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ABSTRACT 

In this study, the focus is directed towards the explanation of existence and uniqueness 

phenomena in impulsive dynamical systems governed by conformable fractional 

nonlinear differential equations. Concurrently, the analysis encompasses the 

controllability of systems delineated by linear and semilinear conformable fractional 

impulsive control mechanisms. By utilizing the mathematical apparatus of 

conformable fractional derivatives, salient constructs such as the conformable 

controllability operator and the conformable controllability Gramian matrix are 

introduced. These instrumentalities facilitate the derivation of both necessary and 

sufficient conditions that are requisite for achieving comprehensive controllability in 

linear impulsive systems within the framework of conformable fractional calculus. 

Moreover, an assemblage of rigorously formulated sufficient criteria is prefered to 

ascertain the controllability of semilinear impulsive systems in the domain of 

conformable fractional calculus.  
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ÖZ 

Bu çalışmada, odak noktası, uyumlu kesirli tip dürtüsel olmayan diferansiyel 

denklemlerle yönetilen sistemlerde varlık ve benzersizlik olgularının açıklanmasına 

yöneliktir. Aynı anda, analiz, doğrusal ve yarı doğrusal uyumlu kesirli ani kontrol 

mekanizmaları tarafından belirlenen sistemlerin kontrol edilebilirliğini kapsar. 

Uyumlu kesirli türevlerin matematik araçlarını kullanarak, uyumlu kontrol edilebilirlik 

operatörü ve uyumlu kontrol edilebilirlik Gramian matrisi gibi önemli yapılar 

tanıtılmıştır. Bu araçlar, uyumlu kesirli hesaplamalar çerçevesinde doğrusal 

sistemlerde kapsamlı kontrol edilebilirlik için gerekli olan hem gerekli hem de yeterli 

koşulların türetilmeyi kolaylaştırır. Ayrıca, uyumlu kesirli hesaplamalar alanında yarı 

doğrusal sistemlerin kontrol edilebilirliğini belirlemek için sıkıca formüle edilmiş 

yeterli kriterlerin bir derlemesi sunulmaktadır. 

Anahtar Kelimeler: Varlık, Kontrol Edilebilirlik, Uyumlu Türev, Dürtüsel Denklem 
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Chapter 1 

INTRODUCTION 

Within the purview of fractional calculus, diverse definitional frameworks—such as 

Riemann-Liouville and Caputo—provide the mathematical foundations for solving 

different classes of problems. The former, grounded in the principles of repeated 

integration, proves particularly efficacious for confronting problems framed by initial 

conditions. The latter, based on initial value problems, exhibits greater suitability when 

boundary conditions are central to the inquiry. Notably, these formulations are not 

exhaustive, as other specialized definitions like Grunwald-Letnikov, Weyl, and Riesz 

exist, each with its own application-specific features, as corroborated by existing 

literature [2]. 

The pertinence of fractional derivatives extends beyond theoretical mathematics, 

permeating multiple scientific domains such as physics, engineering, economics, and 

biology. Consequently, the selection of an appropriate definitional framework is 

contingent upon the domain-specific requirements and the nature of the problem under 

consideration. 

Introduced in the seminal works [3]-[5], the notion of the conformal derivative has 

found applications in augmenting Newtonian mechanics [6], logistic modeling 

frameworks [7], and web models [8]. This mathematical concept is established based 

on a fundamental limit associated with the traditional concept of a derivative. 
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Significantly, the conformal derivative possesses various mathematical properties, 

including those related to multiplication, rules of composition, and division. 

Consequently, it functions as an extension of the standard derivative that does not 

depend on previous data and memory. 

Recently, many research papers have been published concerning the Caputo fractional 

derivative. Some of them presented additional results on caputo fractional derivative 

and others solved differential equations modeled on caputo fractional derivative sense. 

Some researchers have tried to demonstrate that the caputo fractional derivative may 

be alternative to the caputo fractional derivative in many fractional equations due to 

the ease of calculating the caputo fractional derivative an others. Many researchers 

presented new definitions of non-local caputo fractional derivative and published 

several articles that included applications to new definitions. 

There is an extensive body of research that has investigated a wide range of 

deterministic and stochastic differential equations, including linear, semi-linear, and 

non-linear ones. These studies have considered both conformable and classical 

derivatives in their analyses and have been well-documented in the academic literature 

[9-26]. Likewise, equations featuring Caputo derivatives have been the focus of 

investigations in [27-29]. The utility of the conformal derivative transcends theoretical 

discourse; it is particularly germane in the realm of nonlinear control systems. Within 

this context, the conformal derivative aids in the articulation of system behaviors, 

facilitating the derivation of targeted control strategies. 

Semilinear impulsive differential equations serve as descriptive mathematical 

paradigms that capture the dynamical evolution of systems subject to both continuous 
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and abrupt state-variable alterations. Real-world phenomena, including biological 

systems with threshold behaviors, economic models requiring optimal control, and 

periodically modulated systems, often manifest impulsive effects. Hence, impulsive 

differential equations offer a compelling mathematical representation for the nuanced 

behaviors observed in these complex systems. 

In control theory, the notion of controllability—the capacity to govern a system's state 

to reach a specified objective via control inputs—holds significant importance. It 

serves as a fundamental principle in designing controllers that can efficaciously guide 

a system toward a desired state. Recently, the area of impulsive control systems has 

garnered substantial scholarly attention owing to its applicability across diverse 

disciplines. Pioneering research by Muni and George [30], Han et al. [31], Guan et al. 

[32, 33], Zhao and Sun [34, 35], Xie and Wang [36, 37], George et al. [38], and 

Benzaid and Sznaier [39] has enriched our understanding of the controllability 

attributes of impulsive systems. These theoretical advancements have found practical 

applications in an array of system types, such as those exhibiting fractal behaviors, 

polynomial architectures, switched configurations, index function setups, and rational 

function designs, thereby broadening the scope for control algorithm development. 

However, the realm of impulse differential equations employing a conformable 

derivative remains largely unexplored. Motivated by the prior research mentioned, the 

present study aims to investigate the presence, distinctiveness, and the extent to which 

solutions can be controlled for the following set of semilinear impulsive differential 

equations that employ a conformable derivative: 
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is the conformable derivative having a lower index of 0 applied to the 

function y, A,
d dC

k
 are matrices, r dB   is a matrix,  

)( ) ( ,
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y r y r  ,: 0, d dh R      

 : 0, ru R  is a control function that belong to   2 0, , .rL R  

The organization of this study is outlined as follows: In Chapter 3, we revisit and 

provide a summary of the fundamental principles of conformable fractional derivatives 

and integrals, as well as a review of previously established findings. Moving on to 

Chapter 4, we dive into the examination of the conformable linear impulsive Cauchy 

problem, which is presented as: 

            
       

 
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Herein we develop an expression for the solution to the linear impulsive problem 

involving a conformable derivative (equation 2). Chapter 5 then shifts its focus 

towards investigating the presence and singularity of solutions for impulsive 

semilinear and nonlinear differential equations that incorporate the conformable 

derivative. Our analytical approaches involve iterative methods and the application of 

the Schauder fixed point theorem. Finally, Chapter 6 is dedicated to the discourse on 

(2) 

(1) 
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controllability, this section elucidates on the linear and semilinear impulsive equations 

within the framework of conformable calculus. 

