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ABSTRACT

We present an in-depth analysis of the "quantum first detection problem," in other

words, quantum renewal equation (QRE) [1] and how it relates to the basic postulates

of quantum existence in this thesis. It shows how the Schrödinger equation and

projective measurement postulate a guide to the solution of the problem and present

equations that describe the system’s behavior. The text highlights the surprising

features of the problem for closed systems and the sensitivity of the problem to the

sampling rate. It also notes that the probability of being eventually detected can be

less than unity for finite-sized systems.

Keywords: Quantum Renewal Equation, Schrödinger Equation, Quantum Postulates.
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ÖZ

Bu tez, kuantum ilk saptama probleminin (kuantum yenileme denklemi)

derinlemesine bir analizini ve bunun kuantum gerçekliğinin temel varsayımlarıyla

nasıl bir ilişkisi olduğunu sunar. Schrödinger denklemi ve izdüşümsel ölçüm

varsayımının sorunun çözümüne nasıl yol açtığını ve sistemin davranışını tanımlayan

denklemleri nasıl sunduğunu gösterir. Kapalı sistemler için problemin şaşırtıcı

özelliklerini ve problemin ölçüm hızına olan hassasiyetini vurgulamaktadır. Ayrıca,

nihai olarak tespit edilme olasılığının, belirli boyutta sistemler için birim sayıdan daha

az olabileceğini de not eder.

Anahtar Kelimeler: Kuantum, Kuantum İlk Saptama Problemi, Schrödinger

Denklemi.
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... Dedicated to

As I get older, I realize being wrong isn’t a bad thing like they teach you in school. It

is an opportunity to learn something.

Richard Feynman
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Chapter 1

INTRODUCTION

In Quantum mechanics, the conduct of consequence and energy at the atomic and

sub-atomic statuses are represented. One of its fundamental precepts is that the

momentum and position of a quantum particle generally cannot be calculated

simultaneously with incidental exactness. This principle, known as the Heisenberg

uncertainty principle, puts a fundamental limit on the ability to track the motion of a

quantum particle. That being said, quantum computers can be used to measure the

state of quantum particles and, in some cases, track their movement probabilistically.

Quantum computing can leverage the precepts of quantum mechanics to manipulate

and control quantum systems so that the movement of a quantum particle can be

tracked to some period. For example, quantum algorithms such as quantum state

tomography, quantum process tomography, and error modification can be used to

reconstruct the state of a quantum particle and track its evolution over time.

Additionally, quantum machine learning techniques can be used to predict the motion

of a quantum particle from a set of observations. Developing techniques for tracking

the motion of quantum particles is an active area of research, and new methods and

techniques will likely be developed as the field of quantum computing continues to

advance. In summary, while it is impossible to track a quantum particle’s motion with

arbitrarily high precision, quantum computers can be used to measure the state of a

quantum particle and track its motion in a probabilistic way. A quantum random walk

is a quantum algorithm that affects the spontaneous motion of a quantum particle. It is
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a divergence of the classical random walk, a mathematical model of a random process

where a particle moves in a specific direction with a certain probability at each step.

In a quantum random walk, a quantum particle can exist in multiple states

simultaneously, known as superposition. The principle of superposition tells us that

before an actual measurement is conducted, the system is accepted to be in all

allowed states with a certain probability. The wave function collapses to one of its

possible states in the measurement. It stays there with a probability of one until a

disorder. Due to the quantum nature of the quantum random walk, all possible paths

on a graph are present; therefore, with one single step of the calculation, all paths are

incorporated. Additionally, if the particles are entangled, the calculation’s complexity

may also be decreased. Therefore, the computational complexity of the quantum walk

may be significantly lower than its classical counterpart. For example, quantum

random walk algorithms can solve specific problems in graph theory, such as

discovering the quickest route between two nodes of the graph, and investigation

difficulties, like Grover’s probe algorithm. QWR is a subject of active research, and

new developments are being made in the field. For example, new variations of QW

algorithms have been proposed, such as continuous-time and open QW. In summary,

QRW is a variation of the CRW that impersonates the spontaneous activity of a

quantum particle. A most important feature is that the particle can exist in multiple

forms simultaneously, known as superposition, and its motion is represented by the

time evolution of its probability distribution. This feature allows quantum random

walk algorithms to solve specific problems faster than classical algorithms.

The investigation of QW is a vital research zone with many potential applications. In

computer science, it is relevant for designing quantum algorithms quicker than their

classical partners, particularly in searching, optimization, and machine learning. In

2



quantum information science, it allows the development of methods for testing the

"quantumness" of appearing technologies for creating QC and sporting quantum

communication protocols, quantum cryptography, and quantum error modification

[3]. In physics and chemistry, it can be used to study the dynamics of quantum

systems, such as quantum walks on lattices and quantum walks in continuous space,

and to simulate the dynamics of chemical reactions and understand the behavior of

quantum systems at the molecular level.

The classical RW, also known as the straightforward RW, is a well-established concept

in probability theory and has been successfully used to develop classical algorithms.

On the other hand, QW is the quantum mechanical counterpart of classical RW and has

emerged as an effective tool for generating QA. They have been conducted to form a

ubiquitous example of QC and evolved into a substantial investigation area with many

open problems.

The critical properties of QW are strongly influenced by quantum entanglement, an

essential model in QM that represents the correlation between two or more quantum

systems [3]. That constructs QW as a helpful mechanism for analyzing the effects of

quantum entanglement and its possible applications in QC and transmission.

Additionally, QW can sport a comprehensive spectrum of physical systems, such as

QT in condensed matter physics and the simulation of quantum chemical reactions.

The representation "quantum random walk" was foremost used by R. P. Feynman [4]

in a seminal assignment on quantum mechanical computers, where he proposed that it

could be defined as a continuous QW. Nevertheless, that was not until 1993, when a

report by Aharonov [5] was publicized, that the notion of QW as a particular subject
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from CQW was established.

One of the critical studies of Konno [6] suggested solid mathematical relationships

between correlated QW and using the PQRS matrix technique. This technique has

been used to demonstrate a more profound acquaintance of the connection between

classical and QW and investigate QW’s potential applications in computer science.

In summary, the concept of QW as a particular subject from CRW was founded in

1993 by Aharonov. Since then, the relations between CRW and QW and the utility

of QW in computer science have evolved into new and novel investigation locations.

Konno’s study on the PQRS matrix method has significantly contributed to this field,

delivering a more in-depth knowledge of the connection between classical and QW

and investigating the potential applications of QW in computer science.

