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ABSTRACT

The existence uniqueness of solutions of the impulsive delayed fractional differential
equations(IDFDEs) was proved. @ The Ulam-Hyers stability of IDFDEs was
demonstrated. The controllability of IDFDEs was shown via iterative learning control
technique. In the sequel, the neutral fractional multi-delayed differential
equations(NFMDDEs) was introduced. The existence and uniqueness of NFMDDEs
was investigated in addition to its stability, and relative controllability of NFMDDEs
was proved by means of fixed point technique. Lastly, new fractional integral and
derivatives, i.e. ¢-generalized Riemann Liouville k-fractional integral, ¢-generalized
Riemann Liouville k-fractional derivative, ¢-generalized Caputo k-fractional
derivative were defined and some fundamental features were discussed to build

theory’s basement.

Keywords: fractional derivative and integral, impulsive delayed differential equation,
neutral multi-delayed differential equation, existence and uniqueness, iterative learning

control, relative controllability, stability
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Impulsif ve gecikmeli kesirli bir diferansiyel denklemin ¢oziimiiniin var ve tek oldugu
ispatlandi. Bu kesirli diferansiyel denklemin Ulam-Hyers anlaminda kararli oldugu
gosterildi.  Yinelemeli Ogrenme kontrol edilebilirlik teknigi yardimiyla da bu
denklemin kontrol edilebilecegi gosterildi. Hemen akabinde, ¢ok gecikmeli notr ve
kesirli diferansiyel denklemi tanitildi. Bu kesirli diferansiyel denklemin kararliligina
ilaveten sistemin ¢Oziimiiniin var ve tek oldugu arastirildi ve sabit nok teoremleri
teknigi araciliiyla bu kesirli diferansiyel denklemin nisbi kontrol edilebilecegi ispat
edildi. Son olarak, @-genellestirilmis Riemann Liouville k-kesirli integrali,
¢-genellestirilmis Riemann Liouville k-kesirli tiirevi, ¢-genellestirilmis Caputo
k-kesirli tiirevi olmak iizere yeni kesirli integral ve tiirevleri tanimlandi ve teorinin

temelini inga etmek i¢in bazi temel 6zellikler tartigildi.

Anahtar Kelimeler: kesirli tiirev ve integral, impulsif gecikmeli diferansiyel denklem,
notr cok gecikmeli differansiyel denklem, varlik ve teklik, yinelemeli 6grenme kontrol

edilebilirlik, nisbi kontrol edilebilirlik, kararlilik

v



DEDICATION

To the honorable memory of my advisor Prof. Dr. Nazzim Mahmudov that has lighted

my academic road.

To my parents Dursun Aydin, and Fethiye Aydin that did their best for me with their

love and patience.



ACKNOWLEDGMENTS

I am really and deeply grateful to my advisor Prof. Dr. Nazim Mahmudov who
patiently guided me at every moment of this thesis, and supported me at every stage

of my academic career.

I would like to express sincere gratitude to all my instructors, especially Prof. Dr.
Mehmet Ali Ozarslan, Prof. Dr. Agamirza Bashirov, Assoc. Prof. Dr Suzan Cival
Buranay, and Asst. Prof. Dr. Miige Saadetoglu, for their valuable help and

contributions during my PhD education.

I present my deep gratitude to all members of my committee for their valuable and

priceless evaluations and contributions.

I typeset this thesis using EMU Thesis LaTeX Template 2021 which is offered to our
use and facilitating thesis writing, so I am also thankful to people from Institute of

Graduate Studies and Research.

I am also thankful to my family, especially to my parents Dursun Aydin and Fethiye

Aydin, for their unlimited support and everyday understanding.

I want to send special thanks to all of my friends who accompanied me and contributed

to my works for their valuable support.

Lastly, I would like to add that I might have forgotten to thank some people who

contributed even a little bit to me, and so I seek their forgiveness.

vi



TABLE OF CONTENTS

I INTRODUCTION ...ttt
2 PRELIMINARY ..ttt e
3 IMPULSIVE DELAYED FRACTIONAL SYSTEM ...,
3.1 Existence and Uniqueness of Solution of the System ..........................
3.2 Ulam-Hyers Stability of the System ...............ccooiiiiiiiiiiiiiiiiinn.. ..
3.3 Iterative Learning Control ............oooiiiiiiiiii i
3.3.1 P-Type Iterative Learning Control ............ccooiiiiiiiiiiiiiiinn....

3.3.2 D-Type Iterative Learning Control..............coooviiiiiiiiiiiinn.....

3.3.3 D*-Type Iterative Learning Control ................coovvviiiiiniiann...

3.4 An Iustrative Example..........oooiiiiiiiiii e
3.50pen Problems . .....ooouui i
4 THE NEUTRAL FRACTIONAL MULTI-DELAYED SYSTEM.................
4.1 The Multi-Delayed Perturbation of Mittag-Leffler Type Matrix Function ....
4.2 The Explicit Solutions of Neutral Fractional Multi-Delayed System .........
4.3 Existence and Uniqueness, and Ulam-Hyers Stability .........................
4.4 Relative Controllability of the Neutral Fractional Multi-Delayed System. ...

4.5 ustrated EXampPles .....ooouneeiiine it



4.6 NeW Problems . ..ottt e e e e 70

5 NEW FRACTIONAL INTEGRAL AND DERIVATIVES ..........c.ocooooiet. 71
5.1 The ¢-Generalized R-L k-Fractional Integral and Derivative ................. 73
5.2 The ¢-Generalized Caputo k-Fractional Derivative ............................ 81
5.3 APPHCALIONS .t v ettt ettt ettt et 87
5.4 Suggested Problems. ... 89

REFERENCES ... 90

viii



LIST OF TABLES

Table 3.1: Error e (¢) for Figure 3.2 inCase 1..........oooviiiiiiiiiiiiiiiinnns 33
Table 3.2: Error e () for Figure 3.3in Case 2........oovviiiiiiiiiiiiiiiaanns 33
Table 3.3: Error e () for Figure 3.4 inCase 3.........ooiviiiiiiiiiiiiiiinnn. 33
Table 3.4: ||ex||c for choOSING Q. ....oovviieii 37
Table 3.5: ||ex||c for chooSIng €. ......o.oiiii 37

ix



LIST OF FIGURES

Figure 3.1: Block diagram of the iterative learning control method ................. 20
Figure 3.2: Trajectory yy (z) and error e, (¢) for Case 1............oooiiiiiiiin.., 34
Figure 3.3: Trajectory y (z) and error e (¢) for Case 2...........cooevviiiniiiiin... 35
Figure 3.4: Trajectory y (¢) and error ey (¢) forCase 3..........cooeiiiiiiiiiiinn... 36



LIST OF SYMBOLS AND ABBREVIATIONS

B(Y1,Y>)
C([a,b],R™)
L>(J,)
PC([a,D],R")
¢-GC k-FD
¢-GRL k-FI
¢-GRL k-FD
IDFDE

ILC

MDP of ML

NFMDDE

Space of All Linear Bounded Operators

Space of All Vector-valued Continuous Functions

Space of All Essentially Bounded Functions

Space of All Piecewise Continuous Vector-valued Functions
¢-Generalized Caputo k-Fractional Derivative
¢-Generalized Riemann Liouville k-Fractional Integral
¢-Generalized Riemann Liouville k-Fractional Derivative
Impulsive Delayed Fractional Differential Equation
Iterative Learning Control

The Multi-delayed Perturbation of the Mittag-Leffler

Neutral Fractional Multi-delayed Differential Equation

xi



Chapter 1

INTRODUCTION

When tracing the history of fractional calculus, we undoubtedly can say that the
foundation of the theory of fractional-order derivatives are laid with Leibniz’s note to
L’Hospital in 1695 [1]. On that note, the possible meaning of the derivative of
one-half order was debated. This also stimulates everyone who early encounters the
differential operator d/dx, d> /dxz,etc to ponder what the meanings of dl/? /dxl/ 2
d_]/dx_', and dﬁ/dxﬁ are. As a result, these cause to appear the theory of
derivatives and integrals of any order. For the last three centuries, the theory of
fractional calculus was developed mostly as a pure theoretical area of mathematics.
However, for a couple of decades many researchers were aware of the fact that
fractional-order derivatives and integrals are more appropriate to express the real-life
world problems compared to previously used integer-order derivatives and integrals.
Especially, in comparison with the traditional integer-order models fractional
derivatives provide the miracle argument for the description of memory and
hereditary features of various processes and materials. In addition to describing
rheological features of rocks, the advantages of fractional derivatives also appear to
model mechanical and electrical properties of real materials and, in many other areas.
A fractional differential equation is an equation that consists of fractional derivatives.
Based on the features of fractional derivatives, the physical and mathematical

processes and modelling gave rise to fractional-order differential system having

fractional-order and oblige to solve(settle up) such equations. Fractional derivatives



and integrals also become apparent in the theory of control of dynamical systems,
when the controller or controlled system is expressed by fractional differential
equations. Many articles are written on the subject of the history and applications of

fractional calculus [9,79-82].

Fractional calculus which regards as a generalization of the traditional calculus or
integer calculus or classical calculus has been of widespread use in the scientific
world. Unlike the traditional calculus, fractional calculus is exponentially exploited in
many kinds of areas like mathematical physics [79], [80], electrochemistry, (Optimal)
control theory [145, 146], biophysics, engineering, signal, etc; see for
instance [81]- [83] to model a variety of phenomena as control theory, stability theory,

viscoelasticity, existence [144], and etc [7,8,17,88-92,97,99,100,111].

