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ABSTRACT 

As newly developed approach, the Integrated Force Method (IFM) is applied as the 

principal approach for analysis of indeterminate space frames. For automatic generation 

of equilibrium equations, computer codes are developed and then nodal displacement, 

internal forces, support reactions and deformations are calculated using the 

aforementioned equations and compatibility conditions 

In the first two programs the member forces of space frames are calculated as primary 

unknowns. Since obtaining the compatibility condition is one of initial steps in IFM, two 

codes were developed that address this issue through different approaches which are null 

space and singular value decomposition.  

In third code the displacement method known as Dual Integrated Force Method is 

applied. Generation of global stiffness matrix is the initial step in Dual Integrated Force 

Method. In contrast with the previous two methods, in Dual Integrated Force Method 

displacements are the main unknowns.  
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ÖZ 

Yeni geliştirilen bir yaklaşım olarak, Entegre Kuvvet Yöntemi statik belirsiz uzay 

çerçeve analizi için temel yaklaşım olarak uygulanır. Denge denklemleri otomatik elde 

ede bilmesi için, bilgisayar kodları geliştirildi ve daha sonra noktasal yer değiştirme, iç 

kuvvetleri, ve deformasyonlar söz konusu denklemler ve uygunluk şartlari kullanılarak 

hesaplanır. 

İlk iki programlarda uzay çerçeve eleman kuvvetleri hesaplanır.Uyumluluk koşulu elde 

ede bilmek için ilk adımlardan biri bu ana bilinmeyenler olarak konuda singular value 

decomposıtion ve null space ayrışımı olan farklı yaklaşımlar geliştirilmiştir. 

Üçüncü kod Çift Tümleşik Kuvvet Yöntemi olarak bilinen deplasman yöntemi 

uygulanır. Küresel rijitlik matrisinin Nesil Çift Entegre Kuvvet Yöntemi ilk adımdır. 

Daha önceki yöntem ile tezat olarak, yer değiştirme ana bilinmeyenlerdir. 
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

Structure refers to most of observable objects in the environment like plants, trees, 

skeleton of animals and human, spider nest etc. Most of these structures are developed 

by either the genetic imprints of the body itself or by instinct. The only creature that 

conceptualizes, imagines and design structures prior to its construction is human. 

Any built object and its constituting parts must be in equilibrium state and stable in order 

to be accepted as a structure. A structure in order to attain and remain in equilibrium 

state, all of external and internal forces applied to it should be in balance. 

 

One of the fundamental principles of structural design and analysis is equilibrium 

equation concept that sets the total internal forces at all nodes and joints equal to 

external loads. It links these set of forces at global degrees of freedom to reveal the 

stability state of structure. The manual calculation of these equations is an easy task 

when dealing with the small frames but in the case of large scale and complex structures, 

it is a very time consuming and calculation intensive task (Fillipou 2001). 
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One the most prevalent type of built structures is the space frame form. The elements of 

such frames might be oriented in any direction in three-dimensional space and also 

connected with rigid and/or flexible connections. Moreover external loads oriented 

towards any random direction could be applied directly on the joints, as well as space 

frame members. Bending moments around principal axis, shear forces in principal 

directions, torsion and axial forces are generated as a reaction to external. Analyzing 

space frame structures is much more difficult than analyzing tresses and beams 

independently. Introduction of numerous algebraic equations adds to the complexity of 

this task (Kassimali, 2010). 

Two main methods of analyzing the structures are: 

 Displacement method  

 Force method 

Displacement method which is founded by Navire (1785-1836)that uses displacement as 

primary unknown.  Force method developed by Maxwell (1831-1879) uses forces as 

primary unknown. An alternative and advanced form of force method was also 

developed by Patnaik et al., termed as Integrated Force Method (IFM). (S.N. Patnaik, L. 

Berke and R.H. Gallanghar, 1991) 

 

In IFM, through simultaneously coupling of equilibrium equation and compatibility 

condition (CC), in addition to redundants all of independent forces are calculated (S.N. 

Patnaik, L. Berke and R.H. Gallanghar, 1991). Along with elimination of need for 

selecting redundants, the determination of independent internal forces has been reduced 

to one solution process. Because of aforementioned reasons for designing large scale and 

complex structures the IFM is a proper option. IFM has many advantages over other 
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methods. It converges to the correct answer much faster and has a well-conditional 

system in order to carry out a finite element discrete analysis (FEDA). It also provides 

much more precise results. The scope of problems that could be addressed via IFM have 

also been broadened to cover analysis of nonlinear structures (N. R. B. Krishnam Raju, 

and J. Nagabhushanam, 2000) and optimization (R. Sedaghati, 2005) 

 

Use of Singular Value Decomposition (SVD) and Null Space (NS) has rendered the 

formation of CC for IFM much easier (Sensoy, 1995) (Maovaghar, 2005). The CC could 

be directly calculated, when NS and SVD are applied to equilibrium matrix. The CC of 

IFM is calculated through multiplication of unconnected flexibility matrix with NS or 

SVD. The NS and SVD are acquired via simple programming Mathematica ver.8. This 

simplicity is the chief justification for recommendation of NS and SVD when 

calculating the compatibility matrix and analyzing structures through IFM. 

 

There is an advanced form of IFM called Dual Integrated Force Method (IFMD). In this 

method only unconnected stiffness matrix and equilibrium matrix of the structure are 

used in the generation of global stiffness matrix. Hence the development of long and 

complex codes for generation of global stiffness matrix is avoided. This matrix is also 

obtained through programming in Mathematica ver.8. This advantage is the reason 

behind the recommendation of using IFM. 

1.2 The Research Question 

This research aims to develop a computer code that analyzes space frames through three 

different methods that are IFM via NS, IFM via SVD and IFMD. These codes are very 
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user-friendly and also very beneficial for instructors, students, researchers and designers 

when analyzing the structures. Different problems were analyzed through the mentioned 

three methods and the outcomes are compared with outcomes of Mastan ver.3. The 

comparison shows conformity between the results of research and Mastan ver.3 results.  

In this thesis the theories for these 3 methods is discussed, step by step. The discussion 

covers the following topics: 

 Equilibrium equati.on;  

 Compatibility conditions; 

 Unconnected flexibility matrix; 

 Nodal displacement;  

 Main IFM matrix; 

 End force of members.  

1.3 Research Objectives 

The available soft-wares released for analysis of frames mostly apply stiffness method 

and classical force method but there is no software for structural analysis through frame 

with integrated force method. Beside this, many of these soft-wares just generate frame 

analysis like nodal displacement, forces of member end, support reactions and also 

diagrams of shear force, axial force, bending moment diagrams. These soft-wares also 

do not expose the complete steps of these methods. 

1.4 Research Limitations 

Thermal, triangular, trapezoidal loading and support settlement are not included within 

this research. 
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1.5 Organization of Thesis 

The basic explanations regarding EE, IFM via NS, IFM via SVD and IFMD are 

discussed in chapter 2. This chapter also covers the theory of these three methods. 

 

In chapter 3 the significance of the problem and the problem itself is stated. The solution 

approach and the desired characteristics of the program are discussed as well. 

 

Chapter 4 is about the methodologies used in this research. 

Chapter 5 describes how to assemble the equilibrium equation automatically and the 

Mathematica programming for equilibrium equation. 

 

Chapter 6 contains illustrative examples and their solution thorough three different 

methods. 

 

Chapter 7 includes a summary and conclusion of the research and recommendation for 

further researches.  
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Chapter 2 

2 FEATURES OF INTEGRATED FORCE METHOD AND 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, Basics of space frame structures and their common characteristics and 

behavior are explained. Furthermore transformation matrix is discussed. 

2.2 Literature Review 

2.2.1 Force Method 

In Civil Engineering structural analysis, the force method (FM) is a popular alternate 

technique for the classical stiffness method (CSM). It is favored by structural analyzers 

due to its more accurate and perfect estimates for forces. Patnaik formulated and 

suggested an innovate formulation in the FM and named it “Integrated Force Method” 

for continuous and discrete systems analysis. 

2.2.2 Integrated Force Method 

As a force technique, IFM integrates both EE system and the global compatibility 

conditions (GCC) all together. With having well- defined parameters, this method could 

be applied to different types of structures. 
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2.2.3 Displacement Method 

The main idea in displacement method of structural analysis is that the displacements of 

each joints are taken as unknown, and after computing the displacement, the internal 

forces are calculated. There are various methods for the displacement method. Among 

these methods; the most important one is Dual Integrated Method. 