Two QW samples have been proposed to comprehend the conduct of a QM system that

can move from one position to another. The most prominent, known as discrete-time

QW, consists of two QM systems, a walker and a coin, and a development operator

that can only be applied to both techniques in discrete time steps. The mathematical

structure of this model is based on evolution via a unitary operator. In other words,

the system’s state at time t2 is given by the unitary operator involved to the state of the

system at time t1.

Another model, called continuous QW, consists of a walker and a system development

(Hamiltonian) operator that can be applied without timing limitations, representing

that the walker can drive any time. The mathematical form of this example is based on

transition via the Schrodinger equation.
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Both discrete and continuous QW representatives have been performed on discrete

graphs, mostly due to the widespread use of graphs in computer science. The

consequence of quantum algorithms established on QW has been a high-priority

movement in this field.

Ambainis et al. represented two comprehensive concepts for analyzing QRW[3]. One

is the path-integral technique, and the other is the Schrödinger method. Both

approaches have benefits, and the preferred approach will depend on the problem

being studied.

Discrete-time quantum random walks (DTQRW) are quantum mechanical systems

that are used to generalize discrete classical Markov chains in quantum algorithms.

They are represented by a sequence of unitary processes, each with a non-zero

evolution amplitude exclusively between graph nodes. Their resemblance of DTQRW

to classical Markov chains is a powerful reason for further research into this topic.

Furthermore, the discrete qualities of DTQRW permit using robust mathematical

instruments from discrete mathematics and computer science, making them versatile

tools for studying quantum algorithms.

DTQRW has been applied to a comprehensive spectrum of problems, from inventing

new quantum algorithms to analyzing the dynamics of quantum systems. For

example, they have been used to develop faster and more efficient quantum algorithms

for searching, optimization, and machine learning, as well as for modeling quantum

communication protocols, quantum cryptography, and quantum error modification.

The study of DTQRW is an active area of research with many open problems and
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potential applications [7]. The ability to design and control DTQRW has important

implications for developing quantum technologies such as quantum computers,

quantum communication networks, and quantum simulators.

Discrete-time QW on a sequence is a robust mechanism for comprehending QMS and

their behavior. Spilling the quantum evolution equation into Markovian and

interference terms makes it possible to analyze these walks in great detail. This

separation illustrates how the coherence of the quantum evolution affects the variance

of the quantum walker’s position over time.

It has been shown that the quadratic increase in the conflict of the quantum walker’s

position with time directly results from the quantum evolution’s coherence. In

discrepancy to CRW, where the development is decoherent, and the conflict increases

linearly with time. This consequence highlights the essential disparity between

quantum and classical systems and the essence of coherence in quantum systems.

This thesis [8] on discrete-time QW on a line supplies a more in-depth interpretation

of the parcels of QMS and their behavior. It also has important implications for

developing quantum technologies such as quantum computers, quantum

communication networks, and quantum simulators. The capacity to control and

manipulate quantum systems’ coherence is crucial for designing and implementing

these technologies.

The earliest quantum algorithms based on QW have been informed and have

demonstrated impressive speedup approximated to their classical counterparts. These

algorithms are based on the indication of a particle inhabiting the set of integers. A
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CRW on the line illustrates it. In a CRW, at each time step, the particle carries one

unit to the left with possibility p or one unit to the right with probability q = 1� p.

Various steps’ demands are separate from one another.

CRW can be further classified into continuous time and discrete time RW [6][9].

CTRW affect the probability of completing a move per time unit, while discrete time

RW interest represents time-steps.

The quantum interpretation of a discrete-time RW on a ring differs from its classical

replica in several methods. In the quantum version, the walker described a quantum

state, which allows for superposition and entanglement. This means that a quantum

walker can exist in multiple locations simultaneously, and its state can be correlated

with other quantum systems.

Compared to classical random walks, the CTQW has provided exponential growth in

quickness in graph propagation. The ability of the walker to exist in multiple locations

simultaneously and the possibility of quantum interference between different paths.

This allows the walker to explore a more significant portion of the graph in less time.

The DTQW is also critical in accelerating a quantum algorithm design for spatial

searching [2]. Because the walker can exist in multiple locations simultaneously, the

quantum interference between different paths can help the walker encounter the target

faster than a classical random walk.

Fig. 1.1 A decision tree is a type of algorithm used in machine learning to classify data

into different categories. In the context of quantum random walk, it is used to analyze
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Figure 1.1: This is the decision tree algorithm to show the time steps for a
QW [2].

the behavior of a quantum system as it evolves over time.

In a QRW, a quantum particle is placed in a superposition state. Furthermore, it is

made to develop according to a unitary operator. At the walk’s individual step,

proportions are made to determine the particle’s position. Finally, the determination

tree algorithm is used to analyze the sequence of measurable results and to classify

the particle’s position into other categories. A decision tree performs by recursively

partitioning the data into subsets established on the values of specific components.

The algorithm begins with a single node representing the entire dataset and then

divides it into smaller subsets founded on the value of a chosen part. Each of these

subsets is then split in the same way, creating a tree-like structure with branches

describing the various subsets of the data. Each tree leaf node describes a final

decision or a data classification. In the context of QRW, the decision tree algorithm

can be used to investigate the sequence of measurement results and classify the

particle’s position into different categories. In addition, the decision tree algorithm

can also be used to determine routines in the data and to make predictions about

future dimensions established on the sequence of previous dimensions. It is worth

noting that the Decision Tree method is a classical machine learning method, and it
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does not benefit from the system’s quantum nature. Therefore, there are more suitable

manners for analyzing a quantum system’s behavior, and other methods, such as

quantum machine learning algorithms, are more suitable. Suppose a person stood at

the beginning of a line, maintaining a coin. They flip the coin, and if it comes up

heads, they move to the right; if it comes up tails, they move to the left. They then

repeat the procedure, flipping the coin and making movements based on the outcome

[10]. After N steps, the probability is PN(d), of being in position d is

PN(d) =
1

2N

0

B@
N

d +N

2

1

CA

Nd -4 -3 -2 -1 0 1 2 3 4

0 1

1 1/2 0 1/2

2 1/4 0 1/2 0 1/4

3 1/8 0 3/8 0 3/8 0 1/8

4 1/16 0 4/16 0 6/16 0 4/16 0 1/16

Consider the quantum version of the walk on a line. The first change we can make

is to swap out the coin for a qubit. In this paper, the two levels of the qubit will

be represented by the states |#i and |"irather than |0i and |1i, forming a complete

orthonormal set. By application of the Hadamard operator

Ĥ =
1p
2
(|"ih"|+ |"ih#|� |#ih"|+ |#ih#|) = 1p

2

0

B@
1 1

1 �1

1

CA

on the states |"i and |#i gives us the so-called Hadamard states
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Ĥ |"i= 1p
2
(|"ih"|+ |"ih#|+ |#ih"|� |#ih#|) |"i= 1p

2
(|"i� |#i) = |�i , (1.1)

Ĥ |#i= 1p
2
(|"ih"|+ |"ih#|+ |#ih"|� |#ih#|) |#i= 1p

2
(|"i+ |#i) = |+i . (1.2)

The states {|+i , |�i} form a complete orthonormal set. [10]

We would get the classical walk described above if we measured the qubit and

stepped left or right, relying on the outcome. Rather than someone holding a coin,

consider a particle whose movement is limited to one dimension. Now, we consider

the particle a quantum system and perform the quantum walk as demonstrated below.

