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ABSTRACT

In this thesis we focus on the blending type bivariate operators. We institute a

modification of the blending type operators including four different parameters which

can be considered as a new class or a generalization of the operators defined in [4].

We also study properties of these new type of operators on both the standard

definition and Generalized Boolean sum case of them. More over we show the

compatibility of the Korovkin type approximation theorem for these new families. In

the last chapter some numerical results are given to analyze the behaviour of the

proposed operators while the parameters are being changed.

Keywords: Korovkin approximation theorem , Voronovskaja approximation theorem

, Mixed modulus of continuity, GBS operators.
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ÖZ

Bu tezde, blending tipi iki değişkenli operatörlere odaklanılır. Yeni bir sınıf veya

[4]’te tanımlanan operatörlerin bir genellemesi olarak kabul edilebilecek dört farklı

parametre içeren blending tipi operatörlerin bir uyarlaması kurulur. Ayrıca bu yeni tip

operatörlerin özellikleri hem standart tanımlarında hem de GBS durumlarında çalışır.

İlaveten, bu yeni aileler için Korovkin tipi yaklaşım teoreminin uyumluluğu gösterilir.

Son bölümde, parametreler değiştirildiğinde önerilen operatörlerin nasıl çalıştığını

analiz etmek için bazı sayısal sonuçlar verilmiştir.

Anahtar Kelimeler: Krovkin yaklaşım teoremi, Voronovskaja yaklaşım teoremi,

Karışık süreklilik modülü, GBS operatörleri.
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Chapter 1

INTRODUCTION

The most famous theorem for convergence of linear positive operators is due to the

Weierstrass , who introduced an important theorem named Weierstrass approximation

theorem. This theorem is the first magnificent evolution in approximation theory of

one real variable and played a basic role in the development of approximation theory.

Bernstein’s form began to be commonly used as a multifaceted approach for intuitively

geometric shapes creation and analysis. Furthermore, Bernstein had provided further

developments in mathematics. For instance, polynomials in the Bernstein basic theory

have better numerical stability, and recursive algorithms with less complexity order

providing a wide variety of applications in other related mathematics areas such as the

combination of Bernstein with C programmer (the power of computer) for machine a

shape in geometric design. The Bernstein polynomials were given in 1912, by Sergei

N. S. Bernstein and it is as follow,

Bn1(g;x1) =
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−ig(

i
n1

), (1.1)

for any g ∈ C[0,1], x1 ∈ [0,1] and n1 ∈ N. Bernstein operators constitute a powerful

tool allowing one to replace many inconvenient calculations performed for continuous

functions by more friendly calculations on approximating polynomials. For any

operators defined on the space of all continuous functions C[0,1], the following

family of polynomials introduced in [20] which is called Blending-type Bernstein

polynomials as,

1



Lα
t (h;x) =

t

∑
k=0

[
(1−α)

(
t−2
k−2

)
xk−1(1− x)t−k +(1−α)

(
t−2

k

)
xk(1− x)t−k−1

+α

(
t
k

)
xk(1− x)t−k

]
h(

k
t
), t ≥ 2.

(1.2)

where α ∈ [0,1]. It is clear that for the case α = 1 for Lα
t , reduces to the standard

Bernstein operators (1.1). The parameter α is called shape parameter of the operators

(1.2), which is defined on the interval [0,1]. The Blending-type operators (1.2) are a

new family of linear positive operators which have shape preserving properties. Using

modulus of continuity we are able to approximate the error of the operators (1.2) for

any t in natural number. It should be noticed that as α increases or better saying as it

approches to 1, it causes the error to be decreased. Both Bernstein operators and

blending type Bernstein operators are studied by different researchers and recently are

used in the papers [1], [2], [3], [4], [6], [10], [13], [17], [18] [19], [21], [25], [27],

[28], [30], [31], [32], [33], [34], [35], [36], [37], [41], [42] and [43] .

The below definition comes to the bivariate blending type Bernstein operators as a

bivariate type of the operators (1.2) as follows,

L(α1,α2)
n1,n2 (g;x1,x2) =

n1

∑
i=0

n2

∑
j=0

a(α1,α2)
n1,n2,i, j(x1,x2)g(

i
n1

,
j

n2
), (1.3)

where

a(α1,α2)
n1,n2,i, j(x1,x2) =

[(
n1−2

i

)
(1−α1)x1 +

(
n1−2
i−2

)
(1−α1)(1− x1)

+

(
n1

i

)
α1x1(1− x1)

]
xi−1

1 (1− x1)
n1−i−1

×

[(
n2−2

j

)
(1−α2)x2 +

(
n2−2
j−2

)
(1−α2)(1− x2)

+

(
n2

j

)
α2x2(1− x2)

]
x j−1

2 (1− x2)
n2− j−1,

2



where α1,α2 ∈ [0,1] are introduced and discussed in [4].

In the present thesis, a new family of blending-type Bernstein operators which

includes the operators (1.3) as a special case is introduced such that it is a

modification of the operators (1.3) consists of four parameters α1,α2,s1 and s2 as

follows,

for any bivariate continuous function h, positive integers s1,s2 and fixed real numbers

α1,α2 ∈ [0,1] we have the following,

T α1,α2,s1,s2
n1,n2

(h;x1,x2)=


∑

n1
i=0 ∑

n2
j=0 p(α1,α2,s1,s2)

n1,n2,i, j (x1,x2)h( i
n1
, j

n2
), n1,n2 ≥ max{s1,s2},

Bn1,n2(h;x1,x2), otherwise,
(1.4)

where

p(α1,α2,s1,s2)
n1,n2,i, j (x1,x2) = (1−α1)

[(
n1− s1

i− s1

)
xi−s1+1(1− x1)

n1−i

+

(
n1− s1

i

)
xi

1(1− x1)
n1−s1−i+1

]
+α1

(
n1

i

)
xi

1(1− x1)
n1−i

× (1−α2)

[(
n2− s2

j− s2

)
xi−s2+1

2 (1− x2)
n2− j

+

(
n2− s2

j

)
x j

2(1− x2)
n2−s2− j+1

]
+α2

(
n2

j

)
x j

2(1− x2)
n2− j,

where Bn1,n2(h;x1,x2) is the double Bernstein operators. So by different values of

s1,s2 the approximation of our operators will be changed, which means it is more

flexible and more applicable than the operators (1.3) .

In chaper 2 some definitions about positive linear operators, modulus of continuity

3



and some nessesary propositions and theorems, which will be used through out the

thesis, is given. Also Krovkin type approximation theorem about positive linear

operators with both degree n1 and (n1,n2) is studied.

In chapter 3 the importance of Bernstein operators and their roles to prove the

Weierstrass theorem is discussed. some propositions and theorems about Bernstein

operators, with both degrees n1 and (n1,n2), is written and some graphs for the given

functions related with both bivariate Bernstein operators and classic Bernstein

operatores are illustrated. We continued some propositions, lemmas and theorems for

the operators (1.2) and we demosterated some numerical results of them on the graph

for different values of α and the degree n1. Also we bring some usefull lemmas and

theorems about the operators (1.3) and we finish the chapter by some numerical

results for these blending type operators with the given functions and sketch them to

prove that how it is working by different values of parameters α1,α2 and the degrees

(n1,n2).

Through out the chapter 4 the proof of some lemmas and theorems related with the

operators (1.4) are given. Also the compatibility of Korovkin type approximation

theorem for the operators (1.4) can be seen.

Chapter 5 is about the approximation property of the operators (1.4). We define the

GBS case of our operators, using mixed modulus of continuity. Also we discussed

about the degree of approximation of the GBS case for the operators (1.4). At the end

of the chapter some numerical rusults are shown on the graph for different values of

the parameters α1,α2 and the degrees (n1,n2) for both GBS operators and the

operators (1.4).
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In chapter 6 we write our conclusion about the different type of the approximation to

show the logic behind the given definition and its approximation results.
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Chapter 2

POSITIVE LINEAR OPERATORS AND KOROVKIN

TYPE APPROXIMATION THEOREM

In the following chapter some basic definitions and properties related to the positive

linear operators, modulus of continuty and Korovkin-type approximation theorem are

given. For more information see [8], [23], [29] and [39].

2.1 Positive Linear Operators

The most constructive proofs of the Weierstrass theorem concerning the approximation

of continuous functions on a compact interval by polynomials use some sequences of

linear positive operators. Lets begin by constructing and studying a large class of such

sequences of approximation operators. An operator L, defined on a linear space of

functions V , is called linear if

L(a f1 +b f2) = aL( f1)+bL( f2),

where a,b ∈ R and f1, f2 ∈V , and it is called positive, if

L( f1)> 0,

for all f1 > 0, f1 ∈V .

Proposition 2.1: (see [29]) Let Q : X1 −→ X2, be linear positive operators, then

1. If f1, f2 ∈ X1 with f1 6 f2 then Q f1 6 Q f2.

2. For any f1 ∈ X1 we have |Q f1|6 Q| f1|.

6



Definition 2.1: (see [29]) Consider X1,X2 to be two normed linear spaces of real

functions such that X1 ⊆ X2 and let Q : X1→ X2. Then we can define a norm ‖Q‖ as

the following,

‖Q‖:= sup{‖Qh‖: h ∈ X1,‖Q‖= 1}= sup{‖Qh‖: h ∈ X1,0 < ‖h‖6 1}.

Remark 2.1: Consider the linear positive operators Q : C[x1,x2]→C[x1,x2]. Then Q

is continuous and also ‖Q‖= ‖Q(1)‖.

Theorem 2.1: (see [29]) Consider the linear positive operators Q :C[x1,x2]→C[x1,x2]

such that Q(1;x) = 1. For p1, p2 > 1,
1
p1

+
1
p2

= 1, f1, f2 ∈C[x1,x2] and x ∈ [x1,x2].

Then we have,

Q(| f1 f2|,x)6 (Q(| f1|p1,x))

1
p1 (Q(| f2|p2,x))

1
p2 . (2.1)

The equation (2.1) is called Hölder-type inequality for positive linear operators. It

should be mention that in the equation (2.1) if p1 = p2 = 2, then it is called Cauchy-

Schwarz inequality.

2.2 Modulus of Continuity

The application of the modulus of continuty for the linear positive operators is to

measure the degree of convergence toward the identity operator.

Definition 2.2: (see [23]) A modulus of continuity ω is called a modulus of continuity

for the function g : [0,1]−→ R if for all x1,x2 ∈ [0,1] we have,

|g(x1)−g(x2)|6 ω|(x1− x2)|,

where ω is a function defined as ω : [0,∞)−→ [0,∞).
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Proposition 2.2: (see [23]) By the definition of modulus of continuity the following

immediately holds:

1. ω(0) = 0.

2. ω(t) is non-decreasing.

3. ω(t) is semi- additive, that is

ω(t1 + t2)6 ω(t1)+ω(t2),

where ω(t) = ω( f ; t).

