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ABSTRACT

In this thesis, one of the well-known spacetimes named as Zipoy-Voorhees (ZV) or

γ-metric is extended to its charged version via Ernst formalism and is called the

charged ZV solution. This spacetime is then further investigated and the relevant

geodesic equations, the Newtonian limit, the solution of Maxwell equations and the

singularity analysis are all carried out in detail. These steps are later on followed by

inspecting the physical properties of the consequent γ-metric, whose gravitational

lensing effect is compared with the one for the stationary ZV solution. In this regard,

the effect of deformation parameter γ on gravitational lensing and redshift is studied.

With the help of Chandrasekhar-Xanthopoulos (CX) theorem and Ernst formalism,

the charged and stationary version of ZV solution is also obtained. The metric

functions of this new solution - which came out to be utterly complicated - are

expanded up to the quadrupole terms. As a result, the closed time-like curves are

examined. Another important compitation known as the singularity analysis is carried

out for the uncharged and charged versions of ZV spacetime on θ = π/2 and θ = π

planes. In the end, it has been found that both solutions are quantum regular in

s-mode on the θ = π plane for 1 < γ < 2. Lastly, gravitational lensing analysis is

conducted on another well-known spacetime of theoretical physics, Kerr-Newman

Anti de Sitter metric, and the effect of rotation on black holes is studied by using

observational data from M87 and SgrA∗.

Keywords: Non-spherical Symmetry, Ernst Formalism, Gravitational Lensing,

Gravitational Redshift, Quantum Singularity Analysis
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ÖZ

Bu tezde literatürde Zipoy-Voorhees (ZV) uzayzamanı veya γ-metriği olarak bilinen

ve fiziksel yapı parametresi sadece kütle olan küresel olmayan çözüm, Ernst

formalizm yardımıyla yüklü hale getirilerek, yüklü ZV uzayzamanı elde edilmiştir.

Bu yeni uzayzaman üzerinde, jeodezik analizi, Newton limiti, Maxwell

denklemlerinin çözümü ve tekillik analizi yapılmıştır. Daha sonra ise ilgili

uzayzamanın fiziksel özellikleri araştırılarak, bu yeni çözümde kütle-çekimsel

mercekleme etkisi stasyoner ZV çözümüyle karşılaştırılmıştır. Bu bağlamda, γ ile

ifade edilen geometrik deformasyon parametresinin, bahsi geçen fiziksel olay

üzerindeki etkisi incelenmiştir. Elde edilen yeni yüklü ZV çözümü üzerinde

kütleçekimsel kırmızıya kayma olayı da incelenmiştir. ZV çözümünün önemli başka

bir sınıfı olan yüklü ve stasyoner ZV sınıfı, literatürde Chandrasekhar-Xanthopoulos

(CX) teoremi olarak bilinen teorem kullanılarak, Ernst formalizm yardımıyla

türetilmiştir. Bu oldukça karışık yeni çözümün metrik fonksiyonları, kuadrapol

terimlere kadar açılarak bu çözümün kapalı zamansal jeodezik denklemleri

incelenmiştir. Bir başka önemli analiz olan kuantum tekillik analizi, ZV ve yüklü ZV

uzayzamanlarında θ = π/2 ve θ = π düzlemlerinde yapılarak, her iki çözümün de

θ = π düzleminde 1 < γ < 2 aralığında, s-dalga modunda kuantumsal olarak düzenli

olduğu bulunmuştur. Son olarak, teorik fiziğin tanınmış bir başka uzayzamanı olarak

bilinen, küresel olmayan ve kara deliklere uygulanabilen Kerr-Newman Anti de Sitter

metriğinde, kütleçekimsel mercekleme analizi yapılarak, dönmenin mercekleme

üzerindeki etkisi; M87 ve SgrA∗ kara deliklerinin gözlemsel verileri kullanılarak

incelenmiştir.

Anahtar Kelimeler: Küresel Olmayan Simetri, Ernst Formalizmi, Gravitasyonel
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Chapter 1

INTRODUCTION

Without any doubt, the Schwarzschild solution of Einstein’s equations [3] plays an

important role in the historical timeline of the concepts of general relativity. This

specific solution possesses a spherical symmetry, and hence, despite its vast

importance in the theory of black holes, can be considered to be trivial. Nevertheless,

if the symmetry of concern is axial rather than spherical, the situation seems to be

way more complicated. Such a case was examined in detail by Hermann Weyl, whose

relevant ideas can be found in his article entitled “Zur Gravitationstheorie” [4] 1 .

During his study, Weyl first concentrates on the fundamental quantities mass m and

electric charge e and rescales them (in c.g.s. units) as

a = κm, (1.1)

and

a′ =
√

κe
c

. (1.2)

In turn, he names a and a′ as the gravitational radii of the mass and the electric charge,

respectively. Then, he further introduces

a′′ =
e2

mc2 , (1.3)

1 For the English-translated versions of Schwarzschild’s and Weyl’s papers, a reader is referred to [5]
and [6], respectively.
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which can be referred as the radius of an electron under appropriate conditions.

The mathematical equations constructed by Weyl relating the mass, charge and length

at different scales can be considered as an attempt of using concepts of general

relativity to explain atomic phenomena. This claim is supported by the words of Weyl

himself, which go as follows [6]:

“The acquisition of exact solutions to the equations of gravity seems important
to me with regard to the question of processes at work within the atom. After
all, it is possible that at such scales it is essential to take the non-linearity of the
exact laws of nature into account.

. . . . . . . . . . . . . . . ..

To this end, granted, one that still lies in the distant future, it seems to me of
interest to determine exactly the gravitational field of an axially symmetric
distribution of masses and charges according to Einstein’s theory. This will be
done here for the static case; the study leads to surprisingly simple results.”

As can be seen from the statements above, Weyl solutions possess axial symmetry.

Although one might find it tempting to use standard coordinates to study such

solutions, there are good valid reasons to look for alternatives.

1.1 Deviating from Standard Symmetries

1.1.1 Observational Aspect

The universe is filled with a variety of astronomical objects with different fundamental

properties. In a universe like ours (which is known to host a great many number of

possibilities within itself), it would not be wise to assume perfect symmetries to exist

for all its components. Although it is possible to create a list of astronomical objects

with for instance spherical symmetry, there also exist a great many which can be treated

as non-spherical compact objects. These can be thought as examples for objects of

nature deviating from standard symmetries.
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The geometrical shapes of compact objects deviating from standard symmetries are

attained as a consequence of the strong gravitational effects. Non-spherical compact

objects - which are the main objects of concern in this thesis - are good examples of

such astronomical bodies. In outer space, neutron stars are generally treated as non-

spherical compact objects. The majority of these stars are thought to have oblate shapes

due to strong electromagnetic (em) and rotational effects.

Neutron stars are not the only astronomical examples we can give for non-spherical

compact objects. Since deviations from standard symmetries are thought to arise due to

immense physical effects, it is natural to treat black holes as candidates for having such

geometrical deformations. Due to strong gravitational field, black holes are expected

to exist in many different shapes, some of which can be categorised as flattened or

oblate.

In the theory of general relativity, there are two familiar solutions that are treated as

non-spherical compact objects. These are named as the Zipoy-Voorhees (ZV) [7, 8]

and Kerr-Newman [9] solutions. ZV metric describes the gravitational field around

a static, non-spherical mass distribution in empty space, whereas the Kerr-Newman

solution has rotation and charge [10, 11, 12]. The ZV solution is also known as the γ-

metric, since γ is the key parameter determining the geometrical shape of the associated

compact object. For instance, if γ > 1, the solution is oblate; whereas γ < 1 refers to a

prolate shape.
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Figure 1.1: The diagrams above illustrate rough
sketches of the prolate, sphere and oblate (from left

to right).

It is also important to note that the concept of cosmological constant was first

introduced in the Schwarzschild solution in 1918 by Kottler [13], and it was later on

used in rotating black holes by Carter [14]. These were important steps in both

theoretical and observational physics.

1.1.2 Theoretical Aspect

In 1966 [7], Zipoy declared that not being limited to cylindrical coordinates would be

of advantage while searching for vacuum axially symmetric solutions of Einstein’s

equations. By then, picking alternative coordinate systems to solve Einstein’s

equations with less hassle was already a familiar viewpoint (for instance, check [15]

for solutions in oblate spheroidal and toroidal coordinates). However, Zipoy’s

perspective differed in the sense that rather than concentrating on a variety of mass

distributions, he ignored the entire concept as a whole and examined the case when

there existed no mass in the vicinity. Eventually, he figured the mass term came into

play as a mathematical consequence. In the end, via coordinate transformations, he

obtained solutions for a specific class of Weyl spacetimes in prolate and oblate

spheroidal coordinates.
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Zipoy was not the only one seeking solutions of vacuum Einstein equations by using

alternative coordinates. Voorhees also managed to obtain static axially symmetric

solutions to the vacuum field equations. Zipoy’s approach was criticized by Voorhees

[8] in the following aspects:

Voorhees claimed that Zipoy’s perspective was almost purely mathematical, lacking

important physical implications. Furthermore, he claimed the logical path followed

by Zipoy was not as straightforward as it should have been. Due to these reasons

combined, Voorhees provided detailed physical explanations in his own work and the

derivation steps also differed once compared with Zipoy’s.

Voorhees expressed Schwarzschild line element in Weyl coordinates with the aid of

transformations used by Ernst in his study entitled [16] “New Formulation of the

Axially Symmetric Gravitational Field Problem”.

Today, ZV solution is very frequently used by many physicists, some of which can be

found in [17, 18, 19].

1.2 General Information on Gravitational Lensing, Redshift and

Singularity

This section is reserved for concepts such as gravitational lensing, redshift and

singularity. These events do not only carry importance in astronomy but also in

theoretical physics, especially because they act as a bridge between theoretical

concepts and observational evidences. Therefore, a brief introduction on them will be

presented here. The mathematical details can be found in the upcoming chapter.

1.2.1 Gravitational Lensing

Einstein’s theory of general relativity got its first empirical evidence in its favour after

the famous astronomical effect observed by British astronomer Arthur Eddington in
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1919. During the solar eclipse that occurred on 29th of May in this year, observations of

Eddington on bending of light due to gravity was compatible with theoretical work of

Einstein[20, 21]. This is considered as the first observational confirmation of Einstein’s

theory of general relativity.

According to general relativity, the effect of gravity should also be distinctive in the

vicinity of black holes. To be more specific, in theory, if the oscillations arising due

to high temperature events occurring around a black hole cross the Earth’s past light

cone’s caustics, one expects to see some observational effects encrypted in the X-rays

emitted [22].

1.2.2 Redshift

Gravitational redshift can be defined as the Doppler effect arising due to the

gravitational attraction experienced between light and a dense compact object. When

light propagates in the vicinity of such an object, its wavelength decreases and the

effect is seen as a shift toward the red spectrum. This effect got confirmed both in

laboratory and with astrophysical observations. The laboratory confirmation was

achieved by an experiment designed by Pound and Rebka in 1959 [23]. During this

experiment, a gamma-ray beam was used rather than visible light and it was aimed to

investigate what effects would be observed, once the gamma ray beam was set to

travel close to a gravitational source. The recorded data was consistent with the

expectation of gravitational redshift evaluations of general relativity. From the

astrophysical aspect, the same affect was recognised in 1964, when the spectral lines

of quasars 3C− 48 and 3C− 273 were studied by Greenstein and Schmidt in 1964

[24]. The associated spectral lines showed evidences for gravitational redshift with

values 0.367 and 0.158, respectively.
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1.2.3 Singularity

General theory of relativity contains a vast amount of information within itself.

Although it covers a great range of possibilities and objects, there is a concept known

as "singularity", which still remains as an unsolved mystery. Singularities are points

in spacetime with infinite density and no volume of occupation. It is not that easy to

picturize or mathematically or physically describe these regions with tools of general

relativity, since the theory becomes insufficient at very small scales. For instance, if

one attempts to write down geodesics at singularities, he or she would encounter

problems. Furthermore, providing definitions for observables such as energy and

gravitational force would also be problematic, as they would diverge at singularities.

Due to these and many other reasons, one of the main goals of current theorists is to

find some ways of dealing with singularities. As the theory foresees that at the centre

of every black hole, there must lie a singular point in spacetime, it would not be

insightful to not look for a precise definition of this peculiar concept. So far, quantum

gravity seems to be a promising candidate that can coalesce principles of general

relativity and quantum physics.

1.3 A Brief Prescription of The Thesis

In this thesis, a new solution to the Einstein-Maxwell (EM) equation that describes

the charged version of the ZV spacetime is presented. It’s physical properties are

investigated in detail. In chapter 2, the required mathematical background is reviewed

under the title of mathematical preliminaries. The Maxwell extension of ZV

spacetime is presented in chapter 3, together with stationary generalizations. Chapter

4 is devoted for the investigation of the physical properties of the charged ZV

spacetime. Geodesics, gravitational lensing and redshift analysis are considered in

this section. Chapter 5 is devoted for the analysis of the singularity structure both for

charged and uncharged ZV metrics. The singularity analysis is based on the principle
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of quantum mechanics. The non trivial naked singularities are probed with quantum

wave packets obeying the Klein-Gordon equation. In chapter 6, gravitational lensing

is analysed for the Kerr-Newman (anti) de-Sitter spacetime with astrophysical

application. The thesis is concluded with a conclusion in chapter 7.
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Chapter 2

MATHEMATICAL PRELIMINARIENS

This section is devoted for the mathematical background used throughout the thesis.

2.1 Ernst Formalisim

Ernst formalism is a formalism that aims to express Einstein’s equations in a more

compact form. Furthermore, it can be treated as the process of deriving Ernst

equations. The Ernst equations are a set of equations in general relativity that describe

the gravitational and em fields of a stationary, axisymmetric spacetime. Frederick J.

Ernst investigated the formalism in 1968 by using the Lagrangian formalism for

gravitational and em spacetime [16, 25].

This subsection aims to provide steps that can be followed for deriving Ernst equations

from the stationary axially symmetric metric with the Ernst Lagrangian.

Firstly, consider the line element

ds2 = f (dt−ωdϕ)2− f−1{e2γ
[
dρ

2 +dz2]+ρ
2dϕ

2} , (2.1)

which is known as the Weyl-Lewis-Papapetrou form of the stationary axially

symmetric fields [4, 26, 27]. Here, f = f (ρ,z), γ = γ(ρ,z) and ω = ω(ρ,z) and it is

worthy to note that this metric admits two cyclic coordinates (t,ϕ).

Although it is possible for one to obtain the entire field equations by using methods
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from exterior calculus, for our interest, we will only be concentrating on equations

governing f and ω. These can be obtained by varying the Ernst Lagrangian, which is

written as

L =−1
2

ρ f−2~∇ f ·~∇ f +
1
2

ρ
−1 f 2~∇ω ·~∇ω. (2.2)

Here, ds2
0 = dρ2 + dz2 +ρ2dϕ2 is the base manifold of the geometry. If we open the

differential operators inside the Lagrangian according to the base manifold, Eq.(2.2)

can be rewritten as

L =−1
2

ρ f−2
(

f 2
ρ + f 2

z

)
+

1
2

ρ
−1 f 2

(
ω

2
ρ +ω

2
z

)
, (2.3)

where the coordinate index denotes the derivatives of the related coordinates. Now, let

us find the necessary equations by taking variations with respect to f and ω using the

Ernst Lagrangian, respectively. Varying L with respect to f leads to the following.

∂L
∂ f
− ∂

∂ρ

∂L
∂ fρ

− ∂

∂z
∂L
∂ fz

= 0. (2.4)

When we substitute Eq.(2.3) into the varying equation of f , Eq.(2.4) becomes

f ∇
2 f = ~∇ f ·~∇ f −ρ

−2 f 4~∇ω ·~∇ω. (2.5)

Varying equation of L with respect to ω implies

∂L
∂ω
− ∂

∂ρ

∂L
∂ωρ

− ∂

∂z
∂L
∂ωz

= 0. (2.6)

Thus, Eq.(2.6) gives

~∇ ·
(

ρ
−2 f 2~∇ω

)
= 0. (2.7)
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For ω = 0, Eq.(2.5) can be integrated easily and the attained results are referred as

Weyl solutions.

Let us now focus on Eq.(2.7). From vector calculus, one can state that there exists a

vector ~A such that

~∇ ·
(
~∇×~A

)
= 0 (2.8)

is satisfied. If we compare Eq.(2.7) and Eq.(2.8), we can find

ρ
−2 f 2~∇ω = ~∇×~A. (2.9)

In cylindrical coordinates Eq.(2.9) can be written as

ρ
−2 f 2

{
êρωρ + êzωz +

1
ρ

êϕωϕ

}
=

1
ρ

{
êρ

[
ρAϕ,z−Az,ϕ

]
− êz

[
Aϕ +ρAϕ,ρ−Aρ,ϕ

]
+ρêϕ

[
Az,ρ−Aρ,z

]}
,

(2.10)

where "," represents derivative according to the coordinate that follows it. For

achieving axial symmetry, one needs to set ωϕ = 0. Due to this condition, the term

including êϕ at the right hand side of Eq.(2.10) automatically vanishes. Furthermore,

if one equates ωρ and ωz in Eq.(2.10),

ωρ = ρ f−2 [
ρAϕ,z−Az,ϕ

]
, (2.11)

and

ωz = ρ f−2 [Aρ,ϕ−Aϕ−ρAϕ,ρ

]
. (2.12)

are obtained.
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Suppose that, for simplicity, Eq.(2.11) and Eq.(2.12) are rewritten by introducing a

new function Φ such that Eq.(2.11) and Eq.(2.12) become

ωρ =−ρ f−2
Φz

ωz = ρ f−2
Φρ.

