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ABSTRACT 

In this thesis, we study to derive the equation of motion for the geodesics of the 3 

dimensional (3D) charged BTZ black hole and also geodesics of the black holes in the 

minimal massive gravity (MMG) theory at its merger point. The motions of the 

massless and massive particles are going to be study by using the Lagrangian equation. 

Then we are going to focus on null and time-like geodesics solutions. 

After finding the Euler-Lagrange equations, we are going to investigate the radial 

motions of the geodesics. For this purpose, we are going to study to find the exact 

analytical solutions of the geodesic equations. 

At the end, we perform some numerical simulations to plot graphs for displaying the 

geodesics. 

Keywords: General Relativity, BTZ, Minimal Massive Gravity, Black Hole, 

Geodesics 
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ÖZ 

Bu tezde, 3 boyutlu yüklü BTZ kara deliğinin ve ayrıca birleşme noktasında minimal 

massif kütle çekim teorisindeki kara deliklerin jeodezikleri için hareket denklemlerini 

araştırıyoruz. Kütlesiz ve kütleli parçacıkların hareketleri Lagrange denklemi 

kullanılarak incelenecektir. Daha sonra ışık ve zaman benzeri jeodezik çözümlere 

odaklanacağız. 

Euler-Lagrange denklemlerini bulduktan sonra jeodeziklerin radyal hareketlerini 

inceleyeceğiz. Bu amaçla jeodezik denklemlerin kesin analitik çözümlerini bulmaya 

çalışacağız. 

En sonunda, jeodeziklerin görüntülerini oluşturmaya yardım edecek grafikler çizmek 

için bazı sayısal simülasyonlar yapıyoruz. 

Anahtar Kelimeler: Genel Görelilik, BTZ, Minimal Masif Yerçekimi Modeli, Kara 

Delik, Jeodezikler 
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Chapter 1 

1 INTRODUCTION 

The mysteries of the universe have always fascinated mankind. Nicolaus Copernicus, 

one of the history's greatest mathematicians and astronomers, was an advanced 

contributor to the scientific revolution [1]. The movements of the planets and stars 

have been observed by mankind for thousands of years, aroused their interest and 

curiosity. Although precocious cultures already had a precise knowledge of the 

movement of the stars, the starting points of the modern scientific world is based on 

the works of Johannes Kepler (1571-1630), Isaac Newton (1643-1727) and Albert 

Einstein (1879-1955).  

In 1609 Kepler acknowledged the existence of a force radiated by the Sun in his work 

Astronomica Nova. This force decreases with distance and also it causes planets to 

move faster when they are closer to the Sun. After looking his assumption and 

examining the orbital data of Mars, he realized that the planets move on elliptical 

instead of circular orbits and developed the first and second law of planetary motion. 

Kepler explained his third law in 1618, which he used the connection between the 

length of a planet's semi-major axis and its orbital period. This connection allowed 

him to accurately calculate the orbital velocity of a planet. With these three laws Kepler 

became one of the founders and greatest names of the modern astronomy [2]. 
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At first, Kepler believed that a force from the sun was pushing the planets in their 

orbits, but he could not identify this force. Later on, Newton’s work on gravity showed 

us why planets orbit this way. When Newton applied his universal gravitation law to 

the Sun and planets, he can predicts the motion of the planets correctly. Newton laid 

down his laws in Philosophiae Naturalis Principia Mathematica [3]. 

1.1 General Relativity 

Einstein started to thinking about gravity after his work on Special Relativity. His main 

idea was how to give gravity a relativistically invariant formulation. After all trials and 

errors, Einstein presented one of his biggest work General Theory of Relativity in 1915 

[4]. In Newton's principle, gravity causes an attractive force between large objects. But 

in general relativity, the gravitational effect is caused by the distortion of space-time 

around masses. As time passed, Einstein's definition of gravity was shown to explain 

various effects that could not be drawn from Newton's law, such as the orbits of the 

planets and the effect of gravity on light. Mass is an important property in determining 

the gravitational effect of matter. But in general relativity, mass cannot be the only 

source of gravity by itself. Relativity unifies mass and energy. Also relativity unifies 

energy and momentum. Today, Einstein's General Relativity Theory is the key of the 

scientists' best understanding of gravity. 

1.2  Geodesics 

We know that the shortest distance between two points which are on a plane is a 

straight line. So how to define the shortest distance between two points which are on 

a sphere? The shortest distance between these two points expressed by the segment of 

the arc where its center is the center of this sphere and also passes through these two 

points. We give a name to this curve, which shows the shortest distance between two 

points on a surface. This name is geodesic curve [5].  
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In geometry, a geodesic is commonly a curve representing in some sense the 

shortest path between two points in a surface, or more generally in a Riemannian 

manifold. 

In general relativity, a geodesic generalizes the notion of a straight line to curved space 

time. Importantly, the world line of a particle free from all external, non-gravitational 

forces is a particular type of geodesic. In other words, a freely moving or falling 

particle always moves along a geodesic. 

1.3  Black Hole 

Black hole is one of the most impressive predictions of general theory of relativity 

which has long been tempting for physicists for a long time. And unfortunately we are 

not fully understand it, still it has some unknown parts to work on it [6]. Black hole is 

a region of space time where the gravitational field is so strong that nothing (even 

light) can escape from it [7]. The general theory of relativity shows that a sufficiently 

compact mass can form a black hole by deforming the space-time [8]. It has an event 

horizon whose total area does not decrease in any physical process. Also, in curved 

space time, quantum field theory shows that event horizons emit Hawking radiation 

with the same spectrum as a black body at a temperature inversely proportional to its 

mass. 

1.4  BTZ Black Hole 

The name BTZ comes from its founders. Banados, Teitelboim and Zanelli found that 

there is a solution for black hole in (2+1) dimensional space time in 1992 [9]. In local 

space time, they need a constant curvature for solution of the gravitational field 

equation [10]. Also, this solution is similar with the solution of Anti-de Sitter (AdS)-

Maxwell gravity in three dimension [11]. The BTZ black hole has a connection with 
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the string theory and this connection makes it more interesting [12]. The BTZ black 

hole has another usage which is studying black holes in quantum scale [13]. 

In this thesis, my main aim is to observe the motion of the both massive and massless 

particles around the BTZ black hole. To achieve this aim, in chapter 2, we first 

described the metric and then solved the geodesic equations in BTZ black hole by 

using Lagrangian method. After that, in chapter 3, we found the analytical solutions of 

the geodesic equations for both null and time-like geodesics. 

1.5  Minimal Massive Gravity 

In physics one of the main problem is to have a theory in which gravitational effects 

brought together the quantum mechanical principles, namely getting a unitary theory. 

By unitary it is meant both bulk and boundary unitarity since the inception of 

AdS/conformal field theory (CFT) correspondence. In order to test some aspects of 

quantum gravity three dimensional space time is a useful theoretical background. Even 

in three dimensional background, it is not easy task to form a theory which is bulk and 

boundary unitary, for example, the first theory come to mind is cosmological 

Einstein’s theory which has no propagating degrees of freedom and that makes the 

theory locally trivial even though it has positive central charges in 3D. The simplest 

way to introduce propagating degrees of freedom, and get rid of the local triviality, to 

the theory, the Einstein’s theory can be modified by introducing mass to the gravitation 

[14]. 

Massive gravity theories are studied for a long while. Here properties of some of the 

relevant massive gravity theories are given. The cosmological Topologically Massive 

Gravity (TMG) is one of these theories. TMG is the most experienced modification of 
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the general relativity in 3D. It completes the Einstein-Hilbert action with the Chern-

Simons term [15]. But it has a bulk vs boundary clash problem. So to get rid of this 

problem, a new model was constructed. This new model is known as New Massive 

Gravity (NMG). This theory also includes usual Einstein-Hilbert term but it has 

additional quadratic curvature terms. But still NMG has the same problem with TMG 

[16]. Later on Minimal Massive Gravity (MMG) comes up, which is a newest version 

of NMG, it is obtained by unifying the Chern-Simmons term with the NMG’s action. 

Finally, Generalized Massive Gravity (GMG) is introduced. It is important for us, 

because in a certain range of parameters it can get rid of the bulk vs boundary clash 

problem [17]. 

In this thesis, my other main aim is to observe the motion of the massless particles 

around the black hole of MMG theory. To achieve this aim, in chapter 3, we first 

described the metric and then solved the geodesic equations in MMG by using 

Lagrangian method. After that, in chapter 4, we found the analytical solution of the 

geodesic equations for null particles. 
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Chapter 2 

METRIC AND GEODESIC EQUATIONS OF CHARGED 

BTZ BLACK HOLE 

In this study, we take the Minkowski metric with mostly plus signature. The 

coordinates are defined as 𝑥𝜇 = (𝑡, 𝑟, 𝜙). Greek indices run from 0 to 3 and Latin 

indices run from 1 to 3. 

