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ABSTRACT

Data Science is a broad field which includes statistics, data analysis, and machine

learning methods to analyze data and extract important information and understanding

from the data. In recent years, many data scientists have been arguing about whether

Python or R programming languages are better.

This thesis I chose both of them and it explains the differences between two commonly

used programming languages, Python and R, for coding algorithms to predict linear

regression. My goal is to find coefficients by applying linear and multiple equations

with three datasets. Using Python and R languages shows me which variables (in

datasets) the regression line is better than the others and I have achieved my goal by

showing special codes.

Keywords: Regression Analysis, Linear Regression, Linear Regression Line, Python,

R Language
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ÖZ

Veri Bilimi, verileri analiz etmek ve verilerden önemli bilgileri ve anlayışı çıkarmak

için istatistik, veri analizi ve makine öğrenimi yöntemlerini içeren geniş bir alandır.

Son yıllarda, birçok veri bilimcisi Python programlama dillerinin mi yoksa R

programlama dillerinin mi daha iyi olduğu konusunda tartışmaktadır.

Bu tezde ikisini de seçtim ve doğrusal regresyonu tahmin eden kodlama algoritmaları

için yaygın olarak kullanılan iki programlama dili olan Python ve R arasındaki

farkları açıklıyor. Amacım, üç veri seti ile doğrusal ve çoklu denklemler uygulayarak

katsayıları bulmak. Python ve R dillerini kullanmak bana hangi değişkenlerin (veri

setlerinde) regresyon çizgisinin diğerlerinden daha iyi olduğunu gösteriyor ve özel

kodlar göstererek amacıma ulaştım.

Anahtar Kelimeler:Regresyon Analizi, Lineer Regresyon, Lineer Regresyon

Doğrusu, Python Dili, R Dili
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Chapter 1

INTRODUCTION

1.1 Regression Analysis

The word "regression" has been around since the 18th century. However, regression

as it relates to correlation was first utilized in 1866 by the 19th century English

anthropologist and statistician Francis Galton while examining the heredity of genes

involved for height. He published a study titled "Regression to Mediocrity in

Hereditary Stature." Since then, the phrase has been well-known as a statistical notion

that is commonly utilized in assessing data qualities with different characteristics.

Over time, various regression models were developed to approach different types of

data and relationships. Which assumes a linear relationship between the variables,

linear regression earned stature and became widely used. Polynomial regression,

logistic regression, and other decent forms of regression were also developed to

analyze non-linear and categorical relationships. Regression analysis became more

reachable and efficient with the advent of computers and statistical software.

Researchers could analyze large datasets and fit complex regression models with ease,

leading to further improvements and applications in various fields. Today, regression

analysis is widely used in fields such as economics, social sciences, engineering,

finance, and machine learning.

1.1.1 Significance of Regression Analysis

The answer of what is regression is that to build a mathematical model describing

the effect of a set of input variables {x1,x2, · · · ,xr} on another variable y. There is a

relationship between y and x = {x1,x2, · · · ,xr}. Regression analysis is used when you

want to predict dependent variable from several independent variables.

In general, we can say that regression analysis is used to estimate the relationships
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between a dependent variable and one or more independent variables. Since these

techniques are practicable in almost every field of study and it is the most used of all

data analysis methods. To make the thesis relatively self-contained I have included

basic materials from statistics, numerical analysis, and partial differential equations.

Linear regression [1] is the most prevalent type of regression analysis since it allows us

to discover the line that best fits the data according to a certain mathematical criterion.

• Regression analysis provides insight into the strength of correlations between

variables. Regression analysis, which use statistical measures like as R-squared,

may tell you how much of the overall variability in the data is explained by your

model.

• Regression analysis is more flexible and has wide workability.

• Learning Regression Analysis will improve our general comprehension of

statistical inference.

• Learning regression analysis helped me become a better coder (Python AND R),

a better statistician, and an overall better model builder.

Overall, regression analysis is a well-rounded and valuable tool for understanding

relationships.

1.1.2 Dependent and Independent Variable

In regression analysis, the dependent variable and independent variables play major

roles for understanding the relationship between variables. It is important to recognize

between the dependent variable and independent variables.

The relationship between the dependent variable and independent variables is known

through a mathematical equation or regression model. The goal is to estimate the

effect of each independent variable on the dependent variable while accounting for

other variables in the calculation.
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The dependent variable is known as the response variable or outcome variable and the

dependent variable is the variable that the researcher wants to predict, explain, or

understand and it is denoted as Y. In the context of regression analysis, the dependent

variable is typically a continuous or numeric variable, such as sales income,

temperature, or test scores.

The independent variable is known as the predictor variables, explanatory variables.

Those are the variables that have an impact on the dependent variable. In regression

analysis, independent variables can be continuous or categorical.

It’s important to note that the terms "dependent variable" and "independent variables"

are specific to regression analysis, and their usage may change in other statistical

contexts.

1.1.3 Types of Regression Analysis

Before using the regression technique, there are some notions we have to know them.

These methods are different based on the types of dependent and independent variables

being studied.

• Linear regression [2] is the simplest form of regression that we assume that the

dependent variable is directly related to one or more independent variables. We

can say it is when you want to predict values of one variable, given values of

another variable. The aim is to find the best-fitting straight line that stand for

the relationship. There are two models which are simple linear regression and

multiple linear regression.When there is only one independent variable, then it

is called Simple linear regression. The formula is:

y = β0 +β1x+ ε (1.1)

This formula explains the meaning of some terms used in mathematics to

understand relationships between variables where y represents dependent

variable, x the independent variable, β0 the intercept (constant term), β1 the

3



coefficient for the independent variable and ε the error term.

On the other hand, when there are more than one independent variable, then it is

called multiple linear regression. The formula is:

y = β0 +β1x+β2x2 + · · ·+βrxr + ε (1.2)

The same definition for this formula where y represents dependent variable, x

the independent variable, β0 the intercept (constant term),

β1x+β2x2 + · · ·+βrxr the coefficients for the polynomial terms and ε the error

term.

