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ABSTRACT

In this master thesis, we study the block matrices and their properties. After giving a
general overview on matrices, block matrices, different types of block matrices, and
multiplication of two block matrices are discussed. In the inverse section, we first
examine inverses of 2 x 2 block diagonal and block triangular matrices, ideas of proofs
here can be extended to a general n x n block diagonal or a block triangular matrix.
Then we give the inverse formula for 2 x 2 block matrix, in the case that one of the
blocks is invertible. We then generalise this to any n X n block matrix by splitting it into
4 blocks (by producing a 2 x 2 block matrix). Determinant chapter is covered by two
different methods, existing in the literature. First we revise a formulae for determinant
of a block matrix where the blocks (matrices) belong to a commutative subring of
M, «n(F), where F is a field or a commutative ring. Then we give the general formula
which would work for any block matrix, without any commutativity condition between
the blocks. We also present formulas for the determinant of tensor product of two given

matrices.

Keywords: block matrix, inverses, determinants, tensor products.
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Bu yiiksek lisans tezinde, blok matrisler ve 6zellikleri incelenmistir. Matrislere genel
bir bakis verildikten sonra, blok matrisler, farkli blok matris tiirleri ve iki blok
matrisin ¢arpimi ele alinmistir. Blok matrislerin tersleri boliimiinde, once 2 x 2 blok
kosegen ve blok iiggensel matrislerin tersi incelenmistir. Buradaki ispat yontemleri
genel bir n x n blok kdsegen veya blok liggensel matrisine genisletilebilir. Daha sonra
bloklarin herhangi birinin tersinin olmast kosuluna dayanarak 2 x 2 block
matrislerinin terslerinin formiilii verilmigtir. Ayrica bu formiil n x n blok matrisini 4
tane bloga bolerek genellestirilebilir (2 x 2 blok matris iireterek). Determinant
boliimii, literatiirde var olan iki farkli yontemle ele alinmuistir. [k olarak
bloklarin(matrislerin), M, x,(F)’ nin degisme 6zelligi olan alt-halkasina ait olmasi
durumunda (buradaki F bir cisim veya degisme 0Ozelligi olan bir halkadir) blok
matrisin determinant formiilii revize edilmistir. Bunun yaninda bloklar arasinda
herhangi bir degisme kosulu olmaksizin determinant formiilii incelenmistir. Ayrica

verilen iki matrisin tensor carpiminin determinanti formiilleri sunulmustur.

Anahtar Kelimeler: blok matris, tersler, determinantlar, tensor carpimlar.
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Chapter 1

INTRODUCTION

Block matrices are obtained by dividing a matrix into partitions (blocks) that fit
together to form a rectangle or a square, so in a way they can be thought as more
advanced versions of matrices. These blocks help to simplify certain algebraic
properties on matrices, like taking determinants or inverses, as normally these
operations would be very time consuming if a matrix has very large size. Therefore
one of the most important points of this thesis is that it explains with formulas how to
find the inverses and determinants of large-dimensional matrices in an easier way.
Working with block matrices enables us to reach the results of algebraic operations
faster as it facilitates operations on large dimensional matrices. There are many
published works in literature concerning inverses and determinants of block matrices,
for example, inverses of 2 x 2 block matrices have been studied by Lu and Shiou
in [11], determinants of these matrices have been examined by Powell, Silvester and
Ali&Khan in [15], [17], [2] respectively, generalized inverses and ranks for 2 x 2
block matrices are given in [12, 13]. It is very important to first obtain formula for the
inverse or determinant of a 2 X 2 block matrix, because of the following reasons: In
the inverse case, any general n X n block matrix can be split into 4 blocks (by creating
a 2 x 2 block matrix) and in the determinant case determinant of an n x n block matrix
can always be expressed by using determinants of 2 X 2 matrices via cofactor

expansion, see [8].

Block matrices are commonly used in pure mathematics, more specifically in linear
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algebra, in proofs of many theorems [8], in particular block diagonal matrices appear
a lot in canonical forms [4]. These matrices are a common subject of study not only
in mathematics but they also have applications in other fields; i.e. physics, computer
science, engineering and economy, just to name a few examples. In physics, they
are used in electrical networks, dynamical systems, approximation theory of solutions
of differential equations, magnetohydrodynamics, fluid mechanics [6], and circulant
structure [5], in computer science; in faster block matrix multiplication algorithms
with reinforcement learning, quantum coding and puzzle game [7,10,14], and finally in
engineering in Stieltjes transform, R-transform, S-transform, free central limit theorem

and electric power systems.

This thesis consists of 5 different chapters in total. Block matrices are introduced
in Chapter 2, which should make it easier to understand the notions in the coming
chapters. Then, in Chapter 3, the inverses of the block matrices are examined. We
give theorems which are related to inverse of the 2 x 2 block diagonal matrices, and
2 x 2 block triangular matrices, and prove them by the block Gaussian elimination
method. After delivering inverse theorems on block diagonal and block triangular
matrices, we give the inverse formula for the 2 x 2 block diagonal matrix, in the case
that one of the blocks is invertible. Furthermore, we define a J matrix here, the main
task of this block matrix is to change the positions of the columns of the block matrix
when it is multiplying it on the right. Conversely, when this matrix J is multiplying a
block matrix on the left, it reverses the order of rows in the block matrix. There are
different conditions for each inverse theorem, the theorems of inverses of the 2 x 2
block matrices are given first, and some of them are proved with the block Gaussian

elimination method and the rest with the J matrix towards the end of this chapter.



In Chapter 4, we start by talking about what the determinant of an n X n matrix is and
how it can be found by cofactor expansion. The aim of the determinant notion is to
convert a matrix into a real number and it is denoted by |G| or by det(G). First,
determinants of 2 x 2 block diagonal matrix and 2 x 2 block triangular matrices are
given. We provide examples for the determinants of 2 x 2 block diagonal matrices,
2 x 2 block lower triangular matrices and 2 x 2 block upper triangular matrices. Here,
the more important case is the proof of the determinant of a 2 x 2 block matrix.
Moreover, in this part we define the basic properties of a ring and a field because we
provide formula for the determinant of an n X n block matrix in the case that blocks
belong to a commutative subring of M, .,(F), where F is a field or a commutative
ring. Afterwards, we define what a tensor product between two block matrices is and
compute the determinants of tensor products. For example, in the case that U is a
2 x 2 matrix, and W is an n X n matrix, U @ W would be a 2n x 2n matrix. Another
important point in this section is to give the proof of the determinant of tensor product
of two matrices (under a field) by using mathematical induction. Finally, the
determinant of the N x N block matrix is given without looking for the commutativity
condition between the blocks in the matrix. The determinant formula given here is

explicitly calculated for the cases N =2 and N = 3.

Inverse and determinant theories covered in this thesis can also be found in our recently

published paper [16].



Chapter 2

PRELIMINARIES

2.1 Matrices and Operations on Matrices
In this first section, we give a general overview on matrices, and operations on

matrices, for details please refer to [1].

Definition 2.1: In linear algebra, a matrix is a rectangular grid of numbers arranged
into rows and columns which is an m x n array of scalars in given field. In other words,
the horizontal and vertical lines of entries in a matrix are called rows and columns,

respectively. The individual values in the matrix are called entries.