Definition 2.3: (see [23]) The following is the definition of the modulus of smoothness

of order t ,

ωt(g;η) := sup{|η t
hg(x)|0 6 h 6 η ,x,x+h ∈ [a,b]}.

Proposition 2.3: (see [23]) For the Definition 2.3 the following are hold,

1. ωt(g;0) = 0.

2. ωt(g; .) is a function on real numbers which is none-negative, continuous and

increasing.

3. ∀η > 0,ωt+1(g;η)6 2ωt(g;η).

4. ωt(g; .) is sub-additive.

5. If g ∈C1[x1,x2] then ωt+1(g;η)6 ηωt(g
′
;η),η > 0.

6. If g ∈Ct [x1,x2] then ωt 6 η tsupη∈[x1,x2]|g
(r)(η)|.

7. ∀η > 0 and n ∈ N, ωt(g;nη)6 nkωt(g;η).

8. If η > 0 is fixed, then ω(g; .) is a seminorm on C[x1,x2].

Let g(x1,x2) be a bivariate function which is defined on the set [0,1]× [0,1], then we

have the following definitions,
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Definition 2.4: (see [9]) The modulus of continuity ω2(g;η), for a bivariate function

g(x1,x2) can be defined as;

ω2(g;η) := sup√
(t−x1)2+(s−x2)2≤η

| f (t,s)− f (x1,x2)|,

where η > 0 and the supremum is taken on (t,s),(x1,x2) ∈ [0,1]× [0,1].

Proposition 2.4: (see [9]) The modulus of continuity ω2(g;η) satisfies the following

conditions.

(i) If 0 < η ≤ γ , then ω2(g;η)≤ ω2(g;γ).

(ii) The bivariate function g(x,y) on the compact set [0,1] × [0,1] is uniformly

continuous iff limη→0 ω2(g;η) = 0.

(iii) If η1 > 0, then ω2( f ;ηη1)≤ (1+η1)ω2(g;η).

In the following there is the definition of Partial modulus of continuities as;

ω2,x(g;η) := sup|x1−x2|≤η |g(x1,y)−g(x2,y)|. (2.2)

ω2,y(g;η) := sup|y1−y2|≤η |g(x,y1)−g(x,y2)|. (2.3)

The partial modulus of continuities satisfies the properties (i),(ii) and (iii) as well.

2.3 Korovkin-Type Approximation Theorem

A necessary and sufficient condition for the convergence of positive linear operators

is provided in [39] which is initiated by P.P. Korovkin and it mostly is known as the

Bohman-Korovkin theorem. After that, many other researchers has used this elegant

and simple result to extend Korovkin’s method to obtain some approximation results

related with positive linear operators. The present section is devoted to Korovkin type

approximation theorems for double sequences of functions .

Theorem 2.2: (Bohman-Korovkin Theorem)(see [39]) Let Ln1 be a sequence of
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positive linear operators such that Ln1 : C([x1,x2]) −→ C([x1,x2]) and let φ j = t j. If

lim
n1→∞

Ln1φ j = φ j, j = 0,1,2, (uniformly) on [x1,x2], then lim
n1→∞

Ln1g = g (uniformly) on

[x1,x2] for every g ∈ C([x1,x2]). by the Theorem 2.2 the monomials φ j = t j,

j ∈ {0,1,2} have a remarkable role on the space of continuous functions in the

approximation theory of linear positive operators. They are often called test functions.

Proposition 2.5: (see [22]) For the sequence of linear operators Ln1 and j ∈ N
⋃
{0}

we have,

Ln1

(
(φ1− x1)

j;x1
)
= Ln1(φi;x1)−

j−1

∑
k=0

(
j
k

)
x j−k

1 Ln1

(
(φ1− x1)

k;x1
)
.

Proof.
Ln1(φ j;x1) = Ln1

(
(φ1− x1 + x1)

k;x1
)

= Ln1

( j

∑
k=0

(
j
k

)
x j−k

1 (φ1− x1)
k;x1

)
=

j

∑
k=0

(
j
k

)
x j−k

1 Ln1

(
(φ1− x1)

k;x1
)

= Ln1

(
(φ1− x1)

k;x1
)

+
j−1

∑
k=0

(
j
k

)
x j−k

1 Ln1

(
(φ1− x1)

k;x1
)
,

which implies the representation of j− th moment.

It should be remark that the Proposition 2.5 holds without the assumption Ln1φ0 = φ0

and Ln1φ1 = φ1.

Throughout the following Theorem, C(X) will be the Banach space of all continuous

functions of two variables on X ⊂ R×R with the usual supremum norm.

Theorem 2.3: (see [22]) Let X be a compact subset of R×R, and let Ln1,n2 : C(X)→
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C(X) be a double sequence of positive linear operators. Then

Ln1,n2(g j;x1,x2)−→ g j(x1,x2) (uniformly) j = 0,1,2,3 (2.4)

iff

Ln1,n2(g;x1,x2)−→ g(x1,x2). (uniformly) (2.5)

Where g0(x1,x2) = 1,g1(x1,x2) = x1,g2(x1,x2) = x2 and g3(x1,x2) = x2
1 + x2

2.

Proof. Since, (2.5) implies (2.4), it is enough to prove that (2.4) implies (2.5). Given

g ∈C(X), and let (x1,x2) be an arbitrary but fixed point in X then for every ε > 0 there

exist a real number δ > 0 such that |g(x1,x2)−g(u,v)|< ε for all (u,v) ∈ X satisfying

|u− x1|< δ and |x2− v|< δ hence for all (u,v) ∈ X , we have,

|g(x1,x2)−g(u,v)| ≤ ε +2M
1

δ 2 [(u− x1)
2 +(x2− v)2],

where M = ‖g‖C(X). By the linearity and pozitivity of the operators Ln1,n2 we have

|Ln1,n2(g;x1,x2)−g(x1,x2)|

≤ Ln1,n2(|g(u,v)−g(x1,x2)g0|;x1,x2)+ |g(x1,x2)||Ln1,n2(g0;x1,x2)−g0(x1,x2)|

≤ |εLn1,n2(g0;x1,x2)+
2M
δ 2 [Ln1,n2((u− x1)

2 +(x2− v)2;x1,x2)]|

+M|Ln1,n2(g0;x1,x2)−g0(x1,x2)|

≤
(

ε +M+
2M
δ 2 (E2 +F2)

)
|Ln1,n2(g0;x1,x2)−g0(x1,x2)|

+
4M
δ 2 E|Ln1,n2(g1;x1,x2)−g1(x1,x2)|+

4M
δ 2 F |Ln1,n2(g2;x1,x2)−g2(x1,x2)|

+
2M
δ 2 |Ln1,n2(g3;x1,x2)−g3(x1,x2)|+ ε.

where E := max|x1|, F := max|x2| and let

B := max{ε +M+
2M
δ 2 (E2 +F2),

2M
δ 2 ,E

4M
δ 2 ,F

4M
δ 2 }.

If n1,n2 −→ ∞ , then the proof is completed.
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Chapter 3

BERNSTEIN POLYNOMIALS

In this chapter we study the definition of classic Bernstein polynomials, double

Bernstein polynomials for bivariate functions and Blending type Bernstein

polynomials. Also some properties and theorems are given. For more information

see [20] and [26].

The polynomial

fn(x) = a0 +a1x+ ...+anxn,

is the simplest real valued functions of the variable x. Where a0,a1, ...an are constant

values. This function is known as algebric (ordinary) polynomial which is created by

operations of multiplication and addition in the field of real numbers to x, finite number

of times. The index of the highest power of x which occurs in it, is known as the degree

(order) of a polynomial. The basis of the theory of approximation of functions of a real

variable is a theorem discovered by Weierstrass which has a great importance in the

development of the whole of mathematical analysis.

3.1 Weierstrass Approximation Theorem

The famous Weierstrass approximation theorem asserts that, if g(x) is a continuous

function on a closed interval [a,b] , and for any positive ε there is a polynomial f (x)

such that,

|g(x)− f (x)|< ε for all x ∈ [a,b].

S.N. Bernstein in 1912 introduced the following polynomials of functions, which was

one of the most elegant proof for Weirestrass approximation theorem, as follows

12



Bn1(g;x1) =
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−ig(

i
n1

), (3.1)

for any g ∈C[0,1], x1 ∈ [0,1] and n1 ∈ N.

It is easily verified that the operators (3.1) are linear and monotone operators on the

interval [0,1] such that the conditions of the Korovkin type approximation theorem

are hold on them. This justifies that Bn1(g) is uniformly convergent to g for all

g ∈C[0,1].

Later Voronovskaja [49] found the asymptotic error for Bernstein polynomials, that is

if g
′′
exists, then we have

lim
n1→∞

n1(Bn1(g;x1)−g(x1)) =
x1(1− x1)

2
g
′′
(x1),

for any g(x1) ∈ [0,1].

Also there is another error calculation which was done by Popoviciu [48] for Bernstein

polynomials, using the modulus of continuity as follow,

|Bn1(g;x1)−g(x1)|6
3
2

ω(
1
√

n1
).

There are many researchers, who work on linear operators, variation diminishing

properties, convexity, the rate of convergence and Lipschitz constants as well as

multivariate Bernstein polynomials.

Proposition 3.1: (see [26]) For the classic Bernstein operators (3.1) and any

continuous function g : [0,1]−→ R, the following hold,
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1. Bn1(g;0) = g(0).

2. Bn1(g;1) = g(1).

3. Bn1(1;x1) = 1.

4. Bn1(t;x1) = x1.

5. Bn1(t
2;x1) = x2

1 +
x1(1− x1)

n1
.

6. Bn1(t
3;x1) = x3

1 +
3x2

1(1− x1)

n1
+

(1−2x1)x1(1− x1)

n2
1

.

7. Bn1(t
4;x1) = x4

1 +
6x3

1(1−x1)
n1

+
x2

1(1− x1)
2(7−11x1)

n2
1

+
−6x3

1 +12x3
1−7x2

1 + x1

n3
1

.

Proof. It is enough to prove parts 1), 2), 3) ,4) and 5). The rest Parts can be proved in

the similar way.

1) Bn1(g;x1) =
n1

∑
i=0

(
n1

i

)
xi(1− x)n−ig(

i
n
)

=
n1

∑
i=1

(
n1

i

)
xi

1(1− x1)
n1−ig(

i
n1

)+g(0)

⇒ Bn1(g;0) = 0+g(0) = g(0).

2) Bn1(g;x) =
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−ig(

i
n1

)

=
n1−1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−ig(

i
n1

)+g(1)

⇒ Bn1(g;1) = 0+g(1) = g(1).

3) Bn1(1;x1) =
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−i

= (x1 +(1− x1))
n1

= 1.