We involve the Hadamard operation during each iteration, pursued by the operation

that steps right if the qubit is down and left if the qubit is up. So, we employ the

operator

Û = e
ip̂ŝzĤ

where ŝz is the Pauli-z operator [10] operating on the qubit and p̂ is the momentum

operator of the particle confined to one dimension. As a result, the system’s state after

the N steps is

|yNi= (eip̂ŝz)N |y0i (1.3)
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Chapter 2

1D QUANTUM WALK

2.1 First Detection Probability

The first detection wave function, also known as the first path wave function, is an

essential notion in investigating QRW. It represents the probability amplitude of the

system for the first time a quantum walker is detected at a specific location.

The first detection wave function is crucial because it allows us to study the quantum

walk’s temporal conduct and the QW’s effects. For example, it can be used to calculate

the probability and expected time of first detection at a specific location, which can be

used to understand the sensitivity of the QW to initial conditions and measurement

parameters.

Similarly, the first detection wave function can be used to investigate the statistical

properties of QRW, such as the probability distribution of the QW’s appointment, the

position’s contention, and the survival probability of the walker in the system. In

addition, these quantities can be used to understand the differences between quantum

and CRW, such as the emergence of interference patterns, the suppression of diffusive

conduct, and the presence of the Zeno effect.

However, it can also be used to study the localization properties of the quantum

walker’s probability of trapping or the required behavior of the QW. These

developments can be used to comprehend the essential difference between quantum

11



and CRW and the potential application of QRW in quantum computing, quantum

communication, and quantum simulation.

2.2 Discrete Time Quantum Walk

The discrete-time QW needs a Hamiltonian for the particle. Then, after applying a

development operator, we can make calculations and even measures to find

probabilities for detecting the particle in a given space.

The evolution of the state of a particle is described through the time-dependent

Schrödinger equation:

ih̄∂t |yi= H |yi

with
|y(t = 0)i] |y(0i .

as the initial condition.

Assuming the resulting eigenstates are elements of the complete set of discrete states

X = {|xi},

where according to the tight-binding approach, only changes to the next neighbors are

allowed, i.e. |xi ! |x+1i and |xi ! |x�1i.

The time-independent tight-binding Hamiltonian governing the next neighbor

approach yields to

H = g Â
x2X

|xihx+1|+ |x+1ihx| .

This Hamiltonian describes the motion on a one-dimensional discrete path. In general,

12



the size of the set X is infinite. Employing periodic boundary conditions,

|ni ! |0i

reduces the size of the set to n. In the special case for n = 6, which can be arranged in

form of a hexagonal ring, the set X reduces to

X = {|0i , |1i , |2i , |3i , |4i , |5i} .

|y(0)i = |x0i defines that initially particle is detected at lattice in the state |x0i.

Measurement on the subset is done after passing the time interval Dt = t at distinct

times, i.e. at

t,t+Dt, ...,t+(n�1)Dt.

The first attempt to detect the state of the system is done at the times t and

t+Dt[1][11][12] These measurements may have two outcomes, either the detected

state |xi is element of the the set of discrete states X or not, i.e.

x 2 X or x /2 X

Let us first consider the measurement at t = t, by approaching from the left, the wave

function becomes

lim
e!0

|y(t+ e)i= Û(t) |y(0)i , (2.1)

with Û(t) being the wellknown time-evolution operator in Quantum Mechanics.

Û(t) = exp
⇢

iHt

h̄

�
.

The time evolution operator [1] plays a prominent role in a QRW. It represents how the

state of a quantum system transforms over time according to the Schrödinger equation.

The time evolution operator is unitary, meaning that it conserves the state vector’s

normalization and the wave function’s probability understanding. In the case of QRW,
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the time evolution operator is used to evolve the system’s initial state at time t=0 to the

system’s state at a later time t. This evolution of the system’s Hamiltonian represents

the system’s energy levels and changes. The time evolution operator can be used to

calculate the probability of discovering the QW in a specific position at a given time

and the typical values of various observables, such as position and momentum. In

addition, the time evolution operator can be used to analyze the temporal behavior of

the QW , such as the probability distribution and the variance of the position of the

QW. These quantities can be used to understand the contrasts between quantum and

classical RW, such as the emergence of interference patterns and the suppression of

diffusive behavior in QRW.

Probability to find the particle in subspace X at time t is

P1 = lim
e!0 Â

x2X

|hx|y(t� e)i|2 [1] (2.2)

The probability of detecting the particle at the time t f = t is P1, wheras the probability

of not detecting the particle at t f = t is evidently 1�P1. If the particle is not detected,

the time-evolution will resume, otherwise it will stop, as the wave function collapses

to a state |xi 2 X . Any trial of detecting the particle at later time will fail, i.e. the

probability will be identical to zero, which can be represented by the so-called null

state.

A measurement at a later time can be linked as following

lim
e!0

|y(t+ e)i= lim
e!0

N

 
1� Â

x2X

|xihx|
!
|y(t� e)i (2.3)

The measurement of the particle is conducted using the principle of projective
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measurement. For the projective measurement, we need the projection operator.

P̂ = Â
x2X

|xihx| .