The Maxwell’s power law theory is given by the following Lagrangian [18] 

ℒ = −𝛼(𝑘𝐹)𝑠. (2.1) 

Then the action is [19] 

𝐼 =
1

16𝜋
∫𝑑3𝑥√−𝑔[𝑅 − 2Λ + (𝑘ℱ)𝑠], 

(2.2) 

where R is the scalar curvature, Λ = −
1

𝑙2
 is the cosmological constant, ℱ is the 

Maxwell invariant acts as a source in the theory, which is equal to 𝐹𝜇𝜈𝐹
𝜇𝜈 and 𝐹𝜇𝜈 =

𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is the electromagnetic tensor field with 𝐴𝜇 as the gauge potential, and s 

is an arbitrary positive nonlinearity parameter. 

For radial electric field the gauge potential is given as 𝐴𝜇 = ℎ(𝑟)𝛿0
𝜇

 then the non-

vanishing components of electromagnetic field tensor becomes 

𝐹10 = 𝜕1𝐴0 − 𝜕0𝐴1, (2.3) 

𝐹10 = 𝜕1𝐴0 = 𝜕𝑟𝜙(𝑟) = −𝐸(𝑟),  

 

(2.4) 
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𝐹01 = 𝜕0𝐴1 − 𝜕1𝐴0, (2.5) 

𝐹01 = −𝜕1𝐴0 = −𝜕𝑟ℎ(𝑟) = 𝐸(𝑟),  

 

(2.6) 

where we have used the definition of electric field 𝐸𝑖 = 𝜕𝑖𝐴0 − 𝜕0𝐴𝑖. 

In order to take the indices of electromagnetic field tensor down we multiply equation 

(2.3) with the metric 

𝐹01 = 𝑔00𝑔11𝐹
01, (2.7) 

𝐹01 = −𝐹
01 = −𝐸(𝑟),  

 

(2.8) 

−𝐸(𝑟) =  𝜕0𝐴1 − 𝜕1𝐴0, (2.9) 

−𝐸(𝑟) =  −𝜕1𝐴0, (2.10) 

𝐹0𝑟 = −𝐸(𝑟) = −𝜕𝑟ℎ(𝑟). (2.11) 

The electromagnetic field tensor can be written in matrix form as follows 

𝐹𝜇𝜈 = (−
0 𝐸(𝑟) 0
𝐸(𝑟) 0 0
0 0 0

), (2.12) 

𝐹𝜇𝜈 = (
0 −𝐸(𝑟) 0
𝐸(𝑟) 0 0
0 0 0

), (2.13) 

where the raising and lowering of the indices are done by the following metric ansatz 

[20] 

𝑑𝑠2 = −𝑔(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑔(𝑟)
+ 𝑟2𝑑𝜙2, (2.14) 

which can be written in component form 

𝑔𝜇𝜈 =

(

 
 
−

1

𝑔(𝑟)
0 0

0 𝑔(𝑟) 0

0 0
1

𝑟2)

 
 
, (2.15) 
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𝑔𝜇𝜈 = (

−𝑔(𝑟) 0 0

0
1

𝑔(𝑟)
0

0 0 𝑟2

). (2.16) 

Since we need the following tensor in our calculation we write it in the matrix form 

whose detailed derivation can be found in Appendix-A 

𝐹𝜈
𝛼 = 𝑔𝛼𝛽𝐹𝜈𝛽 , (2.17) 

𝐹𝜈
𝛼 = (

0 −𝑔(𝑟)𝐸(𝑟) 0

−
𝐸(𝑟)

𝑔(𝑟)
0 0

0 0 0

). (2.18) 

We also need to calculate the following identities 

ℱ = 𝐹𝜇𝜈𝐹
𝜇𝜈 , (2.19) 

ℱ = 𝐹00𝐹
00 + 𝐹0𝑖𝐹

0𝑖 + 𝐹𝑖0𝐹
𝑖0 + 𝐹𝑖𝑗𝐹

𝑖𝑗 , (2.20) 

ℱ = 𝐹01𝐹
01 + 𝐹10𝐹

10 = −2𝐸2(𝑟), (2.21) 

and 

𝐹𝜇𝛼𝐹𝜈
𝛼 = 𝐹𝜇0𝐹𝜈

0 + 𝐹𝜇1𝐹𝜈
1 + 𝐹𝜇2𝐹𝜈

2 = 𝒜𝜇𝜈 , (2.22) 

𝐹𝜇𝛼𝐹𝜈
𝛼 =

(

 

𝑔(𝑟)𝐸2(𝑟) 0 0

0 −
𝐸2(𝑟)

𝑔(𝑟)
0

0 0 0)

 . (2.23) 

The detailed derivation of equation (2.23) can be found also in Appendix-A. 

2.1 Maxwell Power Law Action 

Varying the cosmological Einstein-Hilbert-Maxwell Power Law action (2.2) with 

respect to 𝑔𝜇𝜈 (the metric tensor) we can obtain the equation of gravitational field as 

𝛿𝐼 =
1

16𝜋
∫𝑑3𝑥𝛿[√−𝑔(𝑅 − 2Λ + (𝑘ℱ)𝑠)], (2.24) 

𝛿𝐼 =
1

16𝜋
∫𝑑3𝑥[(𝛿√−𝑔)(𝑅 − 2Λ + (𝑘ℱ)𝑠) + √−𝑔(𝛿𝑅 + 𝛿(𝑘ℱ)𝑠)], (2.25) 

where 𝛿√−𝑔 = −
1

2
𝑔𝜇𝜈𝛿𝑔

𝜇𝜈√−𝑔 and 𝛿𝑅 = 𝛿𝑔𝜇𝜈𝑅𝜇𝜈 .  
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We can take the variation of the term 𝛿(𝑘𝐹)𝑠 in equation (2.24) as 

𝛿(𝑘ℱ)𝑠 = 𝑠(𝑘ℱ)𝑠−1𝑘𝛿(𝐹𝜇𝜈𝐹
𝜇𝜈), (2.26) 

𝛿(𝑘ℱ)𝑠 = 2𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝜇𝛼𝐹𝜈
𝛼𝛿𝑔𝜇𝜈 . (2.27) 

The steps between two equations are shown in Appendix-B. 

Then, the variation of the action becomes 

𝛿𝐼 =
1

16𝜋
∫𝑑3𝑥√−𝑔[𝑅𝜇𝜈 −

1

2
𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ −

1

2
𝑔𝜇𝜈(𝑘ℱ)

𝑠

+ 2𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝜇𝛼𝐹𝜈
𝛼]𝛿𝑔𝜇𝜈 , 

(2.28) 

and setting 𝛿𝐼 = 0 we get 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ −

1

2
𝑔𝜇𝜈(𝑘ℱ)

𝑠 + 2𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝜇𝛼𝐹𝜈
𝛼 = 0, (2.29) 

𝐺𝜇𝜈 + 𝑔𝜇𝜈Λ =
1

2
𝑔𝜇𝜈(𝑘ℱ)

𝑠 − 2𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝜇𝛼𝐹𝜈
𝛼. (2.30) 

Finally, the gravitational field becomes 

𝐺𝜇𝜈 + 𝑔𝜇𝜈Λ = 𝑇𝜇𝜈 , (2.31) 

where the energy-momentum tensor is defined as 

𝑇𝜇𝜈 ≡ −2 [𝑠𝑘(𝑘ℱ)
𝑠−1𝐹𝜇𝛼𝐹𝜈

𝛼 −
1

4
𝑔𝜇𝜈(𝑘ℱ)

𝑠]. (2.32) 

Now varying the action with respect to the gauge potential 𝐴𝜇 we can obtain the 

equation of electromagnetic field as 

𝜕ℒ

𝜕𝐴𝛼
− 𝜕𝛽

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= 0, (2.33) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= 4√−𝑔𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝛽𝛼, (2.34) 

whose calculations are shown in Appendix-B. 

