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ABSTRACT

In this thesis, we investigate the volatility spillovers among major energy stocks, the

electricity index, and fossil fuel energy commodities (crude oil, natural gas, and coal)

using firm-level data in an emerging market, Turkey over the period July 18,

2006–December 31, 2021, which covers important economic events worldwide. To

do this, we employ [1] Diebold and Yilmaz’s (2012) approach to examine both

time-varying and invarying volatility spillovers among markets. Our findings reveal

that Turkish energy stocks and the fossil fuel energy markets have high

interdependencies, which are significantly affected by global political, financial, and

extreme events. The volatility spillovers among markets during the COVID-19

outbreak in 2020 exceeded the 2008 global financial crisis. We also examine the

volatility connectedness between markets based on frequency domain using various

frequency bands (short term, medium term, long term). To do so, we adopt [2]

Barunik and Krehlik’s (2018) approach and find that the highest performance is

recorded in the long horizon compared to short and medium horizons, implying that

the impact of volatility spillover transmission from one market to others is persistent

(long-lasting) in the Turkish market. Finally, we calculate dynamic conditional

correlations (DCC-GARCH), hedge ratios, and optimal portfolio weights for Turkish

energy stocks, the electricity index, and fossil fuel energy commodities (crude oil,

natural gas, and coal). Implications for both governments and global investors are

provided accordingly based on our results.

Keywords: Volatility Spillovers, Crude Oil, Natural Gas, Coal, Electricity, Stock

Markets
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ÖZ

Bu tezin amacı, firma düzeyinde veri kullanarak Türkiye’deki en büyük enerji

şirketlerinin hisseleri, Borsa Istanbul elektrik indeksi ile fosil yakıt enerji

hammaddeleri (petrol, doğal gaz, kömür) arasındaki volatilite (oynaklık) yayılımlarını

incelemektir. Çalışma küresel olarak önemli ekonomik olayları içeren 18 Temmuz

2006 ve 31 Aralık 2021 tarihlerini kapsamaktadır. Bu amaçlar doğrultusunda tez, iki

bölümden oluşmaktadır. Birinci bölümde, piyasalar arasında hem statik hem de

dinamik oynaklık yayılmalarını incelemek için [1]Diebold ve Yılmaz’ın (2012)

yaklaşımı kullanılmıştır. Bu analizin sonuçlarına göre, Türkiye enerji hisseleri ve

fosil yakıt enerji piyasaları arasındaki karşılıklı oynaklık bağımlılığı küresel siyasi,

finansal ve diğer krizlerden önemli ölçüde etkilenmektedir. Ayrıca, bulgularımıza

göre, 2020’de ortaya çıkan COVID-19 salgını sırasında piyasalar arasındaki oynaklık

yayılmaları 2008 küresel finansal krizi sırasındaki seviyeyi geçmektedir. İkinci

bölümde ise çeşitli frekans bantlarını (kısa vadeli, orta vadeli, uzun vadeli) kullanarak

piyasalar arasındaki oynaklık bağlantısı incelenmiştir. Bunun için [2]Barunik ve

Krehlik’in (2018) yaklaşımı kullanılmış ve en yüksek oynaklık yayılma aktarımının

uzun dönemde gerçekleştiği görülmüştür. Diğer bir deyişle, Türkiye’de bir piyasadan

diğerine volatilite yayılma aktarımının etkisi kalıcıdır (uzun vadelidir). Son olarak ise

yatırımcılar için dinamik koşullu korelasyonlar (DCC-GARCH), hedge rasyoları

(riskten korunma oranları) ve portföylerindeki varlıklar için optimal portföy

ağırlıkları hesaplanmıştır.

Anahtar Kelimeler: Oynaklık Yayılmaları, Petrol, Doğal Gaz, Kömür, Elektrik, Hisse

Senedi Piyasası

iv



DEDICATION

Dedicated to My Family

v



ACKNOWLEDGMENTS

I would like to give my warmest thanks to my supervisor Asst. Prof. Dr. Nigar
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Chapter 1

INTRODUCTION

Global primary energy demand is expected to increase by over 25% from 2017 to

2040, and this rate could double if sufficient energy improvements are not

implemented [3]. More specifically, the largest share of global energy demand

belongs to fossil fuels such as crude oil, natural gas, and coal, which has remained

unchanged for 25 years [3]. Therefore, crude oil, natural gas, and coal are the main

energy commodities of the global energy system. In this regard, the impact of these

fossil fuel energy commodities on the stock markets is of great importance for

investors’ portfolio strategies and policymakers. Crude oil is a major energy

commodity for the stock markets because it directly affects expected cash flows or

discount rates as a strategic material for production and can affect the demand for

output at both the sector and national level [4]. It is also important to note that

unexpected increases in oil prices cause inflation, and as a result, central banks

implement contractionary monetary policies as a precaution, causing interest rates to

rise. Hence, higher interest rates will increase discount rates, which in turn will lower

stock prices [5]. In terms of volatility connectedness among oil-stock markets,

Sadorsky [6] can be considered one of the pioneering studies indicating the existence

of a relationship between oil volatility shocks and stock returns, followed by

Papapetrou [7] and some more recent evidence [8–14]. Furthermore, natural gas is

another vital energy commodity and has a strong linkage with crude oil in terms of

being an alternative input for production [15]. Hence, natural gas is considered a
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substitute energy commodity for crude oil, and their volatility can affect each

other [5]. Similar to crude oil, higher natural gas prices may cause higher inflation in

oil-importer countries, and stock markets can be affected negatively [16, 17].

Regarding volatility connectedness between natural gas and stock markets, recent

researches [16, 18–23] offer fresh evidence from the literature. Finally, coal is also an

important energy commodity, accounting for 27% of the world’s primary energy

consumption in 2019. Moreover, 36.4% of total electricity generation was produced

by coal worldwide in 2019 [24]. It can be also considered as a substitute for crude oil

in case of higher crude oil prices [10]. Regarding volatility spillovers among coal and

stock markets, [25–29] are the researchers who have examined coal in the energy

literature. Overall, the interest in the volatility of other fossil fuel energy

commodities, such as natural gas and coal, has been relatively limited compared to

crude oil. To fill this gap, we examine three main energy commodities (crude oil,

natural gas, and coal) together and explore their volatility connectedness with energy

stocks in an emerging market.

Our sample country is Turkey. The reasons for choosing this country can be described

as follows. First, the country has highly limited fossil fuel reserves compared to its

demand. Therefore, Turkey is import dependent in terms of energy [30]. For instance,

Turkey is more than 99% dependent on natural gas imports, and owing to the country’s

limited natural oil resources, more than 90% of its crude oil needs are supplied through

imports. These are among the main reasons for the increase in the foreign trade deficit

in Turkey [31]. Second, according to the Turkish Energy Market Outlook [30], fossil

fuel energy commodities such as crude oil, natural gas, and coal are the primary energy

sources in Turkey. In detail, the electric power sector has the highest primary energy

consumption (43.8%), and natural gas and coal are the main energy sources of this
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sector (41% each). Transportation is the second-largest sector (20.2%), and 98% of

the sector’s energy need is met by oil. Moreover, the lowest energy user is the industry

sector (16.2%), and the main source of the sector is coal followed by natural gas,

with 57% and 37% respectively. Therefore, fossil fuel energy commodities are vital

for the sectors and households of Turkey. In this regard, fluctuations in fossil fuel

prices caused by global economic and political events will also affect a net importer

such as Turkey significantly. Third, individual country studies can shed more light on

volatility connectedness between the energy market and energy stocks, and to the best

of our knowledge, this connectedness between energy stocks by considering all three

main commodities (crude oil, natural gas, and coal) of the energy market has not been

studied for the Turkish market before. Hence, our study will probably be the first to

concern the volatility spillovers in the fossil fuel energy market by taking into account

crude oil, natural gas, and coal together as well as Turkish energy stocks at the firm

level.

Our contributions to the empirical literature can be described in three ways. (1) The

existing literature on the volatility connectedness between fossil fuel commodity and

stock markets is generally focused on crude oil–stock market linkage by covering

advanced stock markets at the aggregate or sectoral level. However, the response of

individual stocks to energy prices may vary, and the reaction of emerging stock

markets to different fossil fuel energy commodities (e.g., natural gas, coal) still needs

to be explored. Because using the aggregate or sectoral level indices prevents us from

investigating the heterogeneity at the firm level, we fill this gap in the growing

literature by using individual stocks of energy companies in an emerging country

(Turkey) and examining their volatility transmission mechanism with crude oil,

natural gas, and coal. To do this, we use publicly Turkish-listed firms in the energy
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sector (TUPRS, COSMO, IPEKE, TRCAS) based on their market capitalization

because they are the largest players in the Turkish market and can represent the

dynamics of Turkish energy stocks. We also use the Borsa Istanbul (BIST) Electricity

Index to take into account firms that make up the electrical energy sector in Turkey.

(2) We examine time-invarying and time-varying volatility spillovers using a new

method of Diebold and Yilmaz (2012) among fossil fuel energy commodities (crude

oil, natural gas, coal), Turkish energy stocks, and electricity index considering

important global economic and political events such as the 2008 global financial crisis

(GFC) and 2020 COVID-19 pandemic crisis. The method allows us to investigate

spillovers among markets in a directional manner, which is important for portfolio

diversification and policy decisions. Therefore, we can examine which crisis period

and which fossil fuel volatility has the greatest impact on the volatility of Turkish

energy stocks. (3) To capture more comprehensive dynamics of interlinkage among

markets, we also adopt another new method by Barunik and Krehlik (2018). This

method enables us to examine volatility spillovers at various investment horizons

(short-term, medium-term, and long-term). Further, we can examine whether

volatility spillover transmission from one market to others is persistent (long-lasting)

or temporary with this method. (4) Finally, we calculate dynamic conditional

correlations (DCC-GARCH), hedge ratios and portfolio weights of Turkish energy

stocks and fossil fuel commodities, which will provide more insightful information to

investors in the energy market.

The remainder of this thesis is as follows. In Chapter 2, we review the literature on each

fossil fuel energy commodity and stock markets separately. In Chapter 3, we provide

the theoretical background of the research. In Chapter 4, we explain the data and

the methodology used in the study. In Chapter 5, we present empirical findings, and

4



we calculate dynamic conditional correlations (DCC-GARCH), time-varying hedge

ratios and optimal portfolio weights in Chapter 6. Finally, we conclude with policy

implications for governments and global investors in Chapter 7.
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Chapter 2

LITERATURE REVIEW

2.1 Oil–Stock Markets Volatility Spillover Nexus

In the energy finance literature, numerous researchers examine the volatility spillover

transmission between crude oil and stock markets at different levels of stock market

aggregation. Ågren [32] was one of the earliest authors to confirm the strong evidence

of volatility spillovers between oil and five developed stock markets, namely Japan,

Norway, Sweden, the United Kingdom, and the United States, except for the Swedish

stock market. Similarly, Khalfaoui et al. [33], who also examined the spillover

relationship between developed equity and oil markets, stated that there is a

significant volatility spillover between oil and G7 stock markets with the dominant

transmission role of the oil market. To model the volatility transmission, Maghyereh

et al. [34] adopted 11 major global stock exchanges and oil prices for a sample from

2008–2015. They found a bidirectional volatility spillover. However, it was

significantly dominated by the oil market to stock markets. The authors also indicated

that the intensity of the volatility spillover relationship varies over time. The most

intense period is when the recovery from the impacts of the 2008 GFC began (from

mid-2009 to mid-2012). According to Ewing and Malik [35], strong volatility

spillovers only exist when structural breaks are taken into account. Otherwise, there is

no significant volatility linkage. On the contrary, some researchers [36, 37], who also

examined the spillover relationship between major global equity markets and oil

prices, found little or limited evidence of volatility spillovers between the oil market
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and financial markets. Whereas the aforementioned scholars adopted advanced stock

markets as a sample, many other researchers have also examined the volatility

spillover relationship between oil and stock markets for mixed samples using

developed and emerging markets, or only emerging stock markets. For instance,

Malik and Hammoudeh [38] examined the volatility interaction among global oil

prices, the U.S. stock market, and Gulf countries’ stock markets from 1994–2001.