T fi2 -+ Hhp
Iy 1ty - Iy

T = T € My (F)
Iml tm2 - lmn

The upper case T denotes the name of this matrix. The size of matrix T above is m X n
(m,n€Z*) . Subscripts denote the number of rows and the number of columns of

matrix 7 respectively.

Definition 2.2: In linear algebra, matrix multiplication is one of the main operations
of the matrices. Let U € Ryxn(F) , W € Ryxp(F) . In order to perform matrix

multiplication, the number of columns of the matrix on the left should match the



number of rows of the one on the right. If U is an m x n and W is an n X p, then T will
be of size m x p . Otherwise, multiplication operation is not defined. Definition of

matrix multiplication is as follows:

n
(UW)jk = Z Uerrk
r=1

Thus, the entry in row j, column k , of UW is computed by multiplying row j of U ,

with column k of W .

In other words, if 7 = UW , then, T;; is the dot product of the i'" row of U with the j’h

column of W.

Theorem 2.1: Let K, L, M be matrices such that the following operations are defined.

Then

p—

. Commutativity property in general does not hold.
2. Zero matrix on multiplication
If KL =0 then it can be that K # 0 and L # 0
3. Associativity Property: (KL)M = K(LM)
4. Distributivity Properties: For B, y € R
i. K(L+M)=KL+KM
ii. (K+L)M=KM+LM
iii. B(K+L)=BK+BL
iv. (B+7)K=BK+7vK
5. Multiplicative Identity:
For any square matrix K, KI = IK = K, where [ is the identity matrix of the same

order as K .



We will prove the selected items.

Proof of 3:

[(KL)M]mn - Z(KL>mkMkn = Z(Z KmsLsk)Mkn = ZZ(KmsLskMkn) =
k k s k s

Z Z(KmsLskMkn) = Z Kins (Z LskMkn) = Z Kins (LM)sn = [K(LM)]mn
k

s k s K

Proof of 4:

[K(LAM)ln =Y (K)mie(L+ M) = Y Ko (Lin + Myn) =
k k

Z(Kkakn +KmkMkn) = ZKkakn +ZKmkMkn = (KL)mn + (KM)mn = [KL+KM]mn
k k k

Similar proof also works for the next case which is the right distributivity property.

Remaining two items can easily be seen.

For item 1, we may give the counter example below.

1 2 0 2
Example 2.1: Let K = L=



1 2] |0 2 8 12

KL = =

3 41 |14 5 16 26
but

0 2|1 2 6 8
LK = =

4 5113 4 19 28
2.2 Block Matrices
In this section, we define block matrices, introduce different types of block matrices,

and we define block matrix multiplication. Our main references here are [?,9, 18].

Definition 2.3: A block matrix (partitioned matrix) is a matrix that is clarified as a
result of split sections called blocks or submatrices. Intuitively, a matrix interpreted as
a block matrix can be visualized as the original matrix with a collection of horizontal

and vertical lines, which break it up or partition it, into a collection of smaller matrices.

A | B
Example 2.2: Let L = have 4 submatrices A, B,C and D.
C|D
4
Example 2.3: Let D = have 2 submatrices W and V.
Vv

Example 2.4: Let C =
15 17 21 6 8

1315 0 6 2



We can partition this matrix in different ways. We can create maximum 20 different
submatrices. Maximum number of submatrices can be equal to the total number of
entries in this matrix, in other words, the size of the matrix. First possible way: Let’s
create submatrices of matrix C with their different sizes as

4 3 2 -9 —6 15 17 21 6 8

C1 = » €2 = » €3 = > C4 =
3 4 12 14 15 13 15 0 6 2

4 3 2(-9 -6

c1| e 3 4 12|14 15

c3 |y 15 17 21| 6 8

1315 0| 6 2

Second Possible Way: Let’s create submatrices of this matrix with equal size

Cc] = 4} , €2 = M , €3 = M » C4 = [—9: , C5 = {—6: » C6 = M , €7 = M )

g = :12] €9 = [14} » €10 = [151 11 = :15] »C12 = :17] €13 = {21] » €14 = {6] ,
€15 = [8] » €16 = l13: » €17 = {15] » €18 = 0] €19 = [6] » €20 = [2}

cr || c3|cq| cs 4 13|2]-9|-6

c c6 | ¢7 | cg | ¢c9 | cro 31411214 15
- ciilcia | cizlcia| cis - 1511721 6 8
cle | c17 | c18 | c19 | €20 13151 0| 6 2

There can be other possibilities to divide this matrix into submatrices.



Remark 2.1: The blocks (submatrices) of a block matrix must fit together to form a

rectangle or square.

1 25 7 8
Example 2.5: LetA = ,B= ,C = [2 1 9] ,D= [2 3]
346 9 10

S= makes sense since it makes a rectangle.

7 8
219
B|C 9 10
Example 2.6: T = =
DA 1 25
2 3
3406
B|C
T = does not make sense since it does not create a rectangle or a square.
DA
5 8 579
4 6 6 2 1 7 2
Example 2.7: Let, F = ,G= {1 2 5} ,H = A= )
4 1 13 0 3 4
3 7 1 36
356

2 1 30 2 1
J: 2 1 4 ,K: ’L:|:7:|’M: ’N:
4 589 3




does not make sense because it does not produce a rectangle or a square.

2.2.1 Types of Block Matrices

Definition 2.4: (Block Diagonal Matrices): If a matrix is block diagonal, then the
matrices which are placed in the diagonal position should be square matrices and the
matrices which are found in off-diagonal position should be zero matrices. Let T be a

block diagonal matrix (diagonal block matrix).

T, | O 0
0 | T 0

T - )
00 |...|Tum

Here 111,772,133, ..., T, are square matrices.

Definition 2.5: (Block Upper Triangular Matrix): A block matrix is upper triangular

if all the block matrices below the main diagonal are zero matrices.

10



Wii I Wia|... | Wi
0O |Wyl...| Wa,

W= ,
0 0 |...| Wum

Definition 2.6: (Block Lower Triangular Matrix): A block matrix is lower triangular

if all the block matrices above the main diagonal are zero matrices.

X1 0O [...] O
Xz] X22 Ce 0

X — )
Xml Xm2 Xmm

Definition 2.7: (Block Elementary Matrix): A block matrix is called block elementary
matrix if it is produced by the block identity matrix (block matrix having identity

matrices on the main diagonal) after only one elementary row operation.

Example 2.8: Let us consider the elementary block matrix below

10 1|0
Ry — 6R; +R>

0|1 6l |1

11



2.2.2 Block Matrix Multiplication

Definition 2.8: (Block Matrix Multiplication): The number of columns in each block
must be equal to the number of rows in the corresponding block of another matrix. If
matrices are partitioned compatibly into blocks, the product can be calculated by
matrix multiplication using blocks as entries. When we do matrix multiplication,
sizes of the block matrices must be compatible in both of the matrices. When we do

multiplication operation between two block matrices the result will be a new block

matrix.
Let,
O1i1 | Q12 |--- | Oun P | Po|...| Py
Oz | O | --- | O21 Py | Py ... | Py
Q: 5 P =
le Qm2 an Pnl Pn2 Pnp

The multiplication of the two block matrices will be as follows: The size of Q is m X n
because there are mn submatrices. On the other hand, the size of P is n X p because
there are np submatrices, so when we multiply Q and P the size of QP will be m x p,

hence it will contain mp matrices.