Then, one can write the second field equation in the following form 
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4sk
1

√−𝑔
∂𝛽(√−𝑔(𝑘ℱ)

𝑠−1𝐹𝛽𝛼) = 0. (2.35) 

Finally, the electromagnetic field becomes 

1

√−𝑔
∂𝛽(√−𝑔(𝑘ℱ)

𝑠−1𝐹𝛽𝛼) = 0. (2.36) 

This equation determines the electromagnetic field which has the electric field as the 

non-vanishing component. At this stage the discussion bifurcates into two parts 

according to the power of the Maxwell term in equation (2.36). For 𝑠 = 1, √−𝑔 = 𝑟 

and 𝐹𝑟𝑡 = −𝐸(𝑟), equation (2.36) can be solved for the electric field:  

𝜕𝑟(𝑟𝐹
𝑟0) = 0, (2.37) 

𝜕𝑟(𝑟𝜕𝑟ℎ) = 0, (2.38) 

𝜕𝑟ℎ(𝑟) =
𝑞

𝑟
. (2.39) 

By multiplying and dividing the right hand side with 
1

𝑙
 we get 

𝜕𝑟ℎ(𝑟) = 𝑞

1
𝑙

𝑟
1
𝑙

, (2.40) 

𝜕𝑟ℎ(𝑟) = 𝑞
𝑑

𝑑𝑟
ln (
𝑟

𝑙
), (2.41) 

ℎ(𝑟) = 𝑞 ln (
𝑟

𝑙
). (2.42) 

Then, the electric field becomes 

𝐹0𝑟 =
𝑞

𝑟
, (2.43) 

where we defined the integration constant as q. Then the electric field becomes 

𝐸(𝑟) =  𝜕𝑟ℎ(𝑟) =
𝑞

𝑟
. (2.44) 

For the general power of the Maxwell term in equation (2.36), 𝑠 ≠ 1 the gauge 

potential takes the following form 
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ℎ = −𝑞𝑟  
2(𝑠−1)
2𝑠−1 , (2.45) 

and the electric field becomes 

𝐸(𝑟) =  𝜕𝑟ℎ(𝑟) = −
2𝑞(𝑠 − 1)

2𝑠 − 1
𝑟
−1
2𝑠−1. (2.46) 

2.2 Solution of EH-Maxwell Power Law Gravity 

In this part we are going to find the solution of the equation (2.31) for the metric ansatz 

(2.14). 

Both sides of the equation (2.31) can be written in matrix form 

𝐺𝜇𝜈 + 𝑔𝜇𝜈Λ

=

(

 
 
 
 
−
𝑔(𝑟)(2𝑟Λ + 𝑔′(𝑟))

2𝑟
0 0

0
2𝑟Λ + 𝑔′(𝑟)

2𝑟𝑔(𝑟)
0

0 0
𝑟2(2Λ + 𝑔′′(𝑟))

2 )

 
 
 
 

, 
(2.47) 

and 

𝑇𝜇𝜈

=

(

 
 
 
 
−2𝑠𝑘(−2𝑘𝐸2)𝑠−1𝑔(𝑟)𝐸2(𝑟) −

(−2𝑘𝐸2)𝑠𝑔(𝑟)

2
0 0

0 2𝑠𝑘(−2𝑘𝐸2)𝑠−1
𝐸2(𝑟)

𝑔(𝑟)
+
(−2𝑘𝐸2)𝑠

2𝑔(𝑟)
0

0 0
(−2𝑘𝐸2)𝑠𝑟2

2 )

 
 
 
 

. 

 

(2.48) 

From the equality of the matrices (2.47) and (2.48) one can get three equations 

−
𝑔(𝑟)(2𝑟Λ + 𝑔′(𝑟))

2𝑟
= −2𝑠𝑘(−2𝑘𝐸2)𝑠−1𝑔(𝑟)𝐸2(𝑟) −

(−2𝑘𝐸2)𝑠𝑔(𝑟)

2
, (2.49) 

2𝑟Λ + 𝑔′(𝑟)

2𝑟𝑔(𝑟)
= 2𝑠𝑘(−2𝑘𝐸2)𝑠−1

𝐸2(𝑟)

𝑔(𝑟)
+
(−2𝑘𝐸2)𝑠

2𝑔(𝑟)
, (2.50) 

2Λ + 𝑔′′(𝑟) = (−2𝑘𝐸2)𝑠. (2.51) 
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The first two differential equations are the same which can be seen easily and the third 

one is related to the first two equations by an integral. This equivalence can be seen 

easily for 𝑠 = 1. In this case equation (2.49) reduces to 

2𝑟Λ + 𝑔′(𝑟) = 2𝑟𝑘𝐸2, (2.52) 

and equation (2.51) becomes 

2Λ + 𝑔′′(𝑟) = −2𝑘𝐸2. (2.53) 

After writing left hand side of equation (2.53) as a total derivative and using 𝐸 =
𝑞

𝑟
 

one can easily integrate equation (2.53) and get 

2𝑟Λ + 𝑔′(𝑟) = 2𝑟𝑘𝐸2, (2.54) 

which is the same equation with (2.52). Therefore we have just one independent 

equation. The unknown function 𝑔(𝑟) can be found separately for 𝑠 = 1 and 𝑠 ≠ 1. 

When 𝑠 = 1 equation (2.49) reduces to 

𝑔′(𝑟) = −2𝑟Λ + 2𝑟𝑘
𝑞2

𝑟2
. (2.55) 

We can easily integrate equation (2.55) and get 

𝑔(𝑟) + 𝑚 =
𝑟2

𝑙2
+ 2𝑘𝑞2𝑙𝑛 (

𝑟

𝑙
), (2.56) 

and for 𝑘 = −1 

𝑔(𝑟) =
𝑟2

𝑙2
−𝑚 − 2𝑞2𝑙𝑛 (

𝑟

𝑙
), (2.57) 

which is the solution of Einstein-Maxwell theory in 3 dimensions and known as 

charged BTZ black hole solution, in which 𝑚 and 𝑞 are the mass and electric charge 

respectively. 

For 𝑠 ≠ 1 and 𝑘 = −1, equation (2.49) takes the following form 
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2𝑟Λ + 𝑔′(𝑟)

2𝑟
= −2𝑠(2𝐸2)𝑠−1𝐸2 +

(2𝐸2)𝑠

2
. (2.58) 

The integration of (2.58) results in 

𝑔(𝑟) =
𝑟2

𝑙2
−m− (2𝑠 − 1)2 (

8𝑞2(𝑠 − 1)2

(2𝑠 − 1)2
)

𝑠
𝑟
2(𝑠−1)
2𝑠−1

2(𝑠 − 1)
. (2.59) 

When 𝑠 =
3

4
 is inserted in equation (2.59) the solution reduces to the well-known 

metric which is called conformally invariant Maxwell solution, 

𝑔(𝑟) =
𝑟2

𝑙2
−m− (2

3

4
− 1)

2

(
8𝑞2 (

3
4 − 1)

2

(2
3
4 − 1)

2 )

3
4

𝑟

2(
3
4
−1)

2
3
4
−1

2 (
3
4 − 1)

, (2.60) 

𝑔(𝑟) =
𝑟2

𝑙2
−m−

1

2
(2𝑞2)

3
4 𝑟−1. (2.61) 

Defining (2𝑞2)
3

4 ≡ 𝐾 one can write the equation (2.61) in its simplest form  

𝑔(𝑟) =
𝑟2

𝑙2
−m−

𝐾

2𝑟
. (2.62) 

Finally, the solution of conformally invariant Maxwell gravity can be written as 

𝑑𝑠2 = −(
𝑟2

𝑙2
−m−

𝐾

2𝑟
)𝑑𝑡2 +

𝑑𝑟2

𝑟2

𝑙2
−m−

𝐾
2𝑟

+ 𝑟2𝑑𝜙2. (2.63) 

From now on, we are going to find the geodesic equations of (2.63) 

2.3 Geodesic Equations of Conformally Invariant Maxwell Gravity 

Now, we can find the geodesic equations and constants of motion. The geodesic 

equations can be determined with 

𝑑2𝑥𝜇

𝑑𝜆2
+ Γ𝜌𝜎

𝜇 𝑑𝑥
𝜌

𝑑𝜆

𝑑𝑥𝜎

𝑑𝜆
= 0, (2.64) 

where 𝑑𝜆2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 is the proper time and Γ𝜌𝜎

𝜇
 is the Christoffel connections 

given by 
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Γ𝜌𝜎
𝜇
=
1

2
𝑔𝜇𝜈(𝜕𝜌𝑔𝜎𝜈 + 𝜕𝜎𝑔𝜌𝜈 − 𝜕𝜈𝑔𝜌𝜎). (2.65) 

Although, the constants of motion can be found by equation (2.64), we will use a 

simpler method by which the constants of motion are given by the following 

Lagrangian 

𝐿 =
1

2
∑ 𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆

3

𝜇,𝜈=0

=
1

2
𝜖

=
1

2
[−(

𝑟2

𝑙2
−m−

𝐾

2𝑟
) (
𝑑𝑡

𝑑𝜆
)
2

+
1

𝑟2

𝑙2
−m−

𝐾
2𝑟

(
𝑑𝑟

𝑑𝜆
)
2

+ 𝑟2 (
𝑑𝜙

𝑑𝜆
)
2

], 

(2.66) 

where 𝜖 takes -1 for massive particles and 0 for massless particles and 𝜆 is an affine 

parameter. 

