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ABSTRACT

Mikusiński’s operational calculus is a method for interpreting and solving fractional

differential equations, formally similar to Laplace transforms but more rigorously

justified. This formalism was established for Riemann–Liouville and Caputo

fractional calculi in the 1990s, and more recently for other types of fractional

calculus. In this thesis, we consider the operators of Riemann–Liouville and Caputo

fractional differentiation of a function with respect to another function, and discover

that the approach of Luchko can be followed, with small modifications, in the more

general settings too. We establish all the function spaces, formalisms, and identities

required to build the versions of Mikusiński’s operational calculus which cover

Riemann–Liouville and Caputo derivatives with respect to functions. In the process,

we gain a deeper understanding of some of the structures involved in applying

Mikusiński’s operational calculus to fractional calculus, such as the existence of a

group isomorphic to R. The mathematical structure established here is used to solve

fractional differential equations using Riemann–Liouville and Caputo derivatives with

respect to functions, the solutions being written using multivariate Mittag-Leffler

functions, in agreement with the results found in other recent work.

It is useful to understand how the various operators of fractional calculus relate to

each other, especially relations between newly defined operators and classical well-

studied ones. In this work, we also focus on an important type of such relationship,

namely conjugation relations, also called transmutation relations. We define a general

abstract setting in which such relations are relevant, and indicate how they can be used

to prove many results easily in general settings such as fractional calculus with respect

to functions and weighted fractional calculus.
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ÖZ

Mikusiński’nin operasyonel kalkülüs metodu, kesirli diferansiyel denklemleri

yorumlama ve çözme yöntemi olup, biçimsel olarak Laplace dönüşümlerime benzese

de daha detaylı doğrulanmıştır. Bu formalizm Riemann-Liouville ve Caputo kesirli

kalkülüsleri için 1990’lı yıllarda belirlenmiş olup, şimdilerde diğer kesirli kalkülüs

çeşitleri için de kullanılmaktadır. Bu tezde, bir fonksiyonun Riemann-Liouville ve

Caputo kesirli türevinin diğer bir fonksiyona göre operatörleri ele alınmıştır ve

Luchko’nun yaklaşımının ufak değişikliklerle daha genel durumlarda da

kullanılabileceği keşfedilmiştir. Aynı zamanda, Mikusiński’nin operasyonel kalkülüs

metodunun, fonksiyonlara bağlı olarak Riemann-Liouville ve Caputo türevlerini

kapsayan türlerini oluşturmak için gereken tüm fonksiyon alanları, formalizmler ve

özdeşlikler belirlenmiştir. Bu süreçte, Mikusiński’nin işlemsel kalkülüsünü kesirli

kalkülüse uygulamada, reel sayılar kümesine izomorfik bir grubun varlığı gibi yer

alan yapılar daha derin biçimde kavranabilmiştir. Burada belirlenenen matematiksel

yapı, Riemann-Liouville ve Caputo türevlerini fonksiyonlara göre kullanarak kesirli

diferansiyel denklemleri çözmek için kullanılmıştır. Çok değişkenli Mittag-Leffler

fonksiyonlarını kullanarak yazılan çözümler, yakın zamanda diğer çalışmalarla ortaya

çıkan neticelerle uyumludur.

Çeşitli kesirli kalkülüs operatörlerinin, özellikle yeni tanımlanmış ve hâlihazırda iyice

çalışılmış olanların, birbiriyle olan ilişkisini anlamak faydalıdır. Bu makale, bir diğer

adı dönüşüm ilişkileri olan, operatörler arası ilişkinin önemli bir çeşidi konjugasyon

ilişkilerine odaklanmaktadır. Bu ilişkilerin geçerli olduğu genel bir soyut durumu

tanımlanarak, bunların fonksiyonlara bağlı kesirli kalkülüs ve ağırlıklı kesirli kalkülüs

gibi genel durumlarda birçok neticeyi kolayca ıspatlayabilmek için nasıl
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kullanılabilecekleri belirtilmiştir.

Anahtar Kelimeler: kesirli diferansiyel denklemler, Mikusiński’nin operasyonel

kalkülüs, fonksiyonlara göre kesirli kalkülüs, cebirsel konjugasyon, ağırlıklı kesirli

kalkülüs
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Chapter 1

INTRODUCTION

The birth of fractional calculus is accredited to the communication between Leibniz

and de l’Hôpital which took place when the 17th century was drawing to its end.

Thereafter, researchers worked little on the subject in the following three centuries,

but notable strides in the field became conspicuous in the last few decades [1–5].

Despite the physical or geometrical complications involved in understanding the

meaning of fractional operators [6], there lies deep interest among researchers to

work upon the applications of fractional calculus in various disciplines [7–10],

including dynamics [11, 12] and continuum mechanics [13, 14]. The multi-faceted

nature of fractional calculus and its applications makes it vital to study the methods

and techniques which can be applied to solving fractional differential equations.

Unlike in classical calculus, fractional derivative and integral operators can be defined

in various different non-equivalent ways. The Riemann–Liouville fractional

derivative is the most well-established and historically the most used definition.

However, it has some innate disadvantages: for fractional differential equations in this

model, the required initial conditions are intrinsically fractional, which makes the

model less useful for applications. For this reason, the Caputo fractional derivative

arose in the late 20th century to challenge Riemann–Liouville, being more suitable

for modelling physical phenomena due to requiring initial conditions in the classical

form [8].
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Many other operators have been proposed and named as fractional integrals or

fractional derivatives [3, 4, 15, 16], many of them being motivated by and studied for

the sake of their applications in modelling. From the mathematical viewpoint, it is

logical to study fractional calculus in a generalised framework, defining general

classes of operators rather than proving the same results over and over again for every

single operator [17].

Several of the operators defined in the past fall into the general class of fractional

operators with respect to functions [3, 18], although it is itself a subset of the class of

fractional operators with analytic kernels with respect to functions [15,19]. Riemann–

Liouville fractional calculus with respect to functions was first defined by Osler in 1970

[18], and further studied in several textbooks [2–4]. From this definition it is simple

to obtain analogously a Caputo version [20] and a Hilfer version [21], while further

studies of fractional operators with respect to functions, using operational calculus,

can be found in [22, 23].

The major focus for applications of fractional calculus lies in fractional differential

equations, which relate a function to some of its fractional derivatives, and which can

be used in the modelling and understanding of many real-world systems, especially

those involving hereditary or intermediate effects. Both ordinary and partial

differential equations can be extended to a fractional setting, and some classical

methods for solving ordinary or partial differential equations can be extended to

fractional differential equations: for example, iteration methods [24], series

methods [2, Section 8.6], transform methods [25], etc. But all these and other

techniques are not without certain innate shortcomings: for example, the Laplace

transform method cannot be used for solving equations with too swiftly increasing
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forcing functions [3,5]. Meanwhile, some methods work efficiently only for relatively

simple equations, such as those with rational order [1, 26].

In the 1950s, Jan Mikusiński [27] proposed a new algebraic construction for an

operational calculus which can be used to understand the operator of differentiation

from a new perspective and to rewrite differential equations in a formal symbolic way

for easier solving. His approach was based on treating the convolution as a

multiplication operation forming a ring of continuous functions, extending the ring to

its quotient field, and interpreting derivatives and differential equations symbolically

within this field. The structure that emerges is formally equivalent to that of the

Laplace transform, but it has been argued [28] that Mikusiński’s operational calculus

is easier to make mathematically rigorous, more approachable than the distribution

theory required for a rigorous formulation of the Laplace transform, and can be

applied in certain situations where the Laplace transform cannot. Since Mikusiński,

several other researchers [29–32] have investigated other types of operational calculus

inspired by Mikusiński’s and its further extensions.

The fractional-order version of Mikusiński’s operational calculus has been developed

since the 1990s, largely by Luchko [33] together with various collaborators [34–37].

To the best of our knowledge, the first work on this topic was in 1994 by Yakubovich

and Luchko [34], in a Russian-language paper dealing with Erdélyi–Kober operators

and some associated fractional differential equations. This was rapidly followed by

papers establishing Mikusiński’s operational calculus for Riemann–Liouville

operators [35, 38, 39], and then for Caputo operators [36] as well as other types of

fractional-calculus operators [40, 41] and other types of operational calculus [42],

with a survey paper published by Luchko in 1999, [33]. The development of
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Mikusiński’s operational calculus for various fractional-calculus operators has

continued into the 2000s [37, 43, 44], always with applications to fractional

integro-differential equations of various types.

The extension of Mikusinski’s operational calculus to the setting of

fractional-calculus operators of a function with respect to another function was first

achieved in the papers on which two chapters of this thesis are based [45, 46], since

fractional differential equations using fractional derivatives with respect to functions

are gathering considerable attention in recent mathematical research, e.g. [23, 47–49].

In Chapter 3, following closely the methodology used in [35] with the necessary

modifications to deal with the operators being taken with respect to a function, we

construct an adaptation of Mikusiński’s operational calculus which is applicable to

Riemann–Liouville fractional-calculus operators with respect to functions. Using this

operational calculus, we obtain solutions of fractional differential equations in the

framework of the Riemann–Liouville fractional differential operator of a function

with respect to another function.

Just as the original formalism was adapted from Riemann–Liouville derivatives to

Caputo derivatives by Luchko and Gorenflo in 1999 [36], in Chapter 4 we seek to

adapt it from Riemann–Liouville derivatives with respect to functions to Caputo

derivatives with respect to functions. As mentioned above, Caputo-type derivatives

are often more useful than Riemann–Liouville-type derivatives, and cases such as

Caputo–Hadamard have already received attention and applications in the

literature [50–52], while more general Caputo fractional differential equations with

respect to functions are also being studied mathematically [47–49]. Therefore, we

expect this work to be considered useful by researchers in both pure and applied fields
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of study.

In recent decades, the study of fractional calculus has branched out to include many

other operators in addition to the Riemann–Liouville and Caputo ones, sparking debate

on what conditions should be satisfied by a fractional derivative or integral [53]. One

important way to establish an operator as part of fractional calculus is to show that it

is somehow related to the classical differintegral operators of Riemann–Liouville and

Caputo. For some operators [17, 54], this has been done by means of infinite series

formulae; for others [22, 55], the relationship takes the form of conjugation relations,

expressing the new operators as conjugations of the classical ones by some invertible

functional operator.

Unfortunately, such connections between different fractional operators have been

greatly underappreciated in much of the recent literature. For example, conjugation

relations for fractional operators with respect to functions have been shown in the

classical textbooks [3, 4] and, under the name of transmutations, their power in

solving fractional differential equations has been noted in Erdélyi–Kober [56, 57] and

more general settings [58], but they have been entirely ignored in the vast majority of

recent papers on fractional operators with respect to functions and the associated

differential equations. This has led to a lot of wasted effort, since many papers have

provided full proofs (parallel to the classical proofs) of mathematical facts about

fractional operators with respect to functions, when in fact the classical results

together with the conjugation relations would be enough for very short proofs.

The same process applies for any such mathematical connection, whether a series

formula, a conjugation relation, or anything else: they grant the ability to deduce

5



many facts in a generalised setting immediately from the corresponding known facts

in the classical setting, without need to waste time reproducing the proofs. The only

challenge remaining is to find the appropriate generalised setting and set up the

framework for extending known results there. A class of operators has been

defined [15] in which the methodology of series formulae can be used in its most

general possible setting. Chapter 5 of this thesis is based on a paper [59] which

established the most general possible setting for conjugation relations in fractional

calculus. We define a general abstract setting in which these relations are relevant,

and indicate how they can be used to prove many results easily in general settings

such as fractional calculus with respect to functions and weighted fractional calculus.

6



Chapter 2

PRELIMINARIES

Fractional calculus is defined as the study of derivatives and integrals taken to non-

integer orders, extending the concept of repeated differentiation and integration to a

more general “differintegration” with a continuous (real or complex) order parameter.

Here in this chapter, we recall some classical as well as fractional calculus definitions

which we will need to use in the subsequent chapters.

Definition 2.1: The field of fractional calculus revolves around the

Riemann–Liouville integral [3, 4, 8], defined by

R
aIµ

x f (x) =
1

Γ(µ)

� x

a
(x− t)µ−1 f (t)dt, x ∈ (a,b), (2.1)

for µ ∈C with Re(µ)> 0 (or µ ≥ 0 if we assume real order) and f ∈ L1(a,b), and two

competing fractional derivatives, usually named after Riemann–Liouville and Caputo,

defined respectively as follows:

R
aDµ

x f (x) =
dn

dxn

(
R
aIn−µ

x f (x)
)
, x ∈ (a,b), (2.2)

C
aDµ

x f (x) = R
aIn−µ

x

(
dn

dxn f (x)
)
, x ∈ (a,b), (2.3)

for µ ∈ C with Re(µ) ≥ 0 (or µ ≥ 0 if we assume real order) and n := ⌊Re(µ)⌋+ 1.

Interpolating smoothly between these two definitions of fractional derivatives is a more

general one, usually named after Hilfer [7], which is defined as follows:

H
aDµ,ν

x f (x) = R
aIν(n−µ)

x

(
dn

dxn

(
R
aI(1−ν)(n−µ)

x f (x)
))

, x ∈ (a,b), (2.4)

for µ , n, f as before and 0 < Re(ν)< 1 (or 0 ≤ ν ≤ 1 if we assume real order). Note
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that the case ν = 0 gives the Riemann–Liouville derivative and the case ν = 1 gives

the Caputo derivative. A further extension of the Hilfer derivative has been studied

recently by Luchko [60], defined as follows for any m ∈ N:

mL
aDµ,γ1,··· ,γm

x f (x) =

(
m

∏
k=1

R
aIγk

x
d
dx

)(
R
aIm−µ−γ1−···−γm

x f (x)
)
,

for 0 < µ ≤ 1 and γ1, · · · ,γm ≥ 0 such that µ +γ1+ · · ·+γk ≤ k for k = 1,2, · · · ,m, and

for f in some suitable function space, such as the space X1
mL defined in [60, Equation

(49)]. Note that the case m = 1 gives the Hilfer derivative, while the case γk = 0 for all

k gives the Riemann–Liouville derivative. (It is presumed that this definition can also

be extended to general µ ∈ C with Re(µ) ≥ 0, just like the Hilfer derivative, but this

was not done in Luchko’s paper [60] and attempting it here would take us too far out

of our way.)