• Polynomial regression is different from linear regression because the polynomial

regression is a technique for fitting a nonlinear equation by taking polynomial

functions of independent variable. It is a variant of the multiple linear regression

model that includes fitting a polynomial equation to the data, which can take

curved or nonlinear types where the dependent and independent variables have

a curvilinear relationship, and the polynomial equation is:

y = β0 +β1x+β2x2 + · · ·+βrxr + ε

where y represents the dependent variable, x the independent variable,β0 the

intercept (constant term), β1x + β2x2 + · · · + βrxr the coefficients for the

polynomial terms and ε is error term.

Polynomial regression can be categorized to different powers to create

polynomial terms. It’s important to choose an appropriate degree for the

polynomial. For instance, if degree is 2 (quadratic) would include terms like x,

x2, while degree is 3 (cubic) would include terms like x, x2, x3, and so on.

Polynomial regression is useful for various fields, including physics,

economics, social sciences, and engineering.
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• Logistic Regression is that when the dependent variable is discrete, then the

technique is applicable. It is mainly created for dependent variables that are

binary (having two categories) or ordinal (having ordered categories). Unlike

linear regression, it is used for continuous dependent variables. It makes a way

to model the relationship between the independent variables and the probability

of an event happening and estimates the probability of an event.

We have the formula for the Logarithm of the odds ratio:

log(odds) = β0 +β1x+β2x2 + · · ·+βrxr

where x1,x2, · · · ,xr represents the independent variables, β0 the intercept

(constant term) and β1,β2, · · · ,βr the coefficients for the independent variables.

It uses the logistic function which is known as the sigmoid function that

changes a linear combination of the independent variables into a probability

value between 0 and 1. The general form of logistic regression is:

P(y = 1|x) = 1/(1+ exp(−z))

where P(y = 1|x) represents the probability of the binary outcome (y = 1) given

the values of the independent variables (x) and z represents the linear

combination of the independent variables and their respective coefficients.

There are 3 ways to use logistic regression:

1. Binary logistic regression - If there are two possible outcomes, like whether

someone might have COVID-19 or not.

2. Multinomial logistic regression – If there are many outcomes, for example,

if we extend our initial example to predict if someone has the flu, an allergy,

a cold, or COVID-19.

3. Ordinal logistic regression - If the outcome is ordered, like in our original
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example, we can determine the severity of a COVID-19 infection, sorting

it into mild, moderate, and severe cases.

Logistic regression is used in many different areas such as medicine, social

sciences, marketing and machine learning.

• Ridge Regression (shrinkage regression) is the way to analyze high correlation

where the independent variables are strongly correlated with each other in a

regression model. If there are not many observations compared to predictor

variables, we should use ridge regression.

Ridge regression adds a squared term to the sum of squared coefficients that

minimize the sum of squared errors while also minimizing the sum of squared

coefficients. It means that there is the traditional least squares estimation is

modified by adding a penalty which controlled by a regulation parameter λ

(lambda), reduces the coefficient estimates towards zero that term to the sum of

squared coefficients. A larger λ value results in greater decrease and more

regularization. The ridge regression equation is:

y = β0 +β1x1 +β2x2 + · · ·+βrxr +λ ∑β
2
i + ε

where y represents dependent variable, x1,x2, · · · ,xr the independent variables,

β0 the intercept (constant term) and β1,β2, · · · ,βr the coefficients for the

independent variables, λ is penalty parameter that controls the amount of

regularization and ε is random error term. λ ∑β 2
i is the ridge term that is added

to the traditional least squares equation and penalizes the magnitude of the

coefficients, encouraging them to be smaller.

Ridge regression [3] is commonly applied in fields such as finance, economics,

and machine learning.
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• Lasso Regression stands for Least Absolute Shrinkage and Selection Operator.

Ridge regression and Lasso regression are the same definitions but Lasso

regression adds the absolute value of the coefficients. It is a type of linear

regression that uses shrinkage. Shrinkage is where data values are shrunk

towards a central point, like the mean It makes use of L1 regularization

technique in the objective function. Additionally, lasso regression is a method

that uses absolute values of coefficients to add a penalty in L1 regularization.

Rare models with few coefficients may arise from this form of regularization.

Some parts might become nothing (zero) and bigger punishments create

coefficient values that are closer to zero. The lasso regression equation is:

y = β0 +β1x1 +β2x2 + · · ·+βrxr +λ ∑ |βi|+ ε

where y represents the dependent variable, x1 + x2 + · · ·+ xr the independent

variables, β0 the intercept (constant term) and β1 +β2 + · · ·+βr the coefficients

for the independent variables, λ the penalty parameter that controls the amount

of regularization, ε the random error term and here the penalty term, λ ∑ |βi|, is

the sum of the absolute values of the coefficients multiplied by the tuning

parameter λ . The goal is to minimize the sum of squared errors while also

minimizing the sum of the absolute values of the coefficients.

Lasso regression use for in various fields, including genetics, economics,

machine learning and It’s useful for dealing with high-dimensional datasets [4].
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Chapter 2

WHY LINEAR REGRESSION

Linear regression is a very important and commonly used statistical analysis method.

This is a very simple way to analyze data. One of its main advantages is that it’s easy

to understand the results. The difference between predicted and actual output values

is minimized using linear regression by fitting a straight line or surface. We can find

calculators that use a method called "least squares" to figure out the best line for a set

of data that comes in pairs. The idea of linear regression says that when we change

one thing, another thing changes in a similar way. Linear regression is very beneficial

in the following situations [5].

1. Forecasting and prediction are both possible uses for linear regression in

predictive modeling. We may create a linear regression model using a

collection of independent variables to predict the value of the dependent

variable for upcoming observations or future time periods. This makes it useful

in fields like financial modeling, demand forecasting, and sales forecasting.

2. Linear regression is used to assess and quantify the connection between

variables. It helps us to figure out the level and direction of the relationship,

identify important factors, and understand how changes in the independent

variables affect the dependent variable.

