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ABSTRACT

As newly developed approach, the Integrated Force Method (IFM) is applied as the
principal approach for analysis of indeterminate space frames. For automatic generation
of equilibrium equations, computer codes are developed and then nodal displacement,
internal forces, support reactions and deformations are calculated using the

aforementioned equations and compatibility conditions

In the first two programs the member forces of space frames are calculated as primary
unknowns. Since obtaining the compatibility condition is one of initial steps in IFM, two
codes were developed that address this issue through different approaches which are null

space and singular value decomposition.

In third code the displacement method known as Dual Integrated Force Method is
applied. Generation of global stiffness matrix is the initial step in Dual Integrated Force
Method. In contrast with the previous two methods, in Dual Integrated Force Method

displacements are the main unknowns.

Keywords: Integrated force method, Space Frame, Equilibrium Equation



0z

Yeni gelistirilen bir yaklagim olarak, Entegre Kuvvet Yontemi statik belirsiz uzay
cergeve analizi i¢in temel yaklasim olarak uygulanir. Denge denklemleri otomatik elde
ede bilmesi igin, bilgisayar kodlar1 gelistirildi ve daha sonra noktasal yer degistirme, i¢
kuvvetleri, ve deformasyonlar s6z konusu denklemler ve uygunluk sartlari kullanilarak

hesaplanir.

[k iki programlarda uzay cerceve eleman kuvvetleri hesaplanir.Uyumluluk kosulu elde
ede bilmek i¢in ilk adimlardan biri bu ana bilinmeyenler olarak konuda singular value

decomposition ve null space ayrisimi olan farkl yaklagimlar gelistirilmistir.

Uciincii kod Cift Tiimlesik Kuvvet Yontemi olarak bilinen deplasman ydntemi
uygulanir. Kiiresel rijitlik matrisinin Nesil Cift Entegre Kuvvet Yontemi ilk adimdir.

Daha dnceki yontem ile tezat olarak, yer degistirme ana bilinmeyenlerdir.

Anahtar kelimeler: Entegre Kuvvet Yontemi, Uzay cerceve, Denge denklemleri
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Chapter 1

INTRODUCTION

1.1 Introduction

Structure refers to most of observable objects in the environment like plants, trees,
skeleton of animals and human, spider nest etc. Most of these structures are developed
by either the genetic imprints of the body itself or by instinct. The only creature that

conceptualizes, imagines and design structures prior to its construction is human.

Any built object and its constituting parts must be in equilibrium state and stable in order
to be accepted as a structure. A structure in order to attain and remain in equilibrium

state, all of external and internal forces applied to it should be in balance.

One of the fundamental principles of structural design and analysis is equilibrium
equation concept that sets the total internal forces at all nodes and joints equal to
external loads. It links these set of forces at global degrees of freedom to reveal the
stability state of structure. The manual calculation of these equations is an easy task
when dealing with the small frames but in the case of large scale and complex structures,

it is a very time consuming and calculation intensive task (Fillipou 2001).



One the most prevalent type of built structures is the space frame form. The elements of
such frames might be oriented in any direction in three-dimensional space and also
connected with rigid and/or flexible connections. Moreover external loads oriented
towards any random direction could be applied directly on the joints, as well as space
frame members. Bending moments around principal axis, shear forces in principal
directions, torsion and axial forces are generated as a reaction to external. Analyzing
space frame structures is much more difficult than analyzing tresses and beams
independently. Introduction of numerous algebraic equations adds to the complexity of
this task (Kassimali, 2010).
Two main methods of analyzing the structures are:

e Displacement method

e Force method
Displacement method which is founded by Navire (1785-1836)that uses displacement as
primary unknown. Force method developed by Maxwell (1831-1879) uses forces as
primary unknown. An alternative and advanced form of force method was also
developed by Patnaik et al., termed as Integrated Force Method (IFM). (S.N. Patnaik, L.

Berke and R.H. Gallanghar, 1991)

In IFM, through simultaneously coupling of equilibrium equation and compatibility
condition (CC), in addition to redundants all of independent forces are calculated (S.N.
Patnaik, L. Berke and R.H. Gallanghar, 1991). Along with elimination of need for
selecting redundants, the determination of independent internal forces has been reduced
to one solution process. Because of aforementioned reasons for designing large scale and

complex structures the IFM is a proper option. IFM has many advantages over other



methods. It converges to the correct answer much faster and has a well-conditional
system in order to carry out a finite element discrete analysis (FEDA). It also provides
much more precise results. The scope of problems that could be addressed via IFM have
also been broadened to cover analysis of nonlinear structures (N. R. B. Krishnam Raju,

and J. Nagabhushanam, 2000) and optimization (R. Sedaghati, 2005)

Use of Singular Value Decomposition (SVD) and Null Space (NS) has rendered the
formation of CC for IFM much easier (Sensoy, 1995) (Maovaghar, 2005). The CC could
be directly calculated, when NS and SVD are applied to equilibrium matrix. The CC of
IFM is calculated through multiplication of unconnected flexibility matrix with NS or
SVD. The NS and SVD are acquired via simple programming Mathematica ver.8. This
simplicity is the chief justification for recommendation of NS and SVD when

calculating the compatibility matrix and analyzing structures through IFM.

There is an advanced form of IFM called Dual Integrated Force Method (IFMD). In this
method only unconnected stiffness matrix and equilibrium matrix of the structure are
used in the generation of global stiffness matrix. Hence the development of long and
complex codes for generation of global stiffness matrix is avoided. This matrix is also
obtained through programming in Mathematica ver.8. This advantage is the reason

behind the recommendation of using IFM.
1.2 The Research Question

This research aims to develop a computer code that analyzes space frames through three

different methods that are IFM via NS, IFM via SVD and IFMD. These codes are very



user-friendly and also very beneficial for instructors, students, researchers and designers
when analyzing the structures. Different problems were analyzed through the mentioned
three methods and the outcomes are compared with outcomes of Mastan ver.3. The
comparison shows conformity between the results of research and Mastan ver.3 results.
In this thesis the theories for these 3 methods is discussed, step by step. The discussion
covers the following topics:

e Equilibrium equati.on;

Compatibility conditions;

e Unconnected flexibility matrix;

e Nodal displacement;

e Main IFM matrix;

e End force of members.
1.3 Research Objectives
The available soft-wares released for analysis of frames mostly apply stiffness method
and classical force method but there is no software for structural analysis through frame
with integrated force method. Beside this, many of these soft-wares just generate frame
analysis like nodal displacement, forces of member end, support reactions and also
diagrams of shear force, axial force, bending moment diagrams. These soft-wares also
do not expose the complete steps of these methods.
1.4 Research Limitations
Thermal, triangular, trapezoidal loading and support settlement are not included within

this research.



1.5 Organization of Thesis

The basic explanations regarding EE, IFM via NS, IFM via SVD and IFMD are

discussed in chapter 2. This chapter also covers the theory of these three methods.

In chapter 3 the significance of the problem and the problem itself is stated. The solution

approach and the desired characteristics of the program are discussed as well.

Chapter 4 is about the methodologies used in this research.
Chapter 5 describes how to assemble the equilibrium equation automatically and the

Mathematica programming for equilibrium equation.

Chapter 6 contains illustrative examples and their solution thorough three different

methods.

Chapter 7 includes a summary and conclusion of the research and recommendation for

further researches.



Chapter 2

FEATURES OF INTEGRATED FORCE METHOD AND

LITERATURE REVIEW

2.1 Introduction

In this chapter, Basics of space frame structures and their common characteristics and

behavior are explained. Furthermore transformation matrix is discussed.
2.2 Literature Review

2.2.1 Force Method

In Civil Engineering structural analysis, the force method (FM) is a popular alternate
technique for the classical stiffness method (CSM). It is favored by structural analyzers
due to its more accurate and perfect estimates for forces. Patnaik formulated and
suggested an innovate formulation in the FM and named it “Integrated Force Method”

for continuous and discrete systems analysis.

2.2.2 Integrated Force Method
As a force technique, IFM integrates both EE system and the global compatibility
conditions (GCC) all together. With having well- defined parameters, this method could

be applied to different types of structures.



2.2.3 Displacement Method

The main idea in displacement method of structural analysis is that the displacements of
each joints are taken as unknown, and after computing the displacement, the internal
forces are calculated. There are various methods for the displacement method. Among

these methods; the most important one is Dual Integrated Method.
2.3 Recent IFM Applications in Structural Analysis

IFM has been developed by Patnaik for analyzing structures. Before him Navier wrote
the equilibrium equation for four-leg table, but his method was unsuccessful in solving
equations due to indeterminate nature of structure. In Patnaik method, internal forces are
supposed to be as independent variables. The next step is integration of system
equilibrium equations with the GCC in order to make the governing set of conditions.
One of the advantages of this method to the other methods like standard force method is
that there is no need for redundant load systems. This property of IFM provides us with

more accurate results than the ones generated with CSM. (Patnaik S. N., 1986)

Application of IFM to other structural topics continued by Patnaik to consider the initial
deformation behavior. Then Patnaik and friends established structural analyzing of finite
elements by applying IFM on structures with two dimensions. In this analysis, space
framed structures have not been argued. Nonlinear analyzing of structures by IFM was
also investigated by other researchers like Krishnam at 2000 (Krishnam Raju N. R. B. ,

and Nagabhushanam J. , 2000).

Some other investigations on IFM were done by Civil Engineering Students of Eastern

Mediterranean University in recent years. Analysis of two dimensional truss structures



by Saied Khosravi in 2005 (Khosravi S., 2005), two dimensional analysis of frame
structures by Seyed Saeed Kamkar in 2010 (Kamkar S., 2010) and three dimensional
truss analysis by Hamed Farajzadeh in 2012 (Farajzadeh, 2012) were done.

2.4 Features of Space Frame

The most general style of framed structures is space frames. Members in this type of
frames may be connecting to each other in any direction in three-dimensional space.
Also members are connected by rigid and/or flexible connections. Additionally, external
loads in any random direction can be applied to the joints, and also members of space
frames. The members of a space frame are usually exposed to bending moments under

the act of the external loads (Kassimali, 2010).

Space frames are regularly used as a multi directional span. They are used to build long
spans with few supports (Company, 2012).

2.4.1 Stability and Determinacy of Space Frame

Each of the nodes in a space frame contains intersecting forces and three moment
equations. Therefore, six independent force equilibrium equations and moment
equations should be written for each node. The formula to identify the circumstance and
number of determinacy should be written and obtained from:

d=6Xm+rest—6 Xn Eqg.1
Where

d: Number of determinacy

m: Number of members or unknown forces number

rest: number of support’s reactions

n: Number of nodes



Conditions:

If 6 X m + rest < 6n, frame is unstable

If 6 X m + rest = 6n, frame is determinate

If 6 X m + rest > 6n, frame is indeterminate

2.4.2 Generation of Transformation Matrix for Space Frame

Generation of transformation matrix for space frame structure is quite different with the
transformation matrices for trusses, plane frames, and grids. Transformation matrix for
space frames is written according to direction cosines of x, y and z axes of the members
in local coordinate system with respect to its global coordinate system of the structure
(XYZ). Unlike it, transformation matrix for trusses, plane frames and grids are written
with cosines of only the member’s X direction or longitudinal axis. Position of a member
in a space frame is written based on the angles concerning its local and global axes.

Figure 1 is showing an arbitrary member m of a space frame.

Figure 1: An arbitrary member m of a space frame
In figure 2 member m is considered in a space frame. The member end forces and end

displacements in the local coordinate system are shown as Q and u. Figure 3 shows the



corresponding system of member end forces F and end displacements v, in the global
coordinate system. As it is shown in Figure 3, the global member end forces and
displacements are named with numbers. It is in a way similar to the local forces and
displacements, except that they act in the directions of the global X, Y, and Z axes

(Kassimali, 2010).

Q \'“\//V//@ Q \f\l\‘;
/ //

Q A.\u ) _’_u £S

Figure 2: Member end forces and end displacements in the local coordinate system
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Figure 3: Member end forces and end displacements in the global coordinate system
2.4.2.1 Transformation from global to local coordinate system

It is realized by comparing Figures 2 and 3 that at member end b, the local forces Q1, Q-,
and Qs should be as same as the algebraic total quantities of the components of the
global forces Fi, F,, and F3 in the directions of the local x, y, and z axes respectively.
Figure 4 is also showing the angle between local and global axes. The angles between
the global axes are denoted by 0,X. It means the angle between local x and global X

axes. 0xY, and 64Z, are written respectively. In the same way, the angles between the

11



local and global y and z axis are symbolized by 6yX, 6yY, 6yZ, 6,X, 0,Y, and 0,7,

respectively. “

Figure 4: Orientation of member local x axis

Q1 =F1 cos 6,X + F, cos 6,Y + F3 cos 6xZ Eq.2
Q2 =F1 cos 6,X + F, cos 6,Y + F3 cos 6,2 Eq.3
Q3 =F; cos 6, X + F, cos 0,Y + F3 cos 6,Z Eq.4

Equations (1) can be converted to matrix form as:

Q. Fr« Mo el Fs
Qz ' Fyw Iy Fz Eq.5

Q3 er rzY rzZ F3

In which

rp=cosOy i=x,y,orz and J=X,Y,orZ

The local actions Qg, to Q12, at member end b to e, can be written in the same way in
terms of their global matching part F4 to Fi.

By merging these equations, the transformation relationship between the 12 x 1 member
local end force vector Q and the 12 x 1 member global end force vector F, can be
expressed in the regular formula of:

Q=TF Ea.6
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T: 12 x 12 transformation matrix on behalf of the members of space frames

The Eq.7 stands for T.