It is interesting to note that all of the above fractional derivatives are simple

compositions of Riemann–Liouville fractional integrals with the ordinary derivative

Dx =
d
dx :

R
aDµ

x = Dx ◦Dx ◦ · · · ◦Dx ◦ R
aIn−µ

x ,

C
aDµ

x = R
aIn−µ

x ◦Dx ◦Dx ◦ · · · ◦Dx,

H
aDµ,ν

x = R
aIν(n−µ)

x ◦Dx ◦Dx ◦ · · · ◦Dx ◦ R
aI(1−ν)(n−µ)

x ,

where in each case there are n repetitions of the Dx operator, with n = ⌊Re(µ)⌋+1 so

that n−1 ≤ Re(µ)< n, and similarly

mL
aDµ,γ1,··· ,γm

x = R
aIγ1

x ◦Dx ◦ · · · ◦ R
aIγm

x ◦Dx ◦ R
aIm−µ−γ1−···−γm

x .

Thus, the operators of fractional integration (in the Riemann–Liouville sense) and

ordinary first-order differentiation can be understood as the basic building blocks used
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to generate several different types of fractional calculus, at levels of generality up to

and including Luchko’s mth level fractional derivative.

Throughout this thesis (unless specified otherwise), the function ψ : R+
0 → R+

0 is

assumed to be a non-negative C∞ function with ψ ′ > 0 everywhere (therefore ψ

monotonically increasing) and ψ(0) = 0. The reason for these restrictions is that we

shall be using ψ as a substitution in integrals, so ψ should be bijective, and we shall

be dealing with fractional powers of ψ(x) and their relationships with fractional

operators, so we want ψ(0) = 0 and ψ(x)≥ 0 for all x ≥ 0.

Definition 2.2 ( [3, 18, 20]): The µth Riemann–Liouville fractional integral of a

function f (x) with respect to ψ(x) is defined as

aIµ

ψ(x) f (x) =
1

Γ(µ)

� x

a

(
ψ(x)−ψ(t)

)µ−1 f (t)ψ ′(t)dt, x ∈ (a,b), (2.5)

where the order of integration can be real, µ > 0, or complex, µ ∈ C with Re(µ)> 0.

The µth Riemann–Liouville fractional derivative of a function f (x) with respect to

ψ(x) is defined as

R
a Dµ

ψ(x) f (x) =
(

1
ψ ′(x)

· d
dx

)n

aIn−µ

ψ(x) f (x), x ∈ (a,b), (2.6)

where the order of integration can be real, µ > 0 with n−1 ≤ µ < n ∈ N, or complex,

µ ∈ C with Re(µ)≥ 0 and n−1 ≤ Re(µ)< n ∈ N.

The µth Caputo fractional derivative of a function f (x) with respect to ψ(x) is defined

as

C
a Dµ

ψ(x) f (x) = aIn−µ

ψ(x)

(
1

ψ ′(x)
· d

dx

)n

f (x), x ∈ (a,b), (2.7)

where the order of integration can be real, µ > 0 with n−1 ≤ µ < n ∈ N, or complex,

9



µ ∈ C with Re(µ)≥ 0 and n−1 ≤ Re(µ)< n ∈ N.

Definition 2.3 ( [23, 61]): Given two functions f and g defined on the positive reals,

their ψ-convolution, or generalised Laplace convolution, is the function f ∗ψ g defined

as follows:

(
f ∗ψ g

)
(x) =

� x

0
f
(
ψ

−1 (ψ(x)−ψ(t))
)

g(t)ψ ′(t)dt, x > 0,

provided that this expression is well-defined (e.g. if the functions f and g are piecewise

continuous and of ψ-exponential order). Note that here the condition ψ(0) = 0 is

required to make this convolution operation work in a natural and desired way.
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Chapter 3

RIEMANN–LIOUVILLE FRACTIONAL CALCULUS

WITH RESPECT TO FUNCTIONS

Our work in this Chapter will consist of following closely the methodology of Luchko

[33,35] and adapting as necessary to replace integration and differentiation with respect

to x by integration and differentiation with respect to ψ(x).

3.1 Function spaces for Riemann–Liouville operators

We begin by defining the function space Cα,ψ , α ∈ R, which will be used in our

investigation.

Definition 3.1: For any given α ∈ R, a function f (x), x > 0, is said to be in the space

Cα,ψ if there exists a real number p, p > α , such that

f (x) = {ψ(x)}p f1(x),

for some function f1(x) in C[0,∞).

Clearly, Cα,ψ is a vector space and the set of spaces Cα,ψ , α ∈ R, is ordered by

inclusion according to
Cα,ψ ⊂Cβ ,ψ ⇐⇒ α ≥ β . (3.1)

These function spaces are a straightforward analogue of the well-known spaces Cα

(those defined by Dimovski [29,30] and used by Luchko in his works on Mikusiński’s

operational calculus for fractional derivatives such as [33]), which are a suitable setting
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for consideration of the fractional integral and derivative operators with respect to the

function ψ [3, 4, 18].

Theorem 3.1: The fractional integral of a function with respect to another function,

namely the operator 0Iµ

ψ(x) with µ ≥ 0, is a linear map of the space Cα,ψ into itself, for

any α ≥−1. More specifically,

0Iµ

ψ(x) : Cα,ψ →Cµ+α,ψ ⊂Cα,ψ .

Proof. The case µ = 0 is trivial. In the case µ > 0, setting ψ(t) = ψ(x)τ in (2.5), we

obtain

0Iµ

ψ(x) f (x) =
{ψ(x)}µ+p

Γ(µ)

� 1

0
τ

p(1− τ)µ−1 f1
(
ψ(x)τ

)
dτ = {ψ(x)}µ+p f2(x),

where p > α and f1 ∈C[0,∞). The last integral is uniformly convergent with respect

to x in every closed interval [0,X ], X > 0, since p > −1 and µ > 0; consequently, we

have f2 ∈C[0,∞) and 0Iµ

ψ(x) f ∈Cµ+α,ψ .

The fractional integral operator 0Iµ

ψ(x), µ > 0, has a ψ-convolution representation in

the space Cα,ψ , α ≥−1:(
0Iµ

ψ(x) f
)
(x) =

(
hµ,ψ ∗ψ f

)
(x), hµ,ψ(x) :=

{ψ(x)}µ−1

Γ(µ)
, f ∈Cα,ψ , (3.2)

where ∗ψ is the generalised convolution operation defined [23, 61, 62] by

(
g∗ψ f

)
(x) =

� x

0
g
(
ψ

−1 (ψ(x)−ψ(t))
)

f (t)ψ ′(t)dt, x > 0. (3.3)

Using this formalism, we can generalise Theorem 3.1 as follows.

Theorem 3.2: Given two functions f ∈ Cα,ψ and g ∈ Cβ ,ψ with α,β ≥ −1, their ψ-

convolution satisfies

12



g∗ψ f ∈Cα+β+1,ψ ⊂Cα,ψ ∩Cβ ,ψ .

Proof. We use the same technique as in the proof of Theorem 3.1, writing f (x) =

{ψ(x)}p f1(x) and g(x) = {ψ(x)}qg1(x) with p > α , q > β , and f1,g1 ∈C[0,∞), and

then setting ψ(t) = ψ(x)τ as an integral substitution:

(
g∗ψ f

)
(x) =

� x

0
g
(
ψ

−1 (ψ(x)−ψ(t))
)

f (t)ψ ′(t)dt

=

� x

0
(ψ(x)−ψ(t))q g1

(
ψ

−1 (ψ(x)−ψ(t))
)
(ψ(t))p f1(t)ψ ′(t)dt

= {ψ(x)}p+q+1

×
� 1

0
(1− τ)q

τ
pg1
(
ψ

−1 ((1− τ)ψ(x))
)

f1
(
ψ

−1 (τψ(x))
)

dτ.

The last integral is uniformly convergent with respect to x in every closed interval

[0,X ], X > 0, since p,q >−1; consequently, we have g∗ψ f ∈Cα+β+1,ψ .

Corollary 3.1: The space C−1,ψ is preserved under the operation of ψ-convolution:

namely, if f ,g ∈C−1,ψ , then g∗ψ f ∈C−1,ψ .

Using the representation (3.2) and the commutativity and associativity properties of the

generalised Laplace convolution 3.3, we obtain the well-known commutativity relation

for fractional integrals with respect to functions, in the space Cα,ψ :(
0Iµ

ψ(x)0Iν

ψ(x) f
)
(x) =

(
0Iν

ψ(x)0Iµ

ψ(x) f
)
(x), f ∈Cα,ψ , α ≥−1,

for any µ > 0, ν > 0. Moreover, using the Euler integral of the first kind (together with

a ψ-substitution in the integral) for the evaluation of
(
hµ,ψ ∗ψ hν ,ψ

)
(x), we obtain(

0Iµ

ψ(x)0Iν

ψ(x) f
)
(x) =

(
0Iµ+ν

ψ(x) f
)
(x), f ∈Cα,ψ , α ≥−1, (3.4)

for any µ > 0 and ν > 0. From (3.4), it follows that

13



0Iµ

ψ(x) · · ·0Iµ

ψ(x)︸ ︷︷ ︸
n

f

(x) =
(

0Inµ

ψ(x) f
)
(x), f ∈Cα,ψ , α ≥−1, (3.5)

for any µ > 0 and n ∈ N.

Theorem 3.3: The fractional integral of a function with respect to another function

0Iµ

ψ(x) is a right inverse of the fractional derivative of a function with respect to another

function R
0 Dµ

ψ(x) on the function space Cα,ψ , for any α ≥−1 and µ > 0.

Proof. Consider f ∈Cα,ψ , α ≥−1, and n−1 ≤ µ < n ∈ Z+. Using (3.4), we obtain(
R
0 Dµ

ψ(x)0Iµ

ψ(x) f
)
(x) =

(
1

ψ ′(x)
· d

dx

)n(
0In−µ

ψ(x)0Iµ

ψ(x) f
)
(x)

=

(
1

ψ ′(x)
· d

dx

)n(
0In

ψ(x) f
)
(x) = f (x),

since n is a positive integer.

Definition 3.2: A function f (x), x > 0 is said to be in the space Ω
µ

α,ψ , µ ≥ 0, if we

have the inclusion (
R
0 Dν

ψ(x) f
)
(x) ∈Cα,ψ ,

for all ν with 0 ≤ ν ≤ µ .

Due to the inclusion (3.1), the spaces Ω
µ

α,ψ are ordered by inclusion in the parameter

α as follows:

Ω
µ

α,ψ ⊂ Ω
µ

β ,ψ , α ≥ β ,

and also trivially in the parameter µ as follows:

Ω
µ

α,ψ ⊂ Ω
ν
α,ψ , µ ≤ ν .

Remark 3.1: Consider a function g ∈ Cα,ψ and its fractional integral with respect to
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ψ ,

f (x) =
(

0Iµ

ψ(x)g
)
(x). (3.6)

Making use of property (3.4) of the fractional integral of a function with respect to

another function and Theorems 3.1 and 3.3, we get the inclusion f ∈ Ω
µ

α,ψ and the

formula (
0Iµ

ψ(x)
R
0 Dµ

ψ(x) f
)
(x) = f (x).

This means that the fractional integral operator 0Iµ

ψ(x) is a left inverse of the

Riemann–Liouville fractional differential operator R
0 Dµ

ψ(x) on some subspace of Ω
µ

α,ψ

which contains in particular the functions f ∈ Ω
µ

α,ψ that are representable in form

(3.6).

Remark 3.2: It is important to note that several of the results above do not represent

new formulae in the theory of fractional calculus with respect to functions, but only

new function spaces in which these formulae are valid. Results such as (3.4) and (3.5),

for example, are well known from the studies in classical textbooks such as [4, §18.2]

and [3, §2.5], but in those sources the results were stated using different function spaces

instead of the Cα,ψ spaces, which here we have established, in results such as Theorem

3.1, as interacting in a natural way with the operators of fractional integration with

respect to ψ .

Theorem 3.4: Let f ∈ Ω
µ

α,ψ , 0 < µ ≤ 1, α ≥−1. Then,((
E − 0Iµ

ψ(x)
R
0 Dµ

ψ(x)

)
f
)
(x) =

{ψ(x)}µ−1

Γ(µ)
lim
z→0

(
0I1−µ

ψ(x) f
)
(z), (3.7)

where E is the identity operator on the space Ω
µ

α,ψ . The operator E − 0Iµ

ψ(x)
R
0 Dµ

ψ(x) is
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called the projector of the fractional integral operator with respect to ψ .

Proof. Define a function φ (well-defined since f ∈ Ω
µ

α,ψ ) by

φ(x) =
(

0Iµ

ψ(x)
R
0 Dµ

ψ(x) f
)
(x). (3.8)

Using Theorem 3.1 and Remark 3.1, we obtain

φ ∈Cα+µ,ψ ∩Ω
µ

α,ψ . (3.9)

Applying R
0 Dµ

ψ(x) to the function φ(x) and using Theorem 3.3, we get(
R
0 Dµ

ψ(x)φ
)
(x) =

(
R
0 Dµ

ψ(x)0Iµ

ψ(x)
R
0 Dµ

ψ(x) f
)
(x) =

(
R
0 Dµ

ψ(x) f
)
(x),

so f −φ is in the kernel of the operator R
0 Dµ

ψ(x), which means

f (x) = φ(x)+ k{ψ(x)}µ−1 , (3.10)

for some constant k. Applying 0I1−µ

ψ(x) to both sides of (3.10), we obtain(
0I1−µ

ψ(x) f
)
(x) =

(
0I1−µ

ψ(x)φ
)
(x)+ kΓ(µ). (3.11)

From the inclusion (3.9), Theorem 3.1, and the condition α ≥ −1, we know that the

function
(

0I1−µ

ψ(x)φ
)
(x), and therefore, due to relation (3.11), the function(

0I1−µ

ψ(x) f
)
(x) too, are in the function space C0,ψ and thus continuous on the interval

[0,∞). Furthermore,(
0I1−µ

ψ(x)φ
)
(x) =

(
0I1−µ

ψ(x)0Iµ

ψ(x)
R
0 Dµ

ψ(x) f
)
(x) =

� x

0

R
0 Dµ

ψ(z) f (z)dz

=
(

0I1−µ

ψ(x) f
)
(x)− lim

z→0

(
0I1−µ

ψ(x) f
)
(z).

