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ABSTRACT

In this thesis, we study to derive the equation of motion for the geodesics of the 3
dimensional (3D) charged BTZ black hole and also geodesics of the black holes in the
minimal massive gravity (MMG) theory at its merger point. The motions of the
massless and massive particles are going to be study by using the Lagrangian equation.

Then we are going to focus on null and time-like geodesics solutions.

After finding the Euler-Lagrange equations, we are going to investigate the radial
motions of the geodesics. For this purpose, we are going to study to find the exact

analytical solutions of the geodesic equations.

At the end, we perform some numerical simulations to plot graphs for displaying the

geodesics.

Keywords: General Relativity, BTZ, Minimal Massive Gravity, Black Hole,

Geodesics
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Bu tezde, 3 boyutlu yiiklii BTZ kara deliginin ve ayrica birlesme noktasinda minimal
massif kiitle ¢ekim teorisindeki kara deliklerin jeodezikleri i¢in hareket denklemlerini
aragtirtyoruz. Kiitlesiz ve kiitleli pargaciklarin hareketleri Lagrange denklemi
kullanilarak incelenecektir. Daha sonra 151k ve zaman benzeri jeodezik ¢oziimlere

odaklanacagiz.

Euler-Lagrange denklemlerini bulduktan sonra jeodeziklerin radyal hareketlerini
inceleyecegiz. Bu amagcla jeodezik denklemlerin kesin analitik ¢oziimlerini bulmaya

calisacagiz.

En sonunda, jeodeziklerin goriintiilerini olusturmaya yardim edecek grafikler ¢izmek

i¢in bazi sayisal simiilasyonlar yapiyoruz.

Anahtar Kelimeler: Genel Gorelilik, BTZ, Minimal Masif Yer¢cekimi Modeli, Kara

Delik, Jeodezikler
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Chapter 1

INTRODUCTION

The mysteries of the universe have always fascinated mankind. Nicolaus Copernicus,
one of the history's greatest mathematicians and astronomers, was an advanced
contributor to the scientific revolution [1]. The movements of the planets and stars
have been observed by mankind for thousands of years, aroused their interest and
curiosity. Although precocious cultures already had a precise knowledge of the
movement of the stars, the starting points of the modern scientific world is based on
the works of Johannes Kepler (1571-1630), Isaac Newton (1643-1727) and Albert

Einstein (1879-1955).

In 1609 Kepler acknowledged the existence of a force radiated by the Sun in his work
Astronomica Nova. This force decreases with distance and also it causes planets to
move faster when they are closer to the Sun. After looking his assumption and
examining the orbital data of Mars, he realized that the planets move on elliptical
instead of circular orbits and developed the first and second law of planetary motion.
Kepler explained his third law in 1618, which he used the connection between the
length of a planet's semi-major axis and its orbital period. This connection allowed
him to accurately calculate the orbital velocity of a planet. With these three laws Kepler

became one of the founders and greatest names of the modern astronomy [2].



At first, Kepler believed that a force from the sun was pushing the planets in their
orbits, but he could not identify this force. Later on, Newton’s work on gravity showed
us why planets orbit this way. When Newton applied his universal gravitation law to
the Sun and planets, he can predicts the motion of the planets correctly. Newton laid
down his laws in Philosophiae Naturalis Principia Mathematica [3].

1.1 General Relativity

Einstein started to thinking about gravity after his work on Special Relativity. His main
idea was how to give gravity a relativistically invariant formulation. After all trials and
errors, Einstein presented one of his biggest work General Theory of Relativity in 1915
[4]. In Newton's principle, gravity causes an attractive force between large objects. But
in general relativity, the gravitational effect is caused by the distortion of space-time
around masses. As time passed, Einstein's definition of gravity was shown to explain
various effects that could not be drawn from Newton's law, such as the orbits of the
planets and the effect of gravity on light. Mass is an important property in determining
the gravitational effect of matter. But in general relativity, mass cannot be the only
source of gravity by itself. Relativity unifies mass and energy. Also relativity unifies
energy and momentum. Today, Einstein's General Relativity Theory is the key of the
scientists' best understanding of gravity.

1.2 Geodesics

We know that the shortest distance between two points which are on a plane is a
straight line. So how to define the shortest distance between two points which are on
a sphere? The shortest distance between these two points expressed by the segment of
the arc where its center is the center of this sphere and also passes through these two
points. We give a name to this curve, which shows the shortest distance between two

points on a surface. This name is geodesic curve [5].



In geometry, ageodesic is commonly a curve representing in some sense the
shortest path between two points in a surface, or more generally in a Riemannian

manifold.

In general relativity, a geodesic generalizes the notion of a straight line to curved space
time. Importantly, the world line of a particle free from all external, non-gravitational
forces is a particular type of geodesic. In other words, a freely moving or falling
particle always moves along a geodesic.