OnPii+ 0P+ + Qb Q1P+ QP+ -+ 0P | ... | QubPip+Qu12Pyp+-+Qunbup

O21P11 + 0Py +- -+ O2n P O Po+00Po+--+0mPp | ... | OuPip+00Pypy+-+ 0mbup
oP=

lePlI+Q/)12P21+"'+anpnl leP12+QmZP22+"'+anPn2 lePlp+QmZP2p+"'+anPnp

12



Example 2.9: Compute 7'S , using the indicated block partitioning.

13

12 15 22 |8 8
I —19 34 |8 8
9
5 7T 419 9
51 9 9 2]0 9 7
4 7 71 19 9
6 7 1 0 0|6 5 3
T = S=1 32 3 21 |33 21
1 11 12 4 212 1 0
0 11 56 |55 55
2 3 11 18 22/ -8 26
4 4
5 % 984 21
2 -9 7 |& 7
5 0 2 156 22
TS -

2 15 2 8 8
51997%—193409870]4]56 5 1 9 9 2[|8 8| [0 9 754555
{6 701 0 0f|-% 7 4+[6 5 4 3]5 o {6 71 0 0]9 9+l6 5 3}3 Y
Conoe s oafs o0 ol oo o T Loz o4 oy 9| [201 of|® 7

S 5 0 2 56 22

2§ o2 321

2 15 2 8 8

L e 0 1 s - 5555
[2 30118 22} -5 1 4 +[% -8 2 e}z i 7798 [z 30118 22} 9 9 +[% -8 2 6]2 27]

j Z " 5 0 2 b 56 22
( 51430 249 10232 \

0w 2 P |30 64l

3500 2 9281

142678 389 3133

203 1o 183 == 812

160576 541 41411 1537
\ 203 3 2768 30 2 /




Chapter 3

INVERSES OF BLOCK MATRICES

3.1 Inverses of Block Diagonal and Block Triangular Matrices
Proposition 3.1: LetY be a 2 x 2 block diagonal matrix, where Y;1, Y2, are square and
invertible blocks

Y = . Then its inverse is Y ~! =

0 | Y

Proof. By using the Gauss Elimination,

Yu 0 |1 0 I 0 |y;' o
R — Y 'R R — Y,'Re
0 Y»n|0 I 0 Y»n| O I
1 o|y;" o
0 1|0 VY
Yii| 0 Y7l o
yy-!— 1 .y
0 | Y 0 Y2_21
Therefore,

14



59 -8 12/0 0
1 6 2 5]00
35 1 4100
Example3.1: LetK=| 1 0 4 51|10 0
00 0 011 2
00 0O 0145
00 0 0|7 8
Then
- -1
59 -8 12
1 6 2 5
35 1 4
K! = 10 4 5
00 0O
00 0O
00 00O
-5 B 2 0 0 0
S S I
| & o —dr @m0 0 0
0 0 0 0 T
0 0 0 o | X £ 2
0 0 0 0o | -1 2 -1

15




Proposition 3.2: Let J be a 2 x 2 block upper triangular matrix; where J;,J2, are

square and invertible block matrices

Ju [ Ji2 I gl
J = . Then its inverse is J~! = H 11 22
0 | Jn 0 73
Proof. By using Gauss Elimination,
u S|l 0 1 g gyt o 1
R1—>J1_1 R R2—>J2_2R2
0 Jz|0 1 0 Jx» 0 I
e |y O 0|7y Ity
Ry — —J;' JiaRy + R
Ju e || 0| ek
JJI 1 = _
0 J22 0 J;l
e I ety O St
So,J 1= |1 171272 .
—1
0 I

3 9
§ -3 2|4 2 17 2

Example3.2: letZ=| 0 0 0| 6 5 3 1

Then, Z~ ! is as follows:

16



_ -1
- - 1 - - 16 1
7 -5 4 5 4 8 9 —10 12

0 10
6 0 9 - 0 9 6 2 4
—8 9
3 9 3 9
8 -3 3] -3 3 42 17 2]
0 3
- p— =
- - 6 5 3 1
00 0
0 6 9 10
00 0
857 9
00 0
- - 0 21 3
1 7 5 | _ 6163 _ 50791 _ 541 32263
44 792 33 76296 114444 38148 20808
29 193 13 47915 225143 28625 230279
132 2376 99 228888 343332 114444 62424
1 139 10 | 5849 56467 805 39667
66 1188 99 114444 171666 57222 31212
— 9 30 79 20
0 0 0 | —s3 289 —378 289
4 4 3 3
0 0 0 7 —17 7 7
8 43 6 164
0 0 0 289 289 789 — 289
48 31 36 117
0 0 0 | —2p9 289 —7389 289

Proposition 3.3: : Let V be a 2 x 2 lower triangular block matrix, where Vi1 and V;;

are square and invertible

Vi1 0

vy 0

V= . Then its inverse is V! =

Var | Va2 V' ViV | V!

Proof. By using Gauss Elimination,

17



Vip, 0|10 1 I 0 |vy' o
Ry — Vlil R Ry = -V 1R +R;
V21 V22 O I V21 V22 0 I
I 0] vt o0 10 vy 0
Ry — Vy,'Ry
0 Vi | -VaiVy' I 0 I|-Vy,'vv' vy
Vii| 0 vy 0
vyl = =1
Var | Va2 V' Vvt vy
vy 0
So,Vl=
-1 - —1
=V VoV |V

Example 3.3: Let G =

Then G~ ! is as follows.

G—l

18



7 1 0 - -
0000
00 25
0000
0 1 5
0000
2 -1 4 3 - -
- — g e R T
2100/ (23857 1 00 210
0641 [2046/[0 0 25 06 4
5345 (142090 1 45 53 4
4231 22332 -143 42 3
6 2 7 5
o 2 & & | 0o o 0o o0
5 14 49 35
7 w a —u | 0 0 0 0
5 33 45 35
s -2 s 3 10 0 0 0
1 16 9 7
77 7 o e | O 0O 0 0
606 4169 11513 341 37 11 1 16
6251 6251 12502 12502 133 133 133 133
384 3632 6309 1006 | 59 22 2 32
6251 6251 6251 6251 133 133 133 133
751 11531 36105 1135 | _ 8 1 12 59
12502 12502 25004 25004 133 133 133 133
262 3252 286 2374 2 3 36 _ 44
6251 6251 6251 6251 133 133 133 13

19




Example 3.4: Let L be a 2 x 2 block matrix

11 22 13|12 6 9 2
22 4 6|0 0 1 8

33 66 914 6 7 8

Is L~! possible?