Comparing this with (3.11), we find

d =
lim
z→0

(
0I1−µ

ψ(x) f
)
(z)

Γ(µ)
,
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which, in view of (3.10), leads us to the desired relation (3.7).

3.2 Operational calculus for Riemann–Liouville operators

For the sake of simplicity we shall consider in our further discussions the case of the

space C−1,ψ , which turns out to be the most interesting one for applications, largely due

to the result of Corollary 3.1. Similarly to the original Mikusiński’s type operational

calculus, we have the following theorem.

Theorem 3.5: The space C−1,ψ with the operations of ψ-convolution and ordinary

addition becomes a commutative rng (ring without identity) without zero divisors:(
C−1,ψ ,∗ψ ,+

)
.

Proof. Addition and ψ-convolution are known to be commutative and associative,

and ψ-convolution is distributive over addition. The set C−1,ψ is closed under both

operations by Corollary 3.1. The zero function gives an additive identity, and the

negation of any function in C−1,ψ is in C−1,ψ .

Following Mikusiński’s reasoning, the rng C−1,ψ can be extended to its quotient field

M−1,ψ by quotienting the set C−1,ψ ×
(
C−1,ψ −{0}

)
with respect to the equivalence

relation

( f ,g)∼ ( f1,g1) ⇐⇒
(

f ∗ψ g1
)
(x) =

(
g∗ψ f1

)
(x). (3.12)

For the sake of convenience, the elements of the field M−1,ψ can be formally considered

as convolution quotients f
g , where the operations of addition and multiplication are

defined in M−1,ψ as follows:

f
g
+

f1

g1
=

f ∗ψ g1 +g∗ψ f1

g∗ψ g1
,

f
g
· f1

g1
=

f ∗ψ f1

g∗ψ g1
. (3.13)

Theorem 3.6: The space M−1,ψ with the operations of addition and multiplication
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given by (3.13) is a field
(
M−1,ψ , ·,+

)
.

Proof. The proof of the theorem follows the same lines as the standard derivation

from an integral domain (commutative ring without zero divisors) of its quotient field.

The only difference here is that C−1,ψ is not a true ring since it does not have a

multiplicative identity, but the quotient field M−1,ψ does have a multiplicative

identity, namely Iψ = f
f for any f ∈ C−1,ψ . This element in the quotient field is

well-defined, according to the equivalence relation (3.12), and is an identity under

multiplication according to (3.13).

It can easily be seen that the rng C−1,ψ and the field of complex numbers C can be

embedded in the field M−1,ψ by the following maps:

f 7→
f ∗ψ hµ,ψ

hµ,ψ
, (3.14)

z 7→
zhµ,ψ

hµ,ψ
, (3.15)

respectively, where µ > 0 is arbitrary, the function hµ,ψ is defined in (3.2), and these

embeddings are well-defined because of the equivalence relation (3.12).

In view of the ψ-convolution formulation (3.2) of the fractional integral of a function

with respect to another function, we can identify the operator 0Iµ

ψ(x) with the element

hµ,ψ of the rng C−1,ψ ⊂ M−1,ψ . Within the quotient field, it is possible to find an

inverse to this element, which can therefore be formally identified with the inverse of

the fractional integral, namely the fractional derivative of a function with respect to

another function. We formalise this concept in the following definition.

Definition 3.3: The algebraic inverse of the fractional integral of a function with

respect to another function 0Iµ

ψ(x) is said to be the element Sµ,ψ of the field M−1,ψ

18



which is reciprocal to the element hµ,ψ in the field M−1,ψ ; that is,

Sµ,ψ =
Iψ

hµ,ψ
≡

hµ,ψ

hµ,ψ ∗ψ hµ,ψ
≡

hµ,ψ

h2µ,ψ
, (3.16)

where Iψ =
hµ,ψ

hµ,ψ
denotes the multiplicative identity element of the field M−1,ψ .

As we have already seen, the operator 0Iµ

ψ(x) can be represented as a convolution in

the rng C−1,ψ with the function hµ,ψ . This fact can now be rewritten in terms of the

algebraic inverse as follows: (
0Iµ

ψ(x)

)
f (x) =

Iψ

Sµ,ψ
· f .

We can also define fractional powers of these operators. The behaviour of the functions

hµ,ψ under convolution is well known, or follows from equation (3.5): for α > 0, n∈N,

we have

hn
µ,ψ(x) =

hµ,ψ ∗ψ · · · ∗ψ hµ,ψ︸ ︷︷ ︸
n

(x) = hnµ,ψ(x).

Extending this relation to an arbitrary positive real power of hµ,ψ(x), we can define:

hλ
µ,ψ(x) = hλ µ,ψ(x), λ > 0. (3.17)

Therefore, hλ
µ,ψ ∈ C−1,ψ for all λ > 0, and the following relations can be easily

checked:

hα
µ,ψ ∗ψ hβ

µ,ψ = hαµ,ψ ∗ψ hβ µ,ψ = h(α+β )µ,ψ = hα+β

µ,ψ , α > 0, β > 0. (3.18)

The above relations motivate the following definition of powers of the element Sµ,ψ

with an arbitrary real power exponent λ ∈ R:
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Sλ
µ,ψ =



h−λ
µ,ψ , λ < 0,

Iψ , λ = 0,

Iψ

hλ
µ,ψ

, λ > 0.

Using this definition and the semigroup relation (3.18), we get:

Sα
µ,ψ ·Sβ

µ,ψ = Sα+β

µ,ψ , α,β ∈ R. (3.19)

In the following theorem, we find the relationship between the Riemann–Liouville

fractional differential operator of a function with respect to another function and

elements of the field M−1,ψ .

Theorem 3.7: For any µ > 0, the Riemann–Liouville fractional differential operator

of a function with respect to another function R
0 Dµ

ψ(x) may be represented in the field

M−1,ψ in the following form, for f ∈ Ω
αµ

−1,ψ :

R
0 Dµ

ψ(x) f = Sµ,ψ · f −Sµ,ψ ·Pµ,ψ f , (3.20)

where Pµ,ψ = E − 0Iµ

ψ(x)
R

0
Dµ

ψ(x) is the projector of the operator 0Iµ

ψ(x). This means

that the Riemann–Liouville fractional differential operator of a function with respect

to another function is reduced to an operator of multiplication in the field M−1,ψ , with

an extra initial value term.

Proof. Given any f ∈ Ω
µ

−1,ψ , we have by definition of the projector

f (x) =
(
Pµ,ψ f

)
(x)+

(
0Iµ

ψ(x)
R

0
Dµ

ψ(x) f
)
(x)

=
(
Pµ,ψ f

)
(x)+hµ,ψ ·

(
R
0 Dµ

ψ(x) f
)
(x).

Multiplying both sides of the last relation by Sµ,ψ and using the definition of Sλ
µ,ψ as
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the inverse of hµ,ψ , we obtain the required result.

For the application of Mikusiński’s operational calculus to solving fractional

differential equations in the setting of Riemann–Liouville fractional derivatives with

respect to functions, it is important to identify those elements of M−1,ψ which can be

represented by means of functions in the rng C−1,ψ . One useful class of such

functions is given by the following theorem.

Theorem 3.8: Consider a multiple power series defining a function of several complex

variables z = (z1, . . . ,zn) with complex coefficients, and let z0 = (z10, . . . ,zn0) ̸= 0 be a

point at which this series is convergent. That is,

F(z0) =
∞

∑
i1,...,in=0

ai1,...,inzi1
10 ×·· ·× zin

n0 = K ∈ C.

Then, for any µ > 0, and for any ν > 0 and λ1, . . . ,λn > 0, the formal power series

F
(
Sµ,ψ

)
= S−ν

µ,ψ

∞

∑
i1,...,in=0

ai1,...,in

(
S−λ1

µ,ψ

)i1
×·· ·×

(
S−λn

µ,ψ

)in

can be represented as an element of the ring C−1,ψ , via the following representation:

F
(
Sµ,ψ

)
=

∞

∑
i1,...,in=0

ai1,...,inh(ν+λ1i1+···+λnin)µ,ψ(x). (3.21)

Proof. By using the definition of hµ,ψ(x), we have the following formula for the

function on the right-hand side of equation (3.21):

g(x) :=
∞

∑
i1,...,in=0

bi1,...,inh(ν+λ1i1+···+λnin)µ,ψ(x) = {ψ(x)}νµ−1 g1(x),

where

g1(x) :=
∞

∑
i1,...,in=0

bi1,...,in

(
{ψ(x)}λ1µ

)i1
×·· ·×

(
{ψ(x)}λnµ

)in

Γ(νµ +λ1i1µ + · · ·+λninµ)
.

This function g1 is the composition of ψ with the power series function f1 considered in
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[35, Theorem 6]. The estimates proved in [35, Theorem 6] imply that f1 is continuous

on [0,∞), its series uniformly convergent on every bounded closed interval [0,X ], 0 <

X < ∞. Taking compositions with ψ , and using the fact that ψ is monotonic, we obtain

the same convergence and continuity results for the function g1. Hence, g1 ∈C[0,∞).

Therefore the function on the right-hand side of equation (3.21) is a well-defined

element of C−1,ψ . Then by using the definition of Sµ,ψ and its powers, the formal

power series for F
(
Sµ,ψ

)
must be equivalent to this function, and therefore can be

identified as an element of C−1,ψ .

Using Theorem 3.8, we can write various specific elements of the field M−1,ψ using

representations as functions in the rng C−1,ψ . Before stating our next result, we need

to pause briefly and introduce a family of Mittag-Leffler type functions, to be used

further.

Definition 3.4 ( [63]): The original Mittag-Leffler function, with one parameter and

of one variable, is defined as follows:

Eµ(z) =
∞

∑
k=0

zk

Γ(kµ +1)
, Re(µ)> 0.

Its generalisations to a two-parameter Mittag-Leffler function and three-parameter

Mittag-Leffler function, also functions of one variable, are defined respectively as

follows:

Eµ,ν(z) =
∞

∑
k=0

zk

Γ(kµ +ν)
, Re(µ)> 0;

Eρ

µ,ν(z) =
∞

∑
k=0

(ρ)kzk

k!Γ(kµ +ν)
, Re(µ)> 0.
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Definition 3.5: A multivariate Mittag-Leffler function, with n + 1 parameters and

applied to n variables for any n ∈ N, is defined as follows [35, 36]:

E(µ1,...,µn),ν(z1, . . . ,zn)

=
∞

∑
k1,...,kn=0

(k1 + . . .+ kn)!
k1! . . .kn!

·
zk1

1 . . .zkn
n

Γ(µ1k1 + · · ·+µnkn +ν)
. (3.22)

Note that this is not the only possible way of defining a multivariate Mittag-Leffler

function; a separate definition has also been proposed by Saxena et al. [64], which is

independent of (3.22), neither being a special case of the other.

In the special cases of n = 2 and n = 3, bivariate and trivariate Mittag-Leffler functions

have also been defined which are not special cases of (3.22), as they take account

of an upper parameter appearing in a Pochhammer symbol like the three-parameter

univariate Mittag-Leffler function defined above. These functions respectively have

four parameters and two variables [65] or five parameters and three variables [66], and

they have been used in solving systems of fractional differential equations [67].

Lemma 3.1: The following relations hold true between (on the left-hand side)

elements of the field M−1,ψ and (on the right-hand side) explicit functions of x in the

function space C−1,ψ :

(a) For any µ > 0 and ρ ∈ R,

Iψ

Sµ,ψ −ρ
= {ψ(x)}µ−1 Eµ,µ

(
ρ {ψ(x)}µ

)
.

(b) For any µ > 0 and n ∈ N,

Iψ(
Sµ,ψ −ρ

)n = {ψ(x)}nµ−1 En
µ,nµ

(
ρ {ψ(x)}µ

)
.

(c) For any µ > 0 and µ1, . . . ,µn > 0, β ∈ R,
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S−β

µ,ψ

Iψ −∑
n
i=1 λiS

−µi
µ,ψ

= {ψ(x)}β µ−1 E(µ1µ,...,µnµ),β µ

(
λ1 {ψ(x)}µ1µ , . . . ,λn {ψ(x)}µnµ

)
.

Proof. The relation (a) can be obtained from the geometric series expansion as

follows:

Iψ

Sµ,ψ −ρ
= S−1

µ,ψ ·
Iψ

Iψ −ρS−1
µ,ψ

= S−1
µ,ψ

∞

∑
i=0

ρ
iS−i

µ,ψ =
∞

∑
i=0

ρ
ih(i+1)µ,ψ(x)

=
∞

∑
i=0

ρ i {ψ(x)}(i+1)µ−1

Γ(µi+µ)
= {ψ(x)}µ−1 Eµ,µ

(
ρ {ψ(x)}µ

)
.

For (b), we have an infinite binomial series:

Iψ(
Sµ,ψ −ρ

)n = S−n
µ,ψ ·

Iψ(
Iψ −ρS−1

µ,ψ

)n = S−n
µ,ψ

∞

∑
i=0

(m)i ρ i

i!
S−i

µ,ψ

=
∞

∑
i=0

(m)i ρ i

i!
h(n+i)µ,ψ(x)

= {ψ(x)}nµ−1
∞

∑
i=0

(m)i
(
ρ {ψ(x)}µ

)i

i!Γ(µi+nµ)

= {ψ(x)}nµ−1 En
µ,nµ

(
ρ {ψ(x)}µ

)
.