3. Linear regression can help with variable selection by selecting the most

important independent variables. We can evaluate which factors have an

important impact on the dependent variable and choose them for future research

by examining the size and significance of the coefficients.

4. And so on....

Overall, linear regression is a flexible and popular method for making
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predictions, understanding correlations, and testing hypotheses. It is useful to

many different industries, including engineering, finance, healthcare, and the

social sciences.

2.1 Math behind in Linear Regression

Linear regression is a mathematical process of finding the most suitable line that goes

equally with a set of data points while minimizing the sum of squared between actual

and predicted values. There are the mathematical processes necessary for linear

regression.

• Representation of a Model- when we use linear regression, we believe that the

relationship between x and y can be shown by a linear equation. I showed

equation (1.1) is known as the general form of a simple linear regression. For

the purpose of review the equation is y = β0 +β1x+ ε , where y represents the

dependent variable, x the independent variable, β0 the intercept or the value of y

when y is zero, β1 the slope or the change in y for a unit change in x and ε the

random error term that captures the unexplained variation.

On the other hand, we must know the role of residual and random error by

using linear regression.
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Figure 1: Regression Line

The picture 1 shows that the differences actual y – predicted y are called

residuals while an error is the difference between the observed value and the

true value. There are r observations (x1,y1),(x2,y2) · · ·(xr,yr) used to build the

regression model in regression analysis. Each observation includes two values:

a value for one thing that can change (called the independent variable,x) and a

value for another thing that is affected by the first thing (called the dependent

variable,y).

• Cost Function - the purpose of linear regression is to find the coefficient values

β0,β1 that minimize the difference between the observed and predicted values

of y given by the linear model. The most common cost function used in linear

regression is called the mean squared error (MSE).

• Optimization - ordinary least squares (OLS) is a very common math formula

used to minimize MSE by finding the best coefficient values. The sum of squared

residuals SSR is calculated as the sum of the squared differences between the

observed values Yi and the predicted values Ȳi:

SSR = ∑(Yi − Ȳi)
2 (2.1)
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Least squares regression lines are a specific type of model that analysts frequently use

to display relationships in their data. We can use least squares regression to

mathematically find the best possible line and its equation. Statisticians call it “least

squares” because it minimizes the sum of the squared residuals. Let’s unpack what

that means. If we want to calculate the residual mathematically, it’s the simple

subtraction which is Residual = Observed value – Model value.

Or, equivalently: Let R be the residual. Then,

R = y− ŷ (2.2)

where ŷ is the regression model’s expected value of y.

Residuals represent the error in a least squares model. We will minimize the total error

because it means that the data points are collectively as close to the model’s values as

possible.

Unfortunately, you can’t just sum the residuals to represent the total error because the

positive and negative values will cancel each other out even when they tend to be

relatively large. Instead, least squares regression takes those residuals and squares

them, so they’re always positive. In this manner, the process can add them up without

canceling each other. Statisticians refer to squared residuals by using equation (2.2)

as squared errors and their total as the sum of squared errors (S), shown below

mathematically.

S =
n

∑
i=1

(y− ŷ)2. (2.3)

where ŷ = β0+β1x, so to minimize S, we need to differentiate S with respect to β0 and

β1.
∆S = 0 (2.4)

This (2.4) leads to the following equations,

∂S
∂β0

=
∂

∂β0

( n

∑
i=1

(yi −β0 −β1xi)
2
)
=−2

n

∑
i=1

(
yi −β0 −β1xi

)
.
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This implies

n

∑
i=1

yi = β0n+β1

n

∑
i=1

xi (2.5)

And

∂S
∂β1

=
∂

∂β1

( n

∑
i=1

(yi −β0 −β1xi)
2
)
=−2

n

∑
i=1

xi

(
yi −β0 −β1xi

)
.

So we get

n

∑
i=1

xiyi = β0

n

∑
i=1

xi +β1

n

∑
i=1

x2
i . (2.6)

from (2.5) and (2.6) we get

β0 =
1
n

n

∑
i=1

yi −
β1

n

n

∑
i=1

n

∑
i=1

xi.

But x̄ = 1
n

n
∑

i=1
xi, and ȳ = 1

n

n
∑

i=1
yi So,

β0 = ȳ−β1x̄ (2.7)

To find β1, we substitute (2.7) β0 in equation (2.6), to get

β1 =

n
∑

i=1
xiyi − ȳ

n
∑

i=1
xi

n
∑

i=1
x2

i − x̄
n
∑

i=1
xi

(2.8)
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Chapter 3

PYTHON PROGRAMMING LANGUAGE

3.1 Role of Python

One of the most popular languages is Python that many people used by those interested

in data science is Python. We can modify and use any type of data with using libraries.

In this thesis We are going to start implementing linear regression in Python. To do

this, we will apply the proper packages and their functions and classes. We can perform

the linear regression method in a variety of programs and environments, including [6]:

• R with linear regression

• Python with linear regression

To do linear regression analysis in Python [7], we can use libraries like as NumPy,

pandas, and scikit-learn. Here’s an example of how to use scikit-learn which is one of

Python’s most popular machine learning tools.

import numpy as np

f rom sklearn.linear_model import LinearRegression

In the above example, we make a model for measuring something using a special code

called LinearRegression from scikit-learn.

x = np.array([[1,3], [2,4], [3,6], [4,8]])

y = np.array([6,8,10,12])

model = LinearRegression()

model. f it(x,y)
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To train the model, we give it the input variables x and the output variable y to the fit

method.

new_data = np.array([[5,10], [6,12]])

predictions = model.predict(new_data)

print(predictions)

After learning, we can use the model to guess what might happen with new information

by using the predict function and giving it the new data. The output will be ‘[16. 18.]’

for the new data points.

3.2 Earthquake Parameter Prediction with Linear Regression

For this section we analyze and visualize the earthquake data in python with

Matplotlib library. There are steps we have to check as following:

• Get the datasets from earthquake in csv file format

• Building a model with Linear Regression

• Visualization with Matplotlib and Seaborn

First of all, we would like to continue using the python packages before read the file [8].