(2.13)

In this case, −Φz = ρAϕ,z−Az,ϕ and Φρ = Aρ,ϕ−Aϕ−ρAϕ,ρ. However, one needs to

make sure that the solution to ω from pair (2.13) satisfies the integrability condition

ωρz = ωzρ. (2.14)

With the introduction of Φ, Eq.(2.5) and Eq.(2.7) take the forms

f ∇
2 f = (∇ f )2− (∇Φ)2 , (2.15)

and

~∇ ·
(

f−2~∇Φ

)
= 0. (2.16)

If we further define Z = f + |H|2− iΦ, combination of Eqs.(2.15) and (2.16) results in(
ReZ−|H|2

)
∇

2Z = (∇Z)2−2H̄∇Z.∇H, (2.17)

(
ReZ−|H|2

)
∇

2H = ∇Z.∇H−2H̄(∇H)2, (2.18)

where a bar denotes complex conjugation, Z and H represent the gravitational and

em complex potentials, respectively. Here, Eq.(2.17) and Eq.(2.18) are called Ernst

equations for em spacetimes.

It is also possible to present Ernst equations in terms of new potential representations ξ
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and η in which ξ stands for gravitational and η for em complex potential, respectively.

This can be done by first letting

Z =
1+ξ

1−ξ
, (2.19)

and

H =
η

1−ξ
. (2.20)

Then, Ernst equations become(
ξξ̄+ηη̄−1

)
∇

2
ξ = 2∇ξ

(
ξ̄∇ξ+ η̄∇η

)
, (2.21)

(
ξξ̄+ηη̄−1

)
∇

2
η = 2∇η

(
ξ̄∇ξ+ η̄∇η

)
, (2.22)

in which ξ and η are the gravitational and em complex potentials, respectively. If one

wishes to get vacuum Ernst equation, η in Eq.(2.21) should be set to zero.

2.2 Quantum Singularities

A curved spacetime can be expressed using Riemann geometry. Einstein’s general

theory of relativity builds the spacetime using a C∞ class Hausdorff manifold M with

Lorentz metric gµν. According to this purely mathematical definition, there seems to be

no indication of any singularity in the geometry at the first glance. However, from the

relativistic perspective, once the the exact solutions of Einstein’s equations are studied,

spacetime singularities start coming into existence. At these singular points, physical

parameters break down and known physical laws lose their validity. In other words,

they are holes in spacetime where the evolution of particles in time cannot be known,

or they are the endpoints of geodesics. This is a major problem in classical physics.
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Singularities of spacetime can be divided into two main groups: classical and

quantum singularities. Classical singularities have been classified into three groups by

G.F.R. Ellis and B.G. Schmidt [28]. From this viewpoint, spacetime singularities are

further categorised as quasi-continuous, non-scalar curvature and scalar curvature

singularities.

Now, suppose singularity z is a point. If all elements of Riemann tensor Rabcd,e1e2...ek

in the PPON (Parallelly Propagated Orthonormal) frame derivative diverge at

singularity z, this is called a quasi-continuous singularity. This type of singularities

belong to the weakest class of singularities. If some components of Riemann tensor’s

derivative at singularity z are infinite, this is called a non-scalar curvature singularity.

If all scalars of Riemann tensor are infinite at singularity z, this is called a scalar

curvature singularity. These are the strongest among all singularities as they are

inextendible and gravitational fields, energy density and tidal forces break down at

these singularities.

In general, the singularities that we have been mentioning do not conflict with R.

Penrose’s yet unproven cosmic censorship hypothesis [29] as long as they are

concealed by the horizon (horizons). However, in some definite solutions of

Einstein’s general theory of relativity, black holes do not form and the singular point

is not covered by the horizon (horizons). These singularities are called naked

singularities [30] and they violate R. Penrose’s cosmic censorship hypothesis.

The analysis and understanding of naked singularities is one of the unresolved major

problems in general relativity. Since currently a consistent quantum gravity theory

does not exist, alternative methods are being developed. One of these can be considered
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as the work of R.M. Wald [31] which was then further examined by G.T. Horowitz and

D. Marolf (1995) [32]. They analyzed quantum test particles that obey the Klein-

Gordon equation in static spacetimes with singularities. According to Horowitz and

Marolf, the singular character of spacetime is defined as an uncertainty in the evolution

of the wave function (ψ). This means that when the singular character of spacetime is

in a definite uncertainty, the spatial differential operator obtained from the solution of

the Klein-Gordon equation is self-adjoint in a Hilbert space, and in this case, the space

is quantum mechanically singular. If the operator’s extension is unique, the space is

quantum mechanically regular for this case the spatial operator is called essentially

self-adjoint operator. This analysis is known in the literature as the Horowitz-Marolf

criterion [32].

In this context, we provide the standard mathematical definition of the

Horowitz-Marolf criterion that we will use. For curved spacetime the Klein-Gordon

(KG) equation is given by(
1√
−g

∂µ
[√
−ggµν

∂ν

]
−m2

)
ψ = 0, (2.23)

in which gµν denotes the metric tensor, g = det(gµν), ∂ represents the partial derivation

for the coordinates and m is the mass of the spinless (spin-0) particle. If we separate

the time part of Eq.(2.23), the Klein-Gordon equation becomes

∂2ψ

∂t2 =−Aψ, (2.24)

where A is the spatial wave operator. Let H(L2), the Hilbert space, be formed by

functions whose squares are integrable on manifold and the operator is real, positive

and symmetric [32]. In this case, a self-adjoint extension of this operator always exists.
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Then, the solution of Eq.(2.24) can be written as

ψ(t) = e−it
√

A
ψ(0) . (2.25)

If the operator is not essentially self-adjoint, solution (2.25) starts giving problems

when its evolution in time is investigated. Consequently, waveform (2.25) is said to

be quantum-mechanically singular according to the criteria proposed by Horowitz and

Marolf (HM). Let us now concentrate on a different case. Suppose the operator has

only one self-adjoint extension. Then, it becomes possible to find the time evolution

of wave solution (2.25) provided that the initial conditions are known. As a result, one

can conclude the spacetime is quantum mechanically regular. Shortly, the singularity

analysis of our concern directly depends on whether the relevant operator is essentially

self-adjoint or not.

Let us provide a mathematical theorem used to determine the essential self-adjointness

of an operator. Weyl discovered the method for finding the number of self-adjoint

extensions of operator A [33], and von Neumann expanded the method [34] . Now,

we define the special subspaces of the spatial opherator mentioned in the mathematical

method as defined below. The deficiency subspaces N± are given by

N+ = {ψ ∈ D(A), Aψ = Z+ψ, ImZ+ > 0}, (2.26)

N− = {ψ ∈ D(A), Aψ = Z−ψ, ImZ− < 0}.

The parameters (n+ = dim(N+),n− = dim(N−)) are known as the deficiency indices

of operator A. These indices do not depend on the choice of Z+ and Z−, but instead on

the location of Z in the upper or lower half of the complex plane. Usually, Z+ = iλ and

Z− =−iλ are chosen, with λ being a positive constant used for dimensional purposes.
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The calculation of the deficiency indices involve finding the number of solutions to

Aψ = Zψ (when λ = 1),

Aψ± iψ = 0. (2.27)

Theorem 2.1 (The Criteria of Essentially Self-Adjointness): For an operator A with

deficiency indices ( n+,n−), there are three possibilities [35]:

(i) When n+ = n− = 0, A is essentially self-adjoint.

(ii) When n+ = n− = n ≥ 1, A includes infinitely many self-adjoint extensions,

represented by a unitary n×n matrix.

(iii) When n+ 6= n−,, A does no include any self adjoint extension.

According to Theorem 2.1, if there are no square integrable solutions (i.e. n+ = n− =

0) over the entire space (0,∞), operator A has a unique self-adjoint extension and is

therefore essentially self-adjoint.

2.3 Tools for Exploring Gravitatinal Lens and Redshift Effects

In literature, there are different models for calculating the gravitational lensing angle

based on the mathematical characteristics of spacetime. In this thesis, the

gravitational lensing effect of ZV spacetimes that we have developed will be

calculated using the Gauss-Bonnet theorem [36, 37], which is one of the most

important theorems connecting discrete and continuous mathematics in the intrinsic

geometry of surfaces and also the theorem is very popular in gravitational lensing

analysis.
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Now, let us mathematically state the Gauss-Bonnet theorem and reveal its connection

with gravitational lensing angle by presenting it in sequence.

Theorem 2.2 (Gauss-Bonnet Theorem): Let R be a regular region of an oriented

surface and ∂Γ1,∂Γ2, ...,∂Γn are simple, positively oriented, closed and piecewise

regular boundary curves of the surface. Assuming that θ1,θ2, ...,θm are the set of all

external angles (jump angles) of the boundary curves, one can write [38]

n

∑
i=1

ˆ
∂Γi

κg(s)ds+
¨

R
K dσ+

m

∑
j=1

θ j = 2πχ(R) (2.28)

in which K is the Gaussian curvature, χ(R) denotes the Euler-Poincare characteristic

and κg(s) represents the geodesics curvature of the boundary curvatures. Note that, s

symbolizes the arc length of the boundary curves. Also, Fig. 2.1 shows the geometry

in which the Gauss-Bonnet theorem is constructed.

Figure 2.1: The generic geometry represented by
the Gauss-Bonnet theorem. Here ∂Γ1,∂Γ2, ...,∂Γn

represent the curves that form the boundaries of the
surface and α1,α2, ...,αn are the interior angles.
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Now, we will adopt the approach of Gibbons and Werner [36] to determine the

deflection of light by gravity through the Gauss-Bonnet theorem. Let us define the

most general static metric in which the gravitational lensing event will occur first on

the equatorial plane (θ = π/2) as follows.

ds2 = gttdt2−grrdr2−gϕϕdϕ
2. (2.29)

Here, gtt , grr and gϕϕ are generic metric functions. If we apply the null geodesic

condition ds2 = 0 for light traveling on null geodesics, Eq.(2.29) reduces to

gopt = dt2 = ḡrrdr2 + ḡϕϕdϕ
2, (2.30)

in which ḡrr = grr/gtt and ḡϕϕ = gϕϕ/gtt . Here, gopt is called the optical metric [36].

The geodesic curvature (κg) of the geometry represented by the optical metric is

defined by [38]

κg =
1

2
√

ḡrrḡϕϕ

{
∂ḡϕϕ

∂r
dϕ

ds
− ∂ḡrr

∂ϕ

dr
ds

}
. (2.31)

The geodesic curvature, which is a measure of how much a curve deviates from being

a geodesic, is zero if a curve is a geodesic [38]. If we look at the schematic

representation of the Gibbons and Werner gravitational lensing analysis, Fig. 2.2, we

see the boundary curves γ and CR. Since γ curve is a geodesic, its geodesic curvature

is zero, but the geodesic curvature of the CR curve must be calculated. If the

spacetime is asymptotically flat and is in the large r limit (r→ ∞), ḡϕϕ approaches r2

and ḡrr goes to 1 (In other words, if r→ ∞, the optical metric reduces to the metric,

gopt ≈ dr2 + r2dϕ2), then κg approaches dϕ

ds . Also, the Euler-Poincare characteristic is

1 for a two dimensional simply connected surface with non-empty boundary [38].
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Figure 2.2: The representation of the propagation
of light from a source (S) to an observer (O) in the

equatorial plane (θ = π/2), which undergoes α

deflection due to the presence of a massive object,
with b being the impact parameter, where γ is the

null geodesic and CR represents the boundary curve
between the jump angles.

Now, with all this information in mind, the general Gauss-Bonnet theorem transforms

into
ˆ

π+α

0
dϕ+

¨
R

K dσ+θS +θO = 2π (2.32)

in which θS and θO show the interior angles of the source and the observer, respectively.

When the spacetime is asymptotically flat, in the large r limit, each interior angle jump

to π/2 [36, 37], so Eq.(2.32) is reduced to

α =−
¨

R
K dσ (2.33)
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where the Gaussian curvature (K ) of the optical metric (gopt) can be written as

K =− 1√
ḡ

[
∂r

(
1√
ḡrr

∂r
√

ḡϕϕ

)
+∂ϕ

(
1√
ḡϕϕ

∂ϕ

√
ḡrr

)]
, (2.34)

in which ḡ is the determinant of the optical metric. Also note that, the generalized

versions of Gauss-Bonnet theorem and the gravitational lensing analysis exist for

non-asymptotically flat, rotating and similar spacetimes [37, 39, 40]. However, the

application of the Gauss-Bonnet theorem in non-asymptotically flat spacetimes is

mathematically complicated.

One of the intriguing questions related to cosmological constant is to figure out whether

it is anyhow able to influence the path that light takes during its propagation through

spacetime. Two scientists, Rindler and Ishak (RI), conducted research relevant to this

field and the spacetime of their choice while doing so was Schwarzschild-de Sitter

(SdS)[41]. RI method is now widely used when non-asymptotically flat spacetimes are

of concern. This method is generalized for rotating spacetimes in [2]. For geometries

with the inclusion of rotation, one can write

ds2 = f (r)dt2 +2g(r)dtdϕ−h(r)dr2− p(r)dϕ
2. (2.35)

It should be noted that the metric is written assuming a constant θ = π/2. The RI

method involves the generalization of the inner product to curved spaces, which allows

for the determination of the invariant angle between two vectors. With this in mind,

the angle between two coordinate directions d and δ, as depicted in Fig. 2.3 , can be

expressed as

cos(ψ) =
diδi√

(didi)
(
δ jδ j

) = gi jdiδ j√(
gi jdid j

)(
gklδ

kδl
) , (2.36)
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in which gi j is the metric tensor of the constant time slice of metric (2.35).

Figure 2.3: A graphical representation of the
deflection of light caused by a massive object for

RI method [2]. In this figure, R and r0 represent the
impact parameter and the closest distance of

approach, respectively. Also, the solid straight line
above shows the undistorted path of light rays,

which is determined by the solution to the
homogeneous part of the null geodesics equation.

Using Fig. 2.3, the lines d and δ are expressed in the coordinates (r,ϕ) as

d = (dr,dϕ) = (A,1)dϕ dϕ < 0,

δ = (δr,0) = (1,0)δr, (2.37)

where

A(r,ϕ)≡ dr
dϕ

. (2.38)

If we substitute the information in Eq. (2.37) into the invariant formula given in Eq.
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(2.36) for using the generic line element (2.35), then Eq. (2.36) can be written as

tan(Ψ) =

[
h−1(r)p(r)

]1/2

|A(r,ϕ)|
, (2.39)

Moreover, the one-sided bending angle can be calculated as ε = Ψ−ϕ.

As discussed in the first chapter, gravitational redshift is also a very important concept

which is the observed effect occuring due to loss of em energy, once it manages to

leave the gravitational effect created by a dense source [42]. Fig. 2.4 can help to have

a naive visualisation of this event.

Figure 2.4: In this figure, λe represents the
wavelength of the em radiation emitted from the

surface of the source of gravity. An increase in the
wavelength is expected to occur, as the radiation

moves away from the source.

The gravitational redshift calculation will be based on the method developed for static

cases as presented in references [43, 44]. This method states that the formula for

gravitational redshift is given by

z =
λo−λe

λe
=

λo

λe
−1 =

ωo

ωe
−1 (2.40)

in which
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ωe

ωo
=
√

gtt . (2.41)

where λe and λo represents emitted and observed wavelengths, respectively. Here, gtt

is the −tt component of the related metric tensor. Equivalently, ωe and ωo denotes

emitted and observed frequencies.
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Chapter 3

MAXWELL EXTENSION OF ZV METRICS

3.1 Review of Uncharged ZV Metric

It has already been discussed that Weyl solutions carry a vital importance in general

relativity. ZV spacetimes can be thought as an example of such solutions. These

spacetimes are static, axially symmetric and asymptotically flat, therefore, they are

considered as a specific case of Weyl solutions. ZV spacetimes also cover the familiar

Schwarzschild solutions which attain spherical symmetry [7, 8].

In the prolate spheroidal coordinate system, which is represented by the variables

(t,ϕ,x,y), the ZV metric can be expressed as

ds2 =−F(x,y)dt2 +G(x,y)dϕ
2 +Σ(x,y)

[
dx2

x2−1
+

dy2

1− y2

]
(3.1)

the metric functions are given by

F(x,y) =
(

x−1
x+1

)γ

G(x,y) =
(

m
γ

)2(x+1
x−1

)γ

(x2−1)(1− y2)

Σ(x,y) =
(

m
γ

)2 (x+1)γ2+γ

(x−1)−γ2+γ

(
x2− y2)1−γ2

(3.2)

where the parameter γ represents the distortion parameter. The quadrupole moment M

can be written as [45]

M =
m3γ(1− γ2)

3
. (3.3)
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As clearly seen in equation (3.3) , the quadrapole moment term is directly dependent

on non-spherical symmetry. The solution’s singularity structure has been analyzed in

[46], and that the solution’s singularities, which will be given by the Weyl scalar, Ψ2,

have been found as

Ψ2 =
γ(x− γ)(x2− y2)γ2−1

2(x−1)γ2−γ+1(x+1)γ2+γ+1
. (3.4)

Because Eq.(3.4) diverges at the points x =±1, the singularities in spacetime occur at

these points in prolate coordinates. The ZV metric can be rewritten in Schwarzschild

coordinates by using the transformation

x =
r
k
−1

y = cosθ,

(3.5)

where k = M/γ. The prolate form of ZV metric (3.1) with the transformation (3.5)

reduces to

ds2 =−F(r)dt2 +F−1(r)
[
G(r,θ)dr2 +H(r,θ)dθ

2 +(r2−2kr)sin2
θd2

ϕ
]
. (3.6)

Here the new metric functions are

F(r) =
(

1− 2k
r

)γ

G(r,θ) =
(

r2−2kr
r2−2kr+ k2sin2θ

)γ2−1

H(r,θ) =
(r2−2kr)γ2

(r2−2kr+ k2sin2θ)γ2−1
.