Making use of the technique demonstrated in (a) and (b), it is easy to derive (c). So

we omit the straightforward details.

The following relation can be verified easily, either by direct calculation using the fact

that hµ,ψ ∗ψ hν ,ψ = hµ+ν ,ψ , or by using part (c) of the above Lemma. In our further

discussions, we will use this formula:(
{ψ(t)}ν−1 E(µ1,...,µn),ν

(
λ1 {ψ(t)}µ1 , . . . ,λn {ψ(t)}µn

)
∗ψ

{ψ(t)}γ

Γ(1+ γ)

)
(x)

= {ψ(t)}ν+γ E(µ1,...,µn),ν+γ+1
(
λ1 {ψ(x)}µ1 , . . . ,λn {ψ(x)}µn

)
. (3.23)
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3.3 Applications to fractional differential equations

In this section, we will use the constructed operational calculus to solve Cauchy

problems with constant coefficients in the setting of Riemann–Liouville fractional

derivatives of a function with respect to another function. Let us begin with the

following simple problem, which is suitable for illustration of our method.

Theorem 3.9: Let µ > 0 and λ ,c ∈ R be fixed, and let f ∈C−1,ψ be a function. The

unique solution of the Cauchy problem(
R
0 Dµ

ψ(x)y
)
(x)−λy(x) = f (x), x > 0, (3.24)

lim
x→0

(
0I1−µ

ψ(x)y
)
(x) = c, (3.25)

in the space Ω
µ

−1,ψ is given by:

y(x) =
� x

0

(
ψ(x)−ψ(t)

)µ−1Eµ,µ

(
λ
(
ψ(x)−ψ(t)

)µ
)

f (t)ψ ′(t)dt

+ c{ψ(x)}µ−1 Eµ,µ

(
λ {ψ(x)}µ

)
. (3.26)

Proof. Making use of relations (3.20) and (3.7), we can write the Cauchy problem

(3.24)− (3.25) in the form of an algebraic equation in the field M−1,ψ :

Sµ,ψ · y−λy = f +Sα
µ,ψ · y0, where y0(x) =

c
Γ(µ)

{ψ(x)}µ−1 . (3.27)

The unique solution of the algebraic equation (3.27) in the field M−1,ψ is as follows:

y =
Iψ

Sµ,ψ −λ
· f +

Sµ,ψ

Sµ,ψ −λ
· y0. (3.28)

Using Lemma 3.1(a) and the embedding of the rng C−1,ψ in the field M−1,ψ , we obtain:

y1(x) :=
Iψ

Sµ,ψ −λ
· f

=

� x

0

(
ψ(x)−ψ(t)

)µ−1Eµ,µ

(
λ
(
ψ(x)−ψ(t)

)µ
)

f (t)ψ ′(t)dt.

(3.29)
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Using relation (3.23), for the second part of (3.28) we get:

y2(x) :=
Sµ,ψ

Sµ,ψ −λ
· y0 = y0 +

λ

Sµ,ψ −λ
· y0

=
c

Γ(µ)
{ψ(x)}µ−1 +λc{ψ(x)}2µ−1 Eµ,2µ

(
λ {ψ(x)}µ

)
= c{ψ(x)}µ−1 Eµ,µ

(
λ {ψ(x)}µ

)
.

(3.30)

Combining (3.29) and (3.30), we obtain the solution (3.26). It remains to check the

inclusion y ∈ Ω
µ

−1,ψ .

By using the following fractional relation for two-parameter Mittag-Leffler functions:(
R
0 Dν

ψ(t) {ψ(t)}µ−1 Eµ,µ

(
λ {ψ(t)}µ

))
(x)

= {ψ(x)}µ−ν−1 Eµ,µ−ν

(
λ {ψ(x)}µ

)
,

along with the Definitions 3.1 and 3.2, we can easily deduce the inclusion y2 ∈ Ω
µ

−1,ψ .

From representation (3.29) and Theorem 3.8, the inclusion y1 ∈ C−1,ψ follows.

Multiplying relation (3.29) by
(
Sµ,ψ −λ

)
and then by hµ,ψ(x) and taking into

account relation (3.16), we get:

y1(x) = λ

(
0Iµ

ψ(x)y1

)
(x)+

(
0Iµ

ψ(x) f
)
(x). (3.31)

Using (3.31) and Remark 3.1, we conclude the inclusion y1 ∈ Ω
µ

−1,ψ . Summing y1 and

y2, we finally obtain y ∈ Ω
µ

−1,ψ .

Corollary 3.2: Consider a special case of the initial value problem (3.24)-(3.25):(
R
0 Dµ

ψ(x)y
)
(x)− y(x) = 1, 0 < µ ≤ 1, x > 0, (3.32)

lim
z→0

(
0I1−µ

ψ(x)y
)
(z) = 1. (3.33)
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We consider three further special cases according to different choices of the function

ψ(x):

(a) If ψ(x) =
√

x, then y(x) = x
1
2 (µ−1)Eµ,µ(x

µ

2 )+ x
µ

2 Eµ,µ+1(x
µ

2 ).

(b) If ψ(x) = x, then y(x) = xµ−1Eµ,µ(xµ)+ xµEµ,µ+1(xµ).

(c) If ψ(x) = x2, then y(x) = x2(µ−1)Eµ,µ(x2µ)+ x2µEµ,µ+1(x2µ).

Proof. Considering part (b), from the (3.26) found above, we have

y(x) = xµ−1Eµ,µ(xµ)+

� x

0
τ

µ−1Eµ,µ(τ
µ)dτ

= xµ−1Eµ,µ(xµ)+

� x

0

∞

∑
k=0

τµk+µ−1

Γ(µk+µ)
dτ

= xµ−1Eµ,µ(xµ)+
∞

∑
k=0

xµk+µ

Γ(µk+µ +1)

= xµ−1Eµ,µ(xµ)+ xµEµ,µ+1(xµ).

Similarly, taking compositions as appropriate, one can prove parts (a) and (c).

Theorem 3.10: Let λ1, . . . ,λn and µ1, . . . ,µn and c be constants satisfying 0 ≤ µ1 <

.. . < µn ≤ 1, and let f ∈C−1,ψ be a given function. The unique solution of the Cauchy

problem

n

∑
i=1

λi

(
R
0 Dµi

ψ(x)y
)
(x) = f (x), x > 0, (3.34)

lim
x→0

(
0I1−µn

ψ(x) y
)
(x) = c, (3.35)

lim
x→0

(
0I1−µi

ψ(x) y
)
(x) = 0, 1 ≤ i ≤ n−1, (3.36)

in the space Ω
µ

−1,ψ is given by:
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y(x) = c
{ψ(x)}µn−1

λn
E(µn−µ1,...,µn−µn−1),µn

(
− λi

λn
{ψ(x)}µn−µi

)n−1

i=1

+

� x

0

{ψ(t)}µn−1

λn
E(µn−µ1,...,µn−µn−1),µn

(
− λi

λn
{ψ(t)}µn−µi

)n−1

i=1

× f
((

ψ(x)−ψ(t)
))

ψ
′(t)dt, (3.37)

where, to make the notation more succinct, we have introduced the notation

E(a1,...,an−1),b

(
zi

)n−1

i=1
= E(a1,...,an−1),b

(
z1, . . . ,zn−1

)
.

Proof. Making use of relations (3.20) and (3.7), the Cauchy problem (3.34)− (3.36)

can be reduced to the following algebraic equation in the field M−1,ψ :

n

∑
i=1

λiS
µi/µ

µ,ψ · y = f +λnSµn/µ

µ,ψ · y0, where y0(x) =
c

Γ(µn)
{ψ(x)}µn−1 . (3.38)

The unique solution of (3.38) in the field M−1,ψ is given by:

y =
Iψ

∑
n
i=1 λiS

µi/µ

µ,ψ

· f +
λnSµn/µ

µ,ψ

∑
n
i=1 λiS

µi/µ

µ,ψ

· y0. (3.39)

Now we reduce the solution (3.39) to the form (3.37). Using Lemma 3.1(c), for the

first part we obtain:

y1(x) :=
Iψ

∑
n
i=1 λiS

µi/µ

µ,ψ

· f =
S

−µn
µ

µ,ψ

λn

(
Iψ −∑

n−1
i=1

−λi
λn

S(µi−µn)/µ

µ,ψ

) · f

=

� x

0

{ψ(t)}µn−1

λn
E(µn−µ1,...,µn−µn−1),µn

(
− λi

λn
{ψ(t)}µn−µi

)n−1

i=1

× f
((

ψ(x)−ψ(t)
))

ψ
′(t)dt.

(3.40)

Furthermore, using relation (3.23), for the second part of (3.39) we find:
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y2(x) :=
λnSµn/µ

µ,ψ

∑
n
i=1 λiS

µi/µ

µ,ψ

· y0 = y0 −
n−1

∑
j=1

λ jS
µ j/µ

µ,ψ

∑
n
i=1 λiS

µi/µ

µ,ψ

=
c

Γ(µn)
{ψ(x)}µn−1 − c

n−1

∑
j=1

λ j

λn
{ψ(x)}2µn−µ j−1

×E(µn−µ1,...,µn−µn−1),2µn−µ j

(
− λi

λn
{ψ(x)}µn−µi

)n−1

i=1

= c
{ψ(x)}µn−1

λn
E(µn−µ1,...,µn−µn−1),µn

(
− λi

λn
{ψ(x)}µn−µi

)n−1

i=1
, (3.41)

where in the last step we used the identity discussed in [67] for summing multivariate

Mittag-Leffler functions based on multinomial coefficient identities.

Combining (3.40) and (3.41), we obtain the solution (3.37). Using the same technique

as in the previous result, it is easy deduce the inclusion y ∈ Ω
µ

−1,ψ . So we omit the

straightforward details.

Corollary 3.3: Let A,B,C,α,β ,γ,c be constants satisfying 0 ≤ α < β < γ ≤ 1, and

let f ∈C−1,ψ be a given function. The unique solution of the Cauchy problem

A
(

R
0 Dα

ψ(x)y
)
(x)+B

(
R
0 Dβ

ψ(x)y
)
(x)+C

(
R
0 Dγ

ψ(x)y
)
(x) = f (x), x > 0,

lim
x→0

(
0I1−α

ψ(x)y
)
(x) = lim

x→0

(
0I1−β

ψ(x)y
)
(x) = 0, lim

x→0

(
0I1−γ

ψ(x)y
)
(x) = c,

in the space Ω
µ

−1,ψ is given by:

y(x) =
c
C
{ψ(x)}γ−1 Eγ−α,γ−β ;γ

(
−A

C
{ψ(x)}γ−α ,−B

C
{ψ(x)}γ−β

)
+

1
C

� x

0
{ψ(t)}γ−1 Eγ−α,γ−β ;γ

(
−A

C
{ψ(t)}γ−α ,−B

C
{ψ(t)}γ−β

)
× f

((
ψ(x)−ψ(t)

))
ψ

′(t)dt,

where Eγ−α,γ−β ;γ is the bivariate Mittag-Leffler function defined and studied in [65].

Proof. This is simply the n = 2 case of Theorem 3.10.
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Chapter 4

CAPUTO FRACTIONAL CALCULUS WITH RESPECT

TO FUNCTIONS

In this chapter, we set up appropriate function spaces for Caputo fractional

differentiation of one function with respect to another function, and prove some

properties and relationships relevant to these operators. We also define the algebraic

structures and elements needed for Mikusiński’s operational calculus in the context of

these operators, and demonstrate how this operational calculus formalism can be used

to solve different types of fractional differential equations.

4.1 Function spaces for Caputo derivatives

The Caputo fractional derivative of a function with respect to ψ (2.7) is not defined on

the whole space Cα ,ψ, since it requires at least n times differentiability of the function

with respect to ψ . Therefore, we now introduce a new function space within Cα ,ψ

which is suitable for dealing with this type of fractional derivative.

Definition 4.1: Let α ∈ R, n ∈ Z+
0 , and let ψ : R+ → R+

0 be as defined above. The

space Cn
α ,ψ is defined to be the set of all functions f : R+ → R such that

f [n]ψ :=
(

1
ψ′(x)

· d
dx

)n

f ∈ Cα , ψ .

It is immediately clear that Cn
α ,ψ is a vector space, and that C0

α ,ψ ≡ Cα ,ψ . We note

further properties of these function spaces in the following lemmas.
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Lemma 4.1 ( [45]): The ψ-convolution acts on the function spaces Cα,ψ , α >−1, as

follows:(
f ∈Cα,ψ , g ∈Cβ ,ψ

)
⇒ g∗ψ f ∈Cα+β+1,ψ ⊆C−1,ψ , α,β ≥−1. (4.1)

Therefore, since the fractional integral operator with respect to ψ has a ψ-convolution

representation in the space Cα,ψ , namely:(
0Iµ

ψ(x) f
)
(x) =

(
hµ,ψ ∗ψ f

)
(x), hµ,ψ(x) :=

{ψ(x)}µ−1

Γ(µ)
, f ∈Cα,ψ , α ≥−1, (4.2)

it follows that this operator maps Cα,ψ into itself, for any α ≥−1. More specifically,

0Iµ

ψ(x) : Cα,ψ →Cµ+α,ψ ⊂Cα,ψ , α ≥−1, µ > 0.

Lemma 4.2: Let α ≥−1 and n ∈ Z+.

(a) If f ∈ Cn
α,ψ , then f [k]ψ (0) := limx→0 f [k]ψ (x) is finite for all k = 0,1,2, . . . ,n− 1,

and the function

f̃ (x) =


f (x) if x > 0,

f (0) if x = 0,

is in the function space Cn−1[0,∞).

(b) If f ∈Cn
α,ψ , then f ∈Cn(0,∞)∩Cn−1[0,∞).