_rxX er er O O 0 0 0 0 0 0 O ]
Frx Fy rz O 0 0 0 0 0 0 0 0
r zX rzY r 74 O O 0 0 0 0 0 0 O
0 O 0 r XX er er 0 0 0 0 0 O
0 0 O rx ry ry, O 0 0 0 0 0
0 0 0 0 0 0 0 0 0
[T]= Frx oy Iz Eq.7
O O 0 0 0 0 r XX er r xZ 0 0 O
0 0 0 0 0 O ryx ry r, O 0 0
O O 0 0 0 0 r zX r Y r 74 0 0 0
0 0 0 0 0 O 0 0 O r XX er rXZ
0 0 0 0 0 0 0 0 0 ryx ry Iy
0 0 0 0 0 0 0 0 O rx ry ]
The compacted form of matrix T is written in terms of its sub-matrices as:
r 0 0 O
0 r 0
M={p 0 » o Ea.8
0 0 0 r
In which:
O: is a 3x3 null matrix;
r: is a 3x3 member rotation matrix (Eq.9)
rXX er r-><Z
[r]: r.yX er ryZ qu

I

zX I

zY
In analysis of space frames, the rotation matrix r has an essential role. There are some

methods to create this matrix. The most advantageous and common method for this
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purpose is Member Rotation Matrix (MRM) in Terms of a Reference Point (RP).
(Kassimali, 2010)

2.4.2.1.1 Member Rotation Matrix in terms of Reference Point

Members of space frame structures are typically sloped. If the angle of member is

known, it is easy to determine the rotation matrix by Eq.10.

rxX er er

- cosW¥ -y _sin¥ 2 2 — cosV+yr _sin¥
rxxer er rix+riz COS\P erer rxX quo

r= 2 2 2 2
\/rxx+rxz rxx+rxz

rxxersinZ‘P—r2XZ cos¥ ~ ':I'ix . riz sin ¥ errxzsinz‘P+ rzxx cos¥
\/rxX+rXZ \/rxx+rxz

If the angles of roll are unknown, it can be calculated by inspection. In some structure
members, determination for angles of roll cannot be found easily due to their
orientations. There are different ways to find angle of roll. One of these methods is P
point Method. Considering Figure 5 the member rotation matrix r with the help of a

reference point like P, the P equation can be written as:

P=(X,= XAV -YI,+(Z,-Z)I. Eq.1l
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xy Plane

Figure 5: Location of P point in XY plane

I, and Iy can be determined respectively according to following equations:

_IL.p
b = Eq.12
ly=1, . Iy Eq.13

These formulas are obtained without involving angle of roll (w). To determine the

relationship between angles of roll and reference point P, first of all it should define the
components of the position vector P in the secondary x yz coordinate system. P point

should be lying in the XY or XZ plane. Then the relationship equation can be written as:

Siny = ——=%— Eq.14
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P
Cosy = —2— Eq.15

2 2
pr +P;
These equations are used for space frame members which are present in any random

directions as well as vertical members. With respect to these formulas,

Px:rxy(Y P_Yb) Eq16
Py=-T (X~ X)) EqL7
=L Ly Eq.18

Position of P will be:

Px 0 I 0 (X P_XD)
P? == 0 0 (Y oY b) Eqg.19
PE 0 0 1 (Z p_Zb)

(Kassimali, 2010)
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Chapter 3

PROBLEM STATEMENT

3.1 Introduction

In this chapter the research problems will be discussed. Main goals of this study will

also be mentioned and an overview of the solutions to our problems will be discussed.

3.2 The Problem

In this thesis algorithms were developed which will use IFM and the DIFM to allow the
analysis of space frames. These algorithms will generate the following results:

1. Independent member forces;

2. End forces of members;

3. Nodal displacements.
The programming process in creating this algorithm is carried out using computer
algebra system Mathematica 8.
3.3 Preferred Features of the Soft-wares for IFM and IFMD
In this part, different characteristics of the soft-wares for IFM and IFMD will be
discussed.
3.3.1 Features of software package for IFM
In the literature review, in existing documents written by Patnaik the following process
is deployed to gain compatibility conditions:

1. Generating relations of the deformation displacement.
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2. Eliminating the displacements after the first step.

3. Gain the compatibility conditions. (Patnaik S. N., 1986) (Patnaik S. , 1999)
(Patnaik S. N. and Joseph K. T., 1986) (Patnaik S. N. , Hopkins D. A. , and
Halford G. R. , 2004)

In this research a different numerical method has been followed. After generation of EE,
the following two numerical methods have been used:

1. Combining the unconnected flexibility matrix with NS of the equilibrium matrix.

2. Combining the SVD of the equilibrium matrix with unconnected flexibility
matrix.

3.3.2 Features of Software package for IFMD

Although in this computer code the emphasis has been put on generating the global
stiffness matrix, however in the IFMD the overall stiffness matrix is calculated through
using the dimply generated equilibrium matrix and drawing upon matrix management
capabilities of Mathematica 8. Utilization of such programming leads to cutting the
process of global stiffness matrix calculation to a single programming line. Hence the
use of Mathematica 8 is far less time consuming.

3.3.3 Other aspects of analysis packages

1) Effortless

In comparison with current commercial analysis packages, the developed codes are
much easier to use because much less options and parameters have to be specified.

2) Easy procedure:

The programs are developed in a way that users in different levels can operate and learn

it without any need to read certain documentation or manual.
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3) Debugging Variables:

Being suspicious of any results or eager to know how the calculations are performed,
users can track all the variables during the calculation procedure to find the source of
possible mistakes using the debugging mode.

4) Flexible:

In each level of the calculations the code that executes the process is shown. It is a huge
advantage for beginners to learn more about programming techniques. Professional users
can edit the code to change its utility.

5) Apparent Theory:

The theory which is used in the methods is elaborated on throughout the programs
making it easier to understand and follow the procedures.

6) Educational:

Similar to tutorials, the IFM via NS, IFM via SVD, IFMD and theories are introduced to
the user while using the program. At each step it has been tried to provide sufficient
tutorials and hints.

7) Accessible:

The packages are available for instructors, students and engineers without any limits, so
there is no need for them to search the literature for many hours to find such packages

that contain these characteristics.
3.4 An Overview of NS and SVD

The approach for IFM is depicted in Figure 6:
1. Equilibrium equations generation [S].

2. Unconnected flexibility matrix assembly [G].
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3. Finding CC, by using the NS and SVD.
4. Solving process for independent member forces.
5. Compute nodal displacements.

6. Finding twelve member end forces.

Generate

Equilibrium

Singular Value

Decomposition

Generate Unconnected

Flexibility Matrix

Making and

calculation of CC

Couple CC with

respect to EE

Apply Load

Vector

Calculation for

independent member end

forces

Calculate and finding

Solve for the twelve

displacements

member end force

Figure 6: Different Steps of IFM
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3.5 Outline of IFMD Method

The approach for IFM is depicted in Figure 7:

1.

2.

Equilibrium equations generation [S].

Unconnected flexibility matrix assembly [G].
Calculation of inverse unconnected flexibility matrix [G]
Global Stiffness Matrix generation [K].

Solve for nodal displacements [X].

Finding forces of Independent member forces.

Computation of twelve member end force.

Generate

Generated Equilibrium

Equations Unconnected

exibility Matrix

Creating matrix of

Global Stiffness

Applying

vector of load

Calculation of

Displacements

Compute the twelve

Calculation of
member end force
Internal forces

Figure 7: Outline of DIFM
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3.6 Mathematica Software as an Instrument

The software used in this research is Mathematica 8 because of capabilities and options

that it provides. The chief reasons for choosing Mathematica 8 are as follows:

1. Interactive calculation via notebooks.

2. Easyas much as a calculator.

3. Auvailability of over a thousand built-in functions.
4. Numerical calculation to any level of accuracy.
5. Possibility of symbolic calculation.

6. Solving equations numerically or symbolically.
7. Vectors and matrices functions.

8. Capability of user-defined functions.
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Chapter 4

METHODOLOGY

4.1 Introduction

To analyze any structure, the relation between S, F and P matrices is used. It is done

according to Equation 20

[S{F}={P} Eq.20

S matrix in determinate and indeterminate structures is different. S matrix for

determinate structure is square (m x m) and equation 20 can be solved easily.

The created EE for indeterminate structures is in rectangular shape. It is (m x n) where m
is total quantity EEs and n is the number of forces which are unknown. In order to create
a square matrix, it is needed to write and generate additional equation named
compatibility condition.

In this study two methods are undertaken in order to solve the indeterminate space frame
structures through using EE. IFM and Displacement method are these two methods. IFM
includes Null Space and Singular Value Decomposition and Displacement method

through using Dual IFM.
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4.2 Integrated Force Method (IFM)

This method is developed based on the below equation (Eqg.21). In this method EE and

Compatibility Condition (CC) are merged.

{ Equilibrium Equation }{Forces}:{ Mechanical Load } Eq.21

Compatibility condition Initial Deformation

This method is being used for analysis of indeterminate space frames based on EE and
CC. It has potential to develop for large scale structures even if it has confusing
topology. (Patnaik S. N. , and Hopkins D. A. , 1998), (Patnaik S. N. , Hopkins D. A. ,

and Halford G. R. , 2004)

EE is made based on forces whereas CC is generated depend on deformation and
displacement. In order to merge these two equations together, CC should be written in

terms of forces. Consequently the equation for IFM will change to:

{[C][A][G]}{ ik {ER} EqQ.22

In this new equation, A, C, G, F, P, AR stand for: EE matrix, CC matrix, unconnected
flexibility matrix, internal forces vector, external loads vector and initial deformations
vector respectively.

Short form of this equation is

[SKF}={P*} Eq.23
In this equation matrix [S] is created by merging EE, CC and flexibility matrix in square
shape. The number of rows in P vector is equal to external loads vector. In special cases

where there is no initial deformation, Zeros should be placed in order to make the
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equation dimensionally balanced. By using this method, independent member forces can
be determined. In some cases it is needed to find displacements of members. In such
cases displacements can be calculated based on the Equation 24 (Patnaik S. N. , Hopkins

D. A., and Halford G. R. , 2004)

{X}=01 [C] [F] Eq.24
Where: X, G and F are nodal displacements vector, unconnected flexibility matrix and

calculated member forces, respectively. Also J is transpose matrix of inversed S in this

equation.

a7
3=|[sT"] Eq.25
4.2.1 Assembling of CC in IFM
According to Patnaik (Patnaik S., 1999) in order to calculate CC, equation should be

written under the energy theory in structures. To write deformation displacement

relation and according the energy theory:

IE=Z{F) {5} Eq.26
With respect to the work-energy rule (IE=W), together with knowing that, in space

frame structures deformations (,31, - ﬂm) are corresponding to internal forces

(Fl, [ , Fm) and also external loads lead to be done work in structure the equation

27 is obtained:
W =2{P} (X} Eq.27

Therefore:
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{FY (=P} {X) Eq.28
By replacing EE (Eq.27) into Eq.28 it is changed to:

(Y ({B-[AT {x}})=0 Eq.29
And also this equation 29 can be written as:

{By=[A] {X} Eq.30
In this equation deformations should be written in terms of displacements. It is also
needed to eliminate displacements from deformation displacement relation. By doing

this it obtained as

[Cl{B}={0} Eq.31
Which in this equation P is equal to (m-n). it means that the CC has (m-n) columns.
4.2.2 Null specification of Equations and how to assemble

According to Patnaik, to get CC, the null space of EE is used. In the other hand for
making CC, the null space of the EE should be merged with unconnected flexibility
matrix (UFM). Null property of EE and after it CC can be obtained through using
equation Eq.20 and Eqg.30. (Patnaik S. , 1999) (Patnaik S. N. , Hopkins D. A. , and
Halford G. R. , 2004)

CC can be written in the format of Eq.32, if deformations between Eq.30 and Eq.31 will

be removed.
[C][A] {x}={0} Eq.32
Since displacements are subjective and they have not null vector properties in this

equation, coefficient can be removed from the equation. Therefore the equation can be

written as:
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[C][A] ={0} Eq.33

[A][CT ={0} Eq.34
CC is found by null space of EE. After it CC and EE should be merged.

In this study, Mathematica software is being used. By using this software and its defined
commands, it is possible to find null space matrix.

4.2.3 Assemble CC in Singular Value Decomposition Method

Employing SVD is another technique to calculate and obtain the CC. According to
Patnaik in this method matrix M is generated.

(Patnaik S. N. and Joseph K. T., 1986), (Patnaik S., 1999):
(M= [1-LAT ([AT)™ | £q.35

In this equation [I] stands for the identity matrix. In this matrix number of members and

number of columns and rows are equal. [A]T Stands for transpose form of EE and

([A]T )pmv is obtained by Eq.36.

(AT )™ =((ATAT ) A Eq. 36
To obtain matrix M, SVM is applied.

[M]=[M,][M,][M,T Eq.37
[M, ]: Orthogonal matrix

[M,] : Orthogonal matrix

In these matrices the number of elements is equal to the number of rows and columns.
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[Mﬁ] - Is a square matrix and calculated according to Eq.38.

A O

[M;] =( j Eq.38
00

Also:

A=diag (A, A,,..... Ap) Eq.39

Ap : Degree of indeterminacy and:
A=A, >...2Ap>0 Eq.40

At last M matrix and CC can be changed to:

- ) -
[C]=[Ns][G] Eq.42
Where:

[NS]: Null space matrix of EE. (Patnaik S. , 1999), (Patnaik S. N. and Joseph K. T. ,

1986)

4.3 Dual Integrated Force Method (IFMD)

Patnaik developed IFM to Dual IFM. In this method basic equation is:
[K Jimg X3 = {P} Eq.43
In this equation [K] is Stiffness matrix. The equation for this matrix is:
(Kl =[AlG]"[A] Eq.44
In this equation, [A],[G]_l, [X] and [P], are EE matrix, inverse of flexibility matrix,

vector of displacements and external loads respectively.

In space frame structures flexibility matrix will be obtained from Equations 44 and 45.
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f=—_ Eq.45

[G]= N Eq.46

The main equation for load vector is Eq.47:

{Pima Z{{P}Jf([A][G]_l{ﬁO})} Eq.47
Where:

{,6’0} is initial deformation vector

Number of total degree of freedoms is equal to number of rows and columns. In this

study initial deformation of supports are not considered and {,6’0} vector is zero

consequently. Therefore equation 47 can be written in Equation 48 format:
{Plims =P} Eq.48

Next step is assembling of {K} matrix and calculating displacements using Equation

ifmd
48. After it the internal forces can be obtained with:

{Fy=[c]"[A] {x} Eq.49
Using EE matrix [A] is common point between IFM and DIFM. Uncommon point

between these two methods is that, in IFM method primary unknowns are internal forces

whereas in DIFM method primary unknowns are displacements.
4.4 Solution Method Outline

The main equation to analyze any structure is:

[A] {F} ={P} Eq.50
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In this part utilizing EE to find the internal forces is discussed. An outline of computer
programming process and the algorithms of it are also explained.