In the most of previous applications, a system was examined according to a principle
of casualty. This means that the system’s future state did not depend on the past
states, that is, it is identified only with the present states. In this case, a differential
equation with the state and its rate of change becomes either ordinary or partial. Of
course, the future state was not logical not to depend on the past state. In the late
thirties, Volterra in his works [76], [77] like viscoelasticity and predator-prey model
formulated certain quite general differential equations including the past states. Again
on the same days, Minorksii [78] showed the importance of the delay in the feedback
mechanism in his studies of automatic steering and ship stabilization. This played a
significant role in the theory of differential equations with the past state and in the
control theory. The dependence of the past states can be expressed with the state
variable and not derivative of the state variable. In the literature, this kind of

differential equation is called retarded(delayed) differential equation.  Neutral



differential equation also involves derivatives of retardation(delay) in addition to the

function itself depending on the past and present states.

Recently, it is studied on the expression of solutions to delay differential equations.
Khusainov and Shukin [22], and Diblik and Khusainov [23, 24] managed to get the
accurate representations of solutions of linear continuous and discrete delay equations
by proposing the concept of delay matrix exponential function ef’ as in (2.3). Li and
Wang [110] studied the fractional analogue of the same problem in the case A = ® by
exploring delayed Mittag-Leffler type matrix function efi’a as in (2.4). Motivated by
Khusainov & Shuklin [23] and Li and Wang [110], Mahmudov [86] consider
representation of solutions of the Caputo fractional delay differential equations by
introducing delay perturbation of Mittag-Leffler function X2 (f B (t) as in (3.3) which

does not need to satisfy that A and B are permutable.

Arimoto et al. introduced the concept of iterative learning control (ILC briefly) in
1980s, which has been widely used to apply to biological systems, robotics, industrial
control systems to get an awesome tracking performance in a finite interval of time.
ILC has been deeply researched from practical and theoretical applications [43-51,
55-59]. But the study on this subject is still at the beginning and there are a lots
of problems which are expected to solve. ILC is not restricted to the integer order
differential equations. For instance, it can be used for fractional differential equations

[43-45,47,48], for fractional impulsive equations [49,52-54].

The paper [67] presents a second order D*-type iterative learning control scheme for a
class of fractional-order linear time-delay systems with fractional order 0 < o < 1. In

[68] convergence conditions are derived in frequency domain via contraction mapping



principle. The convergent sufficient conditions of open-loop and closed-loop iterative
learning schemes are established in [52]. A robust second-order feedback PD type
iterative learning control for a class of uncertain fractional-order singular systems is
presented in [47]. PD%-type iterative learning control for fractional-order singular

time-delay system is studied in [69].

For an approximately one and half century, differential equations have been used to
formulate the dynamics of changing processes. The dynamics of several developing
processes depend on sudden changes like shocks, natural disasters. The phenomena
have short-term deviations(perturbations) from continuous and smooth dynamics.
Considering the course of the whole development, its duration is ignorable. In
formulations having such deviations, these deviations treat instantaneously or in the
form of “impulses”. As a result, formulating impulsive problems have developed
impulsive differential equations in population dynamics, industrial robotics, ecology,

physics, optimal control and so on [93-96].

The impulsive method which is an efficient control approach is mostly exploited in
today’s sophisticated control systems. It is seen that perturbations can be generally
described in the shape of impulsive expressions for an examined sophisticated system.
In order to follow the discontinuous reference trajectory properly employing a couple
of iterations in an arbitrary finite time interval, an impulsive control method is
required. For an impulsive equation, there are a lot of tangible instances to describe it,
e.g. the computer networking, the population control systems, the automatic control
systems, and aircraft. It can be effortlessly remarked that the principle goal of the
impulsive control technique is not to compare or rival with the available other control

techniques. On quite the contrary, the impulsive control technique offers a novel point



of view when there is at least one changeable state variable in the system. There are
important theories widely used on impulsive differential systems, see [71], [72]. Also,
ILC is presented to shift the state of the impulsive equations when certain conditions
are hold. In fact, the ILC technique has been confirmed to be a sensible and
reasonable control system to deal with the impulsive systems. In [49], in order to
trace the craved discontinuous trajectory, ones discovered P-type ILC algorithm for
the impulsive differential system. In [53], D and P-type ILC algorithms have been
presented for fractional impulsive evolution system, and the convergency analysis of
these algorithms is done in the sense of A-norm. In [73], D and P-type ILC algorithms
have been designed for a class of impulsive first order systems with distributed
parameter by employing A-norm and L”-norm. PD%-type iterative learning control

for the fractional-order nonlinear time-delay systems is investigated in [70].

As you would appreciate, our efforts to find a representation of solutions to linear
(fractional) differential equations provide positive results. However, we can not
always say the same things about the nonlinear and partial (fractional) differential
equations. Sometimes it is too difficult to solve such differential equations. In this
case, it is remarkably significant to determine whether such equations have any
solutions or under which conditions the solutions are existent or unique. The fixed
point theorems are mostly used to identify answers of these kinds of questions. So,

benefits of knowing existence and uniqueness results are beyond dispute.

Numerous researchers have debated the data dependence in the theory of differential
systems. All kind of stability properties have attracted the attention of many
mathematicians, see [62]- [66]. By the way, there are certain private data dependence

in the theory of functional equations like Ulam-Hyers-Bourgin, Ulam-Hyers-Rassias



and Ulam-Hyers. Particularly, the Ulam-Hyers stability was exploited by lots of
mathematicians and the study of this area has the grown to be one of the central
subjects in the mathematical analysis area. Ulam and Hyers introduced and studied
the concept of the stability of systems [25-28]. This stabilities are known as the
Ulam-Hyers stability. Some papers as to the Ulam-Hyers stability can be reached
at [29-32] Also both the existence and the uniqueness and the stability of solutions of
fractional differential systems play an important role in the fractional calculus. These

studies can be found in [33-42].

This thesis consists of five principle chapters.

In Chapter 1, an introduction which expresses the available literatures and brief
histories about fractional calculus and subjects of our thesis is given to enable the

readers to easily understand our findings.

In Chapter 2, some special spaces endowed with their appropriate norms, the theory
of some special functions(gamma function, beta function, k-gamma function, k-beta
function, Mittag-Leffler (type) functions which play a wonderful role in the theory
of fractional calculus), some formal definitions of stability, controllability as well as

fractional derivatives and integrals, and related necessary tools are presented.

In Chapter 3, the fractional impulsive delayed system is granted. Existence
uniqueness and Ulam-Hyers stability of fractional time-delay impulsive semilinear
system with nonpermutable matrix coefficients are studied. Iterative learning control
problem for this system and study convergence of P, D, and D% type of ILC schemes

is constructed. In addition to an example that satisfies all the conditions of types P, D,



and D%, graphs of output functions, error tables and their histograms by three
different origin references trajectories for the example are offered. Possible open

problems are expressed.

In Chapter 4, the qualitative concepts for neutral fractional multi-delayed differential
equations with noncommutative coefficient matrices are discussed. ~An explicit
solution to the neutral fractional linear multi-delayed differential equations with
non-commutative matrices is given based on this multi-delayed perturbation function
of Mittag-Leffler type matrix function. The problem of existence uniqueness and
Ulam-Hyers stability of solutions to the nonlinear neutral fractional multi-delayed
differential system is investigated by using the Banach Contraction Principle. The
sufficient and necessary condition for relative controllability of the neutral
multi-delayed homogeneous system is determined by giving the concept of the neutral
fractional multi-delayed Gramian matrix. Lastly, the relative controllability result for
the neutral multi-delayed semi-linear system is studied by means of Krasnoselskii’s

fixed point theorem. Some new problems for the readers to research are stated.

In Chapter 5, quite comprehensive ¢-generalized Riemann-Liouville k-fractional
integral and ¢@-generalized Riemann-Liouville and Caputo k-fractional derivatives
which can be reduced to most of the well-known fractional integrals and derivatives
depending on the choices of k,s,¢ are presented in order to combine these
conceptions into an united one and improve a theory for FDEs with an unified novel
derivative due to lots of new types of fractional integral and derivatives and many of
their applications of real world problems. Some fundamental features are discussed to

build theory’s basement.



Chapter 2

PRELIMINARY

Let a,b € R(or RT) which is the set of all real numbers(or all positive real numbers).
For —eo < a < b < o, |a,b] is the interval of R. Let C([a,b],R") be the Banach space

of vector-valued continuous functions from [a, b] to R"” endowed with the infinity norm

Iflle == sup [lF@)]

t€la,b)

for an arbitrary norm ||.|| on R". For n € {0,1,2,...}, let C"([a,D],R) be the space
of complex-valued functions f(x) which have continuous derivatives up to order n
such that (") € C([a,b],R). We introduce the piecewise continuous vector-valued
functions space

PC([0,T],R") :=={x:[0,T] = R" | x € C((tx, tx+1] ,R"), k=0,...,m

and there existx(t,:) ,x(t,:“) withx(t,:) =x(t), k= 1,...,m},
the jumps
x (1) = 81_i>fél+x(fi+8), x(17) = slir(r)lix(t,-—i—s)

represent the left and right limits of x (¢) at t = f;, respectively, endowed with

X[l pe == sup [lx(2)][
t€[0,T]

A A-norm also is defined on PC([0,T],R") by

Il = sup {e ¥ x()l}, 2 >0.
1€[0,T]

Remark 2.1: [143] PC([0,T],R") is the Banach space with respect to the norm ||. || p-.