So,

lim
e!0

|y(t+ e)i= lim
e!0

N(1� P̂ ) |y(t� e)i

Probability of finding the particle at the second measurement becomes:

P2 = lim
e!0 Â

x2X

��hx|Û(t) |y(t+ e)i
��2

P2 = Â
x2X

����hx|Û(t) 1p
1�P1

(1� P̂ ) |y(0)i
����
2

Probability of finding the particle at the third measurement:

P3 = lim
e!0 Â

x2X

��hx|Û(t) |y(2t+ e)i
��2

|y(2t+ e)i= 1� P̂p
1�P2

��y(2t�)
↵
=

1� P̂p
1�P2

Û(t) |t+ ei= 1� P̂p
1�P2

P3 = Â
x2X

�����hx|Û(t) 1p
(1�P1)(1�P2)

[(1� P̂ )Û(t)]2 |y(0)i

�����

2

Therefore we can measure the probability to find the particle at any given point of state

by [11]:

Pn =
Âx2X

��� hx | Û(t)(1 � P̂ )n�1Û(t) | y(0)i
���
2

(1 �P1)(1 �P2) · · · (1 �Pn
�1)

(2.4)
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First detection wave function can be described as [1]:

|qni= Û(t)[(1� P̂ )Û(t)]n�1 |y(0)i (2.5)

|q1i= Û(t) |y(0)i

|qni= [(1� P̂ )Û(t)]n�1 |q1i (2.6)

Pn =
hqn| P̂ |qni

’n�1
j=1(1�Pj)

(2.7)

First detection on the n
th measurement probability is Fn. Detection and not detection

are determined by coin tossing concept using a uniform random number generator

(discrete time steps). After t �2t we toss a coin and if the particle is not detected we

calculate P2 at t = 2t then we toss a coin again, and if the particle is not detected we

calculate P3.

Fn = (1�P1)(1�P2)...(1�Pn �1)Pn (2.8)

Fn =
n�1

’
j=1

(1�Pj)
hqn| P̂ |qni

’n�1
j=1(1�Pj)

(2.9)

Fn = hqn| P̂ |qni (2.10)

Sn = 1� Â
n=1

Fn

is the probability of not detecting the particle after n measurements (survival

probability).

2.3 First  Detection Amplitude

In this part, the time problem will be solved according to only one detection site (i.e.

applying measurement only at one point). Single detection at site 0, labelled x = 0,

then the projection operator is P̂ = |0ih0|

16



Amplitude at first detection

cn = h0|qni ,Fn = | cn |2

c1 = h0|q1i= h0|Û(t) |y(0)i

c2 = h0|q2i= h0|Û(t)(1� P̂ )Û(t) |y(0)i

= h0|U(2t) |y(0)i� Â
x2X

h0|Û(t) |xi
⌦
x

��y(t�)
↵

... =
...

in this case as P̂ = |0ih0| only

⌦
x

��y(t�)
↵
= h0|Û(t) |y(0)i= c1 (2.11)

c2 = h0|U(2t) |y(0)i�c1 h0|Û(t) |0i (2.12)

c3 = h0|q3i= h0|Û(t)[(1� P̂ )Û(t)]2 |y(0)i (2.13)

... =
...

cn = h0|U(nt) |y(0)i�
n�1

Â
j=1

c j h(|0)Û((n� j)t) |0i (2.14)

proof by induction is easily carried out. is the QRE [1]. The quantum first-detection

problem, also known as the QRE, is a concept in QM that represents a quantum

system’s behavior when it is constantly measured. Other than classical systems,

which follow a deterministic behavior, quantum systems can exhibit random and

probabilistic behavior. QRW represents how the probability of detecting a typical

outcome changes over time as more measurements are taken. The equation considers

the system’s quantum state, the proportions operators, and the time between

proportions. The first part of the equation (2.12) is the probability amplitude of the

particle being at the origin at time nt in the absence of measurement. The second part

is the particle’s probability amplitude to return to the source in the time interval

17



( jt,nt). If we assume that the initial condition is |y(0)i= |0i and use the fact that

Ûn = Û(nt)

Û(0) = I) c1 = h0|Û(t) |0i= 1

Now we can calculate the first detection amplitude for any step as follows:

c1 = h0|Û(t) |0i= 1 (2.15)

c2 = h0|Û2 |0i�h0|Û1 |0i2 (2.16)

... (2.17)

) cn =
n

Â
i=1

Â
m1,m2,...,mi

(�1)i+1 h0|Ûmi |0i ...h0|Ûmi |0i (2.18)

n tuple of positive integers [m1,m2, ...,mi] satisfying m1 +m2 + ...+mi = n

n = 5, i = 1 ) 5

GF is simply the discrete Laplace transform of cn [1][13].

ĉ(z) =
•

Â
n=1

z
ncn (2.19)

ĉ(z) =
•

Â
n=1

h0|znÛn |y(0)i�
•

Â
n=0

n=1

Â
j=1

c jz
j h0|zn� jÛn� j |0i (2.20)

Û(z) =
•

Â
n=1

z
nÛn =

•

Â
n=1

e

�iHnt
h̄ z

n =
1

1� ze

�iHt
h̄

�1 (2.21)

1

1� ze

�iHt
h̄

�1 =
1�1+ ze

�iHt
h̄

1� ze

�iHt
h̄

=
ze

�iHt
h̄

1� ze

�iHt
h̄

|qni= (Û(t)(1� P̂ )n�1Û(t) |y(0)i (2.22)
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If we combine the GF of cn and the first detection wave function we can get GF for

the first detection wave amplitude which is going to allow us to include Hamiltonian

of the particle in the measurement.

|qni= Û(nt) |y(0)i�
n�1

Â
k=1

Ûn�kP̂ |qki (2.23)

|qn+1i= Û(t)(1� P̂ ) |qni= Û((n+1)t) |y(0)i�
n�1

Â
k=1

Ûn�k+1P̂ |qki (2.24)

|q(z)i=
•

Â
n=1

z
n |qni=

•

Â
n=1

z
n[Ûn(t) |y(0)i�

n�1

Â
k=1

Ûn�kP̂ |qki] (2.25)

|q(z)i= Û(z) |y(0)i�
•

Â
n=1

n�1

Â
k=1

z
nÛn�k(Û(1� P̂ ))k�1Û |y(0)i (2.26)

It is not easy to figure out a way to measure on an infinite line mathematically.

Therefore we created an infinite environment by putting the particle on a closed ring

with discrete steps. In order to have measurements on the ring we need to focus on

the following.

Relationships between c(z) and cn,S•,and,hni

cn =
1

(n!)
d

n

dzn
ĉ(z)|z=0 or cn =

1
2pi

˛
C

ĉ(z)z�n�1
dz (2.27)

where C is anticlockwise path including origin and also the radius of ĉ(z). We can also

relate the measurement probability to the ĉ(z) by

1�S• =
•

Â
n=1

Fn =
•

Â
n=1

|cn|2 (2.28)

=
1

2p

ˆ 2p

0
|ĉ(eiq)|2dq (2.29)

Similarly,
hni=

•

Â
n=1

Fn =
1

2p

ˆ 2p

0
[ĉ(eiq)]⇤(�i)ĉ(eiq)dq (2.30)
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[14] This is the main equation we are going to use for probability calculation of the

measurements.

