images in each session. In 

this experiment, two of these sessions were employed for training while the 

other one was used for testing. Therefore, for cross validation, datasets for 

testing and training were swapped three times in other to have three separate 

implementations where different sets of sessions are used for testing and 

training. Subsequently, the mean of the three results was considered as the 

system’s overall accuracy. 

Table 5.8 shows the accuracy of the individual methods. It can be inferred from the 

results that BSIF shows the best performance and even better performance when used 

as M-BSIF. At this stage, three separate decisions are obtained, and they are used to 

decide overall decision of the system using decision-level fusion with varying weights. 

BSIF and M-BSIF perform substantially better than 2D Gabor and HOG, hence M-

BSIF was assigned 2 as the weight while 2D Gabor and HOG decisions weighed 1 
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each. The overall system decision is made by setting 2 as the lower bound of true 

detections while others outside the category fall under false positives. 

Table 5.8: Wrist vein authentication system results 

Experiment FYO DB PUT DB 

HOG 69.38 83.58 

Gabor 85.78 86.83 

BSIF 93.28 92.42 

M-BSIF 94.69 93.83 

BSIF+Gabor (FLF) 87.81 87.58 

BSIF+Gabor+HOG (DLF) 94.38 93.33 

M-BSIF+Gabor+HOG (DLF) 95.63 93.92 

 

The results shown in Table 5.8 show that the system proposed here is superior to the 

individual methods across the datasets used. For the sake of comparison, we tested a 

similar method by combining only Gabor and BSIF using at the feature stage and 

combining BSIF, HOG and 2D Gabor at the decision stage. Table 5.8 shows that the 

method proposed here out-performs both methods. 

 Palm Vein Authentication System Using Multiple CNN Models 

This study proposes a palm vein authentication system where three CNN model results 

are fused together. In addition, the study also compared the efficiency of three CNN 

models used (VGG-16, VGG-19 and AlexNet) in palm vein biometrics.  Datasets used 

for the experiment include datasets from VERA, PUT and FYO databases.  

Furthermore, the effect of shrinking the amount of kernels/filters used in the 

convolutional layer of these CNN models was checked in terms of computation time. 

Table 5.9 presents the training time or the modified versions versus the original 
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versions of the three CNN models. It shows a reduction of approximately 450% across 

the models when the number of training epoch is fixed at 30. 

Table 5.9: Computation time (sec) for original and modified CNN models 

      Experiment 

Database 
VGG-16 

Modified 

VGG-16 
VGG-19 

Modified 

VGG-19 
AlexNet 

Modified 

AlexNet 

FYO 131325.41 27843.18 136282.18 29402.61 109850.63 18446.27 

PUT 107353.45 24838.32 123842.00 27353.93 141014.50 17300.00 

VERA 97840.38 22762.88 115968.66 24901.59 132259.94 15728.60 

 

Significantly sufficient results were obtained from three models employed in this 

study. Additionally, the result of the proposed study which fuses them at the decision 

level showed significant improvement in accuracy of the recognition system. The 

system attained close to 100% across the datasets: 99.83%, 99.26% and 99.06% 

accuracy on PUT, VERA and FYO datasets, respectively as shown in Table 5.10.  

Table 5.10: Accuracy (%) of palm vein authentication methods 

          Database 

Experiment 

FYO PUT VERA 

AlexNet 90.53 94.33 98.53 

VGG-16 94.50 97.67 98.72 

VGG-19 96.09 97.67 94.50 

All three combined 99.06 99.83 99.26 

 

 Multi-Color Spaces Authentication System 

This study proposes the use of different color models for human recognition by fusing 

the results of most reliable or contributing channel to hand vein pattern. VERA, PUT 
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and FYO palm vein datasets were used for this study. Each of the datasets were 

augmented to ensure that there are enough samples for the CNN models. Selecting the 

best channels from the color spaces is an important aspect of this study. Each CNN 

model was trained using one channel as shown in Figure 5.1.  

 
Figure 5.1: Preliminary experiment to determine best channel 

The best channels generally have high accuracy across CNN models and palm vein 

dataset as shown in Table 5.11. The outcomes of the preliminary experiments are given 

in Table 5.11. These results were used to identify the best channel per color space as 

follow:  

 RGB, XYZ: Due to the construction of the color spaces; red-green-blue colors 

in RGB, and their linear transformation in XYZ; all the channels performed 

favorably. However, R from RGB, and X from XYZ were chosen by popular 

experimental votes. 
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 YCbCr, YUV: Luminance component Y performed well in both cases, others 

are chroma components with very low performance. 

 LAB, LUV: L component which is closely related to human perception of light 

performed favorably. Similarly, other channels which are chroma components 

performed poorly. 

 HSV, HSL: H (hue) and S (saturation) in both color spaces performed poorly. 