1.3 Black Hole

Black hole is one of the most impressive predictions of general theory of relativity
which has long been tempting for physicists for a long time. And unfortunately we are
not fully understand it, still it has some unknown parts to work on it [6]. Black hole is
a region of space time where the gravitational field is so strong that nothing (even
light) can escape from it [7]. The general theory of relativity shows that a sufficiently
compact mass can form a black hole by deforming the space-time [8]. It has an event
horizon whose total area does not decrease in any physical process. Also, in curved
space time, quantum field theory shows that event horizons emit Hawking radiation
with the same spectrum as a black body at a temperature inversely proportional to its

mass.
1.4 BTZ Black Hole

The name BTZ comes from its founders. Banados, Teitelboim and Zanelli found that
there is a solution for black hole in (2+1) dimensional space time in 1992 [9]. In local
space time, they need a constant curvature for solution of the gravitational field
equation [10]. Also, this solution is similar with the solution of Anti-de Sitter (AdS)-

Maxwell gravity in three dimension [11]. The BTZ black hole has a connection with



the string theory and this connection makes it more interesting [12]. The BTZ black

hole has another usage which is studying black holes in quantum scale [13].

In this thesis, my main aim is to observe the motion of the both massive and massless
particles around the BTZ black hole. To achieve this aim, in chapter 2, we first
described the metric and then solved the geodesic equations in BTZ black hole by
using Lagrangian method. After that, in chapter 3, we found the analytical solutions of
the geodesic equations for both null and time-like geodesics.

1.5 Minimal Massive Gravity

In physics one of the main problem is to have a theory in which gravitational effects
brought together the quantum mechanical principles, namely getting a unitary theory.
By unitary it is meant both bulk and boundary unitarity since the inception of
AdS/conformal field theory (CFT) correspondence. In order to test some aspects of
quantum gravity three dimensional space time is a useful theoretical background. Even
in three dimensional background, it is not easy task to form a theory which is bulk and
boundary unitary, for example, the first theory come to mind is cosmological
Einstein’s theory which has no propagating degrees of freedom and that makes the
theory locally trivial even though it has positive central charges in 3D. The simplest
way to introduce propagating degrees of freedom, and get rid of the local triviality, to
the theory, the Einstein’s theory can be modified by introducing mass to the gravitation

[14].

Massive gravity theories are studied for a long while. Here properties of some of the
relevant massive gravity theories are given. The cosmological Topologically Massive

Gravity (TMG) is one of these theories. TMG is the most experienced modification of



the general relativity in 3D. It completes the Einstein-Hilbert action with the Chern-
Simons term [15]. But it has a bulk vs boundary clash problem. So to get rid of this
problem, a new model was constructed. This new model is known as New Massive
Gravity (NMG). This theory also includes usual Einstein-Hilbert term but it has
additional quadratic curvature terms. But still NMG has the same problem with TMG
[16]. Later on Minimal Massive Gravity (MMG) comes up, which is a newest version
of NMG, it is obtained by unifying the Chern-Simmons term with the NMG’s action.
Finally, Generalized Massive Gravity (GMG) is introduced. It is important for us,
because in a certain range of parameters it can get rid of the bulk vs boundary clash

problem [17].

In this thesis, my other main aim is to observe the motion of the massless particles
around the black hole of MMG theory. To achieve this aim, in chapter 3, we first
described the metric and then solved the geodesic equations in MMG by using
Lagrangian method. After that, in chapter 4, we found the analytical solution of the

geodesic equations for null particles.



Chapter 2

METRIC AND GEODESIC EQUATIONS OF CHARGED

BTZ BLACK HOLE

In this study, we take the Minkowski metric with mostly plus signature. The
coordinates are defined as x* = (¢t,r,¢). Greek indices run from 0 to 3 and Latin

indices run from 1 to 3.

The Maxwell’s power law theory is given by the following Lagrangian [18]
L =—a(kF)>. (2.1)

Then the action is [19]

1 (2.2)
— 3, [ — s
1—16njd x\—g[R — 2A + (kF)*],
where R is the scalar curvature, A = —2 s the cosmological constant, F is the

12
Maxwell invariant acts as a source in the theory, which is equal to F,,,F*” and F,,, =
d,A, — 0,4, is the electromagnetic tensor field with A, as the gauge potential, and s

u

is an arbitrary positive nonlinearity parameter.

For radial electric field the gauge potential is given as A* = h(r)&} then the non-
vanishing components of electromagnetic field tensor becomes
F10 =914° — 9941, (2.3)

F10=914° = 9"¢p(r) = —E(7), (2.4)



FOl = 9941 — 9140, (2.5)
FOl = —914% = —9"h(r) = E(7), (2.6)

where we have used the definition of electric field E* = 9tA° — 9°A.

In order to take the indices of electromagnetic field tensor down we multiply equation

(2.3) with the metric

Fo1 = 9oo9g11F°L, (2.7)
Fy, = —F°t = —E(r), (2.8)
—E(r) = 09A; — 014, (2.9)

—E(r) = —0,4,, (2.10)
For = —E(r) = —0,-h(r). (2.11)

The electromagnetic field tensor can be written in matrix form as follows

0 E@ O

o <_Em 0 0), 1)
0 0 0
0 —E(r) O

By = <E(r) 0 0), (2.13)
0 0 0

where the raising and lowering of the indices are done by the following metric ansatz

[20]
ds? = —g(rde? + 3 4 r2ag? (2.14)
g()
which can be written in component form
! 0 0
g(r)
gt = 0 gr) 0| (2.15)
1
0 0 -z



—-g(r) 0 0
1
gw=| 0 —— 0| (2.16)
’” g(r)
0 0 r?