Import numpy as np

Import pandas as pd

f rom sklearn.linear−model import LinearRegression

f rom sklearn import metrics

import mat plotlib.pyplot as pltt

import seaborn as sb

import warnings

warnings. f ilterwarnings(′ignore′)

We could read the data because files with py and csv extensions are on the same file

path. Let’s read the csv file with pandas:
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The result in the picture shows that we have a matrix file of 23412 rows and 21

Figure 2: Earthquake Parameters

columns with Earthquake data from 1965 to 2016. The columns are also distributed

according to the title of the data. Let me explain them now.

• Id: order number of the earthquake

• Date: earthquake occurrence date

• Time: time of the earthquake

• Lat: latitude of the earthquake epicenter

• Long: longitude of the earthquake epicenter

• Type: the type of earthquake

• Md: magnitude depending on time

• Azimuthal Gap: the maximum angle separating two adjacent seismic stations

• Horizontal Distance: from the epicenter to the nearest station (in km)
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• Dist: district of the occurred earthquake

Then we can look the descriptive statistical measures df.describe() that gives us some

idea regarding the distribution of the data.

Figure 3: Describe of Earthquake Parameters

From the above description 3 of the dataset, we can conclude the maximum magnitude

of the Earthquake is 9.1 and the maximum depth at which the earthquake started is 700

km below the ground.

Then, we are going to use value−counts() method on Magnitude Type and Source to

identify the count of each category in that column.

My purpose is to show that how many are there categories of Magnitude Type and

Source for using 4 and 5 pictures. We can see that there are 7722 moment magnitude

(MW) and 20630 sources and so on.

Secondly, EDA (Exploratory Data Analysis) [9] means that looking at the data by

using pictures to help understand it. This is a tool used to find trends and patterns by

looking at graphs and numbers. By using plt.figure() we can follow that the changes

caused by earthquakes of greater size are more easily seen during the monsoon season.
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Figure 4: Showing the Counts of Magnitude Type

Figure 5: Showing the Sources of Each Variable

pltt.figure(figsize=(10, 5))

x1 = df.groupby(’Year’).mean()[’Depth’]

x1.plot.bar()

pltt.show()

plt.figure(figsize=(10, 5))

sb.lineplot(data=df, x=’Day’, y=’Magnitude’)

plt.show()
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Figure 6: Showing the Depth of Each Year

Figure 7: Showing the Magnitude of Each Day

From the table 14 and 7 we see that which earthquakes are reducing or increasing with

every passing year and month. The highest depth happened in US on 19 August 2002

and the highest magnitude is 8.7 on 4 February 1965.

In the Python programming language [10], plt.subplots stands as a function offered

by the Matplotlib library, widely utilized to generate visual representations like plots,

charts, and graphs. We’re going to examine "Depth" and "Magnitude" by using the

plt.subplots code.
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pltt.subplots( f igsize = (15,5))

pltt.subplot(1,2,1)

sb.dist plot(d f [′Depth′])

pltt.subplot(1,2,2)

sb.boxplot(d f [′Depth′])

pltt.show()

Figure 8: Distribution Graph in Earthquake’s Depth

Another code is for "Magnitude":
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pltt.subplots( f igsize = (15,5))

pltt.subplot(1,2,1)

sb.dist plot(d f [′Magnitude′])

pltt.subplot(1,2,2)

sb.boxplot(d f [′Magnitude′])

pltt.show()

Figure 9: Distribution Graph in Earthquake’s Magnitude

From the distribution graph 8 and 9 there are some outliers that we can check them

using a different kind of graph called a boxplot. The important thing to notice is that

the earthquake’s depth and magnitude are more towards one side, which is the left side.

We know that some natural events happen in a predictable pattern, and earthquakes
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are one of them. We can see that the size of earthquakes also follows this pattern. So,

we’re going to use Plotly library to make a map showing where earthquakes are more

likely to happen based on the latitude and longitude data.

pltt. f igure( f igsize = (10,8))

sb.scatterplot(data = d f ,x =′ Latitude′,y =′ Longitude′,hue =′ Magnitude′)

pltt.show()

Figure 10: Plot the Data’s on the Map

3.3 Parameter Estimate and Correlation

We have to show the relationship between depth and magnitude with the native figure

size and this relationship looks linear between them.
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pltt. f igure( f igsize = (7,5))

pltt.scatter(d f [′Depth′],d f [′Magnitude′])

pltt.xlabel(”Depth”, f ontsize = 12)

pltt.ylabel(”Magnitude”, f ontsize = 12)

pltt.title(”RelationbetweenDepthandMagnitude”)

pltt.show()

Figure 11: Relation Between Depth and Magnitude

Firstly, we need to figure out two numbers (β0 and β1) that we can draw a straight

line since we know the connection is straight. We showed how to find β0 and β1 with

partial equation in (2.7) and (2.8). By using the equations I can show with python code

to find the coefficients.
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x = d f [′Depth′]

x−bar = (d f [′Depth′]).mean()

y = d f [′Magnitude′]

y−bar = (d f [′Magnitude′]).mean()

beta1 = ((x− x−bar)∗ (y− y−bar)).sum()/((x− x−bar)∗∗2).sum()

print(”Beta−1 coe f f icient estimate : ”+ str(round(beta1,4)))

From the code the output is "Beta_1 coefficient estimate : 0.0001".

beta0 = y−bar−beta1∗ x−bar

print(”Beta−0 coe f f icientestimate : ”+ str(round(beta0,4)))

From the code the output is "Beta_0 coefficient estimate : 5.8768".

Then, we can draw a line on a graph to see if it looks right or not.

pltt. f igure( f igsize = (7,5))

pltt.scatter(d f [′Depth′],d f [′Magnitude′])

pltt.plot(d f [′Depth′],beta1∗d f [′Depth′]+beta0,c =′ r′)

pltt.xlabel(”Depth)”, f ontsize = 12)

pltt.ylabel(”Magnitude”, f ontsize = 12)

pltt.show()
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Figure 12: Relation Between Depth and Magnitude

From the picture 12 we don’t know that the line is good or not. So, we have to know

about correlation before to decide the line is good or not.