Now, we can find the constants of motion by using Euler-Lagrange equations 

𝑃𝑡 =
𝜕𝐿

𝜕�̇�
= −(

𝑟2

𝑙2
−m−

𝐾

2𝑟
) �̇� = −𝐸, 

(2.67) 

and equation (2.67) can be written for �̇�  

�̇� =
𝐸

𝑟2

𝑙2
−m−

𝐾
2𝑟

, 
(2.68) 

where ‘.’ represents derivative with respect to the affine parameter and 𝐸 stands for 

the energy of the particle. 

The second Euler-Lagrange equation is 
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𝑃𝜙 =
𝜕𝐿

𝜕�̇�
= 𝑟2�̇� = ℒ, (2.69) 

where ℒ is the angular momentum of the particle and again equation (2.69) can be 

written for �̇� 

�̇� =
ℒ

𝑟2
. 

(2.70) 

By using these constants of motion we can obtain the geodesic equations as follows 

(
𝑑𝑟

𝑑𝜆
)
2

=
𝜖𝑟2

𝑙2
−𝑚𝜖 −

𝐾𝜖

2𝑟
+ 𝐸2 −

ℒ2

𝑙2
+
𝑚ℒ2

𝑟2
+
𝐾ℒ2

2𝑟3
, 

(2.71) 

(
𝑑𝑟

𝑑𝜙
)
2

=
𝜖𝑟6

𝑙2ℒ2
−
𝑚𝜖𝑟4

ℒ2
−
𝐾𝜖𝑟3

2ℒ2
+
𝐸2𝑟4

ℒ2
−
𝑟4

𝑙2
+𝑚𝑟2 +

𝐾𝑟

2
= 𝑅(𝑟), 

(2.72) 

(
𝑑𝑟

𝑑𝑡
)
2

= (
𝑟2

𝑙2
−m−

𝐾

2𝑟
)

2

+
𝜖 (
𝑟2

𝑙2
−m−

𝐾
2𝑟
)
3

𝐸2
−
ℒ2 (

𝑟2

𝑙2
−m−

𝐾
2𝑟
)
3

𝐸2𝑟2
. 

(2.73) 

This set of equations determines the trajectory of the particle around the black hole 

(2.63). 

By using equation (2.77) we can find the effective potential as 

𝑉𝑒𝑓𝑓 = −
𝜖𝑟2

𝑙2
+𝑚𝜖 +

𝐾𝜖

2𝑟
+
ℒ2

𝑙2
−
𝑚ℒ2

𝑟2
−
𝐾ℒ2

2𝑟3
. 

(2.74) 

For simplicity we define some dimensionless parameters 

�̃� =
𝑟

𝑚
 , 𝑙 =

𝑙

𝑚
 , �̃� =

𝐾

𝑚
 , ℒ̃ =

𝑚2

ℒ2
 , 

(2.75) 

and rewrite equation (2.72) in the following form 

(
𝑑�̃�

𝑑𝜙
)
2

=
𝜖�̃�6ℒ̃

𝑙2
−𝑚𝜖�̃�4ℒ̃ −

�̃�𝜖�̃�3ℒ̃

2
+ 𝐸2�̃�4ℒ̃ −

�̃�4

𝑙2
+𝑚�̃�2 +

�̃��̃�

2
= 𝑅(�̃�). 

(2.76) 

2.4  Possible Regions for Geodesic Motion 

Equation (2.76) shows us that there is a condition for the existence of a geodesic which 

is 𝑅(�̃�) ≥ 0. The real positive zeros of 𝑅(�̃�) are extremal values of the geodesic 
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motion. Since �̃� = 0 is a zero of this polynomial for all values of the parameters we 

can neglect it. So our equation reduces to a polynomial of degree 5 from 6 

𝑅∗(�̃�) =
𝜖�̃�5ℒ̃

𝑙2
−𝑚𝜖�̃�3ℒ̃ −

�̃�𝜖�̃�2ℒ̃

2
+ 𝐸2�̃�3ℒ̃ −

�̃�3

𝑙2
+𝑚�̃� +

�̃�

2
. 

(2.77) 

By using analytical solutions we can obtain possible orbits which depend on the 

parameters of the particle 𝜖, 𝑙, 𝐸2, 𝐾 and ℒ. 

Solving 𝑅∗(�̃�) = 0 and 
𝑑𝑅∗(�̃�)

𝑑�̃�
= 0 we can find 𝐸2 and ℒ̃. 

For massive particles, we take 𝜖 = −1 and get equations for the angular momentum 

and energy as follows 

ℒ̃ = −
𝑙2(4𝑚�̃� + 3�̃�)

�̃�2(�̃�𝑙2 + 4�̃�3)
, 

(2.78) 

𝐸2 = −
4𝑙4𝑚2�̃�2 + 4�̃�𝑙4𝑚�̃� − 8𝑙2𝑚�̃�4 + �̃�2𝑙4 − 4�̃�𝑙2�̃�3 + 4�̃�6

𝑙4�̃�(4𝑚�̃� + 3�̃�)
. 

(2.79) 

For massless particles, we take 𝜖 = 0 and we get 

ℒ̃ = (−
64𝑚3

27�̃�2
+
1

𝑙2
)
1

𝐸2
. 

(2.80) 
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Chapter 3 

ANALYTICAL SOLUTIONS OF BTZ 

This part is devoted to the analytical solutions of the geodesic equations. First, we 

introduce a new parameter that is 𝑢 =
1

�̃�
 and use it in order to simplify equation (2.76) 

as 

(
𝑑𝑢

𝑑𝜙
)
2

=
1

�̃�4
(
𝑑�̃�

𝑑𝜙
)
2

, 
(3.1) 

(
𝑑𝑢

𝑑𝜙
)
2

=
𝜖ℒ̃

𝑢2𝑙2
−𝑚𝜖ℒ̃ −

𝑢�̃�𝜖ℒ̃

2
+ 𝐸2ℒ̃ −

1

𝑙2
+ 𝑢2𝑚 +

𝑢3�̃�

2
. 

(3.2) 

For massless particles, 𝜖 = 0, equation (3.2) reduces to the following form 

(
𝑑𝑢

𝑑𝜙
)
2

= 𝐸2ℒ̃ −
1

𝑙2
+ 𝑢2𝑚 +

𝑢3�̃�

2
= 𝑃3(𝑢) =∑𝑎𝑖𝑢

𝑖

3

𝑖=0

, 
(3.3) 

which is an elliptic type function. To get a Weierstrass form function we use another 

substitution which is 

𝑢 =
1

𝑎3
(4𝑦 −

𝑎2
3
) =

2

�̃�
(4𝑦 −

𝑚

3
), 

(3.4) 

then equation (3.3) becomes 

(
𝑑𝑦

𝑑𝜙
)
2

= 4𝑦3 − 𝛼𝑦 − 𝛾 = 𝑃3(𝑦), 
(3.5) 

where 

𝛼 =
𝑎2
2

12
−
𝑎1𝑎3

4
=
𝑚2

12
 and 𝛾 =

𝑎1𝑎2𝑎3

48
−
𝑎0𝑎3

2

16
−
𝑎2
3

216
= −

(𝐸2ℒ̃𝑙2−1)�̃�2

64𝑙2
−
𝑚3

216
  

are Weierstrass constants. Equation (3.5) is an elliptic type function whose solution is 

given by Weierstrass function [21] 
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𝑦(𝜙) = ℘(𝜙 − 𝜙𝑖𝑛; 𝛼, 𝛾), (3.6) 

where 

𝜙𝑖𝑛 = 𝜙0 +∫
𝑑𝑦

√4𝑦3 − 𝛼𝑦 − 𝛾

∞

𝑦0

, 
(3.7) 

and 

𝑦0 =
1

4
(
𝑎3
�̃�0
−
𝑎2
3
) =

�̃�

8�̃�0
+
𝑚

12
. 

(3.8) 

Then the analytical solution of equation (2.82) is 

�̃�(𝜙) =
𝑎3

4℘(𝜙 − 𝜙𝑖𝑛; 𝛼, 𝛾) −
𝑎2
3

=
�̃�

2 [4℘(𝜙 − 𝜙𝑖𝑛; 𝛼, 𝛾) −
𝑚
3 ]
. 