2.3 Recent IFM Applications in Structural Analysis 

IFM has been developed by Patnaik for analyzing structures. Before him Navier wrote 

the equilibrium equation for four-leg table, but his method was unsuccessful in solving 

equations due to indeterminate nature of structure. In Patnaik method, internal forces are 

supposed to be as independent variables. The next step is integration of system 

equilibrium equations with the GCC in order to make the governing set of conditions. 

One of the advantages of this method to the other methods like standard force method is 

that there is no need for redundant load systems. This property of IFM provides us with 

more accurate results than the ones generated with CSM. (Patnaik S. N., 1986)  

Application of IFM to other structural topics continued by Patnaik to consider the initial 

deformation behavior. Then Patnaik and friends established structural analyzing of finite 

elements by applying IFM on structures with two dimensions. In this analysis, space 

framed structures have not been argued. Nonlinear analyzing of structures by IFM was 

also investigated by other researchers like Krishnam at 2000 (Krishnam Raju N. R. B. , 

and Nagabhushanam J. , 2000). 

Some other investigations on IFM were done by Civil Engineering Students of Eastern 

Mediterranean University in recent years. Analysis of two dimensional truss structures 
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by Saied Khosravi in 2005 (Khosravi S., 2005), two dimensional analysis of frame 

structures by Seyed Saeed Kamkar in 2010 (Kamkar S., 2010) and three dimensional 

truss analysis by Hamed Farajzadeh in 2012 (Farajzadeh, 2012) were done. 

2.4 Features of Space Frame 

The most general style of framed structures is space frames. Members in this type of 

frames may be connecting to each other in any direction in three-dimensional space. 

Also members are connected by rigid and/or flexible connections. Additionally, external 

loads in any random direction can be applied to the joints, and also members of space 

frames. The members of a space frame are usually exposed to bending moments under 

the act of the external loads (Kassimali, 2010). 

Space frames are regularly used as a multi directional span. They are used to build long 

spans with few supports (Company, 2012).  

2.4.1 Stability and Determinacy of Space Frame  

Each of the nodes in a space frame contains intersecting forces and three moment 

equations. Therefore, six independent force equilibrium equations and moment 

equations should be written for each node. The formula to identify the circumstance and 

number of determinacy should be written and obtained from: 

d = 6 × 𝑚 + rest − 6 × n                  Eq.1                                                                                                

Where  

d: Number of determinacy 

m: Number of members or unknown forces number 

rest: number of support’s reactions 

n: Number of nodes 



9 

Conditions: 

If 6 × 𝑚 + rest < 6n, frame is unstable 

If 6 × 𝑚 + rest = 6n, frame is determinate    

If 6 × 𝑚 + rest > 6n, frame is indeterminate 

2.4.2 Generation of Transformation Matrix for Space Frame 

Generation of transformation matrix for space frame structure is quite different with the 

transformation matrices for trusses, plane frames, and grids. Transformation matrix for 

space frames is written according to direction cosines of x, y and z axes of the members 

in local coordinate system with respect to its global coordinate system of the structure 

(XYZ). Unlike it, transformation matrix for trusses, plane frames and grids are written 

with cosines of only the member’s x direction or longitudinal axis. Position of a member 

in a space frame is written based on the angles concerning its local and global axes. 

Figure 1 is showing an arbitrary member m of a space frame.  

 

Figure 1: An arbitrary member m of a space frame 

In figure 2 member m is considered in a space frame. The member end forces and end 

displacements in the local coordinate system are shown as Q and u. Figure 3 shows the 
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corresponding system of member end forces F and end displacements v, in the global 

coordinate system. As it is shown in Figure 3, the global member end forces and 

displacements are named with numbers. It is in a way similar to the local forces and 

displacements, except that they act in the directions of the global X, Y, and Z axes 

(Kassimali, 2010). 

 

 

 

Figure 2: Member end forces and end displacements in the local coordinate system 
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Figure 3: Member end forces and end displacements in the global coordinate system 

2.4.2.1 Transformation from global to local coordinate system 

It is realized by comparing Figures 2 and 3 that at member end b, the local forces Q1, Q2, 

and Q3 should be as same as the algebraic total quantities of the components of the 

global forces F1, F2, and F3 in the directions of the local x, y, and z axes respectively. 

Figure 4 is also showing the angle between local and global axes. The angles between 

the global axes are denoted by θxX. It means the angle between local x and global X 

axes. θxY, and θxZ, are written respectively. In the same way, the angles between the 
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local and global y and z axis are symbolized by θyX, θyY, θyZ, θzX, θzY, and θzZ, 

respectively.  

Figure 4: Orientation of member local x axis 

 

Q1 = F1 cos θxX + F2 cos θxY + F3 cos θxZ        Eq.2 

Q2 = F1 cos θyX + F2 cos θyY + F3 cos θyZ        Eq.3 

Q3 = F1 cos θzX + F2 cos θzY + F3 cos θzZ       Eq.4 
 

Equations (1) can be converted to matrix form as: 

 

1

2

3

Q

Q

Q

 
 
 
 
 
 

 = 
xX xY xZ

yX yY yZ

zX zY zZ

r r r
r r r

r r r

 
 
 
 
  

1

2

3

F
F
F

 
 
 
 
 

        Eq.5 

 

In which 

riJ = cos θiJ   i = x, y, or z  and  J = X, Y, or Z 

The local actions Q4, to Q12, at member end b to e, can be written in the same way in 

terms of their global matching part F4 to F12. 

By merging these equations, the transformation relationship between the 12 × 1 member 

local end force vector Q and the 12 × 1 member global end force vector F, can be 

expressed in the regular formula of: 

Q = TF          Eq.6 
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T: 12 × 12 transformation matrix on behalf of the members of space frames 

The Eq.7 stands for T. 

[T] = 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0

xX xY xZ

yX yY yZ

zX zY zZ

xX xY xZ

yX yY yZ

zX zY zZ

xX xY xZ

yX yY yZ

zX zY zZ

xX xY xZ

yX yY yZ

r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

r r r
r r r
r r r

0 0 0 0 0 0 0
zX zY zZr r r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Eq.7 

 

The compacted form of matrix T is written in terms of its sub-matrices as: 

 

[T] =  

𝑟 0 0 0
0
0
0

𝑟
0
0

0
𝑟
0

0
0
𝑟

          Eq.8 

In which: 

O: is a 3x3 null matrix; 

r: is a 3x3 member rotation matrix (Eq.9)  

 

[ ]

xX xY xZ

yX yY yZ

zX zY zZ

r r r

r r r r

r r r

 
 


 
  

            Eq.9 

In analysis of space frames, the rotation matrix r has an essential role. There are some 

methods to create this matrix. The most advantageous and common method for this 
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purpose is Member Rotation Matrix (MRM) in Terms of a Reference Point (RP). 

(Kassimali, 2010) 

2.4.2.1.1 Member Rotation Matrix in terms of Reference Point 

Members of space frame structures are typically sloped. If the angle of member is 

known, it is easy to determine the rotation matrix by Eq.10. 

2 2

2 2 2 2

2 2

2 2 2 2

sin sin
cos

sin cos sin cos
sin

xX xY xZ

xX xY xZ xY xZ xX

xX xZ

xX xZ xX xZ

xX xY xZ xY xZ xX

xX xZ

xX xZ xX xZ

cos cos

r

r r r

r r r r r r
r r

r r r r

r r r r r r
r r

r r r r

 
 
 
        

  

  
 

      
   

   

 

    

 

If the angles of roll are unknown, it can be calculated by inspection. In some structure 

members, determination for angles of roll cannot be found easily due to their 

orientations. There are different ways to find angle of roll. One of these methods is P 

point Method. Considering Figure 5 the member rotation matrix r with the help of a 

reference point like P, the P equation can be written as: 

( ) ( ) ( )
p b x p b y p b z

P X X I Y Y I Z Z I                      Eq.11 

Eq.10 
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Figure 5: Location of P point in XY plane 

Iz and Iy can be determined respectively according to following equations: 

Iz = 
𝐼ₓ .  𝑝

|𝐼ₓ .  𝑝|
                                 Eq.12 

Iy = Iz  . Ix                        Eq.13 

These formulas are obtained without involving angle of roll (ᴪ). To determine the 

relationship between angles of roll and reference point P, first of all it should define the 

components of the position vector P in the secondary x yz coordinate system. P point 

should be lying in the XY or XZ plane. Then the relationship equation can be written as: 

 

2 2

z

y z

P
Sin

p p
 


                          Eq.14 
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2 2

y

y z

P
Cos

p p
 


                            Eq.15 

These equations are used for space frame members which are present in any random 

directions as well as vertical members. With respect to these formulas, 

( )
x xy P bP r Y Y                       Eq.16 

( )
y xY P bP r X X                       Eq.17 

Z P bP Z Z                       Eq.18 

Position of P will be: 

X

y

z

P
P

P

 
 
 
 
  

 = 

0 0

0 0

0 0 1

xY

yX

r
r

 
 
 
 
 



 

 

 

P b

P b

p b

X X

Y Y

Z Z

 
 
 
 
 

  

                 Eq.19 

(Kassimali, 2010) 
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Chapter 3 

3 PROBLEM STATEMENT 

3.1 Introduction 

In this chapter the research problems will be discussed. Main goals of this study will 

also be mentioned and an overview of the solutions to our problems will be discussed. 