4) Bn1(t;x1) =
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−i i

n1

= x1

n1

∑
i=1

(
n1−1
i−1

)
xi−1

1 (1− x1)
n1−i

= x1

n1−1

∑
i=0

(
n1−1

i

)
xi

1(1− x1)
n1−i−1 = x1.
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5) Bn1(t
2;x1) =

n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−i i2

n2
1

=
n1

∑
i=1

(
n1−1
i−1

)
xi

1(1− x1)
n1−i i

n1

=
n1

∑
i=1

(
n1−1
i−1

)
xi

1(1− x1)
n1−i (i−1)

n1

+
1
n1

n1

∑
i=1

(
n1−1
i−1

)
xi

1(1− x1)
n1−i

=
(n1−1)x2

1
n1

n1

∑
i=2

(
n1−2
i−2

)
xi−2

1 (1− x1)
n1−i +

x1

n1

=
(n1−1)x2

1
n1

+
x1

n1
= x2

1 +
x1(1− x1)

n1
.

Example 3.1: 1. Figure 3.1, Figure 3.2, Figure 3.3 and Figure 3.4 illustrate the

approximation of Bernstein polynomials (3.1) to the functions f1(x1) = sin(2πx2
1),

f2(x1) = sin(2πx1), f3(x1) = cos(2πx2
1) and f4(x1) = x1cos(2πx1) respectively for

the degrees n1 = 10,100.

In Example we aim to show the approximation of the classical Bernstein polynomials

to the given continuous functions on [0,1]which shows that by increasing the degree

n1, the approximation will be improved.
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Figure 3.1: Approximation of Bn1( f1;x1) to f1(x1) for different values of degree n1,
where f1(x1)(blue), B10( f1;x1)(red) and B100( f1;x1)(yellow).

Figure 3.2: Approximation of Bn1( f2;x1) to f2(x1) for different values of degree n1,
where f2(x1)(blue), B10( f2;x1)(red) and B100( f2;x1)(yellow).
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Figure 3.3: Approximation of Bn( f3;x1) to f3(x1) for different values of degree n1,
where f3(x1)(blue), B10( f3;x1)(red) and B100( f3;x1)(yellow).

Figure 3.4: Approximation of Bn1( f4;x1) to f4(x1) for different values of degree n1,
where f4(x1)(blue), B10( f4;x1)(red) and B100( f4;x1)(yellow).
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There is another expression for the Bernstein polynomials as follows ,

Bn1(g;x1) =
n1

∑
i=0

(
n1

i

)
∆

ign1(0)x
i
1,

where gn1(x1)= g( x1
n1
) and ∆ is the forward difference operator with step size 1

n1
defined

as follows,

∆g(xi) = g(xi+1)−g(xi)

∆
t+1g(xi) = ∆(∆tg(xi)) = ∆

tg(xi+1)−∆
tg(xi) t ≥ 1,

where ∆t is called the tth difference.

Theorem 3.1: (see [46]) For the Bernstein polynomials Bn1+1 it’s derivative can be

defined as follows,

B
′
n1+1(g;x1) = (n1 +1)

n1

∑
j=0

∆g(
n1 +1

j
)

(
n1

j

)
x j

1(1− x1)
n1− j,

where the size of ∆ has the step size 1
n1+1 , for n1 ≥ 0.

Theorem 3.2: (see [46]) The derivative of Bn1+ j(g;x1) for any j≥ 0 can be written in

terms of j-th difference of g as follows,

B
′
n1+ j(g;x1) =

(n1 + j)!
n1!

n1

∑
i=0

∆
jg(

j
n1 + i

)

(
n1

i

)
xi

1(1− x1)
n1−i,

where the size of ∆ has the step size 1
n1+ j , for n1 ≥ 0.

Definition 3.1: (see [46]) Let f ∈C([0,1]× [0,1]). Then two-dimensional Bernstein

operators is as follows,

Bn1,n2(g;x1,x2) =
n1

∑
i=0

n2

∑
j=0

(
n1

i

)(
n2

j

)
xi

1(1− x1)
n1−ix j

2(1− x2)
n2− jg(

i
n1

,
j

n2
). (3.2)

It is easy to verify that the operators (3.2) are linear operators which also are monotone

on the compact interval [0,1]× [0,1].
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Proposition 3.2: For the Bernstein operators (3.2) the following hold,

1. Bn1,n2(g0;x1,x2) = 1.

2. Bn1,n2(g1;x1,x2) = x1.

3. Bn1,n2(g2;x1,x2) = x2.

4. Bn1,n2(g3;x1,x2) = x2
1 +

x1(x1−1)
n1

+ x2
2 +

x2(x2−1)
n2

,

where g0(x1,x2) = 1,g1(x1,x2) = x1,g2(x1,x2) = x2 and g3(x1,x2) = x2
1 + x2

2.

Proof. By the Proposition 3.1 one can write,

1) Bn1,n2(g0;x1,x2) =
n1

∑
i=0

n2

∑
j=0

(
n1

i

)(
n2

j

)
xi

1(1− x1)
n1−ix j

2(1− x2)
n2− j

=
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−i

n2

∑
j=0

(
n2

j

)
x j

2(1− x2)
n2− j = 1

2) Bn1,n2(g1;x1,x2) =
n1

∑
i=0

n2

∑
j=0

(
n1

i

)(
n2

j

)
xi

1(1− x1)
n1−ix j

2(1− x2)
n2− j i

n1

=
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−i i

n1

n2

∑
j=0

(
n2

j

)
x j

2(1− x2)
n2− j

= x1(x2 +1− x2)
n2 = x1.

3) Bn,m(g2;x1,x2) =
n1

∑
i=0

n2

∑
j=0

(
n1

i

)(
n2

j

)
xi

1(1− x1)
n1−ix j

2(1− x2)
n2− j j

n2

=
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−i

n2

∑
j=0

(
n2

j

)
x j

2(1− x2)
n2− j j

n2

= x2(x1 +1− x1)
n = x2.

4) Bn1,n2(g3;x1,x2) =
n1

∑
i=0

n2

∑
j=0

(
n1

i

)(
n2

j

)
xi

1(1− x1)
n1−ix j

2(1− x2)
n2− j i2

n2
1

+
n1

∑
i=0

n2

∑
j=0

(
n1

i

)(
n2

j

)
xi

1(1− x1)
n1−ix j

2(1− x2)
n2− j j2

n2
2

=
n1

∑
i=0

(
n1

i

)
i2

n2
1

xi
1(1− x1)

n1−i
n2

∑
j=0

(
n2

j

)
x j

2(1− x2)
n2− j

+
n1

∑
i=0

(
n1

i

)
xi

1(1− x1)
n1−i

n2

∑
j=0

j2

n2
2

(
n2

j

)
x j

2(1− x2)
n2− j

= x2
1 +

x1(1− x1)

n1
+ x2

2 +
x2(1− x2)

n2
.
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Proposition 3.3: For the Bernstein operators (3.2 ) the following hold,

1. Bn1,n2((t− x1);x1,x2) = 0.

2. Bn1,n2((s− x2);x1,x2) = 0.

3. Bn1,n2((t− x1)
2;x1,x2) =

x1(x1−1)
n1

.

4. Bn1,n2((s− x2)
2;x1,x2) =

x2(x2−1)
n2

.

Proof. By the Proposition 3.2 the result comes out.

Theorem 3.3: (see [40]) Let g ∈ [0,1]× [0,1] and Bn1,n2g be the two-dimensional

Bernstein polynomials of g, then

|Bn1,n2(g;x,y)−g(x,y)|6 3
2
[ω2,x(g;

√
n1)+ω2,y(g;

√
n2)]

Where ω2,x and ω2,y are partial modulus of continuity given by 2.2 and 2.3.

Example 3.2: 1. Figure 3.5 shows the approximation of Bernstein polynomials (3.2)

to g1(x1,x2) = cos(πx1)x1x2, for the degrees n1 = n2 = 10 and n1 = n2 = 50.

2. Figure 3.6 shows the approximation of Bernstein polinomials (3.2) to

g2(x1,x2) = x2sin(πx2
1), for the degrees n1 = n2 = 10 and n1 = n2 = 50.

In this example we are trying to show the approximation of Bernstein polynomials

(3.2) to the given bivariate continuous functions which shows that by increasing n1

and n2, its approximation will be improved.
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Figure 3.5: Approximation of Bn1,n2(g1;x1,x2) to g1(x1,x2) for different degrees
(n1,n2), where g1(x1,x2) is denoted by blue, B(10,10)(g1;x1,x2) by white and
B(50,50)(g1;x1,x2) by red.

Figure 3.6: Approximation of Bn1,n2(g2;x1,x2) to g2(x1,x2) for different degrees
(n1,n2), where g2(x1,x2) is denoted by blue, B(10,10)(g2;x1,x2) by white and
B(50,50)(g2;x1,x2) by red.
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The Two variable Bernstein polynomials are also written in the following form,

Bn1,n2(g;x1,x2) =
n2

∑
i2=0

n1

∑
i1=0

(
n1

i1

)(
n2

i2

)
∆

i1
1 ∆

i2
2 gn1,n2(0,0)x

i1
1 xi2

2 ,

where gn1.n2(i1, i2) = g( i1
n1
, i2

n2
) and ∆

it
t , t ∈ 1,2 is the itht differences related to tth

variable xt , and applied with the step size 1
nt

.

Theorem 3.4: ( [46]) For b1,b2 ≥ 0 integers with 0≤ bi ≤ ni, i ∈ {1,2} the derivative

of g is as follow,

Bb1,b2
n1+b1,n2+b2

=

(n1 +b1)!
n1!

(n2 +b2)!
n2!

n2

∑
i2=0

n1

∑
i1=0

(
n1

i1

)(
n2

i2

)
∆

b1
1 ∆

b2
2 f (

n1

n1 +b1
,

n2

n2 +b2
)

× xi1
1 (1− x1)

n1−i1xi2
2 (1− x2)

n2−i2.

3.2 Blendig-Type Bernstein Operators

In this part we survey on the Blending-type Bernstein operators and some

propositions about the class of such polynomials. For more information see [20]

and [5].

The following defenition about Blending-type Bernstein operators, is done by Chen

in [20], as a new family of generalized Bernstein operators.

Definition 3.2: (see [20]) For any function g∈C([0,1]), positive integer n1 and a fixed

real number α ∈ [0,1], the α- Bernstein operators can be defined as follows,

Lα
n1
(g;x) =

n1

∑
i=0

aα
n1,i(x1)g(

i
n1

), n1 ≥ 2 (3.3)

where
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aα
n1,i(x1) =

((
n1−2

i

)
(1−α)x1 +

(
n1−2
i−2

)
(1−α)(1− x1)

+

(
n1

i

)
αx1(1− x1)

)
xi−1

1 (1− x1)
n1−i−1,

with

(
n1

i

)
=



n1!
i!(n1−i)! , 0≤ i≤ n1,

0, otherwise.

.