V value (HSV) and L lightness (HSL) are therefore preferred.   

Table 5.11: Preliminary color channel efficiency results 

   CNN model 

              
                  DB 

Color space 

AlexNet ResNet-50 VGG-19 

FYO PUT VERA FYO PUT VERA FYO PUT VERA 

RGB R 96.72 98.67 96.70 93.59 96.50 99.82 91.41 97.50 91.38 

G 93.28 98.50 98.90 95.63 98.83 59.45 95.31 87.83 35.41 

B 91.09 98.33 73.57 88.28 95.33 38.71 95.63 92.83 98.17 

XYZ X 96.09 93.33 99.63 98.44 98.50 98.72 94.22 89.00 99.08 

Y 96.25 98.83 28.07 93.78 27.33 33.21 91.87 82.00 99.08 

Z 93.91 94.50 18.35 17.81 69.00 76.33 90.78 94.83 89.36 

YCrCb Y 94.69 59.00 99.63 99.75 85.50 99.75 91.25 95.83 97.80 

Cr 86.09 24.83 0.92 12.19 1.50 0.92 62.97 4.83 0.92 

Cb 92.50 27.00 0.91 81.25 20.67 0.92 94.84 1.17 0.92 

YUV Y 96.09 77.17 98.53 99.75 98.67 99.75 93.12 97.17 99.27 

U 52.97 1.67 0.92 1.09 2.67 0.92 92.97 32.00 0.92 

V 80.00 2.33 2.92 7.50 2.17 0.92 92.19 10.67 0.92 

LAB L 97.50 77.50 96.70 99.84 91.50 99.88 93.28 79.50 99.08 

A 13.59 1.50 0.92 10.31 6.33 0.92 6.25 1.83 0.92 

B 63.91 33.67 0.92 0.94 1.83 0.92 82.03 1.83 0.92 

HSV H 2.81 75.67 0.92 0.78 10.67 0.92 41.56 67.17 0.92 

S 21.56 89.17 0.91 0.97 71.00 0.92 85.78 76.00 0.92 

V 95.31 96.50 99.45 98.46 99.00 90.46 94.38 98.90 97.80 

HLS H 8.59 58.00 0.91 0.92 18.00 0.92 22.66 48.67 0.92 

L 97.03 95.33 96.88 99.53 63.17 99.63 92.19 88.83 98.35 

S 76.25 98.00 0.91 0.63 95.83 0.92 0.92 95.50 0.92 
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Additionally, after identifying the best channels in all the color spaces used in the 

experiment, further confirmation that the channels would give the best results in all 

cases, were needed. This was carried out by adding precision and recall experiments 

as shown by the results in Table 5.12 and Table 5.13, respectively. Recall, also known 

as Sensitivity, is the percentage of Real Positive samples that are accurately predicted. 

It examines the scope of the Real Positive samples by the Predicted Positive rule while 

Precision, also known as Confidence, refers to the percentage of positive samples that 

are really positive samples [60]. 

Table 5.12: Precision results of chosen color channels 
 CNN Model AlexNet ResNet-50  VGG-19 

 DB FYO PUT VERA FYO PUT VERA FYO PUT VERA 

C
h

o
se

n
 C

h
a
n

n
el

s 

R:RGB 98 87 97 100 97 100 98 98 94 

X:XYZ 98 95 97 99 99 99 97 91 99 

L:LAB 99 97 99 100 94 100 97 85 99 

Y:YUV 98 97 100 100 99 97 96 97 99 

V:HSV 98 95 100 99 99 95 97 98 100 

YCbCr 98 86 91 100 89 100 97 96 98 

L:HLS 98 86 98 100 86 100 96 92 99 

 

The results of the system that combines five color channels from five different color 

models and categories are given in Table 5.14. Four possible combinations were 

examined as seen in the table, although the proposed combination is Red channel from 

RGB, X channel from XYZ, V channel from HSV, channel L from LAB and channel 

Y from YUV. The results show that the proposed method has the potential to 
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significantly increase the accuracy of a recognition system, with close to 100 percent 

accuracy across all three datasets used. 