Summarizing the main contributions of this study: Firstly, we establish a method to 

represent the solution for the nonhomogeneous system described in equation (2) and 

subsequently deduce its general solution. Next, we conduct a thorough investigation 

into the characteristics of existence and uniqueness of the solution for the semilinear 

system outlined in equation (1). Additionally, the manuscript introduces two important 

concepts: the conformable controllability operator and the conformable controllability 

Gramian matrix. These tools aid in determining both the necessary and sufficient 

conditions required for achieving full controllability in linear impulsive systems with 

conformable dynamics. In conclusion, the study concludes by outlining a set of 

sufficient conditions that are crucial for ensuring the controllability of the semilinear 

impulsive system described in equation (1).  
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Chapter 2 

CONFORMABLE FRACTIONAL DERIVATIVE 

2.1 Basic Definitions of Fractional Derivative 

Definition 2.1 [(2)] The(left) fractional derivative originating from of a function

:[ , )h d    of order 0 1v   is defined by: 

 
 1

0
im

( ) ( )
( ) .  ld

v

v

R
h r r d h r

h r





  



 

When 0d   we write vR . If   ( )vh rR  exists on ( , )d e  then, 

   lim .( ) ( )d d
v vr d

hR d R h r
  

The right fractional derivative with an order of 0 1v   concluding at e of h  is defined 

by, 

 
1

0

)
lim

( ( ) ( )
( ) .

v
e
v

h r e r h r
h rR





  
 


 

If   ( )e
d

rR h  exists on, ( , )d e  then, 

   lim( ) ( ).e
v r e

e
vR h R he r

  
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Note that if h  is differentiable then 

   
1

( ) ( )
vd

v
R r r d h rh


  

 

 and  

  1( ) ( ) ( ).ve
v Rh r e r h r   

 

It is evident that, for a constant function, the value of its conformable fractional 

derivative converges to zero. Conversely, if ( ) 0vR h r   on a specific interval ( , )d e  can 

be demonstrated with the assistance of the conformable fractional mean value theorem, 

as established in [10]. It can be that ( ) 0h x   for all ( , ).x d e Furthermore, by the 

fractional mean value theorem allows us to establish that when the conformable 

fractional derivative of a function h over an interval ( , )d e  assumes a positive 

(negative) value, then the graph of h  is an increase (decrease) within that interval. 

Notation.   1( ) ( ) ( , ) ( ) ( ) .

r r

d v
v

d d

h hI r h x dv x d x d x dx     

When 0d   we write ( ).dv x  In the right-case, we have 

  1( ) ( ) ( , ) ( ) ( ) .

e e

r r

e
v

vI h r h x dv e x e x h x dx     

The operators 
d
vI  and 

e
vI  called the conformable left and right fractional integrals of 

a given order 0 1.v   

We can generalised as below: 
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Definition 2.2 ([3]) Let  , 1 ,v m m    and set .v m     

Then, the (left) fractional derivative starting from d  of a function  : ,h d    of a 

order v , where 
( ) ( )mh r  exists, is defined by, 

   ( )( ) ( ).md d
vR h R hr r  

When 0d  we write .vR  

The fractional derivative on the right-hand side, with a specified order v  terminating 

at e  of h formally characterized by 

    1( ) ( 1) ( ).
me m e

v Rh Rhr r
   

Note that if 1v m   then 1   and the fractional derivative of h  becomes 
 1

( ).
m

h r


 

Also when 0m   (or  0,1v ) then v   and the definition coincides with those in 

definition, 

 
 1

0

( ) ( )
( ) .  limd

v

vh r r d h r
h rR





  



 

Lemma 2.1 ([3]) Let us suppose that  : ,h d    is continuous and 0 1.v   Then, 

for all r d  we have 

( ) ( ).d d
v vR hI r h r  
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Lemma 2.2 ([5]) Let us suppose that  : ,h e   is continuous and 0 1.v   

Then, for all r e  we have 

( ) ( )e e
v vR hI r h r  

Subsequently, we introduce the formal definitions for both left and right fractional 

integrals any order 0.v   

Definition 2.3 ([6]) Let ( , 1]v m m   then the left fraction integral of order d is 

defined by 

    11
1

1
( ) ( ) ( ) ( ) ( )

!

r

m

d

d d
v mI h r r d h r x x d h x dx

m

 
    I  

Notice that if 1v m   then  

1 1v m m m        and hence 

   1

1
( ) ( ) ( )

!
,( )d d

v m

r

m

d

hr h r r x x dx
m

hI    I  

This, through the application of the Cauchy Formula, represents an iterative integral 

of ,  1h m  times over  , .d r  

Revisiting the fact that the left Riemann-Liouville fractional integral with of order

0v   commencing from v  is defined by 

  11
( ) ,

( )
( ) ( )

r

d v
v

d

r s h s ds
v

h r  I  

It becomes evident that 

   ( ) ( )d d
v vh hI r r I  for 1,  m 0,1,2,...v m    
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Example 2.4 Recalling that  1 1( )
( ) ( ) ( ) ,  ,  >0,

( )
d v
v vr d x x d

v
 




    


I the 

(conformable) fractional integral can be computed as ( )r d   of order ( , 1].v m m   

Indeed, if   such that 0v m    then 

1
1( ( ) .

( )
( ) )( ) ( ( ) ) )

)1
(

(
d vµ µ vd

v m
m µ m

I d x d x x d
µ

v
r r

v
  



 
    

 
I  

In a similar vein, the (conformable) right fractional integral for these functions can 

also be determined. Namely, 

1
1  

( )
( ( ) )( ) ( ( ) )( )  (   ,

1
)

( )

e µ µ µe v vm
v m

µ m
I r x d x e

v
e r

v
x

µ
   



 
   

 
I  

where   such that 0.v m    

Based on the foregoing analysis, it is observable as described The Riemann fractional 

integrals and conformable fractional integrals, when applied to polynomial functions, 

diverge merely by a constant factor, and align precisely for orders that are natural 

numbers. 

The subsequent semigroup property establishes a connection between the composition 

operator vI I  and the operator .vI   

Proposition 2.3 ([41]) Let :[ , )h d    be a function and 0 ,  1v    be such that 

1 2.v    Then 

2

0

.( )( ) ( )( ) (
1

( ))( )

rµ
v

v µ v v µ

r
h h h h

r
I I I I s s ds

µ µ
r r

µ
r  

     
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Proof By exchanging the sequence of integration and taking into account that  

 2 2
2

0

( ) ( ) ( ) ,( )( )

r

v v
v h hI s s rr r s s ds 


   
   I  

It is evident that 

   
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1 1

0 0
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1 1
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2

0
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                ( )

                ( )
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               ( ) ( ) ( ) .

( )( )
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v
v µ

r r

v

s

r

v

r

v
v v

dsh

r

r

r
h h h

I I h s s r dr

h s s dr ds

s
h s s ds

I r I r r s s d

r

s





 






 

 







 


 
 
 
 

 
 
 
 

 
 
 

 
 
 
 





 

  

 

 





 

Notice that if in Proposition 2.13 

 we let  ,  1v    we verify    1 1 2( ) ( ).h hI I r I r  

Reflecting upon the operational impact of the Q-operator with respect to fractional 

integration 

 ( ) ( ),  :[ , ]Qh r h d e r h d e      

on Riemann's left and right fractional integrals, it becomes evident that, 

.( ) ( )d e
v vhQ Qr h rI I  

Indeed, for ( , 1]v m m  we take 

1
1

1
1

( ) (( ) ( ))

         ,   (( ) ( )) ( )

d d m

v

v m

d m e

v

vm

r h r

e h

h d

r e rd h r

QI Q

I Q

r  


 




  



 

I

I
 

We now proceed to present a generalized form of Lemma 2.1. 



 

12 

 

Lemma 2.4 ([8]) Assuming :[ , )h d    such that 
( ) ( )mh r  is continuous and 

( , 1].v m m   Then, for all r d , we observe 

( ) ( ).d d
v v hI r h rR  

Proof Based on the established definition, it follows that: 

 

 

1
1

1
1               

( ) ( ) ( ) ( )

( ) ( )

m m
d d d d d d
v v v mm m

d d

d d
h h r d h

dt dt

r d h

I r R I r R I r

R I r


 









   
   
   





 



R
 

That it is ( ) ( )d d d d
v v h hI r I r R R  and  

hence the result follows by ( ) ( ),d d
v vR hI r h r  

Similarly, Lemma 2.2 can be generalised.  

Lemma 2.5 ([13]) Let us suppose that : ( , ]h e   with the condition that 
( ) ( )mh r  

exhibits continuity and ( , 1].v m m  In such a case,  for all r e  we have 

( ) ( ).e e
v vh r h rI R  

Lemma 2.6 ([25]) Let , :[ , )h w d    be a functions with the condition that 
d
vR  

exists for ,r d h  demonstrates the property of being differentiable over the interval 

of  ,d   and  
1

( ) ( ).
vd

vR h wr r d r


   In such a case ( ) ( )w r h r   for all .r d  

The proof follows by definition and setting  
1 v

w r d


    so that 0w  as 0.