Their findings show a significant interaction between global oil prices and the U.S.

stock market. The authors also indicated that the oil market is a volatility transmitter

to three Gulf stock markets, whereas only the Saudi equity market is a volatility

transmitter to the global oil market. To capture the connectedness between oil and

stock markets, Antonakakis et al. [39] analyzed equity markets of major oil-importing

and oil-exporting countries and Brent crude oil prices from 1995–2013. The authors

concluded that there is a connectedness between variables that varies across time, and

the direction of connectedness changes according to global economic developments.

In their mixed sample study, Cevik et al. [40] indicated that there is no

Granger-causality-in-variance stemming from global oil market prices to stock market

returns, however, there is causality from stock returns of G7 countries to the stock

returns of MSCI emerging countries. Yıldırım et al. [41] investigated the dynamic

relationship between crude oil prices and BRICS stock markets for the periods of

1995-2016. They found that the stock markets (except China) give a positive and

statistically significant reactions to an unexpected oil price shock in the case of a

high-volatility regime. Arouri et al. [42] measured the relationship between oil prices

and Gulf Cooperation Council (GCC) equity markets from 2005–2010. They found

that a significant volatility spillover exists between oil and GCC equity markets, and

this interaction has been observed mainly during the crisis sub-period. Similarly,

Awartani and Maghyereh [43] investigated volatility transmission between oil and
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stock markets of GCC countries for the period of 2004–2012. Their findings

suggested a bidirectional volatility transmission. Besides, the oil market transmits

more volatility to other markets than it receives, and these patterns in oil intensified

after the 2008 GFC. In a recent study, Tien et al. [13] also analyzed the volatility

spillovers transmission between stock markets of GCC countries and the oil market

for the period of 2008–2019. The authors underlined the presence of time-varying

characteristics of volatility transmission between oil prices and GCC equity markets.

They also intimated that these spillover impacts spread in different periods. Cevik et

al. [44] is another study examining a developing country and found a significant

volatility spillover impact stemming from crude oil price to stock market returns for

Saudi Arabia between 2001-2018. Bouri [45] studied volatility interaction between

the oil market and stock indices of Jordan and Lebanon, which are two members of

MENA, from 2003–2013. According to their findings, volatility spillover is much

more obvious from the global oil market to the equity market of Jordan than in the

opposite direction. Adversely, oil volatility is not found as a good predictor of

volatility in the Lebanese equity market. Cevik et al. [46] focused on the linkage

between oil prices and the Turkish stock market index from 1990–2017. The authors

concluded that there is no significant spillover impact from oil prices on Turkish stock

market returns in the full sample. On the contrary, significant spillover effects were

observed in 1993 and during the 2008–09 GFC. In a recent study, Wu et al. [47] found

significant predictive information of spillovers transmitted by stock markets to the oil

market. In another recent study, Mensi et al. [11] stated that volatility spillover is

found among oil, the U.S. stock market, and gold for the sample period of 2018–2020.

Existing empirical studies’ authors have also investigated the oil–stock market

volatility spillover interaction at the sectoral/industrial level. For example, Malik and
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Ewing [48] provided evidence of significant volatility co-movement between oil

prices and some of the examined industries by using five major market sectors in the

United States. Furthermore, Elyasiani et al. [49] also analyzed oil prices and sectoral

stock returns in the United States. They provided a more comprehensive study by

using more sectors. The results show that 9 out of 13 sectors are affected by oil

futures returns and/or oil futures return volatility. Further, volatilities of industry

excess returns were found to be time-varying, and return volatility of some sectors has

a long memory. Arouri et al. [50] adopted two different samples of U.S. and European

equity markets. They concluded that there is a significant volatility transmission

between oil and sectoral stock returns. The direction of the spillover was found to be

mostly one-way from oil markets to equity markets in Europe, and two-way in the

United States. Moreover, Sadorsky [51] examined the volatility linkage between

stock prices of companies in two different industries and oil markets in the United

States for the period 2001–2010. They indicated that the correlation between the U.S.

stock prices of clean energy and technology firms is higher than between clean energy

and oil price volatility. In another study on the sectoral level, Antonakakis et al. [52]

used 12 major oil and gas firms. Findings suggest that a significant volatility spillover

impact between oil and oil and gas companies exists, and the direction of spillover is

mostly one-way from stock volatility of oil and gas companies to oil volatility.

Regarding the emerging stock markets, Caporale et al. [53] and, recently, Li et al. [10]

questioned how the volatility transmission between oil and sectoral stock markets

varies in China. According to Caporale et al. [53], oil price volatility increases stock

returns (except in the consumer services, financials, and oil and gas sectors) during

demand-side shock periods, whereas it is found to be insignificant in precautionary

demand shock periods. The conclusion obtained from the recent study by Li et

al. [10] is that the international crude oil market transmits strong volatility spillover to
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Chinese energy futures markets in the long run. This transmission was observed

significantly during the COVID-19 outbreak. In their study, Soytas and Oran [54]

examined whether there was a volatility spillover among world oil spot returns,

Turkish electricity index return, and the aggregate stock market index from

2003–2007. The authors revealed that world oil spot returns have a limited

bidirectional volatility spillover with Turkish electricity returns, but they do not have

a spillover relationship with stock market returns. Moreover, Hamma et al. [55]

investigated the volatility linkage between the oil market and seven sector indices of

Tunisia for the sample period of 2006–2012. According to their findings, volatility

transmission is mainly one-way from the oil market to the Tunisian stock market.

As we have mentioned, the volatility spillover nexus between oil and stock markets has

been investigated in previous literature from different perspectives using developed and

emerging stock markets at either aggregate or sectoral levels. However, the relationship

between other energy commodities such as natural gas or coal and stock markets in

terms of volatility transmission has not been deeply investigated. In the following

subsection, we will explain the newly growing literature on the volatility relationship

between the stock market and other energy commodities (natural gas and coal).

2.2 Natural Gas, Coal–Stock Markets Volatility Spillover Nexus

The existing literature on the volatility spillovers among the natural gas, coal, and

stock markets can be divided into two groups based on the aggregation of stock

markets. At the aggregated stock market level, Vardar et al. [23] focused on the five

major commodity prices, including natural gas and crude oil, and stock market

indices of 10 major advanced and emerging countries for the period of 2005–2016.

Their findings revealed a bidirectional volatility spillover between stock and

commodity returns for both developed and emerging countries. Moreover, they
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indicated that most of the spillover effects were observed during the crisis and

postcrisis period instead of the precrisis period for all countries. In contrast,

Ahmed [18] found a one-way mean and volatility spillover transmission impacts from

natural gas prices to the stock market of Qatar, and the stock market reacts slowly to

changes in natural gas. To model the volatility spillover linkage among coal, natural

gas prices, carbon emissions, and German energy markets, Green et al. [20] revealed

that volatility spillover impacts have a considerable magnitude and vary over time and

across commodities. During the sample period of 2008–2016, coal and natural gas

generated nonnegligible spillovers. In another study, Kumar et al. (2020) [17] used a

more extended sample period from 1997–2019. They explained that energy

commodities (natural gas and crude oil) do not transmit volatility spillover to the

Indian equity market. Besides, crude oil and exchange rates do not give volatility

spillovers to natural gas; however, it receives spillovers from the stock market and

gold prices. To analyze how the volatility transmission varies in the crisis periods

(i.e., 2008 GFC and COVID-19 pandemic), Jebabli et al. [21] investigated natural gas

and oil prices and global, European, and emerging stock market indices between 2000

and 2021. Their findings suggested that volatility spillovers between energy and stock

markets hit a new record during the COVID-19 pandemic, surpassing the 2008 GFC.

During the 2008 GFC, all stock markets were net volatility transmitters to energy

markets. During the COVID-19 pandemic, the world stock market is a net transmitter

to the energy market; on the contrary, the European stock market is a net receiver of

volatility from energy markets. During the COVID-19 pandemic, the emerging stock

market gives volatility spillover to crude oil and receives volatility spillover from

natural gas. Geng et al. [16] examined the volatility spillovers among natural gas

prices, uncertainty indices, and stock market indices in the United States and Europe.

According to their findings, the North American natural gas market is the volatility
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transmitter to other variables except the U.S. stock market and stock market volatility

index. Conversely, the European natural gas market is the volatility transmitter for the

stock market and energy market uncertainty and receiver from economic policy

uncertainty. In a recent study, Costola and Lorusso [19] used three energy prices

(natural gas, coal, and oil). They aimed to analyze the volatility linkage among the

mentioned three energy prices, international equity markets (United States, China,

EU), the Russian stock market index, and six Russian sectoral stock indices for the

period of 2005–2022. The authors concluded that energy industries are net volatility

spillover transmitters to energy commodities in Russia. From their sector-specific

findings, Costola and Lorusso [19] also indicated that the oil and gas sector provide

the highest volatility spillovers during energy discussions and geopolitical tensions.

For the metals and mining sector, the highest spillovers are obtained when there is a

specific shock to the industry. Moreover, the energy commodity volatility spillovers

are affected by geopolitical uncertainty in Russia.

Another line that the previous researchers has explored is the linkages among natural

gas, coal, and stock markets at the sectoral/industrial level. For instance, Lin and

Chen [26] examined the volatility spillover connectedness among the coal market,

stock market of new energy companies, and Chinese carbon emission trading market

from 2013–2017. They underlined the volatility spillovers transmission from the coal

market to the new energy stock market and vice versa. To capture the volatility

interrelationship between energy and electricity markets, Liu et al. [56] investigated

three energy markets (coal, natural gas, and oil) and the electricity market in Europe

over the period of 2007–2019. The authors suggested that the highest return spillover

effect is obtained from natural gas to spot and futures electricity markets, which are

followed by coal and oil. Furthermore, they found that volatility spillovers are
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sensitive to extreme financial events. Similarly, Zhang et al. [29] also examined the

volatility relationship between energy and electricity markets between 2009 and 2019.