11 22 13

Yes, because upper left position |22 44 ¢ | is not invertible so we cannot use

33 66 9

1 5 6
2 5 7

Theorem 3.1 but we can use theorem 3.2 because
6 3 6
2 7 9

Therefore

1817 4877 _ 120347 163488 146272 59035 715820
515139 171713 515139 171713 171713 515139 515139
17425 2590 65602 76260 67927 31457 337579
515139 171713 515139 171713 171713 515139 515139
10372 10242 _ 11821 _ 27090 _ 4878 4603 17884
171713 171713 171713 171713 171713 171713 171713
L*I — _ 14028 _ 23057 28305 20547 36331 17217 _ 54981
171713 171713 171713 171713 171713 171713 171713
_ 24277 _ 15612 14209 __ 56785 _ 23346 _ 1117 71019
343426 171713 343426 171713 171713 171713 171713
18158 2201 1920 76740 20664 4292 _ 68156
171713 171713 171713 171713 171713 171713 171713
_ 14537 14891 2653 40887 29725 640 _ 42167
343426 171713 343426 171713 171713 171713 171713

20

is non-singular.




Example 3.5: Let S be a 2 x 2 upper triangular block matrix

Can we find S—! ?

We can find S~! which is possible because in the diagonal positions submatrices are
invertible and in the off-diagonal positions matrix multiplication of block matrices is

possible so we are ready to calculate S~!.

—1 —1
3 6 7 36 7|14 2 6|2 4 -1
2 5 -1 -2 5 —1||1 =5 8|7 9 o9
» 00 9 00 9|t 4 -7/]9 9 8
S = = —=
0 0 0 2 4 -1
0 0 0 7 9 9
0O 0 O 9 9 8
5 o _a | _wm s o3
3 27 540 540 36
_2 ;1 | 8 & _19
3 27 108 108 36
1 217 67 1
0 0 g5 | ~%0 90 “w
9 41 9
0 0 0 |-2 -4 2
1 1 1
o 0 0 i i T3
9 9 1
o 0 o0 |- % -5k

Remark 3.1: The block Gaussian elimination methods applied to 2 x 2 block diagonal
and block triangular matrices can easily be generalised to give inverse formulas for

n x n block diagonal or block triangular matrices.

21



3.2 Inverses of General 2 x 2 Block Matrices

T | M
Assume S is a 2 X 2 non-singular square block matrix § = and its inverse
N | E
VIiw
is §7! = . If we want to understand S~! the we need to know the sizes
XY

of T,M,N,E in S and V,W,X,Y in S~! simultaneously. Let T,M N, E be partitioned
matrices in S with sizes k x m, k xn , I xm , | X n respectively and V,W.X Y be

submatrices in S~! with sizesof mx k, mx [ ,nx kand n x [ respectively.

We can verify S~!, here we have just 3 possible partitions.

* Square matrices in diagonal positions in S and S~!, which means k =m and [ = n
« Square matrices in off-diagonal positions of S and S~! where k =nand m =1 .

« Square matrices in all positions in S and S~! where k=m =n=1.

The theorem below deals with the first case where matrices in the diagonal positions

are all square.

Theorem 3.1: Let 7 be non-singular. Then S~! exists if and only if the matrix

E — NT'M is invertible and

T4+ T '"ME-NT'M)"'NT~' | =T 'M(E—-NT"'M)~!

s1=

—(E—-NT M)~ 'NT! (E-NT'M)~!

Proof. By using Gauss Elimination

T M|I 0 I T 'M|T7' 0
R, — TR,

N E |0 I N E | 0 I

Ry - —NR; +R»
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I T-'M 7' 0
Ry, = (E—~NT'M)"'R,

0 E-NT ‘M| -NT! [

T-'M 7! 0

I
Ry — —T 'MR,+R;
0 I |—(E-NT'M)”'NT-! (E-NT 'M)”!
I 0| T '+T'"ME-NT-'M)"'NT~! —T-'M(E-NT-'M)"!
0 I —(E—~NT~'M)~INT! (E—~NT'M)~!

Next, we write S as a product of elementary matrices. For this we need to find inverses

of standard elementary block matrices. We give these below.

Ry — TR,

Ry - NRi+R,

10 I 0
Ry — (E—NT~'M)R,
0|17 0| E-NT"'M
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Elementary matrices provide a second way of getting the inverse matrix. We can also

make sure by using product of (VLDU)_1 =y~ ‘DL lyv =51

T1|0

V=E=

0|1

110
L:E2_1: PR S

N|I

I 0
D=E;'=

O0|E—NT'M

[T 'M
U=E'=|—

o I
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-1

110 1o
:S_l
~N | I 0 |1
So,
1 T4+ T '"ME-NT'M)"'NT~' | =T 'M(E-NT~'M)~!
s~ = O

—(E—-NT 'M)~'NT! (E-NT-'M)~!

Theorem 3.2: Let now E be non-singular. Then S~! exists if and only if the matrix

T — ME—'N is invertible, and

1 (T —ME-'N)~! —(T—-ME~'N)"'ME~!
N

~E-'N(T-ME-'N)"' \E-'"+ E-'N(T —~ME~'N)"'ME~!

Proof. By using Gauss Elimination Method,

T M|I O T M|I 0
Ry — E 'R,

R — —MR, + R
N E|0 I E-'N 1]0 E!

T—-ME'N 0|1 —ME™!

Ry — (T —ME~'N)"'R,
E’'N 1|0 E!
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I  0|(T-ME"'N)™' —(T-ME~'N)"'ME~!

Ry
E7IN I 0 E-!
—(E7'N)R; +R>
10 (T-ME-'N)~! —(T"'"ME-'N)"'ME~!

0 I|-E'NT-ME"'N)"" E-'+E-'N(T-ME~'N)"'ME~!

Firstly, we can express I by using E4E3E2E 1S =1

E; =?
110 I| 0
R, > E~ 1R,
0|1 0|E~!
E, =2
10
Ry - —MR> + R,
0|7
Ez =?
110 (T-ME-'N)"' |0
R — (T —ME"'N)"'R,
Eq=?
10
Ry — —(E"'N)R; + R,
0|7




E4E5E2E;S =

I 0 (T-ME-'N)"1|0 1| -M 1| 0 T |M
~E7IN|1I 0 I 0| I 0E! N | E
110
prm— :I
0|1

Again, to express S as a product of elementary block matrices, inverses of the original

elementary blocks are required.

Ry, - ER,

R — MR> + R,

Ry - E"'NR,+R,




Thenis £, 'E; 'E; 'E; 1 =82

—1p—1p—1p-1
0|E 0| 1 0 I E-IN|T
T | M
=S
N | E




So,

1=

(T —ME~'N)~! —(T—ME~'N)"'ME~!

—E~'N(T —ME~'N)~!

0o -1 114
0 3 —3/6
3 -2 1 |1
Example 3.6: LetS=| 3 1 2 |1
5 2 1|3
0 0 310
32 1 |2
0 -4
In the diagonal position, | % _%
3 -2 1

18 not invertible but

0

2

E-'4+E-'N(T-ME~'N)"'ME~!

0 1 11

8 8 12

1S

invertible. That’s why we cannot use Theorem 3.1 but we can use Theorem 3.2 so we

need to use the following formula to find S™

1=

1

(T —ME~'N)~! —(T —ME~'N)"'ME~!