Since we need the following tensor in our calculation we write it in the matrix form

whose detailed derivation can be found in Appendix-A

E% = g*F,, (2.17)
0 —gME() 0

E% = _E@ 0 0 | (2.18)
g()
0 0 0

We also need to calculate the following identities

F = F, F, (2.19)
F = FyoF % + Fy;F° + F;oF™® + F;;FY, (2.20)
T = F01F01 + F10F10 = _ZEZ(T), (221)
and

F;ch/a = FuOE/O + F/AE/I + FuZE/Z = Ay, (2.22)

g(ME?*(1) 0 0

2
FuF, = _EM (2.239)
g()
0 0 0

The detailed derivation of equation (2.23) can be found also in Appendix-A.
2.1 Maxwell Power Law Action

Varying the cosmological Einstein-Hilbert-Maxwell Power Law action (2.2) with

respect to g,,,, (the metric tensor) we can obtain the equation of gravitational field as

1
§I = EJ d*x8[\/—g(R — 2A + (kF)9)], (2.24)

ol = % ] x[(6=g)(R — 27 + (kF)*) + /=g (6R + 5(kF)*)], ~ (2.25)

where §,/—g = —%gw&g’“’,/—g and 6R = 6g*'R,,.

8



We can take the variation of the term 6 (kF)® in equation (2.24) as
§(kF)S = s(kF)S~ k8 (F,, F*), (2.26)
§(kF)* = 2s5k(kF)S'F o F,“5g". (2.27)

The steps between two equations are shown in Appendix-B.

Then, the variation of the action becomes

1
167‘[f d3x\/ 2 guvR + g;n/A - Eguv(k?)s
(2.28)
+ 2sk(kF)S~1E,, F, %16 g",
and setting 61 = 0 we get
1 1 N s—1 a
Ry — EgWR + g — Egm,(k}") + 2sk(kF)*~'E,oF,* = 0, (2.29)
1 N s—1 a
Gy + guA = Eg/w(kg:) — 2sk(kF) FuoF)". (2.30)
Finally, the gravitational field becomes
G;w + guvA T;nu (231)
where the energy-momentum tensor is defined as
= s-1 a1 s 2.32
Ty = =2 |sk(kF)S™E, F* — ng,(kil’-') . (2.32)

Now varying the action with respect to the gauge potential A, we can obtain the

equation of electromagnetic field as

oL G, or _ 0 2.33

04, PodgA, (2.33)

or _ 4.[—gsk(kF)S—1FBa (2.34)
00p4, ’ '

whose calculations are shown in Appendix-B.

Then, one can write the second field equation in the following form



1
V=

Finally, the electromagnetic field becomes

4sk

05(/—g(kF)s"1FF™) = 0. (2.35)

1
——0,(/—g(kF)"1FBe) = 0. (2.36)

v—9
This equation determines the electromagnetic field which has the electric field as the
non-vanishing component. At this stage the discussion bifurcates into two parts

according to the power of the Maxwell term in equation (2.36). Fors =1, ,/—g =71

and F™* = —E(r), equation (2.36) can be solved for the electric field:

8.(rF™) = 0, (2.37)
9,(rd.h) = 0, (2.38)
9. h(r) = g. (239)

By multiplying and dividing the right hand side with %we get

1

d-h(r) =q Ll (2.40)
T

9.h(r) = q %m (;) (2.41)

h(r) = g¢In G) (2.42)

Then, the electric field becomes

q
FOr:;

, (2.43)

where we defined the integration constant as g. Then the electric field becomes

a

E(r) = 0,h(r) = "

(2.44)

For the general power of the Maxwell term in equation (2.36), s # 1 the gauge

potential takes the following form

10



2(s-1)
h=—qr2T, (2.45)

and the electric field becomes

2q(s—1) -1
—_—7

E(r) = dh(r) = -5 —==7%1, (2.46)

2.2 Solution of EH-Maxwell Power Law Gravity

In this part we are going to find the solution of the equation (2.31) for the metric ansatz

(2.14).

Both sides of the equation (2.31) can be written in matrix form

G;w + g;wA
/_ g(N@ri+g' (1) . . \
2r
| 2rA+ g'(r) I (2.47)
= O R A O ,
2rg(r)
r?2A+ g"(r))
0
2
and
T,
—2sk(=2kE)1 g(r)EX(r) — H"Zﬂ . .
3 e 20 (<2kE?)
0 0 (—2kE?)*r?

2

From the equality of the matrices (2.47) and (2.48) one can get three equations

IOCALID) g -aupry-rgripn - CEHEID, 249
2ri+g'(r) o p2Nset E*(r) (—2kE?*)"

B I Tes S PTeo (2:50)

20+ g"(r) = (—2kE?)S. (2.51)

11



The first two differential equations are the same which can be seen easily and the third
one is related to the first two equations by an integral. This equivalence can be seen
easily for s = 1. In this case equation (2.49) reduces to

2rA + g'(r) = 2rkE?, (2.52)
and equation (2.51) becomes

2A+ g"'(r) = —2kE?. (2.53)

q

After writing left hand side of equation (2.53) as a total derivative and using E = -

one can easily integrate equation (2.53) and get
2rA + g'(r) = 2rkE?, (2.54)
which is the same equation with (2.52). Therefore we have just one independent

equation. The unknown function g(r) can be found separately for s = 1 and s # 1.