For A € R"™"™ n,m € N, the well-known maximum norm of a matrix is defined as

m
Al = 113?22]; aij]

where g;; are the elements of the matrix A. Let ¥;, ¥ be two Banach spaces, B(Y},Y>)
consists of all linear bounded operator from Y; to ¥,. Let J be a bounded closed
interval. L*(J,Y,) symbolizes the space of all essentially bounded functions which is

the Banach space with ||.|[z=(;.y,)-

Definition 2.1: [111] The gamma function I'(z) is defined by
I'(z) :/ le7'dt  (Re(z) >0)
0

where 17! = ¢(z=1)102(!) The integral is convergent for all complex z € C, (Re (z) > 0).

For this function the reduction formula
ZI'(z) =T(z+1), Re(z)>0

holds.

Definition 2.2: [111] The beta function B(z,w) is defined by
1
B(z,w) = / F 1= 'dt (Re(z)>0 Re(w)>0)
0

The integral is convergent for all complex z,w € C such that Re(z) >0 Re(w) > 0.

The Beta function is closely related to the Gamma function; in fact, we have

I'(z)T(w)

B(Z,W) = m

holds.

Diaz and Pariguan define the generalisations of Gammma and Beta function as noted

below.



Definition 2.3: [120] The k-gamma and the k-beta functions are defined as follows

o k
I (0) = / e Ty lay, 2.1)
0

d |
“ B(@@) = [ (-1 ay @2
0

where Re (w) > 0 and Re (@) > 0, respectively. Their relations with the well-known

gamma and beta functions and themselves are given by

[() = lim Ty (0), Fk(a)):k%*lr<%>, (k) =1, Ti(@+k) =ol(o),

and _ Tk (o)Ti (@)

Gosta Mittag-Leffler defined the following series as the Mittag-Leffler function.

Definition 2.4: [132] Mittag-Leffler function E;, (¢) is defined by

— _ neC, Re(n)>0.

En(@)=

Subsequently, Wiman introduced a generalized Mittag-Leffler function as follows.

Definition 2.5: [142] Mittag-Leffler function E; ;, (@) is given by

o0 k

ETHJ ((P) = Z 1—‘( ?

——— n,ueC, Re > 0.
L Flnk+ 1) n,u (n)

Definition 2.6: [24] Delay matrix exponential function ef’ is defined by

o, e <t < —h,
B =11 —h<t<0, (2.3)
Lo (t—(j—1)h)
ZBJ%, (p—1)h <t < ph.
\ j=0 J:

10



Definition 2.7: [110] The delay Mittag-Leffler function ef‘a is defined by

;

o, —e0 <t < —h,

B — 0 1, —h<t<0, (2.4)

eh,a_ .
S (= (= D)™
B/ , —1)h <t < ph.
\;% NCTES R P

Mahmudov generalizes them to that one including two independent coefficient
matrices by using double summation as follows.
Definition 2.8: [86] The delayed perturbation of Mittag-Leffler type matrix function

X;:’Ol:ﬁ () : [0,00) — R" generated by A, B is defined by

7

o, —h<t<0,

X//if.ﬁ (1) := I, t=0, 2.5)
(l__jh)/_('_a-Fﬁ—l

p
kgbjszkH(Jh) T(katB) ph<t<(p+1)h,

o5}

\

where (1)1 = max(0,7), Q1 (jh) = AQx (jh) +BQk (jh —h), Qo(s) = Qk(—h) = ©,
01(0) =1 for k=0,1,2,... and s = 0,h,2h,... ® and [ are the zero and identity

matrices.

Remark 2.2: As stated in [86, Figure 1] or will be shown with the aid of the
interpretation of the first derivative, the delayed perturbation of Mittag-Leffler type

. . AB . . .
matrix function X; ' 5 is increasing on (0,00).

Remark 2.3: By determining x which makes f (x) bigger than zero, one can show

that the function f is increasing for x > 0 If f(x) =x%, a € (0,1).

Lemma 2.1: [75] In addition to the fact that the exclusive function X,‘:‘ ’(f B (+) is

continuous on (0,), forallr > 0,0 < < 1,0 < B <1 satisfying a + > 1, we

11



have

|2 s ) < Eap (a+ 1B, X2 0 <X 0. 6

Lemma 2.2: [60] Let x € PC ([0,T],R") satisfy the following inequality

Ol <er)+e [ (-9 x6)lds+ Y 6l (i)

0<ti<t

where ¢ (¢) is non-negative continuous and non-decreasing on [0,T], ¢, 6 > 0 are

constants. Then
()| < 1 (1) (14 0Eq (2T (@) 1)) Eq (2T () 1%)

fort <t <tyy1, where 6 = max{6y,...,0,} and Ey (2 Z koc+1 ,z€C.

Definition 2.9: [111,112] The Riemann-Liouville fractional integrals ®¢3% f(t) of

order o € R (positive real numbers) are defined by

1

P80 = o / (t— )%V £ (s)ds

Definition 2.10: [111,112] The Riemann-Liouville fractional derivatives mQ’DO‘ ‘ f(t)

of order 0 < o < 1 are defined by

1 d

ML) = g [ 9 s

Definition 2.11: [111] The Caputo fractional derivatives f@g@ f(t)oforder 0 < ¢ <

1 are defined by

1

DL 10) = T [ e=97f s)as

and their relations are
DL f(1) ="ED% (f (1)~ f(a)), ML (VDLW = £(), @)
and

12



REA A B—1 I'(B) B—a—1 _ ¢~a B—1
DE (x— 7 DY (x — ]
at ( a) F(B ::) ( (1) at ( a)
'heorem 2.1: [61] (Banach’s Contraction Principle) Let X be a complete metric

space with a contraction mapping 7 : X — X. Then T has an unique fixed point in X.

Lemma 2.3: (Krasnoselskii’s fixed point theorem, see [108]) Let & be a convex
closed and bounded subset of Banach space Y and let 4 = ¢ + % be maps Z into Y
such that ¥z = 4z + %z € 9 for every pair z € 2. If % is continuous and compact

and ¥ is a contraction, then the equation ¥z = ¥z + %z = z is of a solution on Z.

13



Chapter 3

IMPULSIVE DELAYED FRACTIONAL SYSTEM

In the section of the introduction, we talked about advancements about both delayed

systems and impulsive systems. It will be interesting to combine the iterative learning

control and Ulam-Hyers stability issues with the semilinear fractional time-delay

impulsive systems. Therefore, we consider the following semilinear impulsive

fractional differential time-delay equations with noncommutative coefficients,

( D% x(t) =Ax(t) +Bx(t —h)+ f (t,x(t)), t € [0,T|\I,
x(tF)=x(7)+gx (1)), el (3.1

x(t)=e¢(t), —h<t<0,

where k denotes the iterative times, I = {t1,,...,t,;,} is the impulsive times and
satisfying 0 < ) < ... <t,, <T,T = lhfor afixed/ € Nand h > 0. A,B € R"*" are
constant matrices which do not have to be commutative. f:[0,7] x R" — R" and

g : R* — R" are continuous vector functions. The jumps

x (7)) = lim x(r;+¢€), x(&5

l
0T

)= lim x(t;+€)

e—0~

represent the left and right limits of x(r) at t = t;, respectively. We introduce the
following integral equation
A,B 0 A,B
x(t) =X o (t+h) @ (= h)+/hXh7a7a(t—s) [ D5 @ (s)—A@(s)|ds
t
[ XL Fea)dst T X (a)gG@). G2
0 o<ti<t

where delayed perturbation of Mittag-Leffler type matrix function x4 hot 13 (1) : [0,00) —

14



R generated by A, B is defined by

)
0, ~h<1<0,
X g (0):i=13 1, t=0, (3.3)
Qi1 (jh) , ph<t<(p+1)h,
=r= I (koo+B)

where (¢) = max(0,t), Qr+1 (jh) = AQ (jh) +BQi (jh—h), Qo(s) = Qx(—h) = O,
01(0) =1 for k =0,1,2,... ands = 0,h,2h,... ® and I are the zero and identity

matrices.

Remark 3.1: If we take o = f = 1 and omit the impulsive part and non-commutativity
of A and B, the solution in (3.2) coincides with that of the paper [22]. The solution in
(3.2) without the impulse reduces to that of the work [110] provided A = ®. The

solution in (3.2) without the impulse is as in the work [86].

It is well known that fractional differential equation (3.1) and integral equation (3.2) are
equivalent. So far all of both impulsive and time-delay [22] [23] [24] [110] fractional
systems have been considered under the condition that the coefficient matrices A and
B are permutable, and also under this condition it has been investigated whether there
exists a solution of the system, the solution is existent and unique, and the system is
stable, controllable, etc. In the current system (3.1), the coefficient matrices A and
B in the impulsive fractional order time-delay systems examined do not need to be
permutable. This is the biggest difference from the peer-papers in addition to the idea
of combining impulsive systems with delayed systems . Accordingly, the obtained
results subsequent to principal contributions’ section are different from the others and

also pretty novel.
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3.1 Existence and Uniqueness of Solution of the System

In this subsection, the existence and uniqueness of solution of the semilinear impulsive
fractional differential time-delay equations with nonpermutable matrix coefficients is
offered by the following theorem and its proof.