The researchers questioned whether excluding coal and including North America

would have an impact on the volatility connectedness between variables. According

to their findings, first, volatility and return spillovers are stronger in Europe compared

to North America; second, crude oil has a greater volatility spillover than natural gas

for North American and European electricity utility stock indices. In addition,

volatility and return remained constant in North America and Europe from

2009–2012, which may be owing to the 2008 GFC. Then, a fluctuation started at the

end of 2013 because of some extreme events, implying that spillover effects can be

significantly affected by such events.

In summary, the relevant literature on the volatility linkage between fossil fuel energy

and stock markets is generally focused on oil–stock market linkage by adopting

advanced stock markets at the aggregate or sectoral level as aforementioned.

However, the connectedness between firm-level energy stocks and the fossil fuel

energy market in terms of volatility may change. In addition, the reaction of emerging

stock markets to different fossil fuel energy commodities (e.g., natural gas, coal) has

not been deeply investigated. The only two papers to concern this matter Jebabli et

al. [21] and Liu et al. [56] are similar to our study in terms of their authors

investigating the volatility spillovers between energy commodities and stock markets.

These scholars investigated the volatility connectedness between main energy

commodities such as oil, natural gas, and coal and the aggregate/sectoral stock market

and electricity indices in developed countries. To consider heterogeneity at the firm

level, we use individual stocks of energy companies in an emerging country, Turkey,

and examine their volatility transmission with oil, natural gas, and coal.
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Chapter 3

THEORETICAL BACKGROUND

This chapter aims to explain two main theories to figure out how to optimally manage a

portfolio. These main theories are the Modern Portfolio Theory (MPT) and the Capital

Asset Pricing Model (CAPM).

3.1 Modern Portfolio Theory

The MPT has been introduced by Harry Markowitz [57], and it is comprised of both

Markowitz’ Portfolio Selection theory introduced in 1952, and William Sharpe’s

contributions to the theory of financial asset price formation, first introduced in 1964,

and known as the Capital Asset Pricing Model (CAPM) [58]. The MPT is based on

the “risk-return” framework. This theory helps investors to minimize market risk

while maximizing their return. According to the theory, it is possible to design an

optimal portfolio (efficient portfolio) that maximizes returns by taking on a

quantifiable amount of risk. The risk that investors take can be reduced through

diversification using a quantitative method.

The modern portfolio theory has three main components: the risk and the return of the

investment, and the correlation of the investment with other investments in the portfolio

[59]. The definition of financial risk is the deviation away from expected historical

returns during a certain period. The Markowitz’s portfolio selection theory states that

the essential aspect is the contribution of each asset to the risk of the aggregate portfolio

instead of the risk of each asset [60]. The MPT considers two types of risk for security

in the portfolio and assumes that these risks are both crucial for each portfolio. The
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first type of risk is called systematic risk (undiversifiable risk, market risk, volatility,

or common risk), and the second type of risk is an unsystematic risk (diversifiable

risk). Systematic risk has a form of macro-level risk, and it has an impact on the

overall market, not only on a specific industry or stock. For instance, economic, and

financial factors (e.g. recessions, the level of inflation, and interest rates, fluctuations

in exchange rates) or geopolitical conditions such as war are all examples of systematic

risk and they can not be eliminated. On the other hand, unsystematic risk has a form

of micro-level risk, and it is specific to an individual company, or a single asset. The

management of the company causes lower credit ratings or strikes, and the financial

condition of the company may cause unsystematic risk. However, the unsystematic

risk can be reduced through diversification [61].

According to modern portfolio theory, the expected return is used in order to

anticipate a portfolio’s (or security) expected return. In this regard, a risky asset

portfolio’s expected return is described in Eq 3.1 below:

E (rp) =
n

∑
i=1

wiE (ri) (3.1)

where E (rp) represents the expected return of the portfolio, wi indicates the weight of

each security in the portfolio, and E (ri) represents the expected return for this security

in the portfolio. The correlation (correlation coefficient) indicates the co-movement

between two assets [62]. To measure the correlation between two securities, we can use

correlation coefficient which can be calculated by dividing the covariance to standard

deviations of those two securities as follows:

ρ(x,y) =
cov(x,y)

σ(x),σ(y)
(3.2)

where ρ(x,y) represents the correlation coefficient between two securities (X and Y),

cov(X,Y) indicates the covariance between those securities, and σ(x),σ(Y ) defines
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the standard deviation of the securities. If the correlation coefficient between a pair of

assets is positive ρ(x,y) > 0), then these assets are positively correlated. However, if

the correlation is negative ρ(x,y) < 0) between two assets, then these assets are

negatively correlated. In the case of correlation of zero between two assets

(ρ(X ,Y ) = 0), those two assets are uncorrelated [63]. The lower correlation between

stocks in the portfolio leads higher benefits from diversification. In other words, the

lower correlation between securities in the portfolio, the higher the returns of the

portfolio for a same level of risk [62]. Hence, the correlation is crucial factor for

investors to have a greater risk reduction for their portfolios.

The allocation of the investor’s wealth which is called the “Diversification or

Diversification Effect” is a main principle of Markowitz’s portfolio theory. The

concept of diversification allows investors to maximize their returns and minimize the

risk in their portfolio. To do this, investors can allocate their investments among

different financial instruments. For instance, they can use stocks, various asset classes

such as bonds, real estate, etc., and different types of commodities (gold, silver, oil,

natural gas etc.) as financial instruments. Moreover, the benefits of investors’

diversification increase when more financial instruments (not perfectly correlated) are

added to the portfolio. However, there are two arguments regarding diversification.

First, portfolio diversification causes transactional costs. Therefore, investors must

take into account the transactional costs of their portfolio diversification, and evaluate

whether costs are higher than benefits. Secondly, diversification can not eliminate all

risk as Markowitz [64] argued. The reason behind this is the systematic risk (market

risk, undiversifiable risk) which is caused by external factors, and has a significant

impact on all companies. Hence, the systematic risk can not be eliminated or

decreased by diversification.
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The Efficient Frontier which is also called Markowitz Efficient Frontier includes the

best combination of securities (combinations that give maximum expected return for

a given risk level) [65]. Fig 3.1 represents the relationship between expected returns

of portfolio and variance (riskiness or volatility) of the portfolio. Portfolios lying on

the blue line between B and C are referred optimal portfolios with the highest return

for a given level of variance (risk or volatility), while other portfolios on the graph are

considered as not optimal portfolios.

Figure 3.1: Markowitz efficient frontier

Markowitz’s portfolio theory has some limitations besides its theoretical importance.

The assumptions of the theory are criticized for being not in line with the real world.

The first critics stem from irrational decisions of investors. The MPT assumes the

adverse that investors are rational and their aim is to maximize their portfolio’s return

and minimize the risk of their portfolio. However, market participants have "herd

behavior” in their investment decisions and tend to ‘hot’ sectors. This leads to

speculative excesses, and the market booms or bursts regularly [66]. The MPT is also

assuming that higher risk means a higher return. In other words, the theory assumes
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that investors are willing higher risks if they are compensated with higher expected

returns. On the other hand, investment strategies may require investors to take on a

perceived risky investment such as futures or derivatives to decrease overall risk [61].

Moreover, the MPT assumes that the markets are perfectly efficient [64]. Conversely,

there are some potential failures in the market, and the theory does not consider them.

For instance, information asymmetry, externalities (benefits or costs which are not

transferred by security prices), etc. [66]. Other examples to indicate that markets are

not efficient can be a market crisis, bubbles, booms, and busts. It is also important to

note other critics of the MPT regarding its assumptions such as transaction costs and

taxes, perfect information, unlimited access to capital, etc.

3.2 Capital Asset Pricing Model

To manage an optimal portfolio, the Capital Asset Pricing Model (CAPM) is the

second theory which that has been developed by William Sharpe [67]. Sharpe

(1964) [68] defined a market equilibrium of asset prices under the risk, and add two

additional assumptions to obtain a market equilibrium based on the same foundation

as Markowitz and Tobin. First, each investor can both borrow and lend without being

exposed to any restriction at the risk-free rate. Second, the theory assumes that every

investor has homogeneous preferences [68]. According to the CAPM, systematic risk

and firm-specific risk need to be separated since the return on an investment is

affected by systematic risk, however, firm-specific risk does not have an impact on the

return of an investment [67]. The following equation is the definition of the expected

return according to the CAPM. As the CAPM is based on the risk-return framework,

the equation indicates the relationship between the risk and the return of an

investment [69] as follows:

E (ri) = r f +βi
[
E
(
rM − r f

)]
(3.3)
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where E (ri) represents the expected return of asset i, r f indicates the risk-free rate, and

E (rM) is the expected return of the market portfolio. βi defines the sensitivity between

asset i and the market portfolio.
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Chapter 4

DATA AND METHODOLOGY

4.1 Data

In this study, we used daily prices (in US$) from 07/18/2006–12/31/2021 for publicly

Turkish-listed firms in the energy sector (TUPRS, COSMO, IPEKE, TRCAS), the

BIST Electricity Index (XELKT), which is traded on the Borsa Istanbul (BIST), and

main fossil fuels futures markets (Brent crude oil, natural gas, and coal). The data

descriptions are indicated in Table 4.1. To calculate volatility for each series, we used

absolute of return series. We collected all data from Datastream, including a total of

3,640 observations. The chosen period enabled us to examine various important

economic events that affected not only global markets but also the Turkish market.

The choice of Turkish energy firms that are traded on the Istanbul stock exchange was

based on their market capitalization (for more information, see Table 4.2). Selected

firms with the highest market capitalization can be considered the largest players in

the Turkish market and may represent the dynamics of Turkish energy stocks. We also

used Brent crude oil, natural gas, and coal as a representative of the energy market.

For benchmarks of energy futures, we considered Brent Crude Energy Future,

Rotterdam Coal Energy Future, and United Kingdom (UK) National Balancing Point

(NBP) Natural Gas Energy Future, which are traded on the Intercontinental Exchange

Futures Europe commodities market. The reasons for using them are as follows. First,

we used Brent-type crude oil because it is one of the most liquid crude oil markets in

the world and is generally employed in Turkey. Second, we used the UK NBP natural
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gas futures because it is considered a major benchmark in Europe. Third, we

employed Rotterdam Coal Futures because it is the standard benchmark price

reference for coal imported into northwest Europe. The descriptive statistics for all

volatility series are presented in Table 4.3. According to our findings, natural gas is

the most volatile market. Regarding skewness, all volatility series are greater than the

reference value of 0, implying that they are right-skewed. The skewness value of coal

is the highest, followed by natural gas. This is an indication that the largest extreme

movements or largest realized volatility occur in coal and natural gas, respectively.

Based on kurtosis, all volatility series have a kurtosis value greater than the reference

value of 3, implying that they are leptokurtic, and tails are fat and peaked. We also

found a fairly high kurtosis value for coal, and it was followed by natural gas once

again. For the normality test of Jarque-Bera, we rejected the null hypothesis of the

existence of normal distribution for all volatility series at a 1% significance level.

Finally, we checked stationarity based on the Augmented-Dickey Fuller (ADF) and

Phillips-Perron (PP) tests (see Appendix Table A.1 and A.2). This is because we used

Diebold and Yilmaz’s (2012) method in our study, and this method is based on the

VAR model, which requires stationarity. According to the results of ADF and PP, all

series are stationary at a 1% significance level.