When s = 1 equation (2.49) reduces to

2

g'(r)=-2rA+2rk z—z (2.55)

We can easily integrate equation (2.55) and get

2

I 21 (- 2.56
gr)+m= B + 2kq ln(l), (2.56)

and for k = —1

2

g(r) = % —m—2q%In G) (2.57)

which is the solution of Einstein-Maxwell theory in 3 dimensions and known as
charged BTZ black hole solution, in which m and q are the mass and electric charge

respectively.
For s # 1 and k = —1, equation (2.49) takes the following form

12



2ra+ g'(r 2E?)S
ZRITO - scerzyipr+ EEL (2.58)

The integration of (2.58) results in

2(s—1)
2 8q%(s — 1)?\* r2zs—1 2.59
g(r)—l_z_m—(zs_l)2<(25—1)2> 2(s = 1) -

When s =Z is inserted in equation (2.59) the solution reduces to the well-known

metric which is called conformally invariant Maxwell solution,

3
72 3 2 8q2 (% — 1)2 ' rzz(é—i) 5
g(r)zl—z—m—(ZZ—l) 3 > 3 ) (2.60)
(23-1) ) 2(z-1)
g = :—22 —m-— % (Zqz)% r-1, (2.61)

3
Defining (2¢%)* = K one can write the equation (2.61) in its simplest form

gr)=—=-m-——. (2.62)

Finally, the solution of conformally invariant Maxwell gravity can be written as

ds? = — (o K\ az e Y agg
STET\ETm T, 2 ra (2.63)
Zom- g

From now on, we are going to find the geodesic equations of (2.63)

2.3 Geodesic Equations of Conformally Invariant Maxwell Gravity

Now, we can find the geodesic equations and constants of motion. The geodesic
equations can be determined with

d?x* L dxP dx® 0
dAZ? PIdA dr

(2.64)

where dA? = Juvdx*dx” is the proper time and I‘lﬁ‘a is the Christoffel connections

given by

13



1
F:a = Eglw(apgm/ + acfgpv - avgpa)- (2.65)
Although, the constants of motion can be found by equation (2.64), we will use a

simpler method by which the constants of motion are given by the following

Lagrangian

L_l i dx“dx"_l
2 L IwTarax T 2¢
u,v=0

1 r? K (dt)z_l_ 1 (dr)
2l \e " )@ T2 k@ (2.66)
12 m 2r
dg\>
2 ("
tr (dl) ’

where € takes -1 for massive particles and 0 for massless particles and A is an affine

parameter.

Now, we can find the constants of motion by using Euler-Lagrange equations

p oL r? K\. E (2.67)
Tt T\ M)ttt
and equation (2.67) can be written for ¢
E (2.68)

T Tk
[2 m =

where ‘.’ represents derivative with respect to the affine parameter and FE stands for

the energy of the particle.

The second Euler-Lagrange equation is

14



oL

Py = 35" r2d =L, (2.69)

where L is the angular momentum of the particle and again equation (2.69) can be
written for ¢

(2.70)

By using these constants of motion we can obtain the geodesic equations as follows

(dr> _er? Ke g2 L2 mL?% KL? (2.711)
a) ~ 1z "™ 1z Tz T

dr\> er® mer* Ker3® E%r* 1t ,  Kr (2.72)
(@) STz gz Tz T pEptmrtt =R0),

r? K 5 (T2 k\* (@273
m 2r> L (l_z m )

R

dt E? E2r?
This set of equations determines the trajectory of the particle around the black hole

(2.63).

By using equation (2.77) we can find the effective potential as

er? Ke L£?> mL? KL? (2.74)
Veff=—l—2+m6+§+l—2—r—2—ﬁ.

For simplicity we define some dimensionless parameters

o .1 - K . m? (2.75)
F=—, l=—, K=—, L=—,
m m m L2

and rewrite equation (2.72) in the following form

di\* _ efL ux KetL o K (276)
<E) =T — mer*L — +ErL—l~—2+mr +7—R(r).

2.4 Possible Regions for Geodesic Motion

Equation (2.76) shows us that there is a condition for the existence of a geodesic which

iIs R(#) = 0. The real positive zeros of R(7) are extremal values of the geodesic

15



motion. Since ¥ = 0 is a zero of this polynomial for all values of the parameters we

can neglect it. So our equation reduces to a polynomial of degree 5 from 6

e>L . Ker?L U K (2.77)
+E2r3L—Z—2+mr+E.

By using analytical solutions we can obtain possible orbits which depend on the

parameters of the particle €, [, E?, K and L.

dR*()
ar

Solving R*(#) = 0 and = 0 we can find E? and Z.