Lemma 3.1: Let X: f 5 (1) be defined as in (3.3). The following equation holds.

t
All,IB All,lIB
[ XAy as = 111 ).
Proof. By using definition of delay perturbation function and properties of integration,

we have

p (l—S—jh)Si_H)a_]

g YNEE ' o
[ a—sds= [ XY 10 ()| A s

0 i=0,=0

- .
=2 2 0 (m m/o ] (t—s— jn) e g

i=0j=0

1 t—jh

=0
w p |
= Z Z 1Qit1 (jh)|| (DT [_ (t—s—jh)(ﬁrl)“]o

© P (l— .h)Si-}—l)(X

= Z Y Qi1 (jm)]] T((i+)a+1)

_ ylAlLIBI
- Xh7a7a+1 (t) ’

where (t —s— jh), =0fort— jh<s<t, j=0,1,...,p due toits rule. O

Theorem 3.1: If the following assumptions are hold true,

i) the function f : [0,T] x R" — R" is continuous;

i) |[f (%) =f @l <Lgllx=yll, t€[0,T], xyeR", Lf>0;

i) |g(x) =g < Lellx—yll,  xyeR", Ly>0;

iv) LfX)l‘fJ!’(m (T)+mML, < 1, m is the number of the impulsive times, M :=

Eqp (Al +IBIl)T*) > 0 with B = a, 1, is given in (2.6)
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then the integral equation (3.2) has a unique solution in [—A,T] .
Proof. Define F : PC(|—h,T],R") — PC([—h,T]|,R") by
0
xAB A,B
Fx(e): =X8 (W) p (- h>+/hxh,a,a< >[ 98 0(5)~Ap(s)]ds

+/Ox,jf§a(t—s)f Dds+ Y X 1) g (x(%)) (3.4)

0<t;<t

By taking arbitrary x,y € PC ([—h,T],R") and employing (3.4), we consider

1Fx(t)— Fy( H<H/ BB () [f (5,5(5)) — (5,3 (s))]ds

Y X (=) [g(x(6) - g(y(ti))]H

o<t<t

/O XJAILBI () 107 (5, (5)) — £ (s, ()]l ds
+ )

0<t;<t

(x(#) — gy ()l

hal )

AllI|B
<1 /O XPAIB () x(5) =y (5)| s + mMLg [ — ¥l e
" AL
<ty [ XA 0 s)ds et ML ksl G
By combining inequality 3.5 with Lemma 3.1, we get

[Fx(t) = Fy ()]l < [ LX) oo} (T) +mMLy| =l e
The fourth condition (iv) of this theorem guarantees that F is a contraction. By
Banach’s Contraction Principle, F has a unique fixed point on [0,7] . This shows us
the existence and uniqueness of solution of (3.1). 0
3.2 Ulam-Hyers Stability of the System

We present a theorem which proves that the nonlinear impulsive fractional differential

time-delay equation with Caputo fractional derivative is Ulam-Hyers stable.

Definition 3.1: Let n > 0. The system (3.1) is said to be Ulam - Hyers stable if for
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every solution z € PC ([0, T],R") of inequality,
|02 —Az(e) Bz (=)~ £ (1,2(0) || <. (3.6)
there exists a solution x € PC([0,T],R") of the system (3.1), and u;, > 0 such that

lz(£) —x(@)|| <up.m t €10,T]. (3.7)

Remark 3.2: A function z € PC' ([0,T],R") is a solution of the inequality equation

(3.6) if and only if there exists a function & € PC ([0,T],RR"), such that

* r@l <,

* “D.z(r) =Az(t) +Bz(r—h) + f (t,2(1)) +h (7).

Theorem 3.2: Assume that all statements of Theorem 3.1 are satisfied. Then system

(3.1) is Ulam-Hyers stable.

Proof. Letz € PC([0,T],R") be a solution of the inequality (3.6), i.e.
H€93+z(t) —Az(t) —Bz(t—h) — f(1,2(1)) H <. (3.8)
Let x € PC(][0,T],R") be the unique solution of the system (3.1), so that
D% x(t) = Ax(t) + Bx(t —h) + f (t,x(1))

for each r € [0,7] and 0 < o < I; x(t) = z(t) = @(t), t € [~h,0] and
g(x(t)) =g(z(#)), t € 1. By Remark 3.2 and inequality (3.8), there exists a function

h € PC([0,T],R"), such that ||h()|| < 1 and
D% z(t) =Az(t) +Bz(t—h)+ f(t,2(t)) +h(t). (3.9)
So we get the solution z(¢) from (3.9):
2(1) = Xy (t+h)¢(—h)+/_(;Xﬁf,a (t—s) [%S‘M(s) —A<P(S)] ds

[ X =) 526 +hOds+ T X (- 0)e ),

o<t<t
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:Fz(t)+/0tX2£a (t —5)h(s)ds

By using Lemma 3.1, we have the following estimation

In(s)lds <X\ 2020 (T, (3.10)

A.B
X (t - S) h,o,0+1

h,o,0

P20 -2l < [ ’

Therefore, we deduce by the fixed point property of the operator F' given in the proof

of Theorem 3.1,
lx (@) —z@)[| < [lx (1) = Fz(t) || + [|[Fz(t) —z (1)
<|[Fx(t) = Fz@)[|+[[Fz(t) =z (1)

All,lIB All,|B
< [ )+ mMLy) llx =2l e+ X102 (T

Rearranging the inequality,

<1 . [LfXHA”’”BH (T) —l—mMLg}> HX_ZHPC < XHAH7HBH (T)n

h,o,o+1 — “h,a,a+1
then we get
¥ = 2l| pe < un-,
All,|B
where y X;',‘7o¢‘!o‘¢|+|‘1 (T) <0
h = .
Al 1Bl
- Lth7oc7a+1 (T) +mML,
This completes the proof. U

Note that so far, we have investigated that the novel system (3.1) with nonpermutable
constant coefficient matrices is of an unique solution and stable. We wonder if the
system (3.1) is controllable. According to one of the traditional approaches to check
whether any system is controllable, a control problem we faced is made into a fixed

point problem. Unlike this approach, we would like to use the new iterative learning
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method for showing that the system (3.1) is controllable. Now we can pass the
following subsection.

3.3 Iterative Learning Control

In this subsection, we express the ILC method with the aid of its diagram. In the
sequel, we introduce our ILC problem and investigate it according to P, D, and D%-

types updating laws, respectively.

input
1 u(B)
input system v > output reference
uk(t) X (t) Yi(t) Ya(t)
error
Learning Control Law = e
ex(t)

Figure 3.1: Block diagram of the iterative learning control method

In any control system, the most significant stuff is to determine the control input. The
ILC system is solved repetitively in order to obtain the desired control input. ILC is
a method for enhancing the provisional signal and tracking the performance of any
tangible system that is needed to employ a certain operation repeatedly. By tracking
the error in the output signal subsequent to each of operations and employing this error

to adjust the input signal to the system, ILC tries to develop the system performance.
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We consider the following ILC problem
COF xi () = A (1) + B (1 = h) + f (t,3 () + Cu (1), 1€ [0, T\,
X (lf) = Xi (tf)%—g(xk(ti)), tiel, (3.11)

xe(t) =@ (1), —h<t<0,

\

and ye (1) = Dxe (1) + Eug (1), 1 € [0,T)\L, 3.12)

where k denotes the iterative times, I = {¢1,,,...,t,;} is the impulsive times and
satisfying 0 < ) < ... <t,, <T. A,B€ RV C € RV D € R E € R**" are
constant matrices. f :[0,7] x R" — R" and g : R" — R" are continuous vector
functions. x; € R", u; € R, and y; € R® symbolize state, input, and output,
respectively. Define Axy(t) := xpp1 (1) — xx (1), Aug(t) = wypyq (1) — wi (1),

ex () :=yq (t) — vk (¢). Recall that the jumps

X (ll_‘_) = 81_1)I{)1+xk (l‘,’ —|—8) , Xk (ti_) = X (li) = sli%l*Xk (l‘i—|—8)

represent the left and right limits of x; (¢) at r = 1;, respectively.

It is well known that if f (¢,x;), g (xx) satisfy Lipschitz conditions with respect to xy,
then the system (3.11) has a unique solution which is represented by the following

integral equation:
0
w0 = X5 o=+ [ X =) D8 0()~Ap(5)] ds

[ X =9 Gonlo) +Cuo)lds+ K X =) g 1),

0<t;<t

3.3.1 P-Type Iterative Learning Control
In this subsection, we share some details about the concept of P-type and, investigate
its convergency with P-type under some conditions. For (3.11), we employ open-loop

P-type updating law with non-initial state learning
Auy (1) =Te (1) (3.13)
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where t € [0,7] and I'; € R**" is unknowable element which can be obtained. Here
the primary aim is to use delayed perturbation of Mittag-Leffler type matrix function
to obtain the control input u; such that the time-delay system output yy is tracking the
iteratively varying reference trajectories y, as far as possible when k — oo uniformly

on [0, 7] in the sense of the A-norm by adopting P-type updating ILC.