(3.7)

Also, we can find the singularity locations of line element (3.6) by using the help of

the expression (3.5). In this context, r = 2k and r = 0 are the singular points of the

metric at these coordinates. Another interesting feature of the ZV solution is that it is

a non-integrable system, and as a result, it can generate chaos [47]. For the quantum

probe analysis to be conducted, the singular surface needs to be time-like according to
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the HM criteria. Penrose diagrams prove to be useful to achieve this. We can start our

process by transforming t and r in Eq. (3.6) to T and R via

T = tan−1(t + r∗)+ tan−1(t− r∗)

R = tan−1(t + r∗)− tan−1(t− r∗),
(3.8)

where

r∗ =
ˆ √

grr

gtt
dr. (3.9)

To check if the singularity is timelike or nulllike, we can carry out the following

analysis.

r∗ =
ˆ (

1− 2m
r

)−γ( r2−2mr
r2−2mr+m2sin2θ

) γ2−1
2

dr, (3.10)

in which k = m. Since it is not possible to find an exact solution of this integral, we

expand the integrand near the singular surface r+ = 2m by considering only the first

term. This leads to

r∗ ≈
2γ2

(r− r+)
(γ−1)2

2 r
γ− γ2

2 + 1
2

+ sin1−γ2
θ

(γ−1)2 . (3.11)

The singularity at r = r+ = 2m is timelike, since the singularity appears on the vertical

axis (T - axis) of the Penrose diagram.

3.2 Charged Extension of ZV Metric

We will demonstrate in this subsection 2 how to obtain charged version of the ZV

metric by using the Ernst formalism. To be more precise, the field equations will be

solved in prolate coordinate system which is found very useful for describing colliding

2 The material of this subsection was published in [17]
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gravitational waves. Once the field equation one solved in prolate coordinates then the

resulting solution is interpreted in another coordinate system. In doing so, we employ

the metric introduced by Chandrasekhar and Xanthopoulos (CX) [48, 49] and using

the method given in [50]. This allows us to describe the spacetime of colliding em

waves using a specific line element (Chandrasekhar and Xanthopoulos line element)

ds2 =
√

∆eN
(

dη2

∆
− dµ2

δ

)
−
√

∆δ
(
χdx2 +χ

−1dy2) (3.12)

in which N and χ are dependent on η and µ with ∆= 1−η2 and δ= 1−µ2. This choice

can provides solutions of Ernst equations (2.21) and Eq. (2.22) with real coefficients p

and q.

Then, the particular set of solutions read

ξ = pξ0, (3.13)

and

η = qξ0, (3.14)

in which ξ0 = ξ̄0 and the real coefficients satisfy

p2 +q2 = 1. (3.15)

Note that q denotes the charge and ξ0 = tanhX solves to the Euler-Darboux equation

provided that X is a function of η and µ.

(∆X,η),η−
(
δX,µ

)
,µ = 0, (3.16)

where a comma represents partial derivative, satisfies the Ernst system in the real
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domain. Note that, X is called the seed function. Let us choose the harmonic function

below that satisfies Eq. (3.16)

e2X =

(
1−η

1+η

)γ

. (3.17)

In the following sections, we will identify the constant γ as the ZV− parameter. If we

compare the metric function (2.1), which is the general metric defined by the Ernst

Lagrangian, with equation (3.12), which is the general colliding wave metric given in

prolate coordinates, and map the y−coordinate in metric (3.12) to the t− coordinate

in metric (2.1), and also consider f →Ψ, then we can define the metric function χ as

follows

χ =

√
∆δ

Ψ
. (3.18)

The expression Z = f + |H|2 − iΦ, defined in the chapter 2 to the above analogy,

becomes

Z = Ψ+H2. (3.19)

If we substitute the harmonic function (3.17) from previous chapter expressed in terms

of ξ and η as Z and H using Eqs. (3.13) and (3.14) into Eq.(3.19), we can solve for the

Ψ function. As a result of all these operations, the Ψ function is

Ψ =
1−η2

(1+ηp)2 . (3.20)

We obtain the other unknown generic metric function N by solving the integrability

equations of metric (3.12) [50]

(N + lnΨ),η =
2η

δ−∆
+

η

∆
+

2δ

δ−∆

[
2µ∆X,ηX,µ−η

(
∆X2

,η +δX2
,µ
)]
, (3.21)
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(N + lnΨ),µ =
2µ

∆−δ
+

2∆

∆−δ

[
2η∆X,ηX,µ−µ

(
∆X2

,η +δX2
,µ
)]
, (3.22)

where the comma represents the derivative with respect to the coordinate that comes

after it. When we put the harmonic function X and Ψ into the integrability equations,

we can integrate the metric function N. To sum up the final form of the line element

can be written as

ds2 = M2(η)

[
∆

γ2
(δ−∆)1−γ2

(
dη2

∆
− dµ2

δ

)
−∆δdx2

]
− dy2

M2(η)
, (3.23)

in which

M(η) = coshX− psinhX . (3.24)

It is important to note that the line element being considered as a solution to the

problem of colliding em waves must meet the appropriate boundary conditions in

both the incoming and interaction regions. Unfortunately, the factor (δ− ∆) in

Eq.(3.23) does not satisfy the necessary boundary conditions, so it is not a viable

option. This difficulty can be overcome only by redefinition of (µ,η) coordinates in

terms of the null coordinates (u,v) at the cost of introducing light-like sources to

accompany the em wave. However, in the interaction region alone, it can be useful as

a solution, as we will demonstrate later.

After performing the Schwarzschild coordinate (S−coordinate) transformation,

pη+1 =
r
m

, x = ϕ,

µ = cosθ , y = τ, (3.25)
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by supplementing the condition (−1)γ =−1 and appropriately rescaling time (τ→ t)

in the line element (3.23), we express the metric in the form

ds2 =
∆γ

K2 dt2− K2

∆γ

[
∆

γ2
Σ

1−γ2
(

dr2

∆
+ r2dθ

2
)
+ r2

∆sin2
θdϕ

2
]
. (3.26)

where m is the mass of resulting metric. The related metric functions are

∆(r) = 1− 2m
r

+
m2q2

r2 , (3.27)

Σ(r,θ) = 1− 2m
r

+
m2

r2

(
q2 + p2sin2

θ
)
, (3.28)

and

K(r) = (1+ p)
(

1− m(1− p)
r

)γ

− (1− p)
(

1− m(1+ p)
r

)γ

. (3.29)

We have confirmed that the line element (3.23) satisfies the EM equations and reduces

to the ZV -metric for q = 0 (p = 1). However, we must exclude the case of p = 0

(q = 1) since the metric function K becomes zero in such a limit. Although we initially

imposed the condition (−1)γ = −1 on the parameter γ, we have found that the metric

is valid for all values of γ as this condition can be relaxed. In particular, we can

incorporate the transformation for γ even through an analytic continuation y→ iτ and

x→ iϕ, while leaving the other coordinates as in the previous transformation. We note

that previous versions of charged metrics were only valid for integer parameters [51],

but the new solution (3.23) describes charged, deformed ZV objects that are valid for

all values of γ. Since most planetary objects are charged, especially magnetized ones,

this metric is likely to have important astrophysical applications
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3.3 Stationary Charged/Uncharged ZV Metrics

Let us first consider the colliding EM wave metric that contains the rotational term in

order to generate the solution for the rotating and charged ZV 3 . The line element is

given by [49, 50, 53]

ds2 = eN
√

∆

(
dη2

∆
− dµ2

δ

)
−
√

∆δ

[
χdx2 +

1
χ
(dy−q2dx)2

]
. (3.30)

The only difference between metric (3.30), which is used to produce the solution for

the charged ZV in metric (3.12), is that it includes the q2(η,µ) function that generates

the rotation. We will follow a slightly different approach than the one we used to obtain

the charged ZV in the previous section when producing the solution for the stationary

charged ZV. Firstly, starting with the complex potential that satisfies the vacuum Ernst

equation, i.e. H = 0, which contains the complex rotation potential, we will use a

method known in the literature as the Chandrasekar-Xanthopoulos (CX) theorem to

convert the metric into a charged metric.

The satisfying complex potential of vacuum Ernst equation with base metric, ds2
0 =

dµ2

∆
− dν2

δ
+∆δdφ2 is given by [54]

Z = Ψ− iΦ =
1− isinαcosh2X

cosh2X
√

1+ sin2
α− sinh2X

. (3.31)

Here, α represents the integration constant (for colliding EM waves case, α measures

the second polarization of the waves in collision.) and X(η,µ) is a harmonic function

that satisfies Eq. (3.16). Let us now state the CX theorem, which transfers an

uncharged solution to a charged one, for us.

3 The material of this subsection was published in [52]
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Theorem 3.1 (CX− Theorem): When we denote the Ernst potentials and metric

functions of the vacuum case as (Z,Ψ,Φ,χ,N,q2) respectively, the charged versions

of the expressions represented by (Ze,Ψe,Φe,χe,Ne,q2e) can be obtained using the

relations of the following transformation [49, 55].

Ze = Ψe + |H|2− iΦe,

Ψe =

(
4

Ω2

)
Ψ,

Φe =

(
4p
Ω2

)
Φ,

χe =

(
Ω2

4

)
χ,

Ne = N + ln
(

Ω2

4

)
q2e,µ =

1
4
(1+ p)2q2,µ +

δ

4

[
(Φ2−Ψ2)Φη

Ψ2 +
2ΦΨη

Ψ

]
(1− p)2,

q2e,η =
1
4
(1+ p)2q2,η +

∆

4

[
(Φ2−Ψ2)Φµ

Ψ2 +
2ΦΨµ

Ψ

]
(1− p)2.

(3.32)

in which

H = q
(Ψ− iΦ−1)

(1− p)(Ψ− iΦ)+ p+1
,

Ω
2 = q4(Ψ2 +Φ

2)+2qΨ+(1+ p)2,

p2 +q2 = 1.

(3.33)

If we put the vacuum Ernst potentials into the q2e equations for using Eq. (3.31), q2e

expressions can be written as

q2e,µ = (1+ p2)δXη sinα,

q2e,η = (1+ p2)∆Xµ sinα. (3.34)

Furthermore, the other metric functions (N) are obtained using the integrability
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equations given in Eq. (3.21) and (3.22) in the previous section.

If we select the ZV seed function (Eq.(3.17)) and the seed function is substituted into

all equations with necessary integrations made, the resulting rotating and charged

metric can be found as follows:

ds2 =
DΩ2

4

[
∆

γ2
(δ−∆)1−γ2

(
dη2

∆
− dµ2

δ

)
−∆δdx2

]
− 4

DΩ2

(
dy+q0γ(1+ p2)µdx

)2
,

(3.35)

in which

Ω
2 =

(
1− p

D
+1+ p

)2

+(1− p)2
(q0

D
cosh2X

)2
,

D =
√

1+q2
0 cosh2X− sinh2X (q0 ≡ sinα).

(3.36)

Also, the em complex potential H can be written as

H = q
(1− p)(Ψ2 +Φ2)+2pΨ− (1− p)−2iΦ
(1− p)2(Ψ2 +Φ2)+2q2Ψ− (1+ p)2 . (3.37)

Note that, the vector potential Aµ = (0,Ax,Ay,0) components are given by

Ay = Re(H),

Ax = Im(H).

(3.38)

We should note that the metric (3.35) can be regarded as a solution to the problem of

colliding em waves, provided that the boundary conditions are satisfied and do not

generate current sources at the junctions. However, since our goal here is not to

search for specific incoming wave profiles, we will ignore this aspect of the problem.

Alternatively, by reversing the direction of time, we can determine the waves that

collide and give rise to the metric (3.35) of the interaction region.
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3.3.1 Stationary Charged ZV−Metric in S− Coordinates

The important thing now is to look for an isometry that maps the coordinates {µ,η,x,y}

in metric (3.35) to the S−coordinates {t,r,θ,ϕ}. To achieve this purpose, we utilize

the transformations (3.25). As (−1)γ = −1 needs to be met and the metric signature

should remain to be (−2), the distortion parameter needs to be determined accordingly.

When (−1)γ = 1 is chosen, it is noticed that γ = 2n+1
2k+1 and the signature of the metric

comes out as (−,+,+,+). In contrary, if γ = 2n
2k+1 is picked, the metric signature

then becomes (+,−,−,−). In this case, k and n can be any integer including zero.

Accordingly, line element (3.35) becomes

ds2 =
4

DΩ2

(
dt +q0mγp(1+ p2)cosθdϕ

)2−DΩ2

4

{
Σ

1−γ2
∆

γ2

0

(
dr2

∆0
+ r2dθ

2
)

+r2
∆0 sin2

θdϕ
2}

(3.39)

where

∆0 = 1− 2m
r

+
m2q2

r2 ,

Σ = 1− 2m
r

+
m2

r2

(
q2 + p2 sin2

θ
)
,

D =
1

2∆
γ

0

{
(k−1)

[
1− m

r
(1+ p)

]2γ

+(k+1)
[
1− m

r
(1− p)

]2γ
}
,

Ω
2 =

(
1− p

D

)2 (
1+q2

0 cosh2 2X
)
− 2q2

D
+(1+ p)2,

cosh2X =
1

2∆
γ

0

[(
1− m

r
(1+ p)

)2γ

+
(

1− m
r
(1− p)

)2γ
]
,

(3.40)

where k =
√

1+q2
0. Also, the em vector fields can be expressed as

Aµ = (At = Re(H),0,0,Aϕ = Im(H)). The S− coordinate representation of complex

potential H can be written as

H = q
(1− p)

[
1+(q0 cosh2X)2]−D(2p+(1+ p)D)+2iq0Dcosh2X

[(1− p)− (1+ p)D)]2 +(q0(1− p)cosh2X)2 . (3.41)
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The associated parameters are m,q,q0 and γ which respectively represent the mass,

charge, NUT-type and distortion (ZV) parameter.

The important limits of new metric (3.39) are

i) q0 = 0 = q→ ZV limit

ii) q0 6= 0 = q→ NUT-type stationary limit 4

iii) q0 = 0 6= q, γ = 1→ Reissner-Nordström (RN) limit

iv) q0 = 0 = q, γ = 1→ Schwarzschild limit

v) q0 = 0 6= q, 0 < γ < ∞→ Charged ZV limit [17]

Our metric is not asymptotically flat due to the presence of the cross term gtϕ 6= 0.

Similar to the NUT-metric [57, 58], it only exhibits asymptotic flatness in the plane

θ = π/2. We want to emphasize that metric (3.39) is quite complex and challenging to

analyze analytically. Even the expression for
√
−g in the analysis of wave equations

or Maxwell equations appears to be almost beyond analytical reach. However, the

solution given can reproduce all known limiting cases. Additionally, it is possible to

incorporate additional contributions to the metric by multiplying the choice for e2X in

(3.17) with an exponential factor involving a quadrupole term, for example.

3.3.2 Asymptotic Form of The Metric, Closed Time-Like Curves

3.3.2.1 Metric Functions for r→ ∞

We can introduce a new radial variable, denoted by R = r0r, which is applicable for

large values of r. Here, r0 is given by

r0 = (k+1)p2 + k−1. (3.42)

4 A minor scaling property of the parameters in Ref. [56]
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If we expand all metric functions up to the third order of 1/R, we can obtain

gtt ≈ 1+
3

∑
n=1

anR−n

gtϕ ≈ b0

(
1+

3

∑
n=1

bnR−n

)

grr ≈ c0

(
1+

3

∑
n=1

cnR−n

)

gθθ ≈
3

∑
n=−2

dnR−n

gϕϕ ≈
3

∑
n=−2

enR−n

(3.43)

in which all coefficients are given in the Appendix A. And, we can expand the vector

potential Aµ = (At ,0,0,Aϕ) up to the same order as shown below.

At ≈ α0

(
−1+

3

∑
n=1

αnR−n

)

Aϕ ≈ β0

(
1+

3

∑
n=1

βnR−n

) (3.44)

In Appendix A, more information about αn, βn can be found. If k = 1 and p = 1

are picked, ZV line element is obtained, whereas γ = 1 results in the Schwarzschild

spacetime.