For massive particles, we take e = —1 and get equations for the angular momentum

and energy as follows

e [2(4m7 + 3K) (2.78)
~ 72(RI2 + 473)
A1*m?72 + 4K1*mi — 81°m#* + K21* — 4K 1?73 + 4 (2.79)

E? =

[*7(4mf + 3K)
For massless particles, we take e = 0 and we get

; (64m3 1)1 (2.80)

ke V) B

16



Chapter 3

ANALYTICAL SOLUTIONS OF BTZ

This part is devoted to the analytical solutions of the geodesic equations. First, we

introduce a new parameter that is u = = and use it in order to simplify equation (2.76)

|~

as
() -

(du)z_ el ; ukEE+E2E 1+ ) +u31? (3.2)
ib) = wn me 7t wim =

For massless particles, e = 0, equation (3.2) reduces to the following form
du? o 1 uK - l. (3.3)
(dd)) L lz+u m+ > 2 (u) Z;alu,
l:

which is an elliptic type function. To get a Weierstrass form function we use another

substitution which is

( m)' (3.4)

then equation (3.3) becomes

dy\? (3.5)
(@) =4y° —ay —y = P;(y),
where
q= 2 _mas_m? g @003 doas? @’ _ _ (EZLE-1)RZ  m?
12 4 12 48 16 216 6412 216

are Weierstrass constants. Equation (3.5) is an elliptic type function whose solution is

given by Weierstrass function [21]

17



y(¢) = 80(¢ - ¢in; a, V), (36)

where
« dy (3.7)
b =90+ | ——
vo VAV —ay —y
and
1/a; a, K m (3.8)
Yo =—(~———) = oz T35
4\7, 3 8ry, 12

Then the analytical solution of equation (2.82) is

a3 _ K (3.9)
450((!) - ¢in; a, )/) - % 2 [480((!) — d)in; a, )/) — %]

7(¢) =

For massive particles, e = —1, equation (3.2) can be written as follows

( du)2 = E+ 2 E+u3ki+ 2E*L u2+ * +u5K—P( )
udd)_iz u‘m > u 7 u'm+——= Ps(u
. (3.10)
= Z au’,
i=0
which is a polynomial with a degree of 5 and its analytical solution is [22]
o
u(@) = —= (), (3.11)
03
where g; is the i-th derivative of the Kleinian sigma function which is
1 -
o(z) = Ce 22N 1ZH[g, hl(Q2w) 1z 1), (312)

here 7 = w™ 1w is the symmetric Riemann matrix and 8[g, h] is the Riemann theta-

function
0[g,h](z; t) = Z oin(m+g)i(t(m+g)+22+2h) (3.13)

Then the analytical solution of 7 is

. 0y (3.14)
P (¢g)-
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Chapter 4

METRIC AND GEODESICS OF CIRCULARLY

SYMMETRIC BLACK HOLE IN MMG

4.1 Topological Massive Gravity

The action of cosmological TMG is [23]

4.1
Irmg = j d3x/—g(R — 2Ao) + Igcs, (4.1)

where A, is the bare cosmological constant and I is the gravitational Chern-Simons
action

1 2 4.2
lges = ﬂf d3x\/ —geHTrP 5, <6HFTPV + §Fruzrlvp>, (42)

where p is a mass parameter.

Varying the action (4.1) with respect to the metric tensor g,,,, we can obtain the source-

free equations of motion

1 4.3
G#V-I'AOg#V-l"ECMV:O' (43)

where C,, is the symmetric-traceless Cotton-York tensor which can be defined in

terms of Schouten tensor S, as

n upo 1 v (4.4)
CHh, =€ VpSm/' Sav:Rav_ZRgav: S=g Suv:Z'

where €#P? is the Levi-Civita pseudo tensor defined as €,,, = /—g and the

Eupo

convention g51, = +1.
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For the following computations we need to find the components of Cotton-York tensor

IuaC*y = Gua€**VpSsv, (4.5)
Cov = Gua€"PVpSov, (4.6)
Coo = C11 = (22 =0, (4.7)

Co1 = Cyo = C12 = (31 =0, (4.8)

and the non-vanishing terms are

Coz = gooeoapvpsoz; (4.9)
_ Yoo (4.10)
Coz = \/?g (V1822 — V3512),
Cyo = gzzfzapvpsao' (4.11)
_ 922 (4.12)
Cyo = \/?g (V1802 — VoS12),
Then,
g
/ 0 0 J% (V1555 = vzslz)\
Cov = | 0 0 0 I (4.13)
922
\/?g (V1So2 = VoS12) O 0

4.2 Minimal Massive Gravity

The field equation of source-free MMG is

_ — 1 4 4.14
E/,tv:O-Gﬂv +A0g“v+‘l—lcuv+l?]“v:0, ( )

where & and y are dimensionless parameters and A, is the bare cosmological constant.