—E-'N(T —ME~'N)~!

SO

29

E'+EIN(T-ME-'N)"'ME~!



38 82 1025 19232 3533 1640 3779
8421 8421 8421 25263 8421 3609 25263
117 43 866 1801 167 58 38
2807 2807 2807 | 8421 2807 1203 3421
430 254 368 1634 58 268 820
2807 2807 2807 | 8421 2807 1203 8421
N 731 691 433 | _ 6766 4127 616 4201
8421 8421  T6842 25263 16842 3609 25263
1348 1136 3137 46666 29495 3472 22366
8421 8421 16842 | 25263 16842 ~ 3609 25263
421 613 645 | 20126 5975 1433 7814
2807 2807 2807 8421 2807 1203 8421
19 125 159 1384 559 94 934
2807 2807 2807 8421 2807 1203 8421

For the second class with the square blocks in the off-diagonal positions, we apply a
small trick to transform S and S~!, to block matrices with square diagonal positions

(case 1). For this, we need the matrix J below.

Definition 3.1: J is a matrix which has 1’s in the off-diagonal position and 0’s

elsewhere:
00 . 0 1
0 0 . 1 0
00 . .00
J=
01 .00
10 .00

Remark 3.2: J provides interchanging of the columns on the other matrices during

the multiplication operation.
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LetT =

Then

I

53

131
TJ=

In

n

53]

131

In1

2

5%)

132

In2

5]

[5%)

132

I

We may also put blocks!

Example

wJ

cJ

3.7:

RJ

oJ

AJ

HJ

L

BJ

uJ

YJ

MJ

EJ

DJ

KJ

PJ

1J

im

om

3

m

om

3,

tnm

31

im

om

3

5]

[5%)

132

I

I

71

131

In1




Theorem 3.3: Let M now be invertible. Then S~! exists if and only if N — EM~'T is

invertible and

1 ~(N—EM~'T) 'EM! (N—EM~'T)"!
N

M '+ M ' T(N-EM'T)'EM™ | -M~'T(N —EM~'T)~!

Proof. By using Theorem 3.1

( 0| ) ( (M)~ 4 (M) (L) (NI) — (E2) M) (L) B2 (M) | (7)™ (T)(NI) — (E)(M7) () )

—((ND) = (ED M)~ (TD)) N (ET) (M) ‘ ((NJ) = (E7)(M1) (1)~

0 ‘ J JIM 4 M T(N-EM'T)VEM™Y | — 7 '\M'T(N—-EM~T) ™!
J ‘ 0 ~J Y N—-EM™'T)'EM™! ‘ JYUN—-EMT'T)7!
—~(N—EM'T) 'EM~! (N—EM~'T)~!

M '+ M'T(N-EM'T) 'EM~" | -M~'T(N-EM~'T)~!

Theorem 3.4: Assume N is non-singular. Then S~! exists if and only if M — TN~'E

is invertible, and

~N'EM—-TN'E)y"' \N '+ NEM—-TN'E)"ITN!

s1=
(M—TN'E)~! —~(M—-TN'E)~'TN!

Proof. By using Theorem 3.2
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(NJ) =1+ () ED) (M) = (TT) (NI~ (ET)) =N (TT)(NI) !

(M) = (T7)(NJ)~H(ET))™! ‘ —((MJ) = (TH (NI~ ET) - (TT)(NT) !
—(ND)THED)((MI) = (TT) (N~ (ET)) !

0 ‘ J J UM —-TN7'E)"! ‘ ~J Y (M —-TN7'E)"ITN"!
J ‘ 0 ~JINTTEM~TN7E)™" | JTINT U INTIE(MM —TN7TE) I TN!

~NEM—-TNE)"' | N'4+ N EM—-TNE)"'TN!

(M—-TN'E)~! —~(M—TN'E)~ITN!

Remark 3.3: Theorem 3.1 and Theorem 3.3 are equivalent if 7! and M~! exist.
Remark 3.4: Theorem 3.1 and Theorem 3.4 are equivalent if 7' and N~! exist.
Remark 3.5: Theorem 3.2 and Theorem 3.3 are equivalent if E~! and M~! exist.
Remark 3.6: Theorem 3.2 and Theorem 3.4 are equivalent if E~! and N~! exist.

Remark 3.7: Obtaining an inverse formula for 2 x 2 block matrix is crucial, as these
formulas can always be used for any n x n block matrix by splitting it into 4 blocks,
i.e. by producing a 2 x 2 block matrix. Moreover, theorems in this section can be
used to give alternate proofs for the inverses of the block diagonal and block triangular

matrices.
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Chapter 4

DETERMINANTS OF BLOCK MATRICES

Definition 4.1: The determinant of an n X n matrix G can be found by multiplying
each element in any row or column of the matrix by its cofactor and adding these
expressions for all the entries in a certain row or column. In another way, it can be
thought as a function that associates a real or complex number to a given input square

matrix. It is denoted by det(G) or by |G|.

Theorem 4.1: The determinant of an n X n matrix G can be computed as follows:

|G| =g1;C1j+82jCaj+ -+ 8njCnj

(cofactor expansion along the j column) and

|G| = gi1Cit + gCi + -+ - + &inCin

(cofactor expansion along the ' row)

4.1 Determinants of 2 x 2 Block Matrices (In the Case that at Least
one Block is the Zero Matrix)

In this section we first provide determinants for the 2 x 2 block diagonal and block
triangular matrices. Then we give the cases where one of the diagonal blocks is a zero

matrix.
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0
Theorem 4.2: Given the 2 X 2 block matrix P = , determinant of P is

0 X

given as follows:

0 0
P = = |0|IX]|

0 X
q11 412 - qin X11 X120 Xl
Q1 922 - 9o X21 X2 ottt X2p
Proof. Let, Q = and X =

dnl 49n2  **° Ynn Xnl Xn2 °° Xnpn

qi1 912 - q.| 0 0 -+ 0

Q@1 92 - qn| 0 0 - 0

0 0 gl G2 - G| O 0O --- 0

0 X 0 0 0 X11 X12 - Xin

0 0 -+ 0 |x X2 -+ X

0 0 -+ 0 |Xg X2 - Xun

We can prove the assertion above by using inductive proof on n. Let us start with base

case, case 1 (n=1). Consider the block matrix Q as 1 x 1:
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0 = [q11], then, det(Q) = |g11| =g X =

0 0

0 X

0 0

0 X

X11

X21

Xnl

X12 Xln
X22 X2n
Xn2 Xnn
qu| 0 0 0
0 |x11 x12 X1n
= 0 |x21 x22 X2n
0 [x01 X2 Xnn
X1 Xx12 Xln
X21 X22 Xon
1+1
=(—-1)"gn
Xnl  Xn2 Xnn

X11

X21

Xn1

, then,

=|q11]