3.3.2.2 Possible Existence of Closed, Time-Like Curves

Well known Gödel’s approach [59], closed time-like curves can be explored in

stationary metrics by projecting the metric onto the (t,ϕ) sector through the selection

of r = const. and θ = const.. This process is carried out as follows.

ds2 = e2Ψ (dt−ωdϕ)2− e−2Ψr2
∆0sin2

θdϕ
2 (3.45)

Note that e2Ψ = 4
Ω2D and ω = −q0mpγ(1+ p2)cosθ. Moreover, t = −aϕ in which a

represents a positive parameter such that a << 1. By this way, it has been ensured that
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ϕ = 0 and ϕ = 2π are achieved. Hence, the Killing vectors ∂t and ∂ϕ turn out to be

proportional. Finally,

(a+ω)2− r2
∆0e−4Ψsin2

θ > 0 (3.46)

is achieved. By satisfying equation (3.46), a closed time-like curve can be obtained,

given that r is constant and 0 < γ < ∞. In Figure 3.1, we depict the plot of e−2Ψ versus

γ for small r, and the area enclosed between the two curves represents a possible range

for the variables. It is worth noting that a particular instance of the stationary metric,

referred to as the NUT-Curzon metric without charge [60], was also previously shown

to exhibit analogous closed time-like curves.
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Figure 3.1: The plot of e−2Ψ versus γ takes into
account the minimum (k = 1) and maximum spin
(k =

√
2) values. The region between the two

curves indicates that our inequality can be satisfied
by choosing a small value of r and a reasonable
value of γ. Moreover, it is possible to satisfy the
addition of a constant to the metric function ω.
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Chapter 4

PHYSICAL PROPERTIES OF CHARGED ZV-METRICS

In this chapter, we will perform astrophysical applications and analyze important

physical properties of the newly obtained class, charged ZV solution.5

4.1 Newtonian Limit

To observe the Newtonian limit, as is customary, we extract the gtt component of metric

(3.26) and represent it in a certain form

gtt =
∆γ

K2 ≈ 1+2φ. (4.1)

Here, The asymptotic form of the Newtonian potential is given by φ = φ(r), and when

we expanded to the order of r−3, the weak potential can be written as

φ(r)≈−mγ

r
+

γm2

2r2

[
γq2 +2(γ−1)

]
− γ(γ−1)

3

(m
r

)3 [
(1+4γ)q2 +2(γ−2)

]
+O

(
1
r4

)
.

(4.2)

In equation (4.2), the first term includes monopole-related concepts, whereas the

second and third are linked to dipole and quadrupole terms, respectively. In addition,

if there is no charge in the vicinity, the second term vanishes due to transformation of

r [56]. The chargeless case however is out of scope of this thesis.

There are a couple of points worth mentioning at this point. When potential (4.2) is

examined in detail, it is seen that one can obtain RN potential by taking the distortion

5 All the analyses to be performed in this chapter have been published in [17]
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parameter as 1. Additionally, Bertotti-Robinson (BR) potential [61, 62] also seems to

be a special case of (4.2), provided that the pure em limit is applied [50].

4.2 Electromagnetic Sources for The Metric

In this subsection, we will analyze the solutions of the Maxwell equations under the

assumptions of pure magnetic and pure electric sources for the charged ZV metric.

4.2.1 Pure Magnetic Case

The choice of vector potential is

Aµ = (0,0,0,C0cosθ). (4.3)

Here, C0 represents the magnetic charge, which is directly proportional to q. The

magnetic field writes Fθϕ =−C0sinθ from Fµν = ∂µAν−∂νAµ, which satisfies the only

relevant source-free Maxwell equation

∇µFµν = 0. (4.4)

The magnetic field invariant can be written as

I = FµνFµν =
2C2

0
r4K4 ∆

−(γ−1)2
Σ

γ2−1, (4.5)

When γ = 1, the expression simplifies to the case of RN. The presence of any

divergence in the em field can be readily detected by analyzing this invariant, which is

significantly influenced by γ. Moreover, directional singularities in the em field can be

identified by examining the zeros of Σ at specific γ values (γ2 < 1).

It is noteworthy that even though the em invariant diverges at r = 0, it remains regular

for γ 6= 1, in contrast to the case when γ = 1. This can be demonstrated by expressing

K as K = r−γK0, and upon substituting r = 0, the invariant becomes

I = 2C2
0

K4
0
(m2q2)−(γ−1)2

(m2q2 +m2 p2 sin2
θ)γ2−1 < ∞, where K0 6= 0. Additionally, we
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observe that the constant C0 can be fixed as C2
0 = 8m2γ2 p2q2 using the Einstein

equations Rµν = −Tµν = 1
4gµνFαβFαβ − FµαFα

ν , which results in

T ν
µ = I

4diag(−1,−1,1,1). Although this solution does not correspond to a magnetic

dipole, we recall that at large distances, the magnetic charge q plays the role of a

dipole, as shown by the expansion (4.2) multiplied by the Legendre polynomial

P1 = cosθ.

4.2.2 Pure Electric Case

For this case, we select the vector potential as

Aµ = ( f (r),0,0,0), (4.6)

in which the function f (r) is unknown and must be obtained by fulfilling the Maxwell

equation ∇rFrt = 0. When we put the vector potential of this case into the em tensor,

the radial component of Eq.(4.4) becomes

∂r
(√
−ggrrgtt f ′

)
= 0, (4.7)

where ′ denotes derivation with respect to r. If we write the related metric functions

into the Eq.(4.7), the non-zero component of the pure electric vector potential is

f (r) =C1

ˆ r
∆γ−1dr
r2K2 , (4.8)

in which C1 is the integration constant. It can be observed that determining the precise

expression for f (r) is entirely dependent on the value of γ. When we select the

spherically symmetric case with γ = 1, it is straightforward to note that the potential

of the pure electric RN solution is obtained.

The invariant of the field can be calculated as
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I = FµνFµν =−
2C2

1
r4K4 ∆

−(γ−1)2
Σ

γ2−1, (4.9)

The expression for the electric invariant, up to an anticipated change in sign, is

consistent with the magnetic invariant. Similar to the magnetic case, the value of the

constant C1 can be obtained as C2
1 = 8m2γ2 p2q2, and the energy-momentum tensor is

given by T ν
µ = I

4diag(1,1,−1,−1). By substituting the constant C1 into the integral

(4.8) and performing the integration, the electric potential can be expressed as

A0(r) =

√
2q
(

1− m(1+p)
r

)γ

(1+ p)K(r)
. (4.10)

Below, one can find graphical representations showing how electric potential varies

in terms of the radial distance. There exist four different graphs, each with a fixed

charge but changing γ values. The plots show that the effect of distortion parameter is

inversely proportional with the radial distance.
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Figure 4.1: These figures represent how electric potential varies with radial distance
within a charged ZV spacetime. For each case, mass is taken as m = 1 and q is fixed
for within each figure as 0.2, 0.4, 0.6 and 0.8, respectively.

4.3 Singularity Structure

To understand the singularities in our metric, we need to compute the Kretchmann

scalar RµναβRµναβ. However, due to technical difficulties, we are using an alternative

approach that involves investigating the Newman-Penrose (NP) component [63] Ψ2

within the null-tetrad formalism. Typically, the singularities of Ψ2 can give us an

indication of the overall spacetime singularities. However, even this approach is not

straightforward and presents significant challenges. To accomplish this, we have opted

a null-tetrad basis of 1− forms.
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√
2l = A(r)dt−C(r)sinθdϕ =

√
2lµdxµ,

√
2n = A(r)dt +C(r)sinθdϕ =

√
2nµdxµ,

√
2m = B(r,θ)

(
dr√

∆
+ irdθ

)
=
√

2mµdxµ,

√
2m̄ = B(r,θ)

(
dr√

∆
− irdθ

)
=
√

2m̄µdxµ,

(4.11)

in which A(r), B(r,θ) and C(r) are given by

A(r) = ∆
γ/2K−1,

C(r) = Kr∆
1−γ

2 ,

B(r,θ) = K∆
γ2−γ

2 Σ
1−γ2

2 .

(4.12)

The non-zero spin coefficients in the null-tetrad (lµ,nµ,mµ, m̄µ) of NP can be written

as

α =
1

2
√

2B

[√
∆

(
1
r
+

d
dr

(ln(B))
)
− i

r
d

dθ
(ln(B))

]
,

β =− 1
2
√

2B

[√
∆

(
1
r
+

d
dr

(ln(B))
)
+

i
r

d
dθ

(ln(B))
]
,

τ =

√
∆

2
√

2B
d
dr

(ln(AC))+
icotθ

2
√

2rB
,

π =−
√

∆

2
√

2B
d
dr

(ln(AC))+
icotθ

2
√

2rB
,

κ =

√
∆

2
√

2B
d
dr

(
ln
(

A
C

))
− icotθ

2
√

2rB
,

ν =−
√

∆

2
√

2B
d
dr

(
ln
(

A
C

))
− icotθ

2
√

2rB
.

(4.13)

The Weyl Ψ2 calculated as
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Ψ2(r,θ) =
∆1+γ−γ2

4K2 Σ
γ2−1

{
∆′

2r∆
−3
(

K′

K

)2

+
1
4

γ(γ−1)(γ− γ
2−2)

(
∆′

∆

)2

+
1
4
(1− γ

2)(γ2−2)
(

Σ′

Σ

)2

+ γ(2− γ)
K′

K
∆′

∆
+(γ2−1)

K′

K
Σ′

Σ

+
1
4
(1− γ

2)(1+2γ−2γ
2)

Σ′

Σ

∆′

∆
− 2

r
K′

K
+

γ2

2r
∆′

∆
+

K′′

K
+

1
2

γ(γ−1)
∆′′

∆

+
1
2
(1− γ

2)
Σ′′

Σ
+

(1− γ2)p2m2

r4Σ2

(
cos2θ− p2m2

∆r2 sin2
θ

)}
,

(4.14)

in which prime represents derivative with respect to r of the related metric functions.

If we put the metric functions into the Eq.(4.14), Ψ2 can be written as

Ψ2(r,θ) =
∆1+γ−γ2

4K2 Σ
γ2−1

{
m

r4∆

[
(r−mq2)(1− γ

2−2γ)+mγq2(γ−1)
]
+

3(1− γ2)

r2

+
γ(γ−1)(γ− γ2−2)m2(r−mq2)2

r6∆2 +
(1− γ2)(γ2−2)m2 [m(sin2θ+q2cos2θ)− r

]2
r6Σ2

−
(1− γ2)(1+2γ−2γ2)m2(mq2− r)

[
r−m(sin2θ+q2cos2θ)

]
r6∆Σ

+
(1− γ2)(4m−3r)

r3Σ

+
K′′

K
+

K′

K

[
−3

K′

K
+

2
r

(
−γ

2 +
mγ(2− γ)(r−mq2)

r2∆
+

(1− γ2)(r−m)

rΣ

)]
+
(1− γ2)p2m2

r4Σ2

(
cos2θ− p2m2

∆r2 sin2
θ

)}
.

(4.15)

Analyzing Ψ2(r,θ) shows that singularities occur at r = 0, as well as the roots of

∆(r) = 0 and Σ(r,θ) = 0. Notably, we observed that the outermost singularity arises

from the root of ∆(r) = 0, which is given by

r∆ = m(1+ p). (4.16)

The root of Σ(r,θ) = 0 is

rΣ = m(1+ pcosθ), (4.17)

which is inside of r∆. Thus, it should be noted that any investigation into the

singularities of the metric must first encounter r∆ = m(1 + p) as the outermost

45



singularity. Furthermore, it is worth mentioning that K(r) is non-zero for r > 0 and

0 < p < 1, and therefore, the presence of K(r) in the curvature expression does not

give rise to any additional singularities. We would like to highlight that K(r) is the

metric function that arises when the Maxwell field is added to the gravitational ZV−

metric, and that K(r) becomes a constant when there is no em source present. Lastly,

it is interesting to observe that directional singularities occur for γ2 < 3 based on the

behaviour of the power of Σ(r,θ), which becomes positive beyond this interval in

order to avoid any divergence. Also, we can prove that the surface represented by

S(r) = r− r+ for r+ = m(1+ p) is timelike by analyzing the normal vector to the

surface in the limit of r→ r+:

(∇S)2 = grr
(

dS
dr

)2

=−Σγ2−1

K2 ∆
1+γ−γ2

|r→r+

=− 1
K2

(
m2 p2sin2θ

r2
+

)γ2−1(
(r− r+)(r− r−)

r2
+

)1+γ−γ2

< 0,

(4.18)

in which r− = m(1− p) and K = (2p)γ (1+ p)1−γ < ∞, in the limit of r→ r+. Since

(∇S)2 < 0, normal vector to singular surface S is spacelike means that the singular

surface S is timelike.

4.4 Restricted Geodesic Analysis for The ZV Spacetime

Since the gravitational lensing effect that we will calculate in the following section will

be analysed in the equatorial plane, it is necessary to find null geodesics within this

plane. In order to check if there are specific limitations on the distortion parameter,

we will concentrate on the case when θ = π/2. With this choice, the effect of q on

the time-like circular geodesics will be studies. Afterwards, the specific condition

ṙ = 0, θ̇ 6= 0 will be studied, which will correspond to circular null-geodesics, via

linear approximation.
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4.4.1 Charge Effect on The Time-Like Geodesics with ṙ = θ̇ = 0

The space-time line element, when subjected to these limitations, becomes

ds2 = A(r)dt2− r2C0(r)sin2
θdϕ

2, (4.19)

in which A(r) and C0(r) can be determined from the general form of metric (3.26), a

simplified Lagrangian can be formulated to depict the system as follows

L =
1
2

Aṫ2− 1
2

r2C0(r)sin2
θϕ̇

2, (4.20)

where a dot denotes derivative with respect to an affine parameter. Regarding the time-

like circular geodesics, the square of the angular velocity can be expressed as

ω
2 =

ϕ̇2

ṫ2 =
A′

r2C′0sin2θ
, (4.21)

in which a prime shows derivative with respect to r. If we select K ≈ 1, and scale the

asymptotic expansion of each term (detailed expansions of which are provided in the

next section), we obtain the following outcome

ω
2 ≈ mγ

r3sin2θ

(
1+

3m
r
(1− γ)+

mγ

r
q2 + ...

)
. (4.22)

It is possible to derive Kepler’s law under certain conditions. This becomes possible

when the distortion parameter and θ are chosen as 1 and π/2, respectively.

Additionally, when there is no charge, our results match with ref. [64].

4.4.2 The Circular Null-Geodesics

In this case, by setting the reduced line element (4.19) to zero, it follows that the

magnitude of the angular frequency squared is

ω
2 =

ϕ̇2

ṫ2 =
A

r2C0sin2θ
. (4.23)
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After substituting the values from the metric (3.26), we get

ω
2 =

1
r2K4sin2θ

(
1− 2m

r
+

m2q2

r2

)2γ−1

(4.24)

Alternatively, we can express this as

ω
2 =

(r− r1)
2γ−1

r4γK4sin2θ
(r− r∆)

2γ−1 (4.25)

in which r1 = m(1− p) and r∆ = m(1+ p). For the case where p = 1 and q = 0, the

findings correspond to those of the uncharged ZV model. This indicates that in order

to assign a meaningful value to ω2, it is necessary to have γ > 1/2. If γ < 1/2, then

ω2 becomes infinite at the outer root r = r∆, and we need to avoid this scenario. It is

worth noting that this conclusion applies not only to θ 6= π/2, but also to θ = π/2.

4.4.3 The Linearized Circular Geodesics with ṙ = 0, in The Vicinity of θ = π/2

We can now express the geodesic Lagrangian in the following form

L =
1
2

Aṫ2− 1
2

r2B(r,θ)θ̇2− 1
2

r2sin2
θC0(r)ϕ̇2. (4.26)

The Euler-Lagrange equations yields

ṫ =
E
A
, (4.27)

ϕ̇ =
l

C0(r)r2sin2θ
, (4.28)

in which E and l are integration constants. When we apply the null condition ds2 = 0,

we arrive at the constraint

r2B(r,θ)θ̇2 =
E2

A
− l2

C0(r)r2sin2θ
. (4.29)

To derive the θ−equation in terms of the affine parameter, we differentiate the
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aforementioned equation. Our approach involves assuming that θ̇2 ≈ 0 holds true for

θ ≈ π/2. After carrying out the derivation, the constraint condition is expressed as a

relation between the constants of motion, which is given by

E2

l2 ≈
(r− r1)

2γ−1(r− r∆)
2γ−1

K4r2+4γ
, (4.30)

This expression is valid when γ > 1/2. It should be pointed out that when we choose

θ≈ π/2, we obtain

Σ≈ 1− 2m
r

+
m2

r2 ≈ ∆+
m2 p2

r2 . (4.31)

By making certain expansions, we can express the second-order equation for θ in the

following form

(r− r1)
2(1−γ)(r− r∆)

2(1−γ)

(
1+(1− γ

2)
m2 p2

r2∆

)
θ̈≈ l2cosθ

K4r2(2γ−1)sin3θ
. (4.32)

The upper limit of distortion parameter needs to be γ < 1 in order for achieving

finiteness for the term at the left hand side of equation (4.32). We had previously

stated that γ > 1/2 is also a necessary condition meaning one is constraint to the

region with 1/2 < γ < 1 in the the equatorial plane. Therefore, this range will be used

throughout the gravitational lensing analysis for θ = π/2.

4.4.4 The Particle Motion in The Equatorial Plane

In this subsection, we will examine the motion of electrically and magnetically charged

test particles in the charged ZV spacetime separately.