(3.9) 

For massive particles, 𝜖 = −1, equation (3.2) can be written as follows 

(𝑢
𝑑𝑢

𝑑𝜙
)
2

= −
ℒ̃

𝑙2
+ 𝑢2𝑚ℒ̃ +

𝑢3�̃�ℒ̃

2
+ 𝑢2𝐸2ℒ̃ −

𝑢2

𝑙2
+ 𝑢4𝑚+

𝑢5�̃�

2
= 𝑃5(𝑢)

=∑𝑎𝑖𝑢
𝑖

5

𝑖=0

, 

(3.10) 

which is a polynomial with a degree of 5 and its analytical solution is [22] 

𝑢(𝜙) = −
𝜎1
𝜎2
(𝜙𝜎), 

(3.11) 

where 𝜎𝑖 is the i-th derivative of the Kleinian sigma function which is 

𝜎(𝑧) = 𝐶𝑒−
1
2
𝑧𝑡𝜂𝜔−1𝑧𝜃[𝑔, ℎ]((2𝜔)−1𝑧; 𝜏), 

(3.12) 

here 𝜏 = 𝜔−1�́� is the symmetric Riemann matrix and 𝜃[𝑔, ℎ] is the Riemann theta-

function 

𝜃[𝑔, ℎ](𝑧; 𝑡) =∑𝑒𝑖𝜋(𝑚+𝑔)
𝑡(𝜏(𝑚+𝑔)+2𝑧+2ℎ). (3.13) 

Then the analytical solution of �̃� is 

�̃� = −
𝜎2
𝜎1
(𝜙𝜎). 

(3.14) 
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Chapter 4 

METRIC AND GEODESICS OF CIRCULARLY 

SYMMETRIC BLACK HOLE IN MMG 

4.1 Topological Massive Gravity 

The action of cosmological TMG is [23] 

𝐼𝑇𝑀𝐺 = ∫𝑑
3𝑥√−𝑔(𝑅 − 2Λ0) + 𝐼𝐺𝐶𝑆, 

(4.1) 

where Λ0 is the bare cosmological constant and 𝐼𝐺𝐶𝑆 is the gravitational Chern-Simons 

action 

𝐼𝐺𝐶𝑆 =
1

2𝜇
∫𝑑3𝑥√−𝑔𝜖𝜎𝜇𝜈Γ𝜌𝜎𝜏 (𝜕𝜇Γ

𝜏
𝜌𝜈 +

2

3
Γ𝜏𝜇𝜆Γ

𝜆
𝜈𝜌), 

(4.2) 

where 𝜇 is a mass parameter. 

Varying the action (4.1) with respect to the metric tensor 𝑔𝜇𝜈 we can obtain the source-

free equations of motion 

𝐺𝜇𝜈 + Λ0𝑔𝜇𝜈 +
1

𝜇
𝐶𝜇𝜈 = 0, 

(4.3) 

where 𝐶𝜇𝜈 is the symmetric-traceless Cotton-York tensor which can be defined in 

terms of Schouten tensor 𝑆𝜎𝜈 as 

𝐶𝜇𝜈 = 𝜖
𝜇𝜌𝜎∇𝜌𝑆𝜎𝜈 , 𝑆𝜎𝜈 = 𝑅𝜎𝜈 −

1

4
𝑅𝑔𝜎𝜈 , 𝑆 = 𝑔𝜇𝜈𝑆𝜇𝜈 =

𝑅

4
, 

(4.4) 

where 𝜖𝜇𝜌𝜎 is the Levi-Civita pseudo tensor defined as 𝜖𝜇𝜌𝜎 = √−𝑔𝜀𝜇𝜌𝜎 and the 

convention 𝜀012 = +1. 
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For the following computations we need to find the components of Cotton-York tensor 

𝑔𝜇𝛼𝐶
𝜇
𝜈 = 𝑔𝜇𝛼𝜖

𝜇𝜌𝜎∇𝜌𝑆𝜎𝜈 , (4.5) 

𝐶𝛼𝜈 = 𝑔𝜇𝛼𝜖
𝜇𝜌𝜎∇𝜌𝑆𝜎𝜈 , (4.6) 

𝐶00 = 𝐶11 = 𝐶22 = 0, (4.7) 

𝐶01 = 𝐶10 = 𝐶12 = 𝐶21 = 0, (4.8) 

and the non-vanishing terms are 

𝐶02 = 𝑔00𝜖
0𝜎𝜌∇𝜌𝑆𝜎2, (4.9) 

𝐶02 =
𝑔00

√−𝑔
(∇1𝑆22 − ∇2𝑆12), 

(4.10) 

𝐶20 = 𝑔22𝜖
2𝜎𝜌∇𝜌𝑆𝜎0, (4.11) 

𝐶20 =
𝑔22

√−𝑔
(∇1𝑆02 − ∇0𝑆12), 

(4.12) 

Then, 

𝐶𝜇𝜈 =

(

  
 

0 0
𝑔00

√−𝑔
(∇1𝑆22 − ∇2𝑆12)

0 0 0
𝑔22

√−𝑔
(∇1𝑆02 − ∇0𝑆12) 0 0

)

  
 
. (4.13) 

4.2 Minimal Massive Gravity 

The field equation of source-free MMG is 

𝐸𝜇𝜈 = 𝜎𝐺𝜇𝜈 + Λ̅0𝑔𝜇𝜈 +
1

𝜇
𝐶𝜇𝜈 +

𝛾

𝜇2
𝐽𝜇𝜈 = 0, 

(4.14) 

where 𝜎 and 𝛾 are dimensionless parameters and Λ̅0 is the bare cosmological constant.  

In equation (4.14) the symmetric curvature-squared tensor 𝐽𝜇𝜈 is 

𝐽𝜇𝜈 =
1

2
𝜖𝜇𝜌𝜎𝜖𝜈𝜏𝜂𝑆𝜌𝜏𝑆𝜎𝜂 = 𝑆𝑆

𝜇𝜈 − 𝑆𝜇𝜌𝑆𝜈𝜌 +
1

2
𝑔𝜇𝜈(𝑆𝜌𝜎𝑆𝜌𝜎 − 𝑆

2), 
(4.15) 

and the trace of 𝐽𝜇𝜈 is 
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𝐽 = 𝑔𝜇𝜈𝐽
𝜇𝜈 =

1

2
(𝑆𝜌𝜎𝑆𝜌𝜎 − 𝑆

2). 
(4.16) 

4.3 The Merger Points of MMG 

For an Einstein space 𝑅𝜇𝜈 = 2Λ𝑔𝜇𝜈 where Λ is the effective cosmological constant, 

the Schouten tensor becomes 

𝑆𝜇𝜈 = 𝑅𝜇𝜈 −
1

4
𝑅𝑔𝜇𝜈 , 

(4.17) 

𝑆𝜇𝜈 =
Λ

2
𝑔𝜇𝜈 , 

(4.18) 

𝑆 =
3Λ

2
. 

(4.19) 

The tensor field 𝐽𝜇𝜈 takes the following form 

𝐽𝜇𝜈 = 𝑆𝑆𝜇𝜈 − 𝑆𝜇
𝜌𝑆𝜈𝜌 +

1

2
𝑔𝜇𝜈(𝑆

𝜌𝜎𝑆𝜌𝜎 − 𝑆
2), 

(4.20) 

𝐽𝜇𝜈 = −
Λ2

4
𝑔𝜇𝜈 , 

(4.21) 

and the trace of 𝐽𝜇𝜈 can be written as 

𝐽 = −
3Λ2

4
. 

(4.22) 

The Einstein tensor becomes 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅, 

(4.23) 

𝐺𝜇𝜈 = 2Λ𝑔𝜇𝜈 − 3Λ𝑔𝜇𝜈 = −Λ𝑔𝜇𝜈. (4.24) 

Now we can write the field equation of source-free MMG in the Einstein space as 

𝑔𝜇𝜈 (−𝜎Λ + Λ̅0 −
𝛾

𝜇2
Λ2

4
) = 0. 

(4.25) 

Then, 

−𝜎Λ + Λ̅0 −
𝛾

𝜇2
Λ2

4
= 0. 

(4.26) 
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Since we want to solve this equation for the effective cosmological constant Λ we can 

write this equation as 

Λ2 +
4𝜇2𝜎

γ
Λ −

4𝜇2

γ
Λ̅0 = 0. 

(4.27) 

We have two possible values for Λ 

Λ± =

−
4𝜇2�̅�
γ ± √(

4𝜇2�̅�
γ
)
2

+
16𝜇2�̅�
γ Λ̅0

2
, 

(4.28) 

Λ± = −
2𝜇2𝜎

γ
(1 ± √1 +

𝛾

𝜇2𝜎2
Λ̅0). 

(4.29) 

The reality condition of the cosmological constant provide the inequality 𝜇2𝜎2 +

𝛾Λ̅0 ≥ 0. 

In order to get the merger points we equate the roots of the equation (4.27) which are 

given in equation (4.29) and get 

𝜇2𝜎2 + 𝛾Λ̅0 = 0, (4.30) 

by which the bare cosmological constant can be determined by the parameters of the 

theory as follows 

Λ̅0 = −
𝜇2𝜎2

𝛾
. 