As a result of Lemma 2.6 the following at stated 
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Corollarly 2.1 Let :[ , )h d e   be such that   ( )d d
v vR hI r  exists for .e r d   Then, 

( )h r  is differentiable on ( , ).d e  

Lemma 2.8 ([9]) Let : ( , )h d e   be differentiable and 0 1.v   Then, for all r d  

we have 

 ( )( ) ( ) ( ).d d
v vRI h r h r h d   

Proof Given that h  is differentiable, it can be deduced from Theorem 2.1 in [10] 

we have: 

1

1 1

( )( )

( ) ( ) ( )

( )( ) ( )

                ( ) ( )

r

d d v
v v v

d

r

v v

d

R x d R h x dx

x d x d x dx h r h d

I h r

h



 



   



 





 

( )( ) ( ) ( )d d
v vRI h r h r h d   can be generalized for the higher as below. 

Proposition 2.9 ([18]) Let ( , 1]v m m   and :[ , )h d    be ( 1)m   times 

differentiable for .r d  Then,  r d  we observe 

)(

0

( )( )
( )( ) ( ) .

!
d

k k

k

m
d

v v

h d r d
I h h r

k
r




 R  

Proof Drawing upon both the extant definition and Theorem 2.1 

   1 1
1

1
( ) ( ) ( ) ( ) ( )

!

r

d d m
v m

d

h h hI r r d r x x d x dx
m

  
    I  
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it can be concluded that and 

 

 

( )1
1

( 1)1 1
1

( 1)
1

( )( ) ( ) ( )

                 ( ) ( ) ( )

                 ( ).

md d d d
v v m

md
m

md
m

h

h

h

I h r I r d R r

I r d r d r

I r




 




 





 

  



R

 

Similarly, we can give the following Proposition 2.10, it can be established. 

Proposition 2.10 ([16]) Let ( , 1]v m m  and : ( , ]h e   be ( 1)m   times 

differentiable r e . Then for all r e  we have 

( )

0

( 1) ( )( )
( )( ) ( ) .

!

k

v

k k
e

v

k

m
e h e e r

I h r h r
k




 R  

In particular, if 0m   or 0 1,v   Then, 

( )( ) ( ) ( ).e e
v vI R h r h r h e   

Theorem 2.11 ([7]) Assume , : ( , )h g d    be (left) v   differentiable functions, 

where 0 1.v   Consider  ( ) ( ) .w r h g r  Then ( )w r  is (left) v   differentiable and 

for all r  with r d  and ( ) 0g r   we have 

       1( )( ) ( ) ( ) .d d d v
v v vw h g rR r R g r R g r    

If r d , it follows that: 

       1( )( ) lim ( ) ( ) .d d d v
v v v

r d
w h rR d R g r R g g r






   

Proof By setting 
1( ) vu r r d    within the definition and using the continuity of 

g it becomes evident that, 
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 

1

1

1 1

( ) ( )

( ( )) ( ( ))
lim

( )

( ( )) ( ( ))
lim lim

( ( ) ( ))

( ( )) ( ( ))
lim ( ) ( )

( ( ) ( ))

( )

( ) ( )
            

            ( )

            ( (

d v

v
u r

v

u r u r

v d v

v
g u g r

d

v

h g u h g r
w r

u r

h g u h g r
r

g u g r

h g u h g r
g r g r

g u g r

h

R r

g u g r

u r

g r R

R g







 

 



















 





   1)) ( ) ( ) .d v

vr R g r g r  

 

Proposition 2.12 ([17]) Let :[ , )h d    be twice differentiable on ( , )d   and 

0 ,  1v    such that 1 2.v     Then, 

 ( ) ( ) (1 )( ) ( ).d d d d
v vvh h hR R r R r r d R r

   
     

Proof  Using the fractional product rule and taking into account the fact that h  is twice 

differentiable, we have: 

  1 1

1 1

( ) [ ( ) ( )]

                  [ ( ) (1 )( ) ( )]

                  ( ) (1 )( ) ( ).

v

v

d d

v v

d d
v h

h h

h h

d
h r r r r d r

dt

r r r r d r

R r r d R r

R R  

 











   

    





 

   

   

 

Note that in  

 ( ) ( ) (1 )( ) ( )d d d d
v vvR h h hR r R r r d R r

   
     

if we let ,  1v    then we have 

2( ) ( ) ( ).d
v h hR R r R r h r

   

Subsequently, we introduce a fractional adaptation of the Gronwall inequality, which 

serves as a valuable instrument for assessing the the analysis involves examining the 

stability of (conformable) fractional systems during analysis. 
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Theorem 2.13 ([2]) Let z be a continuous, nonnegative function on an interval

[ , ]J d e , let , k  be a nonnegative constant such that  

1( ) ( )( )      ( ),

r

v

d

z r s s d ds Jkz r      

Then  for all r J  

( )

( ) .

vr d
k

vz r e


  

Proof Define  

1 ( ))((( )( ) .) )(

r

v

d

Is d dds s rv kzkzZ sr        

Then ( )Z d   and ( ) ( )Z r z r  and 

( ) ( ) ( ) ( ) ( ) 0.( )d
v kZ r kz r k zZ r Z r kz r k rR        

Multiply, 

( ) ( ) ( ) ( ) ( ) 0( )d
v kZ r kZ r kz r kZ r kz r z rR       

by, 

( )

( ) .

vr d
k

vr e




   

Utilizing the chain rule as presented in theorem 2.11 

       1
( ) ( )( ) ( )d d d

v v v

v
w h g r g rR r R g r R   , we see that 

( ) ( )d

vR r rk   
 

and therefore, using product rule, we can deduce that 

( ( ) ( )) 0.d
vR r Z r   
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Since ( ) ( )r Z r  is differentiable on ( , )d e  in such a case, Lemma 2.8 

( ) ( )( )( )d d
v vR h r h dI h r   implies that  

( ( ) ( )) ( ) ( ) ( ) ( ) ( ) ( ) 0.d d
v v r Z r r Z r d Z d r Z rI R        

Hence, 

( )

( ) ( )
)

vr d
k

vz r Z r e
r






  


 

which completes the proof and that 

To conclude this section, we discussion of the conformable fractional derivative at d  

in the left side and at e  in the right side case for some smooth functions. Let 

1m v m    and assume :[ , )h d    be such that 
( )mh r  exists and continuous. 

Then,  

( 1) ( )
1( )( ) ( )( ) ( ) ( )d d m m v m

v v mR h r R h r r d h d 
     

and thus  

( )lim( )( ) ( ) ( ) 0.d m v m
v r d

R h d r d h r




  

 

Simirlarly, in the right case we have 

( )lim( )( ) ( ) ( ) 0,e m v m
v r e

R h e e r h r



    for ( , ]e   

with ( )mh r  exists and continuous.  

At the same time, let 0 1v   and {1,2,3,...}m  then, the left or the right sequential 

conformable fractional derivative of order m  is defined by 

( ) ( ) ... ( )m d d d d d d d
v v v v v v v

m times

R h r R R R R R R h r



  
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and 

( ) ( ) ... ( ),e m e e e e e e
v v v v v v v

m times

h hR r R R R R R R r



  respectively.  

If :[ , )h d    is second continuously differentiable and 
1

0
2

v   then direct 

calculations then 

1 2 2 2
(2) (1 )( ) ( ) ( ) ( )        ,

( ) ( )
0                                                                  .

v v
d d d
v v v h

v r d h r r d h r if r d
R r R R r

if r d

   



    
 


 

If : ( , ]h e   is second continuously differentiable and 
1

0
2

v   then direct 

calculation then 

1 2 2 2
(2) (1 )( ) ( ) ( ) ( )        ,

( ) ( )
0                                                                 .

e

v v
e e

v v v

h h
h

v e r r e r r if r e
R r R R r

if r e

   



    
 


 

This observation under goes that the second order equential conformable fractional 

derivative may not be continuously, that h  is second continuously differentiable for 

1
1.