4.4.4.1 The Magnetic Case

The Lagrangian that governs the movement of a test particle, possessing a charge of Q

and unit mass, is described as
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L =
1
2

gµν

dxµ

dτ

dxν

dτ
+QAµ

dxµ

dτ
. (4.33)

In the equation above, τ represents proper time. Therefore, the differentiations are

carried out with respect to proper time. The vector potential of our choice is Aµ =

(0,0,0,C0cosθ), which yields to the following Euler-Lagrange equations.

g00

(
dt
dτ

)
= E = const. (4.34)

gφφ

(
dφ

dτ

)
+QC0cosθ = l = const. (4.35)

The θ− equation is automatically fulfilled in the equatorial plane. We now decide to

set θ = π/2, which eliminates the test particle’s coupling term with the metric. As

a result, the analysis will be equivalent to that of a neutral particle. The time-like

geodesics condition provides us with the following expression

1 =
E2

g00
+grr

(
dr
dτ

)2

+
l2

gφφ

(4.36)

which is identical to

E2 = ∆
γ2−1

Σ
1−γ2

(
dr
dτ

)2

+
∆γ

K2

(
1+

l2∆γ−1

K2r2

)
. (4.37)

As we have selected θ = π/2, we can infer that

Σ =
(

1− m
r

)2
, (4.38)

∆ =
(

1− m
r

)2
− m2 p2

r2 . (4.39)

For circular geodesics, the derivative of r with respect to τ is equal to zero, indicating

from equation (4.37) that the condition V =E must be satisfied. The potential acting on
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a neutral particle (or a charged particle under the influence of a magnetically charged

ZV star) can be expressed as

V (r) =
∆γ/2

K

(
1+

l2∆γ−1

K2r2

)1/2

. (4.40)

In order to be able to make comments about the allowed values for the angular

momenta, one needs to make sure that dV
dr = 0 is satisfied. Furthermore, for achieving

circular geodesics, V = E is a necessity. Although circular geodesics are not of

interest in this context, we will adhere to the overall structure of an effective potential,

which can be defined as

2Ve f f = E2−1−
(

dr
dτ

)2

(4.41)

After substituting
(dr

dτ

)2
with the expression given in equation (4.37), the effective

potential can be written as

Ve f f =
1
2
(E2−1)+

1
2

(
∆

Σ

)1−γ2 [
−E2 +

∆γ

K2

(
1+

l2∆γ−1

K2r2

)]
. (4.42)

As a special case, we can examine the scenario when γ = 1 (RN geometry) and p = 1
2 .

In this case, the effective potential reduces to

Ve f f =−
m
r
+

l2

r2

(
1− 2m

r

)
. (4.43)
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Figure 4.2: Produce a plot of the effective potential (4.41) using specific parameters
m = 1, E = 1, and l = 15. Additionally, include the special parameter γ = 1 for
comparison with the spherical case.

Fig. 4.2 displays the radial variation of the effective potential (4.42) for various γ

values, while keeping E, l, and m constant. The figure also reveals that as the distance

approaches infinity, the impact of γ weakens. In contrast, the effect of γ is stronger in

closer regions. Additionally, an important consequence of the charge is that an increase

in its value leads to a rise in the potential barrier.
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4.4.4.2 The Electric Case

Assuming an electrically charged particle with a charge of Q and a mass of one unit,

the Lagrangian that describes its motion for θ = π/2 is given by

L =
1
2

gµν

dxµ

dτ

dxν

dτ
+QA0

dt
dτ

, (4.44)

in which expression (4.6) provides the value of A0(r). Applying the Euler-Lagrange

equations yields

ṫ =
K2

∆γ
(E−QA0), (4.45)

and

ϕ̇ =
l2∆γ−1

r2K2 . (4.46)

Here, we have two integration constants, E and l, representing energy and angular

momentum respectively. It is worth noting that for θ = π/2, the equation involving θ

becomes trivially satisfied. By following a similar process as in the magnetic scenario,

we arrive at the effective potential

Ve f f =
1
2
(E2−1)+

1
2

(
∆

Σ

)1−γ2 [
−(E−QA0)

2 +
∆γ

K2

(
1+

l2∆γ−1

K2r2

)]
. (4.47)

The effective potential is represented by the equation given above, where Σ and ∆

correspond to the values in equations (3.27) and (3.28) respectively.

Fig. 4.3 displays plots of the effective potential against the radial distance r. As

expected, the influence of the deformation parameter γ becomes weaker at larger

distances, with more pronounced effects in the closer regions. Similar to the magnetic

case, an increase in the electric charge results in a higher potential barrier.
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Interestingly, when the charge Q equals zero, the effective potential for the electric

case coincides with that of the magnetic case.
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Figure 4.3: The radial variation of the effective potential for a test particle carrying a
charge of Q = 1, situated on the equatorial plane, is shown for various γ and q values.
The plots are generated for fixed values of m = 1, E = 1, and l = 15.

4.4.5 Gravitational Lensing in Charged ZV Spacetime

In this subsection, we will calculate the lensing angle of the charged ZV solution

using the Gauss-Bonnet theorem, whose mathematical and physical foundations were
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provided in the previous section (section 2.3). In the preceding section, we focused on

circular, null geodesics that can be projected onto the θ = π/2 plane. It should be

noted that θ = π/2 is the symmetry plane of ZV objects and geodesics can be

projected onto this plane. The existence of circular geodesics also allows for their

perturbation into elliptical orbits, which will be utilized in this section. To this end,

we introduce the optical metric of the spacetime (3.26), which is projected onto the

θ = π/2 plane

dt2 = ḡrrdr2 + ḡϕϕdϕ
2, (4.48)

in which

ḡrr = K4
∆

γ2−2γ−1
Σ

1−γ2
, (4.49)

ḡϕϕ = r2K4
∆

1−2γ. (4.50)

The square root of determinant for this metric can be written as

√
ḡ = rK4

∆
γ2
2 −2γ

Σ
1−γ2

2 . (4.51)

As shown in section 2.3, total deflection angle δ is given by
ˆ

π

0

ˆ
∞

rg

K dS =−δ, (4.52)

where dS =
√

ḡdrdϕ.Here, the value of the lower limit rg in the integral depends on the

angle and represents the minimum distance from the source, which can be determined

using the null geodesic equation. Specifically, for the problem invariant (4.52) gives
ˆ

π

0

ˆ
∞

rg

K dS =−
ˆ

π

0

ˆ
∞

rg

∂r

[
∆

1− γ2
2 Σ

γ2−1
2

(
1+2r

K′

K
+ r
(

1
2
− γ

)
∆′

∆

)]
drdϕ.

(4.53)

55



To evaluate K , we require expansions for the metric functions, which are provided as

follow

∆
n '1− 2nm

r
+

nm2

r2

[
q2 +2(n−1)

]
− 2m3

3r3 n(n−1)(3q2 +2)

+
m4

r4 n(n−1)
[

1
2

q4 +2q2 +
2
3
(n−2)

]
+ ... ,

(4.54)

Σ
n ' ∆

n(q = 1), (4.55)

K ' 2p
[

1− m2q2

2r2 γ(γ−1)
]
+ ... , (4.56)

∆′

∆
' 2m

r2

(
1− mq2

r

)[
1+

2m
r
− m2

r2 (q
2−4)

]
+ ... , (4.57)

Σ′

Σ
' 2m

r2

(
1+

m
r
+

m2

r2

)
+ ... , (4.58)

K′

K
' q2m2

r3 γ(γ−1)
(

1− m
r
(γ−2)

)
+ ... , (4.59)

in which "a prime" showes d
dr . Note that the higher-order expansions are presented in

the event that additional corrections are necessary.

To find the minimum value of rg, we can solve the null geodesics equation. For this

purpose, we rewrite the line element in the following form (for θ = π/2)

ds2 = A(r)dt2−B(r)dr2− r2C(r)dϕ
2, (4.60)

where A(r),B(r) and C(r) are metric functions to be wrote from (3.26). By defining

the geodesic Lagrangian with respect to an affine parameter λ

L =
1
2

Aṫ2− 1
2

Bṙ2− 1
2

r2Cϕ̇
2. (4.61)

Here,˙≡ d
dλ

, results in the first integrals
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A
dt
dλ

= E = const. , (4.62)

Cr2 dϕ

dλ
= L = const. , (4.63)

so that

A
Cr2

(
dt
dϕ

)
=

1
b
=

E
L
, (4.64)

in which b denotes the impact parameter. Now, if we switch to the new variable u =

1/r, and solve for
( dr

dλ

)2
using the expression for ds2, we obtain(

du
dϕ

)2

=
C
B

(
C

Ab2 −u2
)
, (4.65)

The derivative of this expression with respect to ϕ gives us the equation for geodesics.

If we put the related charged ZV metric functions in to the Eq.(4.65), the null geodesic

equation of charged can be written as

d2u
dϕ2 +u =3mu2 +

16m(γ−1)p4

b2

{
2−3mu

[
1−3γ+(1+ γ)q2]

+m2u2 [−3−3q2(3+ γ)(−1+2γ)
]
+ γ(3+12γ+2p2(−4+5γ))

}
.

(4.66)

It can be observed from this equation that when γ = 1, the contribution of the charge is

of order 1/b3, which is neglected. After solving the homogeneous equation

d2u
dϕ2 +u = 0. (4.67)

Here, the solution of Eq.(4.67) is u = sinϕ/b. If we substitute u = sinϕ/b into

Eq.(4.66) and solve, we can find a term of order 1/b2

u =
sinϕ

b
+

32mp4

b2 (γ−1)+
m
b2

(
1+ cos2

ϕ
)
. (4.68)

Eq. (4.68) can be identified as 1/rg.
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Upon revisiting Eqs. (2.33) and (2.34) and utilizing the aforementioned limit for the

GB integral, we can derive the deflection angle (up to the order of 1/b2) as

δ =
4mγ

b
+

π

b2 (mγ)2
[

64p4
(

1− 1
γ

)
+

4
γ
− 1

4
− 3

4
q2
]
. (4.69)

When γ = 1, q = 0 (p = 1) is applied, the deflection angle δS of Schwarzschild can be

retrieved

δS =
4m
b

+
15m2π

4b2 . (4.70)

Similarly, in the RN limit where γ = 1 and q 6= 0, the deflection angle can be expressed

as δRN :

δRN =
4m
b

+
15m2π

4b2 −
3Q2π

4b2 , (4.71)

in which Q = mq. Eq. (4.69) reveals that by introducing the distortion parameter γ, the

new mass can be defined as M = mγ.

4.4.5.1 Gravitational Lensing in Stationary Uncharged ZV Spacetime

Now, let us compare the gravitational lensing effect created by the pure rotating ZV

solution with the absence of gravitational lensing effect created by the pure charged ZV

solution. To do so, we will utilize the metric from [19], but adjust the sign convention

to match our own

ds2 =e2ψdt2− e2λ−2ψΣ

∆
dr2− e2λ−2ψ

Σr2dθ
2

−
(
e−2ψ

∆r2sin2
θ−ω

2e2ψ
)

dϕ
2−2ωe2ψdtdϕ,

(4.72)

in which
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e−2ψ =
1
2
[
(1− p0)∆

γ +(1+ p0)∆
−γ
]
,

e2λ =

(
∆

Σ

)γ2

,

ω =−2mγq0cosθ.

(4.73)

Here, p2
0 +q2

0 = 1 and

∆ = 1− 2m
r

Σ = 1− 2m
r

+
m2

r2 sin2
θ.

(4.74)

In here, q0 is called the NUT-like parameter and it needs to obey 0 < q0 < 1. This

parameter contributes to the rotation of the spacetime and disappears for θ = π/2. To

avoid confusion with the charged metric parameter p, we denote it as p0 (and q0) in

reference to Refs. [19, 56]. When p0 = 1, this metric reduces to the well-known ZV

metric. It is worth mentioning that Ref. [19] refers to p0 as the ’quasi-NUT’

parameter, which is related to q0 =
√

1− p2
0, while Ref. [56] introduces it as a

differential ’spinning’ parameter. The reason behind this is that unlike the NUT

parameter l (with 0 < l < ∞), p0 is strongly bounded by p0 ≤ 1. From a physical

perspective, this parameter may be applicable only to large-scale astrophysical

systems, such as spiral galaxies.

When we fix θ = π/2, the optical metric of line element (4.72) becomes

ds2 = e−4ψ

(
e2λΣ

∆
dr2 +∆r2dϕ

2

)
, (4.75)

otherwise

dt2 = ḡrrdr2 + ḡϕϕdϕ
2. (4.76)
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For this case GB theorem gives

δ =

ˆ
π

0

ˆ
∞

rg

[
∂r

(
1√
ḡrr

∂r
√

ḡϕϕ

)]
drdϕ. (4.77)

We would like to highlight that this simplification is feasible because even though the

optical metric (4.76) is not asymptotically flat (AF) in general, it becomes AF when

θ = π/2.

To establish the value of the lower limit of integration rg, we employ the null geodesics

equation from (4.65) with the variable u = 1/r. By utilizing the impact parameter b and

differentiating once again, we arrive at the following result

d2u
dϕ2 +u =3mu2 +

m2

b2 [3+ γ(5γ+4p0(p0γ−3))]u

+
2m
b2 (p0γ−1)+O

(
1
b3

)
.

(4.78)

By using the homogeneous solution, as in the case of the charged ZV , we can calculate

the lower limit of the r− integral up to the order of ∼ 1
b2 , which is given by

1
rg

=
sinϕ

b
+

m
b2

(
2p0γ− sin2

ϕ
)
. (4.79)

After integrating (4.77) and setting the limits for r, followed by an additional

integration with respect to ϕ, we can derive the deflection angle

δ =
4mγp0

b
+

m2 p0γπ

b2 (4p0γ−1)+
m2γπ

4b2 (4p0 +7γ−8p2
0γ) (4.80)

It should be noted that the deflection angle derived is only applicable for θ = π/2. It is

worth noting that when γ = 1 (spherical symmetry) and p0 = 1 (q0 = 0 - zero NUT-like

parameter), the result reduces to δS.
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4.4.6 Gravitational Redshift in Charged ZV Spacetime

According to Eq.(2.41) the explicit expression for the gravitational redshift of charged

ZV spacetime is found as

z =
(1+ p)

(
1− m(1−p)

r

)γ

− (1− p)
(

1− m(1+p)
r

)γ

(
1− 2m

r + m2q2

r2

)γ/2 −1. (4.81)

4.4.7 Applications in Astrophysics

This subsection is reserved for calculation of bending angles for the compact stars

listed in Table 4.1 whose physical parameter values are given. The lensing analyses

are conducted for charged and stationary uncharged ZV spacetimes [65, 66].

Another goal of this subsection is to provide graphical representations of our

gravitational lensing calculations. However, for practical purposes, sticking to

standard international (SI) units for the plots sound more reasonable. Therefore, it has

been made sure that in all relevant equations, the necessary conversions are made by

multiplying M with Gc−2, in which G = 6.67408 × 10−11m3kg−1s−2 and

c = 3× 108ms−1. It is important to record that the bending angle comes out in

radians.

Table 4.1: Compact star masses and radii numerical values [1]. Here, M� is the mass
of the sun

Compact Stars M Radius (km)
Vela X-1 1.77M� 9.56
SAXJ 1808.4-3658 0.9M� 7.95
Her X-1 0.85M� 8.10
4U 1538-52 0.87M� 7.86

Below, one can find graphs of δ versus b/Rstar with different distortion parameter

values. In the plots, RStar and δ stand for the estimated radius of the charged compact
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object and the associated bending angle, respectively. On the x-axis, instead of using

b directly, it was replaced by b/Rstar, since for gravitational lensing analysis, we are

interested in the path of light around the star, not the ones that may reach beyond Rstar.
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Figure 4.4: The graph shows how the deflection angle δ varies with b/RStar for
the astronomical object 4U 1538-52. There are different curves on the plot, which
correspond to different values of γ, ranging from γ = 0.6 on the left to γ = 1 on the
right. It is important to note that for all curves, the charge parameters have been set
to q = p = 1/

√
2. The solid line represents the charged case, while the dashed line

represents the uncharged case.
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Figure 4.5: The plot shows how the deflection angle δ changes with b/Rstar for the
astronomical object HerX-1, with separate curves for the charged (solid line) and
uncharged (dashed line) cases.
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Figure 4.6: Here is a plot of the deflection angle δ as a function of b/Rstar for the
astronomical object SAXJ1808.4-3658 with the charged (solid line) and uncharged
(dashed line) cases.
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Figure 4.7: The plot illustrates how the deflection angle δ varies with b/Rstar for the
astronomical object VelaX-1. The graph displays separate curves for the charged case
(solid line) and uncharged case (dotted line), allowing for a direct comparison between
the two scenarios.
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If Figures 4.4-4.7 are examined in detail, it can be observed that for the spherically

symmetrical case, the charged and uncharged cases have the same bending angle curve.

This must carry importance in the sense that the path that light follows seems to be

unaffected by the charge in the vicinity.

On the other hand, in the upcoming figure (Figure 4.8), one can see the effect of

distortion parameter on the bending angle in an easier way.
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Figure 4.8: The plots with overlapping curves of δ vs b/Rstar for all objects listed in
Table 4.1, choosing p = q = 1√

2
for charged ZV. The graphs plotted different distortion

values (γ′s) for understanding effect of geometric distortion on gravitational lensing.