Table 5.13: Recall results of chosen color channels 

CNN Model  AlexNet ResNet-50 VGG-19 

DB FYO PUT VERA FYO PUT VERA FYO PUT VERA 

C
h

o
se

n
 C

h
a

n
n

el
s 

R:RGB 97 79 97 100 96 100 96 97 91 

X:XYZ 96 94 96 98 98 99 94 89 99 

L:LAB 97 96 98 100 92 100 93 80 99 

Y:YUV 97 96 100 100 99 96 93 97 99 

V:HSV 95 94 99 98 99 90 94 97 99 

YCbCr 95 76 68 100 85 100 95 96 98 

L:HLS 96 66 97 100 63 100 92 89 98 

Table 5.14: Five color channels combination results 
 CNN Model AlexNet ResNet-50 VGG-19 

 DB FYO PUT VERA FYO PUT VERA FYO PUT VERA 

D
L

F
: 

5
 c

h
a
n

n
el

s 

R:RGB,X:XYZ, 

L:HLS,L:LAB, 

Y:YCbCr 

100.00 95.50 99.63 100.00 99.67 100.00 99.38 98.67 100.00 

R:RGB,X:XYZ, 

L:HLS,L:LAB, 

Y:YUV 

99.84 98.33 100.00 100.00 99.50 100.00 99.69 98.33 100.00 

R:RGB,X:XYZ, 

V:HSV,L:LAB, 

Y:YCbCr 

100.00 98.83 100.00 100.00 99.67 100.00 99.69 99.00 100.00 

R:RGB,X:XYZ, 

V:HSV,L:LAB, 

Y:YUV 

99.69 99.33 100.00 100.00 99.67 100.00 99.84 99.33 100.00 

 

 

For the sake of comparison, three combinations instead of five were also examined as 

shown in Table 5.15. The results are comparable to the proposed method, therefore 
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this method could also be considered, although we recommend the five channels 

combination for a more robust system. 

Table 5.15: Three channels combination results 
 CNN Model AlexNet ResNet-50 VGG-19 

 DB FYO PUT VERA FYO PUT VERA FYO PUT VERA 

D
L

F
: 

3
 c

h
a
n

n
el

s 

R:RGB, 

X:XYZ, 

L:LAB 

99.84 96.50 100.00 99.84 99.67 100.00 99.06 96.17 100.00 

R:RGB, 

X:XYZ, 

V:HSV 

99.84 96.17 100.00 99.69 99.50 99.63 98.91 99.00 100.00 

R:RGB, 

X:XYZ, 

Y:YUV 

99.06 96.83 100.00 99.84 99.50 100.00 98.91 98.83 100.00 

R:RGB, 

L:LAB,  

V:HSV 

99.38 97.67 100.00 99.84 99.67 100.00 99.06 98.50 100.00 

R:RGB, 

L:LAB, 

Y:YUV 

99.69 98.00 100.00 100.00 99.50 100.00 98.59 98.33 100.00 

L:LAB, 

V:HSV, 

Y:YUV 

98.91 98.83 100.00 100.00 99.50 99.63 98.28 98.17 100.00 

X:XYZ, 

V:HSV, 

Y:YUV 

99.06 98.83 100.00 100.00 99.33 99.27 98.44 98.83 100.00 

 

 Overall Comparison 

Finally, we compared all the methods presented in this thesis with the state-of-the-art 

methods that are available in literature. These methods include a system which fuses 

finger vein and dorsal vein features by employing monogenic local binary pattern and 

Improved Gaussian Matched Filter for human recognition [14], CNN feature learning 

and transfer method on hand dorsal vein pattern [61], a dorsal vein recognition system 

where fractal technique computed by box counting method for tissue properties 

identification is used [15] and combination of vein features from both right and left 
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wrists using a combinatory algorithm where two binarized images one based on local 

thresholding are multiplied by global thresholding [25]. 

Mirmohamadsadeghi and Drygajlo compared operators and histograms of multi-scale 

Local Binary Patterns (LBPs) as a descriptors for palm vein patterns and higher-order 

local pattern descriptors based on Local Derivative Pattern (LDP) histograms, using 

them for palm vein and palmprint verification and identification [62] while Lee 

constructed a palm vein image database in 2012 and extracted features from them 

using 2D Gabor filter [63]. A deep CNN method was used for palm vein and palm 

print recognition using a large scale database constructed, named Tongji in [64].  

The methods compared to the proposed methods range from unimodal to multimodal 

systems as shown in Table 5.16, where it can be seen that our proposed systems 

compared favorably against other methods, especially the proposed multi-color spaces 

authentication system and multi-modal palm, dorsal and wrist system where 100 

percent accuracy was recorded in experiments performed with FYO datasets and other 

datasets used for comparison. 
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Table 5.16: Comparison of proposed methods the with state-of-the-art methods 

 Method  Year Trait 

(Vein) 

Database Accuracy 

(%) 

S
ta

te
-o

f-
th

e-
a

rt
 m

et
h

o
d

s 

Zhang et al. [65]  2007 Palm  Own 

Database 

98.80 

Mirmohamadsadeghi & 

Drygajlo [61]   

2011 Palm  CASIA 97.20 

Lee [62]  2012 Palm  Own 

Database 

99.18 

Zhang et al. [63]  2018 Palm  Tongji 100.00 

Trabelsi et al. [14]  2013 Dorsal & 

Finger 

Badawi 98.80 

Al-johania and 

Elrefaei, [64]  