Table 4.1: Data description
Variable Name Symbol Source
Türkiye Petrol Rafinerileri A.S. TUPRS Datastream
Ipek Doğal Enerji Kaynakları Araştırma ve Üretim A.S. IPEKE Datastream
Turcas Petrol A.S. TRCAS Datastream
Cosmos Yatırım Holding A.S. COSMO Datastream
BIST Electricity Index XELKT Datastream
Brent Crude Energy Future OIL Datastream
UK NBP Natural Gas Energy Future GAS Datastream
Coal Energy Future COAL Datastream
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Table 4.2: Market profiles of Turkish energy firms based on 2022
BIST Code Industry Market Cap

TUPRS Oil, Gas & Consumable Fuels 63.9 billion TL
IPEKE Oil, Gas & Consumable Fuels 5.3 billion TL
TRCAS Oil, Gas & Consumable Fuels 1.5 billion TL
COSMO Oil, Gas & Consumable Fuels 58.5 million TL

Table 4.3: Descriptive statistics of volatility series
Mean Median Max Min SD S K JB

tuprs 1.93 1.42 21.08 0.00 1.86 2.68 16.98 33963.65*
cosmo 2.60 1.62 21.12 0.00 2.88 2.21 8.88 8201.68*
ipeke 2.75 1.84 34.82 0.00 2.98 2.58 13.52 20780.98*
trcas 2.18 1.59 23.71 0.00 2.28 2.88 16.85 34092.12*
xelkt 1.77 1.24 18.95 0.00 1.90 3.10 18.74 43340.28*
oil 1.61 1.10 27.98 0.00 1.80 3.96 36.63 180796.2*
gas 2.38 1.56 47.54 0.00 3.00 4.87 45.29 285193.9*
coal 0.89 0.41 53.84 0.00 1.78 10.94 245.02 8941538*

Note: * indicates rejection of the null hypothesis of normal distribution at 1%
significance level for JB Test (1980)

4.2 Methodology

We divide our empirical analysis into two steps. First, we will investigate the volatility

spillovers among Turkish energy stocks, the electricity index, and the fossil fuel energy

commodities in the time domain based on Diebold and Yilmaz (2012) [1] approach.

Second, we will examine mentioned interlinkage between markets in the frequency

domain based on Barunik and Krehlik (2018) [2] approach.

4.2.1 Diebold and Yilmaz (2012) Approach

Our study employs Diebold and Yilmaz (2012) approach to investigate the volatility

spillovers among Turkish energy stocks (tuprs, cosmo, ipeke, trcas), the electricity

index (XELKT) and the fossil fuel energy market (brent crude oil, natural gas, and

coal). This approach is built based on the generalized forecast error variance

decomposition (GFEVD) of a vector autoregressive (VAR) model by Sims [70]. It can

be considered as a generelized version of Diebold and Yilmaz (2009) by preventing to
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give order-dependent findings because of Cholesky factor orthogonalization. To do

this, first, we construct the basic stationary VAR(M) model with N variables as

follows:

yt =
M

∑
i=1

wiyt−i + εt (4.1)

where yt is a N-dimensional vector of endogenous variables at time t which can be

shown as yt = (y1t ,y2t ,y3t,...,yNT ) represents N x N coefficient matrices. εt is the error

vector of disturbances distributed identically and independently. The VAR(M) model

in Eq. 4.1 can have a moving-average (∞) representation which can be explained by

yt = ∑
∞
n=0 xnεt−n where xn is N x N coefficient matrices and it has a recursion that

can be shown as Xn = ∂1Xn−1 + ∂2Xn−2 + ∂nXn−r. Here, X0 is the identity matrix (N

x N) and Xn = 0 in case of n < 0. According to Diebold and Yilmaz (2012) [1], the

coefficients of the moving-average are crucial to understand the dynamic of the system.

To have invariant forecast error variance decompositions regarding variable orders, the

generelized VAR approach can be used Koop et al. [71]. Hence, the H-step ahead

GFEVD can be written as follows:

∅i
ab(H) =

∂
−1
bb ∑

H−1
h=0 (α ′

aXh ∑αb)
2

∑
H−1
h=0

(
α
−1
a XhΣX1

h αa
) (4.2)

∂bb is the error term’s standard deviation for the b-th equation. φ indicated the error

vector’s variance matrix. αa represents the selection vector which has the value of 1

for the α-th element and has the value of 0 otherwise. However, the summation of the

elements replaced in each row of the variance decomposition table is not one. For this

reason, each component of the variance decomposition matrix is normalized as:

∅̃i
ab(H) =

φ i
ab(H)

∑
N
b=1 φ i

ab(H)
(4.3)

where ∑
N
b=1 ∅̃i

ab(H) = 1 and ∑
N
a,b=1 ∅̃i

ab(H) = N. According to described elements,

the total volatility spillover index can be calculated as follows:
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Si(H) =
∑

N
a,b=1(a ̸= b)∅̃i

ab(H)

∑
N
a,b=1 ∅̃i

ab(H)
·100 =

∑
N
a,b=1(a ̸= b)∅̃ab(H)

N
·100 (4.4)

By calculating total volatility index, we can examine the contribution of shocks on

volatility spillovers among Turkish energy stocks and fossil fuel energy commodities

crude oil, natural gas, and coal to the forecast error variance in total.

To find volatility spillovers transmitted from other markets to market i, we can use

directional volatility spillovers as below:

Si
α.(H) =

∑
N
a,b=1 φ̃ i

abb(H)

∑
N
a,b=1 φ̃ i

ab(H)
·100 =

∑
N
a,b=1(a ̸= b)φ̃ i

ab(H)

N
·100 (4.5)

We can also find volatility spillovers transmitted from market i to other markets using

directional volatility spillovers as:

Si
.α(H) =

∑
N
a,b=1 φ̃ i

abb(H)

∑
N
a,b=1 φ̃ i

ab(H)
·100 =

∑
N
a,b=1(a ̸= b)φ̃ i

ab(H)

N
·100 (4.6)

To examine the net volatility spillover from any market to others, we can take the

difference between gross volatility shocks which send to and received from all other

markets in the sample, as shown in Eq. (4.7). Moreover, we can also find net pairwise

volatility spillover between two markets (e.g. i and j) as described in Eq. (4.8):

Si(H) = Si
.α(H)−Si

α.(H) (4.7)

Si
ab(H) =

(
φ̃ i

ba(H)

∑
N
a,p=1 φ̃ i

ap(H)
−

φ̃ i
ab(H)

∑
N
b,p=1 φ̃ i

bp(H)

)
·100 =

(
φ̃ i

ba(H)− φ̃ i
ab(H)

N

)
·100

(4.8)

4.2.2 Barunik and Krehlik (2018) Approach

According to Barunik and Krehlik (2018) [2], the spectral representation of variance

decompositions can be used based on frequency responses to shocks. The
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connectedness among markets at different frequencies (short-term, medium-term, or

long-term) can be found using the spectral representation of variance decompositions.

The frequency response function is ψ
(
e−iα) = ∑h e−iαhψh where ψh can be

considered as the Fourier transform of the coefficients, with i =
√
−1. Note that α

represents the frequency and Zt is the spectral density at α-th frequency. We can

indicate mentioned linkage as a Fourier transform of MA(∞) as:

Sz(α) =
∞

∑
h=−∞

E
(
ztz′t−h

)
e−iαh = ψ

(
e−iα)

Σψ
′ (e+iα) (4.9)

where SZ(α) shows the distribution of Zt on α . It should be also noted that ψ
(
e−iα)=

∑
∞
h=0 ψe−iα . The following equation expresses the frequency domain equivalents of

variance decomposition:

φi j(α) =
δ
−1
j j ∑

∞
h=0

∣∣∣ψ (eihαΣ
)

i j

∣∣∣2
∑

∞
h=0
(
ψ
(
e−ihα

)
ΣΨ
(
eihα

))
ii

(4.10)

φi(α) indicates the part of the j-th variable’s spectrum at α-th frequency based on

shocks in i-th variable. Note that α ∈ (−π,π). To find the effect of any variable at a

specific frequency, we can weight the φi j(α) with Γ jα as:

Γ j(α) =

(
ψ
(
e−iα)

∑ψ ′(e+iα)
)

j j
1

2π

´
π

−π

(
ψ
(
e−i∂

))
j j d∂

(4.11)

We can also generate connectedness table at the frequency band d using generalized

variance decomposition (by denoting frequency band d = (m,n) : m,n ∈ (−π,π),m <

n)

(
φ̃d
)

i j =
1

2π

ˆ
π

−π

Γ j(α) ̸ φi j(α)dα (4.12)

Moreover, the within and frequency connectedness on the frequency band d can be

calculated respectively as follows:
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C f
d = 100×

(
1− Trr{Ψ̃d

Σϕ̃d

)
(4.13)

C f
d = 100×

(
Σϕ̃d
Σϕ̃∞

− Tr {ϕ̃d}
Σϕ̃∞

)
=Cw

d × Σϕ̃d
Σϕ̃∞

(4.14)

In our empirical analysis, we used the VAR lag length as 2 based on Akaike

Information Criterion (AIC). In addition, we used a 100-day ahead forecasting

horizon (H) for variance decomposition since (H)<100 is giving invalid results

according to Barunik and Krehlik (2018).
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Chapter 5

EMPIRICAL RESULTS

5.1 Diebold and Yilmaz’s (2012) Results

5.1.1 Static Analysis

We first applied static analysis to investigate time-invarying volatility transmission

among four Turkish energy stocks (TUPRS, COSMO, IPEKE, TRCAS), BIST

Electricity (XELKT) index, and three main energy commodities (oil, natural gas, and

coal). We obtained useful findings on the static analysis that are presented in Table

5.1.

Table 5.1: Volatility spillovers among Turkish energy stocks and fossil fuel energy
commodities based on full-sample estimation

tuprs cosmo ipeke trcas xelkt oil gas coal FROM
tuprs 62.5 2.3 5.8 12.1 14.6 1.9 0.3 0.6 37.5
cosmo 3.0 84.5 1.7 4.7 4.6 1.1 0.3 0.2 15.5
ipeke 6.3 1.7 70.5 8.7 11.6 1.1 0.1 0.1 29.5
trcas 11.0 3.2 7.1 57.7 19.2 1.2 0.5 0.2 42.3
xelkt 13.0 3.0 9.5 18.2 54.5 1.3 0.3 0.3 45.5
oil 3.1 1.3 0.9 3.2 2.4 86.4 0.6 2.1 13.6
gas 0.3 0.4 0.2 0.4 0.6 0.5 94.4 3.3 5.6
coal 1.0 0.3 0.3 0.9 1.0 2.2 4.3 90.0 10.0
TO 37.6 12.2 25.3 48.2 53.9 9.3 6.4 6.8 199.6
NET 0.1 -3.3 -4.2 5.9 8.4 -4.3 0.8 -3.2 TCI=25%

The values in each row represent the volatility spillover transmitted to other markets

(labeled as TO). Therefore, the values in each column denote the volatility spillover

received from other markets including its own market (labeled as FROM). To find net
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volatility spillovers, we calculate their differences. Moreover, the total spillover index

(25%), which is shown in the lower right corner of the table, can be considered as a

summary of all contributions TO others and FROM others. The total spillover effect

is calculated by summing received values (FROM) and dividing the result by the

number of markets in the sample by taking its percentage (eight markets x 100% =

800%). There can be two explanations for this finding. First, the total connectedness

index (TCI) (25%) is neither too high nor too low, indicating an interdependence

between volatilities, but it needs to be explored in a time-varying manner to capture

the impacts of cyclical trends and extreme events that change over time. Second, on

average 25% of the volatility forecast error variance in these eight markets comes

from spillovers, and the remaining 75% may represent idiosyncratic shocks.