67



It is crucial to investigate the gravitational lensing effects that arise when a

non-spherical compact object is in a stationary case. To accomplish this, we

numerically study the bending angle calculated in Eq. (4.80) for the compact objects

listed in Table 4.1.

Figures 4.9-4.12 exhibit the variation in bending angle as a function of idealized radial

distance for different values of the γ parameter. These plots display the bending angles

for the uncharged stationary case, as well as for the uncharged and charged ZV cases.

By displaying these plots together, the "spin" of the non-spherical compact objects can

be better understood.

There seems to be no significant distinction between the charged and uncharged cases

of ZV line elements, based on the figures drawn for the γ = 1 choice. Additionally,

an inverse relationship between the spin of the spacetime and the bending angle is

observed.

It is important to note that the plots for the stationary uncharged case were generated

using a specific value of p0 = q0 =
1√
2
. Similarly, the plots for the static charged case

were generated using p = q = 1√
2
.
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Figure 4.9: These figures represent how the bending angle δ changes with respect
to b/Rstar for 4U1538-52. Within each graph, one can notice the specific conditions
ω 6= 0, q 6= 0, and q = 0 are applied. These correspond to uncharged stationary, static
charged and static uncharged spacetimes, respectively. The deformation parameter γ is
kept fixed at each graph.
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Figure 4.10: These figures represent how the bending angle δ changes with respect to
b/Rstar for HerX-1. Within each graph, uncharged stationary, static charged and static
uncharged spacetimes are drawn, respectively. The deformation parameter γ is kept
fixed at each graph.
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Figure 4.11: The graphs are created to depict the variation in bending angle δ with
respect to b/Rstar for the compact object SAXJ1808.4-3658. The star is analyzed under
three different scenarios: uncharged stationary (ω 6= 0), static charged (q 6= 0), and
static uncharged (q = 0). It should be noted that the bending angle for the stationary
state is lower than the static cases for each specific γ value.
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Figure 4.12: These figures represent how the bending angle δ changes with respect to
b/Rstar for VelaX-1. Within each graph, uncharged stationary, static charged and static
uncharged spacetimes are drawn, respectively. The deformation parameter γ is kept
fixed at each graph.

Figure 4.13 shows the role of γ on the bending angle for two different ZV cases.
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Figure 4.13: These diagrams show the graphical representations of the bending angle δ

against the normalized radial distance b/Rstar. The astronomical objects of concern are
compact stars that can be found in Table 4.1. Here, the distortion parameter is not fixed
and the graphs are drawn for the stationary state of the uncharged ZV line element.

The graphs are produced for different values of the deformation parameter γ.

Additionally, the impact of charge is demonstrated by comparing the gravitational

redshift with the uncharged scenario.
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Figure 4.14: The redshift values of 4U1538-5 are drawn as a function of r
RStar

with
different γ values for both the static charged (q 6= 0) and static uncharged (q = 0)
cases.
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Figure 4.15: The redshift values of HerX-1 are drawn as a function of r
RStar

with
different γ values for both the static charged (q 6= 0) and static uncharged (q = 0)
cases.
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Figure 4.16: The redshift values of SAXJ1808.4-3658 are drawn as a function of r
RStar

with different γ values for both the static charged (q 6= 0) and static uncharged (q = 0)
cases.
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Figure 4.17: The redshift values of VelaX-1 are drawn as a function of r
RStar

with
different γ values for both the static charged (q 6= 0) and static uncharged (q = 0)
cases.
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Figure 4.18: These figures illustrate how redshift z varies as a function of r
RStar

. The
astronomical bodies chosen here can be found in Table 4.1. from the figures, one can
check how γ affects z. The line element picked is the charged ZV case and we have
chosen p = q = 1√

2
.
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Chapter 5

SINGULARITY ANALYSIS

In this chapter, we will examine the quantum regularity of the naked singularity of

the charged ZV spacetime that we found using the Ernst formalism, using the HM

criterion that we defined both physically and mathematically in Chapter 2, with the aid

of spinless waves 6 .

The spatial component of the massive KG equation (Eq.(2.23)) can be derived for the

metric specified in Eq.(3.26) can be written as

A =−K−4
∆

2γ−γ2+1
Σ

γ2−1 ∂2

∂r2 −
K−4∆2γ−γ2

Σγ2−1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− K−4∆2γ−1

r2 sin2
θ

∂2

∂ϕ2

−K−4
∆

2γ−γ2
Σ

γ2−1
(

2∆

r
+∆

′ (r)
)

∂

∂r
+K−2

∆
γm̃2.

(5.1)

By plugging in Eq.(5.1) into Eq.(2.27), we get[
−K−4

∆
2γ−γ2+1

Σ
γ2−1 ∂2

∂r2 −
K−4∆2γ−γ2

Σγ2−1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
− K−4∆2γ−1

r2 sin2
θ

∂2

∂ϕ2

−K−4
∆

2γ−γ2
Σ

γ2−1
(

2∆

r
+∆

′ (r)
)

∂

∂r
+K−2

∆
γm̃2± i

]
ψ = 0.

(5.2)

If we suppose that the solution can be separated into the form of ψ = f (r,θ)e±ikϕ,

where k is associated with the orbital quantum number and can take any integer value,

then we can rewrite Eq.(5.2) in the following manner

6 All the analyses to be performed in this chapter have been published in [67]
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[
−K−4

∆
2γ−γ2+1

Σ
γ2−1 ∂2 f

∂r2 −
K−4∆2γ−γ2

Σγ2−1

r2sinθ

∂

∂θ

(
sinθ

∂ f
∂θ

)
± K−4∆2γ−1 f k2

r2 sin2
θ

−K−4
∆

2γ−γ2
Σ

γ2−1
(

2∆

r
+∆

′ (r)
)

∂ f
∂r

+ f K−2
∆

γm̃2± i f
]
= 0.

(5.3)

Our aim is to investigate the farthest singularity located at a distance of r∆ = m(1+ p).

To accomplish this, we will limit the direction of our investigation to specific values

of θ by setting f (r,θ0 = constant) = R(r). At first, we will check the θ = π/2 case, in

which Eq.(5.3) takes the form

(∆(r)Σ−1(r,π/2))1−γ2
[

r2∆(r)
R

d2R
dr2 +

r2

R

(
2∆(r)

r
+∆

′ (r)
)

dR
dr

−r2K2(r)∆γ2−γ(r)Σ1−γ2
(r,π/2)m̃2∓ ir2K4(r)∆γ2−2γ(r)Σ1−γ2

(r,π/2)
]
∓ k2 = 0.

(5.4)

In the subsequent phase, we will investigate the outermost singularity using waves

that propagate along the axis of symmetry, specifically, θ = 0 or θ = π. However,

in this phase, Eq.(5.3) becomes undefined for all values of k except for k = 0, which

corresponds to the s-wave mode. To address this limitation, we will only consider the

restricted condition of k = 0, which allows us to express Eq.(5.3) in the following form[
r2∆(r)

R
d2R
dr2 +

r2

R

(
2∆(r)

r
+∆

′ (r)
)

dR
dr

−r2K2(r)∆γ2−γ(r)Σ1−γ2
(r,0)m̃2∓ ir2K4(r)∆γ2−2γ(r)Σ1−γ2

(r,0)
]
= 0.

(5.5)

To verify the square integrability of the solutions of Eqs.(5.4) and (5.5) for both positive

and negative signs, we calculate the squared norm, where the function space on each

hypersurface Σt at constant time t is defined as H = {R :‖ R ‖< ∞}. The line element

describing the static spacetime in a general (n+2)-dimensional scenario is given by

ds2 =−V 2dt2 +hi jdxidx j, (5.6)
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where V is the metric function of time component. The squared norm for the generic

metric is given by [30]

‖R‖2 =
q2

0
2

ˆ
Σt

V−1RR∗dn+1x
√

h. (5.7)

Here, q2
0 is a positive constant and hi j represents the spatial component of the line

element, where h denotes the determinant of the spatial part. In this context, if neither

of the solutions to Equations (5.4) and (5.5) can be integrated over all space, then the

spatial operator A has a distinct self-adjoint extension.

It is crucial to highlight the function space chosen for the analysis. Our selection is the

standard square integrable L2 Hilbert space used in quantum mechanics. Alternatively,

Ishibashi and Hosoya proposed the first Sobolev space H1 [30]. However, Sobolev

space differs from the conventional quantum-mechanical Hilbert space in terms of the

norm definition. In Sobolev space, the norm must be square integrable for both the

wave function and its derivative. On the other hand, the natural linear function space of

quantum mechanics, which we employ in this study, only considers the wave function

in the norm calculation. Consequently, the self-adjointness of the spatial part of the

Hamiltonian operator A is subject to a stringent condition. In contrast, using Sobolev

space weakens this condition by incorporating derivatives. The square-integrability

of the wave function does not always guarantee that the same should hold true for its

derivative [30, 32, 68].

In the subsequent subsections, we will examine the quantum nature of the non-trivial

naked singularities that emerge in the charged and uncharged ZV metrics. We will

study the outermost singularity on the equatorial plane, which is valid for all γ values,

except for zero and one. This analysis will be followed by investigating the quantum
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properties of the directional singularities that form at the poles.

5.1 Probing The Outermost Singularity at θ = π/2 Plane

The goal of this subsection is to examine the outermost singularity at r∆ = m(1+ p),

for both the charged and uncharged ZV metrics.

5.1.1 For The Charged ZV Solution

If we put θ = π/2 into Eq.(5.4), Eq.(5.4) becomes

R′′+

(
r2∆
)′

∆r2 R′−∆
γ2−1

σ
1−γ2

[
± k2

∆r2 +K2
∆
−γm̃2± iK4

∆
−2γ

]
R = 0, (5.8)

in which Σ(r,π/2) = σ(r) = 1− 2m
r + m2

r2 . We will analyse the solution to Eq.(5.8) in

two distinct limiting scenarios, namely r→ ∞ and r→ m(1+ p) (in the vicinity of the

singularity).

When r→ ∞, the metric functions exhibit the following behavior:

σ(r) = ∆(r)≈ 1− 2m
r
,

K ≈ 2p.
(5.9)

For this limiting case, Eq.(5.8) reduces to

R′′+
2
r

R′+
(
(2p)2m̃2± (2p)4i

)
R = 0. (5.10)

The solution of the Eq.(5.10) is provided by

R(r) =
C1

r
sinκr+

C2

r
cosκr, (5.11)

in which κ =
√

(2p)2m̃2± (2p)4i and C1, C2 are integration constants. By inserting

Eq. (5.11) into Eq. (5.7), we obtain
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‖R‖2 ∼
ˆ

∞

const

(RR∗)dr(
1− 2m

r

)2γ−1 . (5.12)

For practical purposes, it is assumed that C1 = C2 = 1. To evaluate the integral, the

denominator is first expanded using the binomial expansion for large values of r,

considering only the dominant terms. Since sin(κr) and cos(κr) are complex-valued

trigonometric functions, RR∗ is transformed into the following form using the

expression
√

a+bi =±
(√

|z|+a
2 + i

√
|z|−a

2

)
, where |z|=

√
a2 +b2,

‖R‖2 ∼
ˆ

∞

const

rcosh(2κ̄1r)
r−2m(2γ−1)

dr+
ˆ

∞

const

(
r sin(2κ̄2r)

r−2m(2γ−1)

)
dr, (5.13)

where κ̄1 = ±
√

2p
√

m̃2 +(2p)4−2pm̃2 and κ̄2 = ±
√

2p
√

m̃2 +(2p)4 +2pm̃2. To

analyze the convergence of the first integral in Eq. (5.13), we can apply the comparison

test. The hyperbolic function can be expressed as a series expansion given by

cosh(2κ̄1r) =
∞

∑
n=0

(2κ̄1r)2n

(2n)!
. (5.14)

The first integral can be written asˆ
∞

const

rcosh(2κ̄1r)
r−2m(2γ−1)

dr =
ˆ

∞

const

(
r

r−2m(2γ−1)

){
∞

∑
n=0

(2κ̄1r)2n

(2n)!

}
dr

=
∞

∑
n=0

(2κ̄1)
2n

(2n)!

ˆ
∞

const

(
rb

r−2m(2γ−1)

)
dr,

(5.15)

in which b = 2n+ 1. To determine the convergence behavior of the final integral, we

can apply the comparison test. To do so, we examine the following inequality

0≤ t +2m(2γ−1)
t

≤ (t +2m(2γ−1))b

t
. (5.16)

Here, t = r−2m(2γ−1). We can evaluate the integral of t+2m(2γ−1)
t as
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ˆ
∞

c

(
t +2m(2γ−1)

t

)
dt = (t +2m(2γ−1) ln |t|) |∞const → ∞. (5.17)

According to the comparison test, if the integral
´

∞

c

(
t+2m(2γ−1)

t

)
dt diverges, then the

integral
´

∞

c
(t+2m(2γ−1))b

t dt also diverges. Additionally, we can analyze the

convergence of the series in front of the integral using the ratio test. By constructing

the expression ρ = limn→∞ |an+1
an
| = limn→∞

(2κ̄1)
2

2n+1 = 0 and examining the value of ρ

for convergence analysis, we see that when 0 = ρ < 1, the limit converges and hence

the series converges according to the ratio test. To evaluate the second integral, which

is an improper integral, we can use the comparison test. We replace sin(2κ̄2r) with its

power series expansion,

sin(2κ̄2r) =
∞

∑
n=0

(−1)n sign(κ̄2)
(2ω2r)2n+1

(2n+1)!
, (5.18)

in which ω2 =
√

2p
√

m̃2 +(2p)4 +2pm̃2 and sign is the signum function. The second

integral can be expressed as

I =
ˆ

∞

const

(
r

r−2m(2γ−1)

){
∞

∑
n=0

(−1)n sign(κ̄2)
(2ω2r)2n+1

(2n+1)!

}
dr

=
∞

∑
n=0

(−1)n sign(κ̄2)
(2ω2)

2n+1

(2n+1)!

ˆ
∞

const

(
ra

r−2m(2γ−1)

)
dr,

(5.19)

where a = 2n + 2. Similar to the previous calculations, applying the integral

comparison test for the second integral also yields divergence. However, since

ρ = limn→∞ |an+1
an
| = limn→∞

(2ω1)
2

(2n+3)(2n+2) = 0 < 1, it is convergent according to the

ratio test.

When the value of r approaches r∆ = m(1+ p), Eq. (5.8) reduces to
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d2R
dr2 +

1
r− r∆

dR
dr
− p2

(1+ p)2

[
±k2∆γ2−2

r2 +K2m̃2
∆

γ2−γ−1± iK4
∆

γ2−2γ−1

]
R = 0.

(5.20)

We will split this equation into three separate equations by taking into account the rate

of change in relation to the deformation parameter γ. For this purpose, we have

d2R
dr2 +

1
r− r∆

dR
dr

+ iHγ(r)R = 0, (5.21)

where

Hγ(r) =



β1

(r−r∆)2−γ2 ,0 < γ < 1/2

β2

(r−r∆)1+2γ−γ2 ,γ > 1/2

β3
(r−r∆)7/4 ,γ = 1/2

, (5.22)

in which

β1 =
±ip2k2(2mp)γ2−2

(1+ p)2r2γ2−2
∆

β2 =±
(

2p
1+ p

)4γ p2(1+ p)2(2mp)γ2−2γ−1

r2γ2−4γ−2
∆

β3 =
p2r7/4

∆

(2mp)7/4

[
(1+ p)4

(
2p

1+ p

)4γ

∓ k2

m2(1+ p)2)

]
.

(5.23)

The solutions of Eq. (5.21) for each interval are

R(r)=



a1K0(η1(r− r∆)
γ2/2)+(a2)0F1(;1;η2(r− r∆)

γ2
) ,0 < γ < 1/2

a3K0(η3(r− r∆)
γ2−2γ+1

2 )+(a4)0F1(;1;η4(r− r∆)
γ2−2γ+1) ,γ > 1/2

a5K0(η5(r− r∆)
1/8)+(a6)0F1(;1;η6(r− r∆)

1/4) ,γ = 1/2

(5.24)

In this equation, a1 through a6 represent integration constants, K0 refers to the first
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kind modified Bessel function, 0F1 refers to the confluent hypergeometric function,

η1 =
2(−1)7/4

√
β1

γ2 , η2 =
−iβ1

γ4 , η3 =
2(−1)3/4

√
β2

2γ−1−γ2 , η4 =
−iβ2

(2γ−1−γ2)2 , η5 = 8
√

β3 and η6 =

−16β3.

The square norm for each case can be written as

‖R‖2 ∼



(
2p

1+p

)4γ p2−2γ2
(1+p)2γ2−1

(2mp)2γ−γ2r2γ2−4γ−2
∆

´ r∆

const
RR∗dr

(r−r∆)2γ−γ2 ,0 < γ < 1/2(
2p

1+p

)4γ p2−2γ2
(1+p)2γ2−1

(2mp)−2γ+γ2 r2γ2−4γ−2
∆

´ r∆

const(r− r∆)
γ2−2γRR∗dr ,γ > 1/2(

2p
1+p

)2 p3/2(1+p)−1/2r7/2
∆

(2mp)3/4

´ r∆

const
RR∗dr

(r−r∆)3/4 ,γ = 1/2

(5.25)

To conduct the integration operation, the content of RR∗ for each integral in Eq.