(c) A function f is in the function space Cn
α,ψ if and only if it can be written in the

following form for some function g ∈Cα,ψ and some constants c0,c1, . . . ,cn−1 ∈

R:

f (x) =
(

0In
ψ(x)g

)
(x)+

n−1

∑
k=0

ck
{ψ(x)}k

k!
, x ≥ 0,

where in fact g = f [n]ψ and ck = f [k]ψ (0) for k = 0,1, . . . ,n−1.
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(d) If α > 0, then Cn
α,ψ ⊂Cn+α,ψ ⊂Cα,ψ .

Proof. We prove the three parts of the lemma one by one as follows.

(a) By definition of the function space Cn
α,ψ , we know that f [n]ψ ∈ Cα,ψ . Let us fix

X > 0, and note that f [n]ψ ∈ C [η ,X ] for any η ∈ (0,X), so by the Fundamental

Theorem of Calculus we have

� X

η

f [n]ψ (t)ψ ′(t)dt = f [n−1]
ψ (X)− f [n−1]

ψ (η),

where both sides of the above equation are continuous functions of η ∈ (0,X ].

Moreover, since

lim
η→0

� X

η

f [n]ψ (t)ψ ′(t)dt =
� X

0
f [n]ψ (t)ψ ′(t)dt <+∞,

we get

f [n−1]
ψ (0) := lim

η→0
f [n−1]
ψ (η) = f [n−1]

ψ (X)−
� X

0
f [n]ψ (t)ψ ′(t)dt <+∞,

thus

f [n−1]
ψ (X) =

� X

0
f [n]ψ (t)ψ ′(t)dt + f [n−1]

ψ (0).

Now we can let x = X be a free variable, and define f [n−1]
ψ (0) := f [n−1]

ψ (0), to

obtain that f [n−1]
ψ is continuous on [0,∞). Repeating the above argument another

time, we have

� X

η

f [n−1]
ψ (t)ψ ′(t)dt = f [n−2]

ψ (X)− f [n−2]
ψ (η),

and
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f [n−2]
ψ (x) =

� x

0
f [n−1]
ψ (t)ψ ′(t)dt + f [n−2]

ψ (0)

=

� x

0
ψ

′(t)
� t

0
ψ

′(u) f [n]ψ (u)dudt + f [n−2]
ψ (0)+

� x

0
f [n−1]
ψ (0)ψ ′(t)dt.

By a process of finite descent, we finally obtain the representation

f (x) =
(

0In
ψ(x) f [n]ψ

)
(x)+

n−1

∑
k=0

f [k]ψ (0)
{ψ(x)}k

k!
, x ≥ 0, (4.3)

where

f [k]ψ (0) := lim
x→0

f [k]ψ (x)<+∞, 0 ≤ k ≤ n−1,

and this completes the proof.

(b) Since f [n]ψ ∈ Cα,ψ and ψ ∈ C∞(0,∞), we have f [n]ψ ∈ C(0,∞) and therefore f ∈

Cn(0,∞). The fact that f ∈Cn−1 [0,∞) was already shown in part (a) above.

(c) Assuming f ∈Cn
α,ψ , the left-to-right implication is already proved by Eq. (4.3)

above. The converse can be checked by a simple verification.

(d) If f ∈ Cn
α,ψ , then g = f [n]ψ ∈ Cα,ψ , so by Lemma 4.1, 0In

ψ(x)g ∈ Cn+α,ψ ⊂ Cα,ψ .

Then from the representation (4.3), the result follows provided that k > α for

k = 0,1, . . . ,n−1.

Theorem 4.1: If n ∈ Z+
0 and f ∈ Cn

−1,ψ , then the Caputo fractional derivative of f

with respect to ψ is well-defined to any order µ with 0 ≤ µ ≤ n, and we have

C
0 Dµ

ψ(x) f ∈


C−1,ψ , n−1 < µ ≤ n;

Ck−1[0,∞)⊂C−1,ψ , n− k−1 < µ ≤ n− k, k = 1, . . . ,n−1.

Proof. For n− 1 < µ ≤ n, the µth Caputo derivative with respect to ψ is exactly the

(n−µ)th integral with respect to ψ of the function f [n]ψ , which is in C−1,ψ by definition

of the Cn
−1,ψ space, so the result follows from the last part of Lemma 4.1.
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For n− k − 1 < µ ≤ n− k, k = 1, . . . ,n− 1, we know f ∈ Cn(0,∞)∩Cn−1[0,∞) by

Lemma 4.2(b), and then by mapping properties of the Riemann–Liouville fractional

integral with respect to ψ , it follows that C
0 Dµ

ψ(x) f ∈ Ck−1[0,∞). The inclusion

Ck−1[0,∞)⊂C−1,ψ follows from Eq. (3.1).

Theorem 4.2: If n ∈ Z+ and f ∈ Cn
−1,ψ , then the Riemann–Liouville and Caputo

fractional derivatives of f with respect to ψ , to any order µ with n− 1 < µ ≤ n, are

connected by the following relation:(
R
0 Dµ

ψ(x) f
)
(x) =

(
C
0 Dµ

ψ(x) f
)
(x)+

n−1

∑
k=0

f [k]ψ (0)
Γ(1+ k−µ)

{ψ(x)}k−µ , x ≥ 0. (4.4)

Proof. Making use of Eq. (4.3), we obtain

R
0 Dµ

ψ(x) f (x) =
(

1
ψ ′(x)

· d
dx

)n

0In−µ

ψ(x) f (x)

=

(
1

ψ ′(x)
· d

dx

)n
(

0In−µ

ψ(t)

{(
0In

ψ(t) f [n]ψ

)
(t)+

n−1

∑
k=0

f [k]ψ (0)
{ψ(t)}k

k!

})
(x)

=
(

0In−µ

ψ(x) f [n]ψ

)
(x)+

(
1

ψ ′(x)
· d

dx

)n
(

0In−µ

ψ(t)

{
n−1

∑
k=0

f [k]ψ (0)
{ψ(t)}k

k!

})
(x)

=
(

C
0 Dµ

ψ(x) f
)
(x)+

n−1

∑
k=0

f [k]ψ (0)
Γ(1+ k−µ)

{ψ(x)}k−µ , x ≥ 0,

where in the last line we have used the well-known rules for fractional differintegration

of power functions, and their generalisations to fractional differintegration with respect

to ψ , namely:

0Iµ

ψ(x) {ψ(x)}ν =
Γ(ν +1)

Γ(ν +µ +1)
{ψ(x)}ν+µ , µ ≥ 0,ν >−1, x > 0;

R
0 Dµ

ψ(x) {ψ(x)}ν =
Γ(ν +1)

Γ(ν −µ +1)
{ψ(x)}ν−µ , µ ≥ 0,ν >−1, x > 0.

Remark 4.1: If f ∈ Cn
−1,ψ , then we can see from (4.4) that the Riemann–Liouville

fractional derivative of f with respect to ψ is usually not in the space C−1,ψ , since the
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Caputo derivative with respect to ψ is in this space but (4.4) also involves negative

powers of ψ(x). There are three particular cases which are exceptions:

(a) If µ = n ∈ N, then

R
0 Dµ

ψ(x) f =C
0 Dµ

ψ(x) f = f [n]ψ ∈C−1,ψ .

(b) If f [k]ψ (0) = 0 for all k = 0, . . . ,n−1, then

R
0 Dµ

ψ(x) f =C
0 Dµ

ψ(x) f ∈C−1,ψ .

(c) If 0 < µ < 1, then R
0 Dµ

ψ(x) f ∈C−1,ψ because in this case Eq. (4.4) becomes

(
R
0 Dµ

ψ(x) f
)
(x) =

(
C
0 Dµ

ψ(x) f
)
(x)+

f (0)
Γ(1−µ)

{ψ(x)}−µ .

Theorem 4.3: If α ≥−1 and n−1 < µ ≤ n ∈ Z+, and f ∈Cn
α,ψ , then(

0Iµ

ψ(x)
C
0 Dµ

ψ(x) f
)
(x) = f (x)−

n−1

∑
k=0

f [k]ψ (0)
{ψ(x)}k

k!
, x ≥ 0. (4.5)

Proof. This follows directly from the definition of Caputo derivatives with respect to

ψ , the semigroup property for fractional integrals with respect to ψ , and the relation

(4.3) proved above.

Remark 4.2: The formulae that we have proved above, such as (4.4) and (4.5), are

already seen in the existing literature on fractional calculus with respect to functions

[3, 20]. Our new contribution is in proving these results in the setting of the new

function spaces defined in Definition 3.1. This is important because one of the key

uses of Mikusiński’s operational calculus is in extending the formalism of Laplace

transforms to a broader class of functions: differential equations can be solved using

this method even if the functions involved do not have Laplace transforms. Therefore,

it is necessary to prove that the various results concerning fractional operators hold
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true in the function spaces that are relevant for this work.

Theorem 4.4: Let n ∈Z+
0 . If f is a function in Cn

−1,ψ with f (0) = . . .= f [n−1]
ψ (0) = 0,

and g is a function in C1
−1,ψ , then their ψ-convolution h = f ∗ψ g is in Cn+1

−1,ψ and

satisfies h(0) = . . .= h[n]ψ (0) = 0.

Proof. Firstly, consider the case n = 0. Then g ∈ C[0,∞) by Lemma 4.2(b), so h ∈

C[0,∞) with h(0) = 0, and

h[1]ψ (x) =
� x

0

1
ψ ′(x)

· d
dx

g
(
ψ

−1 (ψ(x)−ψ(t))
)

f (t)ψ ′(t)dt +
1

ψ ′(x)
g
(
ψ

−1(0)
)

f (x)ψ ′(x)

=

� x

0
g[1]ψ

(
ψ

−1 (ψ(x)−ψ(t))
)

f (t)ψ ′(t)dt +g(0) f (x)

= g[1]ψ ∗ψ f (x)+g(0) f (x), x > 0.

Since both f and g[1]ψ are in the space C−1,ψ , we have from (4.1) that h[1]ψ ∈ C−1,ψ , so

the result is proved in the case n = 0.

For n = 1, it follows from Lemma 4.2(b) that f ∈C[0,∞). Using f (0) = 0 along with

the argument used above for h[1]ψ =
(
g∗ψ f

)[1]
ψ

, we find h[1]ψ (0) = 0 and

h[2]ψ (x) =
(

g[1]ψ ∗ψ f +g(0) f
)[1]

ψ

= g[1]ψ ∗ψ f [1]ψ (x)+g[1]ψ (x) f (0)+g(0) f [1]ψ (x)

= g[1]ψ ∗ψ f [1]ψ (x)+g(0) f [1]ψ (x), x > 0.

Since g[1]ψ ∈C−1,ψ and f [1]ψ ∈C−1,ψ , we have that h[2]ψ ∈C−1,ψ . Now the case n = 1 is

solved.

Repeating the above methodology n times, we reach h(0) = . . . = h[n]ψ (0) = 0 and the

expression
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h[n+1]
ψ (x) = g[1]ψ ∗ψ f [n]ψ (x)+g(0) f [n]ψ (x), x > 0,

which means that h ∈Cn+1
−1,ψ , as required.

4.2 Operational calculus for Caputo fractional derivatives

The function space C−1,ψ turns out to be a particularly suitable setting for operational

calculus performed using the operators of fractional calculus with respect to the

function ψ . Chapter 3 of this thesis establishes appropriate algebraic structures on

this function space as part of the setup for applying Mikusiński’s operational calculus

to Riemann–Liouville fractional derivatives with respect to a function. The

groundwork for the following theorem was also laid in Chapter 3, but we state it

formally for the first time as follows.

Theorem 4.5: The elements hµ,ψ and Sµ,ψ for µ > 0, together with the identity

element Iψ , comprise a multiplicative group within the field M−1,ψ which is

isomorphic to the group (R,+).

Proof. Firstly, the behaviour of the functions hµ,ψ under ψ-convolution is well known:

hn
µ,ψ = hµ,ψ ∗ψ . . .∗ψ hµ,ψ︸ ︷︷ ︸

n

= hnµ,ψ(x), µ > 0,n ∈ N.

Therefore, it makes sense to define fractional (positive real) “powers” of hµ,ψ within

C−1,ψ as follows:

hν
µ,ψ := hνµ,ψ , µ > 0,ν > 0. (4.6)

For negative powers of hµ,ψ , we use the multiplicative inverse Sµ,ψ ∈ M−1,ψ , since

h−1
µ,ψ = Sµ,ψ . Then, we have all real powers of both hµ,ψ and Sµ,ψ , given as follows:
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hν
µ,ψ =



hνµ,ψ , ν > 0,

Iψ , ν = 0,

Iψ

h−νµ,ψ
, ν < 0;

Sν
µ,ψ =



Iψ

hνµ,ψ
, ν > 0,

Iψ , ν = 0,

h−λ
−νµ,ψ , ν < 0.

Therefore, the set of all hµ,ψ and Sµ,ψ with µ > 0, together with the identity element

Iψ , is exactly the set of all real powers of any one (non-identity) of these elements.

Given the composition properties or index laws as follows:

hµ,ψ ∗ψ hν ,ψ = hµ+ν ,ψ , Sµ,ψ ∗ψ Sν ,ψ = Sµ+ν ,ψ , µ,ν > 0,

we know that this set forms a multiplicative group within the field M−1,ψ which is

isomorphic to the group of real numbers under addition.

Any Riemann–Liouville fractional integral with respect to ψ can be represented by an

element of the field M−1,ψ , via

0Iµ

ψ(x) f =
Iψ

Sµ,ψ
· f ∈ M−1,ψ , (4.7)

but what about the Caputo fractional derivative with respect to ψ? The following

theorem shows how this too can be embedded in the field M−1,ψ for appropriate

functions f .