According to directional net volatility spillovers, the largest are from the XELKT to

others (53.9 – 45.5 = 8.4%), followed by TRCAS, natural gas, and TUPRS,

respectively. In the energy market, among the three energy commodities, crude oil has

the highest volatility spillover to TUPRS at around 1.89%, and this is in line with

recent papers by Bouri et al. [8] and Ahmed & Huo [72], who examined the

interlinkage between crude oil and stock markets regarding the volatile crude oil

market. Our finding is not surprising given TUPRS is the biggest oil importer in

Turkey with a refinery capacity of 75% in the country. It is also the 7th largest

refining company in Europe and 30th largest in the world [73]. When this is the case,

TUPRS may be more responsive to volatility in crude oil, which will be caused by

geopolitical issues such as sanctions on oil producer/exporter countries or supply

concerns owing to Organization of the Petroleum Exporting Countries (OPEC)

policies. Next, the coal also transmits the highest volatility to TUPRS by 0.60%,

while natural gas transmits the highest volatility spillover to trcas (0.50%). In the case

of supply cuts and price increases for crude oil because of global tensions, countries
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may tend to increase their demand for other energy commodities such as natural gas

or coal to meet their energy needs. Hence, countries that are heavily dependent on

energy such as Turkey may begin to be more affected by the volatility of these energy

commodities. Among these three energy commodities, natural gas is the most

influential market in the Turkish energy companies, being the net volatility spillover

transmitter (6.4 – 5.6 = 0.8%). On the contrary, oil (9.3 – 13.6 = - 4.3%) and coal (6.8

– 10.0 = - 3.2%) are net receivers from other markets. Our result is consistent with

Jebabli et al. [21], who compared volatility spillovers between stock and energy

markets during the 2008 GFC and COVID-19 pandemic crisis. They concluded that

an aggregated emerging stock market is a net volatility transmitter to crude oil;

however, it is a net receiver from natural gas during the coronavirus pandemic. The

possible explanation behind this may be a rapid decline in oil-based production and

trade activities at the beginning of the pandemic as Jebabli et al. [21] explained.

5.1.2 Dynamic Analysis

Fig 5.1. illustrates the dynamics of total volatility connectedness among four Turkish

energy stocks, electricity index, and energy markets (crude oil, natural gas, and coal)

for 2006–2021.

Figure 5.1: Total volatility spillovers based on Diebold and Yilmaz (2012)
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The total volatility spillovers vary from 10%–55% over time, which was estimated at

25% in the static total spillover index. Therefore, this is a significant indication that

the time-varying approach provides wider information about volatility connectedness

between stock and energy markets in comparison to static analysis. We notice that

there are many fluctuations and sharp increases owing to extreme events around the

world. The findings regarding Fig 5.1 reveal that the highest volatility spillovers

between Turkish energy stocks and fossil fuel energy markets are observed during the

COVID-19 pandemic, followed by the 2008 GFC. In other words, the volatility

connectedness among these markets during the COVID-19 outbreak in 2020 exceeded

(the volatility spillover index reached approximately 55%) the 2008 GFC, which is in

accordance with [8, 29, 74]. These recent papers indicate that most countries

experienced a sharp drop in real activities because of the effect of the coronavirus

pandemic, which caused not only high volatility spillovers between markets but also

record levels of uncertainty and degradation in investor sentiment. Besides these

factors, we also observed significant sudden oscillations such as a sharp increase in

2010, late 2012, and 2017. Possible explanations for these fluctuations may be the

2011 Arab spring (political turmoil in Libya, Bahrain, Egypt, and Yemen) and the

Syrian civil war, the 2014 international crude oil crisis, the 2016 increase in coal and

natural gas prices, the 2016 Brexit event, and the 2016 OPEC policies (e.g.,

announcement about supply cuts for the end of 2017). Furthermore, the lowest

transmissions of volatilities are recorded during the breakdown of oil prices in

2014–2015, as explained by [75]. We also agree with Diebold and Yilmaz (2012) [1],

who analyzed the 2008 GFC and stated that volatility transfer intensified during the

crisis. As a summary, Turkish individual energy stocks, the electricity index, and the

fossil fuel energy commodities have a significant volatility interaction, and this is

greatly affected by extreme events such as financial meltdown and price fluctuations
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of energy commodities.

In Fig. 5.2 and Fig. 5.3, we present the directional volatility spillovers from energy

commodities to Turkish energy stocks, and vice versa. According to panel (a), the

highest volatility spillovers from crude oil to other markets are observed during the

COVID-19 pandemic and 2008 GFC, reaching almost 60% and 50% respectively.

During the whole period, spillovers fluctuate based on political and economic

developments around the world. In panel (b), the volatility spillovers from others to

crude oil vary significantly over time. The highest level of spillovers is recorded

during the 2008 GFC. However, although crude oil transmits volatility to other

markets during 2020, it does not receive as much volatility transmission from others

in the same period. Instead, a significant volatility spillover is seen in late 2018.

Panels (c) and (d) show that the connectedness between natural gas and Turkish energy

stocks is time-varying and seems to be largely dominated by the volatility transmission
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Figure  5.2:  Directional  volatility  spillovers  from  (to)  crude  oil  to  (from)  Turkish  energ
stocks



from all energy stocks to the natural gas market. Volatility spillovers fluctuate over

the period and reach their highest point in 2020, as seen in panel (d). During 2020,

which is the point that spillovers reach the largest level for both cases, natural gas

transmits more than it receives when the net magnitude of transmission is considered.

For instance, natural gas has the highest volatility transmission to others during the

COVID-19 pandemic, which exceeds 30%, and the transmission from others to natural

gas peaks in the same period but stays below 30%.

Concerning directional volatility spillovers from (to) coal to (from) Turkish energy

stocks, a significant transfer is observed over the sample period. As seen in panel (e),

the volatility transmission of coal to other markets intensifies during the 2008 GFC.

Surprisingly, coal does not peak in volatility spillovers like other energy commodities

during the COVID-19 outbreak. In addition, as seen in panel (f), coal receives volatility

from other markets, especially in the 2008, 2016, and 2020 periods.
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Figure  5.3:  Directional  volatility  spillovers  from  (to)  natural  gas  to  (from)  Turkis
energy  stocks
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Figure  5.4:  Directional  volatility  spillovers  from  (to)  coal  to  (from)  Turkish  energ
stocks

Figure  5.5:  Network  connectedness  from  each  market  to  others  based  on  Diebold  an
Yilmaz  (2012)



To examine directional volatility connectedness based on network connectedness, we

provide the channel of shocks from one variable to another as shown in Fig. 5.5.

Furthermore, the network connectedness from other markets to each market can be

seen in Fig. 5.6. In these figures, the width of the arrows represents the intensity of

volatility spillovers which can be seen with the color of darker red. In this regard, we

can support our previous findings in the section of dynamic analysis that XELKT,

TUPRS, TRCAS, and natural gas are the dominant volatility transmitters to other

markets in the sample, whereas crude oil, ipeke, and cosmo are the net volatility

receivers in the system.

Moreover, when we examine whether Turkish energy stocks transmit volatility to the

energy markets in both static and time-varying analysis, we observe that these stocks

transfer significant volatility to all three fossil fuel energy commodities over the sample
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Figure  5.6:  Network  connectedness  from  others  to  each  market  based  on  Diebold  an
Yilmaz  (2012)



period. At this point, another question arises: how can an emerging market, Turkey’s

energy stocks affect global energy markets? The possible explanation of this is that

Turkish energy stocks may have the same dynamics as the largest international energy

companies, which have a significant influence on oil markets or possibly predict future

movements [54].

5.2 Barunik and Krehlik’s (2018) Results

To examine the dynamics of spillovers at various investment horizons, we used Barunik

and Krehlik’s (2018) [2] test, and the findings are displayed in Table 5.2, 5.3, 5.4. The

table is split into three subsections, each representing a different frequency (short-term,

medium-term, and long-term, respectively).

Table 5.2: The spillover table for band: 3.14–0.79 (roughly corresponds to 1 days to 4
days)

tuprs cosmo ipeke trcas xelkt oil gas coal
tuprs 0.52 0.01 0.02 0.04 0.05 0.01 0.00 0.00

cosmo 0.01 0.15 0.00 0.01 0.01 0.00 0.00 0.00
ipeke 0.01 0.01 0.17 0.02 0.03 0.00 0.00 0.00
trcas 0.03 0.00 0.02 0.17 0.05 0.00 0.00 0.00
xelkt 0.02 0.01 0.03 0.05 0.19 0.00 0.00 0.00
oil 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.01
gas 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.02
coal 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.28

To_Abs 0.01 0.00 0.01 0.01 0.02 0.00 0.00 0.00
To_With 2.82 1.23 2.95 2.95 5.51 0.91 0.21 1.04

From_Abs 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00
From_With 5.03 1.01 2.52 4.20 4.28 0.68 0.95 0.44
TCI: 19.12

According to Table 5.2,5.3, and 5.4, the share of frequency of 10 days to infinity has

the highest contribution in total connectedness, which is 26.32%. Moreover, the

frequencies of 1–4 days and 4–10 days contribute to the system at around 19.12% and

11.85%, respectively. In the total volatility, the XELKT is the most contributory,
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Table 5.3: The spillover table for band: 0.79–0.31 (roughly corresponds to 4 days to
10 days)

tuprs cosmo ipeke trcas xelkt oil gas coal
tuprs 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

cosmo 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
ipeke 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
trcas 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
xelkt 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
oil 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00
gas 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
coal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

To_Abs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
To_With 1.28 0.96 1.65 2.86 3.83 0.45 0.29 0.53

From_abs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
From_with 1.66 0.99 1.86 3.01 3.06 0.48 0.48 0.32
TCI: 11.85

Table 5.4: The spillover table for band: 0.31–0.00 (roughly corresponds to 10 days to
inf days)

tuprs cosmo ipeke trcas xelkt oil gas coal
tuprs 27.97 1.45 7.65 21.96 37.97 0.73 0.56 0.97

cosmo 1.59 88.09 1.07 3.73 4.72 0.19 0.20 0.21
ipeke 7.95 0.82 76.05 6.36 8.13 0.35 0.01 0.07
trcas 17.43 2.79 4.89 60.07 14.05 0.36 0.08 0.03
xelkt 28.23 3.17 6.08 13.13 48.77 0.17 0.11 0.02
oil 1.24 0.15 0.16 0.72 0.92 95.32 0.03 1.22
gas 0.56 0.22 0.08 0.02 0.24 0.00 97.37 1.16
coal 1.20 0.37 0.11 0.22 0.14 1.10 2.70 93.84