Correlation represents a statistical metric that determine how strong the relationship is

between two variables using statistics. There are two main kinds of correlation which

are positive correlation indicates that when one variable goes up, the other variable

also tends to rise and a negative correlation implies that as one variable increases, the

other variable typically decreases.

Correlation heatmaps are a type of plot that to show how strongly different numbers

relate to each other. These plots are used to see how different things are connected

and how their connections are strong. A correlation plot typically contains a number

of numerical variables, where each number is represented by a column. The rows

show how each pair of variables is related to each other. The cell values indicate the

strength of the relationship which positive numbers mean a good relationship and
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negative numbers mean a bad relationship. Correlation heat-maps can be used to find

potential relationships between variables and to understand the strength of these

relationships. The different colors used for the cells help us easily see how variables

are related to each other. Additionally, correlation heatmaps can uncover both linear

and nonlinear associations between variables.

This is a correlation heatmap generated to examine the linear relationship between

depth and magnitude. Here is how the correlation "heatmap" will look like:

sb.heatmap(d f .corr(),annot = True,cmap =′ magma′)

Figure 13: Correlation Heatmap for Earthquake Dataset

From the picture 13 it’s not readable for values. So, we can use the code df.corr() to

understand the variables.
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Figure 14: Correlation for Variables

According to the displayed correlation "heatmap", we can get some of the following

information about variables:

• Variables such as Latitude and Longitude, Depth Seismic Stations and

Magnitude Error, Magnitude Seismic Stations and Azimuthal Gap and

Horizontal Error are having strong positive correlations.

• Variables such as Depth and Depth Error, Magnitude and Horizontal Distance,

Root Mean Square are having strong negative correlations.

• There are some variables that are not connected to each other and their

connection measure is close to zero.

We see that when correlation is near 0, the linear relationship is weak. So the line

between depth and magnitude relationship is not good.
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Chapter 4

R PROGRAMMING LANGUAGE

4.1 R Overview and History

In statistics, regression analysis is a way to find the connection between different

variables in a dataset using R programming and statistics. This method is useful for

figuring out what causes a problem. We can easily determine the most important

elements, the ones that can be disregarded and how these factors work together when

we do a regression. In general, regression analysis is used to find out how the

variables in a dataset are related to each other. Regression analysis helps us

understand how the dependent variables change when one independent variable

changes while keeping the other independent variables constant.

R is a public programming language that it is commonly used for analyzing data and

as software for statistics. It was founded by Ross Ihaka and Robert Gentleman at

the University of Auckland in New Zealand in the beginning of the 1990s.It has a

command-line interface. The interface has a prompt which is usually shown as the ‘>’

symbol. It can be used with Microsoft Windows, Linux, and Apple macOS, which are

common operating systems. The R programming language contains a large library that

is mostly developed in C, C++, Fortran, and R. Actually, this software is only used for

statistical and graphical approaches such as statistical inference, time series analysis,

linear regression, and machine learning (ML).

In the modern world, R is becoming very popular because of technology. Almost two

million scientists and statisticians worldwide who work with data and statistics use the

R coding language to create business applications.
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As mentioned before, R is a computer language and software program used for

analyzing data, making charts, and creating reports. Here are the main things about R

that are important.

• R is a programming language that is well-designed and easy to use. It has

features such as input and output capabilities, conditionals, loops, and

user-defined recursive functions.

• In R, there are special ways of doing calculations on arrays, lists, vectors, and

matrices.

• R has a solid system for managing and saving data.

• R provides tools for analyzing and showing data in pictures, which can be used

on a computer or printed on paper.

• R has a large collection of helpful tools for studying and analyzing data.

Overall, R is a strong and versatile language used to analyze statistics and data science.

It is popular in academia, companies, and research. Many people like to use it for data

analysis and visualization because it has a big community and many useful tools.

4.2 A Case Study on Diamond Prices with R

In R, we will examine the diamonds dataset from the ggplot2 package. This dataset

includes over 50,000 entries with ten factors including as price, carat, cut, color, and

so on. We are interested in understanding how several variables impact the cost of a

diamond. Precisely, our aim to explore how the diamond’s carat weight, distinct cuts,

and varying levels of depth and table influence its price. The important thing is to

check if the calculated coefficients are statistically significant for linear regression. All

we need to check out the diamonds dataset and modify it for analysis. We put the excel

file in R studio called "Diamonds".

In the figure 15 there are independent (x) variables which are carat, cut, depth and

table to examine their relationships with the price (y) of diamonds. We want to focus
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Figure 15: Diamonds Dataset in R

just on the carat to test the connection between price. Then, we will only continue

using these variables.

The presented simple linear regression equation is y = β0 + β1x for describe the

connection between the response variable (y) and the predictor (x), where β0

represents the intercept and β1 represents the slope. The aim of describing the values

of β0 and β1, where y represents the price and x corresponds to the carat for create the

linear model.

Figure 16: Coefficients of Carat and Price

We got from the figure 16 the intercept β0 and slope β1 which is below the x column

by using the fit variable. If x is 0, it means the value of y is intercept and the price of a

diamond is -$2,256 with 0 carat. Yes, it might not sound logical or understandable,

29



but that is how it is evaluated. If I want to understand something from it, I can

calculate the average of our x variable and subtract it from each value. This way, I can

interpret the intercept as the y value when x is the average carat.

Figure 17: The Mean of Carat

We notice form the figure 17 that the slope remains consistent, while the intercept is

now $3,933 by using the price of an average-carat diamond code.We determined the

slope is 7756, indicating that for every additional carat a diamond possesses, its value

increases by $7,756. If we have a negative value, it means that for each increase in x,

y is decreased by that value. So our equation is y = −2256+ 7756x. We can guess

how much a diamond may cost based on its size in carats. For instance, we wish to

calculate the approximate value of a diamond weighing four carats. By substituting

the given carat value into the equation y =−2256+(7756)(4), the result is 28,768.