Example 3.3: For some values n1 = 2,3, i = 0,1,2,3 and any x1,α ∈ [0,1], aα
n1,i will

be as follows,

aα
2,0(x1) = (1−αx1)(1− x1).

aα
2,1(x1) = 2αx1(1− x1).

aα
3,0(x1) = (1−αx1)(1− x1)

2.

aα
3,1(x1) = (1−2α−3αx1)x1(1− x1).

aα
3,2(x1) = (1−α +3α1)x1(1− x1).

Theorem 3.5: (see [20]) For the operators (3.3) we have,

Lα
n1
(1;x1) = 1.

Lα
n1
(x1;x1) = x1.

Lα
n1
(x2

1;x1) = x2
1 +

x1(1− x1)[n1 +2(1−α)]

n2
1

.

Lα
n1
(x3

1;x1) = x3
1 +

3x2
1(1− x1)[n1 +2(1−α)]

n2
1

+
x1(1− x1)(1−2x1)[n1 +6(1−α)]

n3
1

.
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Lα
n1
(x4

1;x1) = x4
1 +

6x3
1(1− x1)[n1 +2(1−α)]

n2
1

+
4x2

1(1− x1)(1−2x1)[n1 +6(1−α)]

n3
1

+
[3n1(n1−2)+12(n1−6)(1−α)]x2

1(1− x1)
2

n4
1

+
[n1 +14(1−α)]x1(1− x1)

n4
1

.

Proposition 3.4: (see [20]) For the operators (3.3) the following hold,

1. Lα
n1
(a1x1 +a2;x1) = a1x1 +a2.

2. If for any g1(x1),g2(x1) ∈ C([0,1]) and α ∈ [0,1], g1(x1) 6 g2(x1), then

Lα
n1
(g1;x1)6 Lα

n1
(g2;x1).

3. If g1(x1) ∈ C([0,1]) is a non-negative function, so is the operators Lα
n1
(g1;x1) for

any α ∈ [0,1].

Theorem 3.6: (see [20]) If g(x1) is a continuous function on the compact interval [0,1]

and for any α ∈ [0,1], then Lα
n1
(g;x1) uniformly convergent to g on [0,1], which can be

concluded from Bohman–Korovkin theorem.

For the function f (x1) = 2x1sin(x2
1) and some different values of n1 and α the

approximation of the operators (3.3) will be as follows,

1. In Figure 3.7 the approximation of the operators Lα
n1
( f ;x1) to function f (x1), with

the degrees n1 = 10,15 and 25 with fixed α = 0.5, is considered. It is numerically

shown that incresing the degree n1 gives better approximation.

2. In Figure 3.8 the approximation of the operators Lα
n1
( f ;x1) to function f (x1), with

fixed degree n1 = 10 and with different values of α = 0.1,0.5 and 0.9, is considered.

It is observed that incresing the value α gives better approximation.

For the function g(x1) = 2x1cos(x1) and some different values for n1 and α the
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approximation of the operators (3.3) will be as follows,

3. In Figure 3.9 the approximation of the operators Lα
n1
(g;x1) to function g(x1), with

the degrees n1 = 10,15 and 25 with fixed α = 0.5, is considered. It is achieved that

incresing the degree n1 gives better approximation.

4. In Figure 3.10 the approximation of the operators Lα
n1
(g;x1) to function g(x1), with

fixed degree n1 = 10 and with different values of α = 0.1,0.5 and 0.9, is considered.

It is clear that incresing the value of α gives better approximation.
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Figure 3.7: Approximation of Lα
n1
( f ;x1) to f (x1)(blue) for different degree n1 =

10(red),15(yellow),25(violet) and fixed α = 0.5.

Figure 3.8: Approximation of Lα
n1
( f ;x1) to f (x1)(blue) for different values of α =

0.1(red),0.5(yellow),0.9(violet) and fixed n1 = 10.
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Figure 3.9: Approximation of Lα
n1
(g;x1) to g(x1)(blue) for different degree n1 =

10(red),15(yellow),25(violet) and fixed α = 0.5.

Figure 3.10: Approximation of Lα
n1
(g;x1) to g(x1)(blue) for different values of α =

0.1(red),0.5(yellow),0.9(violet) and fixed n1 = 10.
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The larger the value of α ∈ [0,1] and n1 the approximation is going to be better with

less error.

Later Acar T. and Kajla A. in [5] introduced the two variables Blending-type

Bernstein operators of degree (n1,n2) for bivariate functions

f (x1,x2) ∈C([0,1]× [0,1]). They already extended the α-Bernstein operators (3.3) to

two dimentional (α1,α2)- Bernstein operators for any α1,α2 belong to [0,1].

Definition 3.3: (see [5]) For any f (x1,x2) ∈C([0,1]× [0,1]), positive integers n1,n2

and any fixed real numbers α1,α2 ∈ [0,1], the bivariate extention of the operators (3.3)

can be defined as follow, for any n1,n2 ≥ 2,

L(α1,α2)
n1,n2 (g;x1,x2) =

n1

∑
i=0

n2

∑
j=0

a(α1,α2)
n1,n2,i, j(x1,x2)g(

i
n1

,
j

n2
), (3.4)

where

a(α1,α2)
n1,n2,i, j(x1,x2) =

[(
n1−2

i

)
(1−α1)x1 +

(
n1−2
i−2

)
(1−α1)(1− x1)

+

(
n1

i

)
α1x1(1− x1)

]
xi−1

1 (1− x1)
n−i−1

×

[(
n2−2

j

)
(1−α2)x2 +

(
n2−2
j−2

)
(1−α2)(1− x2)

+

(
n2

j

)
α2x2(1− x2)

]
x j−1

2 (1− x2)
n2− j−1.

Lemma 3.1: (see [5]) For the operators (3.4) the following hold,

L(α1,α2)
n1,n2 (1;x1,x2) = 1.

L(α1,α2)
n1,n2 (t;x1,x2) = x1.

L(α1,α2)
n1,n2 (s;x1,x2) = x2.

L(α1,α2)
n1,n2 (t2;x1,x2) = x2

1 +
x1(1− x1)[n+2(1−α1)]

n2 .
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L(α1,α2)
n1,n2 (s2;x1,x2) = x2

2 +
x2(1− x2)[n2 +2(1−α2)]

n2
2

.

L(α1,α2)
n1,n2 (t3;x1,x2) = x3

1 +
3x2

1(1− x1)[n1 +2(1−α1)]

n2
1

+
x1(1− x1)(1−2x1)[n1 +6(1−α1)]

n3
1

.

L(α1,α2)
n1,n2 (s3;x1,x2) = x3

2 +
3x2

2(1− x2)[n2 +2(1−α2)]

n2
2

+
x2(1− x2)(1−2x2)[n2 +6(1−α2)]

n3
2

.

L(α1,α2)
n1,n2 (t4;x1,x2) = x4

2 +
6x3(1− x)[n+2(1−α1)]

n2

+
4x2

1(1− x1)(1−2x1)[n1 +6(1−α1)]

n3
1

+
[3n1(n1−2)+12(n1−6)(1−α1)]x2

1(1− x1)
2

n4
1

+
[n1 +14(1−α1)]x1(1− x1)

n4
1

.

L(α1,α2)
n1,n2 (s4;x1,x2) = x4

2 +
6x3

2(1− x2)[n2 +2(1−α2)]

n2
2

+
4x2

2(1− x2)(1−2x2)[n2 +6(1−α2)]

n3
2

+
[3n2(n2−2)+12(n2−6)(1−α2)]x2

2(1− x2)
2

n4
2

+
[n2 +14(1−α2)]x2(1− x2)

n4
2

.

Corollary 3.1: (see [5]) For the operators (3.4) the following hold,

L(α1,α2)
n1,n2 ((t− x1);x1,x2) = 0.

L(α1,α2)
n1,n2 ((s− x2);x1,x2) = 0.

L(α1,α2)
n1,n2 ((t− x1)

2;x1,x2) =
x1(1− x1)[n1 +2(1−α1)]

n2
1

.

L(α1,α2)
n1,n2 ((s− x2)

2;x1,x2) =
x2(1− x2)[n2 +2(1−α2)]

n2
2

.
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L(α1,α2)
n1,n2 ((t− x1)

4;x1,x2) =
x2(1− x2)[n2 +2(1−α2)]

n2
2

.

L(α1,α2)
n1,n2 ((t− x2)

4;x1,x2) =
x4

1[3n2
1 +6n1(1−2α1)+72(α1−1)]

n4
1

+
x3

1[−6n2
1−12n1(1−2α1)−144(α1−1)]

n4
1

+
x2[3n2

1−n1 +6n1(1−2α1)+86(α1−1)]
n4

1

+
x1(n1−14(α1−1))

n4
1

.

L(α1,α2)
n1,n2 ((s− x2)

4;x1,x2) =
x4

2[3n2
2 +6n2(1−2α2)+72(α2−1)]

n4
2

+
x3

2[−6n2
2−12n2(1−2α2)−144(α2−1)]

n4
2

+
x2

2[3n2
1−n1 +6n(1−2α2)+86(α2−1)]

n4
2

+
x2(n2−14(α2−1))

n4
2

.

Lemma 3.2: (see [5]) Using the Corollary 3.1 we have the following ,

1. L(α1,α2)
n1,n2 ((t− x1)

2;x1,x2)≤
3x1(1− x1)

n1
.

2. L(α2,α2)
n1,n2 ((s− x2)

2;x1,x2)≤
3x2(1− x2)

n2
.

Proof. It is enough to prove 1. By the Corollary 3.1 we have,

L(α1,α2)
n1,n2 ((t− x1)

2;x1,x2) =
x1(1− x1)

n1
+

x1(1− x1)[2(1−α1)]

n2

+
x1(1− x1)

n1
+

2x1(1− x1)

n2
1

≤ 3x1(1− x1)

n1
.

Theorem 3.7: (see [5]) for all g(x1,x2) ∈C([0,1]× [0,1]), it follows L(α1,α2)
n1,n2 (g;x1,x2)

converges to g(x1,x2) uniformly, ∀α1,α2 ∈ [0,1] which are real fixed numbers and

(x1,x2) ∈ [0,1]× [0,1] .

Proof. By the Korovkin type approximation Theorem 2.3 and Lemma 3.1 the result
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holds.

Lets us consider the function f (x1,x2) = 2x1cos(x1)x3
2 and some different values for

n1,n2 and α1,α2 the approximation of the operators (3.4) will be as follows,

1. In Figure 3.11 the approximation of the operators L(α1,α2)
n1,n2 ( f ;x1,x2) to the function

f (x1,x2), with the degrees n1 = n2 = 10,15,25 and fixed α1 = α2 = 0.5, is shown. It

can be viewed that incresing the degrees (n1,n2) give better approximation.

2. In Figure 3.12 the approximation of the operators L(α1,α2)
n1,n2 ( f ;x1,x2) to the function

f (x1,x2), with fixed degree n1 = n2 = 10 and different values of α1 = α2 = 0.1,0.5

and 0.9, is given. It can be observed that incresing the values of α1,α2 give better

approximation.