(4.31) 

Using equation (4.31) in equation (4.29) the effective cosmological constant can be 

written in terms of the parameters 

Λ = −
2𝜇2𝜎

𝛾
, 

(4.32) 

and finally 

Λ�̅� = 2Λ̅0. (4.33) 
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Therefore, the merger point of MMG is given by equation (4.31),(4.32) and (4.33) 

4.4 Static Circularly Symmetric Solutions 

Let us take the most general static circularly symmetric metric ansatz which is 

𝑑𝑠2 = −𝑢(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑣(𝑟)
+ 𝑟2𝑑𝜃2. 

(4.34) 

Now, we are going to find all metric forms of this metric ansatz which satisfy 𝐸𝜇𝜈 = 0 

at the merger points. As we showed in equation (4.13), all components of Cotton tensor 

are vanishing except 𝐶𝑡𝜃. Also only the diagonal components of the remaining terms 

in 𝐸𝜇𝜈 are non-zero which can be seen from equation (4.24),(4.21) and (4.14). We are 

considering the combination of 𝐸𝑟𝑟 = 0 and 𝐸𝜃𝜃 = 0 which is 𝐸𝑟𝑟 + 𝐸
𝜃
𝜃 = 0. By use 

of equation (4.34) in this combination one arrives the following differential equation 

(2Λ𝑟 + 𝑣′)(2𝑢2(2Λ𝑟 − 𝑣′) + 𝑟𝑢′(𝑢𝑣′ − 𝑣𝑢′) + 2𝑢𝑣(𝑟𝑢′)′) = 0, (4.35) 

where the prime ‘′’ refers to differentiation with respect to r. 

One can solve the equation (4.35) by considering the vanishing of each term separately 

2Λ𝑟 + 𝑣′ = 0, (4.36) 

and 

2𝑢2(2Λ𝑟 − 𝑣′) + 𝑟𝑢′(𝑢𝑣′ − 𝑣𝑢′) + 2𝑢𝑣(𝑟𝑢′)′ = 0. (4.37) 

Integrating equation (4.36) gives us 

𝑣(𝑟) = 𝑣0 − Λ𝑟
2, (4.38) 

where 𝑣0 is the integration constant. 

In order to find 𝑢(𝑟) we substitute equation (4.38) in  𝐸𝑡𝑡 = 0 equation and find 

𝑟(𝑣0 − Λ𝑟
2)((𝑢′)2 − 2𝑢𝑢′′) + 2𝑣0𝑢𝑢

′ = 0. (4.39) 

The solution of the equation (4.39) gives us  
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𝑢(𝑟) = 𝑢2 (√𝑣0 − Λ𝑟
2 − 𝑢1)

2

, 
(4.40) 

where 𝑢1 and 𝑢2 are integration constants. 

After the renaming of the integration constants and rescaling of the t-coordinate we 

can write the metric ansatz as 

𝑑𝑠1
2 = Λ (−𝑟1 +√𝑟2 − 𝑟0)

2

𝑑𝑡2 −
𝑑𝑟2

Λ(𝑟2 − 𝑟0)
+ 𝑟2𝑑𝜃2. 

(4.41) 

By solving the equation (4.37) for 𝑢′′ and substituting back into  𝐸𝑡𝑡 = 0 equation we 

can find the following 

(
𝑢

𝑣
)
′

(2Λ𝑟𝑢 + 𝑣𝑢′) = 0. 
(4.42) 

Again the solution of the equation (4.42) bifurcates into two cases, which are the 

vanishing of the terms in equation (4.42) separately. The first one is 

(
𝑢

𝑣
)
′

= 0, 
(4.43) 

and the second one is 

2Λ𝑟𝑢 + 𝑣𝑢′ = 0. (4.44) 

In order to solve the equation (4.43) we set 𝑢(𝑟) = 𝑣(𝑟). Then equation (4.37) gives 

us a simple equation for 𝑢′′ as 𝑢′′ = −2Λ and integrating this twice we get 

𝑢(𝑟) = 𝑣(𝑟) = −Λ𝑟2 + 𝑢1𝑟 + 𝑢2, (4.45) 

where 𝑢1 and 𝑢2 are integration constants. 

After the renaming of the integration constants we can write the metric ansatz as 

𝑑𝑠2
2 = Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑑𝑡

2 −
𝑑𝑟2

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
+ 𝑟2𝑑𝜃2. 

(4.46) 

Equation (4.44) gives us a constant on 𝑢′ as 𝑢′ = −
2Λ𝑟𝑢

𝑣
. Inserting 𝑢′ = −

2Λ𝑟𝑢

𝑣
 into 

the equation (4.37) on arrives at 
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(𝑣 − Λ𝑟2)(2Λ𝑟 + 𝑣′) = 0. (4.47) 

This equation has two solutions however the vanishing of the second term in equation 

(4.47) does not yield a new solution. On the other hand, the vanishing of the first term 

in equation (4.47) determines 𝑣 = Λ𝑟2 and inserting 𝑣 = Λ𝑟2 into the equation (4.44) 

one arrives at 

𝑢(𝑟) =
𝑢0
𝑟2
, (4.48) 

where 𝑢0 is the integration constant. 

Taking 𝑢0 = 1 we can write the metric ansatz as 

𝑑𝑠𝐿
2 = −

𝑑𝑡2

𝑟2
+
𝑑𝑟2

Λ𝑟2
+ 𝑟2𝑑𝜃2, 

(4.49) 

which is the static Lifshitz spacetime [24]. However, the field equation of MMG (4.14) 

is not satisfied by (4.47). 

We are going to study the geodesic equation of a particle around the black hole whose 

geometry is determined by the metric (4.46) which is well known. 

Now, we can find the geodesic equations and constants of motion. The geodesic 

equation is by the following equation 

𝑑2𝑥𝜇

𝑑𝜆2
+ Γ𝜌𝜎

𝜇 𝑑𝑥
𝜌

𝑑𝜆

𝑑𝑥𝜎

𝑑𝜆
= 0, 

(4.50) 

where 𝑑𝜆2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 is the proper time and Γ𝜌𝜎

𝜇
 is the Christoffel connections 

given as 

Γ𝜌𝜎
𝜇
=
1

2
𝑔𝜇𝜈(𝜕𝜌𝑔𝜎𝜈 + 𝜕𝜎𝑔𝜌𝜈 − 𝜕𝜈𝑔𝜌𝜎). 

(4.51) 

We can obtain the geodesic equations by using Lagrangian method 
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𝐿 =
1

2
∑ 𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆

3

𝜇,𝜈=0

=
1

2
𝜖

=
1

2
[Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+) (

𝑑𝑡

𝑑𝜆
)
2

−
1

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
(
𝑑𝑟

𝑑𝜆
)
2

+ 𝑟2 (
𝑑𝜃

𝑑𝜆
)
2

], 

(4.52) 

where 𝜖 is -1 for massive particles and 0 for massless particles and 𝜆 is an affine 

parameter. 

Now, we can find the constants of motion by using Euler-Lagrange equation 

𝑃𝑡 =
𝜕𝐿

𝜕�̇�
= Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)�̇� = −𝐸, 

(4.53) 

�̇� = −
𝐸

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
, 

(4.54) 

𝑃𝜃 =
𝜕𝐿

𝜕�̇�
= 𝑟2�̇� = ℒ, 

(4.55) 

�̇� =
ℒ

𝑟2
, 

(4.56) 

where 𝐸 is energy and ℒ is angular momentum of the particle. 

By using these constants we can obtain the geodesic equations as follows 

(
𝑑𝑟

𝑑𝜆
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖 + 𝐸
2 +

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)ℒ
2

𝑟2
, (4.57) 

(
𝑑𝑟

𝑑𝜃
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖
𝑟4

ℒ2
+
𝐸2𝑟4

ℒ2
+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟

2, (4.58) 
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(
𝑑𝑟

𝑑𝑡
)
2

=
(−Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))

3
𝜖

𝐸2
+ (Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))

2

+
(Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))

3
ℒ2

𝑟2𝐸2
. 

(4.59) 

By using equation (4.57) we can find the effective potential and the effective energy 

as 

𝑉𝑒𝑓𝑓 = −
1

2
Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+) (−𝜖 +

ℒ2

𝑟2
), 

(4.60) 

𝜉𝑒𝑓𝑓 =
1

2
E2. 

(4.61) 
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Chapter 5 

ANALYTICAL SOLUTIONS OF CIRCULARLY 

SYMMETRIC BLACK HOLE IN MMG 

In this part we analyze the geodesic equations (4.57),(4.58) and (4.59) for massless 

particles for which 𝜖 is set to zero. 