Theorem 3.3: Lety, : [0,7] — RS be a desired trajectory from the system (3.11). The
vector functions f (z,x) and g (x) satisfy Lipschitz condition, which means that for any

x1,x2 € R" that there exist constants Ly > 0 and Lg > 0, such that
1f (t,x1) = f(t,x2)|] < Lgllxr —x2f, g (x1) — g (x2)[| < Lyg [lx1 —x2| -

If || — ET|| < 1, then for any initial input ug, the P-type updating ILC law (3.13)
guarantees that y; tends to y; as k — oo in the sense of A-norm.
Proof. Consider e; 1 (t) —ex (1) :
ext1 (1) — e (t) = yic () = yir (1)

= Dxy (1) + Euy (t) — Dxpyq (t) — Eugyq (1)

= —DAx; (t) — EAuy (1) .
It follows that

exr1(t) = ex (1) — DAxy (t) — EAuy (1)
= (1) —ET e (t) — DAxy (1)

=(I—EF1)ek(t)—DAxk(t). (314)

For an arbitrary ¢ € (¢;,t;11], i =0,1,...,m, we have
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_ /0 tx;‘,;ia (1 — ) (53101 ) — F (53¢ (5)) - Clg (5)] ds

+ Y X i) (8 (e (1) — 8 (i (1))

0<ti<t

Next we estimate Axy (¢) as follows by keeping Lemma 2.1 in our mind,

1A% ()] <

+L, )

O<r<t

<L /O (1 — 5% Epar ((IA]| + [1B]) (£ —)%) | Axe ()| ds

haa <r—s>H (Ly 1A ()11 + €T | flex ()11 s

(@)l

hal

+licll HHH/O (t=5)*"" Eqa (A + 1B (2 =5)*) llex (s) | ds

+Lg Y, Eoi ((JAI+1BI) (t —1)%) [l Ax (1) ] (3.15)

0<t;<t

Introduce the following notations:
M :=Eqp (Al +[IB)T*), (B=0 or 1),
)= eIl [ =) lee ()]s

Inequality (3.15) can be written as follows:

IIAXk(t)IISC(f)+LfM/O (t—5)* VA (s)| ds+LeM Y, || A (1)

o<ti<t
By the Gronwall lemma, we have

|Ax (1)|| < ¢ (t) (1 + LgME¢q (LM () T*))" Eq (LMT () T%) (3.16)

for 1, <t <t;41. To take A-norm, we multiply both sides of the above inequality by

e M.

t
sl < (Ml [ =9 e HVaslal,)
X (14 LeMEq (LiMT () T*))" Eq (LyMT (o) T%).
Let’s compute the inner integral in the above inequality
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1o r
g—/ W1 gugy — (@) (3.17)
0

By use of estimation of (3.14), we have
lex+1lly < 11— ET[[ |lexll, + DI | Axellx < prllexl]
where

p1 1= I —ET1 ||+ (1 +LgMEq (LeMT () T))" Eq (LyMT () T%)

I'a)

< 1Dl M ] Ty = 5

Having in mind the condition ||/ —ET|| < 1, it is possible to make p; < 1 for

sufficiently large A. Therefore,
lex+1llx < pi lleillz
implies that
Jim lex+1l =0,

which in fact says that limy_,. yx = y4. The proof is completed. L]

Remark 3.3: Theorem 3.3 with o = 8 = 1 without the impulse and with commutative
matrices reduces to Theorem 3.1 in the study [74].

3.3.2 D-Type Iterative Learning Control

In this section, we hand in brief details about the concept of D-type and, investigate
its convergency with D-type for (3.11) under some conditions. For (3.11), we employ

open-loop D-type updating law with non-initial state learning

Aug (1) =T [%gaek (t)] (3.18)

24



where ¢ € [0,7] and I’ € R**" is unknowable element which can be obtained. Here
the primary aim is to use delayed perturbation of Mittag-Leffler type matrix function
to obtain the control input u; such that the time-delay system output yy is tracking the
iteratively varying reference trajectories y, as far as possible when k — oo uniformly

on [0, 7] in the sense of the A-norm by adopting D-type updating ILC.

Theorem 3.4: Lety, : [0,7] — R® be a desired trajectory from the system (3.11) with
E = ©. The vector functions f (¢,x) and g (x) satisfy Lipschitz condition, which means

that for any x;,x, € R" that there exist constants Ly > 0 and L, > 0, such that
1f (t,x1) = £ (t,x2)|] < Lgllxr —x2l, g (x1) — g (x2)[| < Lyg [lx1 —x2|-

If || — DCT,|| < 1, and ¢ (0) = 0,k = 1,2, ..., then for any initial input ug, the D-type
updating ILC law (3.18) guarantees that y; tends to y; as k — oo in the sense of A-norm.

Proof. By
“Dfer1 (1) = Drer (1) = Dy (1) = Dfyicsr (1)
= D*Dfxi (1) = DD i1 (1)
= DA [xy (1) — 1 (1)) + DB [xi (1 — 1) —xi1 (¢ — )
+DC g (1) — w1 (6)] 1 (1200 (6)) = £ (#5051 ()],
= —DA[Ax (1)) ~ DB [Ax (1 — )] — DC [Au ()]
—[f (g1 (0) = £ (6,2 1))
Therefore we have
D, exs1 (1) = (I = DCT) [*DE, e (1) — DA[Axc (1)] — DB [Awe (1 — )]
[ (k1 () = £ (1.2 (1))]

It follows that
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|08 i1 ()] < 17 - DT ||| ex (1) + 101 1] e ()]
+IDIIBI e (¢ = 1)) + Ly | Ave (1) (3.19)

On taking A-norm, we multiply both sides of the above inequality by e M

| D8 ex |, < 1 —DCT) || D, + 101 AT 1A
D181 A5+ Ly A
then

+(Lf+||D||HAII+IIDIIIIBH) A% (3.20)

We know that by property (2.7)
3 | “DE ek ()] = ex (1) — ex(0)

Keeping the statement e, (0) =0,k = 1,2,..., in mind, we get

RELE~o _

3%, [ D, et )] — e (1)
By using the definition of Riemann-Liouville fractional integral,

ex (1) = 232, {%gaek (r)]

- ﬁ/at (t—s)*! [€©o+€k( )} ds.

By taking the norm on the both sides, we have

||ek(t)||§ﬁ/a (1) | <0G ex () as.

In order to take A-norm, we multiply the both sides of the above inequality by e M,

1 t
At _ —t s Hc H
les Olle™ < s [ =) e Hebeds [ 0ier

We rewrite the inequality and take A-norm on the left-hand side to obtain the following

inequality
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I s
lex ()13 < gy [ (=9 e A0 s |0er]

with the similar calculation in the proof of Theorem 3.3, we get

1
lex Ol < 7z ||“D8e, (321)

In the proof of Theorem 3.3, we have by using the equation (3.16) with (3.18)
t
Jaxc )1 < (Ml Ina] [ 69 |08t as)
x (14 LgMEq (LiMT () T*))" Eq (LyMT (0t) T*)

To take A-norm, we multiply both sides of the above inequality by e~*’ :

t
sy < (MICIIEa] [ -9 e 205 |0 )
x (14 LgMEq (LyMT () T*))" Eq (LyMT (00) T) .

By making the integral calculation in the above inequality

()
Lo

|Axell;, < MIIC T2l 5 o (14 LeMEq (LeMT (@) T%))"
X Eq (LMT (o) ) |*Dex | -
By combining the last inequality with (3.20)
g, <o,

where

p2:= (Ly+ D] 1A+ D] |1B]))

I'a)
.

+|(I=DCTL)|

X MCI T2l =g (1+ LMEq (LMT (@) T%))" Eq (LMT () %)

Keeping the condition ||/ —DCT»|| < 1 in mind, it is possible to make p, < 1 for

sufficiently large A. Therefore,

Caa k||Cna
[0 v, <p][ 0 ]
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implies that

limH%Da e H =0.
Koo 0+€k+1 2

By employing the inequality (3.21) with the last information, we get
li =0,
P lextlln

which in fact says that lim;_,., yx = y4. The proof is completed. ]

Remark 3.4: Theorem 3.4 with a = B = 1 without the impulse and
non-commutativity reduces to Theorem 4.1 in the study [74].

3.3.3 D%-Type Iterative Learning Control

In this section, we talk about some details about the concept of D%-type and, investigate
its convergency with D%-type for (3.11) under some conditions. Define the output

equation
i (t) = Dxy (1) + ER* 3%y (1) . (3.22)

where ¢t € [0,T]\I. For (3.11), we employ open-loop D%*-type updating law with non-

initial state learning
Aug (1) = T3 [C@g+ek (t)] (3.23)

where ¢ € [0,T] and I'; € R**" is unknowable element which can be obtained. Here
the primary aim is to use delayed perturbation of Mittag-Leffler type matrix function
to obtain the control input u; such that the time-delay system output y; is tracking the
iteratively varying reference trajectories y; as far as possible when k — oo uniformly

on [0, 7] in the sense of the A-norm by adopting D%-type updating ILC.

Theorem 3.5: Lety,: [0,7] — R’ be a desired trajectory from the system (3.11). The

vector functions f (#,x) and g (x) satisfy Lipschitz condition, which means that for any
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x1,x2 € R" that there exist constants Ly > 0 and Lg > 0, such that
1 (#,x1) = f(t,22)]] < Ly [lx1 —x2 . [|g (x1) — g (x2) | < Lg [lx1 —x2].