2
v   If we proceeding inductively, it becomes apparent that if h  is m

continuously differentiable and 
1

0 v
m

    then, the sequential conformable fractional 

derivative of m th order continuous and equals zero at the endpoints ( d  in the left 

case, e  in the right case). 

2.2 Integration by Parts 

Theorem 2.2.1 ([11]) Let , :[ , ]h g d e  , be two functions such that hg  is 

differentiable. Then, 

( ) ( ) ( , ) | ( ) ( )( ) ( , )

e e

d e d
v vd

d d

h x R g x dv x d hg g x R h x dv x d    

The subsequent proof, which was then presented lemma 2.8 applied to hg  and 
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 
1

0
lim

( ( ) ( )
( ) .

v
e
v

h r e r h r
Rh r





  
 


 

The subsequent formula for integration by parts is presented through the utilization of 

fractional integrals performed on both the left and right sides. 

Proposition 2.2.2([16]) Let , :[ , ]h g d e   be functions and 0 1.v  Then, 

( )( ) ( ) ( , ) ( )( )( ) ( , ).

e e

d e
v v v v

d d

hI r g r d e r h r I g r d r d   

Proof From the definition we get 

1 1( )( ) ( ) ( , ) ( ( ) ( ) ) ( )( ) .

e e r

d v v
v v

d d d

h hI r g r d r d x d x dx g r e r dr       

When the order of integrals is interchanged, we arrive at 

( )( ) ( ) ( , ) ( )( )( ) ( , )

e e

d e
v v v v

d d

h gI r g r d e r h x I x d x d   

Completes the proof. 

Following this, proposition 2.2.2 

 ( )( ) ( ) ( , ) ( )( )( ) ( , )

e e

d e
v v v v

d d

hI r g r d e r h r I g r d r d   to prove an integration by parts 

formula by means of left and right fractional derivatives. 

Theorem 2.2.3 ([22]) Let , :[ , ]h g d e  , differentiable functions and 0 1.v   

Then, 

( )( ) ( ) ( , ) ( )( )( ) ( , ) ( ) ( ) | .

e e

d e e
v v v v d

d d

h RR r g r d r d h r g r d e r h r g r    
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Proof By  Proposition 2.10 and that g  is differentiable , we have 

( )( ) ( ) ( , ) ( )( ) ( ) ( , )

                                      ( ) ( )( ) ( , ).

e e

d d e e
v v v v v v

d d

e

d
v v

d

Rh

h

R h r g r d r d R r I g r d r d

g e R t d r d





 



 

Applying proposition 2.2.2 leads to 

( )( )( ).

( )( ) ( ) ( , ) ( )( ) ( ) ( , )

                                     d d
v v

e e

d d d e
v v v v v v

d d

R

g e I R h d

R h r g r d r d I R h r g r d e r



   

The proof is completed by the help Lemma 2.8 by substituting 

( )( ) ( ) ( ).d d

v vI R h r h r h d   using that h  is differentiable and by the help of 

proposition 2.10, and that g is differentiable by substituting

( )( ) ( ) ( ).e e

v vI R g r g r g e   

Remark 2.2.1 Notice that if in theorem 2.2.1 or theorem 2.2.3 we get 1v  , then we 

obtain the integration by parts formula in usual calculus, where we have to note that  

( , ) ,  d ( , ) ,  R ( ) ( )d
v v vd r d dr e r dr h r h r    

and  

( ) ( )e
vR h r h r  as 1.v   

In theorems 2.2.1 and 2.2.3, certain differentiability conditions were necessary. In the 

subsequent discussion, we proceed to define specific function spaces within which the 

derived integration by parts formulas remains valid. 
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Definition 2.2.1 ([37]) For 0 1v   and an interval [ , ]d e  define 

([ , ]) { :[ , ] : ( ) ( )( ) ( ),d
v vI d e h d e h x I x h d   

 

 for some  

( )},vL d    

and  

([ , ]) { :[ , ] : ( ) ( )( ) ( ),v e
vI d e g d e g x I x g e      

for some  

( )},vL e   

where 

( ) { :[ , ] }: ( )( )d
v vL d d e I x    exists for all [ , ]},x d e  

and 

( ) { :[ , ] }: ( )( )e

v vL e d e I x    exists for all [ , ]}.x d e  

Lemma 2.2.4 ([19]) Let , :[ , ]h g d e   be functions and 0 1.v   Then 

(a) If h  is left (g is right) v   differentiable then  

([ , ])( ([ , ])).v vh I d e g I d e   

(b) If ([ , ])vh I d e  with ( ) ( )( ) ( )d
vh x I x h d   

where   is continuous then  

( ) ( )d
vx R h x   and ( )( ) ( ) ( ).d d

v vI R h x h x h d   

 

(c) If ([ , ])vg I d e  with ( ) ( )( ) ( )e
vg x I x g e   

where   is continuous then ( ) ( )e
vx R g x   and  

( )( ) ( ) ( ).e e
v vI R g x g x g e   
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Proof  The proof of (a) follows by lemma 2.8 and  proposition 2.10 by choosing 

( ) d
vr R h    and  ( ) .e

vr R g   

The proof of (b) follows by lemma 2.1 and the fact that the left v   derivative of 

constant function is zero. The proof of (c) follows by lemma 2.2 and the fact that the 

right v   derivative of constant function is zero. 

Theorem 2.2.5 ([39]) Let , :[ , ]h g d e   be functions such that ([ , ])vh I d e  with 

( )r  is continuous and ([ , ])vg I d e  with ( )r  is continuous and 0 1.v    

Then 

( )( ) ( ) ( , ) ( )( )( ) ( , ) ( ) ( ) | .

e e

d e e
v v v v d

d d

R h r g r d r d h r R g r d e r h r g r    

Proof The proof is similar to that in theorem 2.2.3, where we make use of (b) and (c) 

in lemma 2.2.4. 

2.3 Fractional Power Series Expansions 

In this section we set the fractional power series expansions so that those functions 

will have fractional power series expansions. Certain functions, being not infinitely 

differentiable at some point, do not have Taylor power series expansion there. 

Theorem 2.3.1 ([24]) Assume h  is an infinitely v   differentiable function, for some 

0 1v   at a neighborhood of a point 0.r  Then h  has the fractional power series 

expansion: 

 0

0 (
1/0

0 0

)

0

( ) ( )
( ) ,

!
 ,  Z>0.

k kv

k

k

r
vv r

k

R h r r
h r r r r Z

v






     
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Here, 0 (
0

)( ) ( )r

v
kR h r  means the application of the fractional derivative k  times. 

Proof  Assume  

2 3 4 5
50 1 0 2 0 3 0 4 0 0

1/
0 0

( ) ( ) ( ) ( ) ( ) ( ) ...,

             , 0.

v v v v v

v

h r c c r r c r r c r r c r r c r r

r r r Z Z

          

     

Then, 0 0( ) .h r c  

Apply 0r

vR  to h  and evaluate at 0r  we see that 0

0 1( )( )r
vR h r c v  and hence 

0

0
1

( )( )
.

r

vR h r
c

v
  Proceeding inductively and applying 0r

vR  to h  m  times and 

evaluating at 0r  we see that 

0 ( )
0( ) ( ) (2 )(3 )(4 )...( ) !r m m

v mR h r c v v v v mv v m    and hence  

0 ( )
0( ) ( )

.
!

r m
v

m m

R h r
c

v m



 

Hence theorem 2.3.1 
 0

0

(
1/

0 0

)
0

0
!

( ) ( )
( ) ,  ,  Z>0

r k k

k

v

k

v r
h

k

R h r r
r r r r Z

v






     

is derived, this concludes the proof. 

Proposition 2.3.2 (Formulation of Fractional Taylor Inequality). Assume h  is a v 

differentiable function, for some 0 1v   at a neighbourhood of a point 0r , has the 

Taylor power series representation as denoted by theorem 2.3.1 

 0

0

(

1/0

0 0

)

0

( ) ( )
( ) ,    ,  Z>0

!

r

v

k k

k

v

v

k

r

k

R h r r
h r r r r Z

v





     

such that 

 0 1| ( ) | ,  M>0
r m

vR h M   for some .m  Then, for all 0 0( , )r r Z  
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( 1)
01

| ( ) | ( ) ,
( 1)!

v v m
m m

M
Z r r r

v m



 


 

where  

 0 0
0

( (
0 0

) )

1

0

0

( ) ( ) ( ) ( )( )
( ) ( )

! !

k kv k kv

k

r m r
vv v

kk m
k

m

rR h r r R h r r r
Z r

k
h x

v v k 


  
     

The proof is similar to that in usual calculus, by applying 0r
vI  instead of integration. 