In equation (4.14) the symmetric curvature-squared tensor J,, is

1 1 4.15
JHV = S €MPTEVNS ) Sy = SSIY — SHPSY ), 4= gV (5P7Spe = S7), (4.15)

and the trace of J*V is
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1 4.16
J =g = E(Spaspa - 52)' (4.18)

4.3 The Merger Points of MMG

For an Einstein space Ry, = 2Ag,, Where A is the effective cosmological constant,

the Schouten tensor becomes

1 4.17
Sﬂv = R/.W — ZRguv, ( )
A (4.18)
S;w = Eguw
3A
¢34 (4.19)
2
The tensor field J,,,, takes the following form
1 4.20
Juv =SSy — Sy Sup + ng(spffspa - 5?), (4.20)
N? (4.21)
]uv = _Iguw
and the trace of J,,, can be written as
B 3A? (4.22)
J==—
The Einstein tensor becomes
1 4.23
G[W = R#V - Egm,R, ( )
Guy = 20gyy — 3Agyy = —Ag .- (4.24)

Now we can write the field equation of source-free MMG in the Einstein space as

oy (4.25)
Iuv <—O’A +Ag — ;77> = 0.
Then,
_ — y A? (4.26)
—0AN+ ANy ——=—=
oA+ Ay 24 0
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Since we want to solve this equation for the effective cosmological constant A we can
write this equation as

4u’c 4u? _ 4.27
LN N 427

We have two possible values for A

(4.28)

25 25)\2 25 _
_Au ai\/<4p§/0) +16,u O’AO

2

A, = 21w'e 1+ [1+ Y 3 )
ooy T wer

The reality condition of the cosmological constant provide the inequality u?G? +

YAy = 0.
In order to get the merger points we equate the roots of the equation (4.27) which are
given in equation (4.29) and get

ua? +yAy, =0, (4.30)
by which the bare cosmological constant can be determined by the parameters of the
theory as follows

U252 (4.31)

Ay = —
0 Y

Using equation (4.31) in equation (4.29) the effective cosmological constant can be

written in terms of the parameters

2u*G 4.32
Pl (4.32)
Y
and finally
AG = 2A,. (4.33)
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Therefore, the merger point of MMG is given by equation (4.31),(4.32) and (4.33)

4.4 Static Circularly Symmetric Solutions

Let us take the most general static circularly symmetric metric ansatz which is

dr? 4.34
ds? = —u(r)dt? + a +1r2d62. (4-34)
v(r)

Now, we are going to find all metric forms of this metric ansatz which satisfy E,,,, = 0
at the merger points. As we showed in equation (4.13), all components of Cotton tensor
are vanishing except C.g. Also only the diagonal components of the remaining terms
in E,,,, are non-zero which can be seen from equation (4.24),(4.21) and (4.14). We are
considering the combination of E,,, = 0 and Egg = 0 whichis E, + E?, = 0. By use
of equation (4.34) in this combination one arrives the following differential equation
QAr + v)QuAQAr —v") + ru'(wv' —vu') + 2uv(u’)’) =0, (4.35)

where the prime <" refers to differentiation with respect to r.

One can solve the equation (4.35) by considering the vanishing of each term separately
2Ar +v' =0, (4.36)
and
2u2QAr — V') + ru'(wv’ — vu') + 2uv(ru’)’ = 0. (4.37)
Integrating equation (4.36) gives us
v(r) = vy — Ar?, (4.38)

where v, is the integration constant.

In order to find u(r) we substitute equation (4.38) in E;, = 0 equation and find
r(vo — Ar®)((w')? — 2uu’") + 2vouu’ = 0. (4.39)

The solution of the equation (4.39) gives us
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u) = w, (Voo — A2 — ;) (4.40)

where u,; and u, are integration constants.

After the renaming of the integration constants and rescaling of the t-coordinate we
can write the metric ansatz as

2 dr? (4.41)
2 — - 2 _ 2_ - 2102
dsi A( T+ AT ro) dt TS +r-do-.

By solving the equation (4.37) for u"" and substituting back into E;, = 0 equation we
can find the following

(%), (2Aru +vu') = 0. (4.42)

Again the solution of the equation (4.42) bifurcates into two cases, which are the

vanishing of the terms in equation (4.42) separately. The first one is

u !
(_) _o, (4.43)
v
and the second one is
2Aru + vu' = 0. (4.44)

In order to solve the equation (4.43) we set u(r) = v(r). Then equation (4.37) gives
us a simple equation for u" as u’’ = —2A and integrating this twice we get
u(r) =v(r) = =Ar? + uyr + uy, (4.45)

where u; and u, are integration constants.

After the renaming of the integration constants we can write the metric ansatz as

dr? (4.46)
2 _ _ _ 2 _ 2 2
ds; = ANr —r)(r—rp)dt CETSICETS) +r-do-.

. . 2A . 2A .
Equation (4.44) gives us a constant on u’ as u’ = —%. Inserting u’ = —% into

the equation (4.37) on arrives at
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(v—Ar®)(2Ar +v') = 0. (4.47)
This equation has two solutions however the vanishing of the second term in equation
(4.47) does not yield a new solution. On the other hand, the vanishing of the first term
in equation (4.47) determines v = Ar? and inserting v = Ar? into the equation (4.44)
one arrives at

Uo (4.48)

where u, is the integration constant.

Taking u, = 1 we can write the metric ansatz as

dt?  dr? (4.49)
2 _ 2 2
dsf = —— +— +r?de?,

which is the static Lifshitz spacetime [24]. However, the field equation of MMG (4.14)

is not satisfied by (4.47).

We are going to study the geodesic equation of a particle around the black hole whose

geometry is determined by the metric (4.46) which is well known.