If |- (DC+E)T3| < 1, then for any initial input satisfying ug(¢) the D*-type
updating ILC law (3.23) guarantees that y; tends to y; as k — oo in the sense of

A-norm.
Proof. Consider ey (1) — e (2):
ek (1) — e (t) = ya (1) = yir1 (1) = (va (1) = ye (1))
= — Ot 1 (1) =y (1))
= [ka+1 (1) + E™*36 w1 (1) — Dxi (1) — EV38 g (l)]
= —DAx; (t) — ET3%, Auy (1)
We apply the operator QQSQ to the last equation,
D e (t) — D ex (1)
— D [%g:mk (z)} _E [%g@ (D; %Auy (r))]

—_D [¢®g+Axk (t)} — EAuy (1)

= —D[AAx; (1) + BAx (t — h) + CAuy (1) + [f (1,041 (2)) — f (£, (2))]]
— EAug ()

— —DCAuy (1) — EAug (1) — DAAx (1) — DBAx (1 — h)

—DIf (8,311 (1)) = f (£, (2))]

— — (DC+E) Aug (t) — DAAx; (1) — DBAx; (1 — h)

—D[f (t,x%41 (1)) = f (8,3 (1))]

= —(DC+E)T; [%gaek (t)] — DAAx; (t) — DBAx, (t — h)

=D[f (t,x%41 () — f (£, (2))]
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One can rewrite the above inequality again,
D% e, (1) = (I— (DC+E)T3) [ DL e (t )] — DAAx (1)
—DBAxy (1 —h) =D [f (t,x541 (¢)) — f (£, (2))]
By taking the norm on the both sides, we reach to
|D8ex1 )] < 1= (DC+ BY T |08 ex || + DI ] 1A ()]
+[DIIBI|Axe (2 = R) || + Ly ([ DI f| Axi (2) ]

To take A-norm, we multiply both sides of the above inequality by e M,

|08 e )| e < 11— (DC+ E)T31| | DG en ()] e + DI AN A (6)]

+ DI IBIl | Axi (¢ =) || e * + Ly | D] | A (1) ¢+

and, so we get

H ©O+ek+1H < ||l - (DC+E) rsuH%mek + IDIHIA]l | Axe |5

+IDIIBI [ Axell + Ly | DIl |Axk |2

< |l1- (DC+E)Ts || *Dgex,
+ (L D]+ D1 Al + 1211 1B1]) A ;

<0 Hegga.ekHl—l-GzHAkaA (3.24)

where 61 = ||I — (DC+E) T3], 02 = (L ||D|| + || D|| |A]| + || D] ||B]]). In the proof of

)

X (14+LeMEq (LiMT (a0) T*))" Eq (LyMT (o) T%)

Theorem (3.3), we have by using the equation (3.16) with (3.23)

(1)) < (Mucu el [ o= ()"0 o

To take A-norm, we multiply both sides of the above inequality by e~/
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sy < (MICHTS [ =97 40 as <08, )
X (14+LeMEq (LiMT (a0) T*))" Eq (LyMT () T%).
by making the integral calculation in the above inequality
<o 5.,

where

I'(a)
R

03 =M |C|| T3]l g~ (1 + LMEq (LeMT (0) )" Eq(LyMT () T).
By combining the last inequality with (3.24), we get

ot = oo

Since o7 < 1, it is possible to make p3 := 0] + 0,03 < 1 for sufficiently large A.

Therefore,

Y

Caa k||Cana
e

O )«

k—ro0

and employing the inequality (3.21) with the last information, we get
lim [leg41([; =0,
k—yo0

which in fact says that limy_,.. yx = y4. This completes the proof. L]

Remark 3.5: If we remove the impulsive and non-linear parts, Theorem 3.5 in this
paper reduces to Theorem 1 with ¥ =1 in the study [67] on ignoring the bounded
external disturbance since p (I — (DC+E)I3) < || —(DC+E)TI'3|| < 1, where p is

the spectral radius.
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3.4 An Illustrative Example

We consider the iterative learning control problem of the impulsive fractional

differential time-delay equation

( CD93x; (1) = xi (1) +xi (1 —0.3) +ui (1), ¢ € [0,2]\{0.4},
x (0,41) = x;(0.47)

xe(t)=t, —03<t<0,

Vi (l‘) :xk(l) +1.2u; (l‘) or yk(l) = X (I)—f— 129%2384_51/”( (l‘), 1 e [0, %} \{04},
(3.25)

\

and P-type, D-type and D*-type updating laws are
Au (1) = 03¢5 (1), Aug (1) = 0.3 [%g:ek (r)}

It is clear that the vector functions f(7,x) and g(x) satisfy Lipschitz condition.
|1 —ET|| =0.64 < 1, | —DCT,|| = 0.7 < 1, || — (DC+E)T3|| = 0.34 < 1, so all
of conditions of Theorem 3.3, 3.4 and 3.5 are satisfied. Especially, we give extra
information like graphs and tables about P-type for each of three different original

reference trajectories. The first original reference trajectory is a continuous function
ya(t) =12t (1-1),

the second original reference trajectory is a piecewise continuous function
213, 0<x<0.4;
ya(t) =
3°+2, 04<x<0.6,

the third original reference trajectory is a piecewise trigonometric continuous function
2sindnmt —1, 0<x<04;

ya(t) =
2sindnt+cosdnt+3, 04 <x<0.6.

So, we have three cases. For case i, i =1,2,3, we use the ith original reference
trajectory in the P-type iterative learning control problem (3.25) and share one figure

which includes one histogram graph as well as one chart with graphs of y,(7) and
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yi(t), i=1,2,...,10 and one table about the obtained results for each of the original
reference trajectories. The left-hand side of Figure i, i = 1,2,3 presents the output
vk (1) of the P-type iterative learning control problem (3.25) of the first 10th iterations
and the ith original reference trajectory y,(¢). The right-hand side of Figure i,
i = 1,2,3 shows the infinity norm of the tracking error (see also Table i, i = 1,2,3) in

each iteration.

Table 3.1: Error e () for Figure 3.2 in Case 1.

k 1 2 3 4 5 6 7 8 9 10

error 1.307 0.467 0.187 0.088 0.047 0.030 0.019 0.012 0.008 0.005

The tracking error of each iteration for the first original reference trajectory

Table 3.2: Error ¢ (¢) for Figure 3.3 in Case 2.

k 1 2 3 4 5 6 7 8 9 10

error 1.702 0.360 0.118 0.074 0.047 0.030 0.019 0.012 0.008 0.005

The tracking error of each iteration for the second original reference trajectory

Table 3.3: Error ¢ (1) for Figure 3.4 in Case 3.

k 1 2 3 4 5 6 7 8 9 10

error 4.670 1.062 0.333 0.190 0.121 0.077 0.049 0.031 0.020 0.010

The tracking error of each iteration for the third original reference trajectory

Remark 3.6: We demonstrated that system (3.1) is controllable via iterative learning

control technique in spite of three different sorts of P, D, and D*-types updating laws
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under the certain conditions of Theorems 3.3, 3.4, and 3.5 which express how to select
the design parameters. With the help of example’s section, we verified the theoretical

control results. We also showed that by using P-type updating law the output signal

1.8 i

1.4 .

tracking error
1

5 6 7 8 9 10
iterative times
Figure 3.2: Trajectory yy (¢) and error ¢ (¢) for Case 1.
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vk tends to the original reference trajectory y; which is continuous or discontinuous
or trigonometric discontinuous. These results can be extended for D and D%-types

updating laws.

y,(®)
Y, (t)
y5(t)
¥, (1) i

45

25

Y-I (t)_y10(t)! yd(t)

1.5

tracking error

1 2 3 4 5 6 7 8 9 10
iterative times

Figure 3.3: Trajectory yy (¢) and error ¢ (¢) for Case 2.
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Remark 3.7: For h =1 and T = 2, we reconsider (3.25) to show how the parameter
o effects the control performance. As one can easily observe from Tables 3.4 and 3.5,

the speed of convergence is faster when o € (0, 1) approaches to 1 and the other design

y1 (t)_y10(t)! yd(t)

tracking error
- N
(6] \V] (6] w

—_

0.5

1 2 3 4 5 6 7 8 9 10
iterative times

Figure 3.4: Trajectory yy (¢) and error ey (¢) for Case 3.
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Table 3.4: ||eg||c for choosing .
=01 o=02 a=03 a=04 a=05
lei]lc 3.1983 27349 27798 2.6463 2.5412
lesllc 2.0469 17504 15416 1.3975 1.2927
lesc 13100 1.1202 0.9866 0.8944 0.8273
lleallc  0.8384 0.7169 0.6314  0.5724  0.5295
les|c 0.5366 04588 04041 0.3664  0.3389

Table 3.5: ||ex||c for choosing .
=06 o=07 o=08 o=09
lei]lc 24310 23536 2.3749  2.4149
lealc 12085 1.1345 1.0835 1.1269
les|c 07734 07261 0.6824  0.6417
lesllc 04950 04647 0.4367 04107
les|c  0.3168 02974 02795 0.2628

parameters connected with P-type updating law which are given in (3.12) and (3.13)
are chosen to satisfy the statements of Theorem 3.3.

3.5 Open Problems

We are sure that this paper will become a source of inspiration for the works which
will be conducted in this subject. A possible duty is to investigate approximate
controllability, exponential stability, finite time stability, asymptotic stability, and also
Lyapunov type stability of the semilinear impulsive fractional differential time-delay
equations with noncommutative coefficients. Another possible duty is to extend our
system (3.1) to the p-semilinear impulsive fractional differential time-delay equations
with noncommutative coefficients which means that system (3.1) is reconsidered via
Caputo fractional derivative with respect to another function u, or the semilinear
neutral impulsive fractional differential time-delay equations with noncommutative
coefficients, or the semilinear neutral impulsive fractional multi-delayed differential
equations with noncommutative coefficients, or the semilinear neutral impulsive

fractional multi-delayed differential evolution equations with noncommutative
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coefficients, or the u-semilinear neutral impulsive fractional multi-delayed
differential evolution equations with noncommutative coefficients. All possibilities as

noted above can be questioned once again for these new systems.
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Chapter 4

THE NEUTRAL FRACTIONAL MULTI-DELAYED

SYSTEM

Just as the most important notion in the traditional calculus is a derivative of order
n € Z*, fractional derivative of order o € R™ and a fractional differential equation
related to it are the heart of the fractional calculus. For this and similar reasons, many
differential equations of integer order have been converted into fractional differential
equations and their solutions, controllability and stability, etc have been examined.
Two of them are delayed fractional differential equations and neutral fractional

differential equations.