3.2 The Problem 

In this thesis algorithms were developed which will use IFM and the DIFM to allow the 

analysis of space frames. These algorithms will generate the following results: 

1. Independent member forces; 

2. End forces of members; 

3. Nodal displacements. 

The programming process in creating this algorithm is carried out using computer 

algebra system Mathematica 8. 

3.3 Preferred Features of the Soft-wares for IFM and IFMD 

In this part, different characteristics of the soft-wares for IFM and IFMD will be 

discussed. 

3.3.1 Features of software package for IFM 

In the literature review, in existing documents written by Patnaik the following process 

is deployed to gain compatibility conditions:  

1. Generating relations of the deformation displacement. 
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2. Eliminating the displacements after the first step. 

3. Gain the compatibility conditions. (Patnaik S. N., 1986) (Patnaik S. , 1999) 

(Patnaik S. N. and Joseph K. T. , 1986) (Patnaik S. N. , Hopkins D. A. , and 

Halford G. R. , 2004) 

In this research a different numerical method has been followed. After generation of EE, 

the following two numerical methods have been used: 

1. Combining the unconnected flexibility matrix with NS of the equilibrium matrix. 

2. Combining the SVD of the equilibrium matrix with unconnected flexibility 

matrix. 

3.3.2 Features of Software package for IFMD 

Although in this computer code the emphasis has been put on generating the global 

stiffness matrix, however in the IFMD the overall stiffness matrix is calculated through 

using the dimply generated equilibrium matrix and drawing upon matrix management 

capabilities of Mathematica 8. Utilization of such programming leads to cutting the 

process of global stiffness matrix calculation to a single programming line. Hence the 

use of Mathematica 8 is far less time consuming. 

3.3.3 Other aspects of analysis packages  

1) Effortless 

In comparison with current commercial analysis packages, the developed codes are 

much easier to use because much less options and parameters have to be specified. 

2) Easy procedure:   

The programs are developed in a way that users in different levels can operate and learn 

it without any need to read certain documentation or manual. 
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3) Debugging Variables: 

Being suspicious of any results or eager to know how the calculations are performed, 

users can track all the variables during the calculation procedure to find the source of 

possible mistakes using the debugging mode. 

4) Flexible: 

In each level of the calculations the code that executes the process is shown. It is a huge 

advantage for beginners to learn more about programming techniques. Professional users 

can edit the code to change its utility.   

5) Apparent Theory: 

The theory which is used in the methods is elaborated on throughout the programs 

making it easier to understand and follow the procedures. 

6) Educational: 

Similar to tutorials, the IFM via NS, IFM via SVD, IFMD and theories are introduced to 

the user while using the program. At each step it has been tried to provide sufficient 

tutorials and hints. 

7) Accessible: 

The packages are available for instructors, students and engineers without any limits, so 

there is no need for them to search the literature for many hours to find such packages 

that contain these characteristics. 

3.4 An Overview of NS and SVD 

The approach for IFM is depicted in Figure 6: 

1. Equilibrium equations generation [S]. 

2. Unconnected flexibility matrix assembly [G]. 
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3. Finding CC, by using the NS and SVD.  

4. Solving process for independent member forces. 

5. Compute nodal displacements. 

6. Finding twelve member end forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Different Steps of IFM 
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3.5 Outline of IFMD Method 

The approach for IFM is depicted in Figure 7: 

1. Equilibrium equations generation [S]. 

2. Unconnected flexibility matrix assembly [G]. 

3. Calculation of inverse unconnected flexibility matrix [G]  

4. Global Stiffness Matrix generation [K]. 

5. Solve for nodal displacements [X]. 

6. Finding forces of Independent member forces. 

7. Computation of twelve member end force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Outline of DIFM 
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3.6 Mathematica Software as an Instrument 

The software used in this research is Mathematica 8 because of capabilities and options 

that it provides. The chief reasons for choosing Mathematica 8 are as follows: 

1. Interactive calculation via notebooks. 

2. Easy as much as a calculator. 

3. Availability of over a thousand built-in functions. 

4. Numerical calculation to any level of accuracy. 

5. Possibility of symbolic calculation. 

6. Solving equations numerically or symbolically. 

7. Vectors and matrices functions. 

8. Capability of user-defined functions. 
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Chapter 4 

4 METHODOLOGY 

4.1 Introduction 

To analyze any structure, the relation between S, F and P matrices is used. It is done 

according to Equation 20  

[S]{F}= {P}                     Eq.20 

 S matrix in determinate and indeterminate structures is different. S matrix for 

determinate structure is square (m x m) and equation 20 can be solved easily. 

The created EE for indeterminate structures is in rectangular shape. It is (m x n) where m 

is total quantity EEs and n is the number of forces which are unknown. In order to create 

a square matrix, it is needed to write and generate additional equation named 

compatibility condition.  

In this study two methods are undertaken in order to solve the indeterminate space frame 

structures through using EE. IFM and Displacement method are these two methods. IFM 

includes Null Space and Singular Value Decomposition and Displacement method 

through using Dual IFM. 
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4.2 Integrated Force Method (IFM) 

This method is developed based on the below equation (Eq.21). In this method EE and 

Compatibility Condition (CC) are merged. 

 
Equilibrium Equation Mechanical Load

Forces =
Compatibility condition Initial Deformation

   
  

   
               Eq.21 

This method is being used for analysis of indeterminate space frames based on EE and 

CC. It has potential to develop for large scale structures even if it has confusing 

topology. (Patnaik S. N. , and Hopkins D. A. , 1998), (Patnaik S. N. , Hopkins D. A. , 

and Halford G. R. , 2004) 

EE is made based on forces whereas CC is generated depend on deformation and 

displacement. In order to merge these two equations together, CC should be written in 

terms of forces. Consequently the equation for IFM will change to: 

 
[ ]

[ ] [ ]

A P
F

C G R

   
   

   
                    Eq.22                                                                          

In this new equation, A, C, G, F, P, R  stand for: EE matrix, CC matrix, unconnected 

flexibility matrix, internal forces vector, external loads vector and initial deformations 

vector respectively. 

Short form of this equation is  

[S]{F}= {P*}                                 Eq.23 

In this equation matrix [S] is created by merging EE, CC and flexibility matrix in square 

shape. The number of rows in P vector is equal to external loads vector. In special cases 

where there is no initial deformation, Zeros should be placed in order to make the 
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equation dimensionally balanced. By using this method, independent member forces can 

be determined. In some cases it is needed to find displacements of members. In such 

cases displacements can be calculated based on the Equation 24 (Patnaik S. N. , Hopkins 

D. A. , and Halford G. R. , 2004) 

{X}= [J]  [G]  [F]                                        Eq.24                                                         

Where: X, G and F are nodal displacements vector, unconnected flexibility matrix and 

calculated member forces, respectively. Also J is transpose matrix of inversed S in this 

equation. 

 
1

T

J S
 

 
               Eq.25 

4.2.1 Assembling of CC in IFM 

According to Patnaik  (Patnaik S. , 1999) in order to calculate CC, equation should be 

written under the energy theory in structures. To write deformation displacement 

relation and according the energy theory:  

   
1

2

T
IE F 

         
Eq.26                                                                                         

With respect to the work-energy rule (IE=W), together with knowing that, in space 

frame structures deformations  1 2, ,......, m    are corresponding to internal forces

 1 2 mF ,F ,.........,F  and also external loads lead to be done work in structure the equation 

27 is obtained: 

   
1

2

T
W P X

  
                   Eq.27

 

Therefore:  
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       
1 1

2 2

T T
F P X                             Eq.28                                                                  

By replacing EE (Eq.27) into Eq.28 it is changed to: 

        0
TT

F A X                                    Eq.29                                       

And also this equation 29 can be written as: 

     
T

A X                                                               Eq.30                                                     

In this equation deformations should be written in terms of displacements. It is also 

needed to eliminate displacements from deformation displacement relation. By doing 

this it obtained as 

    0C  
           

Eq.31 

Which in this equation P is equal to (m-n). it means that the CC has (m-n) columns.
 