X12

X22

Xn2

X11

X21

Xnl

X12

X22

Xn2

X1n

X2n

Xnn

, giving
X1n
X2n
=Q|[X|
Xnn

Induction Hypothesis: Q — n X n assume result holds for (n—1) x (n—1)
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qu 912 - q,| 0 0 - 0
Q1 g2 - q@n| 0 0 -+ 0
Q 0 qnl 4n2 *°° Y4mn 0 0 0
= det
0 X 0 0 0 X11 X122 - Xin
0 O O X21 X2 -t Xop
0 0 - 0 |x30 X2 - Xm
g2 923 Qo 00 --0
q32 q33 ' Q3 00 --0
qn2 49n3 " Y9mn 00 --0
— (_1)1+1 g1
00 --- 0 X1 X|2 cc+ Xin
0 O O X21 X2 cc+ Xop
0 0 0 Xnl Xn2 Xnn
q21 423 ' 4 00 ---0
qdnl 49n3 - Ynn 00 ---0
+(_1)1+ZQI2 00 ---0 X11 X12 - Xin
0O 0 ---0 X21 X22 ot X2p
0 0 0 Xnl X2t Xmn
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38

q21 422 q2(n—1) 00 0
q31 432 q3(n—1) 00 0
qnl  4n2 Guin—1 00 0
+ .- +(_1)1+n Gin n n n(n—1)
00 0 X11 X12 Xln
00 0 X21 X2 Xop
0 0 0 Xnl X2 Xnn
X11 X12 X1n
q22 q2n
X21 X22 X2n
=411
qn2 dnn
Xnl  Xn2 Xnn
X11 X12 Xln
q21 q2n
X21 X22 X2n
—q12
dn1 dnn
Xnl  Xn2 Xnn
Q1 g2 D(n-1)| |X11 X12
q31 432 q3(n—1 X21 X22
o4 (D gy, o
qnl 4dn2 qn(n—l) Xnl  Xn2

X1n

X2n

Xnn

X



q21 422 q2(n—1)
q22 qon q21 q2on
q31 432 93(n—1)
qi —q12 o (=) gy,
qn2 qnn qnl qnn
L qnl  qn2 n(n-1)| |
= det(X)det(Q) O

Remark 4.1: Proof goes in a very similar way, if the sizes of the block square matrices

are different.

Y 0
Theorem 4.3: Given the 2 x 2 block matrix Z = determinant of Z is given
G X
as follows: Y 0
1Z| = = [Y]IX]
G X
Proof. Let
yir yiz Yin g1 812 8in X1 X12 X1m
y2r Y22 Y2n 821 822 82n X201 X22 X2m
Y = , G= , X =
Ynl Yn2 Ynn 8ml  8m2 8mn Xml  Xm2 Xmm
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yi1 Y12 Vin 0 0 -0

Y21 y22 Yon 00 -0

Y 0 Ynl Yn2 Ynn 00 -0
G X gl 812 gin | X1 xn2 Xim
821 822 &on X21 X2 X2m
i Eml 8m2 Emn Xml  Xm2 Xmm

Base Case (n=1):

Y = [y11], then det(Y) = [y11| = y11.

X11 X12

X21  X22
X| =

Xml Xm2
Then,
Yy 0O )

_ (_1) +1 Y1
G X

Consider the block matrix Y as 1 x 1

X1m

X2m

xmm

X11

X21

X12

X22

X1m

X2m

40

Y11 0 0
811 X111 X12 X1lm
| g1 | X1 X2 Xom
8ml Xml Xm2 Xmm
X1 X12 Xim
X1 X2 X2m
= [y11] = [Y[|X|
Xml Xm2 Xmm



Induction Hypothesis: Now let us assume that Y is an n X n block matrix. Assume by

induction that result holds for (n — 1) x (n— 1), to complete the proof.

yirooyi2 Yin 0 0 0
Y21 ¥y Yon 0 0 0
Y 0 Ynl Yn2 Ynn 0 0 0
G X g1 812 gin X1 X Xim
821 822 82n X21 X2 X2m
8ml 8m2 8mn Xml Xm2 Xmm
Y22 Yon 0 0 0
Yn2 Ynn 0 0 0
812 8ln X1 X12 Xim
822 82n X21 X22 X2m
8m2 8mn Xml Xm2 Xmm
Y21 Y2n 0 0 0
Ynl Ynn 0 0 0
142
(=1) 2 g &ln X1 X2 Xim
821 82n X201 X22 Xom
8ml 8mn Xml Xm2 Xmm
yar o Y2 Ya(n—1) 0 0 0
yir o Y32 Y3(n—1) 0 0 0
y22 Yon
Ynl1 Yn2 Yn(n—1) 0 0 0
= i
g1 812 81(n—1) X1 X2 Xim
Yn2 Ynn
821 822 82(n—1) X21  X22 X2m
8ml 8m2 gm(n—l) Xml Xm2 Xmm

41

X11

X21

Xml

X12

X22

Xm2

(_1)1+1

(_1)1+n

Xlm

X2m

Xmm

Y11

Yin

—V12



X1 X1zt Xim Y21 Y2 ot Ya(n-1)| |X1L X120ttt Xim
Y21 e Yon
X21 X22 o X2m | Y31 Y32 0 Y3(n-1) X21 X22 T X2m
#o Dy [ L =
Ynl Ynn
Xml Xm2 ot Xmm Ynl Yn2 0 Ya(n-1) Xml1 Xm2 ot Xmm
X1 X2 ot Xim Y21 oy ot Yam—1)
Y22t Yon Y21 0 Yo
Xo1 X2t Xom ) ) ) ) . V3L ¥R ot Y3-)
yirl o o =yt e (D)
Yn2 o Ymn Ynl o Ymn
Xml  Xm2 0 Xmm Ynl Yn2 0 Yn(n—1)
= det(X)det(Y) = det(Y) det(X) O

D N
Theorem 4.4: Given the 2 x 2 block matrix B = ,|B| = |D||U].
0 U

Proof. The induction proof works in the similar way as the proof above, it is enough

for one of the off diagonal blocks to be zero. [
S 0
Remark 4.2: Given the 2 x 2 block matrix K = , the transpose K T of this
L B
S L
matrix is K7 = . Then, we have that
0 B
S 0 S L
det(K) = = = det(KT)
L B 0 B

Therefore, to obtain the determinant of an upper triangular block matrix, one can
either take transpose, and then compute the determinant of the lower triangular block
matrix (as it is in Theorem 4.4) or one may also compute it directly by using cofactor

expansion, not through a row this time, but through a column instead.
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Example 4.1: Calculate the determinant of the following 2 x 2 block diagonal matrix

11 12 55 17{0 0 0 O O

7 7 14 12{0 0 0 O O

11 12 55 17/]0 0 O O O

7 7 14 12/0 0 0 0 O

Ul=l0 0 0 02 6 11 14 14
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2 6 11 14 14
3 4 -1 5
4 -2 -3 6 7
7 6 8 1
= 5 3 8 8 7
11 12 55 17
37 8 9 11
77 14 12
0O 0 4 0 3

= (—2376)(8342) = —19820592

Example 4.2: Given the following lower triangular block matrix
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= 7 9 = (—572)(—380) = 217360

Example 4.3: The matrix is given in the following way

13 12 10 14 17| 1 1

55 33 44 66 77| 3 6

O 0 0 0 O0]12 14

0O 0 0 O 014 16

13 12 10 14 17| 1 1

55 33 44 66 77| 3 6

10 18 12 14 112 O

0o 0 0 O 012 14

0O 0 0 O 014 16
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13 12 10 14 17
12 14
=155 33 44 66 77
14 16
10 18 12 14 11

N M
Lemmad4.1: If Z = , then det(Z) = det(NS — MK), whenever at least one of

K S
the blocks N, M, K, S is equal to 0.