Example 2.3.1 Let's contemplate the fractional exponential function 

0( )

( ) ,v

r vr

h r e





where 0 1.v   Notably, the function ( )h r  is evidently devoid of differentiability at 

0r , thereby negating the possibility of establishing a Taylor power series 

representation around 0.r Nevertheless, 0 (
0

)( ) ( ) 1r m
vR h r   holds true for all m , 

consequently yielding: 

0

0

!

( )
( )

kv

k

k

r r
h

v k
r






   

The application of the ratio test shows that this series converges to h  on the interval 

0[ , ).r   

Example 2.3.2 The functions 0( )
( ) sin

vr r
g r

v


  and 0( )

( ) sin
vr r

h r
v


  do not 

possess taylor power series expansions with respect to 0r r  for 0 1v  as they lack 

differentiability at those points. However, with the aid of equation  

 0
0

(
1/0

0 0

)

0

( ) ( )
( ) ,    ,  Z>0

!

r

v
k k

k

v
v

k

r

k

R h r r
h r r r r Z

v


 
     

and the fact that 

0 0 0( ) ( )
sin cosr

v v

vR
r r r r

v v

 
  and 0 0 0( ) ( )

cos sinr
v v

v

r r r r
R

v v

 
   
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we can see that 

0

(2

0

1
0

(2

)

1)
0( ) ( )

s n
1)!

i ( 1) ,  [ , )
(2

k
k

k

k

v vr r r r
r r

v v k









 
  


  

and 

0

(2
0

)
0

0(2

)( ) ( )
cos ( 1) ,  [ , ).

2 )!(
k

v vk

k

k

r r r

k

r
r r

v v





 
     

Example 2.3.3 The function 
1

( )

1
v

h x
r

v





 is devoid of a taylor power series 

representation in the vicinity of 0r   for 0 1,v  as they lack differentiability at 

those points. However, with the aid of eq.  

 0
0

(
1/0

0 0

)

0

( ) ( )
( ) ,    ,  Z>0

!
v

k kv

k

v

k

r
r

k

R h r r
h r r r r Z

v


 
     

we can observe that 

0

1
,   [0,1)

1

vk

k

v
r r

r

v





 


  

Or more generally, 

0

0

0 0

0

1
( ) ,   [ , +1).

( )
1

v

v

k

k

r r r r r
r r

v





  



  

Remark 2.3.1 In case the function h  is defined over ( , )d , and not differentiable 

at d  we search for its conformal right fractional order derivatives d
vR  at d for some 
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0 1v  , use it for our fractional taylor series on some interval ( , ),  Z>0.d Z d A 

prime illustration of such functions includes 
( ) ( )

,sin
v vd r d r

v v

 
. 

2.4 The Fractional Laplace Transform 

This section is devoted to introducing the fractional Laplace transform and its utility 

in solving linear fractional equations, resulting in the emergence of the function 

representing exponential growth with a fractional exponent. Following this, we utilize 

the successive approximation method to confirm the solution, leveraging The 

representation of fractional power series that was previously mentioned. Furthermore, 

we perform Laplace transform calculations for specific (fractional) functinos. 

Definition 2.4.1 ([21]) Let 0 ,  0< 1r v   and 0:[ , )h r    as real valued function. 

Then the fractional laplace transform of order v , starting from d of h  is defined by: 

0 0

0 0

0 0

( ) ( )
1

0 0{ ( )}( ) ( ) ( ) ( , ) ( )( ) .

v vr r r r
s sr r vv v

v v

r r

L h r s F s e h r dv r r e h r r r dr

  
 

      

Theorem 2.4.1 ([23]) Let ,  0< 1d v  , and : ( , )h d    are differentiable real-

valued functions. Then, 

{ ( )}( ) ( ) ( ).d
v v vL R h r s sF s h d   

Proof The proof entails a sequence of steps, commencing with the definition, followed 

by the utilization of theorem 2.1 equation 

   1 1
1

1
( ) ( ) ( ) ( ) ( )

!

r

d d m
v m

d

I h r r d h r x x d h x dx
m

  
    I  
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 in [10] and culminating with the application of the conventional integration by parts 

technique. 

Example 2.4.2 Let's examine the conformable fractional initial value problem: 

0( )( ) ( ),  ( ) ,  .d
vR y r y r y d y r d    

In this context, we make an assumption that the solution possesses differentiability 

within the domain on ( , ).d   

Employ the operator d
vI  to consider the equation mentioned above for the purpose of 

deriving  

0( ) ( )( ).d
vy r y I y r   

Then  

1 0 ( )( ),    0,1,2,...d
v mmy y I y r m     

For 0m   we understand that 

( ) ( )
1 .

1 0 0 0

v vr d r d
y y y y

v v
 

  
    

 
 

For 1m   we perceive that 

2 0

2( ) ( )21 .
(2 )

v vr d r d
y y

v v v
 

  
   

  

 

 

By proceeding inductively, we arrive at the conclusion that: 

0

0

)

!

(
.

k kvm

m k

k

y
k

r d
y

v






   
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Letting m  we understand that 

0

0

( )
( ) .

!

k kv

k

m

k

r d
y r y

v k






   

This expression is evidently the power series representation of the fractional 

exponential function using Taylor series 
( )

0 .

vr d

vy e




 The subsequent lemma 

establishes a connection between the fractional Laplace transform and conventional 

Laplace transform. 

Lemma 2.4.2 ([10]) Consider 0:[ , )h r    let there exist a function for which 

0 0{ ( )}( ) ( )
r r

v vL h r s F s  exists. Then 

0 1/

0( ) { ( ( ) )}( ),
r v

vF s h r vr s   

where 

0

( ){ ( )}( ) .sr
g r drg r s e



    

The proof follows easily by setting 0( )
.

vr r
u

v


  

  



 

29 

 

Chapter 3 

PRELIMINARIES 

We initiate our discussion by creating specific function spaces, introducing the notion 

the application of the conformable derivative and conformable integrals and providing 

a detailed explanation of the analytical representation of a solution to the conformable 

linear equation. These fundamental components are essential prerequisites for our 

subsequent discussions and analyses presented in this study. 

  , .d d dimensional Euclian space. 

   0, , ,  . dC R


   A Banach space comprising continuous functions 

originating from [0,R]  to d  with the norm in infinity (supremum) norm. 

   
    

     

1: 0, : , , ,  
PC 0, ,

0,1, ,  ,  

d d

k kd

k k

y

r

R y C r
R

k y y y

r

r r



 

   
  

     

∶ equipped with the 

norm   sup :0 .
PC

y y r r R  ∶   

 

v v

A

0

r r
e exp A

v v !

vm
m

m

m

r
A

m v





   
   
   

    
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Definition 3.1 ([4]) The conformable derivative with a lower index of  0  of the 

function :[0, )y    is defined as follows: 

 
 

   

1

0
0

0 0
0

( )
lim ,  0,   0 1,

0 lim .

v

v

v

v

r

y r r y r
E y r r v

E y E y r















 



 
 



 

Remark 3.1 We note that the conformable derivative  0 ,  0,vE y r r  exists if y is 

differentiable at r   and  

   1
0 .v vE y r r y r   

Definition 3.2 ([4]) The conformable integral with a lower index v  of a function

:[0, )y    is defined as follows: 

   1
0

0
,  0,  0 1.

r
v vI y r s y s ds r v     

Lemma 3.1 ([1]) A solution   0, , dy C R  of the linear system 

       
 
0 0

0 0  ,

,  , ,  0 1,  0, , ,

                                                                                    

v dE y r Ay r h r r r R v h C R

y r y

       



     


 

has the following form: 

   
0

0
0 10 .

v v vv
v

A
r

A

rr rr
y r e y e h s s ds

v v v

r  



  
     

  

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Proof It is clear that 

1 '0 0

0

v v v

v v

v

A A

r r r r
E e r

v
e

v


 


   
   
   

  

 
 

1

1

0

1

1

1

0

=
1 !