4.2.2 Null specification of Equations and how to assemble 

According to Patnaik, to get CC, the null space of EE is used. In the other hand for 

making CC, the null space of the EE should be merged with unconnected flexibility 

matrix (UFM). Null property of EE and after it CC can be obtained through using 

equation Eq.20 and Eq.30. (Patnaik S. , 1999) (Patnaik S. N. , Hopkins D. A. , and 

Halford G. R. , 2004) 

CC can be written in the format of Eq.32, if deformations between Eq.30 and Eq.31 will 

be removed. 

      0
T

C A X 
                    

Eq.32 

Since displacements are subjective and they have not null vector properties in this 

equation, coefficient can be removed from the equation. Therefore the equation can be 

written as: 
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    0
T

C A 
 
            Eq.33    

Or
 

    0
T

A C 
          

Eq.34 

CC is found by null space of EE. After it CC and EE should be merged. 

In this study, Mathematica software is being used. By using this software and its defined 

commands, it is possible to find null space matrix.   

4.2.3 Assemble CC in Singular Value Decomposition Method 

Employing SVD is another technique to calculate and obtain the CC. According to 

Patnaik in this method matrix M is generated.            

(Patnaik S. N. and Joseph K. T. , 1986), (Patnaik S. , 1999): 

        
pinv

T T
M I A A

 
 
  

                                                   Eq.35                                                         

In this equation [I] stands for the identity matrix. In this matrix number of members and 

number of columns and rows are equal.  
T

A  Stands for transpose form of EE and 

  
pinv

T
A  is obtained by Eq.36. 

        
1pinv

T T
A A A A



                                     Eq. 36                                                 

To obtain matrix M, SVM is applied. 

     
T

u vM M M M               Eq.37                                                

 uM : Orthogonal matrix 

 vM  : Orthogonal matrix 

In these matrices the number of elements is equal to the number of rows and columns. 
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 M  : Is a square matrix and calculated according to Eq.38. 

 
0

0 0
M

 
  
 

                                                   Eq.38                                       

Also: 

1 2( , ,....., )diag     
                  

            Eq.39 

 : Degree of indeterminacy and: 

1 2 ..... 0      
             

      Eq.40 

At last M matrix and CC can be changed to: 

   
 
 0

u

NS
M M

 
  

 
                                                    Eq.41 

    C NS G                                       Eq.42 

Where: 

[NS]: Null space matrix of EE. (Patnaik S. , 1999), (Patnaik S. N. and Joseph K. T. , 

1986) 

4.3 Dual Integrated Force Method (IFMD) 

Patnaik developed IFM to Dual IFM. In this method basic equation is: 

     
ifmdifmd

K X P                       Eq.43                                                                     

In this equation [K] is Stiffness matrix. The equation for this matrix is: 

      
1 T

ifmd
K A G A


                                    Eq.44                                                           

In this equation, [A],  
1

G


, [X] and [P], are EE matrix, inverse of flexibility matrix, 

vector of displacements and external loads respectively. 

In space frame structures flexibility matrix will be obtained from Equations 44 and 45. 
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i
s

i i

L
f

E A
                                                                        Eq.45 

 

1

2

0

0 s

f

f
G

f

 
 
 
 
 
 

                                               Eq.46                               

The main equation for load vector is Eq.47: 

          1 0

ifmd
P P A G 


                                                                                Eq.47 

Where: 

 0 is initial deformation vector 

Number of total degree of freedoms is equal to number of rows and columns. In this 

study initial deformation of supports are not considered and  0  vector is zero 

consequently. Therefore equation 47 can be written in Equation 48 format: 

   
ifmd

P P                                                                                                               Eq.48 

Next step is assembling of  
ifmd

K  matrix and calculating displacements using Equation 

48. After it the internal forces can be obtained with: 

       
1 T

F G A X


                                  Eq.49 

Using EE matrix [A] is common point between IFM and DIFM. Uncommon point 

between these two methods is that, in IFM method primary unknowns are internal forces 

whereas in DIFM method primary unknowns are displacements. 

4.4 Solution Method Outline 

The main equation to analyze any structure is: 

[A] {F} = {P}                                       Eq.50 
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In this part utilizing EE to find the internal forces is discussed. An outline of computer 

programming process and the algorithms of it are also explained. 

4.4.1 Equilibrium Equation Application 

EE is used for both determinate and indeterminate structures. Since in determinate frame 

structures member forces are unknown, writing EE is sufficient to solve. It is because 

that the number of EE and unknowns are equal. Finding internal forces will help to 

calculate deformations and displacements. 

Unlike determinate frame structures, in indeterminate structures number of EE is not 

equal and unknowns are not equal to each other due to unequal known and unknowns. 

To solve this problem, it is needed to add some new relations. 

Figure 8 shows the procedure of EE application in detail in this study including 

determinate and indeterminate frames.  
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Figure 8: Application of EE 

4.4.2 Step by step Computer Programming for IFM and IFMD 

Since hand calculation is time consuming and might be inaccurate for large scale space 

frame structures, it is needed to write codes and computer programs in order to solve this 

problem. The step by step procedure for IFM and IFMD is explained in this part. 

4.4.2.1 IFM step by step  

Figure 9 shows the step by step procedure and important stages in IFM method. 
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Figure 9: Overview of IFM 

4.4.2.2 Procedure in IFMD Method 

Figure 10 shows the main steps in IFMD method.  
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Figure 10: Overview of Dual Integrated Force Method Programming 

Figure 9 and 10 are valid for indeterminate structures. In case of indeterminate structures 

Figure 11 shows the procedure. 
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Figure 11: Procedure for determinate frame structures 

4.5 Programming 

In this study a program application has been written in order to analyze and solve space 

frame structures. It is written based on the above methods and using matrix 

decomposition, matrix operations and linear system of equation. Also import and export 

of data, symbolic and numerical mathematics are drawn upon. The matrix scatter plots 

are used as well. Also Mathematica software has been used which is a symbolic and 

numeric computational engine and programming system with the strong ability to other 

related applications. 

4.5.1 Characteristics and advantages of the written program 

This program is easy to use, simple and user friendly. It is not necessary to read or learn 

any instructions for the first time users in order to operate the program. Also it is easy to 

understand and run analyzing procedure in this program in comparison to other similar 

applications. Equations, relations and the theory of the methods are used in each level of 

analyzing giving the programs transparent theory. Furthermore, capability to have a 



35 

quick control on the procedure is easy, in order to find any possible and probable 

mistakes. In each part, results are shown individually. The most advantageous ability of 

written program is its capability and skill in step by step teaching of the theories and 

formulation procedure for IFM via null space and IFM via singular value decomposition. 
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Chapter 5 

5 EQUILIBRIUM EQUATIONS AND MATHEMATICA 

PROGRAMMING FOR IFM AND IFMD 

5.1 Introduction 

Since, in the survey carried out for this research no computer code intended for analysis 

of space frames were based on IFM and also because most of the available codes applied 

the stiffness method as their principal approach of analysis, the main aim of this research 

has been decided to be the development of a computer code to analyze the space frames 

based on IFM. 

In this research 3 different packages of computer programs were developed for analysis 

of space frames. Each package draws on different approaches of integrated force method 

which were explained in chapter 3. The packages are as follows: 

 1
st
 package: Null Space approach.  

 2
nd

 package: Singular Value Decomposition approach. 

 3
rd

 package: Dual Integrated Force approach. 

In this chapter, first process of generating the equilibrium equation is discussed then 

these equations are used for analysis of space frames by three different methods. In order 

to introduce and elaborate on the codes, a three member frame was used as an example. 

Also the method of data entry and use of program were explained.  
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5.2 Generation of EE for Space Frame 

What is going to be explained in this part is the way of developing equilibrium equations 

matrix of the space frame structure. As we know for each member of the three 

dimensional frames, there are six actions at each end and the matrix of equilibrium 

equations of whole structure is a combination of equilibrium equation of each member. 