Theorem 4.6: Let n ∈ Z+ and n− 1 < µ ≤ n. For any f ∈ Cn
−1,ψ , we define a new

function fµ,ψ by

fµ,ψ(x) =
n−1

∑
k=0

f [k]ψ (0)
{ψ(x)}k

k!
, x ≥ 0. (4.8)

Then the Caputo derivative of f with respect to ψ is given by the following relation in
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the field M−1,ψ :

C
0 Dµ

ψ(x) f = Sµ,ψ · f −Sµ,ψ · fµ,ψ . (4.9)

Proof. From Eq. (4.5), using the new fµ,ψ notation, we have(
0Iµ

ψ(x)
C
0 Dµ

ψ(x) f
)
(x) = f (x)− fµ,ψ(x), x ≥ 0.

Multiplying by Sµ,ψ on both sides of this equation, we obtain the required result.

For the application of Mikusiński’s operational calculus to solving fractional

differential equations in the setting of Caputo fractional derivatives with respect to

functions, it is important to identify those elements of M−1,ψ which can be

represented by means of functions in the rng C−1,ψ . One useful class of such elements

is given by the following result.

Lemma 4.3: Let F be a function of several complex variables z = (z1, . . . ,zn) defined

by a multiple power series with complex coefficients, and let z0 = (z10, . . . ,zn0) be a

point, with all zk0 ̸= 0, at which this multiple power series is convergent, say

F(z0) =
∞

∑
i1,...,in=0

ci1,...,inzi1
10 × . . .× zin

n0 = K ∈ C.

Then, for any µ1, . . . ,µn,ν > 0, the formal power series

F
(
Sµ,ψ

)
= S−ν ,ψ

∞

∑
i1,...,in=0

ci1,...,in
(
S−µ1,ψ

)i1 × . . .×
(
S−µn,ψ

)in

can be interpreted as an element of the commutative rng C−1,ψ , namely as the following

function:

F
(
Sµ,ψ

)
=

∞

∑
i1,...,in=0

ci1,...,inhν+µ1i1+...+µnin,ψ(x). (4.10)

Proof. This follows directly from Theorem 3.8 after a simple substitution of
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parameters.

The result of Lemma 4.3 enables several elements of the field M−1,ψ , expressed

initially using division within this field, to be interpreted as functions in the rng

C−1,ψ . Some examples are given in Lemma 3.1, and we continue that work with the

following results.

Theorem 4.7: (a) If µ > 0 and ν ,ω ∈ R and m ∈ Z+, then

Sν
µ,ψ(

Sµ,ψ −ω
)m = {ψ(x)}(m−ν)µ−1 Em

µ,(m−ν)µ

(
ω {ψ(x)}µ

)
,

where Eγ

α,β (z) is the three-parameter Mittag-Leffler function due to Prabhakar

[68].

(b) If µ,µ1,µ2,ν > 0 and ω1,ω2 ∈ R, then

S−ν
µ,ψ(

Iψ −ω1S−µ1/µ

µ,ψ −ω2S−µ2/µ

µ,ψ

)m = {ψ(x)}νµ−1

×En
µ1,µ2,νµ

(
ω1 {ψ(x)}µ1 ,ω2 {ψ(x)}µ2

)
,

where Eδ

α,β ,γ(x,y) is the bivariate Mittag-Leffler function due to [65].

Proof. We proceed one by one, following the methodology of Lemma 3.1 and earlier

works such as [35, 36].

(a) This result is a slight generalisation of Lemma 3.1(b), and the proof is similar:
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Sν
µ,ψ(

Sµ,ψ −ω
)m =

Sν−m
µ,ψ(

Iψ −ωS−1
µ,ψ

)m =
∞

∑
i=0

(m)iω
i

i!
S−i+ν−m

µ,ψ

=
∞

∑
i=0

(m)iω
i

i!
h(m−ν+i)µ,ψ(x)

= {ψ(x)}(m−ν)µ−1
∞

∑
i=0

(m)i
(
ω {ψ(x)}µ

)i

i!Γ(µi+(m−ν)µ)

= {ψ(x)}(n−ν)µ−1 Em
µ,(m−ν)µ

(
ρ {ψ(x)}µ

)
.

(b) This result follows from some manipulation of series, this time trinomial double

series rather than binomial series. We omit the straightforward details.

4.3 Applications to fractional differential equations

In this section, we will show how the version of Mikusiński’s operational calculus

constructed above can help to solve Cauchy problems with constant coefficients in the

setting of Caputo fractional derivatives of a function with respect to another function.

Example 4.1: As a preliminary illustration of the method, let us begin with the

following very simple problem using these fractional derivatives:(
C
0 Dµ

ψ(x)y
)
(x)−λy(x) = f (x), x > 0, (4.11)

y[k]ψ (0) = ck, k = 0,1, . . . ,n−1, (4.12)

where λ ,c0,c1, . . . ,cn−1 ∈ R and µ > 0 with n− 1 < µ ≤ n are given constants, we

assume f ∈ C−1,ψ if µ ∈ N or f ∈ C1
−1,ψ if µ /∈ N, and we seek a solution function y

lying within Cn
−1,ψ .

By Theorem 4.6, the fractional differential equation (4.11) is equivalent to an algebraic

equation in M−1,ψ as follows:

Sµ,ψ · y−λy = Sµ,ψ · yµ,ψ + f ,

where the function yµ,ψ is completely given by the initial conditions (4.12):
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yµ,ψ(x) =
n−1

∑
k=0

ck
{ψ(x)}k

k!
.

Therefore, the unique solution in the field M−1,ψ can be expressed algebraically as

follows:

y =
Iψ

Sµ,ψ −λ
· f +

Sµ,ψ

Sµ,ψ −λ
· yµ,ψ . (4.13)

To obtain a classical solution of the initial value problem (4.11)–(4.12), we need the

right-hand side of this relation to be interpretable as a function in the space Cm
−1,ψ .

Using Theorem 4.7(a) and the definition of multiplication in the rng C−1,ψ , we obtain

for the first term in (4.13):

y1(x) :=
Iψ

Sµ,ψ −λ
· f =

� x

0

(
ψ(x)−ψ(t)

)µ−1Eµ,µ

(
λ
(
ψ(x)−ψ(t)

)µ
)

f (t)ψ ′(t)dt.

(4.14)

Note that this is the exact solution of the same fractional differential equation (4.11)

with homogeneous initial conditions, i.e. with all ck = 0.

Meanwhile, the second term in (4.13) is a solution of the homogeneous version of the

fractional differential equation (4.11) with the given initial conditions (4.12). It can be

written as follows:

y2(x) :=
Sµ,ψ

Sµ,ψ −λ
· yµ,ψ =

n−1

∑
k=0

ck
Sµ,ψ

Sµ,ψ −λ
·

{
{ψ(x)}k

k!

}

=
n−1

∑
k=0

ck
Iψ

Iψ −λS−1
µ,ψ

·hk+1,ψ(x) =
n−1

∑
k=0

ck
S−(k+1)/µ

µ,ψ

Iψ −λS−1
µ,ψ

=
n−1

∑
k=0

ck {ψ(x)}k Eµ,k+1
(
λ {ψ(x)}µ

)
,

where in the last step we have again made use of Theorem 4.7(a). Combining the

expressions obtained so far for y1(x) and y2(x), we get the solution of the initial value
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problem (4.11)–(4.12) in the form

y(x) =
� x

0

(
ψ(x)−ψ(t)

)µ−1Eµ,µ

(
λ
(
ψ(x)−ψ(t)

)µ
)

f (t)ψ ′(t)dt

+
n−1

∑
k=0

ck {ψ(x)}k Eµ,k+1
(
λ {ψ(x)}µ

)
.

Now we consider the general linear constant-coefficient fractional differential equation

using Caputo fractional derivatives with respect to a function ψ .

Theorem 4.8: Let m ∈ Z+, µ > µ1 > .. . > µm ≥ 0 with ni − 1 < µi ≤ ni ∈ Z+ for

i = 1, . . . ,m and n− 1 < µ ≤ n ∈ Z+, and let λ1, . . . ,λm ∈ R and c1, . . . ,cn ∈ R be

constants. Consider the initial value problem(
C
0 Dµ

ψ(x)y
)
(x)−

m

∑
i=1

λi

(
C
0 Dµi

ψ(x)y
)
(x) = f (x), x > 0, (4.15)

y[k]ψ (0) = ck, k = 0,1, . . . ,n−1, (4.16)

where the function f is assumed to lie in C−1,ψ if µ ∈ N or in C1
−1,ψ if µ /∈ N, and the

unknown function y is to be determined in the space Cn
−1,ψ . This initial value problem

has a unique solution in the space Cn
−1,ψ , which can be written as

y(x) = y1(x)+
n−1

∑
k=0

ckuk(x), x ≥ 0,

where y1(x) is the solution of the fractional differential equation (4.15) with

homogeneous initial conditions (i.e. with all ck = 0) and the set of functions uk(x)

satisfies (
1

ψ ′(x)
· d

dx

)l

uk(0) = δkl, k, l = 0, . . . ,n−1.

Explicitly, the function y1 is given by
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y1(x) =
� x

0
{ψ(x)−ψ(t)}µ−1

×E(µ−µ1,...,µ−µm),µ

(
λ1 {ψ(x)−ψ(t)}µ−µ1 , . . . ,λm {ψ(x)−ψ(t)}µ−µm

)
f (t)ψ ′(t)dt,

and each function uk is given by

uk(x) =
{ψ(x)}k

k!
+

m

∑
i=lk+1

λi {ψ(x)}k+µ−µi

×E(µ−µ1,...,µ−µm),k+1+µ−µi

(
λ1 {ψ(x)}µ−µ1 , . . . ,λm {ψ(x)}µ−µm

)
,

where the numbers l0, l1, . . . , ln−1 are determined from the following condition

depending on the monotonically decreasing sequence of numbers ni = ⌊µi⌋+1 ∈ Z+:


nlk ≥ k+1,

nlk+1 ≤ k,

or lk = 0 if ni ≤ k for all i, or similarly lk = m if ni ≥ k+1 for all i.

Proof. We seek a solution function y ∈ Cm
−1,ψ , so the initial value problem (4.15)–

(4.16) is equivalent, via Theorem 4.6, to an algebraic equation in M−1,ψ as follows:

Sµ,ψ · y−Sµ,ψ · yµ,ψ −
m

∑
i=1

λi
(
Sµi,ψ · y−Sµi,ψ · yµi,ψ

)
= f , (4.17)

where

yµ,ψ(x) =
n−1

∑
k=0

ck
{ψ(x)}k

k!
, yµi,ψ(x) =

ni−1

∑
k=0

ck
{ψ(x)}k

k!
, i = 1, . . . ,m.

The algebraic equation (4.17) has a unique solution in M−1,ψ , which, using the power

formalisms of Theorem 4.5, can be written as follows:

y = y1 + y2 =
Iψ

Sµ,ψ −∑
m
i=1 λiS

µi/µ

µ,ψ

· f +
Sµ,ψ · yµ,ψ −∑

m
i=1 λiS

µi/µ

µ,ψ · yµi,ψ

Sµ,ψ −∑
m
i=1 λiS

µi/µ

µ,ψ

. (4.18)

First half: y1(x). We have
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y1 =
Iψ

Sµ,ψ −∑
m
i=1 λiS

µi/µ

µ,ψ

· f =
S−1

µ,ψ

Iψ −∑
m
i=1 λiS

(µ−µi)/µ

µ,ψ

· f , (4.19)

so by lemma 3.1(c), we can interpret the field element y1 ∈ M−1,ψ as the following

function in the rng C−1,ψ :

y1(x) =
� x

0
{ψ(x)−ψ(t)}µ−1

×E(µ−µ1,...,µ−µm),µ

(
λ1 {ψ(x)−ψ(t)}µ−µ1 , . . . ,λm {ψ(x)−ψ(t)}µ−µm

)
f (t)ψ ′(t)dt.

In the case µ /∈N, we have f ∈C1
−1,ψ by assumption, and y1 is the ψ-convolution of f

with a function in C−1,ψ , so Theorem 4.4 gives y1 ∈C1
−1,ψ . In the case µ ∈N, we have

f ∈C−1,ψ by assumption, and y1 is the ψ-convolution of f with a smooth function in

C1
−1,ψ , so again Theorem 4.4 gives y1 ∈C1

−1,ψ .

We now aim to show that y1 ∈Cn
−1,ψ . Multiplying the identity (4.19) by the rightmost

denominator, we obtain

y1(x) =
(

0Iµ

ψ(x) f
)
(x)+

m

∑
i=1

λi

(
0Iµ−µi

ψ(x) y1

)
(x), (4.20)

where all the orders of integration are positive and the smallest among them is µ −µ1.

This can be rewritten as

y1(x) =
(

0Iµ−µ1
ψ(x) φ1

)
(x), φ1 ∈


C−1,ψ , µ ∈ N,

C1
−1,ψ , µ /∈ N.

(4.21)

Substituting the expression (4.21) for y1 back into the right-hand side of (4.20), and

using the semigroup property of Riemann–Liouville fractional integrals with respect

to ψ , we achieve the following as the next stage:
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y1(x) =
(

0Imin(µ,2(µ−µ1))
ψ(x) φ2

)
(x), φ2 ∈


C−1,ψ , µ ∈ N,

C1
−1,ψ , µ /∈ N.

(4.22)

Repeating the same arguments a total of p = ⌊ µ

µ−µ1
⌋+1 times, we arrive ultimately at

the following representation for y1:

y1(x) =
(

0Iµ

ψ(x)φp

)
(x), φp ∈


C−1,ψ , µ ∈ N,

C1
−1,ψ , µ /∈ N.

(4.23)

In the case µ = n ∈ N, it now follows using Lemma 4.2(c) that y1 ∈ Cn
−1,ψ and also

that y1(0) = . . .= (y1)
[n−1]
ψ

(0) = 0. In the case µ /∈ N, n−1 < µ < n, we have (4.23)

giving y1 as the ψ-convolution of φp ∈C1
−1,ψ with the function h= hµ,ψ ∈Cn−1

−1,ψ which

satisfies h(0) = . . .= h[n−2]
ψ (0) = 0. By Theorem 4.4, this means y1 ∈Cn

−1,ψ and also

y1(0) = . . .=
(

1
ψ ′(x) ·

d
dx

)n−1
y1(0) = 0.