2.4 Hexagonal Ring Model

Figure 2.1: Hexagonal Ring for QW model Ref. [1]

This is the model of a hexagonal (benzene) ring. We perform measurements on site

labelled |0i, which we assume initial position, with variety of initial conditions

depending on the Hamiltonian.

First Detection (1,eiqk ,ei2qk ,ei3qk ,ei4qk ,ei5qk)/
p

6)T with

qk =
p
3

k

Hence, the coefficients |Ck|2 = |hEk|0i |2 = 1/6, reflects the hexagonal structure of the

problem [1].

When t ! 0exp{�iHt}= 1 and we can simplify evolution operator to Û(z) = z/(1�

z) using
lim
t!0

c(z) = zh0|y(0)i
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This equation allows us to find the probability amplitude of finding the particle at the

origin initially, i.e. at t = 0.

Using 2.21 to find a time-independent Hamiltonian

hEm|Û(z) |Eii= [z�1 exp{iEmt}�1]�1dm j

the evolution operator is diagonal in the energy representation. |Eii is a stationary

eigenstate of the Hamiltonian H for the eigenenergy Ei. Expanding |0i = Âk Ck |Eki

where Ck = hEk|0i. Including the Hamiltonian in the GF (see chapter 4) can be done

by replacing the time evolution operator Û(t) in the GF with the time-dependent

Schrödinger equation, which describes the time evolution of the system under the

Hamiltonian.
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Chapter 3

MATRIX APPROACH

Two different techniques can guide us to the last result, which is the average

probability of detection. The first one is the matrix approach. The transition of the

matrix will analyze the probability of the detection. One state to another by providing

initial conditions. First of we need to set a matric for a network.

Connectivity Matrix for a Network of N nodes [15]

Ak j =

8
>>>>>>>><

>>>>>>>>:

f j for k = j

�1 if k and j are connected and Ak j = A jk

0 else

f j is the number of nodes eminating from node j

Properties of A:

1. A is real and symmetric

2. All eigenvalues of A are real and gn > 0

3. A has a single smallest eigenvalue

For a ring network of N nodes
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A =

0

BBBBBBBBBBBBBBBBB@

2 �1 0 ... �1

�1 2 �1 ... .

0 . . . .

. . . . 0

. . . . �1

�1 ... 0 �1 2

1

CCCCCCCCCCCCCCCCCA

Specifically for N = 6, A = 6⇤6 matrix

A =

0

BBBBBBBBBBBBBBBBB@

2 �1 0 0 0 �1

�1 2 �1 0 0 0

0 �1 2 �1 0 0

0 0 �1 2 �1 0

0 0 0 �1 2 �1

�1 0 0 0 �1 2

1

CCCCCCCCCCCCCCCCCA

in Dirac Notation:
A =

N

Â
l�1

2 |lihl|� |l �1ihl|� |l +1ihl|

Transition probability from j ! k is pk j(t) Initial condition hk| ji = pk j(0)+ eTk j =

dk j + eTk j where Tk j = hk|T | ji transfer matrix

Markovian process holds (assumption)

d

dt
Pk j(t) = Â

l

TklPk j(t)

If all bonds are equal g = gk j
T =�gA
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The formal solution of (c) is
Pk j(t) = hk|e�gAt | ji

with {|qni} being the eigenstates of A

A can be diagonalised
A = Â

n

|qnie
�gtlnIhqn|

Pk j(t) = Â
n

e
�gtln hk|qnihqn| ji

Eigenvalues for Benzene ring [15]:

l1 = 4,l2 = 3,l3 = 3,l4 = 1,l5 = 1,l6 = 0

~v1 =

0

BBBBBBBBBBBBBBBBB@

�1

1

�1

1

�1

1

1

CCCCCCCCCCCCCCCCCA

,~v2 =

0

BBBBBBBBBBBBBBBBB@

�1

0

1

�1

0

1

1

CCCCCCCCCCCCCCCCCA

,~v3 =

0

BBBBBBBBBBBBBBBBB@

�1

1

0

�1

1

0

1

CCCCCCCCCCCCCCCCCA

,~v4 =

0

BBBBBBBBBBBBBBBBB@

1

0

�1

�1

0

1

1

CCCCCCCCCCCCCCCCCA

,~v5 =

0

BBBBBBBBBBBBBBBBB@

�1

�1

0

1

1

0

1

CCCCCCCCCCCCCCCCCA

,~v6 =

0

BBBBBBBBBBBBBBBBB@

1

1

1

1

1

1

1

CCCCCCCCCCCCCCCCCA

Pk j(t)! 0 as ln > 0 except one l = 0

Only the eigenvector |q1i=
1
N

Âl |li survives [15]

Ground state dominance: in quantum mechanics the nodes span a Hilbert space {| ji}

is an orthonormal complete set where hk| ji= dk j, Â j | jih j|= I [15]

Dynamics is governed by a Hamiltonian
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d

dt
ak j(t) =�iÂ

l

Hklal j(t), with ak j(t) = hk|e�iHt | ji

Transition Probability

Pk j(t) = |ak j(t)|2

pk j(t) represents transition probability ak j(t) represents transition probability

amplitude

H =�T

This allows us to compare classical transport with Quantum mechanical transport on

the same network topology H = gA Eigenvalues of H are En, and eigenstates are |yni

Pk j(t) =

����Â
n

e
�iEnt hk|ynihyn| ji

����
2

long time average

ck j = lim
T!•

1
T

ˆ
T

0
dtpk j(t)

= lim
T!•

1
T

ˆ
T

0
dt Â

n

e
�iEnt hk|ynihyn| jiÂ

m

e
iEmt hyn|kih j|ymi

= lim
T!•

1
T

Â
n,m

e
(En�Em)t

i(En �Em)

�����

T

0

hk|ynihyn| jihym|kih j|ymi

= Â
n,m

lim
T!•

e
(En�Em)T �1
i(En �Em)T

hk|ynihyn| jihym|kih j|ymi

ck j = Â
n,m

dEn,Em
hk|ynihyn| jihym|kih j|ymi (3.1)

For a Discrete Ring we need to find the Bloch States
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Ring of N nodes ! |N +1i= |1i