Therefore, in this program, the equilibrium equation of each member is made during 

twelve steps at first and then with a suitable combination of these matrices, we will have 

the equilibrium equation of the structure at the end. (Fillppou, 2001) 

Step 1: At the first step, we should have the location of start point and end point of each 

member in our structure. For this purpose, the number of each start and end point for all 

members is read by the program: 

mincb = inc  𝑖, 2  ;           

mince = inc  𝑖, 3  ;          

dtabl =

 
6 ∗ mincb − 5,6 ∗ mincb − 4,6 ∗ mincb − 3,6 ∗ mincb − 2,6 ∗ mincb − 1,6 ∗ mincb,

6 ∗ mince − 5,6 ∗ mince − 4,6 ∗ mince − 3,
6 ∗ mince − 2,6 ∗ mince − 1,6 ∗ mince

 ;  

Step 2: The coordinates of these start and end points are read as follows: 

xd = cord  mince, 2  − cord  mincb, 2  ;       

yd = cord  mince, 3  − cord  mincb, 3  ;       

zd = cord  mince, 4  − cord  mincb, 4  ;       

Step 3: The program reads the coordinates of P-points which are related to each member 

of the structure. 

xPd = cordP  i, 2  − cord  mincb, 2  ;       
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yPd = cordP  i, 3  − cord  mincb, 3  ;       

zPd = cord  i, 4  − cord  mincb, 4  ;       

Step 4: In the next part of the program length of each member of the structure is 

calculate as shown below: 

𝐈𝐟  𝐟𝐫𝐞𝐞𝐭  𝐦𝐢𝐧𝐜𝐛, 𝟐  == 𝟏, 𝐑𝐞𝐩𝐥𝐚𝐜𝐞𝐏𝐚𝐫𝐭 𝐝𝐭𝐚𝐛𝐥, 𝟎, 𝟏  ; 

 

For complete code refer to Figure 19 

If  freet  mince, 7  == 1, ReplacePart dtabl, 0,12  ; 

Lm = Sqrt xd2 + yd2 + zd2 ; 

Step 5: After that the direction cosines of each member can be calculated in accordance 

to the previous amounts like what has shown under this paragraph: 

rxX =
xd

Lm
;           rxY =

yd

Lm
;           rxZ =

zd

Lm
; 

Step 6: After all these calculations the fixed unit vector of each member can be found in 

according to the above values and calculations and also the coordinate of P-point as: 

uvx =  rxX, rxY, rxZ ; 

 

zL = Sqrt  vz  1  
2

+ vz  2  
2

+ vz  3  
2
 ; 

uvz =
vz

zL
; 

For further codes refer to Figure 20 

uvy = Cross uvz, uvx ; 

Step 7: In this step of the program we have to generate the global member equilibrium 

matrix but before that, generation of member equilibrium matrix and transformation 
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matrix is needed to be obtained. To achieve this purpose we generate the member 

equilibrium matrix as: 

𝑏 =

 

 
 
 
 
 
 
 
 
 

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 Lm 0 −1 0
0 −Lm 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1  

 
 
 
 
 
 
 
 
 

; 

And the transformation matrix as: 

𝑡 =

 

 
 
 
 
 
 
 
 
 

tv1 tv2 tv3 0 0 0 0 0 0 0 0 0
tv4 tv5 tv6 0 0 0 0 0 0 0 0 0
tv7 tv8 tv9 0 0 0 0 0 0 0 0 0
0 0 0 tv1 tv2 tv3 0 0 0 0 0 0
0 0 0 tv4 tv5 tv6 0 0 0 0 0 0
0 0 0 tv7 tv8 tv9 0 0 0 0 0 0
0 0 0 0 0 0 tv1 tv2 tv3 0 0 0
0 0 0 0 0 0 tv4 tv5 tv6 0 0 0
0 0 0 0 0 0 tv7 tv8 tv9 0 0 0
0 0 0 0 0 0 0 0 0 tv1 tv2 tv3
0 0 0 0 0 0 0 0 0 tv4 tv5 tv6
0 0 0 0 0 0 0 0 0 tv7 tv8 tv9 

 
 
 
 
 
 
 
 
 

; 

In which there are some fixed values that can be found as: 

tv1 = uvx  1  ;   tv2 = uvx  2  ;    tv3 = uvx  3  ; 

tv4 = uvy  1  ;   tv5 = uvy  2  ;    tv6 = uvy  3  ; 

tv7 = uvz  1  ;   tv8 = uvz  2  ;    tv9 = uvz  3  ; 

Step 8: By using the member equilibrium matrix, b, and transformation matrix, t, global 

member equilibrium matrix is generated as: 

bg = Transpose 𝑡 . 𝑏; 
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After all these the generated matrices have to be stored in the memory that this will be 

done by the following part of the program: 

AppendTo bgmem, bg ; 

AppendTo bmem, 𝑏 ; 

AppendTo Lmem, Lm ; 

AppendTo dtablmem, dtabl ; 

AppendTo tmem, 𝑡 ; 

Step 9: By using the values calculated in the previous part of the program, fixed-end 

actions of each member of the structure can be found as: 

Qf =

 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑧
𝜔  𝑖  ∗ Lm

2.
𝑧
𝑧
𝑧

𝜔  𝑖  ∗ Lm2

12.
𝑧

𝜔  𝑖  ∗ Lm

2.
𝑧
𝑧
𝑧

−
𝜔  𝑖  ∗ Lm2

12.  

 
 
 
 
 
 
 
 
 
 
 
 
 

; 

Step 10: By using this vector as a generating vector, the global fixed end actions matrix 

can be generated: 

Ff = Transpose 𝑡 . Qf; 

Then, both the global fixed-end action and member fixed-end action matrices should be 

stored in the memory with the following commands: 

AppendTo Ffmem, Ff ; 
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AppendTo Qfmem, Qf ; 

Step 11: After generating these mentioned matrices and vectors, this program 

determines the unrestrained degrees of freedom (D.O.F.) by the commands that are 

written bellow: 

kk = 0; 

Do[ 

cj1 = 6 ∗ 𝑖 − 5;   cj2 = 6 ∗ 𝑖 − 4;    cj3 = 6 ∗ 𝑖 − 3; 

cj4 = 6 ∗ 𝑖 − 2;   cj5 = 6 ∗ 𝑖 − 1;    cj6 = 6 ∗ 𝑖; 

Print 𝑖, "  ",  cj1, cj2, cj3, cj4, cj5, cj6  ; 

If freet  𝑖, 2  == 1, dof  6 ∗ 𝑖 − 5  = 0 ; 

If freet  𝑖, 2  == 0, kk = kk + 1 ; 

If freet  𝑖, 2  == 0, dof  6 ∗ 𝑖 − 5  = kk ; 

Further codes are available in Figure 23 and Figure 24 

If freet  𝑖, 7  == 1, dof  6 ∗ 𝑖  = 0 ; 

If freet  𝑖, 7  == 0, kk = kk + 1 ; 

If freet  𝑖, 7  == 0, dof  6 ∗ 𝑖  = kk  

, {𝑖, 1, noden}] 

Step 12: Continuing, in the program we start with empty equilibrium matrix as given 

below: 

𝑆 = Table 0. ,  sr, 1,6 ∗ noden − rest ,  sc, 1,6 ∗ 𝑚  ; 

Then, in a loop of the number of members, some variables of EE are filled. The process 

of this filling is related to the situation of members and their equilibrium equation 
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matrices. The beneath variables will be filled if there are any restrained degrees of 

freedom: 

node1 = inc  𝑖, 2  ; 

node2 = inc  𝑖, 3  ; 

k1 = 6 ∗ node1 − 5; 

Further codes are shown in Figure 24 

kc12 = dof  k12  ; 

Combination step: After these variable fillings, the program begins to store the global 

equilibrium equation matrix values of each member in the structure equilibrium equation 

matrix as shown in the following part: 

If  kc1 ≠ 0, 𝑆  kc1, c1  = 𝑆  kc1, c1  + bgmem  𝑖    1,1   ; 

Further codes are shown in Figures 25,26,27,28 and 29 

If  kc12 ≠ 0, 𝑆  kc12, c6  = 𝑆  kc12, c6  + bgmem  𝑖    12,6   ; 

After this section is completed, generation of equilibrium equation matrix of the 

structure will be completed. 

To show the complete process of developing equilibrium equations in this program and 

all other steps of analyzing the space frame with 3 different methods are explained via 

an example of a three member structure. 

The first part of program is the data input phase. 
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  Figure 12: Input Data part of Program 

In Figure 12, number of structure members and nodes are indicated by m and n 

respectively. In this part number of members and nodes are manually entered. 

Geometry data input part: 

 

Figure 13: Geometry Data Input Section 

In next step information regarding the number of elements and their connectivity 

indicating geometry of structures are manually entered by the user. The number of row 

and columns of the matrix varies, depending on the number of members of the structure. 
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1
st
 column indicates the number of elements, 2

nd 
column indicates number of starting-

nodes and 3
rd

 columns stand for the number of end-nodes. 