(5.25) is expressed by using the series expansion of each respective special function,

as described in [69],

I0(z) =
∞

∑
k=0

( z
2

)2k

(k!)2 ,

K0(z) =−ln
z
2

I0(z)+
∞

∑
k=0

(z)2k

22k(k!)2 ψ(k+1),

0F1(;b;z) =
∞

∑
k=0

(z)k

(b)kk!
,

(5.26)

where ψ is the psi function. To evaluate the integrals near the singularity (r→ r∆), the

variable of integration is changed to u= r−r∆. As a result, the new variable u becomes

very small. Since the integrand involves the multiplication of power series, we can

utilize the Cauchy product law of power series to perform an analytic calculation of

these integrals. Moreover, since u is small, we can approximate the dominant term as

K0(z)∼−ln z
2 I0(z). Let us define the Cauchy product that we will use below.

Definition 5.1 (The Cauchy Product of Power Series): Consider the power series
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∑
∞
n=0 anzn, and ∑

∞
n=0 bnzn. Thus, the Cauchy product of these series can be defined as(

∞

∑
n=0

anzn

)(
∞

∑
n=0

bnzn

)
=

∞

∑
n=0

((
n

∑
j=0

(
a jbn− j

))
zn

)
=

∞

∑
n=0

cnzn, (5.27)

in which cn = ∑
n
j=0 a jbn− j [70].

To simplify the analysis, we set the integration constants a1 through a6 equal to 1. By

using the Cauchy product of power series, we can perform analytic calculations of the

integrals.

FirstIy, we analyze the integral for which the deformation parameter lies within the

range of 0 < γ < 1/2. The corresponding square norm can be written as

‖R‖2 ∼α1

∞

∑
k=0

ck

ˆ 0

const

(
ln2 η1uγ2/2

2

)(
η1uγ2/2

2

)k
du

u2γ−γ2

+α1

∞

∑
l=0

cl

ˆ 0

const

(
η2uγ2

)l du
u2γ−γ2

−2α1

∞

∑
n=0

cn

ˆ 0

const

(
ln

η1uγ2/2

2

)(
uγ2
)n du

u2γ−γ2 ,

(5.28)

where α1 =
(

2p
1+p

)4γ p2−2γ2
(1+p)2γ2−1

(2mp)2γ−γ2r2γ2−4γ−2
+

, ck = ∑
k
l=0

1
(l!(k−l)!)2 , cl = ∑

l
t=0

1
(1)t t!(1)l−t(l−t)!

and cn = ∑
n
j=0

{(
η1
2

) j 1
( j!)2

}{
(η2)

n− j

(1)n− j(n− j)!

}
.

The first and third integrals are both convergent, as shown by the expressions
ˆ 0

c
xkln(bx)dx =

c1+k(1− (1+ k)ln[bc])
(1+ k)2 (5.29)

and
ˆ 0

c
xkln2(bx)dx =−c1+k(2+(1+ k)ln[bc](−2+(1+ k)ln[bc]))

(1+ k)3 , (5.30)
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which are both finite. The convergence of the second integral can be established by

using the comparison test. For this purpose, u is very small and positive, the following

inequality can be defined as

uγ2l−(2γ−γ2) ≤ u−(2γ−γ2). (5.31)

Furthermore, since
´ 0

const u−(2γ−γ2)du = u(γ−1)2

(γ−1)2

∣∣0
const

〈
∞, it follows that the integral

´ 0
const uγ2l−(2γ−γ2)du also converges. Therefore, for 0 < γ < 1/2, the solution is square

integrable and the spacetime singularity remains quantum singular.

Moving on, let us examine the scenario where γ > 1/2 but not equal to 1. In this

instance, the square norm takes

‖R‖2 ∼α2

∞

∑
k=0

ck

ˆ 0

const

(
ln2 η3uγ2−2γ+1

2

)(
η3uγ2−2γ+1

2

)k

uγ2−2γdu

+α2

∞

∑
l=0

cl

ˆ 0

const

(
η4uγ2−2γ+1

)l
uγ2−2γdu

−2α2

∞

∑
n=0

cn

ˆ 0

const

(
ln

η3uγ2−2γ+1

2

)(
uγ2−2γ+1

)n
uγ2−2γdu

(5.32)

in which α2 =
(

2p
1+p

)4γ p2−2γ2
(1+p)2γ2−1

(2mp)−2γ+γ2r2γ2−4γ−2
+

. The first and third integrals exhibit a close

resemblance to the previous case and thus converge. As for the second integral, we

can evaluate it using the expression
´ 0

const ul(γ−1)2+(γ2−2γ)du = u(l+1)(γ−1)2

(l+1)(γ−1)2 |0const , which

can be shown to be square integrable. Hence, the spacetime singularity is quantum

mechanically singular as long as 1/2 < γ < 1.

Lastly, we will examine the scenario where γ = 1/2. In this case, the square norm

equation can be written as
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‖R‖2 ∼α3

∞

∑
k=0

ck

ˆ 0

const

(
ln2 η5u1/8

2

)(
η5u1/8

2

)k
du

u3/4

+α3

∞

∑
l=0

cl

ˆ 0

const

(
η6u1/4

)l du
u3/4

−2α3

∞

∑
n=0

cn

ˆ 0

const

(
ln

η5u1/8

2

)(
u1/4

)n du
u3/4 .

(5.33)

Here, α3 =
(

2p
1+p

)2 p3/2(1+p)−1/2r7/2
+

(2mp)3/4 . Similar to the prior situations, the first and third

integrals are square integrable for the case when γ = 1/2. The second integral can be

evaluated using the comparison test. To do this, we establish the following inequality

ul/4−3/4 ≤ u−3/4. (5.34)

Using this inequality, we can show that
´ 0

const ul/4−3/4du is also square integrable.

Specifically, we can evaluate this integral as
´ 0

const u−3/4du = 4u1/4
∣∣0
const

〈
∞. As a

result, the spacetime singularity is quantum mechanically singular for γ = 1/2.

5.1.2 The Uncharged ZV Solution

If we set q to zero and apply a scaling factor of t → 2t to the time coordinate, we can

express Eq. (5.4) in the following form

R′′+

(
r2∆zv

)′
∆zvr2 R′−∆

γ2−1
zv σ

1−γ2

zv

[
±k2

∆zvr2 +∆
−γ
zv m̃2± i∆−2γ

zv

]
R = 0, (5.35)

where ∆zv = 1− 2m
r , σzv = 1− 2m

r + m2

r2 and ”′” denotes the derivation with respect to

r. We will analyze the solution to Eq. (5.35) separately in two limits: as r approaches

infinity, and as r approaches the singularity at r = 2m.

When r→ ∞ and using the approximate metric functions provided in Eq. (5.9), Eq.

(5.35) becomes simplified to
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R′′+
2
r

R′+
(
m̃2± i

)
R = 0. (5.36)

The solutions of Eq. (5.36) is

R(r) =
C5

r
sinνr+

C6

r
cosνr, (5.37)

in which ν =
√

m̃2± i and C5, C6 are integration constants. Given that the solution

obtained is analogous to the solution derived in Eq. (5.11), it is clear that it is non-

square integrable.

When considering the scenario where r → 2m, a new variable x can be introduced,

defined by x ≡ r− 2m→ 0. Subsequently, the metric functions can be represented in

terms of this new variable as

σzv(x) =
x

x+2m
+

m2

(x+2m)2 ,

∆zv(x) =
x

x+2m
.

(5.38)

By inserting the metric functions outlined previously into the differential equation

(5.35), and by considering the leading terms while also taking into account the

varying range of the parameter γ, the differential equation (5.35) can be transformed

into

R′′+
1
x

R′+axµR = 0, (5.39)

where
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axµ =



±i(4m2)γ
( 2

m

)γ2−1
xγ2−2γ−1 , 1

2 < γ < ∞ and γ 6= 1

( 2
m

)γ2−1
(

k2

2m

)
xγ2−2 ,0 < γ < 1

2( 2
m

)γ2−1
(
±i(4m2)γ± k2

2m

)
x−7/2 ,γ = 1

2

(5.40)

The general solution of Eq. (5.39) can be written as

R(x) =C7J0

(
2
√

asign(µ+1)
µ+2

x
µ+2

2

)
+C8Y0

(
2
√

asign(µ+1)
µ+2

x
µ+2

2

)
. (5.41)

It should be noted that C7 and C8 represent constants of integration, while J and Y

denote the Bessel functions of the first and second kinds, respectively. Additionally,

the signum function sing(µ+1) is also present in the expression. The properties of the

Bessel functions as x approaches 0 for real ν≥ 0 are described in [71] as

Jν(x)∼
1

Γ(ν+1)

(x
2

)ν

Yν(x)∼


2
π

[
ln
( x

2

)
+ γ̃
]

,ν = 0 and γ̃∼= 0.5772

−Γ(ν)
π

(2
x

)ν
,ν 6= 0

(5.42)

Consequently, the solution can be expressed as

R(x)∼ C̄1 +C̄2ln(x), (5.43)

where C̄1 =
C7

Γ(1) +
2γ̃C8

π
+ 2C8

π
ln
(√

asing(µ+1)
µ+2

)
and C̄2 =

C8
π
(µ+2) . If we substitute Eq.

(5.43) into the squared norm (5.7), Eq. (5.7) becomes

‖R‖2 ∼ (m)2γ−γ2+2 (2)γ2+2γ

ˆ 0

const.
xγ2−2γ|C̄1 +C̄2ln(x)|2dx

∼ (m)2γ−γ2+2
{

A
ˆ 0

const.
xγ2−2γdx+B

ˆ 0

const.
xγ2−2γln(x)dx+C

ˆ 0

const.
xγ2−2γln2(x)dx

}
(5.44)
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in which A = (2)γ2+2γ C̄1
2, B = (2)γ2+2γ+1 C̄1C̄2 and C = (2)γ2+2γ C̄2

2. The spatial

component of the Hamiltonian operator A is not essentially self-adjoint for the

following reasons: Firstly, the results of integrals are dependent on terms of the form

xalnb(x). Secondly, limx→0xalnb(x) is convergent for a > 0. Finally, the square norm

converges only when γ 6= 1.

To sum up we can draw the conclusion that we have not found any quantum mechanical

healing for θ = π/2 direction for both ZV cases.

5.2 Quantum Singularities on The North-Pole (θ = 0):

The direction dependence of singularities is important for ZV solution. We know that

the solution regularity depends on the distortion parameter. Some important

symmetry directions can be noted as the north and south poles in which θ = 0 and

θ = π, respectively. We indicate the quantum probe of outermost singularity

r∆ = m(1+ p) from the north pole.

5.2.1 For The Charged ZV Solution:

As previously mentioned, directional singularities along the symmetry axis will only

be studied using s-waves. In this specific scenario, where k = 0, Eq.(5.5) can be

expressed as

R′′+

(
r2∆
)′

∆r2 R′−K2 [
∆
−γm̃2± iK2

∆
−2γ
]

R = 0. (5.45)

Let us begin by examining the situation where r → ∞. In this case, we use the

approximate metric functions described in Eq.(5.9) and Eq.(5.45), resulting in the

following expression

R′′+
2
r

R′+
(
(2p)2m̃2± (2p)4i

)
R = 0. (5.46)
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Eq.(5.46) is identical to Eq.(5.10), which has already been analyzed and determined

to have a divergent square norm. As a result, the spatial wave operator is not square

integrable.

Let us now analyze the scenario where r → r∆ = m(1 + p). By focusing on the

dominant terms in relation to the value of γ, Eq.(5.45) can be expressed as

d2R
dr2 +

1
r− r∆

dR
dr

+Uγ(r)R = 0, (5.47)

where

Uγ(r) =
ib2

(r− r∆)2γ
, (5.48)

in which b2 =±(1+ p)4
(

2p
1+p

)4γ r4γ

∆

(2mp)2γ .

The solution of Eq.(5.47) can be written as

R(r) = d3K0(ν1(r− r∆)
1−γ)+(d4)0F1(;1;ν2(r− r∆)

2−2γ), (5.49)

where ν1 =
√

b2(−1)3/4

γ−1 and ν2 =
−ib2

4(γ−1)2 . The square norm becomes

‖R‖2 ∼
(

2p
1+ p

)4γ

(1+ p)4(2mp)2γ−1r4γ

∆

ˆ r∆

const

RR∗dr
(r− r∆)2γ−1 . (5.50)

Here, d3 and d4 are taken to be one for simplicity of calculations. By substituting the

variable of integration with u = r− r∆ and utilizing the fact that u approaches zero in

the proximity of r→ r∆, the integrals are evaluated. If we use the Cauchy product as

in the previous case, the square norm can be written as
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‖R‖2 ∼ᾱ2

∞

∑
k=0

ck

ˆ 0

const

(
ln2 ν1u1−γ

2

)(
ν1u1−γ

2

)k du
u2γ−1

+ ᾱ2

∞

∑
l=0

cl

ˆ 0

const

(
ν2u2−2γ

)l du
u2γ−1

−2ᾱ2

∞

∑
n=0

cn

ˆ 0

const

(
ln

ν1u1−γ

2

)(
u2−2γ

)n du
u2γ−1

(5.51)

in which ᾱ2 =
(

2p
1+p

)4γ

(1+ p)4(2mp)2γ−1r4γ

∆
. Due to the significance of the power of

u in the analysis, we divide the deformation parameter γ into two distinct subcategories:

0 < γ < 1 and γ > 1. It is worth noting that the other components comprising the ln

function are also convergent, as demonstrated in the previous section.

Let us begin by analyzing the scenario where 0 < γ < 1. In this situation, the power of

u, which is (1− γ), is consistently positive. As u is both positive and exceedingly

small, we can establish the inequality u2l(1−γ)−(2γ−1) ≤ u−(2γ−1). Since the integral
´ 0

const u1−2γdu = u2−2γ

2−2γ

∣∣const0〈∞ is convergent, the integral
´

const0u2l(1−γ)−(2γ−1)du

is also convergent, as required by the comparison test. Consequently, when the

deformation parameter falls within the interval of 0 < γ < 1, the directional

singularities along the axis transform into quantum singularities.

Let us now turn our attention to the case where γ > 1. Here, (1− γ) is negative, and

the comparison test inequality can be expressed as u−(2γ−1) ≤ u2l(1−γ)−(2γ−1). Upon

careful examination, it is revealed that for γ > 1, the integral
´ 0

const u1−2γdu = u2−2γ

2−2γ
|0const → ∞ fails to be square integrable. The solution came out to

be classically regular for γ≥ 2 and quantum regular when γ > 1.

5.2.2 For The Uncharged ZV Solution

When q = 0, Eq.(5.45) becomes
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R′′+

(
r2∆zv

)′
∆zvr2 R′−

[
∆
−γ
zv m̃2± i∆−2γ

zv
]

R = 0. (5.52)

When r→ ∞ Eq.(5.52) transforms into

R′′+
2
r

R′+
(
m̃2± i

)
R = 0. (5.53)

This equation is identical to Eq.(5.10), for which it has been shown that the solution is

not square integrable.

Now, we consider the case of r→ 2m⇔ x ≡ r− 2m→ 0. If we substitute the metric

functions into Eq.(5.53), Eq.(5.53) reduces to

R′′+
1
x

R′+bx−2γR = 0, (5.54)

where b =±i(4m2)γ. The solution of Eq.(5.54) is

R(x) = q3J0

(
2
√

bsign(1−2γ)

2−2γ
x1−γ

)
+q4Y0

(
2
√

bsign(1−2γ)

2−2γ
x1−γ

)
, (5.55)

in which q3 and q4 are integration constants. If we employ the asymptotic

approximations of the Bessel functions as given in Eq.(5.42), then Eq.(5.55) can be

simplified to

R(x)∼ q̄3 + q̄4ln(x). (5.56)

Here, q̄3 =
q3

Γ(1) +
2γ̃q4

π
+ 2q4

π
ln
(√

bsing(1−2γ)
2−2γ

)
and q̄4 =

q4
π
(2−2γ) . The squared norm

for solution (5.56) can be written as

‖R‖2 ∼ (2m)2γ+1
ˆ 0

const.
x1−2γ|q̄3 + q̄3ln(x)|2dx

∼ Ā
ˆ 0

const.
x1−2γdx+ B̄

ˆ 0

const.
x1−2γln(x)dx+C̄

ˆ 0

const.
x1−2γln2(x)dx

(5.57)
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in which Ā = (2m)2γ+1 q̄3
2, B̄ = (2m)2γ+1 q̄3q̄4 and C̄ = (2m)2γ+1 q̄4

2. Due to the

xalnb(x) terms in the last two integrals being proportional, with b = 1,2, the limit of

limx→0xalnb(x) is finite. Additionally, since γ 6= 1, the square norm of the solution

converges, indicating quantum mechanical singularity. It has also been found that the

solution is not square integrable for γ > 1. For the choice γ < 1 on the other hand, the

square-integrability condition is satisfied.

Based on this analysis, the classically singular region within the directional singularity

of the uncharged ZV metric, specifically within the range 1 < γ < 2, is transformed

into a quantum mechanically regular region.