For the function g(x1,x2) = 2x1sin(x2
1)x

3
2 and some different values for n1,n2 and

α1,α2 the approximation of the operators (3.3) will be as follows,

1. In Figure 3.13 the approximation of the operators L(α1,α2)
n1,n2 (g;x1,x2) to the function

g(x1,x2), with the degrees n1 = n2 = 10,15,25 and fixed values α1 = α2 = 0.5, is

considered. It is clear that incresing the degrees (n1,n2) give better approximation.

2. In Figure 3.14 the approximation of the operators L(α1,α2)
n1,n2 (g;x1,x2) to function

g(x1,x2), with fixed degree n1 = n2 = 10 and different values of α1 = α2 = 0.1,0.5

and 0.9, is considered. It is easy to see that incresing the values α1,α2 give better

approximation.
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Figure 3.11: Approximation of Lα1,α2
n1,n2 ( f ;x1,x2) to f (x1,x2) (blue) for different degrees

(n1,n2) and fixed value (α1,α2), (n1 = n2 = 10)(red), (n1 = n2 = 15)(black),(n1 =
n2 = 25)(green).

Figure 3.12: Approximation of Lα1,α2
n1,n2 ( f ;x1,x2) to f (x1,x2)(blue) for different values

(α1,α2) and fixed degree (n1,n2), α1 = α2 = 0.1 (red), α1 = α2 = 0.5 (black), α1 =
α2 = 0.9 (green).
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Figure 3.13: Approximation of Lα1,α2
n1,n2 (g;x1,x2) to g(x1,x2) (blue) for different degrees

(n1,n2) and fixed value (α1,α2) , (n1 = n2 = 10) (red), (n1 = n2 = 15) (black), (n1 =
n2 = 25) (green).

Figure 3.14: Approximation of Lα1,α2
n1,n2 (g;x1,x2) to g(x1,x2)(blue) for different values

(α1,α2) and fixed degree (n1,n2) , α1 = α2 = 0.1 (red), α1 = α2 = 0.5 (black), α1 =
α2 = 0.9 (green).

33



Chapter 4

PARAMETRIC BLENDING-TYPE OPERATORS

This chapter includes a new family of parametric Blending-type operators,

considering four different parameters α1,α2,s1 and s2. Then we prove some theorems

and lemmas which will be used to show the convergence of our operators.

Now lets define a new generalization of the Blending-tpye operators given by (3.4).

Definition 4.1: For all h ∈ C([0,1]× [0,1]), positive integers s1,s2 and fixed real

numbers α1,α2 ∈ [0,1] we have the following,

T α1,α2,s1,s2
n1,n2

(h;x1,x2) =


∑

n1
i=0 ∑

n2
j=0 p(α1,α2,s1,s2)

n1,n2,i, j
(x1,x2)h( i

n1
, j

n2
), n1,n2 ≥ max{s1,s2},

Bn1,n2(h;x1,x2), otherwise,

(4.1)

where

p(α1,α2,s1,s2)
n1,n2,i, j

(x1,x2) = (1−α1)

[(
n1− s1

i− s1

)
xi−s1+1

1 (1− x1)
n1−i

+

(
n1− s1

i

)
xi

1(1− x1)
n1−s1−i+1

]
+α1

(
n1

i

)
xi

1(1− x1)
n1−i

× (1−α2)

[(
n2− s2

j− s2

)
x j−s2+1

2 (1− x2)
n2− j

+

(
n2− s2

j

)
x j

2(1− x2)
n2−s2− j+1

]
+α2

(
n2

j

)
x j

2(1− x2)
n2− j,

and Bn1,n2(h;x1,x2) is the double Bernstein operators given in (3.2).

Lemma 4.1: For any α1,α2 ∈ [0,1] and n1,n2 > max{s1,s2} > 2, the following hold

for the operators 4.1,
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1)T α1,α2,s1,s2
n1,n2

(1;x1,x2) = 1.

2)T α1,α2,s1,s2
n1,n2

(t;x1,x2) = x1.

3)T α1,α2,s1,s2
n1,n2

(s;x1,x2) = x2.

4)T α1,α2,s1,s2
n1,n2

(t2;x1,x2) = x2
1 +

x1(1− x1)
[
n1 +(1−α1)s1(s1−1)

]
n2 .

5)T α1,α2,s1,s2
n1,n2

(s2;x1,x2) = x2
2 +

x2(1− x2)
[
n2 +(1−α2)s2(s2−1)

]
n2

2
.

6)T α1,α2,s1,s2
n1,n2

(t3;x1,x2) = x3
1 + x2

1(1− x1)

[
3n1−2

n2
1

+(1−α1)
s1(s1−1)(3n1−2s1−2)

n3
1

]
+ x1(1− x1)

[
1
n2

1
+(1−α1)

s1(s1−1)(s1 +1)
n3

1

]
.

7)T α1,α2,s1,s2
n1,n2

(s3;x1,x2) = x3
2 + x2

2(1− x2)

[
3n2−2

n2
2

+(1−α2)
s2(s2−1)(3n2−2s2−2)

n3
2

]
+ x2(1− x2)

[
1
n2

2
+(1−α2)

s2(s2−1)(s2 +1)
n3

2

]
.

8)T α1,α2,s1,s2
n1,n2

(t4;x1,x2) = x4
1 + x3

1(1− x1)

[
6n2

1−11n1 +6
n3

1

+(1−α1)
s1(1− s1)

[
3(s1 +1)(s1 +2)+2n1(3n1−4s1−7)

]
n4

1

]
+ x2

1(1− x1)

[
7(n1−1)

n3
1

+(1−α1)
s1(s1−1)[(n1− s1)(4s1 +10)−7]

n4
1

]
+ x1(1− x2

1)

[
1
n3

1
+(1−α1)

s1(s1−1)(s2
1 + s1 +1)

n4
1

]
.

9)T α1,α2,s1,s2
n1,n2

(s4;x1,x2) = x4
2 + x3

2(1− x2)

[
6n2

2−11n2 +6
n3

2

+(1−α2)
s2(1− s2)

[
3(s2 +1)(s2 +2)+2n2(3n2−4s2−7)

]
n4

2

]
+ x2

2(1− x2)

[
7(n2−1)

n3
2

+(1−α2)
s2(s2−1)[(n2− s2)(4s2 +10)−7]

n4
2

]
+ x2(1− x2

2)

[
1
n3

2
+(1−α2)

s2(s2−1)(s2
2 + s2 +1)

n4
2

]
.

Proof. Let us give the proof of parts 1) - 7) so the rest will be satisfied in the same

way,
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1)T (α1,α2),s1,s2
n1,n2 (1;x1,x2) = (1−α1)

[
x1(x1 +(1− x1))

n1−s1 +(1− x1)(x1 +(1− x1))
n1−s1

]
+α1(x1 +(1− x1))

n = (1−α1)+α1 = 1

2)T (α1,α2),s1,s2
n1,n2 (t;x1,x2),=

1
n1

(
(1−α1)

[
s1x1 +(n1− s1)x1

]
+α1n1x1

)

×
(
(1−α2)(x2 +(1− x2))

n2−s2 +α2(x2 +(1− x2))
n2

)
= x1.

3)T (α1,α2),s1,s2
n1,n2 (s;x1,x2) =

1
n2

(
(1−α2)

[
s2x2 +(n2− s2)x2

]
+α2n2x2

)

×
(
(1−α1)(x1 +(1− x1))

n1−s1 +α1(x1 +(1− x1))
n1

)
= x2.

4)T (α1,α2),s1,s2
n1,n2 (t2;x1,x2) =

1
n2

1

(
(1−α1)

[
s1(s1−1)x1 +2s1x1(n1− s1)

− (n1− s1)x2
1 +(n1− s1)

2x2
1

]
−α1(n1− s1)x2

1

+α1(n1− s1)
2x2

1

)
×
(
(1−α2)(x2 +(1− x2))

n2−s2 +α2(x2 +(1− x2))
n2

)
= x2

1 +
x1(1− x1)

[
n1 +(1−α1)s1(s1−1)

]
n2

1
.

5)T (α1,α2),s1,s2
n1,n2 (s2;x1,x2) =

1
n2

2

(
(1−α2)

[
s2(s2−1)y+2s2x2(n2− s2)

− (n2− s2)x2
2 +(n2− s2)

2x2
2

]
−α2(n2− s2)x2

2

+α2(n2− s2)
2x2

2

)
×
(
(1−α1)(x1 +(1− x1))

n1−s1 +α1(x1 +(1− x1))
n1

)
= x2

2 +
x2(1− x2)

[
n2 +(1−α2)s2(s2−1)

]
n2

2
.

6)T (α1,α2),s1,s2
n1,n2 (t3;x1,x2) =

(
(1−α1)

n3
1

[
s3

1x1 + s2
1(n1− s1)x2

1 +(n1− s1)s1(s1 +1)x2
1

+ s1(n1− s1)(n1− s1)x3
1 +(n1− s1)(n1− s1−1)(n1− s1−2)x3

1

+(n1− s1)(n1− s1−1)x3
1 +2(s1 +1)(n1− s1)(n1− s1−1)x3

1

+2(s1 +1)2x2
1− (n1− s1)(s1−1)2x2

1 + x1(1− x1)(n1− s1)

+2x2
1(1− x1)+ x3

1(n1− s1)(n1− s1−1)(n1− s1−2)
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+ x2
1(1− x1)(n1− s1)(n1− s1−1)

]
+α1

[
x3

1 +
3x2

1(1− x1)

n1
+

x1(1−2x1)(1− x1)

n2
1

])
×
(
(1−α2)(x2 +(1− x2))

n2−s2 +α2(x2 +(1− x2))
n2

)
= x3

1 + x2
1(1− x1)

[
3n1−2

n2
1

+(1−α1)
s1(s1−1)(3n1−2s1−2)

n3
1

]
+ x1(1− x1)

[
1
n2

1
+(1−α1)

s1(s1−1)(s1 +1)
n3

1

]
7)T (α1,α2),s1,s2

n1,n2 (s3;x1,x2) =

(
(1−α2)

n3
2

[
s3

2y+ s2
2(m− s2)y2 +(n2− s2)s2(s2 +1)x2

2

+ s2(n2− s2)(n2− s2)x3
2 +(n2− s2)(n2− s2−1)(n2− s2−2)x3

2

+(n2− s2)(n2− s2−1)x3
2 +2(s2 +1)(n2− s2)(n2− s2−1)x3

2

+2(s2 +1)2x2
2− (n2− s2)(s2−1)2x2

2 + x2(1− x2)(n2− s2)

+2x2
2(1− x2)+ x3

2(n2− s2)(n2− s2−1)(n2− s2−2)

+ x2
2(1− x2)(n2− s2)(n2− s2−1)

]
+α2

[
x3

2 +
3x2

2(1− x2)

n2
+

x2(1−2x2)(1− x2)

n2
2

])
×
(
(1−α1)(x1 +(1− x1))

n1−s1 +α1(x1 +(1− x1))
n1

)
= x3

2 + x2
2(1− x2)

[
3n2−2

n2
2

+(1−α2)
s2(s2−1)(3n2−2s2−2)

n3
2

]
+ x2(1− x2)

[
1
n2

2
+(1−α2)

s2(s2−1)(s2 +1)
n3

2

]
.