When we have a look at the studies conducted in this subject more specifically,
Khusainov and Shuklin in pioneering work [84] managed to obtain a representation of
a solution of the following delayed homogeneous linear system by defining the
delayed exponential matrix.
Z(x)=Tz(x)+%z(x—r), x>0 r>0 (delay),
z(x) =0 (x), —r<x<0.

The first result for pure delay fractional differential equations is solved by Li and
Wang [85]. The first result for delay fractional differential equations with
nonpermutable case is solved by Mahmudov [86]. He was able to get a solution by
introducing delay perturbation of Mittag-Leffler type matrix function with two

parameters. You et al. [75] investigated the relative controllability of fractional delay
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system whose solution is as in the work [86]. In the sequel, Mahmudov [87] extended
the fractional delay differential equations [86] to the fractional multi-delay
differential equation with nonpermutable matrices by defining multi-delayed
perturbation of Mittag-Leffler type matrix function. The research [84] yielded plenty
of novel results on the representation of solutions [88]- [96], which are applied in the

stability analysis [97], [98], and control problems [99], [100] of time-delay systems.

On the other hand, Pospisil and Skripkova [101] considered the following neutral linear
differential equations
z (x) — 77 x—r)=Tz(x)+%z(x—1r)+ f(x), x>0 r>0 |, @
z(x)=0¢ (x), —r<x<0.
where r is a retardation, ¢ is continuously differentiable from [—r,0] to R" and f is
continuous from [0,) to R". The coefficient matrices .#,.7,% are permutable, that
S IT =TI, UT =TU, IU =U.¥. As aspecial case, .7 = 0, Pospisil [102]

made a study of relative controllability of the below neutral system with permutable

matrices
LX) =TI (x=r) =Wz (x—r)+f(x), x>0 r>0 ,

4.2)

z2(x)=¢(x), -r<x<0.
PospiSil in this work [102] achieved to supply a description of all control functions
for system (4.2) with the aid of the shifted Legendre polynomial and granted an equal
condition of Kalman type for the relative controllability of system (4.2). You et al.
[105] proved the relative controllability for system (4.1) by Krasnoselskii’s fixed point
theorem. Zhang et al. [103] looked into the representation of the solution to the neutral
fractional linear differential system having a constant delay
D (z(x) = Iz(x—r)=Tz(x) + Uz (x—r)+ f(x), x>0

4.3)
() =9 (x), —r<x<0, r>0.
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where "%Dgﬁ is Caputo fractional derivative of order o, 0 < ¢ < 1, ., .7, % € R"".
¢ is continuously differentiable from [—r,0] to R” and f is continuous from [0, ) to
R”. In an attempt to solve system (4.3), Zhang et al. [103] exploited Laplace integral
transform. This produced some drawback and mistakes because the representation of
power series of the fundamental solution is unknowable. Huseynov and Mahmudov in
the study [104] took the following system into consideration

c338‘+z(x) =Tz(x)+%z(x—r1) —|—J¢©8‘+z(x—r2)+f(x), x>0, 44

z(x)=0¢(x), —r<x<0, r=max{ry,n}, r,rn>0.

By proposing delayed Mittag-Leffler type matrix function, they [104] gave the
analytic representation of solutions to linear and semilinear neutral fractional
differential difference system with time delay. The existence and uniqueness of the
solutions was demonstrated by the Banach contraction principle along with a

weighted space of continuous functions with respect to classical Mittag-Leffler

functions besides showing that it is Ulam-Hyers stable based on fixed-point approach.

Motivated by studies [84], [85], [86], [101], we consider the following neutral Caputo
fractional multi-delayed differential equations with noncommutative coefficient

matrices
DY [2(x) — XL Eiz(x—ry)] =Mz (x) + XL Uiz (x— ri) + T (x) ,x > 0, “5)
z(¥) =9 (x), —r<x<0, |
where *D, is the Caputo fractional derivative of order & € (0,1). For each of
i=1,2,3,...,d, rj >0 is a retardation and E;, M, U; are n-by-n coefficient matrices
which do not have to be commutative. ¢ (x) is an arbitrary continuously differentiable

vector function and 1 € C([0,T],R") with T = Ir for a fixed [ € N,

r=max{r; :i=1,2,3,...,d}. Subsequent to investigating the explicit solutions of
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(4.5), we reach to the explicit solutions to the below equations
D, [2(x) = XL Eiz(x = ri)] = Mz(x) + T4 Uiz (x — i) + T (x,2(x)) , “wo
Z(X) :(])(X)? _r§x§07

where the function T is continuous from [0, 7] x R” to R” and the rest of terms are the

same as (4.5).

Remark 4.1: It is clear that neutral Caputo fractional multi-delayed differential
equations with noncommutative coefficient matrices reduces to fractional linear
multi-delay differential equations in the reference [9] when for each of
i=1,2,3,...,d, E; = © which is the suitable dimensional zero matrix.

4.1 The Multi-Delayed Perturbation of Mittag-Leffler Type Matrix
Function

In this section, we share main findings like introducing the neutral multi-delayed
perturbation of Mittag-Leffler type matrix function, an explicit solution of system
(4.5), the existence and uniqueness of solutions and Ulam-Hyers stability of system

4.5).

In the rest of this chapter, we use the abbreviation the MDP of ML function for the

multi-delayed perturbation of Mittag-Leffler type matrix function.

It is a fact that the ML function is known as a generalization of the exponential
function. Delayed version which is called delayed Mittag-Leffler type matrix function
is presented in the reference [110]. Delayed perturbation version which is named as
delayed perturbation of Mittag-Leffler type matrix function is introduced in the
reference [86] and multi-delayed perturbation version which is recently given by

multi-delayed perturbation of Mittag-Leffler type matrix function is introduced in the
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reference [87] . In the current study, the MDP of ML function is given through

determining matrix equation for Q; (s) for j =0,1,2,...
d
Qjt1(s1,82,...,54) :MQj(sl,sz,...,sd)—|—ZU,~Qj(sl,s2,...,si—rl-,...,sd)
i=1

d
+ZEin+1 (SI,SZ,...,Si—r,',...,Sd) “4.7)
i=1

Q()(S],SQ,...,Sd) :Qj(_rlu"'7sd) :Qj(slu"'a_rd> :®7 Ql (0770) :I’

Ql <S17S27"'7Sd) :®7 S; %0

where s; = 0,r;,2r;, ..., ® is the zero matrix, and / is the unit matrix.

If d =1 for the problem with single delay determining equation has the following

simple form.
Qj+1(s) =MQ;(s)+UQj(s—r)+EQjr1(s—r)

Qo(s)=0;(-r)=0, Q1(0)=1

In order to calculate Q; (s) we may use the following table.

s=0|s=r s=2r
01(s) | I E E?
Ox(s) |M | ME+U+EM ME? +UE +E (ME +U+EM)

03(s) | M*> | M(ME+U+EM)+UM+EM?* | MQ, (2r)+UQx (r) + EQ3 (r)

Qu(s) | M> | MQ3(r)+UQ3(0)+EQ4/(0) MQ3 (2r)+UQ3(r) + EQ4 (r)

If M = O then the above table becomes simpler:
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s=0|s=r|s=2r s =3r s=pr
O1(s) |1 E E? E3 EP
Ox(s) |© U UE+EU | UE*>+E (UE +EU)
Os3(s) | © Q) U? U(UE +EU)+EU? 0
0s(s) | © Q) Q) U3
Q)
Opi1(s) | © Q) Q) e) UP

It is a high time to define the MDP of ML type matrix function by employing the

multivariate function Oy (51,

$2,...,84) in the below definition.

Definition 4.1: The multi-delayed perturbation of the Mittag-Leffler type matrix

function &, g(x) is given by
(

0,

‘@a,ﬁ(x) = Iv

Yy ¥

\ m=0ng,ny,...,ng=0

(X*X?:mirih

ma+p—1

Qm+1(n1l”1,.~~,”ld”d) T(ma+p)

x € (0,00)
(4.8)

where © is the zero matrix, I is the identity matrix, and (¢) , = max(0,1).

Remark 4.2: Here are some special cases depending on selections of the coefficient

matrices.

1. The MDP of ML type matrix function coincides with the Mittag-Leffler matrix

function [111], [112] provided that E; = U; = 0, i = 1,2,...,d i.e. Pyp(x) =

xﬁ_lEaﬁ (Mx%).

2.0 Ei=0,i=1,2,...,d and U; =0, i = 2,...,d, then the MDP of ML type
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matrix function matches up with delay perturbation of two-parameter Mittag-
Leffler matrix function [86].

. Pq p(x) reduces to delayed Mittag-Leffler type matrix function [110] providing
that £,=0,i=1,2,...,dand U; =0,i=2,....d, M =0.

. Since the determining matrix function Q(s) for k = 0,1,2,... in (4.7) is
accurately different from that one of the reference [87], the definition of the
MDP of ML function is not equal to that one of [87, Def. 3.3]. But they overlap
under the condition E; = O, i = 1,2,...,d. As it is remarked in [87]
multivariate determining matrix equation (4.7) is a delayed analogue of the
multinomial formula (theorem) for non-commutative matrices.