The first term in equation (4.58) vanishes for the massless particle condition and it 

reduces to 

(
𝑑𝑟

𝑑𝜃
)
2

=
𝐸2𝑟4

ℒ2
+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟

2. 
(5.1) 

Instead of using Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+) we are going to use Λr2 − 𝑏𝑟 + 𝜇 where b is the 

gravitational hair parameter and 𝜇 is related with the mass of the black hole. 

Now, our equation becomes 

(
𝑑𝑟

𝑑𝜃
)
2

=
𝐸2𝑟4

ℒ2
+ (Λr2 − 𝑏𝑟 + 𝜇)𝑟2. 

(5.2) 

Then the analytical solution of this equation is [24] 

𝑟𝐼(𝜃) =
2𝜇

𝑏 + 2𝜇𝜅𝐼sinh (±√𝜇𝜃 + 𝛽)
, (𝑇𝑦𝑝𝑒 𝐼: 𝐸2 > 𝑉𝑚𝑎𝑥

2), 
(5.3) 

 

𝑟𝐼𝐼(𝜃) =
2𝜇

𝑏 + 2𝜇𝜅𝐼𝐼cosh (±√𝜇𝜃 + 𝛽)
, (𝑇𝑦𝑝𝑒 𝐼𝐼: 𝐸2 < 𝑉𝑚𝑎𝑥

2, 𝑟0 < 𝑟𝑎), 
(5.4) 

 

𝑟𝐼𝐼𝐼(𝜃) =
2𝜇

𝑏 − 2𝜇𝜅𝐼𝐼cosh (±√𝜇𝜃 + 𝛽)
, (𝑇𝑦𝑝𝑒 𝐼𝐼𝐼: 𝐸2 < 𝑉𝑚𝑎𝑥

2, 𝑟0 > 𝑟𝑎), 
(5.5) 
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where 𝛽 is the integration constant, 𝑟0 is the initial location of the particle, 𝑟𝑎 is the 

location of the particle where it has maximum potential 𝑟𝑎 =
2𝜇

𝑏
. 

Also 𝜅𝐼
2 = (4𝜇/�̅�2 − 𝑏2)/4𝜇2 and 𝜅𝐼𝐼

2 = (𝑏2 − 4𝜇/�̅�2)/4𝜇2 

where �̅� is the effective impact parameter and D is the impact parameter 

𝐷 =
ℒ

𝐸
, 

(5.6) 

which is connected to the effective impact parameter by the following equation 

�̅�2 =
𝐷2

1 + 𝐷2Λ
. 

(5.7) 

 

 

Figure 1: Behaviours of the geodesics for Type I and Type II 
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Figure 2: Behaviours of the geodesics for Type III 
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Figure 3: Behaviours of the geodesics for Type III 
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Chapter 6 

CONCLUSION 

In this thesis, our main aim is to observe the radial motions of massive and massless 

particles on the geodesics of both charged BTZ black hole and circularly symmetric 

solution of MMG theory. To achieve this aim, first we introduced the metrics then we 

found the geodesic equations by using Lagrangian method. Then we solved these 

geodesic equations to get analytical solutions. For charged BTZ black hole we got both 

null and time like geodesics for massless and massive particles respectively, but for 

circularly symmetric solution of MMG we got only null geodesics. For charged BTZ 

black hole we solved null geodesics in terms of Weierstrass elliptic function and time 

like geodesics in terms of Kleinian sigma hyper-elliptic function. Also at the end, we 

did some numerical simulations to plot graphs for displaying the geodesics. 

I also planned that to extend my studies. In near future I want to study the higher 

dimensions and rotating versions of the space time. And also I want to concentrate 

more on less studied metrics. 
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Appendix A: Calculations of Some Useful Tensors 

Here, I want to show the steps between the equations (2.23) and (2.24) 

𝐹0
0 = 𝐹1

1 = 𝐹2
2 = 0 (A1) 

𝐹2
0 = 𝐹0

2 = 𝐹1
2 = 𝐹2

1 = 0 (A2) 

and the non-vanishing terms are 

𝐹1
0 = 𝑔0𝛽𝐹1𝛽 (A3) 

𝐹1
0 = 𝑔00𝐹10 + 𝑔

01𝐹11 + 𝑔
02𝐹12 = −

𝐸(𝑟)

𝑔(𝑟)
 (A4) 

𝐹0
1 = 𝑔1𝛽𝐹0𝛽 (A5) 

𝐹0
1 = 𝑔10𝐹00 + 𝑔

11𝐹01 + 𝑔
12𝐹02 = −𝑔(𝑟)𝐸(𝑟) (A6) 

The steps between equations (2.28) and (2.29) are shown below 

𝒜22 = 𝒜01 = 𝒜02 = 𝒜10 = 𝒜12 = 𝒜20 = 𝒜21 = 0 (A7) 

𝒜00 = 𝐹00𝐹0
0 + 𝐹01𝐹0

1 + 𝐹02𝐹0
2 = 𝑔(𝑟)𝐸2(𝑟) (A8) 

𝒜11 = 𝐹10𝐹1
0 + 𝐹11𝐹1

1 + 𝐹12𝐹1
2 = −

𝐸2(𝑟)

𝑔(𝑟)
 (A9) 
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Appendix B: Calculations to Get the Metric of BTZ 

Here, I want to show the steps between the equations (2.32) and (2.33) 

𝛿(𝑘ℱ)𝑠 = 𝑠𝑘(𝑘ℱ)𝑠−1𝛿(𝑔𝜇𝛼𝑔𝜈𝛽𝐹𝜇𝜈𝐹𝛼𝛽) (B1) 

𝛿(𝑘ℱ)𝑠 = 𝑠𝑘(𝑘ℱ)𝑠−1[𝛿𝑔𝜇𝛼𝐹𝜇𝜈𝐹𝛼
𝜈 + 𝛿𝑔𝜈𝛽𝐹𝜇𝜈𝐹

𝜇
𝛽] (B2) 

𝛿(𝑘ℱ)𝑠 = 𝑠𝑘(𝑘ℱ)𝑠−1[𝛿𝑔𝜇𝜈𝐹𝜇𝛼𝐹𝜈
𝛼 + 𝛿𝑔𝜈𝜇𝐹𝛽𝜈𝐹

𝛽
𝜇] (B3) 

𝛿(𝑘ℱ)𝑠 = 𝛿𝑔𝜇𝜈𝑠𝑘(𝑘ℱ)𝑠−1[𝐹𝜇𝛼𝐹𝜈
𝛼 + 𝐹𝜈𝛼𝐹𝜇

𝛼] (B4) 

𝛿(𝑘ℱ)𝑠 = 𝛿𝑔𝜇𝜈𝑠𝑘(𝑘ℱ)𝑠−1[𝐹𝜇𝛼𝐹𝜈
𝛼 + 𝐹𝜈

𝛼𝐹𝜇𝛼] (B5) 

The steps between equations (2.39) and (2.40) are shown below 

𝜕ℒ

𝜕𝐴𝛼
= 0 (B6) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
=
𝜕(√−𝑔𝑘ℱ)𝑠

𝜕𝜕𝛽𝐴𝛼
 (B7) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
=
𝑠(𝑘ℱ)𝑠−1𝑘𝜕ℱ

𝜕𝜕𝛽𝐴𝛼
 (B8) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= √−𝑔𝑠𝑘(𝑘ℱ)𝑠−1

𝜕(𝐹𝜇𝜈𝐹
𝜇𝜈)

𝜕𝜕𝛽𝐴𝛼
 (B9) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= 2√−𝑔𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝜇𝜈

𝜕(𝐹𝜇𝜈)

𝜕𝜕𝛽𝐴𝛼
 (B10) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= 2√−𝑔𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝜇𝜈

𝜕(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 )

𝜕𝜕𝛽𝐴𝛼
 (B11) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= 2√−𝑔𝑠𝑘(𝑘ℱ)𝑠−1𝐹𝜇𝜈(𝛿𝜇

𝛽
𝛿𝜈
𝛼 − 𝛿𝜈

𝛽
𝛿𝜇
𝛼) (B12) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= 2√−𝑔𝑠𝑘(𝑘ℱ)𝑠−1(𝐹𝜇𝜈𝛿𝜇

𝛽
𝛿𝜈
𝛼 − 𝐹𝜇𝜈𝛿𝜈

𝛽
𝛿𝜇
𝛼) (B13) 

𝜕ℒ

𝜕𝜕𝛽𝐴𝛼
= 2√−𝑔𝑠𝑘(𝑘ℱ)𝑠−1(𝐹𝛽𝛼 − 𝐹𝛼𝛽) (B14) 
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Calculations to get equation (2.51) as follows 

∂𝑟(√−𝑔(𝑘ℱ)
𝑠−1𝐹𝑟0) = 0 (B15) 