We can also interpreting other coefficients by using lm object and the parameter of

summary function for get more details.
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Figure 18: More Details for Interpreting Other Coefficients

There are more consequences by using lm object with the summary function in the

figure 18. We’ll examine at any of them to figure out if the coefficients that were

estimated and model are appropriate.

We know that residuals refer to the variances among the actual and estimated values

of the dependent variable.

> Diamonds %>%

select(carat, price) %>%

ggplot(aes(carat, price)) +

geom_point(shape=16, colour = ’purple’, size = 2, alpha = 0.5) +

geom_smooth(method = ’lm’, colour = ’green’) +

theme_minimal()
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Figure 19: Scatter Plot of Diamonds Carat and Price with Regression Line

The important thing is to analyze the relationship between the variables and

determine whether it holds statistical significance, as well as it involves the estimation

of the y value using a given x value. That’s why we’ll show interpretation of linear

regression using the diamonds dataset.

Let’s give a brief explanation of our basic calculation model using the diamand data

from the figure 18. We know our regression equation is represented as y = −2256+

7756x with coefficient values and the p-value is below the significance cutoff point of

0.05. Both the multiple and adjusted R-squared values stand at 0.8493 and it’s quite a

few lofty.Thus, we can conclude that this simple linear regression model is robust and

reliable. The numbers we found are very important in understanding how much carat

affects the price.The model demonstrates its reliability for forecasting diamond prices

when using x values that were not present in the witnessed data.

The residual refers to the variation in height between the predicted y represented by

the green line and the actual y depicted by the purple dots. We have to focus on the

p-value among these details because it is important which it demonstrates the
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statistical significance of the calculated coefficients.P-values are used in regression

analysis to test hypotheses. In this situation, our null hypothesis is that both β0 and

β1 are zero, which means there is no effect fore these variables on our response

variable,whereas the alternative hypotheses claim that β0 and β1 are not zero, which

means that the coefficients do affect the response variable.So,the p-values play a

crucial role in determining whether the null hypotheses can be rejected. If the p-value

is lower than 0.05. So, we have sufficient evidence to reject the null hypothesis and

conclude that the coefficients have statistical significance which the coefficient is

likely not to equal zero.

4.2.1 Multiple Linear Regression in R

Until now we’re done the concepts of statistical technique by using linear regression

example, now I will check the multiple linear regression using the similar datasets.

> fit2 <- lm(price carat + cut + depth + table, Diamonds)

> summary(fit2)

Figure 20: Multiple Linear Regression for Other Datasets
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In the 20 regression summary, both coefficients yield p-values of 2e-16, which is

comparable to 0.0000000000000002, which is significantly less than 0.05. So, we

have the grounds to dismiss the null hypothesis this signifies a connection between

the "carat" and "price.".

The another way is our goodness of fit measurements are Multiple R-squared and

Adjusted R-squared.These figures indicate how much of the changes in the y variable

can be explained by the model. The numbers go from 0 to 1, and I want these numbers

to be lofty. Although they have the equal numbers, our attention should be directed

towards the adjusted R-squared since it takes into account the presence of irrelevant

variables, which the multiple R-squared does not consider.

As we see there are many coefficients for cut variable because it is considered an

ordinal factor variable or a categorical data [11] type in statistics. In regression

models, we handle categorical data in a different way. R converts the category

variable into sets of binary variables as yes or no options represented by 1’s and 0’s.In

R, additional variables will be generated to represent the values present in the original

variable. These new variables will have one value that serves as a reference point for

the comparisons.There are 5 categories which are fair, good, very good, premium,

ideal and four variables were created in R, with the first level of the ordered factor

serving as the reference point. The cut variable values are being represented by

cutGood, cutVery Good, cutPremium, cutIdeal. Selecting Fair cut or level 1 as the

reference value implies the absence of a column.When all the cut variables have a

value of 0, it indicates that the specific observation corresponds to a "fair" type of cut.

This approach is known as dummy coding.

Regression analysis uses dummy coding, which is known as one-hot encoding, to

represent categorical variables with binary values (0 or 1). When working with

categories in a regression model, we cannot use them directly because the model
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needs numbers as input.We change categorical variables into a type that we can easily

use in regression models when we employ dummy coding. This means making

additional variables (dummy variables) for every category in the original category

variable.When dealing with a categorical variable featuring "k" categories, "k-1"

dummy variables are produced to represent each category accordingly. For instance,

we have a categorical variable called "Color" with three distinct categories: "Green",

"Yellow" and "Orange". Through dummy coding, we would create two dummy

variables, namely "Yellow" and "Orange".

So, for example:

• If the color is "Yellow," then "Yellow" = 1 and "Orange" = 0.

• If the color is "Orange," then "Yellow" = 0 and "Orange" = 1

• If the color is "Green," then "Yellow" = 0 and "Orange" = 0 (implicitly).

Let’s go back our project to look our coefficients. As we see the intercept is 3290.717,

signifies the value of "y" when all "x" variables are set to 0. However, there is a

supplementary interpretation with the inclusion of a categorical variable in our

model.The regression model excludes the "fair cut" category due to dummy coding.

As previously explained, when "cutGood" to "cutVery Good" are all set to 0, it

signifies that the observation corresponds to a "fair" cut.Consequently, the intercept

denotes the diamond’s price when it possesses a "fair" cut, assuming that all other

variables are set to 0.

The "carat" variable has a slope of 7890.787, showing the amount by which the

diamond’s price increases for each additional carat. Regarding the "cut" variable, its

slopes are 985.742, 1506.180, 1224.600, and 1305.137, corresponding to the price

increases for diamonds with "good," "very good," "premium," and "ideal" cuts,

respectively. To determine the slope for "fair" cut diamonds, we can infer it from the

intercept value.
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On the other hand, the slopes for the depth and table variables are -73.670 and -41.807.