= .

                         

v v

v

m

v

m

v n

m

A

v

r r
r A r

m

r r
e

v

v
A
















 
 
 



 

Thus,

 

0

0 0
0 0

1( ) ( ) ( )

            = ( ).

r

v v vr

v

A

v
v

A
v v v

r r rr
E y r Ae y A e h s s ds h r

Ay r

   
      

   

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Chapter 4 

LINEAR SYSTEMS 

In this section, our objective is to derive the analytical expression that represents the 

solution to equation (2). 

Theorem 4.1 ([1]) A solution ([0, ], )dy PC R  of the solution to eq. (2) has the 

following form: 

  

 
 

   
1

0

1

0 0 1

1
1

0

1

1

1

1

,   0 ;

( ) ( )

i

i

v

i

r

v v vr
v

A A

v
v v

j jk
A A

k

v vk iv v
j jk

A A

i j k

vr
v

i A
r

v

A

j

j

j

h
r r s

e y e s s r ds r r
v v v

r rr r
e I C e y

v v

r rr r
y r e I C e

v v

r s
I C e h s s ds

v v

r
e

v













 



   
       

   

     
  
 

  
       

   

 
   

 











1

1( ) ,  ,  1, 2,..., .

k

r v
v

k k

r

s
h s s ds r r r k p

v




















  

     
 





    

 

Proof For 10 ,r r   using lemma 3.1, we have:  

  1

0

( ) (0) .

v v v

v

A A

r rr s
y r e y e h s s ds

v v v


  

   
   
   

  

 

 

(3) 
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For 1r r , we have 

1

1

1
0

1

1

1

1

1

0

1 1

                

        ( ) ( ) .                                          

( ) ( ) ( )

        ( )

r

v

A

v
v

A

v

r

r

y

v
y

s

r y r C y r

I C e

e
v

ds
v

I C h s s

 

 
 



 

 

 





 



 
 

 

Moreover, for 1 2r r r  , we use the following calculation to obtain 

 

 

 

1

1

1

11
1

1 1
1 0

11 1
1

0

1

( ) ( )

      ( )

      ( ) ,

      

v v v v

A

v v v

A

v

r

v

A

r

A

r

v

r

v

A

v v v

A A

v v

r

r r
r

r r

r r

r

y e
v v v

r s
r y e h s s ds

r
I C e y

r s
I C e h s s ds

s
e h s s ds

e
v v

e
v v v

v v

 





   
     

  

   
   

   

   
     

   

 
 



 
 







 

where 1( )y r is given by equation (4). This means that theorem 4.1 holds for 1k  . 

Now, suppose that the formula (3) is true when k m . Reasoning using the 

mathematical induction for 1,k m  we  have 

 

   

1

1

11
1

11
1 1

( ) ( )

      ( )

m

m

r

r

r

v
v

m
m A

r

vm
m

v v v

A

v v v v

A m A

r
r

r r
r

r r s
y r y e h s s ds

r s
I C y e h s s ds

e
v v v

e
v v v





 


 
 

   
     

  

   
      

  




  

(4) 
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   

   

 
1

1
11

1 0

1
11

1

1

1

1

 

 

( )

i

i

r

r

j jm m
m A j A

j m

im
j jm m

m A j A

i

v vv v v v

A

v

v

vv v v v

A

v

A

v

m

v

j m

vi
i

A

rr r

rr r

r

r

rr r
I C e I C e y

rr r
C

e
v v

I e I C e

s
I C h s s d

r

v

e
v v v

e
v

v

s
v

e













 





     
         

     

     
         

     

 
   

 

 
 









 
1

11
1

1

( )

( ) .

m

m

m

r

r

r

vm
m A

r

v

v

v v

A

v
r

r

s
I C e h s s ds

s
e h s

v

v
s

v

ds
v








  
   

  

 
  

 





 

Consequently, it can be deduced that 

 

 

1

1
11

0

1

11
11

1 1

1

1

( )

     

      ( ) ( )

     ( ) ,

i

i

m

r

r

r

j jm
j

j

v vv v

A A

v vv v

A A

v

A

v vr

m

im
j jm

j

i j m

v
vi

i

v

A

rr

rr

r

r

rr
y e e

v v

e e
v v

e

e h

v

r I C y

rr
I C

s
I C h

v

v
s

v

s s ds

s
s ds





 




  





  
      

   

  
      

   

 
   

 

 
  

 







 1 2 r .m mr r  

 

Hence, we can assert the validity of theorem 4.1 for 1,2,...k   In conclusion, this 

marks the completion of the proof. 

Theorem 4.2 ([40]) Assume that X is a Banach space,  [0, ], . B PC R X  

Suppose that 

(i) B is a uniformly bounded subset of ([0, ]), )PC R X ; 

(ii) B is equincontinuous in  1, ,  0,1,...,k kr r k p  ; 
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(iii)    21 ,  and( ) : ( ) : ,  [0, ] \{ , ..., } ,  ( ) : ( ) :p k kB r x r x B r R r r r B r x r x B     

 ( ) : ( ) :k kB r x r x B   are relatively compact subset of X. Then, B is a 

relatively compact subset of ([0, ]), ).PC R X  
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Chapter 5 

EXISTENCE OF SOLUTIONS 

The iterative approach and the Schauder fixed point method are prevalent techniques 

frequently employed in the investigation of solutions within the realm of conformable 

impulsive semilinear/nonlinear differential equations. It's worth noting that the 

iterative method is a versatile approach that allows for the demonstration of both the 

existence and uniqueness of solutions. In contrast, the Schauder fixed point method is 

primarily used to establish the existence of solutions but does not typically address the 

issue of uniqueness. 

These two methodologies stem from disparate mathematical foundations and 

techniques, each contributing distinctive perspectives regarding solution properties in 

the realm of these equations. Consequently, they synergize to yield a comprehensive 

comprehension of the solutions at hand. 

The Picard iterative method, which is a numerical approximation technique, is 

employed to determine whether a solution exists and, if so, whether it is unique for 

initial value problems in ordinary differential equations. This method involves the 

iterative construction of a sequence of functions, with the aim of eventually converging 

to the solution of the given equation. 
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The Picard approximation method entails several fundamental steps, which can be 

outlined as follows: 

 Commence with the initial value, customarily denoted as 0y  

 Employ this initial value as the foundation for defining a sequence of 

approximations, denoted as 1 2 3 4, , , ,...,y y y y where each subsequent approximation 

depends on the prior one and the right-hand side of the given differential equation. 

 Demonstrate the convergence of this sequence towards a solution of the differential 

equation while establishing the uniqueness of this solution. 

Upon successful completion of these procedures, the Picard approximation method 

provides a rigorous demonstration of both the presence and distinctiveness of the 

solution for the specific differential equation under consideration. Therefore, in this 

section, we utilize the Picard approximation method as our primary analytical 

instrument to establish and support our core findings, particularly the theorem 

regarding the existence and uniqueness of solutions. 

In the course of this section, we shall also rely on certain underlying assumptions, 

which are delineated as follows: 

Hypothesis 1        , [0, ] , .d dh C R   1H .   

   0  [0, ]  ,  

                                                 ( , ) ( , ) .

d

h

h

L such that for any r R and x y we have 

h r x h r y L x y

   

  

2Hypothesis 2 H .
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It is clear that, 

( , ( )) ( ,0) ( , ( )) ( ,0) ( ) ( ,0) ,
h

h r y r h r h r y r h r L y r h r      

consequently, 

 : sup ( , ( )) :  [0, ],  h zM h r y r r R y B    

exists. 

Theorem 5.1 [(1)] Assume that  1H  and ( )2H  hold. Then, the  semilinear equation 

(1) has a unique solution in the space of piecewise continuous functions

([0, ], ).dPC R   

(5) 
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Proof For the initial (zeroth) approximation, we choose 
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According to  1H , (6) is well defined. 

The firs stage: For any n , we prove that n zy B . 