4.4.1 Equilibrium Equation Application

EE is used for both determinate and indeterminate structures. Since in determinate frame
structures member forces are unknown, writing EE is sufficient to solve. It is because
that the number of EE and unknowns are equal. Finding internal forces will help to

calculate deformations and displacements.

Unlike determinate frame structures, in indeterminate structures number of EE is not
equal and unknowns are not equal to each other due to unequal known and unknowns.

To solve this problem, it is needed to add some new relations.

Figure 8 shows the procedure of EE application in detail in this study including

determinate and indeterminate frames.
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Usage of Equilibrium Equation

—

Dreterrminate  Structure

Indeterrmnate Structure

l

l

Displacement Iethod

Force Method

l

|

Dual Integrated Force

Integrated Force Method

singular Value Decomposition

Mull Space

Figure 8: Application of EE

4.4.2 Step by step Computer Programming for IFM and IFMD

Since hand calculation is time consuming and might be inaccurate for large scale space

frame structures, it is needed to write codes and computer programs in order to solve this

problem. The step by step procedure for IFM and IFMD is explained in this part.

4.4.2.1 IFM step by step

Figure 9 shows the step by step procedure and important stages in IFM method.
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Generated Equilibrium
Equation

[ sihgular Value [ Iull Space J

Decomposition

Mlatro:

l

Compute Compatibility
Condition

|

[ Couple Compatibility Condition J

-
Tnconnected Flembility ]

-~

with Equilibrium Equations

Appled Load
Wector

molve For Internal Forces ]

|

[ =molve For Displacetments J

Figure 9: Overview of IFM
4.4.2.2 Procedure in IFMD Method

Figure 10 shows the main steps in IFMD method.
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Generated Equilibrium
Equation

TThcomected
Flembality Miatrix

Fenerate Slobal
[E Jifima Ilatrix

Applied Load
WVector

solve For DisplacenD

Solve For Internal
Forces

Figure 10: Overview of Dual Integrated Force Method Programming
Figure 9 and 10 are valid for indeterminate structures. In case of indeterminate structures

Figure 11 shows the procedure.
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{enerated Equilibrium
Equation

Applied Load
Wector

solve For Internal
Forces

Figure 11: Procedure for determinate frame structures

4.5 Programming

In this study a program application has been written in order to analyze and solve space
frame structures. It is written based on the above methods and using matrix
decomposition, matrix operations and linear system of equation. Also import and export
of data, symbolic and numerical mathematics are drawn upon. The matrix scatter plots
are used as well. Also Mathematica software has been used which is a symbolic and
numeric computational engine and programming system with the strong ability to other
related applications.

4.5.1 Characteristics and advantages of the written program

This program is easy to use, simple and user friendly. It is not necessary to read or learn
any instructions for the first time users in order to operate the program. Also it is easy to
understand and run analyzing procedure in this program in comparison to other similar
applications. Equations, relations and the theory of the methods are used in each level of

analyzing giving the programs transparent theory. Furthermore, capability to have a
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quick control on the procedure is easy, in order to find any possible and probable
mistakes. In each part, results are shown individually. The most advantageous ability of
written program is its capability and skill in step by step teaching of the theories and

formulation procedure for IFM via null space and IFM via singular value decomposition.
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Chapter 5

EQUILIBRIUM EQUATIONS AND MATHEMATICA

PROGRAMMING FOR IFM AND IFMD

5.1 Introduction

Since, in the survey carried out for this research no computer code intended for analysis
of space frames were based on IFM and also because most of the available codes applied
the stiffness method as their principal approach of analysis, the main aim of this research
has been decided to be the development of a computer code to analyze the space frames
based on IFM.
In this research 3 different packages of computer programs were developed for analysis
of space frames. Each package draws on different approaches of integrated force method
which were explained in chapter 3. The packages are as follows:

o 1% package: Null Space approach.

e 2" package: Singular Value Decomposition approach.

o 3" package: Dual Integrated Force approach.
In this chapter, first process of generating the equilibrium equation is discussed then
these equations are used for analysis of space frames by three different methods. In order
to introduce and elaborate on the codes, a three member frame was used as an example.

Also the method of data entry and use of program were explained.
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5.2 Generation of EE for Space Frame

What is going to be explained in this part is the way of developing equilibrium equations
matrix of the space frame structure. As we know for each member of the three
dimensional frames, there are six actions at each end and the matrix of equilibrium
equations of whole structure is a combination of equilibrium equation of each member.
Therefore, in this program, the equilibrium equation of each member is made during
twelve steps at first and then with a suitable combination of these matrices, we will have
the equilibrium equation of the structure at the end. (Fillppou, 2001)

Step 1: At the first step, we should have the location of start point and end point of each
member in our structure. For this purpose, the number of each start and end point for all
members is read by the program:

mincb = inc[[i, 2]];

mince = inc[[i, 3]];

dtabl =

6 * mincb — 5,6 * mincb — 4,6 * mincb — 3,6 * mincb — 2,6 * mincb — 1,6 * mincb,
6 * mince — 5,6 * mince — 4,6 * mince — 3, ;
6 * mince — 2,6 * mince — 1,6 * mince

Step 2: The coordinates of these start and end points are read as follows:

xd = cord[[mince, 2]] — cord|[[mincb, 2]];

yd = cord[[mince, 3]] — cord|[mincb, 3]];

zd = cord[[mince, 4]] — cord|[[mincb, 4]];

Step 3: The program reads the coordinates of P-points which are related to each member

of the structure.

xPd = cordP[[i, 2]] — cord[[mincb, 2]];
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yPd = cordP|[i,3]] — cord[[mincb, 3]];
zPd = cord[[i, 4]] — cord[[mincb, 4]];
Step 4: In the next part of the program length of each member of the structure is

calculate as shown below:

If [freet[[mincb, 2]] == 1, ReplacePart[dtabl, 0, 1]] ;
For complete code refer to Figure 19

If [freet[[mince, 7]1] == 1, ReplacePart[dtabl, 0,12]] ;

Lm = Sqrt[xd? + yd? + zd?];
Step 5: After that the direction cosines of each member can be calculated in accordance
to the previous amounts like what has shown under this paragraph:

X_Xd_ Y_yd. Z_Zd_
rx =im rx =im rx =1

Step 6: After all these calculations the fixed unit vector of each member can be found in
according to the above values and calculations and also the coordinate of P-point as:

uvx = {rxX, rxY, rxZ};

zL = Sqrt [Vz[[l]]2 + VZ[[Z]]2 + VZ[[3]]2] ;

VZ
uvz = —;
zL’

For further codes refer to Figure 20
uvy = Cross[uvz, uvx];
Step 7: In this step of the program we have to generate the global member equilibrium

matrix but before that, generation of member equilibrium matrix and transformation
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matrix is needed to be obtained. To achieve this purpose we generate the member

equilibrium matrix as:

-1 0 0 0 0 0
0 -1 0 0 0 0
0 0 -1 0 0 0
0 0 0O -1 0 0
0 0 Lm 0 -1 0
b= 0 -Lm O 0 0o -1],
1 0 0 0 0 oI’
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
And the transformation matrix as:
tvl tv2 tv3 0 0 0 0 0 0 0 0 0
tvd tvs5 tve O 0 0 0 0 0 0 0 0
tvZ tv8 tv9 0 0 0 0 0 0 0 0 0
0 0 0 tvl tv2 tv3 O 0 0 0 0 0
0 0 0 tvd tv5 tve O 0 0 0 0 0
= 0 0 0 tv7 tv8 tv9 O 0 0 0 0 0 |,
0 0 0 0 0 0 tvl tv2 tv3 O 0 0o
0 0 0 0 0 0 tvd tvs5 tve O 0 0
0 0 0 0 0 0 tv7 tv8 tv9 O 0 0
0 0 0 0 0 0 0 0 0 tvl tv2 tv3
0 0 0 0 0 0 0 0 0 tvd tvs tve
0 0 0 0 0 0 0 0 0 tv7 tv8 tv9

In which there are some fixed values that can be found as:

tvl = uvx[[l]]; tv2 = uvx[[Z]]; tv3 = uvx[[3]];

tv4 = uvy[[l]]; tvs = uvy[[Z]]; tve = uvy[[3]];

tv7 = uvz[[l]]; tv8 = uvz[[Z]]; tvo = uvz[[3]];

Step 8: By using the member equilibrium matrix, b, and transformation matrix, t, global
member equilibrium matrix is generated as:

bg = Transpose[t]. b;
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After all these the generated matrices have to be stored in the memory that this will be
done by the following part of the program:

AppendTo[bgmem, bg];

AppendTo[bmem, b];

AppendTo[Lmem, Lm];

AppendTo[dtablmem, dtabl];

AppendTo[tmem, t];

Step 9: By using the values calculated in the previous part of the program, fixed-end

actions of each member of the structure can be found as:

z
w[[i]] * Lm

N N NN

w[[i]] * Lm?

Qf = 12. ;

w[[i]] * Lm
2.

Z
Z
Z

2

a)[[i]] * Lm
1

2.

Step 10: By using this vector as a generating vector, the global fixed end actions matrix
can be generated:

Ff = Transpose[t].Qf;

Then, both the global fixed-end action and member fixed-end action matrices should be
stored in the memory with the following commands:

AppendTo[Ffmem, Ff];
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AppendTo[Qfmem, Qf];

Step 11: After generating these mentioned matrices and vectors, this program
determines the unrestrained degrees of freedom (D.O.F.) by the commands that are
written bellow:

kk = 0;

Do

Gl=6%i—5; c2=6%i—4; cj3=6%i—3;

Cjd=6xi—2; cj5=6*i—1; cj6 =6x1i;

Print[i," ", {cj1, ¢j2, ¢j3, ¢j4, ¢j5, cj6}];

ifffreet[[i, 2]] == 1, dof[[6 * i — 5]] = 0];

If[freet[[i, 2]] == 0,kk = kk + 1];

If[freet[[i, 2]] == 0, dof[[6 * [ — 5]] = kk];

Further codes are available in Figure 23 and Figure 24

If[freet[[i, 7]] == 1,dof[[6 * i]| = 0];

If[freet[[i, 7]] == 0,kk = kk + 1];

If[freet[[i, 7]] ==, dof[[6 * i]] = kk]

,{i, 1,noden}]

Step 12: Continuing, in the program we start with empty equilibrium matrix as given
below:

S = Table[0., {sr, 1,6 * noden — rest}, {sc, 1,6 * m}];

Then, in a loop of the number of members, some variables of EE are filled. The process

of this filling is related to the situation of members and their equilibrium equation
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matrices. The beneath variables will be filled if there are any restrained degrees of
freedom:

nodel = inc[[i, 2]];

node2 = inc[[i, 3]];

k1l = 6 * nodel — 5;

Further codes are shown in Figure 24

kc12 = dof|[k12]];

Combination step: After these variable fillings, the program begins to store the global
equilibrium equation matrix values of each member in the structure equilibrium equation
matrix as shown in the following part:

If[kcl # 0,S[[kc1, c1]] = S[[kc1, c1]] + bgmem[[i]][[l,l]]];

Further codes are shown in Figures 25,26,27,28 and 29

If [ke12 # 0, S[[ke12, c6]] = S[[ke12, c6]] + bgmem[[i]][[12,6]];

After this section is completed, generation of equilibrium equation matrix of the
structure will be completed.

To show the complete process of developing equilibrium equations in this program and
all other steps of analyzing the space frame with 3 different methods are explained via
an example of a three member structure.

The first part of program is the data input phase.
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noden = 4;

Figure 12: Input Data part of Program
In Figure 12, number of structure members and nodes are indicated by m and n

respectively. In this part number of members and nodes are manually entered.

Geometry data input part:

1
inc:[Z 2(3
3

L =
[ w
—

El

cord =

| W] K|

|

= e
bl I~
ol ol e
—

Figure 13: Geometry Data Input Section
In next step information regarding the number of elements and their connectivity

indicating geometry of structures are manually entered by the user. The number of row

and columns of the matrix varies, depending on the number of members of the structure.
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1% column indicates the number of elements, 2™ column indicates number of starting-

nodes and 3" columns stand for the number of end-nodes.

The coordinates of nodes must be written in the “cord” matrix as shown in Figure 13.
The 1% column shows number of each node. Coordinates of X, Y and Z are shown in

remaining columns respectively.

E2

E1 4

M
X/

Figure 14: Space frame with three members
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Calculation of P-point for each member of the structure:

const = 1;

cordP = Table[

{

counter

13

If[

[curd == cord

[[im[[CDI.IJltEr 20 2]] I:[:i-“"“[[i:l:uunt.er:r 3q- 2]] ]

v

cordp.
“1“"3[[cu1.mter 20 Z]]
1
- [cord
2

13

1
2

2]] + cord

ﬂim[[comlter .21 - [[imllcou.nter .31 2]] ]

[curd 3]] + cord

II:i.m: Icounter, 2] - Ilinc[[cou.nt.er L300 3]] ] -

(_1)Leng'l:.h[im:] et

v

If[

[curd = cord

[[imllGDll.llt-E]’.' .21 - 2]] - [[im[[comlter, - 2]] ] A

[Curdllim: Icounter, 2] - 4]] = curd[[im: counter, 3] - 4]] l

v

1
= [cord + cord
2

ﬂim[[comlter L21 - 4]] [[imllcou.nter .31 4]] ] -

(_1)Leng'l:.h[im:] et

1
- [cord
2

1
}

13

4]] + cord,

Ilim[[culmter L21 - [[i“":ﬂcolmter .31 4]] ]

focounter, 1, m}

1:

Grid[cordP, Dividers - Center]

1 0 3. 1
-2.5|5. 0
3 0 J.|-2.5

4]

Figure 15: Calculation of coordination of P-Point
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Released degrees of freedom at each end of the members:

0
1
o H
1

Figure 16: Input freedoms of Joints

freet = [

| L] M|
R okl R~
Bl okl =
R okl R~
|l = B el B
o =11 -]

Freedom degrees of the frame are represented in an nx7 matrix. In this matrix the joint
numbers should be entered in first column and freedom degrees in X, Y and Z directions
should be entered in the 2™ 3™ and 4™ columns. The remaining columns stand for
moment restrain of nodes in X, Y and Z direction. As shown in the Figure 16, if there is
a restraint 1 should be entered and in the case of lack of restraint 0 must be entered.