These coefficients indicate the reduction in the diamond’s price for each unit rise in

depth and table measurements.Our parameters have values lower than 0.05, confirming

that the results are statistically significant.
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Chapter 5

PYTHON AND R LANGUAGES

5.1 Diabetes Parameter Prediction with Python

Diabetes is a health condition where the body has high levels of sugar in the blood

for a long time. Higher than normal blood sugar levels consist of frequent urination,

heightened thirst, and escalated hunger. The dataset’s aim is to predict if a patient has

diabetes or not with using specific measurements collected in the dataset.

As at 4.2 section I analyze and visualize the diabetes data in python with Matplotlib.

Let’s read the csv file with pandas:

Import numpy as np

Import pandas as pd

f rom sklearn.linear_model import LinearRegression

f rom sklearn import metrics

import mat plotlib.pyplot as pltt

import seaborn as sb

import warnings

warnings. f ilterwarnings(′ignore′)
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Figure 21: Diabetes Parameters

The dataset in 21 contains various medical predictor variables, and it includes one

specific target variable labeled as "Outcome." These predictor variables encompass

different factors, such as the number of pregnancies, BMI, insulin level, age, and

other related attributes.

1. Pregnancies: Number of times pregnant.

2. Glucose: Plasma glucose concentration a 2 hours in an oral glucose tolerance

test.

3. BloodPressure: Diastolic blood pressure.

4. SkinThickness: Triceps skin fold thickness.

5. Insulin: 2-Hour serum insulin (muU/ml).

6. BMI: Body mass index.

7. DiabetesPedigreeFunction: Diabetes pedigree function.

8. Age: Age (years).

9. Outcome: Class variable (0 or 1).

BMI is stands for "Body Mass Index" and it is listed among the medical predictor

variables tells that if a person is overweight or not based on body mass in relation to

their weight and height. There is a formula to calculate:
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BMI = weight(kg)/(height(m))2.

The dataset utilizes BMI values in conjunction with other predictor variables such as

age, blood pressure, insulin levels, and more, to make predictions regarding the target

variable. For instance, I can show the BMI and age variables together.

pltt. f igure( f igsize = (10,5))

x1 = d f .groupby(′Age′).mean()[′BMI′]

x1.plot.bar()

pltt.show()

Figure 22: Relation Between BMI and Age

BMI typically rises with age until a certain threshold, after which it may level off

or decline, especially in older age groups. This behavior can be affected by various

factors, including alterations in metabolism, lifestyle choices, and changes in body

composition throughout one’s life. We see in the figure 22 that the max age is 81 and

the max BMI around 37 in 43 age.

Then, we’re going to use value−counts() method on outcome refers to a binary variable

which is often represented as 0 (absence of diabetes) and 1 (presence of diabetes).
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Figure 23: Outcome of the Patients

We see from the figure 23 that there are 500 patients has not diabetes and 268 patients

has diabetes.

We can find the mean (average) value of the "Insulin", "Pregnancies" and

"Glucose" variables based on different outcomes in the dataset.Here is the code and

output:

Figure 24: Mean Value of Insulin

This code shows that display the mean "Insulin" value for patients with no diabetes

(Outcome = 0) are 68.792000 and for patients with diabetes (Outcome = 1) are

100.335821 apart in the figure 24. Now we can determine the highest value of the

"Insulin" variable for every distinct value in the "Outcome" column. Here is the code

and output.
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Figure 25: The Highest Value of Insulin

Within the dataset in 25, there are two rows: one for Outcome = 0 and the other for

Outcome = 1, each displaying the maximum "Insulin" value corresponding to that

respective outcome group.We see that the max value of "Insulin" is 744 with no

diabetes and 846 with diabetes.

Figure 26: Outcome of Pregnancies

This code shows in 26 that display the mean "Pregnancies" value for patients with no

diabetes (Outcome = 0) are 3.298000 and for patients with diabetes (Outcome = 1)

are 4.865672 apart. Now we can determine the highest value of the "Pregnancies"

variable for every distinct value in the "Outcome" column. Here is the code and

output.
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Figure 27: The Highest Value of Pregnancies

There are the max value of "Pregnancies" is 13 with no diabetes and 17 with diabetes

in the figure 27.

Figure 28: Outcome of the Glucose

Again this code in 28 shows that display the mean "Glucose" value for patients with

no diabetes (Outcome = 0) are 109.980000 and for patients with diabetes (Outcome =

1) are 141.257463 apart. Now we can determine the highest value of the "Glucose"

variable for every distinct value in the "Outcome" column. Here is the code and

output.
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Figure 29: The Highest Value of Glucose

There are the max value of "Glucose" is 197 with no diabetes and 199 with diabetes

in the figure 29.

By visualizing this data, we can gain a clear understanding of the outcome variable’s

distribution within the diabetes dataset and observe the number of instances belonging

to each category (0 and 1). The code is following that:

f ,ax = pltt.subplots(1,2, f igsize = (18,8))

d f [′Outcome′].valuecounts().plot.pie(explode = [0,0.1],

autopct =′ %1.1 f %%′,ax = ax[0],

shadow = True)

ax[0].set−title(′target ′)

ax[0].set−ylabel(′′)

sb.count plot(′Outcome′,data = d f ,ax = ax[1])

ax[1].set−title(′Outcome′)

pltt.show()
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Figure 30: The Distribution of the Outcome Variable

It shows in 30 that there are 65.1% patients have not diabetes and 34.9% patients have

diabetes.