The coordinates of nodes must be written in the “cord” matrix as shown in Figure 13. 

The 1
st
 column shows number of each node. Coordinates of X, Y and Z are shown in 

remaining columns respectively. 

 

 

Figure 14: Space frame with three members 

 

 

 

 

 

 

4 

5 5 
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Calculation of P-point for each member of the structure: 

 

Figure 15: Calculation of coordination of P-Point 
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Released degrees of freedom at each end of the members: 

 

Figure 16: Input freedoms of Joints 

Freedom degrees of the frame are represented in an nx7 matrix. In this matrix the joint 

numbers should be entered in first column and freedom degrees in X, Y and Z directions 

should be entered in the 2
nd

, 3
rd

 and 4
th
 columns. The remaining columns stand for 

moment restrain of nodes in X, Y and Z direction. As shown in the Figure 16, if there is 

a restraint 1 should be entered and in the case of lack of restraint 0 must be entered. 

Properties of sections and materials: 

 

Figure 17: Input data part - properties and material 
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Loads data input part:  

 

 

Figure 18: Loads data input section 

As depicted in Figure 18, the applied loads at each node should be inserted in applied 

forces matrix. The amounts of loads have to be inserted in the relevant cell and if there 

were no forces, zero must be inserted. 
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5.2.1 Equilibrium equation assembly:  

 

Figure 19: Computer codes to assemble Equilibrium Equation 
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Figure 20: Computer codes to assemble Equilibrium Equation (2) 
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Figure 21: Computer codes to assemble Equilibrium Equation (3) 
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Figure 22: Computer codes to assemble Equilibrium Equation (4) 
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Figure 23: Computer codes to assemble Equilibrium Equation (5) 
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Figure 24: Computer codes to assemble Equilibrium Equation (6) 
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Figure 25: Computer codes to assemble Equilibrium Equation (7) 
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Figure 26: Computer codes to assemble Equilibrium Equation (8) 
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Figure 27: Computer codes to assemble Equilibrium Equation (9) 
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Figure 28: Computer codes to assemble Equilibrium Equation (10) 
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Figure 29: Computer codes to assemble Equilibrium Equation (11) 

And here is equilibrium equation matrix of the structure: 

 

Figure 30: Matrix form of Equilibrium Equations 

5.3 Solution Algorithms 

As stated in chapters 2 and 3, the IFMD and IFM are two methods employed in this 

study. In both methods the first step in analysis process is equilibrium equation 

generation. The only shared step in these two methods is generation of equilibrium 

equation matrix. In this section the algorithm upon which the computer programs for 

both methods are based on, is explained.  
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5.3.1 IFM via NS 

In calculation of CC, the NS property of EE is utilized. Then the compatibility 

conditions are generated and equilibrium equations are coupled to get square matrix [S]. 

As a final point the square matrix is used to compute the unknown variables using the 

Equation21. The null space form of integrated force method is presented in Figure 33. 

The unconnected flexibility matrix of space frames and equilibrium equation are 

obtained via application of null space method and it is illustrated in Figure 31 in scatter 

plot form. 

 

Figure 31: Flexibility and EE matrix plot 

Figure 32 shows the scatter plot of coupled compatibility condition and equilibrium 

equation. 

 

Figure 32: Coupled EE and CC via NS  

(a) (b) 
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Figure 33: Algorithm of IFM via NS 
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5.3.3.1 Solution via Null Space 

 

Figure 34: Unconnected flexibility matrix 
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Figure 35: Unconnected flexibility matrix (2) 
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Figure 36: Flexibility Matrix 

 

 

Figure 37: Matrix plot of flexibility matrix 
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Figure 38: Null Property of Equilibrium Equations Matrix 

 

Figure 39: Compatibility Condition – Combination of Fig 37 & 38 

 

Figure 40: Matrix Plot of CC Matrix 
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Figure 41: Coupling of EE with CC and its Matrix Plot 
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Figure 42: Computer Codes for Assembling of Joints Loads 
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Figure 43: Loads Matrix of Joints 

 

 

 

Figure 44: Calculation of Degree of Indeterminacy 
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Figure 45: Computer Codes for Formation of Fixed End Forces 
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Figure 46: Computer Codes for Formation of Fixed End Forces (2) 
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Figure 47: Matrix of Fixed End Forces 

 

 

Figure 48: Final Applied Forces 
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Figure 49: Finding Matrix of Members independent Forces 
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Figure 50: Calculation of Nodal Displacements Matrix 



73 

 

Figure 51: Calculation of Member End Forces 
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Figure 52: Calculation of Member End Forces (continued) 

5.3.2 IFM via SVD 

Singular value decomposition approach outlined in section 4.2.3 is another approach for 

finding the compatibility condition. After having equilibrium equation generated, the 

([A]
T
)

pinv
 is acquired via Eq.36 and Then, using Eq.37 the [M] matrix is calculated. In 
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the next step the SVD of the [M] is undertaken in order to calculate the [Mu], [Mv] and 

[Mᵟ]. Finally, CC is calculated via equation 41 & 42. This procedure is illustrated in 

figure number 54. 

It worth noting that, flexibility matrix, and equilibrium equation and scatter plots 

remains the same as null space after the application of this method on the frame depicted 

in Figure14. In Figure 54 depicts the scatter plot of coupled compatibility condition and 

equilibrium equation. 

 

Figure 53: Coupled EE and Compatibility Condition via SVD 



76 

 

Figure 54: Algorithm of IFM via SVD 
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5.3.2.1 Solution of example via SVD 

 

Figure 55: Codes definition to find SVD 

 

 

Figure 56: Assembling of CC by Using SVD and Matrix Plot 
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5.3.3 IFMD Method 

The step by step process and equations for the IFMD is shown in Figure 58. After 

creation of EE in IFMD by using of Eq. 44 the matrix  
ifmd

K  is assembled. The inverse 

of flexibility matrix is used to get 
ifmd

K  . After it Eq.43 gives the nodal displacements. 

In the last step Eq.49 gives the internal forces. 

In this technique the scatter plot of EE remains same since the element and nodal system 

of numbering are same. Figure 57 shows the plots of flexibility matrix and K matrix. 

 

 

Figure 57: (a) Flexibility matrix plot - (b) Plot of stiffness Matrix 

(b) (a) 
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Figure 58: Algorithm for IFMD 
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Figure 59: Matrix Plot of S Matrix 

 

5.3.3.1 Solution of the example via Dual Integrated Force Method 

 

Figure 60: Calculation of Stiffness Matrix for IFMD 
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Figure 61: Matrix Plot of Stiffness Matrix 

 

Figure 62: Calculation of Nodal Displacements by IFMD 
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Figure 63: Calculation of Member Forces By IFMD 
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Chapter 6 

6 EXPLANATORY EXAMPLES 

6.1 Introduction 

Two examples are presented in this chapter, one of which is an 8 member frame and the 

other a 16 member frame. These two examples are solved via Null Space, SVD and 

IFMD approaches and the pertaining results are compared to Mastan version 3 to find 

the accuracy level of our results. 
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Figure 64: Structure of input data 
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Figure 64 shows the structure of input data in the program which has been discussed 

before and should be taken into account during solving process. 

6.2 Example 1 

In this example a space frame with 8 members and 8 nodes were analyzed. The 

information regarding elemental and nodal properties is presented in Table 1. The area 

of members, the moment of inertia and the modulus of elasticity are assumed to be 0.002 

m
2
, 0.0005 m

4 
and 2x10

8
 N/m² respectively. 

 

Figure 65: Scheme of 8 member structure 
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Table 1: Elemental and nodal properties of example 1 

N
o

d
e 

n
u

m
b

er
 

Coordinates 

Applied 

Loads (kN) 

Applied 

Moment 

(kNm) 

Restraints Restraints 

X Y Z X Y Z X Y Z X Y Z X Y Z 

1 0 0 -9.144 0 0 0 0 0 0 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

3 9.144 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

4 9.144 0 -9.144 0 0 0 0 0 0 1 1 1 1 1 1 

5 0 9.144 -9.144 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 9.144 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 9.144 9.144 0 40 0 0 0 0 0 0 0 0 0 0 0 

8 9.144 9.144 -9.144 -40 0 0 0 0 0 0 0 0 0 0 0 

 

 

Table 2: Nodal condition of elements and uniform loads on each member 

Element 

Number 

Connectivity Applied Uniform Load XY 

Plane 
Start Node End Node 

1 1 5 0 

2 2 6 0 

3 3 7 0 

4 4 8 0 

5 5 8 -2 

6 5 6 -2 

7 6 7 -2 

8 7 8 -2 
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Figure 66: Results (1) 