Properties of sections and materials:

PROPERTIES AND MATERIAL INPUT

Iiz - {0.0005, 0.0005, 0.0005};
Iiy = {0.0005, 0.0005, 0.0005};
v =0.3;

Ee
TSN

Fl

A ={0.002, 0.002, 0.002}%};

Fl

Ee = 2. x10%;
=z =0.;

Figure 17: Input data part - properties and material



Loads data input part:

applires -

| Ld| k3| =
o= S| S| =
Lo ) ) Qe

0={0.,12.,0.}; ‘

Figure 18: Loads data input section
As depicted in Figure 18, the applied loads at each node should be inserted in applied

forces matrix. The amounts of loads have to be inserted in the relevant cell and if there

were no forces, zero must be inserted.



5.2.1 Equilibrium equation assembly:

EQULIBRIUM EQUATIONS
T

kmem = {};
Imem = {};
hgmem = {};
bmem = {};
tmem = {};
Qfmem = {};
Ffmem = { }:

dtablmem = {};
Off[General::spell]

po

minch = inc[[i, 2]]:
mince = inc[[i, 3]]:
dtabl = {6+minch -5, 6 *minch -4, 6+minch - 3,
Gwminch - 2, 6+minch - 1, 6 +minch,
Gvmince - 5, 6+mince - 4, 6 #+mince - 3,
Grmince -2, Gymince -1, 6 +mince};
xd = cord|[ [mince, 2]] - cord| [minch, 2]];
¥d = cord[ [mince, 3] ] - cord[ [minch, 2]]:
zd = cord|[ [mince, 4]] - cord[ [minch, 4]];
¥Pd = cordP[[i, 2]] - coxd[ [minch, 2]];
¥Pd = cordP[[i, 3]] - coxd[ [minch, 3]];
zPd = cordP[[i, 4]] - coxd[[minch, 4]];
If[freet[[minch, 2]] == 1,
ReplacePart[dtabl, 0, 1]]:
If[freet[[minch, 2]] == 1,
Print[i, " YES", dtabl[[1]]]1]:
If[freet|[minch, 3]] =1, ReplacePart|[dtabhl, 0, 2]];
If[freet|[minch, 4]] =1, ReplacePart|[dtabl, 0, 2]]:
If[freet[[minch, 5]] == 1, ReplacePart|[dtabl, 0, 4]]:
If[freet[[minch, 6]] == 1, ReplacePart[dtabl, 0, 5]]:
If[freet[[minch, 7]] == 1, ReplacePart[dtabl, 0, &]]:
If[freet[[mince, 2]] == 1, ReplacePart[dtabl, 0, 7]]:

Figure 19: Computer codes to assemble Equilibrium Equation
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If[freet|[mince, 3]] == 1, ReplacePart|[dtabl, 0, 8]];
If[freet|[mince, 4]] == 1, ReplacePart|[dtabl, 0, 9]];
If[freet|[[mince, §]] == 1,
ReplacePart[dtabl, 0, 10]];:
If[freet|[mince, 6]] == 1,
ReplacePart|[dtabl, 0, 11]];
If[freet[[mince, T]] == 1,
ReplacePart[dtabl, 0, 12]];
Im = Sqrt[xd2 + de + zdzl;

xd
rxX = —;
Lm
yd
Im’
zd

rxy =

TxZ = H
Im

uvx = {rxX, rx¥, rxZ};
pvec = {xPd, yPd, zPd};
vz = Cross[uvx, pvec];

zL = Sqrt[wz[[l]]2 +vz[[2]]? +VZ[[3]]2]F

YZ
uvz = —;

zL
uvy = Cross|uvz, uvx];
Print['"uvx =",4i," ", uvx];
Print|['pvec =",i," ', pvec];
Print['uvz =",i," ", uvz];
Print['uvy =",i," ", uvy];

tvl = uvx[[1]];
tv2 zuvx[[2]];
tvd -uvx[[3]];
tvd = wwy[[1]];
tvs = uvy[[2]];
tv6 = uvy[[3]];
tv? =uvz[[1]];
tvB -uvz[[2]];
tv® =uvz[[3]];

Figure 20: Computer codes to assemble Equilibrium Equation (2)
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100 |0 00

0 -10 00

00 [-1/0]0]0

0 0 [-1[0]0

00 [tm| 0 [-1]0

0 [-Im| 000 |-1

bl o Tero oo |

0] 1(0]0[0]0

0] 0 (L1000

000|100

0000 1|0

00 0]0]0|1

t=-

tvl [tv2 |tv3 0 [0 [0 [0 [0]0
tvd [tv5 |tvh 0 [0 0000
tv7 [tvB [tvd | 0 000 000
0 |0 | 0 [tvi|ev2|tv3| 0 |0 [0 |0 [0 [0
0 |0 | 0 [tvd|twb|tv6| 0 |0 [0 |0 [0 |0
0 |0 | 0 [tvi|tvB|tv@| 0 |0 [0 |0 |00
0 [0 [0 [0 |00 [tvilev2|ewd]| 0 |0 [0
0 [0 |00 |0 |0 |cvd|ewh|ev6| 0 |0 |0
0 [0 00|00 [cv7|evB|ewd| 0 |0 |0
0 00000 tvl [tv2 [tv3
000000 tvd [tvh |tve
000000 tv7 [tvB |tvD

by = Transpose[t].b;
AppendTo[bgmem, byg];

AppendTo[bmem, b];
AppendTo[Lmem, Im];

AppendTo[dtablmem, dtabl];

AppendTo[tmem, t];

Figure 21: Computer codes to assemble Equilibrium Equation (3)
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Ff - Transpose|t].Qf;
AppendTo [Ffmem, F£];
AppendTo|Qfmem, Qf];

Print['transformation mat =',1," ', MatrixForm[t]];
Print['cosines =",1i,' ', {CCx, $8y, CCz}];
Print['hg =",1," ", MatrixForm|hg]];

Print["dtabl =", 1, " ', MatrixForm[dtabl]];

Print[minch, '---", mince|,

{i, 1, m}|;

Figure 22: Computer codes to assemble Equilibrium Equation (4)
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rest = 0;

Do[If[freet[[i, 2]] == 1, rest =rest +1];
If[freet[[i, 3]] =1, rest =rest + 1];
If[freet[[i, 4]] =1, rest =rest + 1];
If[freet[[i, §5]] =1, rest =rest + 1];
If[freet[[i, @]] =1, rest =rest + 1];
If[freet[[i, T]] =1, rest =rest + 1],

{i, 1, noden}]

rest

dof = Table[j], {JJ. 1:; 6 ¥noden}]

Clear[kk]

kk =0;

Do|

cjl=6+1i-5;

cj2-6%i-4;

cj3 =bwi-3;

cjd =bwi-2;

cjh =6+i-1;

cjb =bwi;

Print[i, " "o fodl, 232, o33, ojd, ojh, cjbl];
If[freet[[i, 2]] =1, dof[[6+1i-5]] =0]:
If[freet[[i, 2]] =0, kk =kk +1];
If[freet[[i, 2]] == 0, dof[[6+1i -5]] = kk];
If[freet[[i, 3]] == 1, dof[[6+i-4]] =0];
If[freet[[i, 3]] =0, kk =kk +1];
If[freet[[i, 3]] == 0, dof[[6+i -4]] = kk];
If[freet[[i, 4]] == 1, dof[[6+i-3]] =0];
If[freet[[i, 4]] =0, kk =kk + 1];
If[freet[[i, 4]] == 0, dof[[6+1i -3]] = kk];
If[freet[[i, 5]] =1, dof[[6+1i-2]] =0]:
If[freet[[i, 5]] =0, kk =kk +1];
If[freet[[i, 5]] == 0, dof[[6+1i -2]] = kk];
If[freet[[i, 6]] == 1, dof[[6+1i-1]] =0];
If[freet[[i, 6]] =0, kk =kk + 1];
If[freet[[i, 6]] == 0, dof[[6+1i -1]] = kk];

Figure 23: Computer codes to assemble Equilibrium Equation (5)
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If[freet[[i, 7]] =1, dof[[6%i]] = 0]
If[freet[[i, 7]] =0, kk = kk + 1];
If[freet[[i, 7]] =0, dof[[6%1i]] = kk],
{i, 1, noden}]

dof

§ =Tabhle[0., {=r, 1, 6 ¥noden -rest}, {=c, 1, 6+m}];
Dimensions[§ ]

MatrixQ|[5]

MatrixForm[5];

mi =0;

Do

nodel = inc[[i, 2]]:

node? = inc[[i, 3]]:

kl =6+nodel - 5;

k? = 6+nodel - 4;

k3 = 6+nodel - 3;

kd = 6 *nodel - 2;

kb =6 +nodel - 1;

k& = 6 *nodel;

mi=—mi + 1;

cl=0+mi - 5;

cZ2 =0+mi - 4;

c3=6+mi - 3;

cd c6G+mi - 2;

ch =6G+mi -1;

ch = 6+mi;

Print[i, "k1---k&", {k1, k2, k3, ki, kb, ké}];
k71 = 6 #*node?2 - 5;

kB = 6 *node? - 4;

kD = 6 *node? - 3;

k10 = 6 #*node? - 2;

k11l = 6 +node? - 1;

k12? = 6+ node?;

Print[i, "k7---k12", {k7, k8, k9, k10, k11, ki12}];
kel = dof[ [k1]]:;

ko? - dof[ [k2]]:

ko3 = dof[[k3]]:;

kod = dof[[kd]];

koh = dof[[Kk5]]:

Figure 24: Computer codes to assemble Equilibrium Equation (6)
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koo = dof[ [k6]];

Print[i, ".ke..", {kel, ke2, ked, ked, ke, keb6}];
ke? = dof[ [k7]];

ke8 = dof[ [kEB]];

koD - dof[ [k2]];

kel0 = dof] [k10]];

kell - dof[ [k11] ] ;

kel? - dof] [k12]];

Print[i, ".ke..", {ke?, ke, ke, kelQ, kell, kel2}];
Print[i, """, bgmem[[i]][[2, 1]], ":",

homem[ [1]][[1. 2]], "¢, bomem[ [1]][[1. 3]]]:
If[kel £ 0,

S[[kel, e1]] = S[[kel, e1]] + bgmem[ [i]][[1, 1]]];
If[kel £ 0,

S[[kel, 2]] = S[[kel, e2]] + bgmem[ [i]][[1, 2]]];
If[kel £ 0,

S[[kel, c3]] = $[[kel, €3]] + bgmem[ [1]][[1, 3]]];
If[kel £ 0,

§[[kcl, cd4]] =5[[kel, c4]] + bgmem[[1]][[1, 4]]]:
If[kcl £ 0,

§[[kcl, cb]] =5[[kel, c5]] + bgmem[[1]][[1, 5]]1]:
If[kel £ 0,

S[[kcl, c6]] = S[[kel, ¢b6]] + bgmem[[1]][[1, 6]1]1];
If[ke2 £ 0,

S[[ke2, c1]] = S[[ke2, e1]] + bgmem[ [1]][[2, 1]]1];
If[ke2 £0,

S[[kc2, c2]] =5[[ke2, c2]] + bgmem[[1]][[2, 2]]]:
If[ke2 £0,

§[[kc2, c3]] =5[[keZ, c3]] + bgmem[[1]][[2, 3]]]:
If[ke2 £ 0,

S[[ke2, c4]] = S[[ke2, c4]] + bgmen[ [1]][[2, 41]1];
If[ke2 £ 0,

§[[ke2, cb]] =5[[keZ, c5]] + bgmem[[1]][[2, 5]]]:
If[ke2 £ 0,

§[[ke2, cb]] =5[[keZ, c@]] + bgmem[[1]][[2, &]]]:

Figure 25: Computer codes to assemble Equilibrium Equation (7)
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If[ke3 # 0,
S[[ke3, cl1]] = s[[ke3,

If[kc3 £ 0,
S[[ke3, 2]] = §[[ke3,
If[kc3 £ 0,
S[[ke3, ©3]] = §[[ke3,
If[ke3 £ 0,
s[[ke3, cd]] = §[[ke3,
If[ke3 £ 0,
S[[ke3, ©5]] = §[[ke3,
If[ke3 £ 0,
S[[ke3, ¢6]] = S[[ke3,
If[kcd £ 0,
S[[ked, c1]] = 5[ [ked,
If[kcd £ 0,
S[[kecd, ©2]] = [ [ked,
If[kcd £ 0,

S[[ked, 3]] = §[[ked,
If[kcd £ 0,
S[[ked, c4]] = §[[ked,

If[kcd £ 0,
S[[ked, ©5]] = 5[ [ked,
Iflkcd £ 0,
E[[ked, cb]] = 5] [ked,
If[kch £0,
S[[keh, c1]] = S [kch,
If[kch £0,
5[[kch, ©2]] = 5] [kch,
If[kch £ 0,
S[[kehd, ©3]] = 5[ [keh,
If[kch £0,
S[[kch, c4]] = 5[ [kch,
If[kch £0,