Second half: y2(x). Using the definitions (4.8) for the functions yµ,ψ(x), yµi,ψ(x), we

have the following expression for y2, the second half of (4.18):

y2(x) =

Sµ,ψ

n−1

∑
k=0

ck
{ψ(x)}k

k!
−

m

∑
i=1

λiSµi,ψ

ni−1

∑
k=0

ck
{ψ(x)}k

k!

Sµ,ψ −
m

∑
i=1

λiS
µi/µ

µ,ψ

=
n−1

∑
k=0

ckuk(x), uk(x) =

Sµ,ψ −
lk

∑
i=1

λiS
µi/µ

µ,ψ

Sµ,ψ −
m

∑
i=1

λiS
µi/µ

µ,ψ

·

{
{ψ(x)}k

k!

}
.

Applying the relations from Theorem 4.5, and then Lemma 3.1(c), we obtain
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uk =

Iψ +

m

∑
i=lk+1

λiS
µi/µ

µ,ψ

Sµ,ψ −
m

∑
i=1

λiS
µi/µ

µ,ψ

 ·hk+1,ψ

= hk+1,ψ +
m

∑
i=lk+1

λi
S−(k+1+µ−µi)/µ

µ,ψ

Iψ −∑
m
i=1 λiS

−(µ−µi)/µ

µ,ψ

=
{ψ(x)}k

k!
+

m

∑
i=lk+1

λi {ψ(x)}k+µ−µi

×E(µ−µ1,...,µ−µm),k+1+µ−µi

(
λ1 {ψ(x)}µ−µ1 , . . . ,λm {ψ(x)}µ−µm

)
.

By the way the numbers lk are defined, we have, for all i = lk +1, . . . ,m, the inequality

ni ≤ k and therefore k+µ−µi ≥ µ . This guarantees that uk ∈Cn
−1,ψ for k = 0, . . . ,n−1

and also the relations(
1

ψ ′(x)
· d

dx

)l

uk(0) = δkl, k, l = 0, . . . ,n−1.

Thus, the functions u0(x), . . . ,un−1(x) generate the space of solutions for the

homogeneous version of the fractional differential equation (4.15), while the solution

of our initial value problem (4.15)–(4.16) is given by

y(x) = y1(x)+
n−1

∑
k=0

ckuk(x) ∈Cn
−1,ψ ,

exactly as stated.

Remark 4.3: In a recent work of Restrepo et al [49], the initial value problem

(4.15)–(4.16) is considered. In fact, they consider a more general problem with

variable coefficients, and in [49, §4] they consider the constant-coefficient version

exactly the same to our (4.15)–(4.16). Comparing the result of our Theorem 4.8 above

with their [49, Theorem 4.2], we see that both approaches end up with exactly the

same solution function.
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Of course this is to be expected, since both works are considering the same problem and

it has a unique solution. But it acts as a useful confirmation that our work is correct

and that the approach of using Mikusiński’s operational calculus to solve fractional

differential equations is valid. Note that, as well as the methods used here and in [49]

being different, the function spaces in which uniqueness is proved are also different.

Indeed, much of the difficult work in our proof above was to ensure that the obtained

solution function is in the claimed function space, and this is a new contribution of

ours.

Remark 4.4: In some situations, the results of Theorem 4.8 can also be used for a

modified version of the initial value problem (4.15)–(4.16) in which

Riemann-Liouville fractional derivatives of a function with respect to another

function are used instead of Caputo ones. In particular, as we have seen in Remark

4.1, it is known that R
0 Dµ

ψ(x)y(x) =
C
0 Dµ

ψ(x)y(x) either if µ = n ∈ N or if the following

condition is valid:(
1

ψ ′(x)
· d

dx

)k

y(0) = 0, k = 0, . . . ,n−1,n−1 < µ ≤ n.

In the case where 0 < µ < 1, again by Remark 4.1, we can use(
R
0 Dµ

ψ(x)y
)
(x) =

(
C
0 Dµ

ψ(x)y
)
(x)+

y(0)
Γ(1−µ)

{ψ(x)}−µ ,

to reduce an initial value problem using Riemann-Liouville fractional derivatives of

a function with respect to another function to a different initial value problem of the

type (4.15)–(4.16) using Caputo derivatives, since the function y(0)h−µ,ψ that forms

the difference between these operators is a function in the space C−1,ψ .
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Chapter 5

GENERAL CONJUGATED FRACTIONAL CALCULUS

In this chapter, we focus specifically on operators which can be expressed as

conjugations of classical fractional integrals and derivatives, and to define a general

setting in which the methodology of conjugation relations can be applied. We shall

see that any operator with a conjugation relation will naturally have varieties of

Riemann–Liouville, Caputo, and Hilfer type stemming from the fractional integral

type operator. As illustrative examples, we shall consider some well-known families,

including fractional integrals and derivatives with respect to functions and also

weighted fractional integrals and derivatives. These will help to relate our work

directly to ideas and problems which are current topics of concern in the literature.

5.1 The general setup

Throughout this chapter, [a,b] is a fixed interval in R. Let S be an invertible linear

bijection S : X → Y , where Y is any vector space (usually a space of functions) and

X is the space of all real-valued or complex-valued functions defined on the interval

[a,b]. We can now define a first-order “derivative” operator D acting on the subspace

of Y which is the S -image of the space of differentiable functions on [a,b], and a

“fractional integral” operator Iµ acting on the space S
(
L1[a,b]

)
⊂ Y , as follows:

D := S ◦ d
dx

◦S −1, Iµ := S ◦ R
aIµ

x ◦S −1,

where µ can be any positive real number or any complex number with positive real

part. Starting from these operators, we can immediately define “fractional derivative”

operators of Riemann–Liouville, Caputo, and Hilfer types, on the space
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S (ACn[a,b])⊂ Y , as follows:

RDµ := D◦D◦ · · · ◦D◦ In−µ = S ◦ R
aDµ

x ◦S −1,

CDµ := In−µ ◦D◦D◦ · · · ◦D= S ◦C
aDµ

x ◦S −1,

HDµ,ν := Iν(n−µ) ◦D◦D◦ · · · ◦D◦ I(1−ν)(n−µ) = S ◦H
aDµ,ν

x ◦S −1,

where in all cases µ can be any positive real number or any complex number with

non-negative real part, and n := ⌊Re(µ)⌋+ 1 ∈ N is the number of repetitions of the

D operator, and in the last case ν lies in [0,1] or has real part in (0,1). The above

conjugation relations for RDµ and CDµ and HDµ,ν follow immediately from those for

D and Iµ , as we can illustrate using the notation of commutative diagrams borrowed

from category theory:

· · ·

· · ·

R
aIµ−n

x

S

R
aDµ

x

dn/dxn

S S

Iµ−n

RDµ

Dn

· · ·

· · ·

dn/dxn

S

CDµ
x

R
aIµ−n

x

S S

Dn

C
aDµ

Iµ−n

· · · ·

· · · ·

R
aIν(µ−n)

x

S

H
aDµ,ν

x

dn/dxn

S

R
aI(1−ν)(µ−n)

x

S S

Iν(µ−n)

HDµ,ν

Dn I(1−ν)(µ−n)

Similarly, any type of operator which is defined by combining ordinary derivatives and

fractional integrals can now be conjugated via S to the setting of Y . This includes

Luchko’s mth level fractional derivative, considered above; its equivalent in the new

setting is the following operator:
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mLDµ,γ1,··· ,γm = Iγ1 ◦D◦ Iγ2 ◦D◦ · · · ◦ Iγm ◦D◦ Im−µ−γ1−···−γm,

where 0 < µ ≤ 1 and γ1, · · · ,γm ≥ 0 such that µ + γ1 + · · ·+ γk ≤ k for k = 1,2, · · · ,m.

A suitable domain for this operator would be S (X1
mL) ⊂ Y where X1

mL is as defined

in [60, Equation (49)], i.e.:

S (X1
mL) =

{
f : Iγ1 ◦D◦ · · · ◦ Iγm ◦D◦ Im−µ−γ1−···−γm f ∈ S (AC[a,b])

}
.

We observe that function spaces defined using derivative and integral operators

(ordinary or fractional) always have natural analogues in the space Y given by

mapping them along S . For example, it is straightforward to define the space

S (X0
mL), following [60, Equation (47)], as

S (X0
mL) =

{
f ∈ Iµ

(
S
(
L1[a,b]

))
: D◦ Iγ1+···+γk f = Iγ1+···+γk ◦D f , k = 1, · · · ,n

}
,

and then it follows from [60, §3.5] that mLDµ,γ1,··· ,γm = RDµ on this restricted space. A

commutative diagram can also be drawn to relate the new operator mLDµ,γ1,··· ,γm with

the original one mL
aDµ,γ1,··· ,γm

x ; however, as this diagram would be very large and would

not demonstrate any concepts not already shown in the existing commutative diagrams

above, we omit it here.

In what follows, we shall use the convention that the new fractional integrals and

derivatives of Riemann–Liouville type are the same as each other with inverted

orders: RD−µ = Iµ , which enables both of these to be defined for all µ ∈ C, without

restrictions on Re(µ). This makes sense because it is true for the original

Riemann–Liouville operators: R
aD−µ

x f (x) is the analytic continuation in the complex

variable µ (from the right half-plane to the left half-plane) of R
aIµ

x f (x).

Semigroup properties in the generalised fractional differintegrals now follow
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immediately from the well-known semigroup properties of Riemann–Liouville

differintegrals.

Theorem 5.1: For any µ,ν ∈C with Re(ν)> 0 and any n ∈N, we have the following

semigroup relations:

IµIν f = Iµ+ν f ,

DnIµ f = Iµ−n f ,

where in the first case f ∈ S
(
L1[a,b]

)
⊂ Y if Re(µ)> 0 or the appropriate subset of

this space if Re(µ)≤ 0, and in the second case f is in the appropriate space according

to whether Re(µ)> n or 0 < Re(µ)≤ n or Re(µ)≤ 0.

Proof. The corresponding results in Riemann–Liouville fractional calculus are already

known, so these results follow immediately from the conjugation relations. They can

also be illustrated by commutative diagrams:

· · ·

· · ·

R
aIν

x

S

R
aIµ+ν

x

R
aIµ

x

S S

Iν

Iµ+ν

Iµ

· · ·

· · ·

R
aIµ

x

S

R
aIµ−n

x

dn/dxn

S S

Iµ

Iµ−n

Dn

Other composition formulae for fractional differintegrals are not semigroup properties

– for example, the inversion formulae for the integral of a derivative – but they can

still be quite straightforwardly extended to more general fractional differintegrals via

conjugation relations.

Theorem 5.2: For any µ ∈C with Re(µ)> 0, and defining n = ⌊Re(µ)⌋+1 ∈N, we
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have:

Iµ RDµ f = f −
n−1

∑
k=0

S

(
(x−a)µ−k−1

Γ(µ − k)

)
·
(
S −1 RDµ−k−1 f

)
(a),

Iµ CDµ f = f −
n−1

∑
k=0

S

(
(x−a)k

k!

)
·
(
S −1Dk f

)
(a),

where f ∈ S (ACn[a,b])⊂ Y .

Proof. These results follow from the corresponding well-known inversion formulae

for the original Riemann–Liouville and Caputo derivatives of a function f ∈ ACn[a,b],

namely:

R
aIµ

x
R
aDµ

x f (x) = f (x)−
n−1

∑
k=0

(x−a)µ−k−1

Γ(µ − k)
·
(

R
aDµ−k−1

x f
)
(a),

R
aIµ

x
C
aDµ

x f (x) = f (x)−
n−1

∑
k=0

(x−a)k

k!
·
(

Dk
x f
)
(a).

The above results have made use of the S -image of power functions. We can also

quickly establish a result on the generalised fractional differintegrals of these

S -images, as follows.

Theorem 5.3: Define hµ = S
(

(x−a)µ

Γ(µ+1)

)
∈ Y for all µ ∈ C and

eµ;ω = S
(
Eµ (ω(x−a)µ)

)
∈ Y for all µ,ω ∈ C with Re(µ) > 0. Then we have the

following relations:

Iµ (hν) = hν+µ , µ,ν ∈ C, Re(ν)>−1;

CDµ
(
eµ;ω

)
= ωeµ;ω , µ,ω ∈ C, Re(µ)> 0.

Proof. These follow immediately from the corresponding relations for

Riemann–Liouville and Caputo differintegrals of power functions and Mittag-Leffler

functions:
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R
aIµ

x

(
(x−a)ν

Γ(ν +1)

)
=

(x−a)ν+µ

Γ(ν +µ +1)
, µ,ν ∈ C, Re(ν)>−1;

C
aDµ

x
(
Eµ (ω(x−a)µ)

)
= ωEµ (ω(x−a)µ) , µ,ω ∈ C, Re(µ)> 0.

5.2 Specific cases

The above work can be seen as creating a theory of fractional powers (Iµ and Dµ )

of a modified first-order derivative operator D which is defined by conjugation of the

usual derivative d
dx . Then the question arises: what particular cases of such modified

operators D are actually useful in practice? As it turns out, some of the basic operations

of calculus, used every day in differential equations, can be written in this way of

conjugations, and therefore their fractional powers can be defined using the theory

outlined above. We investigate some examples in the following subsections.

5.2.1 Left-sided and right-sided fractional calculus

Let us consider the operator D = − d
dx , simply the negation of the original derivative

operator. This can be written as a conjugation when we define S by (S f )(x) =

f (−x), or indeed by (S f )(x) = f (c− x) for any constant c. In particular, defining

(S f )(x) = f (a+b− x) is a natural choice, because then conjugation by S precisely

swaps the left-sided and right-sided fractional integral operators on the interval [a,b],

as noted in [4, Eq. (2.19)].