2019 Dorsal Badawi & 

Bosphorus 

97.00 

Çimen et al. [15]  2021 Dorsal Bosphorus 

& SUAS 

99.00 

Abed [25]  2017 Palm & 

Wrist 

PUT 94.49 

M
et

h
o
d

s 
in

 t
h

is
 s

tu
d

y
 

 

Multi-modal System (Palm + Wrist + Dorsal) 

 

100.00 

Hand dorsal vein recognition system (5 segments) 99.38 

Palm vein recognition system (AlexNet + BSIF) 100.00 

Wrist vein authentication system (M-BSIF + HOG + 2D 

Gabor) 

95.63 

Palm vein authentication system using multiple CNN 

models 

99.06 

Multi-color spaces authentication system 100.00 

 

 

 

 



59 

 

   Chapter 6 

6. CONCLUSION 

 Main Findings 

This study establishes a multimodal vein database named FYO composed of three 

biometric modalities; dorsal vein, palmar vein and wrist vein with the aim of proposing 

a robust biometric system that is highly efficient and equipped with innate defense 

against spoof attacks. Furthermore, the availability of these datasets from the same 

individuals/subjects in one database embroiders multimodal vein biometric 

recognition research works. 

Consequently, two multi-trait recognition systems which combine features of three 

hand vein traits are proposed: The first one is a feature-level fusion of texture-based 

feature descriptor BSIF which is a highly effective algorithm based on LBP and LPQ. 

The second is a decision-level fusion of features extracted using a modified version of 

AlexNet CNN model. The resultant outputs of the proposed methodologies show 

significant improvement in system accuracy in comparison with when individual traits 

are used, as 100 percent accuracy was obtained in both methods.  

A third method exploited the benefit of combining multiple traits but from only one 

trait by using overlapping segments of an image. This architecture is a deep learning 

structure of the five overlapping regions proposed for dorsal vein recognition system. 

The system extracts features from each region using variants of CNN models; AlexNet 
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and VGG-16, and combines them using score-level fusion. The accuracy of this 

architecture is recorded as above 99 percent in both CNN models. The method is also 

implemented with handcrafted methods for the sake of comparison, while also 

comparing with the state-of-the-art methods where it shows a considerable superiority 

or similar efficiency in all cases. 

Furthermore, a number of methodologies which combine more than one algorithm in 

order to improve hand vein biometric system efficiency are proposed. Palm vein 

patterns are employed in two different methods. The first one divides images into five 

overlapping regions and extracts BSIF features from each before applying score-level 

fusion of the five regions, and a CNN model (AlexNet or VGG-16) is trained in parallel 

using the whole ROI images. The two parallel structures are then combined using 

decision-level fusion. The results show improvement in recognition system when 

compared with other algorithms as 99 – 100 percent accuracy is achieved across all 

five datasets used in the experiment.  

On the other hand, a method that combines three CNN models, namely, VGG-16, 

VGG-19 and AlexNet as modified in this study is also proposed as a palm vein 

authentication system. The system trains the datasets three times using a separate CNN 

model for each training, then the subsequent predictions from each trained model are 

fused at the decision level. This system achieved at least 99.06 percent accuracy across 

all three datasets used in the experiment. 

Similarly, a wrist vein recognition system which combines handcrafted methods as 

oppose to deep learning models is proposed. The system fuses three texture-based 

feature descriptors, that is; M-BSIF (BSIF of multiple filters), 2D Gabor, and HOG 
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using decision-level fusion. Significant improvement is achieved using this method as 

oppose to using individual algorithms; 95.63 percent and 93.92 percent are obtained 

in FYO and PUT datasets respectively. 

Finally, the contribution of color in pattern recognition in hand vein biometrics is 

examined. Different color models are considered and grouped into five based on their 

origin and structure. The aim of the experiment is to find the best channel in each of 

the color models for hand vein recognition and then combine these channels for a more 

robust authentication system. The channels identified are; Red channel from RGB, X 

channel from XYZ, V channel from HSV, channel L from LAB and channel Y from 

YUV. These also show that color channels representing luminance contribute most in 

vein recognition. The accuracy of the overall system shows that combining the best 

channels improves recognition to approximately 100 percent in all datasets used. 

In general, our studies indicate the importance of having multiple traits in human 

biometric recognition systems, as well as the possibility of improvement when more 

algorithms are employed. This is evident both in handcrafted methods and deep 

learning models. 

 Future Work  

The fallout of this study and research works we came across in the duration of this 

study have opened many prospective areas of research interest which will be pursued 

in the nearest future. These will include methods to improve the efficiency of previous 

studies as well as new areas in relation to this study, especially exploring more deep 

learning methods and different fusion methods and algorithms in order to obtain an 

even more efficient system with minimal additional computation time. 
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