To_Abs 7.28 1.12 2.51 5.77 8.27 0.36 0.46 0.46
To_With 7.30 1.13 2.51 5.79 8.30 0.36 0.46 0.46

From_abs 8.91 1.47 2.96 4.95 6.36 0.55 0.28 0.73
From_with 8.94 1.47 2.97 4.97 6.39 0.56 0.28 0.73
TCI: 26.32
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Figure  5.7:  Short-term  network  connectedness  from  each  market  to  others  based  o
Barunik  and  Krehlik  (2018)

Figure  5.8:  Short-term  network  connectedness  to  each  market  from  others  based  o
Barunik  and  Krehlik  (2018)
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Figure  5.9:  Long-term  network  connectedness  from  each  market  to  others  based  o
Barunik  and  Krehlik  (2018)

Figure  5.10:  Long-term  network  connectedness  to  each  market  from  others  based  o
Barunik  and  Krehlik  (2018)



accounting for 5.51%, 3.83%, and 8.30%, respectively. Among fossil fuel energy

commodities, coal is the most significant contributor in the first two frequencies with

1.04% and 0.53%; however, it has the same impact as natural gas in the system at the

last frequency level (10 days to infinity). Overall, we can conclude that the highest

performance is recorded in the long horizon compared to short and medium horizons,

implying that the impact of volatility spillover transmission from one market to others

is persistent (long-lasting). This finding is expected because volatility transmission

from one market to others needs time (Barunik and Krehlik, 2018). Our results are

also in line with Liu and Hamori [27], in that they found most of the volatility

spillovers among crude oil, natural gas, stock market and volatility index, bonds, and

renewable stock markets in the long term (at a low frequency). Finally, according to

the findings of network connectedness between markets (Fig. 5.7, Fig. 5.8, Fig. 5.9,

and Fig. 5.10), we can support the findings of Barunik and Yilmaz (2018) [2] through

the pathway of volatility spillovers in both short-term and long-term.

5.3 Robustness Check of Empirical Findings

Checking the robustness or validity of the empirical analysis is important because the

rolling window (RW) size can be selected arbitrarily. Therefore, a quite low RW size

may lead to sensitivity to extreme outliers in the total connectedness. On contrary, a

quite large RW size may cause the potential impact of various outcomes to smoothen

out [39]. Hence, we checked different RW sizes (i.e. 200, 300, 400, 500) to analyze

the robustness of our empirical findings. According to time-varying total spillovers

shown in Fig. 5.11, there is no sensitivity at different RW sizes. In other words, our

results are not by chance; they do not change against low/high RW sizes, indicating

robust empirical results.
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Figure  5.11:  Total  spillover  plots  reached  from  Diebold  and  Yilmaz  (2012)  at  differen
rolling  windows  (RW)  sizes



Chapter 6

PORTFOLIO DIVERSIFICATION STRATEGIES

In this chapter, we used multivariate GARCH models (MGARCH) to model

conditional correlations between Turkish-listed firms in the energy sector (TUPRS,

COSMO, IPEKE, TRCAS), the BIST Electricity Index (XELKT), which is traded on

the Istanbul stock exchange, and main fossil fuels futures markets (Brent crude oil,

natural gas, and coal) from 07/18/2006 to 12/31/2021. To do this, first, we adopted

time-varying conditional correlations from the dynamic conditional correlations

(DCC) GARCH model. Second, the estimates of the DCC model are used to

construct the hedge ratios and optimal portfolio weights [76].

6.1 Multivariate GARCH (MGARCH) Models

Since the Autoregressive Conditional Heteroskedasticity (ARCH) model was

introduced in the seminal study by Engle [77], modeling volatility in financial time

series has received a lot of attention (1982). Many more variations and additions to

ARCH models have since been put out. Univariate models have received a lot of

attention in this field; for example, see Bollerslev et al. [78], Palm [79], and

Shephard [80]. Understanding the co-movements of financial returns is crucial for

practical purposes even though modeling return volatility has received most of the

focus. Therefore, it is critical to include multivariate GARCH (MGARCH) models in

the considerations. When analyzing the impacts of volatility spillover on equity

markets, multivariate GARCH (MGARCH) models have proven to be quite

helpful.For example, [81], [82], [83], [84], and [85] used MGARCH models to study
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oil prices, electricity prices, and natural gas prices.

This chapter’s econometric specification consists of two parts. First, the mean

equation is estimated with an autoregressive moving average ARMA(p,q) process.

Second, the time-varying variances and covariances are modeled using a dynamic

conditional correlation (DCC) GARCH model. Moreover, DCC GARCH models also

have two steps in the estimation process. In the first step, variances are estimated

through univariate GARCH models. In the second step, correlations between two

assets are obtained based on the standardized residuals from step one [51]. Therefore,

ARMA(p,q) and DCC GARCH(i,j) specification can be described as follows:

Mean Equation:

rt = et +∂ rt−1 + εt (6.1)

where rt indicates the return series of each asset, et denotes the conditional mean of

the return series rt . Moreover, εt expresses the residuals.

Variance Equation:

ht = a+ϕε
2
t−1 +ωht−1 (6.2)

where ht is the conditional variance, a is the constant term of GARCH model, φ

indicates the short-run persistence of the ARCH effect, while ω denotes the long-run

persistence of the GARCH effect. The Eq. 6.2 is univariate GARCH(1,1) model and

we construct this model for each of the series in the sample.

Dynamic Conditional Correlation, DCC(1,1) Equation:

θt = (1−α −β )θ +αεt,1ε̂t−1 +βθt−1 (6.3)
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where θt defines the time-varying unconditional correlation matrix of the

standardized residuals from the GARCH(1,1) equation and indicated by εt. The α

and β parameters express the impacts of previous shocks and previous DCC on the

current DCC respectively.

6.1.1 Dynamic Conditional Correlations Results

In this section, we present empirical findings of the DCC GARCH model. First, we

provide α and β outcomes from the DCC GARCH model and their interpretations.

Subsequently, we demonstrate time-varying conditional correlation graphs of each pair

of assets.

According to Table 6.1, α and β coefficients are the dynamic correlation coefficients

of the DCC-GARCH model. The coefficient of α indicates the impact of the

standardized residuals of the previous period on the dynamic correlation coefficient,

while the coefficient of β represents the impact of the correlation coefficient of the

previous period on the correlation coefficient of this period. Furthermore, the

summation of α and β (α + β ) represents the attenuation coefficient of the model. In

other words, their summation represents the persistence of the correlation between

two time series or two assets. The higher value of the summation indicates stronger

persistence of correlation or vice versa. In this regard, the α and β values of TUPRS

with all energy commodities are statistically significant and positive, indicating that

there is an important time-varying change characteristic, and the correlation

coefficient is mainly affected by both previous fluctuations and the correlation

coefficient of the previous period. The summation of α and β values represents shows

that there is a strong persistence of correlation between TUPRS and fossil fuel energy

commodities (crude oil, natural gas, and coal). For COSMO and three energy

commodities, the α and β coefficients are statistically significant and positive in the
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Table 6.1: Dynamic conditional correlation (DCC) estimations
Pairs of assets ARMA(p,q) DCC (α) DCC (β )
tuprs - oil ARMA(10,10) 0.02*** 0.97***
tuprs - gas ARMA(10,10) 0.01*** 0.98***
tuprs - coal ARMA(5,5) 0.07*** 0.98***

cosmo - oil ARMA(9,10) 0.00** 0.99***
cosmo - gas ARMA(6,7) 0.00 0.69*
cosmo - coal ARMA(10,10) 0.00 0.05

ipeke - oil ARMA(10,10) 0.00** 0.99***
ipeke - gas ARMA(8,9) 0.00 0.45
ipeke - coal ARMA(9,10) 0.00*** 0.00

trcas - oil ARMA(9,9) 0.02** 0.97***
trcas - gas ARMA(10,10) 0.01 0.98***
trcas - coal ARMA(10,10) 0.01 0.29

xelkt - oil ARMA(9,8) 0.03** 0.94***
xelkt - gas ARMA(9,10) 0.01* 0.97***
xelkt - coal ARMA(9,10) 0.00 0.01

Note: ARMA(p,q) column represents the optimal lags for the mean
equation. To do this, lags selected based on AIC. DCC (α) indicates
the coefficients of α values estimated from the DCC GARCH model,
while DCC (β ) expresses the coefficients of β values estimated from
the DCC GARCH model. ***, **, * indicates significance at 1%, 5%,
and 10% levels respectively.
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cosmo-oil pair, implying that there is a time-varying change characteristic, and the

correlation coefficient is mainly affected by both previous fluctuations and the

correlation coefficient of the previous period. However, the correlation coefficient in

the COSMO-GAS pair is mainly affected by the previous fluctuations since the β is

the only statistically significant asset in the model. For COSMO-COAL, we do not

observe statistically significant α and β coefficients, meaning that the correlation

coefficient between these two assets does not affected by either the previous

fluctuations or the correlation coefficient of the previous period. Therefore, the

strongly persistent conditional correlation is recorded for only COSMO-OIL pair.

Another energy stock of IPEKE and its dynamic correlation coefficients with fossil

fuel energy commodities indicate that α and β are both statistically significant and

positive in IPEKE-OIL pair, and this is the strongest persistency among others. On

the other hand, the α and β coefficients are not statistically significant in the

IPEKE-GAS pair, indicating no effects of previous fluctuations or the correlation

coefficient of the previous period. In addition, the α is statistically significant and

positive for IPEKE-COAL. This is the indication of the impact of the previous

period’s correlation coefficient on the current period. For trcas and fossil fuel energy

commodities, the strongest persistency of correlation coefficient is obtained for

TRCAS-OIL. The values of α and β are also statistically significant in this pair,

implying that there is an important time-varying change characteristic, and the

correlation coefficient is mainly affected by both previous fluctuations and the

correlation coefficient of the previous period. In the pair of TRCAS-GAS, the β is

statistically significant which is evidence of the impact of previous fluctuations on the

current correlation coefficient between the two assets. However, the statistically

significant α and β coefficients are not obtained in the TRCAS-COAL pair. For the

XELKT and fossil fuel energy commodities, XELKT-OIL and XELKT-GAS have
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statistically significant α and β which indicates that there is an important

time-varying change characteristic, and the correlation coefficient is mainly affected

by both previous fluctuations and the correlation coefficient of the previous period for

both pairs. On the other hand, the α and β coefficients are not statistically significant

for XELKT-COAL. Hence, the impact of previous fluctuations and the correlation

coefficient of the previous period can not be considered for this pair.

Table 6.2 presents diagnostic tests for standardized residuals. According to the table,

there is an ARCH effect at a 1% significance level for each series (except for COAL)

in lag (5) and (10). However, COAL has also an ARCH effect in lag (20). In other

words, all of the return series reveal conditional heteroskedasticity, indicating that

ARCH effects should be taken into account in the estimation stage. Moreover, there is

no evidence of serial correlation at 1%, 5%, or 10% levels based on Ljung-Box serial

correlation tests.