Now we can analyze the correlation which to examine the relationship between

variables. We have information that if the correlation is greater than 0. In such cases,

when one variable increases, the other variable also increases. Conversely, if the

correlation is less than 0, it suggests a negative correlation, where one variable

increases while the other decreases.

sb.heatmap(d f .corr(),annot = True,cmap =′ magma′)
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Figure 31: Correlation Matrix with Diabetes Dataset

We can see clearly numbers with df.corr() code as following output:

Figure 32: Correlations of All Datasets

From the figure 32 we see that the values of "BMI" increase, the "Outcome" variable

also increases. It means the correlation is bigger than 0, there is a positive correlation

0.292695.
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Regarding the diabetes dataset and linear regression we can choose age, BMI, blood

pressure, and others (we chose BMI) which represents the measure of disease

progression one year after baseline as the independent variable to predict the

dependent variable. The dataset labels this dependent variable as the "target." The

term "outcome" pertains to the target variable. So, in conclusion:

Independent Variable: BMI (Body Mass Index)

Dependent Variable: Diabetes Outcome (target variable)

The aim of linear regression is to determine the relationship between BMI and outcome

of diabetes so that we can predict the outcome of diabetes based on BMI values.

Finally we can find the coefficients (β0 and β1) for analyzing the straight line. The

code is following:

x = d f [′BMI′]

x−bar = (d f [′BMI′]).mean()

y = d f [′Outcome′]

y−bar = (d f [′Outcome′]).mean()

beta1 = ((x− x−bar)∗ (y− y−bar)).sum()/((x− x−bar)∗∗2).sum()

print(”Beta−1 coe f f icientestimate : ”+ str(round(beta1,4)))

From the code the output is "Beta_1 coefficient estimate : 0.0177."

beta0 = y−bar−beta1∗ x−bar

print(”Beta0coe f f icientestimate : ”+ str(round(beta0,4)))

From the code the output is "Beta_0 coefficient estimate : -0.2175."

The following code gave us the linear line between relationship of "MBI" and

"Outcome".
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pltt. f igure( f igsize = (7,5))

pltt.scatter(d f [′BMI′],d f [′Outcome′])

pltt.plot(d f [′BMI′],beta1∗d f [′BMI′]+beta0,c =′ r′)

pltt.xlabel(”BMI)”, f ontsize = 12)

pltt.ylabel(”Outcome”, f ontsize = 12)

pltt.show()

So, I can show two types of code that to analyze the line which is good or not good

between relationship of "BMI" and "Outcome".

pltt. f igure( f igsize = (7,5))

pltt.scatter(d f [′BMI′],d f [′Outcome′])

pltt.plot(d f [′BMI′],beta1∗d f [′BMI′]+beta0,c =′ r′)

pltt.xlabel(”BMI)”, f ontsize = 12)

pltt.ylabel(”Outcome”, f ontsize = 12)

pltt.show()
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Figure 33: The Line Between BMI and Outcome

From the figure 33 there is no distance between observations. So the code is:

predictors = [′BMI′]

outcome =′ Outcome′

model = LinearRegression()

model. f it(d f [predictors],d f [outcome])

print( f ′Intercept : model.intercept:.3 f ′)

print( f ′Coe f f icientExposure : model.coe f−[0] : .3 f ′)

f itted = model.predict(d f [predictors])

residuals = d f [outcome]− f itted

ax = d f .plot.scatter(x =′ BMI′,y =′ Outcome′, f igsize = (15,10))

48



ax.plot(d f .BMI, f itted, linewidth = 5,color =′ k′,

label = f ′simple linear regression :

Outcome = model.intercept:.3 f +model.coe f−[0] : .3 f BMI′)

f or x,yactual,y f itted in zip(d f .BMI,d f .Outcome, f itted) :

ax.plot((x,x),(yactual,y f itted),

′−−′,color =′ C1′)

pltt.tightlayout()

pltt.legend()

pltt.show()

Figure 34: Linear Regression of Outcome and BMI

We know that the intercept overall is -0.218 and slope overall is 0.018, respectively.

The orange vertical dashed line represents the residuals, which represent the

discrepancies between the predictions made by the regression line and the actual
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observed values. From the figure 34 we know that o the line between "BMI" and

"Outcome" relationship is good. Because it’s not near to 0.

5.2 Diabetes Parameter Prediction with R Language

We use the ggplot2 package to examine the "Diabetes" dataset. We put the excel file

in R studio called Diabetes.

Figure 35: Diabetes Dataset in R

Now we need to find the coefficients β0 and β1 to analyze the linear line is good or not

by using R language code.

Figure 36: Coefficients

We got β0 is -0.21752 and β1 is 0.01771 in the figure 36. If x is 0, it means the intercept

is -0.21752 with 0 (no diabetes). But it’s not understandable, so I can calculate the

average of our x. The following following code is:

The output shows that the slope is the same but the intercept is now 0.34896. So our
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Figure 37: The Mean of BMI

equation is y = 0.34896 + 7756x, it means that for each increase in x, y is also increased

by that value.

On the other hand we can use summary() code to check the linear line has a good fit or

not by looking the p-value, multiple R-squared and adjusted R-squared.

Figure 38: Summary of BMI and Outcome

The output in 38 shows that the p-value are highly significant, so we can reject the null

hypothesis which means that it’s not equal to zero.

The R-squared and Adjusted R-squared numbers are 0.08567 and 0.08448 which close
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to 1. Commonly, it implies the following that there is a strong linear relationship

and the model extremely well fits the observed data values and the model has strong

predictive power.

Now we can analyze the linear line if it is good or not between relationship of "BMI"

and "Outcome". The following code is:

Diabetes% > %

+ select(BMI,Outcome)% > %

+ggplot(aes(BMI,Outcome))+

+geom−point(colour =′ pink′,size = 2,al pha = 0.5)+

+geom−smooth(method =′ lm′,colour =′ green′)+

+ labs(x =′ BMI′,y =′ OutcomeinDiabetes′,

title =′ ScatterPloto f DiabetesBMIandOutcomewithRegressionLine′)+

+ ylim(0,1)+

+ theme−minimal()

Figure 39: Scatter Plot of BMI and Outcome
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From the picture 39 we easily say that the line is best fit because of the residuals.

In conclusion, there are some syntax variations between R and Python [12] when fitting

a linear regression model. So, I choosed both of them. However, these differences have

minimal impact on the output since the results were nearly same for our both datasets.
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