S[[ke5, ¢5]] = S[[ke5,
If[ke5 £ 0,
S[[ke5, ¢6]] = S[[ke5,

Figure 26: Computer codes to assemble Equilibrium Equation (8)

el]] + bgmem[[1]][[3,

c2]] + bgmem[[1]][[3,

¢3]] + bgmem[[1]][[3,

cd]] + bgmem[[1]][[3,

©3]] + bgmem[[1]][[3,

c6]] + bgmem[[1]][[3,

cl]] + hgmem[[i]][[4,

©2]] + bgmem[[1]][[4,

e3]] + bgmem[[i]][[4,

cd]] + bgmem[[1]][[4,

e5]] + bgmem[[1]][[4,

c6]] + bgmem[[1]][[4,

cl]] + bgmem[[1]][[5,

©2]] + bgmem[[1]][[5,

©3]] + hgmem[[1]][[5,

cd]] + bgmem[[1]][[5,

e5]] + bgmem[[1]][[5,

c6]] + bgmem[[1]][[5,
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If[kc6 £ 0,
S[[ke6, cl]] = S[[ke,

If[kct £0,
5[ [keé, c2]] = 5[ [keb,
If[kctd £0,
S[[keé, 03]] = 5[ [keb,
If[kctd £0,
[[kct, cd]] = §[[keb,
If[kecé £ 0,
5[[kcé, 5]] = 5[ [keé,
If[kct £0,
5[[kcé, ca]] = 5[ [keé,
If[kc? £0,
] [ke?, c1]] = 5[ [keT,
If[ke? £0,

5[ [ke?, 02]] = 5[ [keT,
If[ke? £0,
5[ [ke?, ©3]] = 5] [ke?,
If[ke? £0,
5[[ke?, cd]] = 5] [ke?,
If[ke? £0,
5[[kc?, cb]] = 5[ [ke?,
If[kc? £0,
5[ [kc?, ca]] = 5[ [keT,
If[kcB £0,
§[[keB, cl1]] = §[[ke8B,
If[kcB £0,
5[[kcB, ©2]] = 5[ [ke8,
If[kcB £ 0,
5[[kc8B, ©3]] = 5[ [ke8,
If[kcB £0,
5[[kcB, cd]] = 5[ [kc8,
If[kcB £0,
5[[kcB, ©b]] = 5[ [ke8,
If[kcB £0,
S[[keB, c6]] = 5[ [ke8,

Figure 27: Computer codes to assemble Equilibrium Equation (9)

cl]] + bgmem[[i]][[8,

©2]] + bgmem[[i]][[8,

©3]] + bgmem[[i]][[8,

cd]] + bgmem[[1]][[8,

©5]] + bgmem[[i]][[6,

©6]] + bgmem[[i]][[8,

el]] + bgmem[[i]][[7,

©2]] + bgmem[[1]][[7,

c3]] + bgmem[[1]][[7.

cd]] + bgmem[[1]][[7,

©3]] + bgmem[[1]][[7,

e6]] + bgmem[[1]][[7,

el]] + bgmem[[i]][[8,

c2]] + bgmem[[1]][[8,

©3]] + bgmem[[i]][[8,

cd]] + bgmem[[1]][[8,

©3]] + bgmem[[i]][[8,

e6]] + bgmem[[1]][[8,
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If[ke9 # 0,

S[[kc9, c1]] = S[[kc?, c1]] + bgmem[[1]][[9. 1]]1];
If[ke? £ 0,

S[[kc9, c2]] = S[[ke?, c2]] + bgmem[[1]][[9. 2]111];
If[ke? £ 0,

S[[kc9, ©3]] = S[[ke?, c3]] + bgmem[[1]][[9. 3]111];
If[ke? £ 0,

S[[kc9, cd]] = S[[ke9, c4]] + bgmem[[1]][[9. 4]1]1];
If[ke? £ 0,

S[[kc9, e5]] = S[[ke9, c5]] + bgmem[[1]][[9. 5]111;
If[ke? # 0,

S[[kc9, c6]] = S[[ke9, c6]] + bgmem[[i]][[9. 6]]1];
If[kel0 £ 0,

$[[kcl0, c1]] = §[[kel0, c1]] + bgmem[[i]][[10, 1]]]:
If[kel0 £ 0,

$[[kcl0, ©2]] = §[[kel0, c2]] + bgmem[[i]][[10, 2]1]1]:
If[kel0 £ 0,

S[[kcl0, €3]] = §[[ked0, c3]] + bgmem[[i]][[10, 2]]1]:
If[kcl0 £ 0,

S[[ked0, c4]] = S[[kel0, c4]] + bgmem[[i]][[10, 4]]];
If[kcl0 £ 0,

S[[kel0, ©5]] = §[[kel0, 5]] + bgmem[[i]][[10, 5]]];
If[kel0 £ 0,

S[[kel0d, c6]] = 5[ [kel0, c6]] + bgmem[[i]][[10, 6]]];
If[kell £ 0,

S[[kell, e1]] = 5[ [kell, c1]] + bgmem[[i]][[11, 1]]];
If[kell £ 0,

S[[kell, e2]] = 5[ [kell, c2]] + bgmem[[i]]1[[11, 2]]];
If[kell # 0,

s[[kell, €3]] = §[[kell, c3]] + bgmem[[i]][[11, 3]]1];
If[kell # 0,

S[[kell, c4]] = §[[kell, c4]] + bgmem[[i]][[11, 4]]];
If[kell £ 0,

S[[kell, ©5]] = §[[kell, c5]] + bgmem[[i]][[11, 5]1]1];
If[kell £ 0,

S[[kell, c6]] = §[[kell, c6]] + bgmem[[i]][[11, 6]]];

Figure 28: Computer codes to assemble Equilibrium Equation (10)
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S[[kell, c6]] = S[[kell, c6]] + bgmem[[1]]1[[11, 6111
If[kel2 £ 0,

S[[kol2, ol]] = S[[kel2, c1]] + bgmem[[i]]10[12, 1111
If[kel2 £ 0,

S[[kel2, c2]] = 5[ [kel2, c2]] + bgmem[ [1]1][[12, 2111:
If[kel2 £ 0,

S[[kel?, ©3]] = 5[ [kel2, ©3]] + bgmem[ [1]1]11[12, 3111:
If[kel2 £ 0,

S[[kel2, cd]] = $[[kel2, c4]] + bgmem[ [1]][[12, 4]1]1:
If[keclZ £ 0,

S[[kcl2, c5]] = S[[kcl2, c5]] + bgmem[[1]]11[12, 5111
If[kelZ £ 0,

S[[kcl2, c6]] = S[[kcl2, c6]] + bgmem[[i]]1[[12, 6111,

{i, 1, m}]

Figure 29: Computer codes to assemble Equilibrium Equation (11)
And here is equilibrium equation matrix of the structure:

B EQUILIBRIUM EQUATIONS

Print["s = ", MatrixForm[s5]]
0. -4. 0 0. 0. -1. 0. 0. 0. 0. O. 0. 0. O. 0. 0. 0. 0.
o. 0. 0. -1. 0. 0. 0. 0. 0. 0. 0. 0. O. O. 0. 0. 0. 0.
0. 0. 4 g. -1. 0. 0. 0. 0. 0. O. 0. 0. 0. O. 0. 0. 0.
o. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. O. -1. 0. O. 0.

g = 1. n. 0. 0. 0. oo 0. 1. 0. o0 0. 0. 0. -1, 0. 0. 0. 0

o. 1. 0 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. O. 0. 0. 0. 0.
0. 0. O 0. 0. 1. 0. 0. 0. 1. O. 0O. 0. -5. 0. 0. 0. -1.
. 0. 0 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 5. 0. -1. 0.
0. 0. 0 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. O. 0.

Dimensions[s]

{3, 18}

Figure 30: Matrix form of Equilibrium Equations

5.3 Solution Algorithms

As stated in chapters 2 and 3, the IFMD and IFM are two methods employed in this
study. In both methods the first step in analysis process is equilibrium equation
generation. The only shared step in these two methods is generation of equilibrium
equation matrix. In this section the algorithm upon which the computer programs for

both methods are based on, is explained.
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5.3.1 IFM via NS

In calculation of CC, the NS property of EE is utilized. Then the compatibility
conditions are generated and equilibrium equations are coupled to get square matrix [S].
As a final point the square matrix is used to compute the unknown variables using the
Equation21. The null space form of integrated force method is presented in Figure 33.
The unconnected flexibility matrix of space frames and equilibrium equation are

obtained via application of null space method and it is illustrated in Figure 31 in scatter

plot form.
| m E
H B mEn EEEEEESE
H RSN mE
| 8, zfz S2gss
(b)

Figure 31: Flexibility and EE matrix plot
Figure 32 shows the scatter plot of coupled compatibility condition and equilibrium

equation.

Figure 32: Coupled EE and CC via NS

59



(Jenerate [4)

Element Flezmbility
Y = i
[ns]=Mull space [4) AE
¥
Compute [Clm IFM |, Uncomnected Flembility Matr
[CHns][G] [G]= diag (£ )

Moddy Appled Force{F}

Salve for mternal

forces{F}

El ¢
€] (9]

i 4

Solve for Deformations

(8 =[Gl(7)

L

solve for Displacements

{X= 1G] [F]

Figure 33: Algorithm of IFM via NS
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5.3.3.1 Solution via Null Space

UNCONNECTED FLEXIBILTY MATRIX
T

Lmem;

F =Tahle[0., {sx, 1, 6+m}, {=sc, 1, 6+m}];
Dimensions|[F];

mi =0;

Du[

nodel =inc|[i, 2]];
node? =inc|[i, 3]];
kl = 6 #nodel - 5;
k2 - 6 +nodel - 4;
k3 = 6 ¥ nodel - 3;
kd = 6 *nodel - 2;
kb = 6¥nodel - 1;
k& = 6 ¥ nodel ;
mi=mi+1;
cl=6ymi-5;

c2 —6ymi - 4;
c3=6ymi - 3;

cd —Gymi - 2;
ch—6Gsmi -1;

ch = O%mi;

kT = 6 ¥ node? - 5;
kB = 6 ¥ node? - 4;
k% = 6§ ¥ node? - 3;
k10 = 6 ¥ node? - 2;
kll = 6 ¥ node? - 1;
kl? - 6 v node?;
kel = dof[[k1]];
ke? = dof[[k2]];
ko3 = dof[[k3]]:
kcd = dof[[kd]]:
koh = dof[[k5]]:
ket = dof[[ké]];
kel = dof[[k7]]:;

Figure 34: Unconnected flexibility matrix
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ke8 = dof [ [k8]] ;
k9 = dof [ [k9]] ;
kel = dof [ [k10]] ;
kell = dof [ [k11]] ;
kel? = dof [ [k12]] ;
_ Lmenm[[i]]

flexl = ———;
A[[i]] =Ee
Imem[[i]])?
flex? = [ [1211) 9
3. xEexTiz[[i]]
Lmem[[i]])?
flex?y = [ L) :
3. xEexIiy[[i]]
Lmem|[ [i
flex3=—[ il ”];
Ee=Iiz[[1i]]
Lmem|[ [i
flex3y=—[ [l “];
Ee =Tiy[[1]]
Lmem|[[i]])2
flexd = [ [I11) 3
2. =xEexTiz[[1]]
Lmem[[i]])?
flexdy = [ [I211)

2. xEexTiy[[i]]
ip = Liz[[i]] + Tiy[[i]]:

flexl 0 0 0 0 0
] flex? 0 ] 0 flexd
0 0 flex?y 0 -flexdy| 0
=t g | o p [menlli] | 0
G:jp
0 0 -flexdy 0 flexdy 0
] flexd 0 ] 0 flexd

Print[i, ",,,,", MatrixForm[fm]] ;

Print[i, " ", {cl, c2, c3, cd, cb, cb}];
F[[el, c1]] =F[[cl, c1]] +Em[[1, 1]];
F[[c2, c2]] =F[[c2, c2]] + fm[[2, 2]]:
F[[e3, c3]] =F[[c3, c3]] + Em[[3, 3]]:
F[[cd, c4]] =F[[c4, c4]] + Em[[4, 4]];
F[[ch, c5]] =F[[ch, c5]] + Em[[5, 5]]:
F[[cb, c6]] =F[[cb, cb]] + Em[[6, 6]];
F[[c2, c2+4]] =F[[c2, c2+4]]+fm[[2, 6]]:
F[[e3, c3+2]] =F[[c3, c3+2]]+Em[[3, 5]]:
F[[ch, e5-2]] =F[[ch, ch-2]] +Em[[5, 3]]:
F[[cb, c6-4]] =F[[cb, c6-4]] +fm[[6, 2]].
{i, 1, m}

Figure 35: Unconnected flexibility matrix (2)
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Print['F = ', MatrixForm[F]]

p.ooiol 0. 1. 1. Lo 1. 1 1 1. 1 1. i. 1 1 1 1. i.

b nonlE 0. 1. toono00s 0. 1 1 1. 1 8 i 1 1 1 1. i

' Lo bRl 0 000w 0, . 1. 1. 1. 1. . i ' ' ' 1. i

' 1. nLoonowse 0.0, . 1. 1. 1. 1. . i ' ' ' 1. i

' 1. 000008 0. L.0mE O . ' ' 1. ' . i ' ' ' 1. i

Lo 0.00mg . ' nLoonoo0g 0. ' ' 1. ' . i 1. . ' 1. i

' 1. . ' nLoon Lm0, ' 1. ' . i 1. . ' 1. i

0 0. 0. 0. 0. 0. 0 0.000415687 0 0. 0 0.000125 0. 0 0 0 0. 0.

0 0. 0. 0. 0. 0. 0 0. 0000416667 0. -0.000125 0. 0. 0 0 0. 0. 0.
iL 0. 0. 0. 0 0. 0. 0 0. 0. 0.000085 0. 0. 0. 0 0 0 0. 0.

0 0. 0. 0 0. 0. 0 0. -0.000125 0. 0.0000% 0. 0. 0 0 0 0. 0.

0 0. 0. 0 0. 0. 0 0.00012§ 0 0. 0. 0.00005 0. 0 0 0 0. 0.

0 0. 0. 0 0. 0. 0. 0. 0 0. 0. 0. 0.o0001zs 0 0 0 0. 0.