87 

 

Figure 67: Results - Member Forces (2) 
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Figure 68: Results - Member Forces (3) 
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Figure 69: Results Reporting - Member Forces (4) 
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6.2.1 Results of Mastan program for example 1: 

 

***********   MASTAN2 v3.3.1   ***********                                   

                                                                             

Time:  02:13:11      Date:  11/18/2012                                       

                                                                             

Problem Title:   8 Member                                                

**************                                                               

                                                                             

                                                                             

##############################                                               

Results of Structural Analysis                                               

##############################                                               

                                                                             

General Information:                                                         

      Structure Analyzed as:  Space Frame                                    

      Analysis Type:  First-Order Elastic                                    

                                                                             

 

 

 

Analytical Results:                                                          

                                                                             

(i)   Displacements at Step # 1, Applied Load Ratio = 1.0000                 

                                                                             

  Deflections                                                                

     Node       X-disp          Y-disp          Z-disp                       

       1     0.0000e+000     0.0000e+000     0.0000e+000                     

       2     0.0000e+000     0.0000e+000     0.0000e+000                     

       3     0.0000e+000     0.0000e+000     0.0000e+000                     

       4     0.0000e+000     0.0000e+000     0.0000e+000                     

       5    -9.5042e-003    -4.9978e-004     5.0808e-003                     

       6     9.5387e-003    -3.3635e-004     5.0463e-003                     

       7     9.9515e-003    -4.9978e-004    -5.0808e-003                     

       8    -9.9860e-003    -3.3635e-004    -5.0463e-003                     

                                                                             

  Rotations (radians)                                                        

     Node       X-rot           Y-rot           Z-rot                        

       1     0.0000e+000     0.0000e+000     0.0000e+000                     

       2     0.0000e+000     0.0000e+000     0.0000e+000                     

       3     0.0000e+000     0.0000e+000     0.0000e+000                     

       4     0.0000e+000     0.0000e+000     0.0000e+000                     

       5     4.9292e-004     1.4885e-003     3.2975e-004                     

       6     6.4394e-005     1.4885e-003    -7.5828e-004                     

       7    -4.9292e-004     1.5554e-003    -3.6868e-004                     

       8    -6.4394e-005     1.5554e-003     7.9721e-004                     

                                                                             

(ii)  Element Results at Step # 1, Applied Load Ratio = 1.0000               

                                                                             

  Internal End Forces (Note: Refers to local coordinates)                    

    Element  Node        Fx             Fy             Fz                    

       1       1    2.1863e+001   -1.2551e+001   -4.4373e+000                

               5   -2.1863e+001    1.2551e+001    4.4373e+000                
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       2       2    1.4713e+001    9.5301e+000   -7.4582e+000                

               6   -1.4713e+001   -9.5301e+000    7.4582e+000                

       3       3    2.1863e+001    1.2974e+001    4.4373e+000                

               7   -2.1863e+001   -1.2974e+001   -4.4373e+000                

       4       4    1.4713e+001   -9.9528e+000    7.4582e+000                

               8   -1.4713e+001    9.9528e+000   -7.4582e+000                

       5       5    2.1077e+001    1.6974e+001   -5.9478e+000                

               8   -2.1077e+001    1.3135e+000    5.9478e+000                

       6       5    1.5105e+000    4.8882e+000    8.5264e+000                

               6   -1.5105e+000    1.3400e+001   -8.5264e+000                

       7       6   -1.8057e+001    1.3135e+000   -5.9478e+000                

               7    1.8057e+001    1.6974e+001    5.9478e+000                

       8       7    1.5105e+000    4.8882e+000    8.9698e+000                

               8   -1.5105e+000    1.3400e+001   -8.9698e+000                

                                                                             

  Internal End Moments (Note: Refers to local coordinates)                   

    Element  Node        Mx             My             Mz                   

       1       1   -1.2522e+001    2.5678e+001   -6.0989e+001    

               5    1.2522e+001    1.4897e+001   -5.3777e+001     

       2       2   -1.2522e+001    3.4803e+001    5.1864e+001    

               6    1.2522e+001    3.3395e+001    3.5279e+001    

       3       3   -1.3085e+001   -2.5678e+001    6.3348e+001     

               7    1.3085e+001   -1.4897e+001    5.5284e+001     

       4       4   -1.3085e+001   -3.4803e+001   -5.4222e+001    

               8    1.3085e+001   -3.3395e+001   -3.6786e+001    

       5       5    4.6884e+000    2.6461e+001    4.4624e+001     

               8   -4.6884e+000    2.7925e+001    2.6978e+001     

       6       5    9.1529e+000   -3.8983e+001   -1.0208e+001    

               6   -9.1529e+000   -3.8983e+001   -2.8706e+001     

       7       6    4.6884e+000    2.6461e+001   -2.6126e+001    

               7   -4.6884e+000    2.7925e+001   -4.5476e+001    

       8       7    9.8080e+000   -4.1010e+001   -1.0208e+001     

               8   -9.8080e+000   -4.1010e+001   -2.8706e+001     

                                                                             

#####################################                                        

End of Results of Structural Analysis                                        

#####################################                                        

                                                                             

6.3 Example 2 

In this example a space frame with 16 members and 12 nodes were analyzed. The 

information regarding elemental and nodal properties is presented in Table 3. The area 

of members, the moment of inertia and the modulus of elasticity are assumed to be 0.002 

m
2
, 0.0005 m

4 
and 2* 10

8
 N/m² respectively. 

 

 



92 

 

Figure 70 : Scheme of a 16 member structure 
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Table 3: Elemental and nodal properties of example 2 

Node 

Number 

Coordinates 

Applied 

Loads (kN) 

Applied 

Moment 

(kNm) 

Restraints 

R
es

tr
ai

n
ts

 

X Y Z X Y Z X Y Z X Y Z X Y Z 

1 0 0 -5 0 0 0 0 0 0 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

3 5 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

4 5 0 -5 0 0 0 0 0 0 1 1 1 1 1 1 

5 0 4 -5 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 5 4 -5 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 8 -5 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 5 8 -5 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 



94 

Table 4: Nodal condition of elements / uniform loads on each member - Example 2 

Element 

Number 

Connectivity Applied Uniform Load XY Plane 

Start 

Node 

End 

Node 

1 1 5 0 

2 2 6 0 

3 3 7 0 

4 4 8 0 

5 5 8 0 

6 5 6 0 

7 6 7 0 

8 7 8 0 

9 5 9 0 

10 6 10 0 

11 7 11 0 

12 8 12 0 

13 9 12 -15 

14 9 10 -25 

15 10 11 -15 

16 11 12 -25 
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Figure 71: Member Forces – Ex.2 
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Figure 72: Member Forces - Ex.2 - (2) 
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Figure 73: Member Forces - Ex.2 - (3) 
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Figure 74: Member Forces – Ex.2 - (4) 
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Figure 75: Member Forces – Ex.2 - (5) 
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Figure 76: Member Forces – Ex.2 - (6) 

6.3.1 Mastan’s result of example 2: 

***********   MASTAN2 v3.3.1   ***********                                   

                                                                             

Time:  02:49:23      Date:  11/18/2012                                       

                                                                             

Problem Title:   not provided                                                

**************                                                               

                                                                             

                                                                             

##############################                                               

Results of Structural Analysis                                               

##############################                                               

                                                                             

General Information:                                                         

      Structure Analyzed as:  Space Frame                                    

      Analysis Type:  First-Order Elastic                                    

                                                                             

Analytical Results:                                                          

                                                                             

(i)   Displacements at Step # 1, Applied Load Ratio = 1.0000                 

                                                                             

  Deflections                                                                

     Node       X-disp          Y-disp          Z-disp                       

       1     0.0000e+000     0.0000e+000     0.0000e+000                     

       2     0.0000e+000     0.0000e+000     0.0000e+000                     

       3     0.0000e+000     0.0000e+000     0.0000e+000                     

       4     0.0000e+000     0.0000e+000     0.0000e+000                     

       5    -4.6260e-005    -1.0000e-003    -7.7099e-005                     

       6    -4.6260e-005    -1.0000e-003     7.7099e-005                     

       7     4.6260e-005    -1.0000e-003     7.7099e-005                     

       8     4.6260e-005    -1.0000e-003    -7.7099e-005                     

       9     4.0276e-005    -2.0000e-003     6.7127e-005                     

      10     4.0276e-005    -2.0000e-003    -6.7127e-005                     

      11    -4.0276e-005    -2.0000e-003    -6.7127e-005                     

      12    -4.0276e-005    -2.0000e-003     6.7127e-005                     
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  Rotations (radians)                                                        