Now, we can find the geodesic equations and constants of motion. The geodesic
equation is by the following equation

d’x* _, dxPdx? (4.50)
4T =,
dA? P dA dA

where dA* = g, dx* dx" is the proper time and l“lﬁ‘a is the Christoffel connections

given as

1 4.51
F;a = Eglw(apgm/ + aagpv - avgpa)- ( )

We can obtain the geodesic equations by using Lagrangian method
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L - 1 i dx* dxV B 1
2 L IwTarax T 2¢
u,v=0
1 dt\? 1 dry?
-3l () G e

i) Ar—r)(r—r)\dA
N
() l

where € is -1 for massive particles and 0 for massless particles and A is an affine

parameter.

Now, we can find the constants of motion by using Euler-Lagrange equation

L : :
P, =%=A(r—r_)(r—r+)t = —E, (4.53)
Lo E (4.54)
A - (-1
oL . :
P9=£=r29=ﬁ, (459)
. L
b==, (4.56)
r

where E is energy and L is angular momentum of the particle.

By using these constants we can obtain the geodesic equations as follows

’ — _ 2
(%) =—=A(r—-r)(r—-r)e+E*+ Ar T-)r(: )L ’ (4.57)
dry? r4 2,.4
(@) =—-Ar—-r)r-— T_,_)GE + 72 +A(r—r)(r— r_,_)rz, (4.58)
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+ (A(r —r)(r— r+))2

dr\? B (—A(r —r)(r— r+))3e
(E) B E?
(4.59)
(A(r —r)(r — r+))3L2
+ .
r2E?

By using equation (4.57) we can find the effective potential and the effective energy

as

1 L? (4.60)
Verr = —EA(r —r)(r—-r) <—E + r_2>'

1 4.61
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Chapter 5

ANALYTICAL SOLUTIONS OF CIRCULARLY

SYMMETRIC BLACK HOLE IN MMG

In this part we analyze the geodesic equations (4.57),(4.58) and (4.59) for massless

particles for which € is set to zero.

The first term in equation (4.58) vanishes for the massless particle condition and it

reduces to

2 5.1
(Z_g) - E12;24 + A —1)(r =1 )r?, (5.1)

Instead of using A(r — r_)(r — r,) we are going to use Ar? — br + u where b is the

gravitational hair parameter and u is related with the mass of the black hole.

Now, our equation becomes

dr\?> E?r* (5.2)
(é) = LZ + (Ar? — br + p)r2.

Then the analytical solution of this equation is [24]

9) = (Type I E2 >V, .2),
116 = 2 sinh (4vi8 + ) (Type ma)
9) = A(Type Il E2 <V, .21y <T,),
11(0) b + 2uk;cosh (/16 + B) ( ype max 70 ra)
2u (5.5)

1 (0) = ,(Type - E? < Vipar’ 70 > 1),

b — 2uk;cosh (£/ub + B)
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where g is the integration constant, r, is the initial location of the particle, r, is the

location of the particle where it has maximum potential r, = 27”.

Also x;? = (4u/D? — b?)/4u? and k;;2 = (b? — 4u/D?)/4u?

where D is the effective impact parameter and D is the impact parameter

L (5.6)
D=
which is connected to the effective impact parameter by the following equation

D? (5.7)

~2 _ .
1+ D2A

L
2

3n
2

— Type 1, E2=30 — Type 2, E> =24

Figure 1: Behaviours of the geodesics for Type I and Type Il
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3n
2

— Type 3,E5=22

Figure 2: Behaviours of the geodesics for Type I1I
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3n
2

— Type 3, E5=23

Figure 3: Behaviours of the geodesics for Type Il
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Chapter 6

CONCLUSION

In this thesis, our main aim is to observe the radial motions of massive and massless
particles on the geodesics of both charged BTZ black hole and circularly symmetric
solution of MMG theory. To achieve this aim, first we introduced the metrics then we
found the geodesic equations by using Lagrangian method. Then we solved these
geodesic equations to get analytical solutions. For charged BTZ black hole we got both
null and time like geodesics for massless and massive particles respectively, but for
circularly symmetric solution of MMG we got only null geodesics. For charged BTZ
black hole we solved null geodesics in terms of Weierstrass elliptic function and time
like geodesics in terms of Kleinian sigma hyper-elliptic function. Also at the end, we

did some numerical simulations to plot graphs for displaying the geodesics.

| also planned that to extend my studies. In near future | want to study the higher
dimensions and rotating versions of the space time. And also | want to concentrate

more on less studied metrics.
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Appendix A: Calculations of Some Useful Tensors

Here, | want to show the steps between the equations (2.23) and (2.24)

F=F'=F?=0 (A1)
FE°=F?=F*=FK'=0 (A2)

and the non-vanishing terms are

Fi° = g%Fy (A3)

E(r)
Fi° = g°Fyo + g"' Fyy + g°%Fy, = o) (A4)
Fol == gl'BFoﬁ (A5)
Fo' = g*°Fyo + g™ Fo1 + g*?Fo, = —g(r)E(r) (A6)

The steps between equations (2.28) and (2.29) are shown below

Azy = Apr = Az = A1g = A1z = Apo = A1 =0 (A7)
Ao = FooFo’ + Fo1Fo' + FopFo® = g(r)E*(r) (A8)

0 1 . _E'(M
A1 = FioFy + FiuFy + FipFy " = — 70 (A9)
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Appendix B: Calculations to Get the Metric of BTZ