For the operators (4.1), using the Lemma 4.1, the following lemma can be written.

Lemma 4.2: For any α1,α2 ∈ [0,1] we have,

T α1,α2,s1,s2
n1,n2

((t− x1)
2;x1,x2) =


x1(1−x1)

[
n1+(1−α1)s1(s1−1)

]
n2

1
, n1,n2 ≥ max{s1,s2} ≥ 2

x1(1−x1)
n1

, otherwise.

T α1,α2,s1,s2
n1,n2

((s− x2)
2;x1,x2) =


x2(1−x2)

[
n2+(1−α2)s2(s2−1)

]
n2

2
, n1,n2 ≥ max{s1,s2} ≥ 2

x2(1−x2)
n2

, otherwise.
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T α1,α2,s1,s2
n1,n2

((t− x1)
3;x1,x2) =


x1(1− x1)(1−2x1)

[
n1+(1−α1)s1(s1−1)(s1+1)

]
n3

1
, n1,n2 ≥ max{s1,s2} ≥ 2

Bn1,n2((t− x1)
3;x1,x2), otherwise.

T α1,α2,s1,s2
n1,n2

((s− x2)
3;x1,x2) =


x2(1− x2)(1−2x2)

[
n2+(1−α2)s2(s2−1)(s2+1)

]
n3

2
, n1,n2 ≥ max{s1,s2} ≥ 2

Bn1,n2((s− x1)
3;x1,x2), otherwise.

T α1,α2,s1,s2
n1,n2

((t− x1)
4;x1,x2) =



3x2
1(1− x1)

2
[

n1(n1−2)+(1−α1)s1(s1−1)[2n1−(s1+1)(s1+2)]
n4

1

]
+x1(1− x1)

[
n1+(1−α1)s1(s1−1)(s2

1+s1+1)
n4

1

]
, n1,n2 ≥ max{s1,s2} ≥ 2

Bn,m((t− x1)
4;x1,x2), otherwise.

T α1,α2,s1,s2
n1,n2

((s− x2)
4;x1,x2) =



3x2
2(1− x2)

2
[

n2(n2−2)+(1−α2)s2(s2−1)[2n−(s2+1)(s2+2)
n4

2
]

]
+x2(1− x2)

[
n2+(1−α2)s2(s2−1)(s2

2+s2+1)
n4

2

]
, n1,n2 ≥ max{s1,s2} ≥ 2

Bn1,n2((s− x2)
4;x1,x2), otherwise.

Proof. Using the Lemma 4.1 proof can be completed.

Lemma 4.3: ∀α1,α2 ∈ [0,1] and positive integers s1,s2, we have,

T α1,α2,s1,s2
n1,n2

((t− x1)
2;x1,x2)≤

s2
1− s1 +1

4n1
. (4.2)

T α1,α2,s1,s2
n1,n2

((s− x2)
2;x1,x2)≤

s2
2− s2 +1

4n2
. (4.3)

Proof. If n1,n2 ≥max{s1,s2} then by the used idea in the Lemma 3.2 and Lemma 4.2,

we have
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T α1,α2,s1,s2
n1,n2

((t− x1)
2;x1,x2) =

x1(1− x1)
[
n1 +(1−α1)s1(s1−1)

]
n2

1

≤ x1(1− x1)

n1
+

x1(1− x1)[s1(s1−1)]
n1

≤
x1(1− x1)[s2

1− s1 +1]
n1

≤
s2

1− s1 +1
4n1

,

which gives equation (4.2). If n1,n2 ≥ max{s1,s2} does not hold then by Proposition

3.3 we have,

T α1,α2,s1,s2
n1,n2

((t− x1)
2;x1,x2 = Bn1,n2((t− x1)

2;x1,x1)≤ Bn1,n2(t
2;x1,x2)

−2x1Bn1,n2(t;x1,x2)+Bn1,n2(x
2
1;x1,x2)

+ x2
1 +

x1(1− x1)

n1
−2x2

1 + x2
1

=
x1(1− x1)

n1
≤

s2
1− s1 +1

4n1
.

If n1,n2 ≥ max{s1,s2} then by same method we have,

T α1,α2,s1,s2
n1,n2

((s− x2)
2;x1,x2) =

x2(1− x2)
[
n2 +(1−α2)s2(s2−1)

]
n2

2

≤ x2(1− x2)

n2
+

x2(1− x2)[s2(s2−1)]
n2

≤
x2(1− x2)[s2

2− s2 +1]
n2

≤
s2

2− s2 +1
4n2

,

which gives equation (4.3). If n1,n2 ≥ max{s1,s2} does not hold then by Proposition

3.3 we have,

T α1,α2,s1,s2
n1,n2

((s− x2)
2;x1,x2) = Bn1,n2((s− x2)

2;x1,x2)≤ Bn1,n2(s
2;x1,x2)

−2x2Bn1,n2(s;x1,x2)+Bn1,n2(x
2
2;x1,x2)

+ x2
2 +

x2(1− x2)

n2
−2x2

2 + x2
2

=
x2(1− x2)

n2
≤

s2
2− s2 +1

4n2
.

39



Chapter 5

APPROXIMATION PROPERTIES OF T α1,α2,S1,S2
N1,N2

In the present chapter we consider some approximation properties of the operators

(4.1) on the space of C([0,1]× [0,1]).

Now using the given preliminaries in the pervious chapters the following Korovkin

type approximation theorem can be proved for the operators T α1,α2,s1,s2
n1,n2 . For more

information see [9].

Theorem 5.1: Let consider two real fixed numbers α1,α2 ∈ [0,1] and let s1,s2 ∈ N

then for all h ∈C([0,1]× [0,1]),

lim
n1,n2→∞

T α1,α2,s1,s2
n1,n2

(h;x1,x2) = h(x1,x2),

uniformly for any (x1,x2) ∈ [0,1]× [0,1].

Proof. By the definition of the operators T α1,α2,s1,s2
n1,n2 and Lemma 4.1, we have,

T α1,α2,s1,s2
n1,n2

(1;x1,x2) = 1.

T α1,α2,s1,s2
n1,n2

(t;x1,x2) = x1.

T α1,α2,s1,s2
n1,n2

(s;x1,x2) = x2.

T α1,α2,s1,s2
n1,n2

(t2;x1,x2) =


x2

1 +
x1(1−x1)

[
n1+(1−α1)s1(s1−1)

]
n2

1
, n1,n2 ≥ max{s1,s2} ≥ 2

x2
1 +

x1(1−x1)
n1

, otherwise.

T α1,α2,s1,s2
n1,n2

(s2;x1,x2) =


x2

2 +
x2(1−x2)

[
n2+(1−α2)s2(s2−1)

]
n2

2
, n1,n2 ≥ max{s1,s2} ≥ 2

x2
2 +

x2(1−x2)
n2

, otherwise.
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Therefore, lim
n,m→∞

T α1,α2,s1,s2
n1,n2

(1,x1,x2) = 1,

lim
n1,n2→∞

T α1,α2,s1,s2
n1,n2

(t;x1,x2) = x1,

lim
n1,n2→∞

T α1,α2,s1,s2
n1,n2

(s;x1,x2) = x2,

lim
n1,n2→∞

T α1,α2,s1,s2
n1,n2

(t2 + s2;x1,x2) = (x2
1 + x2

2),

(uniformly) for any (x1,x2) ∈ [0,1]× [0,1], by which the proof is completed.

Corollary 5.1: Let h(t,s,x1,x2) ∈ C([0,1]× [0,1]), such that h(t,s,x1,x2) → 0 as

(t,s) → (x1,x2). For any α1,α2 ∈ [0,1] and positive integers s1,s2 with

n1 ≥ max{s1,s2} we have,

lim
n1→∞

n1T α1,α2,s1,s2
n1,n1

(h(t,s,x1,x2)
√
(t− x1)4 +(s− x2)4;x1,x2) = 0.

Proof. By the Cauchy-Schwarz inequality, we can write the following,

n1T α1,α2,s1,s2
n1,n1

(h(t,s,x1,x2)
√
(t− x1)4 +(s− x2)4;x1,x2)

≤
(

T α1,α2,s1,s2
n1,n1

(h2(t,s,x1,x2)

) 1
2
(

n2
1T α1,α2,s1,s2

n1,n1
((t− x1)

4 +(s− x2)
4;x1,x2)

) 1
2

≤
(

T α1,α2,s1,s2
n1,n1

(h2(t,s,x1,x2)

) 1
2
(

n2
1T α1,α2,s1,s2

n1,n1
((t− x1)

4;x1,x2)

+T α1,α2,s1,s2
n1,n1

((s− x2)
4;x1,x2)

) 1
2

. (5.1)

On the other hand,

lim
n1→∞

n2
1T α1,α2,s1,s2

n1,n1
((t− x1)

4;x1,x2) = 3x2
1(1− x2

1), (5.2)

lim
n1→∞

n2
1T α1,α2,s1,s2

n1,n1
((s− x2)

4;x1,x2) = 3x2
2(1− x2

2), (5.3)

and as a consequence of Lemma 4.2, we have,

lim
n→∞

T α1,α2,s1,s2
n,n h(t,s,x,y) = 0. (5.4)

By considering (5.2),(5.3) and (5.4) in (5.1) the proof will be completed.
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Theorem 5.2: Let α1,α2 ∈ [0,1] and let n1,n2 ≥ max{s1,s2} ≥ 2, then for any

g ∈C([0,1]× [0,1]),

lim
n1→∞

n1
(
T α1,α2,s1,s2

n1,n1
(g;x1,x2)−g(x1,x2)

)
=

1
2

x1(1− x1)
∂ 2g
∂x2

1
(x1,x2)

+
1
2

x2(1− x2)
∂ 2g
∂x2

2
(x1,x2), (5.5)

(uniformly) on [0,1]× [0,1].

Proof. By the aid of Taylor’s expansion we get,

g(t,s) = g(x1,x2)+(t− x1)
∂g
∂x1

(x1,x2)+(s− x2)
∂g
∂x2

(x1,x2)+
1
2
(t− x1)

2 ∂ 2g
∂x2

1
(x1,x2)

+(t− x1)(s− x2)
∂ 2g

∂x1x2
(x1,x2)

+
1
2
(s− x2)

2 ∂ 2g
∂x2

2
(x1,x2)+h(t,s,x1,x2)

√
(t− x1)4 +(s− x2)4, (5.6)

where h(t,s,x1,x2) ∈C([0,1]× [0,1]) and lim(t,s)→(x1,x2) h(t,s,x1,x2) = 0.