Bloch States

|y0i=
1p
N

N

Â
j=1

e
iq j | ji

H |y0i= g
N

Â
l=1

(2 |lihl| ji� |l �1ihl| ji� |l +1ihl| ji) 1p
N

N

Â
j=1

e
iq j | ji

H |y0i=
gp
N

N

Â
l=1

N

Â
j=n

e
i jq(2 |lihl| ji� |l �1ihl| ji� |l +1ihl| ji)

=
gp
N

N

Â
l=1

N

Â
j=n

e
i jq(2 |li� |l �1idl j � |l +1idl j)

=
gp
N

N

Â
l=1

N

Â
j=n

e
i jq(2 | ji� | j�1i� | j+1i)

= g(2� (eiq + e
�iq))

gp
N

N

Â
l=1

N

Â
j=n

e
i jq | ji

= g(2�2cosq) gp
N

N

Â
l=1

N

Â
j=n

e
i jq | ji

| ji= gp
N

N

Â
l=1

N

Â
j=n

e
i jq |y0i

ak j(t) =
1
N

Â
q,q0

hyq|e�ikq
e
�iHt

e
i jq |yqi

=
1
N

Â
q

e
itEqe

�iq(k� j)

periodic boundary condition qn = 2pn/N

a jk(t) =
e
�2it

N
Â
n

e
i2t cos2pn/N

e
�i2pn(k� j)/N (3.2)
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Pjk(t) = a⇤
jk
(t)a jk(t)

=
e

2it

N
Â
n

e
�2it cos2pn/N

e
i2pn(k� j)/N ⇤ e

2it

N
Â
m

e
�2it cos2pm/N

e
i2pm(k� j)/N

Pjk =
1

N2 Â
n,m

exp
⇢

2it

✓
cos

2pm

N
� cos

2pn

N

◆�
exp
⇢

i
2p
N
(k� j)(n�m)

�
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Chapter 4

TIME EVOLUTION OF HAMILTONIAN

4.1 Next Neighbour Model

We will investigate the sum of all positions that quantum walker can be measured. So,

we need to calculate the Hamiltonian and the time evolution.

e
�x =

•

Â
n=0

(�x)n

n!

Hamiltonian of the walker is given as:

H = g(|xihx+1|+ |x+1ihx|) [15]

H
2 = g2 (|xihx+1|+ |x+1ihx|)(|xihx+1|+ |x+1ihx|)

= g2 |xihx+1|xi+ |xihx+1|x+1ihx|+ |x+1ihx|xihx+1|+ |x+1ihx|x+1ihx|

= g2 (|xihx|+ |x+1ihx+1|)

H
3 = g3 (|xihx+1|+ |x+1ihx|)

H
3 = g2

H

since H = g(|xihx+1|+ |x+1ihx|)

H
2n = g2n (|xihx|+ |x+1ihx+1|)

H
2n+1 = g2n+1 (|xihx+1|+ |x+1ihx|) = g2n

H

Therefore, time evolution can be shown as:
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e
�iHt/h̄ =

•

Â
n=0

iHt/h̄
4

h!
[15]

=
•

Â
n=0

(|xihx|+ |x+1ihx+1|)�it/h̄
2n

(2n)!
+ iH

�t/h̄
2n+1

(2n+1)!

= |xihx|+ |x+1ihx+1|
✓

cos
⇣tg

h̄

⌘
+

1
g

iH sin
⇣tg

h̄

⌘◆

4.2 New Time Evolution Model: Next Neighbour and Preserving

Position

This time Hamiltonian is changed into

H = g(|xihx+1|xihx|+ |x+1ihx|+ |x+1ihx+1|) ,

meaning the walker now has an option stay at the same site after one time step t.

H
2 = gH

H
3 = g2

H

H
n = gn�1

H

e
�iHt/h̄ =

•

Â
n=0

�iHt/h̄
n

n!
=

•

Â
n=0

�it/h̄
n

n!
gn�1

H

=
H

g

•

Â
n=0

�igt/h̄
n

n!

=
H

g
e
�igt/h̄ =

H

g

✓
cosgt/h̄� i

H

g
singt/h̄

◆
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Chapter 5

GENERATING FUNCTION APPROACH

5.1 First Detected Passage Time Problem

This chapter is the second approach, in which we are going to consider the GF and

use it together with the survival probability in order to be able to integrate over a ring.

That will help us calculate the average number of detection attempts performed on a

single site. After that, it will be approximated to some specific detection time values

to analyze the behavior of the particle on a ring system.

The GFs [1] are a robust mathematical tool used in various fields, including probability

theory, combinatorics, and physics. In the context of QRW, GFs are used to study the

walk’s statistical properties and simplify the system’s investigation.

The GF of a QRW is a complex-valued function that encodes the probability

amplitudes of the walker being in different positions at different times. By

investigating the effects of the GF, it is possible to understand the behavior of the QW

over time, such as the probability distribution, the variance of the position, and the

survival probability.
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ĉ(z) =
•

Â
n=1

h0|znÛn |y(0)i�
•

Â
n=1

n�1

Â
j=1

c jz
j h0|zn� jÛn� j |0i (5.1)

ĉ(z) = h0|Û(z) |y(0)i
1+ h0|znÛ(z) |0i

(5.2)

•

Â
n=1

h0|znÛn |y(0)i= h0|
•

Â
n=1

z
nÛn |y(0)i= h0|Û(z) |y(0)i (5.3)

ĉ(z) =
•

Â
n=1

cnz
n (5.4)

cn = h0|U(nt) |y(0)i�
n�1

Â
j=1

c j h(|0)U [(n� j)t] |0i (5.5)

Û(z) =
•

Â
n=1

z
nÛn (5.6)

[16]

ĉ(z) = h0|znÛn |y(0)i�
•

Â
n=1

n�1

Â
j=1

c jz
n h0|Ûn� j |0i

ĉ(z)+ h0|Û(z) |0i ĉ(z) = h0|Û(z) |y(0)i

ĉ(z) = h0|Û(z) |y(0)i
1+ h0|Û(z) |0i

(5.7)

[1]

Using GFs is that they allow to convert a problem involving a sequence of probability

amplitudes into an algebraic problem involving polynomials. This simplifies the

calculation of the statistical properties of the walk.

•
Â
n=1

n�1

Â
j=1

c jz
j h0| z

n
� jÛn

� j | 0i
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n = 2 c1zh0|zU |0i

n = 3 c1zh0|z2Û2 |0i+c2z
2 h0|zU |0i

n = 4 c1zh0|z3Û3 |0i+c2z
2 h0|zU |0i+c3z

3 h0|zU |0i

•

Â
n=1

c1zh0|znÛn |0i+
•

Â
n=1

c2z
2 h0|znÛn |0i+ ...+ ĉ(z)h0|Û(z) |0i

cn =
1
n!

d
n

dzn
ĉ(z) (5.8)

cn =
1

2pi

˛
C

ĉ(z)z�n�1
dz (5.9)

By studying the large-n limit of the GF, it is possible to understand the behavior of the

walk in the long-time limit, such as the emergence of interference patterns.