0 0. 0. 0 0. 0. 0 0. 0. 0. 0. 0. L] 0.0004L8667 0 0 0. 0.000125

0 0. 0. 0 0. 0. 0 0. 0. 0. 0. 0. 0. 0. 0.000416667 0 -0.000125 0.

0 0. 0. 0 0. 0. 0 0. 0 0. 0. 0. 0. 0. 0. 000065 0. 0.

0 0. 0. 0 0. 0. 0 0. 0 0. 0. 0. L] 0. -0.000185 0. 0.00005 0.

0 0. 0. 0 0. 0. 0 0. 0 0. 0. 0. L] 0.000125 0. 0. 0. 0.00005

Dimensions|F]

{18, 18}

Figure 36: Flexibility Matrix

g MATRIX PLOT

MatrixPlot[F, FrameTicks - Hone, Mesh <+ True,
MaxPlotPoints <+ Infinity, ImageSize <+ 450]

Figure 37: Matrix plot of flexibility matrix

63




ll NULL SPACE OF EQUILIERIUM EQUATIONS

nlsp = Nullspace[s];

Print['nlsp - ', MatrixForm[nlsp]]
0.0955120  0.0157425  ~0.0217555 0. ~0.0070219 -0.002970L 0.0707366 0.07015a8 -0.0440703 0.96165% -0.0224527 0.0305103 0.0291270  0.179660  0.000%611  0.0%G5107  0.0224327  0.0843450
0.120965  0.0036567 00200077 0. -0.0720309 0.0305267 -0.160303 0.126043  _0.0293197 0.0150149  0.995776  0.0060154 0.09797 -0.00151366  -0.11003  0.036015%  0.05802%0  -0.0153%0
o.0100575 0158411 _0.0079974 0. 0.0017495 O0.503644  0.015855  0.124050  0.49424 _0.0310180 0.0ZZEGCS 0.0156748 0.59704  O.LLADEL  0.008Sl461  0.01587a5  0.0:20905  0.03L0180
mlep - | 0.020392 _o.loeles  0.15025e 0. 0.619008  0.40850 -0.177655 0.10945  0.911695  0.1669  0.0610981 0.906509 _0.209589 O0.LZ7SSa  0.0284141  0.906%03 -0.010951  _0.1146%0
0.caTaze  0.0902766  0.00520014 0. 0.0249205 -0.121105 0.0620767 0.465030 0.00454281 0.00PSE6l0 0.170767 _0.0128507 00257003 0.0227943  0.0682069  _0.012600 0.170767 00035610
0.00590200 -0.0991457 0.051799 0. -0.927L70 0.072567 0.0317299 0.0701201 | 0.0926%6  0.0162218 0.000137496 0.0064L  0.22943  0.06722L _0.0000749955 O0.56353  0.000137496 0.0152288
128365 0.0095672 0.0180097 0. 0.0720903 0.0236269 0.160350 _0.l6ads  0.0054527 0.01SSLed 0.0540240 _0.0960154 _0.026797 0.001S1966 | 0.17609  _0.0360154  0.945976  0.0155147
0l09510 0.0137423 0.02171535 0. 0.067T021S 0.0623M01 0.007266 00701549 ©.0440707 0.0340430 0.0224527 _0.0435108 0.0291270 -0.113660  0.000901L _0.0425109 _0.0224527  0.96363%

Dimensions[nlsp]

9, 18}

Figure 38: Null Property of Equilibrium Equations Matrix

jl COMPATIBILITY CONDITIONS

cc = nlsp.F;
Print["CC = 7, MatrixForm[cec]]

1300106 s
140082 106 -7, 72338 02077

21423
s esnenn

630338106 2 ense et 1
63083107 0 ammaeas 20007 9022 0107
ORI 370850288 -3,22083 01 !

3
1an3 010

Siama e e
PR ni6d 1reda -ossmmiaeses -3 3Eeeds10.0
rnase e 1w nees s PR

Dimensions|cc]

(9, 18)

Figure 39: Compatibility Condition — Combination of Fig 37 & 38

o MATRIX PLOT OF COMPATIBILITY CONDITIONS

HMatrixPlot|[co, FrameTicks + Hone, Mesh < True,

HMaxPlotPoints < Infinity, ImageSize =+ 450]

Figure 40: Matrix Plot of CC Matrix
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~

COUPLE THE EQUILIBRIUM EQUATIONS WITH

COMPATIBILITY CONDITIONS

COUPLE THE EQUILIERIUM EQUATIONS WITH COMPATIEILITY CONDITIONS

ifm = Join[§, cc]; ‘

Print["ifm = ", MatrixForm[ifm] ]

Dimen=sions[ifm]

{18, 183

MATRIX PLOT

MatrixPlot[ifm, FrameTicks - Hone, Mesh < True,

MaxPlotPoints -+ Infinity, ImageSize < 450]

Figure 41: Coupling of EE with CC and its Matrix Plot



FORM THE JOINT LOAD VECTOR
~

P = Table[0., {sr, 1, 6 ¥noden -rest}, {sc, 1, 1}];
MatrixForm[P];
Do[kl =6+i-5;
k2 -b+1-4;
ki=twi-3;

kd -h+i-2;

kh -b+1-1;
kth =6%i;

kol = dof[ [k1]];
ko? = dof[ [k2]];
ko3 = dof[ [k3]];
kod = dof] [kd]]:
koh = dof[[kh]];
koé = dof] [kb]];

If[kel £ 0,

P[[kecl, 1]] =P[[ked, 1]] + applfres[[i. 2]]];
If[ke2 £ 0,

P[ke2, 1]] =P[[ke2, 1]] + applfres[[i, 3]]]:
If[ke3 £ 0,

P|[ke3, 1]] =P[[ke3, 1]] + applfres[[i, 4]]11;
If[kcd £ 0,

P[[kcd, 1]] =P[[kecd, 1]] + applfres[[i, 5]]]:
If[keh £ 0,

P[[kch, 1]] =P[[keh, 1]] + applfres[[i. 6]]];
If[keé £ 0,

P[[ketd, 1]] =P[[keb, 1]] + applfres[[i, T]]]:
Print[i, " ", k1," ", k2," ",k3," ', kel,
v, ke2, " v, ke3],

{i, 1, noden}]
MatrixForm|[P ]

Figure 42: Computer Codes for Assembling of Joints Loads
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g JOINT LOAD YECTOR

Print["Joint Loads = ", MatrixForm|[P]]
30.
Joint Loads = | 60.
10.

Dimensions|P |

{3, 1}

Figure 43: Loads Matrix of Joints

gl CALCULATE THE DEGREE OF INDETERMINACY

di =6xm + rest - 6 xnoden

2

Figure 44: Calculation of Degree of Indeterminacy
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FORM THE FIXED FORCE
~

initial = Table[0., {sr, 1, di}, {sc, 1, 1}]
Pact = Join[P, initial]

Ffixed = Table[0., {sr, 1, 6 ¥ noden -rest}, {sc, 1, 1}]
Dimensions [Ffixed]

initialW = Table[0., {sr, 1, di}, {sc, 1, 1}]
mi=0;

Do|

nodel = inc[[i, 2]];

node? = inc[[i, 3]];

kl - 6+nodel - 5;

k2 = 6wnodel - 4;

k3 = 6 *nodel - 3;

kd = 6 ¥nodel - 2;

k5 = 6 ¥nodel - 1;

k& = 6 ¥ nodel ;

mi=-mi+1;

ol -6Gwmi -5;

o2 -6wmi - 4;

ol =6wmi - 3;

cd =6wymi - 2;
ch=Owmi -1;
ch=Owmi;

k7 = 6 wnode? - 5;
k8 = 6 wnode? - 4;
k9 = 6 *node? - 3;
k10 = 6 ¥ node?2 - 2;
k1l = 6 ¥node?2 - 1;
kl1? = 6 ¥ node?;
kel = dof[ [k1]]:;
ko2 = dof[ [k2]];
ko3 = dof[ [k3]]:
kcd = dof[ [k4]]:
kceh = dof[[k5]];
ket = dof[ [k&]]:

Figure 45: Computer Codes for Formation of Fixed End Forces
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k7 = dof[[k7]];
kcB = dof[[k8]];
k9 = dof[[k9]];
kcl0 = dof[ [k10]];
kcll - dof[ [k11]];
kcl2 = dof[ [k12]];
If[kel # 0, Ffixed|[kel, 1]] =

Ffixed|[kel, 1]] + Ffmem[[1]][[1, 1]]]:
If[ke? # 0, Ffixed[[ke2, 1]] =

Ffixed[[ke2, 1]] + Ffmem[[1]][[2, 1]]]:
If[ke3 # 0, Ffixed|[ke3, 1]] =

Ffixed|[ke3, 1]] + FEmem[[1]1[[3, 1]]1]:
If[ked # 0, Ffixed|[ked, 1]] =

Ffixed[[ked, 1]] + Ffmem[[1]][[4, 1]]]:
If[ke5 # 0, Ffixed[[ke5, 1]] =

Ffixed| [ke5, 1]] + FEmem[[1]][[5, 1]1]:
If[ke6 # 0, Ffixed|[ke6, 1]] =

Ffixed|[[ke6, 1]] + Ffmem[[1]]1[[6, 1]]]:
If[ke? # 0, Ffixed[[ke?, 1]] =

Ffixed[[ke, 1]] + Ffmem[[1]][[7, 1]]]:
If[keB # 0, Ffixed|[ke8, 1]] =

Ffixed|[keS, 1]] + Ffmem[[1]][[8, 1]]]:
If[ke® # 0, Ffixed|[ke9, 1]] =

Ffixed[[ke9, 1]] + Ffmem[[1]][[9, 1]]]:
If[kel0 £ 0, Ffixed[[kel0, 1]] =

Ffixed|[kc10, 1]] + Ffmem[[1]][[10, 1]]];
If[kell £ 0, Ffixed| [kell, 1]] =

Ffixed|[kell, 1]] + Ffmem[[1]][[11, 1]]];
If[kel? £ 0, Ffixed[[kel2, 1]] =

Ffixed| [kcl2, 1]] + Ffmem[[1]][[12, 1]]];

Print{i, "---", kel, " ", kel," ", ke3,
n 1 ; kﬂd; n n ; kﬂ5 ; n n . kﬂﬁ] ;
{i, 1, m}]

Figure 46: Computer Codes for Formation of Fixed End Forces (2)
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Print["Fixed End Forces = ", MatrixForm|[Ffixed] ]

0.

0.

0.

0.

Fixed End Forces = 30.
0.

0.

0.

-25.

Dimcnaiona [Ffixcd]

{7, 1}

Figure 47: Matrix of Fixed End Forces

dl CREATE THE FINAL LOADS

Fact = Join[Ffixed, initialW]

Pfinal = Pact - Fact

0.0, (0.3, (0.3, {04}, {304,
{D'}: {D'}: {D'}: {_25'}r {D'}: {D'}:
(0.3, (0.3, (0.3, {03, (0.3, {0.3, {0.}}

{{0.3, {0.3, {0.}, {50.}, {30.},
{70.}, {0.3, {0.}, {25.}1, {0.}, {0.},
(03, 0.3, {03, (0.3, 103, {003, {0.})

Dimensions[Pfinal ]

{18, 1

Figure 48: Final Applied Forces
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&l FIND THE INDEPENDENT FORCES

indFres = LinearSolve|[ifm, Pfinal];

Print|’ indfres = ', MatrixPorm|[indFres| |

26.8629
2. 70848
4,75743
0.
15,0287
-10.8339
39.5351
-0.545536
6.34571
0.707552
15.0715
3.96749
60.9418
-3.08262
-5.70751
2.00281
-13.466
8.28673

indrres =

Dimensions|indFres|

{18, 1}

Figure 49: Finding Matrix of Members independent Forces
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g8 COMPUTER CODES

CALCULATE DISPLACEMENTS

invIFM = Inverse[ifm];

tinvIFM = Transpose[invIFM];

jd = Take|[tinvIFM, 6« noden - rest|;
Dimensions|jd]

Digp = jd.F.indFrcs

(9, 18}

{{0.000262669}, {-0.0000401376}, {-0.000250412],
[0.000454188], {0.000268625}, {0.000761773),
[0.0000459909}, {-0.0000401376}, {0.000130182})

gl NODAL DISPLACEMENTS

MatrixForm|Disp]

0.000262663
-0.0000401376
-0.000230412
0.000454188
0.000268623
0.000761773
0.000045330%
-0.0000401376
0.000130182

Figure 50: Calculation of Nodal Displacements Matrix
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gl FIND THE MEMBER END FORCES

mend = 0;

endfres - {};

Du[
mend = mend + 1;
cml = 6+ mend - 5;
cmZ = O+mend - 4;
cm3 = 6+ mend - 3;
cmd = 6 +mend - 2;
cmh = 6+mend - 1;

cmh = 6+ mend;

indFres[[eml, 1]]
indFres[[oem2, 1]]
_ indFres[[cm3, 1]]
endfrc = bmem|[[1i]]. indFres[[cmd, 1]] '
indFres[[emb, 1]]

indFres|[[cemb, 1]]

Qfmem[[i]];
Print["membher ", i, " ", MatrixForm|[endfrc]];

AppendTo|endfros, endfre],

{i, 1, m}

-26.8625
-2.70848
-4.75743

0.

0.

0.
26,8629
2.70848
4.75743

0.
19.0257

-10.8335

member 1

Figure 51: Calculation of Member End Forces

73



[ -39.35351
30,5435
-6.34371
-0.707552
16.677
23,7602
39.5351
29.4545
6.34971
0.707552
15.0715

| -21.0325 |

(-60.%418
3.68262
3.70751
-2.00281
-15.0715
10.1264
60.9418
-3.b8262
-5.70751
2.00281
-13.466
| 8.28673

member 2

member 3

Figure 52: Calculation of Member End Forces (continued)
5.3.2 IFM via SVD

Singular value decomposition approach outlined in section 4.2.3 is another approach for
finding the compatibility condition. After having equilibrium equation generated, the

([A]")P™ is acquired via Eq.36 and Then, using Eq.37 the [M] matrix is calculated. In
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the next step the SVD of the [M] is undertaken in order to calculate the [M,], [M,] and
[M:]. Finally, CC is calculated via equation 41 & 42. This procedure is illustrated in
figure number 54.