Using (5.6) and the Lemma 4.2, we have,

T α1,α2,s1,s2
n1,n1

(g;x1,x2) = g(x1,x2)+
1
2

∂ 2g
∂x2

1
(x1,x2)T α1,α2,s1,s2

n1,n1
((t− x1)

2;x1,x2)

+
1
2

∂ 2g
∂x2

2
(x1,x2)T α1,α2,s1,s2

n1,n1
((s− x2)

2;x1,x2)

+ f
∂ 2g

∂x1x2
(x1,x2)T α1,α2,s1,s2

n1,n1
((t− x1)(s− x2);x1,x2)

+T α1,α2,s1,s2
n1,n1

(h(t,s,x1,x2)
√
(t− x1)4 +(s− x2)4;x1,x2).

By the proved inequality in Lemma 4.3, we have,

T α1,α2,s1,s2
n1,n1

(g;x1,x2)≤ g(x1,x2)

+
1
2

∂ 2g
∂x2

1
(x1,x2)

x1(1− x1)[s2
1− s1 +1]

n1

+
1
2

∂ 2g
∂x2

2
(x1,x2)

x2(1− x2)[s2
2− s2 +1]

n1

+
∂ 2g

∂x1x2
(x1,x2)T α1,α2,s1,s2

n1,n1
((t− x1)(s− x2);x1,x2)

+T α1,α2,s1,s2
n1,n1

(h(t,s,x1,x2)
√
(t− x1)4 +(s− x2)4;x1,x2). (5.7)
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Thus by Corollary 5.1 and the following equation

T α1,α2,s1,s2
n1,n1

((t− x1)(s− x2);x1,x2) = T α1,s1
n1

((t− x1);x1)T α2,s2
n1

((s− x2);x2) = 0,

in (5.7) we get (5.5).

Theorem 5.3: If h ∈ C([0,1]× [0,1]) then for any α1,α2 ∈ [0,1], positive integers

s1,s2 and for all n1,n2 ≥ max{s1,s2} we have,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)| ≤ 2ω2(h;δn1,n2),

where δ 2
n1,n2

=
n2

(
s2

1−s1+1
)
+n1

(
s2

2−s2+1
)

4n1n2
.

Proof. By the properties of positive linear operators and the modulus of continuity we

have,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)|= T α1,α2,s1,s2
n1,n2

(|h(t,s)−h(x1,x2)|;x1,x2)

≤ T α1,α2,s1,s2
n1,n2

(
ω2
(
h;
√

(t− x1)2 +(s− x2)2);x1,x2

)
≤ ω2

(
h;δn1,n2;x1,x2)

×
{

1+
1

δn1,n2

T α1,α2,s1,s2
n1,n2

(√
(t− x1)2 +(s− x2)2;x1,x2

)}
, (5.8)

where δn1,n2 > 0. Appliying Cauchy-Schwarz inequality to (5.8) and Lemma 4.3, we

get;

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)|

≤ ω2
(
h;δn1,n2 ;x1,x2)

[
1+

1
δn1,n2

√
Lα1,α2,s1,s2

n1,n2

(
(t− x1)2 +(s− x2)2;x1,x2

)]
≤ ω2

(
h;δn1,n2 ;x1,x2)

[
1+

1
δn1,n2

√
Lα1,α2,s1,s2

n1,n2

(
(t− x1)2;x1,x2

)
+T α1,α2,s1,s2

n1,n2

(
(s− x2)2;x1,x2

)]

≤ ω2
(
h;δn1,n2 ;x1,x2)

[
1+

1
δn1,n2

√
s2

1− s1 +1
4n1

+
s2

2− s2 +1
4n2

]
,

taking δn1,n2 =

√
s2

1−s1+1
4n1

+
s2
2−s2+1

4n2
, the proof is completed.

Theorem 5.4: Let h ∈C([0,1]× [0,1]). For any α1,α2 ∈ [0,1], positive integers s1,s2

and for all n1,n2 ≥ max{s1,s2} we have,
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T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)| ≤ 2
(

ω2,x1(h;δn1)+ω2,x2(h;δn2)

)
,

taking δn1 =

√
s2

1−s1+1
4n1

and δn2 =

√
s2

2−s2+1
4n2

.

Proof. As the operators T α1,α2,s1,s2
n1,n2 is linear positive and by the properties of modulus

of continuity we have,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)|= T α1,α2,s1,s2
n1,n2

(|h(t,s)−h(x1,x2)|;x1,x2)

≤ T α1,α2,s1,s2
n1,n2

(|h(t,s)−h(x1,s)|;x1,x2)+T α1,α2,s1,s2
n1,n2

(|h(x1,s)−h(x1,x2)|;x1,x2)

≤ T α1,α2,s1,s2
n1,n2

(ω2,x1(h, |t− x1|)+T α1,α2,s1,s2
n1,n2

(ω2,x2(h; |s− x2|)

≤ ω2,x1(h;δn1)

[
1+

1
δn1

T α1,α2,s1,s2
n1,n2

(|t− x1|;x1,x2)

]
+ω2,x2(h;δn2)

[
1+

1
δn2

T α1,α2,s1,s2
n1,n2

(|s− x2|;x1,x2)

]
.

Using Lemma 4.3 and Cauchy-Schwarz inequality we get,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)|

≤ ω2,x1(h;δn1)

[
1+

1
δn

√
T α1,α2,s1,s2

n1,n2 ((t− x1)2;x1,x2)

]
+ω2,x2(h;δn2)

[
1+

1
δn2

√
T α1,α2,s1,s2

n1,n2 ((s− x2)2;x1,x2)

]

≤ ω2,x1(h;δn1)

[
1+

1
δn1

√
s2

1− s1 +1
4n1

]
+ω2,x2(h;δn2)

[
1+

1
δn2

√
s2

2− s2 +1
4n2

]
,

where δn1 =

√
s2

1−s1+1
4n1

and δn2 =

√
s2

2−s2+1
4n2

, this completes the proof.

Consider real numbers τ1,τ2 ∈ (0,1] and the following Lipshitz class Lip(τ1,τ2)
K for

h(x,y) such that;

|h(t,s)−h(x1,x2)| ≤ K|t− x1|τ1|s− x2|τ2.

Theorem 5.5: For any α1,α2 ∈ [0,1], positive integers s1,s2 , h ∈ Lip(τ1,τ2)
K and all

n1,n2 ≥ max{s1,s2} we have,
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‖T α1,α2,s1,s2
n1,n2

(h)−h‖∞

≤ K
(

n1 +(1−α1)
(
s2

1− s1 +1
)

4n2
1

) τ1
2
(

n2 +(1−α2)
(
s2

2− s2 +1
)

4n2
2

) τ2
2

. (5.9)

Proof. Let h ∈ Lip(τ1,τ2)
K , then

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)|

≤ T α1,α2,s1,s2
n1,n2

(|h(t,s)−h(x1,x2)|;x1,x2)

≤ T α1,α2,s1,s2
n1,n2

(K|t− x1|τ1|s− x2|τ2;x1,x2)

≤ KT α1,s1
n1

(|t− x1|τ1;x1)T α2,s2
n2

(|s− x2|τ2 ;x1,x2). (5.10)

Applying Hölder’s inequality to (5.10) for p1 =
2
τ1

q1 =
2

2−τ1
and p2 =

2
τ2

q2 =
2

2−τ2

we get,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)|

≤ K
(

T α1,s1
n1

((t− x1)
2;x1)

) τ1
2
(

T α1,s1
n1

(1;x1)

) 2−τ1
2
(

T α2,s2
n2

((s− x2)
2;x1)

) τ2
2
(

T α2,s2
n2

(1;x1)

) 2−τ2
2

≤ K
(

T α1,s1
n1

((t− x1)
2;x1)

) τ1
2
(

T α2,s2
n2

((s− x2)
2;x1)

) τ2
2

≤ K
(

x1(1− x1)(n1 +(1−α)s1(s1−1)
n2

1

) τ1
2
(

x2(1− x2)(n2 +(1−α)s2(s2−1)
n2

2

) τ2
2
.

Taking supremum from both sides gives (5.9) so it completes the proof.

Theorem 5.6: For any α1,α2 ∈ [0,1], positive integers s1,s2, ∀n1,n2 ≥ max{s1,s2}

and h ∈C1([0,1]× [0,1]), we have,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)|

≤ ‖ ∂h
∂x1
‖∞

(
x1(1− x1)

[
n1 +(1−α1)

(
s2

1− s1 +1
)]

n2
1

) 1
2

+‖ ∂h
∂x2
‖∞

(
x2(1− x2)

[
n2 +(1−α2)

(
s2

2− s2 +1
)]

n2
2

) 1
2

.

Proof. Given h ∈C1([0,1]× [0,1]) then,

h(t,s)−h(x1,x2) =

ˆ t

x1

∂h
∂x1

(τ,s)dτ +

ˆ s

x2

∂h
∂x2

(x1,θ)dθ .
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If we apply T α1,α2,s1,s2
n1,n2 to both sides we get;

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)| ≤ T α1,α2,s1,s2
n1,n2

(∣∣∣∣ˆ t

x1

∣∣ ∂h
∂x1

(τ,s)
∣∣dτ

∣∣∣∣;x1,x2

)
+T α1,α2,s1,s2

n1,n2

(∣∣∣∣ˆ s

x2

∣∣ ∂h
∂x2

(x1,θ)
∣∣dθ

∣∣∣∣;x1,x2

)
,

which gives,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)| ≤ ‖
∂h
∂x1
‖∞T α1,α2,s1,s2

n1,n2
(|t− x1|;x1,x2)

+
∥∥ ∂h

∂x2

∥∥
∞

T α1,α2,s1,s2
n1,n2

(|s− y2|;x1,x2).

Then by applying Cauchy-Schwarz inequality to the above inequality we have,

|T α1,α2,s1,s2
n1,n2

(h;x1,x2)−h(x1,x2)| ≤ ‖
∂h
∂x1
‖∞

(
T α1,α2,s1,s2

n1,n2
((t− x1)

2;x1,x2)

) 1
2

+
∥∥ ∂h

∂x2

∥∥
∞

(
T α1,α2,s1,s2

n1,n2
((s− x2)

2;x1,x2)

) 1
2

.

Using Lemma 4.2, in the above inequality completes the proof.

5.1 The GBS Case of Generalized Belending Type-Bernstein

Operators

In this section we consider the definition of B-continuity, B-differentiability,

B-bounded, mixed modulus of continuity and the GBS case of our operators.

Definition 5.1: A function h : [0,1]× [0,1]−→R is called a B-continuous function in

(x1,x2) ∈ [0,1]× [0,1] if and only if

lim
(t,s)→(x1,x2)

4(t,s)h(x1,x2) = 0,

, where

4(t,s)h(x1,x2) = h(x1,x2)−h(x1,s)−h(t,x2)+h(t,s),

which is called the mixed difference of h.

Definition 5.2: A function h : X1× X2 −→ R is called a B-continuous function on
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[0,1]× [0,1] if and only if it is B-continuous on any points [0,1]× [0,1].