Finally, Fig.5.1 summarizes the results of quantum probes made from the equatorial

plane and north pole, respectively, in ZV spacetime with and without charge.
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Figure 5.1: As shown in Figure 5.1, spinless waves
sent from the equatorial plane (θ = π/2) and the
north pole (θ = 0) to both charged and uncharged
ZV spacetimes do not generate quantum regularity

in the equatorial plane (θ = π/2) in both ZV
spacetimes. However, s-waves sent from the north

pole (θ = 0) generate regularity in the region
1 < γ < 2, which is classically singular, in both ZV

spacetimes.
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Chapter 6

KERR-NEWMAN (ANTI) DE SITTER (KN(A)dS)

SPACETIME

This section is about gravitational lensing analysis via RI approach in a non-AF

KNAdS spacetime. It is aimed to use the theoretically evaluated bending angle

formulae for two different black holes. 7

6.1 The Briefly Mathematical and Physical Structures of

Kerr-Newman (anti) de Sitter (KN(A)dS) Spacetime

The corresponding metric in the Boyer-Lindquist coordinates is given by [73]

ds2 =−∆r

ρ2

(
dt− asin2

θ

Ξ
dϕ

)2

+
∆θ sin2

θ

ρ2

(
adt− r2 +a2

Ξ
dϕ

)2

+ρ
2
(

dr2

∆r
+

dθ2

∆θ

)
,

(6.1)

in which

ρ
2 = r2 +a2 cos2

θ, ∆θ = 1− a2

l2 cos2
θ, Ξ = 1− a2

l2 ,

∆r =
(
r2 +a2)(1+

r2

l2

)
−2mr+ e2.

(6.2)

Here, the parameter a represents rotation, while e and m denote charge and mass,

respectively. The curvature radius, l, is determined by Λ =−3l−2 [73, 74]. The mass

M and angular momentum L of the KN(A)dS can be calculated using Komar integrals

with the assistance of Killing vectors ∂t/Ξ and ∂φ [75]. By referencing AdS space as

the background, one can derive

7 The material of this chapter was published in [72]
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M =
m
Ξ2 , L =

am
Ξ2 . (6.3)

It is possible to also figure out the charge of KNAdS line element via finding the em

field tensor flux for r→ ∞ [76] as

Qe =
e
Ξ
. (6.4)

The Einstein-Maxwell field equations are satisfied by the metric ((6.1)) when coupled

with the em vector potential (1-form) given by

At =−
er
ρ2 , Aϕ =

aesin2
θ

ρ2Ξ
, (6.5)

where Aϕ is angular component of the em vector potential. Alternatively, one could

verify that the em potential produces the resultant field strength tensor: In addition, the

vierbein fields [74] for the metric (6.1) may be defined by

e0 =

√
∆r

ρ

(
dt− asin2

θ

Ξ
dϕ

)
, e1 =

ρ√
∆r

dr,

e2 =
ρ√
∆θ

dθ, e3 =

√
∆θ sinθ

ρ

(
a dt− r2 +a2

Ξ
dϕ

)
.

(6.6)

Alternatively, it is possible to verify that the em potential equation (6.5) produces the

resultant field strength tensor as

F =
e
(
ρ2−2r2)

ρ4

(
dt− asin2

θ

Ξ
dϕ

)
∧dr+

erasin2θ

ρ4

(
adt− r2 +a2

Ξ
dϕ

)
∧dθ,

(6.7)

on the other hand

F =
e
(
ρ2−2r2)

ρ4 (e0∧ e1)− 2eracosθ

ρ4 (e2∧ e3). (6.8)

99



To determine the magnetic fields generated by the KN(A)dS spacetime, one may

calculate the non-zero contravariant components of the em field tensor:

F tr =
e(r2+a2)

ρ6

(
2r2−ρ2) , F tθ =−ea2r

ρ6 sin2θ,

Frϕ =
ea(2r2−ρ2)

ρ6 Ξ, Fθϕ = 2ear
ρ6 Ξcotθ.

(6.9)

The magnetic field elements of the KN(A)dS solution can be extracted from equation

(6.9) by employing the subsequent formula, as cited in references [77, 78]:

Bµ =
1
2

EµνατuνFατ (6.10)

in which uν represents the 4-velocity vector and the covariant Levi-Civita tensor

(Riemannian volume form) is defined by Eµνατ ≡ |g|1/2εµνατ with εtrθφ =+1 [79, 80].

To sum up, the non-zero components of the magnetic fields can be written as

Br =
2ear

(
r2 +a2)cosθ

ρ4∆r
. (6.11)

Bθ =
eal2 (ρ2−2r2)sinθ

ρ4(a2 cos2 θ− l2)
, (6.12)

in which the net magnetic field relation: B =
√

B2
r +B2

θ
. It is important to highlight

that the formulas describing the magnetic and electric field components in the Kerr-

Newman spacetime with the inclusion of the cosmological constant for a zero-angular-

momentum observer (ZAMO) were derived in Ref. [81]. When the cosmological

constant Λ is extremely small and the detector is located far away from the black hole,

such that a << r, Eq. (6.11) can be approximated as

Br ≈
2eacosθ

r3 +
4eamcosθ

r4 +O
(

1
r5

)
, (6.13)
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where this simplification leads to the radial component of the magnetic field in the

Kerr-Newmann solution, as described in the Ref. [82]. It is important to mention that

the Biot-Savart law in electrodynamics states that a charged particle with mass m and

charge e moving in a circular orbit with angular momentum~L possesses the magnetic

dipole moment given by

~µ = X
e~L
2m

, (6.14)

in which X is the gyromagnetic moment [82]. The magnetic dipole moment~µ can be

written as

~B =
3(~µ ·~er)~er−~µ

r3 . (6.15)

Consequently, the radial component of this field can be expressed as Br = ~B ·~er =

2~µ ·~er/r3. By comparing the leading-order term of the radial magnetic field derived

from Eq. (6.13) with the expression given in Eq. (6.15), we obtain

~µ = e~a =
e~L
m

= 2
e~L
2m

. (6.16)

Note that, X = 2 for the charged slow-rotating KN(A)dS spacetime.

The (positive) roots of the metric function ∆r = 0 gives the horizons of metric (6.1).

Therefore, the horizons are found by [74]

∆r =
(
r2 +a2)(1− 1

3
Λr2
)
−2mr+ e2

=−1
3

Λ

[
r4−

(
3
Λ
−a2

)
r2 +

6M
Λ

r− 3
Λ

(
a2 + e2)]

=−1
3

Λ(r− r++)(r− r−−)(r− r+)(r− r−) = 0,

(6.17)

in which the roots r++ and r−− form a pair of complex conjugates, while r+ and
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r− are two distinct positive real roots, where r+ is greater than r−. As a result, the

value r = r+ corresponds to the event horizon. Also, the Hawking temperature of the

KN(A)dS space time can be written as

TH =
3r4

++
(
a2 + `2)r2

+− `2 (a2 + e2)
4π`2r+

(
r2
++a2

) . (6.18)

6.1.1 Gravitational Lensing in KN(A)dS Spacetime

The generic light ray equation of metric (2.35) can be written as

d2u
dϕ2 = 2u3

κ(u)+
u4

2
dκ(u)

du
, (6.19)

where u = 1
r and κ(u) is given by

κ(u) =
g2(r)+ p(r) f (r)

h(r) [g(r)E + f (r)L)]2
[
p(r)E2− f (r)L2−2g(r)LE

]
, (6.20)

in which E and L are the energy and angular momentum of photon, respectively.

If we put the metric function in (6.1) into the generic null geodesic equation formula

Eq. (6.19), Eq. (6.19) reduces to

d2u
dϕ2 +βu =

3Mu2

α2 −
2e2u3

α2 , (6.21)

in which β =−Λa2

3α2 +
L+Ea

α2(L−Ea) and α = 1+ 1
3Λa2.

By using the linear solution of Eq. (6.21) as u =
sin(
√

βϕ)
R , where R denotes the impact

parameter, an approximate solution can be obtained. Upon substituting this solution

into Eq. (6.21), the approximate solution of the differential equation is derived as

u(ϕ) =
sin(
√

βϕ)

R
+

1
4R3

{(
(1+ cos2(

√
βϕ)
)

4MR+ e2

(
3ϕcos(

√
βϕ)√

βα2

−
sin(
√

βϕ)cos2(
√

βϕ)

βα2 −
2sin(

√
βϕ)

βα2

)}
.

(6.22)
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And, Eq. (2.38) gives

A(r,ϕ) =
r2

4R3

{
4MR

√
βsin(2

√
βϕ)+ e2

(
cos3(

√
βϕ)√

βα2
−

sin(2
√

βϕ)sin(
√

βϕ)√
βα2

3ϕsin(
√

βϕ)

α2 −
cos(

√
βϕ)√

βα2

)}
− r2

R

√
βcos(

√
βϕ).

(6.23)

In order to analyze the influence of the black hole model’s geometry and physical

parameters (such as charge, mass, and spin) on the equation for the closest approach

distance, denoted as r0, an analysis is conducted at ϕ = π/2. Subsequently, the

reciprocal of the closest approach distance is evaluated as

1
r0

=
sin(
√

βπ/2)
R

+
1

4R3

{(
(1+ cos2(

√
βπ/2)

)
4MR+

e2

(
3πcos(

√
βπ/2)

2
√

βα2
−

sin(
√

βπ/2)cos2(
√

βπ/2)
βα2 −

2sin(
√

βπ/2)
βα2

)}
.

(6.24)

In order for being able to check astrophysical applications of our results, let us

investigate what happens for ϕ = 0. For the cases when M
R << 1 and ΛR2 << 1

[41, 83, 84], the radial coordinate and its first derivative with respect to ϕ can be

written as

r ≈ βα2R2

2M
, A(r,ϕ = 0)≈−r2

√
β

R
. (6.25)

Then, Eq. (2.39) gives

tanε = tanΨ0 '
2M

β3/2α3R

{
1− β2α5R4Λ

12M2 − 4M2

α2βR2 −
a2Λ

3

[
1+

2
3α2

]
+

4M2

β2α4R4

[
a2 + e2 +

2a2

α2 −
2a4Λ

3α2 −
2a4Λ

3β2

]}1/2

.

(6.26)

When we apply the standard approximate expansion of square root, Eq. (6.26) reduces

to
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tanε = tanΨ0 '
2M

β3/2α3R

{
1− β2α5R4Λ

24M2 − 2M2

α2βR2 −
a2Λ

6

[
1+

2
3α2

]
+

2M2

β2α4R4

[
a2 + e2 +

2a2

α2 −
2a4Λ

3α2 −
2a4Λ

3β2

]}
+O

(
M9a4

α19β19/2R17

)
.

(6.27)

Note that, If a→ 0, Eq.(6.27) gives the same result for the linear case in [65].

At this stage, it is necessary to decide how to handle the parameter β. As evident from

Eq. (6.21), this dimensionless parameter contains information about the propagation

of light rays through the spacetime under consideration. By using the definition of the

impact parameter and considering R≡ L/E [85], we can express β as

β =−Λa2

3α2 +
R+a
R−a

. (6.28)

Now, we explore significant astrophysical implementations. We conduct a numerical

examination to observe the impact of electric charge in the presence of a cosmological

constant by analyzing the bending angles obtained for different rotation limits, denoted

as j (= ac2/GM). The numerical analysis is specifically focused on two black holes,

and their respective characteristics are documented in [72].

In our numerical analysis, we adopt ϕ = 0 as the reference point for measuring the

one-sided bending angle. This reference point corresponds to a significantly large

distance from the source. We plot the bending angle ε as a function of x = R/R∗,

where R∗ represents the radius of the charged compact star. It is worth noting that

we convert the geometrized units to standard international units (SI units). The mass

(M) and electric charge (Q) are converted to SI units by multiplying the mass by Gc−2

and the charge by G1/2c−2 (4πε0)
−1/2 . Here, G = 6.67408×10−11m3kg−1s−2 denotes
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the gravitational constant, c = 3× 108ms−1 represents the speed of light, and ε0 =

8.85418× 10−12C2N−1m2 corresponds to the free space permittivity. Consequently,

the one-sided bending angle is measured in radians.

ε
M87 ε ∗

Figure 6.1: The plots illustrate the bending angles ε as a function of x = R/R∗ for
both the M87 and Sgr A∗ black holes. In the case of Sgr A∗, the graphs are generated
assuming a mass of 4.1×106M�. The Schwarzschild radius is taken as 1.27×1010m,
and the charge is approximately 1015C. For the M87 black hole, the graphs are plotted
based on a mass of 6.5×109M�, an observable radius of 16.8Mpc, and a tidal charge
of 9.35× 1022C. Additionally, as mentioned earlier, j = 1 represents the maximum-
rotation scenario, while j = 0 corresponds to the non-rotating case.
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Chapter 7

CONCLUSION

In this thesis, we have used the Ernst formalism to generate the Maxwell extensions of

ZV metrics. The ZV metrics are known to arise from the interaction of aligned, static

rods [86]. However, our approach surpasses the concept of finite rods and explores

the realm of infinite plane waves. By exploiting the symmetry in this limit, we are

able to discover additional exact solutions using the power of the Ernst formalism.

It is worth mentioning that the relationship between the two dimensional colliding

wave spacetime and the three dimensional spherical coordinates can be viewed as a

holographic manifestation.

Furthermore, it is important to emphasize that our study also paves the way for

transforming the infinite class of EM solutions with the second polarization [55] into

the ZV space, as we have demonstrated in this paper. This transformation will also

involve the spinning of the source.

Regarding non-spherical, charged compact objects, the obtained solution (3.26) is

significant for astrophysical implications. The observable universe indicates that most

planets and stellar objects possess magnetic fields. Our Earth, for instance, possesses

a relatively weak magnetic field on the order of B ∼ 0.5G, which is nonetheless

crucial for supporting life. Similarly, most of other planets exhibit magnetic fields that

are either stronger or weaker than the Earth’s. On the other hand, gravastars possess

extremely high magnetic fields on the order of ∼ 1014G. When we combine the
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existence of these magnetic fields with the non-spherical topology of planets/stars, we

naturally encounter the case of the charged ZV metric. This metric is characterized by

three parameters: m, q, and γ. For γ > 1, the object is oblate; whereas for γ < 1, it is

prolate. Notably, the spherically symmetric RN solution is obtained at γ = 1, and its

uniqueness dictates that any other class of EM solutions must agree at γ = 1 as well.

The source of our metric can be purely electric or purely magnetic. The motion of test

particles in the effective potential has been investigated for both cases. Combining

electric and magnetic fields in a more realistic scenario, which requires a separate

study, can further enhance our understanding. Furthermore, in the calculation of the

Newtonian potential in the charged ZV spacetime, the charge contributed to the

quadrupole moment, along with the contribution of the dipole moment and singularity

analysis resulted in the charge shifting the ZV singularity.

Gravitational lensing analysis was performed in this thesis as an astrophysical

application, utilizing the GB theorem with the aid of geodesic analysis in the

equatorial plane, based on compact objects with known physical parameters. The

effect of the geometric deformation parameter on the lensing of charged ZV and

uncharged ZV, as well as stationary ZV spacetimes, was investigated using the limit

obtained. Additionally, the gravitational redshift value was calculated in the charged

ZV spacetime.

To use the CX theorem, is investigated the stationary charged ZV spacetime and the

expansions of all metric functions and EM potentials of this new solution are up to the

quadrupole moment term. Moreover, it is observed that the stationary solution reduces

to the charged ZV, ZV, RN, and Schwarzschild limits under certain conditions.
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In this theses, the possibility of traversing backward in time within our newfound

universe is contemplated. However, it is important to emphasize that this speculation

is limited to our physical realm alone, as the preservation of chronological order

should prohibit such a phenomenon within the context of biological time.

After performing a quantum probe using two different directions of scalar waves on

the ZV charged singularity located beyond the outermost regions of ZV spacetime, it

has been observed that quantum healing is direction dependent in both spacetimes. It

is found that only in the θ = 0 plane and 0 < γ < 1 range, both solutions, which are

classically singular, are quantum mechanically regular for s-wave mode.

Finally, in the lensing analysis performed using the RI method in the well known non-

spherically symmetric KN(A)DS spacetime, the general lensing formula obtained has

been calculated in the limit where rotation and charge are zero, matching the expression

found by RI in the Schwarzschild-de Sitter spacetime. This derived general formula

has been applied to M87 and Sgr A∗ black holes to investigate the effect of rotation on

gravitational lensing. The astrophysical analyse confirmed the theoretical prediction

that rotation enhances the lensing effect. Additionally, it is observed that the impact of

the cosmological constant on lensing is quite small in this analysis, depending on the

chosen value.
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[72] M. Mangut, H. Gürsel, and İ. Sakallı, “Gravitational lensing in kerr–newman anti

de sitter spacetime,” Astroparticle Physics, vol. 144, p. 102763, 2023.

[73] S. Zhang, Y. Liu, and X. Zhang, “Kerr–de sitter and kerr–anti–de sitter black

holes as accelerators for spinning particles,” Physical Review D, vol. 99, no. 6, p.

064022, 2019.

[74] A. N. Aliev, “Electromagnetic properties of kerr–anti-de sitter black holes,”

Physical Review D, vol. 75, no. 8, p. 084041, 2007.

[75] A. Belhaj, M. Chabab, H. El Moumni, L. Medari, and M. Sedra, “The

thermodynamical behaviors of kerr—newman ads black holes,” Chinese Physics

Letters, vol. 30, no. 9, p. 090402, 2013.
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Appendix A: Asymptotic Expansion Coefficients for Metric

Functions and em Potentials

The coefficients of the metric functions asymptotically expanded in (A.1−A.5) are

shown below.
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The coefficients of the em potentials are given by
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