Adding the Hamiltonian in the GF allows analyzing how the Hamiltonian affects the

statistical properties of the walker, such as the probability distribution, the variance of

the position, and the survival probability. It can also be used to investigate the effects

of the energy levels and transitions on the walker’s behavior, such as the emergence

of interference patterns, the suppression of diffusive behavior, and the presence of the

Zeno effect [1] .

1�S• =
•

Â
n=1

Fn =
•

Â
n=1

|cN |2 =
•

Â
n=1

����
1

2pi

˛
C

ĉ(z)z�n�1
dz

����
2

r = 1 circle !C ! re
iq = e

iq
dz ! dq

1�S• =
•

Â
n=1

✓
1

2p

ˆ 2p

0
ĉ(z)eiq

dq
◆✓

1
2p

ˆ 2p

0
ĉ(z)eiq

dq
◆

=
1

2p

ˆ 2p

0

•

Â
n=1

cke
ikq

 
•

Â
l=1

cle
ikl

!⇤

dq

=
1

2p

ˆ 2p

0

���ĉ(eiq)
���
2

dq

32



ĉ(z) = z
4
H(

1
z
)/H(z)

It should be noted that this analysis is based on the Hamiltonian is the time-independent

and coherent of the system is long enough to keep the Hamiltonian’s effects.

H(z) = z
3(2cosgt+ cos2gt)� z

2(3+6cosgtcos2gt)+ z(4cosgt+5cos2gt)�3

ĉ(e�iq)c(e�iq) = 1 (5.10)

H(z) = az
3 +bz

2 + cz+d (5.11)

cn =
1

2pi

˛
c(z)z�n�1

dz (5.12)

g(q)�1� e
iq,g0(q) = ie

iq (5.13)

cn =
1

2pi

ˆ 2p

0
c(eiq)e�(n+1)iq

ie
iq

dq (5.14)

=
1

2pi

ˆ 2p

0
c(eiq)e�inq

dq (5.15)

=
1

2pi

ˆ 2p

0

e
4iq �

ae
�3iq +be

�2iq + ce
iq +d

�

ae3iq +be2iq + ceiq +d
e
�niq

dq (5.16)

(5.17)

The average number of detections hni in a QRW can be calculated using the survival

probability and the GF [1]. The survival probability is that the QW has not been

detected at a specific location after a specific number of steps.

One method to calculate the average number of detections is to use the following

connection [1]:
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hni=
•

Â
n=1

nFn =
1

2p

ˆ 2p

0

⇣
c(eiq)

⌘⇤✓
�i

∂
∂q

c(eiq)

◆
dq (5.18)

hni= 1
2p

ˆ 2p

0

e
�i4q

H(eiq)H(e�iq)

H(e�iq)

∂
∂q

e
4iq

H(e�iq)

H(eiq)
dq (5.19)

=
1

2p
4i

ˆ 2p

0

✓
1+

H(eiq)

H(e�iq)

∂
∂q

H(e�iq)

H(eiq)

◆
(5.20)

= 4+
1

2p

ˆ 2p

0

∂
∂q

ln
H(e�iq)

H(eiq)
dq (5.21)

= 4+
1

2p

ˆ 2p

0

∂
∂q

⇣
lnH(e�iq)� lnH(eiq)

⌘
dq (5.22)

= 4� 1
pi

ˆ 2p

0

∂
∂q

ln
⇣

H(eiq)
⌘

dq (5.23)

H(z) = a(z� z1)(z� z2)(z� z3) = a

3

’
j=1

(z� z j) (5.24)

lnH(z) =
3

Â
j=1

ln(z� z j)+ lna (5.25)

= 4� 1
pi

3

Â
j=1

ˆ 2p

0

∂
∂q

ln
⇣

e
iq � z j

⌘
dq (5.26)

= 4� 1
pi

3

Â
j=1

ln
⇣

e
iq � z j

⌘�����

2p

0

(5.27)

gt = p/2 (5.28)

H(z) = (2cos(p/2)+ cosp)z3 � (3+6cos(p/2)cosp)z2 +(4cos(p/2)+5cosp)z�3

(5.29)

=�2z
3 �3z

2 �5z�3 (5.30)

= a(z+1)(z+1+ i

p
2)(z+1� i

p
2) (5.31)

Z1 =�1 , Z2 =�1� i

p
2 , Z3 = 1+ i

p
2

Combining H(z) and hni

hni= 4� 1
ip

✓
ln
⇣

e
iq + e

2pi

⌘
+ ln

✓
e

iq +2(
1
2
+

1p
2

i)

◆◆

Here it should be noted that besides the exceptional sampling times hni should be equal

to 4. Using equation (4.24) we can show that
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hni= 4� 1
ip

3

Â
j=1

ˆ 2p

0

∂
∂q

ln
⇣

e
iq � z j

⌘
dq

writing simply

hni= 4�2a�b

where a(orb) is number of zeros on the unit circle of H(z) for z. For exceptional

sampling times we find a > 0,

a =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

1, gt = 1
2

p+ kp

2, gt = 2
3

p+2kp,p+2kp,gt = 4
3

p+2kp

3, gt = 2kp

0, otherwise.

In order to estimate the average number of detection attempts, one can first calculate the

GF, then calculate the probability of detection at each site and sum these probabilities

over all sites. The calculation depends on the assumption that GF has been calculated

for a large enough number of steps and that the initial state of the walker is normalized.

c(z) = f (z)

1+ f (z)

c
0
(z) =

f
0
(z)(1+ f (z))� f (z) f

0
(z)

(1+ f (z))2 =
f
0
(z)

(1+ f (z))2

f (z) =
1
3

0

BB@Re

0

BB@
1

e
2igt

z
�1

1

CCA+2Re

0

BB@
1

e
igt

z
�1

1

CCA

1

CCA

Then the function needs to be simplified in order to obtain an equation that can easily
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be integrated over and over again (for example 1000 times) to get the average number

of detections.

let x = gt
f (z) =

1
3

Re


z

e2ix � z
+

2z

eix� z

�

=
1
3

Re


z(e�2ix � z)

(e2ix � z)(e�2ix � z)
+

2z(e�ix � z)

(eix� z)(e�ix � z)

�

=
1
3

Re


z(cos2x� isin2x� z)