−∂𝑟(𝑟(−2𝑘(𝐹0𝑟)
2)𝑠−1𝐹0𝑟) = 0 (B16) 

(−2𝑘)𝑠−1 ∂𝑟(𝑟((𝐹0𝑟)
2)𝑠−1𝐹0𝑟) = 0 (B17) 

∂𝑟(𝑟(𝐹0𝑟)
2𝑠−1) = 0 (B18) 

𝑟(𝐹0𝑟)
2𝑠−1 = 𝐶2𝑠−1 (B19) 

(𝐹0𝑟)
2𝑠−1 =

𝐶2𝑠−1

𝑟
 

(B20) 

𝐹0𝑟 = 𝐶(
1

𝑟
)
1

2𝑠−1 
(B21) 

−∂𝑟ℎ = 𝐶(𝑟)
− 

1
2𝑠−1 

(B22) 

ℎ = −(𝑟)− 
1

2𝑠−1
+1 𝐶

1
2𝑠 − 1 + 1

 
(B23) 
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Appendix C: Calculations to Get the Geodesics of BTZ 

1

𝑟2

𝑙2
−m−

𝐾
2𝑟

(
𝑑𝑟

𝑑𝜆
)
2

= 𝜖 + (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) (
𝑑𝑡

𝑑𝜆
)
2

− 𝑟2 (
𝑑𝜙

𝑑𝜆
)
2

 (C1) 

(
𝑑𝑟

𝑑𝜆
)
2

= (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝜖 + (

𝑟2

𝑙2
−m−

𝐾

2𝑟
)

2

(
𝑑𝑡

𝑑𝜆
)
2

− (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝑟2 (

𝑑𝜙

𝑑𝜆
)
2

 

(C2) 

(
𝑑𝑟

𝑑𝜆
)
2

= (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝜖 + (

𝑟2

𝑙2
−m−

𝐾

2𝑟
)

2

(
𝐸

𝑟2

𝑙2
−m−

𝐾
2𝑟

)

2

− (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝑟2 (

ℒ

𝑟2
)
2

 

(C3) 

1

𝑟2

𝑙2
−m−

𝐾
2𝑟

(
𝑑𝑟

𝑑𝜆
)
2

(
𝑑𝜆

𝑑𝜙
)
2

= 𝜖 (
𝑑𝜆

𝑑𝜙
)
2

+ (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) (
𝑑𝑡

𝑑𝜙
)
2

− 𝑟2 (
𝑑𝜙

𝑑𝜙
)
2

 

(C4) 

(
𝑑𝑟

𝑑𝜙
)
2

= (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝜖 (

𝑑𝜆

𝑑𝜙
)
2

+ (
𝑟2

𝑙2
−m−

𝐾

2𝑟
)

2

(
𝑑𝑡

𝑑𝜙
)
2

− (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝑟2 

(C5) 

𝑑𝜙

𝑑𝜆
=
ℒ

𝑟2
 (C6) 

(
𝑑𝜆

𝑑𝜙
)
2

=
𝑟4

ℒ2
 (C7) 

𝑑𝑡

𝑑𝜙
=
𝑑𝑡

𝑑𝜆

𝑑𝜆

𝑑𝜙
=
�̇�

�̇�
=

𝐸

𝑟2

𝑙2
−m−

𝐾
2𝑟

𝑟2

ℒ
 (C8) 
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(
𝑑𝑟

𝑑𝜙
)
2

= (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝜖
𝑟4

ℒ2
+ (

𝑟2

𝑙2
−m−

𝐾

2𝑟
)

2

(
𝐸

𝑟2

𝑙2
−m−

𝐾
2𝑟

𝑟2

ℒ
)

2

− (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝑟2 

(C9) 

1

𝑟2

𝑙2
−m−

𝐾
2𝑟

(
𝑑𝑟

𝑑𝜆
)
2

(
𝑑𝜆

𝑑𝑡
)
2

= 𝜖 (
𝑑𝜆

𝑑𝑡
)
2

+ (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) (
𝑑𝑡

𝑑𝑡
)
2

− 𝑟2 (
𝑑𝜙

𝑑𝑡
)
2

 

(C10) 

(
𝑑𝑟

𝑑𝑡
)
2

= (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝜖 (

𝑑𝜆

𝑑𝑡
)
2

+ (
𝑟2

𝑙2
−m−

𝐾

2𝑟
)

2

− (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝑟2 (

𝑑𝜙

𝑑𝑡
)
2

 

(C11) 

𝑑𝑡

𝑑𝜆
=

𝐸

𝑟2

𝑙2
−m−

𝐾
2𝑟

 (C12) 

(
𝑑𝜆

𝑑𝑡
)
2

= (

𝑟2

𝑙2
−m−

𝐾
2𝑟

𝐸
)

2

 (C13) 

𝑑𝜙

𝑑𝑡
=
𝑑𝜙

𝑑𝜆

𝑑𝜆

𝑑𝑡
=
�̇�

�̇�
=
ℒ

𝑟2

𝑟2

𝑙2
−m−

𝐾
2𝑟

𝐸
 

(C14) 

(
𝑑𝑟

𝑑𝑡
)
2

= (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝜖 (

𝑟2

𝑙2
−m−

𝐾
2𝑟

𝐸
)

2

+ (
𝑟2

𝑙2
−m−

𝐾

2𝑟
)

2

− (
𝑟2

𝑙2
−m−

𝐾

2𝑟
) 𝑟2(

ℒ

𝑟2

𝑟2

𝑙2
−m−

𝐾
2𝑟

𝐸
)

2

 

(C15) 
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Appendix D: Calculations to Get the Geodesics of Black Holes in 

MMG 

−
1

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
(
𝑑𝑟

𝑑𝜆
)
2

= 𝜖 − Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+) (
𝑑𝑡

𝑑𝜆
)
2

− 𝑟2 (
𝑑𝜃

𝑑𝜆
)
2

 (D1) 

(
𝑑𝑟

𝑑𝜆
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖 + (Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))
2
(
𝑑𝑡

𝑑𝜆
)
2

+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟
2 (
𝑑𝜃

𝑑𝜆
)
2

 

(D2) 

(
𝑑𝑟

𝑑𝜆
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖

+ (Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))
2
(

𝐸

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
)
2

+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟
2 (
ℒ

𝑟2
)
2

 

(D3) 

−
1

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
(
𝑑𝑟

𝑑𝜆
)
2

(
𝑑𝜆

𝑑𝜃
)
2

= 𝜖 (
𝑑𝜆

𝑑𝜃
)
2

− Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+) (
𝑑𝑡

𝑑𝜃
)
2

− 𝑟2 (
𝑑𝜃

𝑑𝜃
)
2

 

(D4) 

(
𝑑𝑟

𝑑𝜃
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖 (
𝑑𝜆

𝑑𝜃
)
2

+ (Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))
2
(
𝑑𝑡

𝑑𝜃
)
2

+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟
2 

(D5) 

𝑑𝜃

𝑑𝜆
=
ℒ

𝑟2
 (D6) 

(
𝑑𝜆

𝑑𝜃
)
2

=
𝑟4

ℒ2
 (D7) 

𝑑𝑡

𝑑𝜃
=
𝑑𝑡

𝑑𝜆

𝑑𝜆

𝑑𝜃
=
�̇�

�̇�
= −

𝐸

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝑟2

ℒ
 (D8) 
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(
𝑑𝑟

𝑑𝜃
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖
𝑟4

ℒ2

+ (Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))
2
(−

𝐸

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝑟2

ℒ
)

2

+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟
2 

(D9) 

−
1

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
(
𝑑𝑟

𝑑𝜆
)
2

(
𝑑𝜆

𝑑𝑡
)
2

= 𝜖 (
𝑑𝜆

𝑑𝑡
)
2

− Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+) (
𝑑𝑡

𝑑𝑡
)
2

− 𝑟2 (
𝑑𝜃

𝑑𝑡
)
2

 

(D10) 

(
𝑑𝑟

𝑑𝑡
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖 (
𝑑𝜆

𝑑𝑡
)
2

+ (Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))
2

+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟
2 (
𝑑𝜃

𝑑𝑡
)
2

 

(D11) 

𝑑𝑡

𝑑𝜆
= −

𝐸

Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)
 (D12) 

(
𝑑𝜆

𝑑𝑡
)
2

= (
Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝐸
)

2

 (D13) 

𝑑𝜃

𝑑𝑡
=
𝑑𝜃

𝑑𝜆

𝑑𝜆

𝑑𝑡
=
�̇�

�̇�
= −

ℒ

𝑟2
Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝐸
 (D14) 

(
𝑑𝑟

𝑑𝑡
)
2

= −Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝜖 (
Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝐸
)

2

+ (Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+))
2

+ Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)𝑟
2 (
ℒ

𝑟2
Λ(𝑟 − 𝑟−)(𝑟 − 𝑟+)

𝐸
)

2

 

(D15) 

 

 

 