Proof. K =0 and M = 0 cases have been already studied in Theorem 4.4 and Remark

4.2.

Using

L, -1, |, O| |I, —=I,| I[N M -K =S
0 I L, L,| |0 I K S N M
IEN=0

L, -1, |, O| |I, —I,| |0 M -K =S
0 L | I I.,] |0 L] |K S 0 M
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L, -1, I, 0O
det det

0 I, L, I,

0O M —K
det = det

K S 0

det(Z) = det(—KM) = det(—K) det(M).

IfS=0
L, L) |I, O I,
0 I, I, I,| |0

?

det

)

det

det

_[n

Iy

N M

K 0

N M

det(Z) = det(—KM) = det(—K) det(M).
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= det

= det
N M



4.2 Determinants of 2 x 2 Block Matrices (In the Case that Blocks
Commute with one another)

Definition 4.2: (Ring):

A ring is an Abelian group under addition with an extra multiplication operation such
that the followings are satisfied: If c,d € Rthenc-d € R, (c+d)-e = ce+de,

c-(d+e)=cd+ce,and (c-d)-e=c-(d-e).

Definition 4.3: (Field): It is a commutative ring with unity 1z, in which every non-

zero element has a multiplicative inverse.

W X
Theorem 4.5: If V = where W, X,Y,Z € My«,(F) and YZ = ZY then

Y Z

detF(V) = detp(WZ —XY)

Proof. fYZ=Z7Y,thenYZ —ZY =0.

Using

W X Z 0 WZ-XY X WZ-XY X 0
= = 1

Y Z| |-Y I, YZ-72Y Z 0 Z
and taking determinant on both sides:
detp (V) detp (Z) =detp ((WZ —XY)Z) =
detp (V) detp (Z) =detp (WZ —XY) detg (Z) =
[detF(V) — detF(WZ —XY)] detp (Z) =0.

Now, we need to consider 2 cases.
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Case I: If detp(Z) # O (The «case that Z is invertible), then

detp (V) —detp (WZ — XY) = 0, which implies that detr (V) = detp(WZ — XY).

Case 2: If detp(Z) = 0 (Z is not invertible), we proceed as follows.

In this case, we will need to consider the polynomial ring F/x]. This is a commutative

ring, where the elements are in the form agx” + apx’ '+ 4a,_1x+a, witha; € F,

for all i.
i ro )
LetZ = where 11,712,121 and ry; are polynomials. Then
1
x 0 rn T x+rip r
Zy=xl,+7Z = + = . But
0 x n1 1 xX-+ry

X+ri 2
detp(Zy) = detp(xI, +Z) = # 0. We know YZ =ZY and thus YZ, =
1 X-+ry
W X
Z.Y. Define V, = where Y and Z, commute.
Y Z

Using (1), substituting V for V and Z, for Z, we will get
[detp (Vi) —detp (WZ, — XY]]detp(Z,) = 0=
detp (Vx) —detg (WZX — XY) =0=

detp (Vx) = detF(WZx —XY). OJ
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Remark 4.3: If other blocks commute, the formulas are as follows.

i. f WY =YX, then detp (V) = detp (WZ —YX)

ii. If XZ = ZY, then detp (V) = detp (ZW — XY)

iii. If WX = XY, then detp (V) = detg (ZW —YX)

4.3 Determinants of 2 x 2 Block Matrices
In this part we give the determinant formula for 2 x 2 block matrices, where all blocks
are square matrices of the same size, with the condition that lower right block matrix

must be non-singular.

Theorem 4.6: If E,F,G,H € M,.,(F) and H is non-singular, then

E F
det =det(EH — FH 'GH)
G H
E F I, 0 E—FH'G F
Proof. By using =
G H| |-H'G I, 0 H

Take determinant on both side

E F I, 0 E—-FH'G F
det — det
G H| |-H'G I, 0 H
E F I, 0 E—-FH'G F
det det = det
G H —-H'G I, 0 H
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E F
det detl, = det(E — FH'G)det(H)
G H
E F
det = det(E — FH'G)det(H)
G H
E F
det =det(EH — FH 'GH)
G H

Example 4.4: Find E,F,G and H that satisfy the following equality

E F
det =det(E —FH'G)det(H)
G H
Let
_ 8 7 9|5 8 10 _
8 6 2|8 4 7
E F 1 —11 91 -2 5 9
G H B —12 —49 —13| 12 21 35
23 24 91 |36 25 10
—14 —41 —61|-15 —16 —14
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E F
det =det
G H
8§ 7 9
det] (8 6 2
1 —-11 -91
678
209
=det 5845
209
_ 155
19
_ —(353&27846)(—18
= 106088538.

8 7 9|5 8 10
8 6 2| 8 4 7
1 -1 =91 =2 5 9
249 -3 12 2 35 |
23 24 91 | 36 25 10
~14 —41 —61|—15 —16 —14
—1
5 8 10{ |12 21 35| |-12 49 -13 2 21 3
—|8 4 7|[36 25 10 23 24 91| [det] |36 25 10
-2 5 9||-15 -16 —14 |-14 —41 -6l -15 16 -14
1% 8% 1221 35
Lp? 13236 | |det] 136 25 10
—oi4 _2I% —15 —16 —14
81)

4.4 Determinants of n x n Block Matrices (When Blocks Commute

with one another)

Next we state the main theorem with the commutativity condition within the blocks,

for proof please refer to [17].

Theorem 4.7: Let R be a commutative subring of M,,,(F), where F is a field (or a

commutative ring ) , and let T € M, (R). Then

detpT = detF(detRT)
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Example 4.5: Let

1 2 3|12 -1 -6

3 2 0 3 2 9

-1 -1 —-1|-1 -1 -4
P =

-2 -1 -6 1 2 3

3 2 9 3 2 0

-1 -1 —4]-1 -1 -1

Show that detyp P = dety(detg P)

First, we choose W, X,Y,Z in a way that they commute with each other.

Next, we need to calculate detp P and dety (detg P)

LHS: We compute determinant directly by using cofactor expansion from any row or

column.

1 2 3 1-2 -1 -6

3 2 0 3 2 9

-1 -1 —-1|-1 -1 -4
detp P = detp =0

-2 -1 -6 1 2 3

3 2 9 3 2 0

-1 -1 -4|-1 -1 -1
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RHS: detp(detg P) =

[ 1
detr 3
I _—1
| _—3
= detr 18
I _—6

18

—6

=27

45

—15

2 3

2 0|~
-1 -1
=0.