1� z(e2ix + e�2ix)+ z2 +
2z(cosx� isinx� z)

1� z(eix + e�ix)+ z2

�

=
1
3


z(cosx� z)

1�2zcos2x+ z2 +
2z(cosx� z)

1�2zcosx+ z2

�

Introducing a new function g(l,z) = z(coslx� z)

1�2zcoslx+ z2

Now we obtain f (z) =
1
3
(g(2,z)+2g(1,z))

g(l,z)0 = (coslx�2z)(1�2zcoslx+ z
2)� z(coslx� z)(�2coslx+2z)

(1�2zcoslx+ z2)2

=
(coslx�2z)(1�2zcoslx+ z

2)+2z(coslx� z)2

(1� zcoslx+ z2)2

g(l,z) = z(coslx� z)

sin2 lx+(coslx� z)2
=

zc(z)
sin2 lx+c(z)2

g(l,z)0 = (c(z)+ zc0(z))(sin2 lx+c(z)2)� zc(z)2c(z)c0(z)

(sin2 lx+c(z)2)2

= c(z)sin2 lx+c(z)3 + zc0(z)sin2 lx� zc0(z)c(z)2

where c(0) = coslx, c0(0) =�1

g(l,0) = (coslx� z)(sin2 lx+ cos2 lx)�0
(sin2 lx+ cos2 lx)2

= coslx

f
0(z) =

1
3
(cos2x+2cosx)

f (0) = 0
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Now we are going to use the new functions created ( f (z) and g(l,z)) to run the

simulation on Mathematica and see the results for the detection attemps.
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Chapter 6

ANALYSIS AND RESULTS

ĉ(z, gt) =

1
3

0

BB@Re

2

6
64

1
exp(2igt)

z

� 1

3

7
75+2Re

2

66
4

1
exp(igt)

z

� 1

3

77
5

1

CCA

1+
1
3

0

BB@Re

2

664
1

exp(2igt)
z

� 1

3

775+2Re

2

664
1

exp(igt)
z

�1

3

775

1

CCA

(6.1)

We use this to calculate the integral in limit:

ĉ(n, gt) = N
1
n!

lim
z!0

✓
∂n

∂zn
c(z, gt)

◆
(6.2)

Remembering the survival probability S•, which will give 0 if we integrate (2.26) over

q, describes the behavior in the classical definition, meaning the walker will always

be detected at some point. However, this is not the point for the quantum counterpart.

Thus, we created a system that will measure at the same site (see figure ??) but differs

in the initial position. For example, if we take site |1i to start and measure at |0i,

we should perform this measurement for every site taken as initial position on full

periods, which will result in not detecting the particle at some points. That is the

expected scenario because, for a quantum particle, the survival probability does not

necessarily vanish when you take many measurements, i.e., n ! •. In order to get

rid of any issues, we set special measurement times, which we call the exceptional

sampling times gt = 0,p/2,2p/3,p, ....

As mentioned before, hni is some integer which is hni = 4 except for the sampling

times. The figure below shows how hni varies against gt during measurements.
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Figure 6.1: Average number of detection attemps on a benzene ring N=10

Fig. 6.1 The average number of detection attemps hni on benzene ring. As we can see

except for the sampling times, hni = 4. Only at points

gt = 0,p/2,2p/3,p,3p/2,4p/3,2p we have distinct spikes for hni being

hni= [1,3,2,2,2,3,1]. There is an interesting symmetry in the results.
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Figure 6.2: Average number of detection attemps on a benzene ring for N=100
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As we see in Fig. 6.2 increasing the number of detections, results in sharper spikes

giving more analytical results.

Looking at the graphs to investigate the QRW around a benzene ring, given that the

detection at the first site has the highest probability, while the probabilities at other

sites are equal, it could indicate several things:

1- Symmetry in the ring: One possible explanation for this outcome is that the

hexagonal ring has a high degree of symmetry, which leads to the probability of

detection being highest at the first site and the same for all other sites. That would

indicate that the structure of the ring, precisely the hexagonal shape, plays a

significant role in determining the probability of detection.

2 - Initial condition: Another possibility is that the initial condition of the walker is

chosen such that the highest probability of detection is at the first site. For example, if

the initial state of the walker is chosen to be localized at the first site, it would have a

higher probability of being detected at that site.

3 - The Zeno effect: The Zeno effect can also play a role in this result as the QW is

being continuously measured, and the measurement rate is high enough that the walker

may be "frozen" at the first site, resulting in a higher probability of detection there.
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Chapter 7

SUMMARY AND CONCLUSION

The quantum first-detection problem is an essential area of investigation that aims to

understand how the fundamental postulates of QM, such as the Schrödinger equation,

lead to the solution of the problem of detecting a QW for the first time. The QRE and

the Z-transforms equations give a relationship between the amplitude of first-detection

and the system’s wave function free of measurement. The problem of first detection can

be reduced to solving the Schrödinger equation and determining the energy spectrum

of the system.

The QRE shows behaviors that are different from classical systems. However,

similarities remain, such as the power-law decay of the first-passage probability

density function. In addition, the quantum problem also exhibits wealthy behaviors,

such as oscillations of the GF superimposed on the power-law decay, the Zeno effect,

and critical slowing down. These results are essential for understanding the sensitivity

of quantum systems to the sampling rate and initial conditions and the difference

between quantum and classical systems.

The sensitivity of quantum systems to the sampling rate and initial conditions is

crucial in practical scenarios where the coherence time of the system is limited. The

difference between quantum and classical systems should be considered when

designing quantum algorithms and protocols. The results of the quantum

first-detection problem could have potential applications in quantum computing,
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quantum communication, and quantum simulation. Further research on the quantum

first-detection problem could lead to a deeper understanding of quantum mechanics

and its implications on the physical world.

It’s also important to note that this conclusion is based on the assumption that the initial

state of the walker is normalized and the coherence time of the system is long enough

to maintain the Hamiltonian’s effects.

In summary, the quantum first-detection problem is a complex and essential area of

research that aims to understand how the fundamental postulates of quantum

mechanics lead to the solution of the QRE. The problem can be reduced to solving the

Schrödinger equation and determining the energy spectrum of the system. The results

of this problem exhibit wealthy behaviors that are very different from classical

systems, but some similarities remain. These outcomes are essential for

understanding the sensitivity of quantum systems to the sampling rate and initial

conditions and the difference between quantum and classical systems. The potential

applications of the results of this problem include quantum computing, quantum

communication, and quantum simulation, and further research could lead to a deeper

understanding of QM and its implications on the physical world.
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