It worth noting that, flexibility matrix, and equilibrium equation and scatter plots
remains the same as null space after the application of this method on the frame depicted
in Figurel4. In Figure 54 depicts the scatter plot of coupled compatibility condition and

equilibrium equation.

Figure 53: Coupled EE and Compatibility Condition via SVD
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Crenerate [A]

([T V™ =((4] (4} (4]

h

()= 11)- (4T (L4F)™

h 4

Tse Singular Walue
Decomposition

[ag]=[2,]( 24, )[25,]

Element Flexibility
r L

Obtain [ns] From L=z

il

L J

- Thcomnected Flembility Watr
Compute [C] n IFMI < [G’]: daag (]c_;)

[CCIHCG]

¥

Couple [4] and [C]

Modify Applied Force{F}

Solve for Forces {F}

Hlafoe

Zolve for Deformations Solve for Displacements

{8 =[c]{F) {X3= 1] [G] [F]

Figure 54: Algorithm of IFM via SVD
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5.3.2.1 Solution of example via SVD

ol SINGULAR VALUE OF DECOMPOSITION EQUILIBRIUM

EQUATIONS

apinv = (Inverse[(S.Transpose[5])]).S;
gsa = IdentityMatrix[6:m] - (Transpose[5].apinv);

{u, w, v} = SinqularValueDecomposition[=a];

Print[" M, - " MatrixForm[u]]
Print[" My = " MatrixForm[w]]
Print[" H._.T =l I-IatrixFurm[v]]

Figure 55: Codes definition to find SVD

W COMPATIBILITY CONDITIONS

o2 = Chop[Inverse[u].sal];
{row, col} =Dimension=s[5];
ol = Take[c?2, col —xrow, col];
oo = ol .F;

Print|["CC = ", MatrixForm[occo] ]

Dimension=s[cc]

{2, 18}

- MATRIX PLOT

MatrixPlot[cc, FrameTicks - Hone, Mesh - True,

MaxPlotPoints -+ Infinity, ImageSize —+ 450]

Figure 56: Assembling of CC by Using SVD and Matrix Plot



5.3.3 IFMD Method
The step by step process and equations for the IFMD is shown in Figure 58. After

creation of EE in IFMD by using of Eq. 44 the matrix [K]  is assembled. The inverse

ifmd

of flexibility matrix is used to get[K] . After it Eq.43 gives the nodal displacements.

ifmd

In the last step Eq.49 gives the internal forces.

In this technique the scatter plot of EE remains same since the element and nodal system

of numbering are same. Figure 57 shows the plots of flexibility matrix and K matrix.

(a) (b)

Figure 57: (a) Flexibility matrix plot - (b) Plot of stiffness Matrix
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(Generate Equiibrium Element Flembility
Equation [4)

I
ﬂ_AE

L

(K, =l4)cT (4] Unconnected Flesbility Matri

(Gl diag ()

F Y

solve for Displacements

(Kl ()= 1)

Applied Force{F}

F 3

solve for Deformations

(=41 (%)

Y

solve for mternal

forces{F)

() =[] 4 ()

Figure 58: Algorithm for IFMD
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o MATRIX PLOT

MatrixPlot[S, FrameTicks -+ Hone, Mesh -+ True,

MaxPlotPoints —+ Infinity, ImageSize + 450]

i

Figure 59: Matrix Plot of S Matrix

5.3.3.1 Solution of the example via Dual Integrated Force Method

GOBAL STIFNESS MATRIX

g GLOBAL SIFNESS MATRIX

K = 5.Inverse[F].Transpose[5];

Print["K = ", MatrixForm[K]]

loooaoa. 0. 0. 0. 0. -374500. 50000, 0. 0.

I 13330.8 1. a. a. 1. 1. -19230.8 1.

0. a. laoooo, 37500, a. 1. 1. 1. a000a.

0 0. 37500. 108350, 0. 0. 0. -24000, 37500,

0. 0. 0. 0. 119200, 0. 24000. 0. -24000.
-374500. 0. 0. 0. 0. 108350, -37500. 24000. 0.
sanoa. a. 1. a. 24000, -37500. 135385, 1. 1.

0. -19230. 8 1. -24000. a. 24000, 1. 179231, 1.

0. 0. a00oo. 37500, -24000. 0. 0. 0. 195385,

Dimensions[K]

{7, 2}

Figure 60: Calculation of Stiffness Matrix for IFMD
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 MATRIX PLOT

HMatrixPlot[K, FrameTicks -+ Hone, Hesh = True,

MaxPlotPoints -+ Infinity, ImageSize - 450]

Figure 61: Matrix Plot of Stiffness Matrix

 FIND THE DISPLACEMENTS

d=iplacements = LinearSolve[K, Pfinall];

Print[" X ="

= ’

MatrixForm[dsiplacements] ]

0.000262665
—-0.000040137%
-0.000250412
D.000454188

X = 0.000268625
0D.0007617732
0.0000455505%
-0.0000401376
0.000130182

Dimensions|[dsiplacements ]

%, 1}

Figure 62: Calculation of Nodal Displacements by IFMD



d FIND THE INDEPENDENT FORCES

indFres = Inverse|[F].Transpose[S].dsiplacements;

Print|" indfres = ', MatrixForm|indFres] |

26.8029
2.70844
4.75743
0.
19,0287
-10.8339
39.5331
-0.545536
6.34571
0.707552
15,0715
3.96749
60.%418
-3.68264
-5.70751
2. 00281
-13.466
8.28673

indFres =

Dimensions|indFres|

(18, 1)

Figure 63: Calculation of Member Forces By IFMD
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Chapter 6

EXPLANATORY EXAMPLES

6.1 Introduction

Two examples are presented in this chapter, one of which is an 8 member frame and the
other a 16 member frame. These two examples are solved via Null Space, SVD and
IFMD approaches and the pertaining results are compared to Mastan version 3 to find

the accuracy level of our results.

Nodes Data Input
Modulus of

Number of elasticity

Properties and
Material Input

Nodes
. Area
Coordinate of
nodes
Input
Number of * Joint Applied
Members Loads
Member Degree of

Incidence Freedom
A Loads Input

Element Data
Input

Restraint
Table

Figure 64: Structure of input data
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Figure 64 shows the structure of input data in the program which has been discussed
before and should be taken into account during solving process.

6.2 Example 1

In this example a space frame with 8 members and 8 nodes were analyzed. The
information regarding elemental and nodal properties is presented in Table 1. The area
of members, the moment of inertia and the modulus of elasticity are assumed to be 0.002

m?, 0.0005 m*and 2x10® N/m? respectively.

’ __-_h-_h_"‘“‘"t

E1

E4
E2

& E
é\l-ﬁl

4\13

Figure 65: Scheme of 8 member structure
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Table 1: Elemental and nodal properties of example 1

Applied

5 Applied

g Coordinates Moment | Restraints | Restraints

S Loads (kN)

= (kNm)

3

z X Y Z X |Y|Z|X|Y|Z|X|Y|Z|X|Y|Z
1 0 0 -9.144 0 ojojofojOf1]|1|1|1]|1]1
2 0 0 0 0 ojojofojOof1]|1|1f1]|1]1
3 9.144 0 0 0 ojojofojOof1]|1|1f1]|1]1
4 9.144 0 -9.144 0 ojojofojOof1]|1|1f1]|1]1
5 0 9.144 | -9.144 0 ojo|o|lO0O|O|O|JO|O|lO]|O]|O
6 0 9.144 0 0 ojo|o|lO0O|OjO|JO|O|lO]|O]|O
7 9.144 | 9.144 0 40 (0|O0|O|JO|O|O|O]|0O]|JO]|O]|O
8 9.144 | 9.144 | 9144 | 40 (O |O|O|O|O0O|O|O|O|O|O]O

Table 2: Nodal condition of elements and uniform loads on each member

Element Connectivity Applied Uniform Load XY
Number Start Node | End Node Plane

1 1 5 0

2 2 6 0

3 3 7 0

4 4 8 0

5 5 8 -2

6 5 6 -2

7 6 7 -2

8 7 8 -2
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gl FIND THE DISPLACEMENTS

dsiplacements = LinearSolve[K, Pfinal|;

Print[" ¥ - ', MatrixForm|[dsiplacements]]

-0.00950421
-0.000455781
0.0050808
0.000492523
0.00148846
0.000325747
0.00953874
-0.000336347
0.00504627
0.0000643938
0.0014884¢6
-0.000758276
0.00935151
-0.000455781
-0.0050808
-0.000452%23
0.0015554
-0.000368682
-0.009%8604
-0.000336347
-0.00504627
-0.0000643938
0.0015554
0.00079721

Figure 66: Results (1)
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o FIND THE MEMBER END FORCES

21.8627
4.43733
-12.551
-12.5216
60.3893
25.6782
-21.8627
-4.43733
12.551

12.5216
5377

14. 8568

14.7133
7.45824
9.5301
-12.5216
-5l.48642
34,8033
-14.7133
-7.45824
-5.5301
12.5216
-35.275
33.3548

21.8627
-4.43733
12,5737
-13.0847
-63.3475
-25.6782
-21.8627
4.43733
-12.9737
13.0847
-55.2836
-14.8568

~ member 1

memnber 2

member 3

Figure 67: Results - Member Forces (2)
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(14,7133
-7.45824
-5.95276
-13.0847
04,2224
-34.8033
-14.7133
7.45824
9.95276
13.0847
36.7856
| -33.3948 )

[ 21.0774
-16.5745
5.54778
4.68837
-26.4612
-44, 6241
-21.0774
-1.31354
-5.54778
-4.68837
-27.9253

\=26.9777 )

(1.51045 1
-4.88821
-8.02642

9.152%
38,9828
10.2084
-1.51045
-13.3958
§.52642
-9.1525
38.9828
. 28,7065

member 4

member 5

member &

Figure 68: Results - Member Forces (3)
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(-18.03631
-1.31354
3. 94778
4.68837
-26.4612
26.1261
18.0565
-16.9745
-0.94778
-4.68837
-21.9253

| 45,4757

(1.51045
-4.48821
-8.96982
9.8079%
41.01
10.2084
-1.51045
-13.3998
8.96982
-9.80796
41.01
| 28,7065

memper 7

member 8

Figure 69: Results Reporting - Member Forces (4)
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6.2.1 Results of Mastan program for example 1:

*k Kk Kk Kk kkkKk )%k MASTAN2 V3.3.l * Kk kkkk ok kk kK
Time: 02:13:11 Date: 11/18/2012
Problem Title: 8 Member

RS b i g S b i db S Sb i g S

FHEHFFHFHH AR AR A
Results of Structural Analysis

FHEHFFHFHH AR AR A

General Information:
Structure Analyzed as: Space Frame
Analysis Type: First-Order Elastic

Analytical Results:

(i) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp
1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 0.0000e+000 0.0000e+000
3 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000e+000 0.0000e+000 0.0000e+000
5 -9.5042e-003 -4.9978e-004 5.0808e-003
6 9.5387e-003 -3.3635e-004 5.0463e-003
7 9.9515e-003 -4.9978e-004 -5.0808e-003
8 -9.9860e-003 -3.3635e-004 -5.0463e-003

Rotations (radians)

Node X-rot Y-rot Z-rot
1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 0.0000e+000 0.0000e+000
3 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000e+000 0.0000e+000 0.0000e+000
5 4.9292e-004 1.4885e-003 3.2975e-004
6 6.4394e-005 1.4885e-003 -7.5828e-004
7 -4.9292e-004 1.5554e-003 -3.6868e-004
8 -6.4394e-005 1.5554e-003 7.9721e-004

(ii) Element Results at Step # 1, Applied Load Ratio = 1.0000

Internal End Forces (Note: Refers to local coordinates)

Element Node Fx Fy Fz
1 1 2.1863e+001 -1.2551e+001 -4.4373e+000
5 -2.1863e+001 1.2551e+001 4.4373e+000
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2 2 1.4713e+001 9.5301e+000 -7.4582e+000
6 -1.4713e+001 -9.5301e+000 7.4582e+000
3 3 2.1863e+001 1.2974e+001 4.4373e+000
7 -2.1863e+001 -1.2974e+001 -4.4373e+000
4 4 1.4713e+001 -9.9528e+000 7.4582e+000
8 -1.4713e+001 9.9528e+000 -7.4582e+000
5 5 2.1077e+001 1.6974e+001 -5.9478e+000
8 -2.1077e+001 1.3135e+000 5.9478e+000
6 5 1.5105e+000 4.8882e+000 8.5264e+000
6 -1.5105e+000 1.3400e+001 -8.5264e+000
7 6 -1.8057e+001 1.3135e+000 -5.9478e+000
7 1.8057e+001 1.6974e+001 5.9478e+000
8 7 1.5105e+000 4.8882e+000 8.9698e+000
8 -1.5105e+000 1.3400e+001 -8.9698e+000
Internal End Moments (Note: Refers to local coordinates)
Element Node Mx My Mz
1 1 -1.2522e+001 2.5678e+001 -6.0989%9e+001
5 1.2522e+001 1.4897e+001 -5.3777e+001
2 2 -1.2522e+001 3.4803e+001 5.1864e+001
6 1.2522e+001 3.3395e+001 3.5279%9e+001
3 3 -1.3085e+001 -2.5678e+001 6.3348e+001
7 1.3085e+001 -1.4897e+001 5.5284e+001
4 4 -1.3085e+001 -3.4803e+001 -5.4222e+001
8 1.3085e+001 -3.3395e+001 -3.6786e+001
5 5 4.6884e+000 2.6461e+001 4.4624e+001
8 -4.6884e+000 2.7925e+001 2.6978e+001
6 5 9.1529e+000 -3.8983e+001 -1.0208e+001
6 -9.1529e+000 -3.8983e+001 -2.8706e+001
7 6 4.6884e+000 2.6461e+001 -2.6126e+001
7 -4.6884e+000 2.7925e+001 -4.5476e+001
8 7 9.8080e+000 -4.1010e+001 -1.0208e+001
8 -9.8080e+000 -4.1010e+001 -2.8706e+001