Therefore, the model of fractional calculus we obtain by starting from the original (left-

sided) operators (2.1)–(2.3) and conjugating by the operator S defined by (S f )(x) =

f (a+b− x) is precisely the corresponding right-sided operators:

54



R
xIµ

b f (x) =
1

Γ(µ)

� b

x
(t − x)µ−1 f (t)dt,

R
xDµ

b f (x) = (−1)n dn

dxn

(
R
xIn−µ

b f (x)
)
,

C
xDµ

b f (x) = (−1)n R
xIn−µ

b

(
dn

dxn f (x)
)
,

H
xDµ,ν

b f (x) = (−1)n R
xIν(n−µ)

b

(
dn

dxn

(
R
xI(1−ν)(n−µ)

b f (x)
))

,

where x ∈ (a,b) in every case and n = ⌊Re(µ)⌋+1 ∈ N for the fractional derivatives.

This is a very simple example of a conjugation relation, but a useful one, as it means we

do not need to waste time proving the same results twice for left-sided and right-sided

fractional calculus: it is usually enough to prove them once for left-sided operators and

then the corresponding results for right-sided operators will follow automatically.

5.2.2 Fractional calculus with respect to functions

Let us consider the operator D = A(x) · d
dx , where A is a positive function. This type

of operator would be frequently used in any setting of differential equations with non-

constant coefficients, and it can be written as a conjugation as follows.

If we let S = Qψ be an operator of right composition with a bijective differentiable

function ψ , namely S ( f ) = f ◦ψ , then the chain rule gives

D= S ◦ d
dx

◦S −1 = Qψ ◦ d
dx

◦Q−1
ψ =

1
ψ ′(x)

· d
dx

.

Therefore, putting ψ =
� 1

A (where the constant of integration can be chosen freely,

e.g. in order to ensure ψ(a) = 0 if desired), we can obtain all fractional powers of the

operator D = A(x) · d
dx , in a natural way that preserves properties such as semigroup

and composition relations.
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The model of fractional calculus thus obtained is called fractional calculus with respect

to functions, and it is a general class of operators which includes, according to specific

choices of ψ , the Hadamard and Katugampola fractional calculi. Studies of this class

started from the work of Erdélyi [69] and Osler [18], with more detailed overviews in

the textbooks of Samko et al [4, §18.2] and Kilbas et al [3, §2.5]. The operators of

fractional differintegration in this setting are given explicitly as follows:

R
cIµ

ψ(x) f (x) =
1

Γ(µ)

� x

c

(
ψ(x)−ψ(t)

)µ−1 f (t)ψ ′(t)dt,

R
cDµ

ψ(x) f (x) =
(

1
ψ ′(x)

· d
dx

)n
R
cIn−µ

ψ(x) f (x),

C
cDµ

ψ(x) f (x) = R
cIn−µ

ψ(x)

(
1

ψ ′(x)
· d

dx

)n

f (x),

H
cDµ,ν

ψ(x) f (x) = (−1)n R
cIν(n−µ)

ψ(x)

(
1

ψ ′(x)
· d

dx

)n(
R
cI(1−ν)(n−µ)

ψ(x) f (x)
)
,

where n = ⌊Re(µ)⌋+ 1 ∈ N for the fractional derivatives, and these operators are the

conjugations of the Riemann–Liouville operators with constant of differintegration a=

ψ(c). Note that the Caputo and Hilfer type derivatives in this setting were defined

long after the Riemann–Liouville type operators [20, 21], but it is clear (at least from

the conjugation viewpoint) that they are a natural and obvious modification after the

Riemann–Liouville type operators have already been defined.

Fractional differential equations with respect to functions can therefore be seen as the

fractional version of differential equations with variable coefficients that are solvable

using substitution methods. Such fractional differential equations have attracted

interest in recent years [45, 49, 70], and various methods for their solution have been

used. We emphasise here that all problems involving these operators can be greatly

simplified by using conjugation relations, which enable the solutions to be deduced

directly from those for classical fractional differential equations [23, 71].
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It is also worth noting that, by using the ideas of this subsection together with the

previous one, we are able to construct meaningful fractional powers of the modified

derivative operator D = A(x) · d
dx for any measurable function A, either positive (from

this subsection) or negative (from combining this subsection with the previous one).

5.2.3 Weighted fractional calculus

Let us consider the operator D=B(x)+ d
dx , where B is a function. This type of operator

is frequently useful in differential equations, e.g. in integrating factor methods, and it

can be written as a conjugation as follows.

If we let S = M−1
w(x) be an operator of division by a weight function w, namely

(S f )(x) = f (x)
w(x) , then the product rule gives

D= S ◦ d
dx

◦S −1 = M−1
w(x) ◦

d
dx

◦Mw(x) =
w′(x)
w(x)

+
d
dx

.

Therefore, putting w = exp
(�

B
)

(where the constant of integration can be chosen

freely, e.g. in order to ensure w(a) = 1 if desired), we can obtain all fractional powers

of the operator D = B(x) + d
dx , in a natural way that preserves properties such as

semigroup and composition relations.

The model of fractional calculus thus obtained is called weighted (or scaled) fractional

calculus, and it is a general class of operators which includes, according to specific

choices of w, the tempered and Kober–Erdélyi fractional calculi. This is a subclass of

weighted fractional calculus with respect to functions, discussed in the next subsection

below. Again, its conjugation relations have been noted in the literature [72] but have

not been used in some recent studies [73, 74], so we feel it is important to emphasise

the power and usefulness of these conjugation relations. The operators of fractional

differintegration in this setting are given explicitly as follows:
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aIµ

x,w(x) f (x) =
1

Γ(µ)w(x)

� x

a
(x− t)µ−1w(t) f (t)dt,

R
aDµ

x,w(x) f (x) =
(

d
dx

+
w′(x)
w(x)

)n

aIn−µ

x,w(x) f (x),

C
aDµ

x,w(x) f (x) = aIn−µ

x,w(x)

(
d
dx

+
w′(x)
w(x)

)n

f (x),

H
aDµ,ν

x,w(x) f (x) = aIν(n−µ)
x,w(x)

(
d
dx

+
w′(x)
w(x)

)n

aI(1−ν)(n−µ)
x,w(x) f (x),

where n = ⌊Re(µ)⌋+1 ∈ N for the fractional derivatives.

Weighted fractional differential equations can therefore be seen as the fractional

version of differential equations with derivatives modified by addition. Such

fractional differential equations have attracted interest in recent years [75], with

applications in variational calculus and probabilistic processes [72, 76], and their

solution is greatly simplified by using conjugation relations [55].

5.2.4 Weighted fractional calculus with respect to functions

Let us consider the operator D = B(x)+A(x) · d
dx , where A and B are functions. This

type of operator can be seen as the general first-order differential operator, and it can

be written as a conjugation as follows.

If we let S = M−1
w(x) ◦ Qψ be an operator of right composition with a bijective

differentiable function ψ followed by division by a weight function w, namely

(S f )(x) = f◦ψ(x)
w(x) , then the product rule and chain rule give

D= S ◦ d
dx

◦S −1 = M−1
w(x) ◦Qψ ◦ d

dx
◦Q−1

ψ ◦Mw(x) =
1

ψ ′(x)

(
w′(x)
w(x)

+
d
dx

)
.

Therefore, putting ψ =
� 1

A and w = exp
(�

B/A
)

(where the constants of integration

can both be chosen freely, according to desired initial conditions on ψ and w), we can

obtain all fractional powers of the operator D= B(x)+A(x) · d
dx , in a natural way that
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preserves properties such as semigroup and composition relations.

The model of fractional calculus thus obtained is called weighted (or scaled)

fractional calculus with respect to functions, and it is a general class of operators

which includes, according to specific choices of ψ and w, the Hadamard-type and

Erdélyi–Kober fractional calculi. The definition was first introduced by Agrawal in

2012 [77], and there have been just a few further studies of this class in its full

generality [55, 72, 74, 76]. The operators of fractional differintegration in this setting

are given explicitly as follows:

R
cIµ

ψ(x),w(x) f (x) =
1

Γ(µ)w(x)

� x

c

(
ψ(x)−ψ(t)

)µ−1w(t) f (t)ψ ′(t)dt,

R
cDµ

ψ(x),w(x) f (x) =
(

1
ψ ′(x)

[
d
dx

+
w′(x)
w(x)

])n
R
cIn−µ

ψ(x),w(x) f (x),

C
cDµ

ψ(x),w(x) f (x) = R
cIn−µ

ψ(x),w(x)

(
1

ψ ′(x)

[
d
dx

+
w′(x)
w(x)

])n

f (x),

H
cDµ,ν

ψ(x),w(x) f (x) = R
cIν(n−µ)

ψ(x),w(x)

(
1

ψ ′(x)

[
d
dx

+
w′(x)
w(x)

])n
R
cI(1−ν)(n−µ)

ψ(x),w(x) f (x),

where n = ⌊Re(µ)⌋+ 1 ∈ N for the fractional derivatives, and these operators are the

conjugations of the Riemann–Liouville operators with constant of differintegration a=

ψ(c).

We note in passing that, although Hilfer fractional derivatives with respect to functions

have been intensively studied, this current work is (to the best of our knowledge) the

first time that a weighted Hilfer fractional derivative with respect to a function has been

presented in the literature. So our operator H
cDµ,ν

ψ(x),w(x) is new, albeit a natural definition

when the Riemann–Liouville and Caputo type derivatives are already defined [76,77].

Weighted fractional differential equations with respect to functions can therefore be

seen as the fractional version of differential equations with variable coefficients
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modified by addition: the combination of both of the previous two subsections into

one even more general class. These operators have been studied from the viewpoint of

variational calculus [76] and probability theory [72], but some recent work on

them [74] has failed to take account of the power of the conjugation relations, which

has been further discussed recently [55] to emphasise the approach.
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Chapter 6

CONCLUSION

This thesis contains the results of three publications [45, 46, 59], divided into three

chapters following the introduction and preliminaries. In Chapter 3, we have

established a new extension of the concept of Mikusiński’s operational calculus,

already well-known for classical derivatives and integrals, and also in the last two

decades for fractional derivatives and integrals of various types. Our work is devoted

to the extension of this mathematical formalism to the class of fractional derivatives

and integrals of one function with respect to another function. This is a class of

operators which covers, for example, the Hadamard and Katugampola models of

fractional calculus, which have various applications in modelling.

Mikusiński’s operational calculus is a useful method for solving differential

equations, formally similar to the method of Laplace transforms, but easier to justify

rigorously, and applicable in some problems where Laplace transforms cannot be

used. Therefore, the new extension defined in Chapter 3 can be used similarly to solve

differential equations using fractional derivative operators with respect to functions.

In this work, we have demonstrated the application of this operational calculus to

solve some linear fractional differential equations with constant coefficients and

Riemann–Liouville derivative operators with respect to functions.

In Chapter 4, we have studied the theory and practice of Mikusiński’s operational

calculus as it applies to Caputo fractional derivatives of a function with respect to
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another function. This is a continuation of our Chapter 3 in which we applied

Mikusiński’s operational calculus to Riemann–Liouville fractional derivatives of a

function with respect to another function; however, this new setting requires different

function spaces and different sets of results both for the functional relations and for

the solutions of fractional differential equations.

Additionally, we have elucidated some of the general theory of Mikusiński’s

operational calculus in fractional calculus, e.g. in Theorem 4.5 above where we have

described clearly the group structure generated by the field elements corresponding to

the operations of fractional integration and differentiation. We have also related this

theory to several types of Mittag-Leffler functions, including some recently defined

ones which have emerged naturally from solving differential equations.

In order to demonstrate the usefulness of the formalism constructed here, we have used

it to solve some fractional differential equations posed using Caputo derivatives with

respect to functions. We compared our results with those of another recent work which

studied such differential equations using the method of successive approximations, and

found that their results are consistent with ours.

Finally in Chapter 5, we have provided a brief glimpse at the power of conjugation

relations in fractional calculus. With an abstract linear map S , conjugation relations

allow the notion of fractional integrals and fractional derivatives to be extended to a

much more general setting, while keeping many of their fundamental properties such

as semigroup and composition relations and analogues of power and Mittag-Leffler

functions. As concrete applications of this abstract framework, we have considered the

general classes of fractional calculus with respect to functions and weighted fractional
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calculus. These settings and their combination allow us to define fractional powers of

any first-order differential operator B(x)+A(x) · d
dx in a natural way, and also to include

many useful fractional calculi, including Hadamard, tempered, and Erdélyi–Kober, as

special cases.

The use of ideas from abstract algebra in understanding fractional calculus has already

been promoted in the operational calculus of Mikusiński [33], which has recently been

applied to more general operators, such as Hilfer derivatives [37], fractional calculus

with respect to functions [45, 46], or Sonine kernels and their generalisations [78, 79].

The author of reference [80] investigated the use of Mikusiński’s operational calculus

in the general conjugated fractional calculus and found that the structures and results

established by Luchko in classical fractional calculus can be transferred to the more

general setting via the conjugating bijection with minimal modifications necessary.

Here we see how a little algebraic understanding can be very helpful in finding deep

results and connections in fractional calculus. In future work, we hope to extend and

enrich the connections between abstract algebra and fractional calculus.

It will also be possible to combine the work done here with other directions of

generalisation in fractional calculus. Some general classes of operators are related to

classical fractional calculus via conjugation relations, but others are related via series

formulae [15] or other kernel generalisations such as Sonine kernels [81]. Some work

has already begun on combining general analytic kernels with conjugation

relations [19], and this sort of combination can be extended further by using the more

general setting for conjugations proposed herein [82].

As the moral of this work, we would like to emphasise the necessity of taking into
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account connections between different operators when doing any mathematical work

with new types of fractional calculus. Newly invented operators should be critically

examined to understand how they fit into the existing structure, and such connections

can enable many of their properties to be immediately seen without need for detailed

proofs. This is not to say that operators with connections to old ones are useless – on

the contrary, even a minor modification of an existing operator may discover some real

applications to make itself useful – but, from the mathematical point of view, these

connections and overall structure should always be borne in mind, for more clean and

efficient mathematical work.
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