Here, | want to show the steps between the equations (2.32) and (2.33)

8(kF)* = sk(kF)*16(g"*g P EpFap) (B1)
8(kF)S = sk(kF)S 6 gH*Fn Fy” + 69YPE, F#g] (B2)
S(kF)S = sk(kF)S L [Sg*E,uF,* + 8g"#Fg,FF ] (B3)
S(kF)S = 8g*sk(kF)S L EoF,% + FyuF, ] (B4)
S(kF)* = 8gHVsk(kF)* [FuoF,“ + F,“Fua] (B5)

The steps between equations (2.39) and (2.40) are shown below

oL _ 0 B6
04, (B6)
0(\/—gkF)S
oL _ oW —gk¥) (B7)
0034, 00pA,
oL s(kF)S 1koF
= (B8)
00pA, 00gA,
L d(E, F*)
Y s—1 Hv
a4, Y ISk =5 A (B9)
oL d(Fw)
— — s—1puv Hv
29,4, 2./—gsk(kF)S~'F 29,4, (B10)
oL d(d,A, —0,A,)
— — s—1gpuv v viu
29,4, 2./—9gsk(kF)S—'F 20,4, (B11)
oL
_ - B B
29,4, = 2,/—gsk(kF)S 1F“‘”(6M &y — 6,6 (B12)
oL
_ - B B
39,4, = 2./—gsk(kF)S 1(F’“’6# &y — F*V 8, 67) (B13)
0L
— _ s—1/pBa _ paf
30,4, 2\ =gsk(kF)*(FP« — F*F) (B14)
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Calculations to get equation (2.51) as follows

0y (\[=g(kF)*'F™) =0
=0, (r(=2k(Fo,)*)*For) = 0
(=2K)571 0, (r ((For)®)*For) = 0
0, (r(Foy)* ) =0

T(FOr)ZS_l — C25—1

25—1
(FOr)ZS_l = <

r

1_1
For = C(;)Zs—l

1
—8,h=C(r) =1

C

_1
2s—1

1
h=—(r) z-1""
+1
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(B15)

(B16)
(B17)
(B18)
(B19)

(B20)

(B21)

(B22)

(B23)



Appendix C: Calculations to Get the Geodesics of BTZ

2

1 (dr)z_ 4 r K (dt)2 2(
rmed/l_e z "7 ) \aa) 7T

2_ r2 K N r2 K 2<dt>2
T\ ) T T T !

(Gt

e o (3n 2

(@) &

dt dtddl ¢t E

dp ~didg ¢ I

!

(@)

r2
K L
2r

E

2
)

2
i

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)



% 12 2 ELZ
12 2r (C9)
r? K
(Fmz)
1 (dr)z (d/1>2
rz_m_£ da dt
2
l .- (C10)
a2 (r? K\ (dty? dgy’
o) + (o) @) (@
dt I2 2r ) \dt dt
(dr)z_ 2 K (d/l)2+ r2 K\?
at) ~\ 2r)\ae) "\ 2r
(C11)
_ i_ _X r? (d—¢)2
12 2r dt
dt E
e e o (C12)
z - 2r
d1y> om-p 2
(_) (™7 (C13)
dt E
. TZ K
dp _d¢dr _¢ LE~™77r (€149
dt  didt t 12 E
2 K\2 2
() Y AR T O
i) ~\Z 2r ) € E 2 2r
(C15)
2 ﬁ_ o 2
(o _£r2 £lz m=sx
12 2r r2 E
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Appendix D: Calculations to Get the Geodesics of Black Holes in

MMG

TAG— rj(r ) (%)2 =e—Ar—-r)r—-r) (%)2 —r? (3—?)2 (D1)

(%)2 =—-Ar—-r)@r—-r)e+ (A(r —r)(r— r+))2 (%)2

. (D2)
+A(r —r)(r —rp)r? (Z—i)
(%)2 =—-Ar—-r)(r—nr)e
+(AG -1 =) ( T rj = r+)>2 (D3)
+A(r —1r)(r —r)r? <r£2>2
B A — rj (r—mry) (%) (%)
(D4)
(& (& (8
+A(r —1)(r —r)r?
dt dtda t _ E r? (D8)

@ZE@ZE _A(r—r_)(r—r+) L
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dry? 4
(é) =-Ar—-r)(r-— r+)e%

r

o\ 2
+ (A(r -1 )(r— r+))2 ( £ )

B Ar—r)(r—r) L

+A(r —r)(r —r)r?

2 2
B Ar — r_; (r—mry) (%) (%)

—¢ (%)2 — A1) —1) (%)2 - (Z_ff

2

(%)2 =—-Ar—-r)r—nr)e (%) +(ACr—1)(r - r+))2

do

+ A -1 )@ —r)r? (E)Z

dt E

dr _A(r —r)(r—-nr)

(%)2 _ <A(r - r_;(r — r+)>2

dB_dBdA_H'_ LAr—r)(r—r)

dt  didt t 12 E

A —1)(r — T+)>2

(%)2 = AG—1)(r — r+)e< k

+ (A -1 —1)°

LA =10 =)\
+ A =1 ) —r)r? <r_2 7 )
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(D9)

(D10)

(D11)

(D12)

(D13)

(D14)

(D15)