FHHHHHHH A A AR H A A A
End of Results of Structural Analysis
FHHHHHH A HEF AR A A

6.3 Example 2

In this example a space frame with 16 members and 12 nodes were analyzed. The
information regarding elemental and nodal properties is presented in Table 3. The area
of members, the moment of inertia and the modulus of elasticity are assumed to be 0.002

m?, 0.0005 m*and 2* 10® N/m? respectively.
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Figure 70 : Scheme of a 16 member structure
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Table 3: Elemental and nodal properties of example 2

Applied
Applied @
Node Coordinates Moment | Restraints §
Loads (kN) 3
Number (KNm) @
X Y Z XY X|\Y|Z| X]|Y|Z
1 0 0 -5 1010 00101 ]1]1
2 0 0 0 |00 00101 ]1]1
3 5 0 0 |00 00101 ]1]1
4 5 0 -5 1010 00101 ]1]|1
5 0 4 5 0|0 0/0/0j0]0]|O
6 0 4 0 |00 0/0/0j0]0]|O
7 5 4 0 00 0(0j0; 0|00
8 5 4 5 |00 0(0j0 0|00
9 0 8 5 | 0]0 0(0j0; 0|00
10 0 8 0 00 0(0j0 0|00
11 5 8 0 00 0(0j0; 0|00
12 5 8 5 |00 0(0j0 0|00
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Table 4: Nodal condition of elements / uniform loads on each member - Example 2

Element Connectivity Applied Uniform Load XY Plane
Number | Start End
Node | Node

1 1 ) 0
2 2 6 0
3 3 7 0
4 4 8 0
5 5 8 0
6 5 6 0
7 6 7 0
8 7 8 0
9 5 9 0
10 6 10 0
11 7 11 0
12 8 12 0
13 9 12 -15
14 9 10 -25
15 10 11 -15
16 11 12 -25
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gl FIND THE INDEPENDENT FORCES

indFres = LinearSolve[ifm, Pfinal];

Print|[" indFres = ", MatrixForm[indFros] )

-100.
-1.5%56
-0.557358

1.57864x 10"
~3.1312
5.21866

~100.
1.5956
~0.957358

1.51807x10°%°
~3.1312
_5.21866
~100.
1.5956
0.957358

1.64771x 10"
3.1312
_5.21866
~100.
~1.5956
0.957358

~7.8605 %107
3.1312
5.21866
7.40153

4.43062x 107

1.20802x 1071

1.1272 x 1071*

3.01483x10°%*
1.94637
12.3359

Figure 71: Member Forces — Ex.2
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100.
1.5556
-0.957358

7.8605x10°1°
0.696232
1.16372
-100.
~1.5956
0.957358

-7.8605%10°%°
3.1312
. 5.21866

~7.40153
~4.43062x 1071
-1.20802 x 10°1
~1.1272x 1074

3.02528 % 1071*
-1.94537
7.40153

4.43062 % 10713
1.20802 x 10714
1.1272 %1071

3.01483 %1071
u 1.94637

-12.3359
~4.71023x 1071
1.55265x 10717
~2.07023x 1071

-§.29288 x 1071
~3.24395
12.3358

4.71023 x 10713
~1.55265x10°%°
2.07023 %1071

5.29619 % 10718
u 3.24395

member 4

member &

member ©

Figure 72: Member Forces - Ex.2 - (2)
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-7.40153
8.17843x1071°
~5.86958x 1071
~8.43362x1071

1.33217x 1071
~1.94637
7.40153

-8.17843x 10712
5.86958 x 10717
8.43362x 10717
1.60262 x 1071
\ 1.94637
~12.3359
~9.76331x 1071
9.20071 x 10717
4.1743 % 10714
~1.44099x10" 1

-3.243085
12,3355

9.76331 x 10710
~9.20071 %1071
—4.1743x 1071

-3.15937x 107"
\ 3.24395

100.
-10.7403
-6.44417

6.17345x 1071
5.07757
_B. 46267

~100.
10.7403
5.44417

_6.17345%x 10717
20.6991
| _34.4985

member 7

member 8

member 9

Figure 73: Member Forces - Ex.2 - (3)
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100.
10,7403
-6.44417

1.23332x 1071
5.07757
8. 46262
~100.
-10.7403
6.44417

-1.23332 %107
20,6991
\ 34,4985

100.
10.7403
6.44417

~1.48608x 1071
_5.07757
8. 46262
~100.
~10.7403
_6.44417

1.48608x 1071
-20.6991
\ 24,4985

100.
-10.7403
6.44417

6.41506% 10717
_5.07757
8. 46262

~100.
10.7403
6. 44417

-6.41506% 1071
~20.6991
| -34.4985

member 10

member 11

member 12

Figure 74: Member Forces — Ex.2 - (4)
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6.44417
-37.5

_2.03168x1071°
1.90232 % 10714

3.42262 x 10717
-20.6991
~5.44417

_37.5

2.03168x10°1°
-1.90232x1071*

£.73579 x 10715
\ 20.6991

10.7403
-62.5

4.8767 %107
8.85827x 10717

~9.59608x 10712
~34.4985
~10.7403

_62.5

_4.8767x 10710
~§.85827x 10710

~1.47874x 1071
\ 34,4985

6.44417
-37.5

_2.66942 x 10718
1.69576% 107"

2.4542 x 10°1®
-20.6991
~5.44417

_37.5

266942 x 10716
~1.69576x 1071*

~1.11945x 10710
\ 20.6991

mempber 13

mempber 14

mempber 15

Figure 75: Member Forces — Ex.2 - (5)
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10.7403
-82.5

-5.5588 x 10718
1.06755 x 10°%
1.59803 %1071
_34.4985
-10.7403
-62.5
5. 6588 x 1071°
-1.08755 % 10-1%
~1.31509x 10"
\ 34.4985 J

member 16

Figure 76: Member Forces — Ex.2 - (6)
6.3.1 Mastan’s result of example 2:

Xk Khkkkkkhkkk*k *kkkkkkkkkkk

MASTANZ2 v3.3.1

Time: 02:49:23 Date: 11/18/2012

Problem Title:
ARk AKXk K,k kK, kK Khk**x

not provided

FHAH AR A
Results of Structural Analysis

FHAH AR A
General Information:
Structure Analyzed as: Space Frame

Analysis Type: First-Order Elastic

Analytical Results:

(1) Displacements at Step # 1, Applied Load Ratio = 1.0000
Deflections
Node X-disp Y-disp Z-disp
1 0.0000e+000 0.0000e+000 0.0000e+000
2 0.0000e+000 0.0000e+000 0.0000e+000
3 0.0000e+000 0.0000e+000 0.0000e+000
4 0.0000e+000 0.0000e+000 0.0000e+000
5 -4.6260e-005 -1.0000e-003 -7.7099e-005
6 -4.6260e-005 -1.0000e-003 7.7099e-005
7 4.6260e-005 -1.0000e-003 7.7099e-005
8 4.6260e-005 -1.0000e-003 -7.7099e-005
9 4.0276e-005 -2.0000e-003 6.7127e-005
10 4.0276e-005 -2.0000e-003 -6.7127e-005
11 -4.0276e-005 -2.0000e-003 -6.7127e-005
12 -4.0276e-005 -2.0000e-003 6.7127e-005
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(i1)

Rotations
Node
1

QO J oy Uk W

9
10
11
12

(radians)

|
> 00 0O 0 0 O O O O

[
DO

X-rot
.0000e+000
.0000e+000
.0000e+000
.0000e+000
.1099e-005
.1099e-005
.1099e-005
.1099e-005
.3962e-004
.3962e-004
.3962e-004
.3962e-004

Y-rot

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.7584e-020
.0353e-021
.0246e-020
.8300e-021
.5424e-020
.2829e-020
.0246e-020
.8945e-020

Z-rot

.0000e+000
.0000e+000
.0000e+000
.0000e+000
.8659e-005
.8659e-005
.8659e-005
.8659e-005
.6377e-004
.6377e-004
.6377e-004
.6377e-004

Element Results

Internal End Forces

Element
1

10

11

12

13

14

15

16

Node

1 1.
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.4015e+000
.4015e+000
.2336e+001
.2336e+001
.4015e+000
.4015e+000
.2336e+001
.2336e+001
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.0000e+002
.4442e+000
.4442e+000
.0740e+001
.0740e+001
10 6.
.4442e+000
11 1.
.0740e+001

P = =
ONORFR JOM WU OJJOOoOUToU o Jwao N Ul
I
N

[
o N

10

11

12

at Step # 1, Applied Load Ratio =

(Note:
Fx
0000e+002

4442e+000

0740e+001

OOy W Woy o W
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Fy

.5736e-001
.5736e-001
.5736e-001
.5736e-001
.5736e-001
.5736e-001
.5736e-001
.5736e-001
.3323e-015
.3323e-015
.1086e-015
.1086e-015
.1102e-015
.1102e-015
.8818e-016
.8818e-016
.4442e+000
.4442e+000
.4442e+000
.4442e+000
.4442e+000
.4442e+000
.4442e+000
.4442e+000
.7500e+001
.7500e+001
.2500e+001
.2500e+001
.7500e+001
.7500e+001
.2500e+001
.2500e+001

-1.
1.
1.

-1.

.5956e+000

.5956e+000

.5956e+000

.5956e+000

.1324e-016

.1324e-016

.3694e-016

.3694e-016

.5739%e-016

.5739%e-016

.4148e-016

.4148e-016

.0740e+001

.0740e+001

.0740e+001

.0740e+001

.0740e+001

.0740e+001

.0740e+001

.0740e+001

.7869e-015

.7869e-015

.6342e-015

.6342e-015

.4092e-015

.4092e-015

.0988e-015

.0988e-015

1.0000

Refers to local coordinates)

Fz
5956e+000
5956e+000
5956e+000
5956e+000



Internal End Moments

Element Node

1

10

11

12

13

14

15

16

FHHHHHHH A A AR H A A A
End of Results of Structural Analysis
FHHHHHHHHFH A H A H RS F AR

1

I = =
OCNORF JO WU o-JJO Ul Ul i JWwo N Gl

=
o N

10
10
11
11
12

(Note:
Mx

.9994e-016
.9994e-016
.3486e-016
.3486e-016
.1881le-016
.1881e-016
.8385e-016
.8385e-016
.4701e-016
.4701e-016
.9805e-016
.9805e-016
.2331e-016
.2331e-016
.9760e-016
.9760e-016
.7205e-016
.7205e-016
.2332e-017
.2332e-017
.4400e-016
.4400e-016
.7398e-016
.7398e-016
.1115e-015
.1115e-015
.4858e-015
.4858e-015
.0881e-015
.0881e-015
.2956e-015
.2956e-015
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My

.1637e+000
.2187e+000
.1637e+000
.2187e+000
.1637e+000
.2187e+000
.1637e+000
.2187e+000
.2811e-015
.6740e-015
.6537e-015
.3090e-015
.9649%e-015
.5992e-015
.1614e-015
.6844e-016
.4626e+000
.449%e+001
.4626e+000
.4499%e+001
.4626e+000
.449%e+001
.4626e+000
.449%e+001
.5326e-015
.4022e-015
.2592e-015
.7452e-015
.3846e-015
.3283e-015
.7933e-015
.5898e-015

|
NN WwWNDDNDDN O

|
w W

Refers to local coordinates)

Mz

.9823e-001
.1312e+000
.9823e-001
.1312e+000
.9823e-001
.1312e+000
.9823e-001
.1312e+000
.9464e+000
.9464e+000
.2440e+000
.2440e+000
.9464e+000
.9464e+000
.2440e+000
.2440e+000
.0776e+000
.0699e+001
.0776e+000
.0699e+001
.0776e+000
.0699e+001
.0776e+000
.0699e+001
.0699%e+001
.0699e+001
.4499e+001
.4499e+001
.0699%e+001
.0699e+001
.4499e+001
.4499e+001



Chapter 7

CONCLUSION

7.1 Introduction

In this research the method used for analyzing space frame is Integrated Force Method,
which is independent of redundant selection process and also only one solution process
is demanded for calculating the independent internal forces. These two advantages of the
IFM renders it as a better option in designing the complex and large scale structures.
Much precise stress results, an enhanced system intended for discrete finite element
analysis, much quicker convergence to answers and capability of being applied in
nonlinear analysis of structures and optimization problems are other advantages of IFM.
(Patnaik S. N., Hopkins D. A. , and Halford G. R. , 2004)

In analyzing space frames other generally applied method is IFMD. In generating global
stiffness matrix only the equilibrium matrix and unconnected stiffness matrix are used.
Therefore, the need for developing long and complex programming is avoided and
global stiffness matrix is obtained through a much simpler programming in Mathematica
versions.

In this research the equilibrium equations generated via computer code developed in
Mathematica are used in both of displacement and force methods for analyzing the space

frames.
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In displacement method, the only approach employed is the Dual integrated force
method. Regarding force method two approaches are employed which are null space and

singular value decomposition methods.
7.2 Contributions

Aforementioned programs were developed:
1. For automation of equilibrium equation generation.
2. For analysis of space frames with 3 different methods.
3. For generation of [K] matrix from equilibrium equation.

The characteristics of developed programs are as follows:

=

Flexibility in data input and also output style.

N

Elimination of any need for program manual.

w

Development of simple and easy to run programs.

&

Use of step by step calculation to make the value of variables traceable.
Advantages of programs are:
1. No restriction on the number of members and joints

2. Capability of utility change

7.3 Recommendation for Further Researches
The results of this study may be developed further or integrated with the following
cases:
1. Addition of other codes that is capable of considering the thermal and
settlement forces on the frame.
2. Development of a computer code that makes it possible to analyze the trusses

and frames as single structure.
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Since this program assumes uniform forces as perpendicular to XY plane, a
more enhanced version of this code could have the capacity of applying other
uniform forces with different orientations.

Computer codes that are especially developed for concrete or steel structures.

Dynamic Analysis
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