     Node       X-rot           Y-rot           Z-rot                        

       1     0.0000e+000     0.0000e+000     0.0000e+000                     

       2     0.0000e+000     0.0000e+000     0.0000e+000                     

       3     0.0000e+000     0.0000e+000     0.0000e+000                     

       4     0.0000e+000     0.0000e+000     0.0000e+000                     

       5    -8.1099e-005    -1.7584e-020     4.8659e-005                     

       6     8.1099e-005    -8.0353e-021     4.8659e-005                     

       7     8.1099e-005    -2.0246e-020    -4.8659e-005                     

       8    -8.1099e-005    -6.8300e-021    -4.8659e-005                     

       9     4.3962e-004    -2.5424e-020    -2.6377e-004                     

      10    -4.3962e-004    -1.2829e-020    -2.6377e-004                     

      11    -4.3962e-004    -4.0246e-020     2.6377e-004                     

      12     4.3962e-004    -1.8945e-020     2.6377e-004                     

                                                                             

(ii)  Element Results at Step # 1, Applied Load Ratio = 1.0000               

                                                                             

  Internal End Forces (Note: Refers to local coordinates)                    

    Element  Node        Fx             Fy             Fz                    

       1       1    1.0000e+002    9.5736e-001   -1.5956e+000                

               5   -1.0000e+002   -9.5736e-001    1.5956e+000                

       2       2    1.0000e+002    9.5736e-001    1.5956e+000                

               6   -1.0000e+002   -9.5736e-001   -1.5956e+000                

       3       3    1.0000e+002   -9.5736e-001    1.5956e+000                

               7   -1.0000e+002    9.5736e-001   -1.5956e+000                

       4       4    1.0000e+002   -9.5736e-001   -1.5956e+000                

               8   -1.0000e+002    9.5736e-001    1.5956e+000                

       5       5   -7.4015e+000    1.3323e-015   -6.1324e-016                

               8    7.4015e+000   -1.3323e-015    6.1324e-016                

       6       5   -1.2336e+001    3.1086e-015    6.3694e-016                

               6    1.2336e+001   -3.1086e-015   -6.3694e-016                

       7       6   -7.4015e+000   -1.1102e-015   -9.5739e-016                

               7    7.4015e+000    1.1102e-015    9.5739e-016                

       8       7   -1.2336e+001    8.8818e-016    4.4148e-016                

               8    1.2336e+001   -8.8818e-016   -4.4148e-016                

       9       5    1.0000e+002   -6.4442e+000    1.0740e+001                

               9   -1.0000e+002    6.4442e+000   -1.0740e+001                

      10       6    1.0000e+002   -6.4442e+000   -1.0740e+001                

              10   -1.0000e+002    6.4442e+000    1.0740e+001                

      11       7    1.0000e+002    6.4442e+000   -1.0740e+001                

              11   -1.0000e+002   -6.4442e+000    1.0740e+001                

      12       8    1.0000e+002    6.4442e+000    1.0740e+001                

              12   -1.0000e+002   -6.4442e+000   -1.0740e+001                

      13       9    6.4442e+000    3.7500e+001    1.7869e-015                

              12   -6.4442e+000    3.7500e+001   -1.7869e-015                

      14       9    1.0740e+001    6.2500e+001   -2.6342e-015                

              10   -1.0740e+001    6.2500e+001    2.6342e-015                

      15      10    6.4442e+000    3.7500e+001    2.4092e-015                

              11   -6.4442e+000    3.7500e+001   -2.4092e-015                

      16      11    1.0740e+001    6.2500e+001   -2.0988e-015                

              12   -1.0740e+001    6.2500e+001    2.0988e-015                
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Internal End Moments (Note: Refers to local coordinates)                   

    Element  Node        Mx             My             Mz                   

       1       1    2.9994e-016    1.1637e+000    6.9823e-001    

               5   -2.9994e-016    5.2187e+000    3.1312e+000    

       2       2    2.3486e-016   -1.1637e+000    6.9823e-001     

               6   -2.3486e-016   -5.2187e+000    3.1312e+000     

       3       3    4.1881e-016   -1.1637e+000   -6.9823e-001     

               7   -4.1881e-016   -5.2187e+000   -3.1312e+000     

       4       4    1.8385e-016    1.1637e+000   -6.9823e-001     

               8   -1.8385e-016    5.2187e+000   -3.1312e+000     

       5       5   -5.4701e-016    1.2811e-015    1.9464e+000     

               8    5.4701e-016    1.6740e-015   -1.9464e+000     

       6       5   -4.9805e-016   -1.6537e-015    3.2440e+000    

               6    4.9805e-016   -1.3090e-015   -3.2440e+000    

       7       6    2.2331e-016    2.9649e-015    1.9464e+000     

               7   -2.2331e-016    2.5992e-015   -1.9464e+000     

       8       7   -5.9760e-016   -1.1614e-015    3.2440e+000     

               8    5.9760e-016   -7.6844e-016   -3.2440e+000     

       9       5    1.7205e-016   -8.4626e+000   -5.0776e+000     

               9   -1.7205e-016   -3.4499e+001   -2.0699e+001     

      10       6    3.2332e-017    8.4626e+000   -5.0776e+000    

              10   -3.2332e-017    3.4499e+001   -2.0699e+001    

      11       7    3.4400e-016    8.4626e+000    5.0776e+000    

              11   -3.4400e-016    3.4499e+001    2.0699e+001    

      12       8    1.7398e-016   -8.4626e+000    5.0776e+000    

              12   -1.7398e-016   -3.4499e+001    2.0699e+001    

      13       9    3.1115e-015   -4.5326e-015    2.0699e+001    

              12   -3.1115e-015   -4.4022e-015   -2.0699e+001    

      14       9   -4.4858e-015    6.2592e-015    3.4499e+001    

              10    4.4858e-015    6.7452e-015   -3.4499e+001    

      15      10    5.0881e-015   -5.3846e-015    2.0699e+001     

              11   -5.0881e-015   -6.3283e-015   -2.0699e+001     

      16      11   -2.2956e-015    4.7933e-015    3.4499e+001     

              12    2.2956e-015    5.5898e-015   -3.4499e+001     

                                                                             

#####################################                                        

End of Results of Structural Analysis                                        

#####################################                                        
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Chapter 7 

7 CONCLUSION 

7.1 Introduction 

In this research the method used for analyzing space frame is Integrated Force Method, 

which is independent of redundant selection process and also only one solution process 

is demanded for calculating the independent internal forces. These two advantages of the 

IFM renders it as a better option in designing the complex and large scale structures.  

Much precise stress results, an enhanced system intended for discrete finite element 

analysis, much quicker convergence to answers and capability of being applied in 

nonlinear analysis of structures and optimization problems are other advantages of IFM. 

(Patnaik S. N. , Hopkins D. A. , and Halford G. R. , 2004) 

In analyzing space frames other generally applied method is IFMD. In generating global 

stiffness matrix only the equilibrium matrix and unconnected stiffness matrix are used. 

Therefore, the need for developing long and complex programming is avoided and 

global stiffness matrix is obtained through a much simpler programming in Mathematica 

version8.  

In this research the equilibrium equations generated via computer code developed in 

Mathematica are used in both of displacement and force methods for analyzing the space 

frames. 
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In displacement method, the only approach employed is the Dual integrated force 

method. Regarding force method two approaches are employed which are null space and 

singular value decomposition methods.  

7.2 Contributions  

Aforementioned programs were developed: 

1. For automation of equilibrium equation generation. 

2. For analysis of space frames with 3 different methods. 

3. For generation of [K] matrix from equilibrium equation. 

The characteristics of developed programs are as follows: 

1. Flexibility in data input and also output style. 

2. Elimination of any need for program manual. 

3. Development of simple and easy to run programs. 

4. Use of step by step calculation to make the value of variables traceable. 

Advantages of programs are: 

1. No restriction on the number of members and joints 

2. Capability of utility change  

7.3 Recommendation for Further Researches 

 The results of this study may be developed further or integrated with the following 

cases: 

1. Addition of other codes that is capable of considering the thermal and 

settlement forces on the frame. 

2. Development of a computer code that makes it possible to analyze the trusses 

and frames as single structure. 
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3. Since this program assumes uniform forces as perpendicular to XY plane, a 

more enhanced version of this code could have the capacity of applying other 

uniform forces with different orientations.  

4. Computer codes that are especially developed for concrete or steel structures. 

5. Dynamic Analysis 
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