Fig. 6.1-6.15 demonstrate the findings regarding time-varying conditional

correlations for each pair of energy stocks with fossil fuel energy commodities based

on the DCC model. According to the results, it can be seen that there is volatility

clustering in each pair outcome. In addtion, these results can be evident for the

importance of time-varying conditional correlation (DCC) since conditional

correlation for each pair varies over time. For tuprs and three fossil fuel energy

commodities, we found generally positive dynamic conditional correlations, reaching

the highest level around 0.40 in the pair of TUPRS-OIL. Nevertheless, there are some

negative correlation periods for these three pairs such as TUPRS-OIL, TUPRS-GAS,

and TUPRS-COAL which is implying an opportunity for meaningful portfolio

diversification. For instance, the period between 2013-2014 (corresponds to 1700th
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Table 6.2: Diagnostic tests (conditional heteroskedasticity and autocorrelation) for
standardized residuals.

LBQ(10)LBQ(5)ARCH LM(10)Variable ARCH LM(5)
270.27*** (0.00) 302.63*** (0.00) 0.02 (1.00) 0.06 (1.00)tuprs

0.00 (1.00) 0.77 (1.00)319.59***(0.00)303.58***(0.00)cosmo
1.51 (1.00) 4.28 (0.93)141.74***(0.00)136.19***(0.00)ipeke
0.00 (1.00) 0.53 (1.00)287.04***(0.00)277.20***(0.00)trcas
0.02 (1.00) 1.96 (0.99)287.29***(0.00)271.97***(0.00)xelkt
0.01 (1.00) 11.58 (0.31)417.81***(0.00)274.83***(0.00)oil
0.01 (1.00) 0.05 (1.00)68.45***(0.00)63.00***(0.00)gas
0.07 (1.00) 0.44 (1.00)2.95 (0.98)2.15 (0.83)coal

Note: The ARCH LM test is introduced by Engle (1982) for conditional
heteroskedasticity. The LBQ refers to Ljung-Box Test for autocorrelation. For both
tests, ***, **, * indicates significance at 1%, 5%, and 10% levels respectively.
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Figure  6.1:  Time-varying  conditional  correlations  for  TUPRS-OIL  based  on  DC
model
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Figure  6.2:  Time-varying  conditional  correlations  for  TUPRS-GAS  based  on  DC
model

Figure  6.3:  Time-varying  conditional  correlations  for  TUPRS-COAL  based  on  DC
model
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Figure  6.4:  Time-varying  conditional  correlations  for  COSMO-OIL  based  on  DC
model

Figure  6.5:  Time-varying  conditional  correlations  for  COSMO-GAS  based  on  DC
model
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Figure  6.6:  Time-varying  conditional  correlations  for  COSMO-COAL  based  on  DC
model

Figure  6.7:  Time-varying  conditional  correlations  for  IPEKE-OIL  based  on  DC
model
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Figure  6.8:  Time-varying  conditional  correlations  for  IPEKE-GAS  based  on  DC
model

Figure  6.9:  Time-varying  conditional  correlations  for  IPEKE-COAL  based  on  DC
model
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Figure  6.10:  Time-varying  conditional  correlations  for  TRCAS-OIL  based  on  DC
model

Figure  6.11:  Time-varying  conditional  correlations  for  TRCAS-GAS  based  on  DC
model
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Figure  6.12:  Time-varying  conditional  correlations  for  TRCAS-COAL  based  on  DC
model

Figure  6.13:  Time-varying  conditional  correlations  for  XELKT-OIL  based  on  DC
model
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Figure  6.14:  Time-varying  conditional  correlations  for  XELKT-GAS  based  on  DC
model

Figure  6.15:  Time-varying  conditional  correlations  for  XELKT-COAL  based  on  DC
model



and 1800th observations in the graph) provides an opportunity for diversification

between tuprs and oil since negative correlations are observed. We also found positive

correlations between COSMO and three fossil fuel energy commodities. The

strongest dynamic conditional correlation is observed for COSMO-OIL compared to

COSMO-GAS and COSMO-COAL. This may be an indication that natural gas and

coal have a better opportunity for portfolio diversification compared to oil. For the

pairs of IPEKE-OIL, IPEKE-GAS, and IPEKE-COAL, we obtained positive dynamic

conditional correlations over the period as well. The strongest correlation occurs

between IPEKE and OIL (by reaching to 0.30) compared to natural gas and coal. The

dynamic conditional correlation between TRCAS-OIL, TRCAS-GAS, and

TRCAS-COAL provide more portfolio diversification opportunities. For instance,

TRCAS-OIL have mainly five periods that show negative correlations. These periods

are between 2007-2009, 2010-2011, 2013-2014, 2017-2018, and 2019-2020. For

TRCAS-GAS and TRCAS-COAL, negative correlations are recorded in some periods

as well. Hence, TRCAS has more opportunities for portfolio diversification with

fossil fuel energy commodities compared to previous energy stocks. Lastly, the

electricity index of XELKT has an opportunity for portfolio diversification with oil

and natural gas for some periods as both pairs have negative correlation periods.

However, a negative dynamic conditional correlation is not observed for the pair of

XELKT-COAL, indicating a little scope for portfolio diversification.

To sum up, the enegy stocks of TUPRS and TRCAS, and the electricity index of

XELKT have some negative dynamic conditional correlation periods with fossil fuel

energy commodities. These negative correlation periods provide an opportunity for

meaningful portfolio diversification, while positive correlation periods decreases the

benefits of diversificaiton. We will provide optimal hedge ratios and optimal portfolio
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weights for our sample assets in the next sub-section and we believe that it will

provide more insightful information for investors and their portfolio strategies.

6.2 Hedging Analysis

We extend the estimated findings from the previous section by calculating the optimal

hedge ratios and optimal portfolio weights. According to Kroner and Sultan [86], we

can use estimations of conditional volatilities to construct the hedge ratios. Moreover,

we can also evaluate the hedging effectiveness of fossil fuel energy commodities

against Turkish energy stocks. Following Kroner and Sultan [86], a long position in

one asset (e.g. asset m) can be hedged with a short position in another asset (e.g. asset

n). The formulation for the hedge ratio between assets m and n can be calculated as

follows:

βmn,t =
hmn,t

hnn,t
(6.4)

Table 6.3 and Fig. 6.16-30 present full-sample and time-varying hedge ratios

computed from the DCC model respectively. The lowest average value of the hedge

ratio corresponds to COSMO/GAS and TRCAS/GAS, indicating the cheapest hedge

among other pairs with 0.04. This hedge ratio is important in constructing a 1$ long

position (buy) in COSMO (or TRCAS) and can be hedged for 4 cents with a short

position (sell) in the natural gas market. However, the highest average value of the

hedge ratio is achieved by the pair of IPEKE/OIL with 0.26. This hedge ratio

indicates that this is the most expensive hedge by going long 1$ in IPEKE and short

26 cents in the crude oil market. For each pair of series, it can be seen from Fig.

6.16-30 that hedging ratios vary over time with sharp increases or decreases, implying

that investors must sometimes take a short position or long position to minimize their

risks. For TUPRS and three fossil fuel energy commodities (crude oil, natural gas,
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Table 6.3: Summary statistics for hedge ratios.
SDMean Max MinLong/Short

-0.33 0.140.740.24TUPRS/OIL
-0.01 0.070.460.09TUPRS/GAS
-0.09 0.070.490.11TUPRS/COAL

0.150.021.440.23COSMO/OIL
0.020.010.210.04COSMO/GAS

COSMO/COAL 0.12 0.060.010.44
-0.02 0.160.26IPEKE/OIL 2.28

0.050.010.08IPEKE/GAS 0.48
0.060.010.13IPEKE/COAL 0.76

-0.36 0.160.22TRCAS/OIL 1.02
-0.08 0.050.04TRCAS/GAS 0.37
-0.04 0.050.09TRCAS/COAL 0.92
-0.47 0.170.17XELKT/OIL 1.40
-0.09 0.060.06XELKT/GAS 0.50

0.030.010.07XELKT/COAL 0.34
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Figure  6.16:  Time-varying  hedge  ratios  for  TUPRS-OIL
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Figure  6.17:  Time-varying  hedge  ratios  for  TUPRS-GAS

Figure  6.18:  Time-varying  hedge  ratios  for  TUPRS-COAL
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Figure  6.19:  Time-varying  hedge  ratios  for  COSMO-OIL

Figure  6.20:  Time-varying  hedge  ratios  for  COSMO-GAS
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Figure  6.21:  Time-varying  hedge  ratios  for  COSMO-COAL

Figure  6.22:  Time-varying  hedge  ratio  for  IPEKE-OIL
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Figure  6.23:  Time-varying  hedge  ratios  for  IPEKE-GAS

Figure  6.24:  Time-varying  hedge  ratios  for  IPEKE-COAL
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Figure  6.25:  Time-varying  hedge  ratios  for  TRCAS-OIL

Figure  6.26:  Time-varying  hedge  ratios  for  TRCAS-GAS



63

Figure  6.27:  Time-varying  hedge  ratios  for  TRCAS-COAL

Figure  6.28:  Time-varying  hedge  ratios  for  XELKT-OIL
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Figure  6.29:  Time-varying  hedge  ratios  for  XELKT-GAS

Figure  6.30:  Time-varying  hedge  ratios  for  XELKT-COAL



and coal), the most expensive hedging is with OIL since the hedge ratio records its

highest value, around 0.68. Hence, hedging TUPRS with OIL will be costly and not

useful for investors as expected from the previous findings of DCC analysis. The

cheapeast hedge can be obtained in periods when hedge ratios record the highest

negative values. Similarly, other Turkish energy stocks also have the highest hedge

ratio with the oil market including the BIST electricity index. This is an indication

that hedging strategy with oil is the most costly way for investors to minimize their

risks. Nevertheless, there are some periods when the hedge ratios decrease, thus,

investors need to follow these dynamics including in the oil market to invest their

money. Even though it will be costly because of higher transaction costs, investors in

the Turkish energy market may follow an active portfolio strategy and rearrange their

portfolios according to the circumstances in the energy market [87].

6.3 Portfolio Weights

To construct optimal portfolio weights, the conditional variance and covariances

obtained from the MGARCH model can be used. In this regard, we can acquire the

optimal proportion of Turkish energy stocks and fossil fuel energy commodities

which is important for average rational investors while establishing their portfolios.

Following Kroner and Ng (1998) [76], and Arouri et al. (2011) [42] optimal portfolio

weights for holding two assets can be found as follows:

Wmn,t =
hnn,t −hmn,t

hmm,t −2hmn,t +hnn,t
(6.5)

Wmn,t =


0, if Wmn,t < 0

Wmn,t if 0 ⩽Wmn,t ⩽ 1

1, if Wmn,t > 1

(6.6)

where Wmn,t represents the weight of the first asset in a 1$ portfolio of two assets

(i.e. asset m and n) at time t. As explained earlier, hmn,t indicates the conditional
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covariance between these two assets, while hnn,t is the conditional variance of the asset

n. To calculate the weight of second asset, 1- Wmn,t can be used.