(i) For 1n   and 1[0, ]r r , we have 

(6) 
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It follows that for any 1n   
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For 10 r r   we have the similar estimate.  
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2 2 2

2 1 2

1
( ) ( ) ( ) .                           

2!

v

h hy r y r L K R M r
v

   

By Mathematical induction, assume that 

1

1

1
( ) ( ) ( )

!

n n nv

n n h hn
ry r y r K R L M

n v



   

holds for a natural number n and  0,r R .Then, for  0,r R , according to  2H , 
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Hence, the sequence of approximating functions { ( )}ny r is uniformly convergent on 

[0,R]. So   [0, ], dy PC R  , such that ( )ny r  uniformly converges to ( )y r  on [0,R].  

The third stage: We claim that the limit y is a solution of  the semilinear equation (1). 

The sequence ( ) ( )
uniformly

ny r y r on [0, ],R  so the sequence of functions ( , ( ))nh r y r

converges uniformly to the continuous function ( , ( ))nh r y r  on  [0,R]. For all [0, ],r R

we have: 

(12) 
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                 ( ).y r  

The fourth stage: The solution is unique. 

Suppose t  is another solution of (1). Using the condition  2H similar to equation (12) 

we have 

1
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( ) ( ) ( ) ( ) ( ) .
r v v

v
h A

r s
y r t r K R L e y s t s s ds
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Applying the Gronwall’s inequality  (conformable version),  we get: 

( ) ( ) 0 ( ) ( ),  0, .y r t r y r t r r R        

The proof is complete. 

Schauder's fixed point theorem is a prominent outcome in the field of mathematical 

analysis. This proposition states that when a continuous and compact operator is 

employed on a metric space that is complete, it will always have a point that remains 

unchanged, known as a fixed point. This theorem has broad utility and can be used to 

establish the presence of solutions to various mathematical challenges, including 

differential equations and integral equations. However, to effectively utilize 

Schauder's fixed point theorem, specific conditions and prerequisites must be satisfied:  

 The operator needs to demonstrate both continuity and compactness. 

 The metric space that the operator maps to must possess the property of 

completeness.  

 The result generated by the operator must stay within the boundaries of the 

metric space .  

Once these criteria are met, Schauder's fixed point theorem ensures that the operator 

in question will have a fixed point. 

In light of these conditions, we employ Schauder's fixed point theorem to substantiate 

our second principal result, specifically, the existence theorem. These assertions are 

made under the following assumptions. 
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  :[0, ] d dh R  3Hypothesis 3 H .  is measurable in the first variable and  

continuous in the second variable. 

 4Hypothesis 4 H . There exists a positive constant 0hM   such that, for any 

 0,r R  and 
dy we have 

  ., hh r y M  

Theorem 5.2 ([1]) Assume that  3H and  4H hold. Then, equation (1) has at least 

one solution in   0, , .dPC R  
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Step 1. We prove that   .z zH B B  

For zy B and any  0, ,r R we have: 
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Step 2. We prove the continuity of the nonlinear operator H. 

Let ny be a sequence with ny y in zB  as n  . For any  0, ,r R we have: 

     nHy r Hy r  

     
1

1

0

, ( ) , ( ) .
r v v

v
j nA

j p

r s
I C e h s y s h s y s s ds

v




 
 
 


     

From the assumptions  3H and  4H it follows that 
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is integrable with respect to  0, .s R  

It remains to apply the Lebesgue dominated theorem to get continuity of H. 
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Step 3. We prove that the set  zH B is equicontinuous. 
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on [0,R] implies that       0HH yy r r    as 

0.  So,  zH B is equicontinuous. 

Step 1-3 with theorem 4.2 when dX  say that the nonlinear operator : z zH B B

is compact. Therefore, the Schauder FPT implies that H has a fixed point in 

  0, , .dPC R The proof is complete. 
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Chapter 6 

COMPLETE CONTROLLABILITY 

6.1 Linear Systems 

Consider  

   

       

 

0

0 1

0

( ) ,  0, ,  0 1,

,  1,2,, , ,  0,  ,
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E r r r
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y Ay r Bu R v
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
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

=     

Definition 6.3 ([1]) The system equation (13) is said to be completely controllable on 

[0,R] if, given an arbitrary initial vector function 0y and v  terminal state vector Ry  at 

time R, there exists a control input  2 [0, ], ,ru L R such that the condition of the 

system   0, , dy PC R  satisfies ( ) .Ry R y  

In other words, the system possesses the capability to transition from any given initial 

state to a predetermined terminal state through the application of an appropriate control 

input. Complete controllability stands as a pivotal attribute within control theory, as it 

guarantees the system's adeptness in being harnessed and directed to attain a desired 

behavior. 

To define the impulsive controllability operator, we introduce the continuous linear 

bounded operator  2: [0, ], z dM L R  as follows 

(13) 
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Before stating the controllability result, we introduce the adjoint operator
*.M  

Lemma 6.2 ([1]) The adjoint operator  * 2: [0, ],d zM L R has the following 

form 
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Proof Letting * *

0

(0) 0 in (13) yields ( ), , , ( ), ( ) ,
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which implies 
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Lemma 6.3 ([1]) The operator *MM has the following form 
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v vv vp
pk k

i A k

k i

r r

Rr

s s
I C e BB e ds

v v

rr
I C e I C e

v v





 

 
 


  

   
   
   

  
  

   





T T

T T T T
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Proof Indeed  

   

1

1
1*

1

i

i

r

r

v vv v p i
j jk

A A
i j p

v vv v
i k

A A

j i

rR

rr

rr
MM e I C e I C

v v

ss
e BB e ds

v v








 

  
    

   

  
  

   


  







T T

   1

1

.

pr

v vp v v
pk k

i A Ak
k i

R v v v v

A A

Rr

R R

rr
I C e I C e

v v

s s
e BB e ds

v v







 

  
    

   

   
   
   


  

 






T T T T

T T

 

Obviously 0, :p

p

r

r

b d d   are non-negative. 

Therefore, we can introduce the controllability Gram matrix as follows: 

*
0 .p

p

r

r

RMM    

Theorem 6.5 ([1]) The linear conformable impulsive equation (13) is controllable on 

[0,R], if and only if the d d matrix 

*
0
p

p

r

r

RMM    is invertible. 

Proof Since the operator  2: 0, , dzM L R     is linear and bounded. By 

proposition  2.2 (iii)[41], the complete controllability of (13) is equivalent to the 

invertibility of the matrix 
*.MM  

The matrix *MM is called the conformable controllability Gramian and it is positive 

semidefinite, that is, 

 0  for all .0,p

p

r d

r

R yy y   
Τ
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Corollary 6.1 In the context of conformable calculus, the linear equation (13) with 

impulsive characteristics demonstrates complete controllability within the domain on 

[0,R], if and only when the d d conformable fractional controllability Gram matrix 

is positive definite. 

Proof By *
0
p

p

r

r

RMM    The full controllability of equation (13) is synonymous 

with the matrix's invertibility
*,MM  corresponds to the positivity of

*.MM  

Corollary 6.2 The conformable impulsive linear equation (13) is completely 

controllable on [0,R], if 0
pr

 or 
pr

R is positive definite. 

Proof By Theorem 6.5 - *
0
p

p

r

r

RMM    -, The linear conformable impulsive 

equation (13) is completely controllable on [0,R], if and only if the d d  matrix is 

positive definite: 

 0 for all 0 .0,  p

p

r d

r

R yy y    
Τ

 

Since 0
p

p

r

r

R   is positive semidefinete, the positivity of 0
p

p

r

r

R   is equivalent to 

the positivite definity of 0  or .p

p

r

r

R   

Corollary  6.3 The conformable impulsive linear equation (13) is controllable on 

[0, ]R  if { B  AB 2A B 1dA B } is equal to the system's dimension, denoted as ‘'d'.

2 1rank      A .{ }  dB AB B A B d   
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Proof It is known that the positivity of 
pr

R  is equivalent to the Kalman rank condition: 

rank { B  AB 2A B 1dA B }= d. 

Therefore, according to corollary 6.2, the conformable impulsive linear equation (13) 

exhibits controllability within the context on [0,R]. 