Definition 5.3: A function h : [0,1]× [0,1]−→R is called a B-differentiable function

in (t,s) ∈ [0,1]× [0,1] iff

lim
(x1,x2)→(t,s)

4(t,s)h(x1,x2)

(x1− t)(x2− s)
,

exists. This limit is called B-differential of h at the point (t,s) and it is denoted as

DBh(t,s).

Definition 5.4: A function h : [0,1]× [0,1] −→ R is called a B-bounded on [0,1]×

[0,1] iff there exists M1 > 0 such that

|4(t,s) h(x1,x2)| ≤M1,

for any (x1,x2),(t,s) ∈ [0,1]× [0,1].

The sets Cb([0,1]× [0,1]) and Bb([0,1]× [0,1]) are denoted as B-continuous and

B-bounded function respectively.

The above definitions are introduced by Bögel in [14], [15] and [16]. Later,

approximating properties of GBS operators of bivariate Bernstein polynomials was

shown by Dobrescu and Matei in [24], using B-continuity and B-differentiability.

Nowadays, one of the popular and hot topics among researchers is Bögel space. Some

of those research can be mentioned as follow, [1], [7], [11], [12], [36], [38],

[45] and [47].

Definition 5.5: The mixed modulus of smoothness of a real valud B-continuous

function h(x1,x2) is denoted by ωmixed(h,δ1,δ2) and defined as,
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ωmixed(h,δ1,δ2) := sup{|4(t,s) h(x1,x2)| : |t− x1|< δ1, |s− x2|< δ2},

where (x1,x2),(t,s) ∈ [0,1]× [0,1] and δ1,δ2 > 0. It should be mentioned that the

properties of ωmixed(h,δ1,δ2) is similar with usual modulus of continuity.

Definition 5.6: A bivariate function h(x1,x2) , (x1,x2) ∈ [0,1] × [0,1] is called

uniformly B-continuous function iff

lim
δ1,δ2→0

ωmixed(h,δ1,δ2) = 0.

The GBS case of the operators T α1,α2,s1,s2
n1,n2 can be written as follow,

Gα1,α2,s1,s2
n1,n2

(h(t,s);x1,x2) = T α1,α2,s1,s2
n1,n2

(h(x1,s)+h(t,x2)−h(t,s);x1,x2),

if n1,n2 ≥ max{s1,s2}.

That is

Gα1,α2,s1,s2
n1,n2

(h(t,s);x1,x2)

=
n1

∑
i=0

n2

∑
j=0

(1−α1)

[(
n1− s1

i− s1

)
xi−s1+1

1 (1− x1)
n1−i +

(
n1− s1

i

)
xi

1(1− x1)
n1−s1−i+1

]
+α1

(
n1

i

)
xi

1(1− x1)
n1−i
]

× (1−α2)

[(
n2− s2

j− s2

)
xi−s2+1

2 (1− x2)
n2− j+)

(
n2− s2

j

)
x j

2(1− x2)
n2−s2− j+1

+α2

(
n2

j

)
x j

2(1− x2)
n2− j

](
h(

i
n1

,x2)+h(x1,
j

n2
)−h(

i
n1

,
j

n2
)

)
,

or
Gα1,α2,s1,s2

n1,n2
(h(t,s);x1,x2) = Bn1,n2(h(x1,s)+h(t,x2)−h(t,s);x1,x2),

otherwise.

5.2 Degree of Approximation for The Operators Gα1,α2,s1,s2
n1,n2

In the present section we study the degree of approximation of the GBS case of our

operators and also we construct some numerical results of our operators to show that

how does it work.

48



Theorem 5.7: Let (x1,x2) ∈ [0,1]× [0,1] and let f be a B-continuous function, for

real values α1,α2 ∈ [0,1] and positive integers s1,s2 and for all n1,n2 ≥ max{s1,s2},

we have

|Gα1,α2,s1,s2
n1,n2

(h(t,s);x1,x2)−h(x1,x2)| ≤
(
1+
√

Ms1,s2

)2
ωmixed(h,

1
√

n1
,

1
√

n2
),

where Ms1,s2 > 0 and it depends on s1 and s2.

Proof. For any positive real numbers τ1 and τ2 we have,

ωmixed(h,τ1δ1,τ2δ2)≤ (1+ τ1)(1+ τ2)ωmixed( f ,δ1,δ2).

For all δ1 > 0, δ2 > 0 and for any (x1,x2),(t,s) ∈ [0,1]× [0,1] we have,

4(t,s)h(x1,x2)≤ ωmixed(h, |t− x1|, |s− x2|)

≤ (1+
|t− x1|

δ1
)(1+

|s− x2|
δ2

)ωmixed(h,δ1,δ2).

By the definition of4(t,s)h(x1,x2) we get,

h(t,x2)+h(x1,s)−h(t,s) = h(x1,x2)−4(t,s)h(x1,x2),

and
|Gα1,α2,s1,s2

n1,n2
(h(t,s);x1,x2)−h(x1,x2)|

≤ T α1,α2,s1,s2
n1,n2

(|4(t,s) h(x1,x2)|;x1,x2)

≤ ωmixed(h,δ1,δ2)T α1,α2,s1,s2
n1,n2

((1+
|t− x1|

δ1
)(1+

|s− x2|
δ2

);x1,x2)

≤ ωmixed(h,δ1,δ2)

(
1+

1
δ1

√
T α1,α2,s1,s2

n1,n2 ((t− x1)2;x1,x2)

+
1
δ2

√
Lα1,α2,s1,s2

n1,n2 ((s− x2)2;x1,x2)

+
1

δ1δ2

√
T α1,α2,s1,s2

n1,n2 ((t− x1)2;x1,x2)T
α1,α2,s1,s2

n1,n2 ((s− x2)2;x1,x2)

)
.

By Lemma 4.3, we get,
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|Gα1,α2,s1,s2
n1,n2

(h(t,s);x1,x2)−h(x1,x2)|

≤ ωmixed(h,δ1,δ2)

(
1+

1
δ1

√
s2

1− s1 +1
4n1

+
1
δ2

√
s2

2− s2 +1
4n2

+
1

δ1δ2

√(s2
1− s1 +1

4n1

)(s2
2− s2 +1

4n2

))
.

Now, assume that δ1 = n
− 1

2
1 and δ2 = n

− 1
2

2 we get

|Gα1,α2,s1,s2
n1,n2

(h(t,s);x1,x2)−h(x1,x2)|

≤ ωmixed(h,n
− 1

2
1 ,n

− 1
2

2 )

(
1+

√
s2

1− s1 +1
4

+

√
s2

2− s2 +1
4

+

√(s2
1− s1 +1

4
)(s2

2− s2 +1
4

))
≤ (1+Ms1,s2)

2
ωmixed(h,n

− 1
2

1 ,n
− 1

2
2 ),

where Ms1,s2 := max
{

s2
1−s1+1

4 ,
s2

2−s2+1
4

}
.

5.3 Graphical Analysis

In this part I am going to show the approximation of the operators T α1,α2,s1,s2
n1,n2 and

Gα1,α2,s1,s2
n1,n2 to a function h(x1,x2) where h(x1,x2) = 2x1sin(πx1)x3

2 to study their

approach for different values of α1,α2,s1,s2,n1 and n2. Then immediately the

following can be observed,

1. The small values of s1 and s2, while the other parameters are fixed the better

approximation of T α1,α2,s1,s2
n1,n2 (h) to the function h (see Figure 5.1).

2. The large values of α1 and α2, while the other parameters are fixed , the better

approximation of T α1,α2,s1,s2
n1,n2 (h) to the function h (see Figure 5.2).

3. In Figure 5.3 The approximation of the operator T α1,α2,s1,s2
n1,n2 (h) to the function h is

shown, which is also proved theoretically in the paper that by increasing the degrees

(n1,n2) will be better.

4. Approximation of the GBS operators Gα1,α2,s1,s2
n1,n2 (h) is better than approximation of

the T α1,α2,s1,s2
n1,n2 (h) to the function h (see Figure 5.4).
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Figure 5.1: Approximation of T α1,α2,s1,s2
n1,n2 (h;x1,x2) to h(x1,x2) (blue) for s1,s2 =

5(white), 15(green), 30(yellow), α1,α2 = 0.7 and n1,n2 = 45

Figure 5.2: Approximation of T α1,α2,s1,s2
n1,n2 (h;x1,x2) to h(x1,x2) (blue) for s1,s2 = 10,

α1 = α2 = 0.1(white), 0.3(red), 0.5(green), 0.7(black),0.9(yellow) and n1,n2 = 45
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Figure 5.3: Approximation of T α1,α2,s1,s2
n1,n2 to h(x1,x2) (blue) for s1 = s2 = 6, α1,α2 =

0.4 and n1,n2 = 35(white), n1,n2 = 50(red)

Figure 5.4: Approximation to h(x1,x2) (blue) with s1 = s2 = 2, α1 = α2 = 0.7 and
n1 = n2 = 60, Gα1,α2,s1,s2

n1,n2 (h;x1,x2)(white), T α1,α2,s1,s2
n1,n2 (h;x1,x2)(black)

.
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Chapter 6

CONCLUSION

In this thesis, a new class of non-paltry extention of bivariate blending type Bernstein

operators are introduced. The blending type Bernstein operators which have been

studied by other researchers includes parameters α1 and α2 but the proved operators

here contain parameters α1,α2,s1 and s2. There are some handouts achieved in this

thesis as follow:

1. Proposed operators in this thesis depend on four parametes α1,α2,s1 and s2. So

there are two more variables s1 and s2 by which investigating of approximation of

proposed operators are more advantageous.

2. The parameters s1 and s2 effect the sum and cause more flexible than the defined

blending type Bernstein operators in [5].

3. The Korovkin and Voronoskaja type theorems are proved for the given operators.

4. The GBS case for the defined operators, with four parameters, are introduced as

Gα1,α2,s1,s2
n1,n2 where approximation is defined through different values of s1 and s2.

5. The associate GBS operators Gα1,α2,s1,s2
n1,n2 give better approximation than T α1,α2,s1,s2

n1,n2 .

6. Some approximation results for T α1,α2,s1,s2
n1,n2 are also obtained.

7. The operators T α1,α2,s1,s2
n1,n2 satisfy the condition T α1,α2,s1,s2

n1,n2 (1) = 1 for some values

of n1 and n2. It is while the suggested pervious operators by other researchers do not

satisfy in the mentioned condition. So it is easy to see that the Korovkin type

approximation theorem still hold and the same results can be obtained. It should be

mentioned that defining the suggested operators as a piecewise function have solved
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this issue easily.

8. It should be mentioned that Blending-type Bernstein operators can be used in the

control theory, modeling theory and finding numerical solution of integral equations.

For example see Maleknejad et al 2011 ( [44]) for the approximate solution of

Volterrra integral equations using Bernstein operators .
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