-2

-1

—1

—1

—6

—4

Therefore, dety P = dety(detg P).
4.5 Determinant of Tensor Product of Two Matrices

Definition 4.4: (Tensor product between two block matrices and their determinants):

urp up2
Let U = € My,»(F) and W € M,,,(F). The tensor product U @ W will
upy U
upW upWw
be a 2n x 2n block matrix U @ W = .
untW  upWw

or in general , let U € My, (F) and W € M,,,,(F). The tensor product U @ W will be

mn X mn matrix

unW  upW Ui W
UQW =

Uy W

54



Remark 4.4: From definition 4.4, we can show detp (U @ W) = (detr U )" (dety W)?

detp (U@ W) =detp (up W) (upoW) — (uioW) (u21W))
= detp (u11u22W2 - M12M21W2)
= detp ((u11u22 — ur2u21)W?)
= detr ((detpU)W?)

= (detFU)”(detFW)z

1 1 2 1 2 1
Example 4.6: Let w= |5 3 2|.5=[1 1 1

1 0 0 1 1 1

WeS=1 5|1t 1 1| |3t 1 1] 2|t 1 1

I 1 1 1 1 1 I 1 1
1 2 1 1 2 1 2 4 2
1 1 1 1 1 1 2 2 2
1 1 1 1 1 1 2 2 2

1 2 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
I 1 1 0 0 O 0 0 O
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Theorem 4.8: Let K € M, ,(F) and S € M,,(F). Then
detF(K®S) = (detp K)"(detp S)m.

Proof. We can prove it by using inductive proof on m, size of block matrix K.

Base Case (m=1): K = [kj1] € M x1(F). In this case K® S = [k;1S] and detg(k;1S) =

ki1S= detF(K)S. Moreover, detF(kHS) = k" detg S.

Next assume by induction, that result holds for m — 1 case, i.e. for

K € M;_1)x(m—1)(F), and prove the m case.

kit ki - kip
kot ka -+ kop
LetK = € Myxm(F)
kml km2 e kmm
kiS kS - kS
k1S koS -+ komS
K®S=
kaS kaS T kmmS

detr(K @) = k118 [detr(K,), | © )] —ki2S [detr(Kp2 | @ S)] +---+
(= 1)k, S [detg (K | @ )]
= k1S ((detpKp' )S™ 1) —kinS ((detp K2 )S™ 1)+ +
(—1)" k1S ((detpK,™)S™ 1)

= (detpK)S™
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where K,’;{_l here is the square matrix with size m — 1, when the ith row and jth column

are deleted from K. Next,
detr (K ®S) = detp (detg(K® S)) = detr ((detrK)S™)

= (detFK)”(detFS’") = (detFK)”(detFS)’"

Example 4.7: Let

21 5 7 - .
1 00
4 1 1 1
Y = U=13 5 6
0 4 -5 -7
2 2 2
6 8 9 11 B B
- 4\ 3
Find detr (Y @ U). 51 5 7 ] .
1 00
4 1 1 1
detr(YQU) = | detp detr |3 5 6
04 -5 -7
2 2 2
6 8 9 11 B B

=(-132)*(-2)*

=—36799488

57



4.6 Determinant Formula for General n x n Block Matrix
In this section, we present a formula for the determinant of a n x n block matrix, a

result due to [15].

Theorem 4.9: Let M be an (nN) x (nN) complex matrix, which is partitioned into N2

blocks, each of size n x n:

My My -+ My

My My -+ Moy
M=

Myy Myz -+ Mnn

Then, the determinant of M is given by

N
det(M) = H det (@;\f—k))
k=1

where the ot(¥) are defined by

k _ .
a® =, — GI.,TN M lmN,kH’j for k > 1, and the vectors 65 and m;; are given by

ij tj —k+

T T
mij = (M;j;Mit1j,-+ \Mn;)" and oj; = (M;j,M; 41, \Min).

We also let M represent the k X k block matrix formed from the lower-right corner of

M:
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My k1 N—k+1 MN—jr1N-k+2 - MN—kr1N
. My _ki2oN—k+1 MN-jr2oN-kt2 0 My—pi2N
M, =
My N—i+1 MyN-—ki2 -+ MnnN

4.6.1 Special Cases: Determinant Formulas for 2 x 2 and 3 x 3 Block Matrices

For the convenience, we give below the formula for the cases N =2 and N = 3.

IftN=2

My M,

My My,

2
det(M) = Hdet<a]£lz—k)) = det(ocl(i))det(aég))
k=1

Fori=j=2k=0, 0 =My, andfori=j=1k=1,al =M —oL,My'my.
Hence OCI(}) =M — 61T2M521m21 =M —M12M521M21. Therefore,

det(M) = det (OCI(})) det (Otz(g)> = det (M11 —M12M2_21M21) det (Mzz)

= det (M1 My — MioMs,' Moy Moy

IfN=3

My My, Mis

M= My, My Ma;

M3 Ms Mss
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det(M1) — gdet (o) = et (o) cet (o)) et ()

Fori=j=3k=0,0a) =Mss, fori=j=2k=1, o\ = My, — 6LM; 'm3,, and

finally fori=j=1,and k = 2,061(%) =My — 61T2A7151m21.

det(M) = det (al(%) ) det (aé?) det <OC3((3))> =
1

My, My My,

det | M — (MIZ M13> det (Mzz - M23M;31M32) det (M33).

M3, Ms; M;3,

Using Theorem 3.2 for the inverse of 2 x 2 block matrix and after some algebraic

operations, we obtain the following formula.

det (M) = [det (M1, —M13M3_3|M31)
— (M1z — M13M3;' M3;) (Mo —M23M3_31M32)71 (Ma1 — Ma3Msy M3, )

x det (M22 —M23M3_31M32) det (M33) .

Example 4.8: Calculate the determinant of the following 2 x 2 block matrix
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Al =
0 0 7/3 6 =5
6 6 8|2 2 —4
-2 -6 7|9 8 —4
_ - _ - - - —1 ~
3209 -7 7 9|36 -5 0 0
= det| |1 3 0/—|2 6 5|22 —4 6 6
5 6 8 -1 —11 12| |9 8 —4] |-2 -6
_3 6 —5-
det| |2 2 —4
9 8 —4
woBw) (e s
=det| [1037 1215 648 | |det| |2 2 —4 = 262345(—86) = —529890.

334 537 1026
B B B 98 —4

Example 4.9: Let C =

Calculate |C]|.
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6 O 5 8 4
2 9 8 9 8
5 5 6 2 9
IC| =
17 19| -9 —-9| -3 -8
7 7 6 3 7
3 17 6 5 7
6
6 0 55 8 4 -9
= det —
2 9 8 8 9 8 9
8
6 6 2 9 3
= det —
-9 -9 -3 -8 5
= (4931)(3})(—14) = —40031

62

det

5

7




Chapter 5

CONCLUSION

This thesis is about two fundamental algebraic properties; inverses and determinants
of block matrices. It aims to serve as a primary reference for block matrices for all
who are interested in the subject or would like to use block matrices in their research.
We give inverse matrix formula for the 2 x 2 block matrix and then discuss how to
generalise this to n x n case. Under determinants, two formulas existing in the literature
are revised in detail, with examples. For one formula, condition is that blocks within
the block matrix must commute with one another. Then the general formula is also
presented. Alternate proofs for the inverses of block matrices are provided together

with a new proof for the determinant of the tensor product of two given matrices.
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