6.2 Semilinear Systems 

We delineate the following assumptions: 

Assumption 1 1(A ). Conformable controllability Gramian matrix 0
p

p

r

r

R   is 

invertible. 

Assumption 2 2(A ).There exists a positive constant 0hM   such that for any 

[0, ]r R  and 
dy , we have 

( , ) .hh r y M  

In view of 1(A ) , for any   0, ,dy C R  consider a control function  ;u r x

defined by  

   

   

 

1

1
11

0 0

1
1

1

* )

( ( ( ))

, ( ) .

; : ( p

p

i

i

p

r

r

r

r

r

v vv v
j jR k

jR A A
j

v vv v p v vi
j jk i

j iA A A
i j p

R v v

A

rr

rR r
h

u
rr

y e I C e y
v v

rr s
e I C e I C e s y s ds

v v v

R s
e h s y s s

v

M

d

r y










 

   
         

    
     

    

 
 
  


   

 
 











 



 

Subsequently, we prove our main result via FPT. We firstly show that, using control 

( ; )u r y , the operator  P:      0, , 0, ,d dPC R PC R defined by 
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  

 

 

 

0 1

0

1
1

1

0

1
1

1

( , ( )) ( ; ) ,  0 ;

:

( , ( ))

v v v
v

v v

r

A A

j j

jA A
j

i
j j

jA A
i j

i

v v
k

k

v vv v k
k

i A

k

v v

r r

rr

rr

r

s
e y e h s y s Bu s y s ds r r

rr
e I C e y

rr
P

v

y r
v

e I C e

s

v v

v v

v

s
I C e h y s








 

   
      

   

  
    

   

  
    

   

 
 
 


   





  


  







1

1

1
1 1,2,..)

( ; )

( , ( .) ( ; ) ,  , .,

i

i

k

r

r

r

v

v v
v

A k k

r
r

r r r

Bu s y s ds

s
e h s y s Bu ks y s d p

v
s






















  

  
     
  


    





 

has a fixed point 
*y . It can be easily chech that   *

RPy R y
 
and   *

00Py y . 

In other word ( ; )u r y steers system (1) from 0y to Ry infinite time R. Thus, System (1) 

controllable on [0,R]. 

Theorem 6.6 ([1]) Assumptions  1A  2A  are satisfied. Then system (1) completely 

controllable on [0,R].  

Proof Step 1. We prove the continuity of the control variable  ; .u r   

Let ny be a sequence with ny y  in zB  as .n   For any  0, ,r R we have: 

   ; ;nu r y u r y  

   
0

1
1

*
0

1

( , ( )) ( , ( )) .p

p

r

r

R

j nA

v v
R v

j p

R s
M I C e h s y s h s y s s ds

v


  

 
 


      

From the assumptions  1A and  2A it follows that 

0
max ( , ( )) ( , ( )) 0n

s R
h s y s h s y s

 
   as ,n  
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1 1( , ( )) ( , ( ) 2 ,h

v v

A

v v

n
v

A

vr rs s
e h s y s h s

v
y s s M s

v
e    

   
   

 
   

12 h

v

A

v vr

v

s
M e s  

 
 


 is integrable with respect to  0, .s R  

It remains to apply Lebesgue dominated theorem to get the continuity of  ; .u r   

Step 2. We prove that the control  ;u r y is bounded. 

The boundedness of  ;u r y follows from the same property  2A of .h  

Now, we can mimic the proof of  theorem 6.4 to show that P has a fixed point 
*y  in 

  0, , ,dPC R in other words the system (1) is completely controllable on  0, .R  
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Chapter 7 

EXAMPLES 

Example 7.1 Consider the following 3-dimensional system. 

 

   

0

1 2 1 1 0

( ) 0 1 0 ( ) ( ),  0,4 1,2,3 ,0 1

1 0 3 0 0

                  1
,  ,  1,2,3,

4

(0) 0.

v

i i i

E

r r

y r y r u r r

y y r i i

y



    
    

      
  
  








  

   



\

  

Now, let us apply our methodologies to examine the controllability of the system 

defined in equation (14) across the interval [0, 4]. We designate by 

1 2 1 1 0 01 0
1

0 1 0 ,  ,  0 1 0 .0 1
4

1 0 3 0 0 10 0

iA B C

    
    

      
    
    

 

It is possible to acquire 

rank (B AB
2 )A B  

=rank

1 0 1 2 2 4

0 1 0   0 0 1 3.

0 0 1 0 4 2

 
 

 
 
 

 

By corollary 6.3, the system referred to as equation (14) demonstrates controllability 

within the interval [0, 4]. 

 

 

(14) 
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Example 7.2 Consider the following 3-dimensional system. 

 

   

0

1 4 2 1 0

( ) 0 6 1 ( ) ( ),  0,5 1,2,3,4 ,2 1

1 7 1 0 1

     1
,  ,  1,2,3,4,

5

(0) 0.

v

i i i

E

r r

y r y r u r r

y y r i i

y



    
    

      
  
  








  

  



   



\

 

It is possible to acquire 

1 4 2 1 0 01 0
1

0 6 1 ,  ,  0 1 0 .2 1
5

1 7 1 0 0 10 1

iA B C

      
    

      
         

 

rank (B  AB
2 )A B  

=rank

1 0 3 * * *

2 1 19   * * * 3.

0 1 1 * * *

 
 

 
 
 

 

By corollary 6.3, the system denoted as equation (15) exhibits controllability within 

the interval [0, 5]. 

 

 

 

 

 

 

 

 

 

 

(15) 
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Example 7.3 Consider the following three-dimensional semi-linear system 

 

   

0

1 4 2 1 0
1

( ) 0 6 1 ( ) ( ) sin ( ),  0,5 1,2,3,4 ,2 1
5

1 7 1 0 1

1
,  ,  1,2,3,4,

5

(0) 0.

i i i

v r

r r

E y r y r u r y r r

y y r i i

y



    
    

      
  
  








  

   



   



\

1 4 2 1 0

0 6 1 ,   ,  2 1

1 7 1 0 1

A B

     
   

    
     

  
By referencing example 7.2, it is apparent that the linear component is controllable, 

and the nonlinear component remains bounded. Employing theorem 6.6, we can 

confidently assert that the semilinear system (16) exhibits complete controllability. 

  

(16) 
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Chapter 8 

CONCLUSION 

Fractional impulsive differential equations represent mathematical constructs which 

amalgamate fractional derivatives, characterized by non-integer differentiation orders, 

with sudden shifts or discontinuities in the state variables. The study of controllability 

in the context of fractional impulsive differential equations is a rapidly developing 

research field. The importance of these equations is derived from their versatility, as 

they find application in the modeling of intricate systems within the domains of 

physical sciences, biology, and engineering. 

The determination of controllability outcomes for fractional impulsive differential 

equations depends on several key elements. These elements include the particular 

fractional order, the characteristics of abrupt changes, and the structural properties of 

the control inputs. A substantial amount of additional research is required to attain a 

thorough understanding of the controllability dynamics that govern these complex 

systems. 

In this research, we explore how solutions are expressed for linear systems with 

conformable fractional-type impulses and examine the presence and singularity of 

nonlinear systems with conformable fractional-type impulses. Furthermore, we assess 

the controllability of systems under control with conformable fractional dynamics, 

whether they are linear or semi-linear in nature. 
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By utilizing the framework of conformable fractional derivatives, we introduce a new 

idea known as the "conformable controllability Gramian matrix." This novel approach 

has the potential to provide fresh insights into the controllability features of such 

systems. Additionally, our investigation encompasses the controllability aspects of 

linear and semi-linear impulsive systems that adhere to the conformable framework, 

laying a valuable groundwork To support and inspire forthcoming scholarly endeavors 

within this particular area of study. 

The results of this research are groundbreaking and hold relevance for practical use, 

enriching the understanding in this specific area of study. As a potential direction for 

future research, we suggest delving into the subjects of approximate or null 

controllability within the framework of conformable stochastic evolution equations 

and inclusions, which may involve instantaneous or non-instantaneous impulses and 

various stochastic disturbances, as elaborated in references [20-22]. 
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