Table 6.4 Summary statistics for portfolio weights.
Long/Short Mean Maximum Minimum Std. Dev.
TUPRS/OIL 0.39 1.02 0.04 0.20
TUPRS/GAS 0.59 0.99 0.04 0.23
TUPRS/COAL 0.30 0.98 0.02 0.17
COSMO/OIL 0.25 0.89 -0.01 0.17
COSMO/GAS 0.44 0.96 0.02 0.23
COSMO/COAL 0.19 0.93 0.01 0.15
IPEKE/OIL 0.22 0.93 -0.01 0.16
IPEKE/GAS 0.41 0.95 0.01 0.24
IPEKE/COAL 0.17 0.94 0.00 0.14
TRCAS/OIL 0.33 0.98 -0.01 0.20
TRCAS/GAS 0.53 0.99 0.01 0.23
TRCAS/COAL 0.26 0.97 0.00 0.16
XELKT/OIL 0.43 0.99 -0.06 0.20
XELKT/GAS 0.62 1.01 0.01 0.23
XELKT/COAL 0.33 0.98 0.01 0.19

Regarding the full sample period, the mean values of optimal portfolio weights for

each pair of series are provided in Table 6.4. In this regard, the mean value of the pair

TUPRS/OIL is found 0.39, indicating that for a $1 TUPRS-OIL portfolio, 39 cents

should be invested in TUPRS, and the remaining 0.61 cents should be invested in

OIL. The mean value of TUPRS/GAS weight is 0.59, suggesting that 59 cents should

be invested in TUPRS, while the rest of 41 cents should be invested in GAS. The

average weight for TUPRS/COAL is 0.30, implying that 30 cents should be invested

in TUPRS and 70 cents in COAL. For a 1$ COSMO-OIL portfolio, the average

weight is 0.25, meaning that 25 cents should be invested in COSMO, and 75 cents in

OIL. For COSMO-GAS, the average weight is 0.44, indicating that 44 cents should

be invested in COSMO, and the remaining 56 cents should be invested in GAS. The

average weight for COSMO/COAL suggests that 19 cents should be invested in
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COSMO, and 81 cents in COAL. For 1$ IPEKE-OIL, IPEKE-GAS, and

IPEKE-COAL portfolios separately, investors should invest in IPEKE around 22 cents

and the rest in OIL, 41 cents in IPEKE and the rest in GAS, and 17 cents in IPEKE

and the rest in COAL. For TRCAS-OIL, the average weight indicates that 33 cents

should be invested in TRCAS, and the remaining 67 cents in OIL. In TRCAS-GAS,

53 cents should be invested in TRCAS, and the rest should be invested in GAS. In

TRCAS-COAL, 26 cents should be invested in TRCAS, and 74 cents in COAL. For a

1$ XELKT-OIL portfolio, investors should invest around 43 cents in XELKT, and 57

cents in OIL. For the 1$ XELKT-GAS portfolio, approximately 62 cents should be

invested in XELKT, and 38 cents in GAS. Lastly, in the XELKT-COAL portfolio, 33

cents should be invested in XELKT, and the remaining 67 cents in COAL.

Overall, we can conclude that Turkish energy stocks have the highest conditional

correlation with crude oil, however, crude oil can be used as a hedging instrument for

some periods. Hence, investors should follow the patterns of the interaction between

Turkish energy stocks and fossil fuel energy commodities actively to make useful

investment strategies.
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Chapter 7

CONCLUSION

In this thesis, we investigated volatility spillovers among publicly Turkish-listed firms

in the energy sector (TUPRS, COSMO, IPEKE, TRCAS), BIST Electricity Index

(XELKT), and main fossil fuels futures markets (Brent crude oil, natural gas, and

coal). To do this, we used daily prices (in US$) from 07/18/2006–12/31/2021

considering important global economic and political events such as the 2008 GFC, the

2011 Arab spring, the Syrian civil war, the 2014 international crude oil crisis, the

2016 increase in coal and natural gas prices, the 2016 Brexit event, the 2016 OPEC

announcements about supply cut policies, and the 2020 COVID-19 pandemic by

employing time and frequency domain approaches (Diebold and Yilmaz, 2012;

Barunik and Krehlik, 2018). Finally, we calculate dynamic conditional correlations

(DCC-GARCH), hedge ratios and portfolio weights of Turkish energy stocks, the

electricity index, and fossil fuel commodities for global investors in the energy

market.

Our study is the first, to the authors’ best knowledge, to investigate the volatility

spillovers using the energy market considering crude oil, natural gas, and coal

together and firm-level data from energy stocks in an emerging market, Turkey. We

believe that taking three main energy commodities will allow us to see the complete

picture in terms of volatility interlinkage between the fossil fuel commodities and

energy stocks. We also believe that analyzing individual energy stocks at the firm

level enables us to examine heterogeneity among firms, and examining individual
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countries will shed more light on the volatility connectedness among energy stocks

and the fossil fuel energy market. To do this, we investigated both static and

time-varying effects on the volatility connectedness between markets based on

Diebold and Yilmaz (2012). The most remarkable findings of our study are as

follows. First, we found a total volatility spillover index of 25% in the static analysis,

indicating an interdependence between volatilities. In the fossil fuel energy market,

crude oil has the highest volatility spillover to TUPRS, which is not surprising given

tuprs is the largest oil importer in Turkey with 75% refinery capacity in the country. It

is also the 7th largest refining company in Europe and 30th largest in the world [73].

When this is the case, tuprs may be more responsive to volatility in crude oil, which

will be caused by geopolitical issues such as sanctions on oil producer/exporter

countries or supply concerns owing to OPEC policies. Moreover, coal transmits the

highest volatility to TUPRS, whereas natural gas transmits the highest volatility

spillover to TRCAS. We explained this finding as follows. In the case of supply cuts

and price increases for crude oil because of global tensions, countries may tend to

increase their demand for other energy commodities such as natural gas or coal to

meet their energy needs. Hence, countries that are heavily dependent on energy such

as Turkey may begin to be more affected by the volatility of these energy

commodities. Second, we needed to capture the impacts of cyclical trends and

extreme events that change over time. Hence, we examined the volatility

connectedness in a time-varying manner. Regarding the findings of dynamic analysis,

we noticed that there are many fluctuations and sharp increases owing to extreme

events around the world. In other words, the highest volatility spillovers among

Turkish energy stocks, the electricity index, and fossil fuel energy commodities are

observed during the COVID-19 pandemic, followed by the 2008 GFC. Therefore, the

volatility connectedness among these markets during the COVID-19 outbreak in 2020
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exceeded the 2008 GFC. Overall, we can conclude that Turkish individual energy

stocks, the electricity index, and the fossil fuel energy market have a significant

volatility interaction, and this is greatly affected by extreme events such as financial

meltdown and price fluctuations of energy commodities. Third, we examined

directional volatility spillovers among markets and found that the highest volatility

spillovers from crude oil to other markets are observed during the COVID-19

pandemic and 2008 GFC. The volatility of spillovers from others to crude oil varies

significantly over time, and the highest level of spillovers is recorded during the 2008

GFC. Natural gas has the highest volatility transmission to others during the

COVID-19 pandemic. The volatility transmission of coal to other markets intensified

during the 2008GFC. Overall, it can also be seen that Turkish energy stocks

transferred significant volatility to all three fossil fuel energy commodities over the

period. Although it is surprising that an emerging economy such as Turkey’s energy

stocks affect global energy markets, the possible explanation for this is that Turkish

energy stocks may have the same dynamics as the largest international energy

companies, which have a significant influence on oil markets or possibly predict their

future movements [54]. Fourth, according to Barunik and Krehlik (2018), the highest

performance is recorded in the long horizon compared to short and medium horizons,

implying that the impact of volatility spillover transmission from one market to others

is persistent (long-lasting).

We can also give some recommendations to investors and policymakers. We conclude

that Turkish energy stocks and the fossil fuel energy markets have high

interdependencies, and these are greatly affected by global political, financial, and

extreme events. Given global tensions will never end, Turkey needs to have an energy

policy road map concerning reduced dependence on imported crude oil, natural gas,
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and coal. To do this, alternative options such as domestically produced energy sources

may be considered. For instance, improving and utilizing renewables may be an

important alternative for power generation. According to our empirical results,

volatility transmission spreads in the long-term frequency as well as intensifying

volatility spillovers during extreme events. Hence, we can suggest to investors that

they should be aware of intensifying volatility spillovers during global crisis periods.

This will lead to higher oil prices and, as a result, higher oil prices will decrease stock

prices. Moreover, natural gas and coal are alternative inputs for crude oil, and their

volatilities affect each other. As a result, this will also decrease stock prices. Hence,

investors should monitor extreme events carefully and their impacts on fossil fuel

energy commodities to take action for their portfolio diversification strategies.

Regarding policy decisions, the Turkish government can decrease uncertainties about

tax rates and regulations related to the energy sector since this leads to energy price

volatility at the retail level, and the government can implement policies to limit

exchange rate volatility which increases domestic energy price volatility [46].

The limitation of our study is that we used only four energy firms in the Turkish energy

sector owing to the limited number of publicly traded energy companies in Turkey.

Hence, future researchers can follow new publicy traded companies in Turkey and

expand sample firms to achieve better representation of the Turkish energy sector.
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Abstract for the publication that is used to construct this thesis is published in the

Resources Policy and the title is Volatility Spillovers between Turkish Energy Stocks

and Fossil Fuel Energy Commodities based on Time and Frequency Domain

Approaches. AUTHORS: Merve Coskun and Nigar Taspinar. Department of

Banking and Finance, Eastern Mediterranean University, Famagusta, Turkey

(Accepted 22 August 2022).

ABSTRACT: In this paper, we investigate the volatility spillovers among major

energy stocks, the electricity index, and fossil fuel energy commodities (crude oil,

natural gas, and coal) using firm-level data in an emerging market, Turkey over the

period July 18, 2006–December 31, 2021, which covers important economic events

worldwide. To do this, we employ Diebold and Yilmaz’s (2012) approach to examine

both time-varying and invarying volatility spillovers among markets. Our findings

reveal that Turkish energy stocks and the fossil fuel energy markets have high

interdependencies, which are significantly affected by global political, financial, and

extreme events. The volatility spillovers among markets during the COVID-19

outbreak in 2020 exceeded the 2008 global financial crisis. We also examine the

volatility connectedness between markets based on frequency domain using various

frequency bands (short term, medium term, long term). To do so, we adopt Barunik

and Krehlik’s (2018) approach and find that the highest performance is recorded in

the long horizon compared to short and medium horizons, implying that the impact of

volatility spillover transmission from one market to others is persistent (long-lasting)

in the Turkish market. Finally, we discuss policy implications for global investors and

policymakers based on our results. Keywords: Volatility Spillovers, Crude Oil,

Natural Gas, Coal, Electricity, Stock Markets JEL Classification: C5, F3, G10, G15,

Q40, Q43
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