.Ifd=1, M=0, a = =1 and the coefficient matrices are permutable, in
addition to appropriate selections, &, g(t) reduces to X () in (2.4) in the paper

[101]:

;

o, t <0,

X(t)=9q &k i+ o
Y Y UES V‘(j;,f”’ kr<t<(k+1)r, k=0,1,...
j=0i=0 ; '

\

6. 8(;'.:52(3 ,% ,.%;x) in Definition 3.1 in the work [104] can be obtained from

P4 p(x) depending on appropriate selections r;, E;,U;, T, i = 1,2,...,d.

4.2 The Explicit Solutions of Neutral Fractional Multi-Delayed

System

Prior to investigating an explicit solution of system (4.5), we present some useful

lemma and theorem to be used in the coming proofs.

Theorem 4.1: Let &, g(x) be as defined in (4.8).

d d
DY | Poy () = Y EiPoy (x—1i) | =M Py (x)+ Y Ui Py (x—17)
i=1 i=1
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hold true.

Proof. To begin with the first item, we need to separately calculate

@ @al( )_? and €©g+<@a’1(x_

ri) =7.

The latter is easily obtained from the former, so it is enough to compute the first one.

DY Py (x)

=Y Y OQua(urn,...,

m=1ny,ny,...,ng=0

(x - Zf'l:l ”i’"i)ﬁa>

nara) DG ( C(ma+1)

I I d mo—o
Z Z O (17 nara) (ma+1) (X_Zi:1niri)+
= +1(n1 11, ngly
oo T " C(mo—a+1) T(mo+ 1)
d mo
(x_zi:1niri)+
= Omia(miri, ... ngrg) 4.9)
mZOnI,nzZ d_ " F<ma+ 1)
One can easily obtain
d mo
(X — Iy — Zi:l nm)+
DY Py (x—r11) Omi2(miri, ... ngrq) :
mz:om,nz; ng= " F<ma+ 1)
If we use (4.7) in (4.9), we carry on
698@ Po1 (¥)
d mo
(X_Zizlniri)+
=M Omt1(niry, ... ngrq)
H;Onlmz e C(ma+1)
d > > ( nr) me
1747
+YUY Y Ouai(mir,...mr—ri...ngra) Lis
k=1 m=0ny,ny,...,ng=0 (mOH— 1)
d ) oo ( Zd | rl) mo
+ ) E; Omi2 (M1, kT, — Ty - . -, NgTq)
kg’l ”;0"17"2,2’ nq=0 [(mo+1)
d mo
- = (x—):izlnzri)+
=M
g Y, OQuii(miry,... ngry) Tma 1 1)

i’l] M2, J’ld:O

—i—ZUkZ Z Qm+1("1”’ omara) F(mag-l)-

m=0n1,nz,....,ng=

ZEkZ Z Qm+2(n1”1, -3 Mgt )

m=0ny,ny,....ng

- M(@(L] (.x
k=1

d
)+ Z U Pai (x—ri)+ Y EfD

(x — Iy — szzl niri) +
[(ma+1)

g+c@oc,l (x_’"k>7
k=1
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which is the desired result concluding the proof of this lemma. [

Lemma 4.1: Let & g (x) be as in (4.8). The following mathematical equation is true:

/X(X—S)_a/S Poo(s—1)7(t)drds

XF 1_ L 4_ 7 mo
— Z Z Qm+1(n1r1, ndrd)/o ( OC) (x t szlnr)—k -i(l)dt.

m= 0”17”27 -1d=

Proof. With a simple substitution as v = if

/ x—s) /Qaas—t T1(¢)deds

—Z Z Qm+1(n1r1, s TdTq)

m= 0”17"27 -1d=
mo+o—1

XX —a S—I—Z?:ll’liri)+
x/o /t (x—s) R R UL

—Z Z Qm+1(”l1r1, T d)

m=0np,ny,..

mo+o—1

s—t— n;r;
// xX—s) a Lioin ) ds71(1)dt
—O—Z, ln,r, F(m(x—f—oc)
mol

*I(1- —t=Y  niri
Z Z Qm+1(’l1r1,---,ndrd)/0 (- @) xmt = Tiymn), T(t)dr.

]

Now, the coming theorem is one of main theorems as to the desired solutions. It gives

a part of the solution under the zero initial condition .

Theorem 4.2: The following function
X
= / Poo(x—1)(t)dt, x>0,
0

is a solution of inhomogeneous system (4.5) under the condition z (x) = 0 with —r <
x <0.

Proof. To see this, we consider the following expression by keeping Lemma 4.1 in
mind
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(/ Poo(x—t) ()d)
:de/ =) /%a (s— 1) (1) deds
i Omt1(nir,..., ndrd)d/ (x_t_zld—lniriﬁaj(t)dt

—~

I
ﬁMg

Ony.,n3,...,ng=0 dx C(ma+1)
o
= 0 +1(”1"17---7”d”d)_/ (1) dt
;1}11 ,nzz d:O " d-x 0 F(mOt + 1)

mo

d > d b (x—1 =Y g
= Z Z Qm+1(nlrla~--7”drd)a/ ( =l ”)+ T (¢)dt
0

m:Inl,nz,...,nd:O F(ma+ 1)

o o X — d R a
=Y Y Qualmr,.nara) / G EE) S ).
0

m=0ny,ny,...,ngz=0

One can easily obtain

@ (/0 P (x—t—rk)‘l(t)dt)
mo+oa—1

oo oo X(v—t—p —Vd
=)y X Qm+2(n1r1,-~-,ndrd)/ brt = e Yoy i) 1(t) dt
0

m=0ny,ny,...,ng=0 I‘(moc + OC)

We put (4.7) and Lemma 4.1 into (4.10) to obtain the following
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([ Peate—n10a)
s

S S *(x—r =YL i
=M) ) Qm+1(nlrl,~-,ndrd)/0 (x r%;;ir(z; () dt + T (x)

m=0ny,ny,...,ng=0

+ZUkZ Z Qm—l—l(nlrb ST = Ty, T )
m=0ny,n,...,ng=
mo+oa—1

X (y—t_Vd o
x /0 i Z’=1”’r’)+ () dr

['(mo+ o)

ZEkZ Z Om+2(M1r1, oo s YT = Ty - R Ta)

k=1  m=0ny,ny,....ng=0
mo+ao—1

X (X—I—Z?:lniri)+
X/o Tlma + o) (¢)dt
o oo x _I_Zld: - mo+oa—1
=M) ) Qm+l(”l”1w~-a”d”d)/0 x F(m(:j:oz; () dt + T (x)

m=0ny,ny,...,ng=0
mo+o—1

Y (x—t—rn— XL niri
ZUkZ Z Omr1(miry, .. ”drd)/o b rl}(ma:;;)Jr () dr

m=0ny,ny,....,ng=0

“(x—t—r—YL, n,‘r,-)mo“roc_1
+ Z EkaOnhnzZ Om2(niry,.. ndrd)/o NCTET L T(r)dt
:M/ Py (x—1) () dt + Z Uk/ox%,a(x—t—rk)-i(gdz
+ ZE,f@ (/ Paal —t—rk)‘l(t)dt> + T (x)
which gives the inevitable result. [l

The next theorem is the last one of main theorems as to a solution of the homogeneous

part of system (4.5).

Theorem 4.3: The following R"-valued continuous function

m| 9(0)

() [@al Zgzal
d

+ )
j=1

is a solution of homogeneous system (4.5) with z(x) = ¢ (x), —r <x <0and T=0.

0
P (x=1;=1) [Uj6 (1) + E;*DE 6 (1)] dr

—r;j

Proof. Now we consider
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d 0
‘D < Poa(x—rj—1) qu)(t)dt)

J=1777
d 0 oo
Z Z Z Qm—H (nl ry,. ndrd)¢©g+
J=1Y —Tjm=lny,ny,....n
ma+oa—1
(x_rj_t_zgzlniri)_‘_
U;0 (t)dt
T(ma+a) j9 (¢)

d 0
Y[ Y Y Cualmrinr)
J=1Y=Tjm=l1ny,ny,....,ng=0
(X—rj—t—Z?:miri)Ta_lU p

O (t)dt

0

d
=) Z Z Om+1(n171,- .-, narq)
Jj=1

—Trjm=lny,ny,...,ng=0

mo—1

(x_rj_t_zzdzlnirl’)Jr

U;p(t)dt

T(na) 90

d .
Z/ Y, Ouialniri,...,ngry)
J:1 —rjm= 0”17”27 -Nd= 0

-1
x—rj—t—Y4 mr; e

><( d 1) Ui¢ (t)dt

By applying (4.7) to (4.11), we get

d 0
DY (Z Poa(x—rj—1)U;¢ (t)dt>

Jlfrj

:MZ Z Z Omt1(n1r1,-- -, ngrq)

—Tjm=0ny,ny,...,ng=0

. )ma+a 1

U U (r)de

d
+Y kZ/ Z Z Om1(MT1y e s YT — Ty

Tjm= 0”1,7’12, -Id= 0

mao+o—1

o (x—rj—t =X miry)’
F(ma+oc)

U (t)dt

ZEk(Z Z Z Om+2(M1T15 - sl — Ty

—Trjim=0ny,ny,...,ng=0
. d . \mota— 1
(x— ri—t—Yi n,r,)+

['(mo+a)

Uj¢ (1) dt) :
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—MZ Z Z Om+1(n171, .., narq)

—Tjm= 0}’117}’!2, -1d= =0
mo+o—1

" (x— rj—t =YL i)
F(moc+a)

+Z]Ukz Z Z Qm+1(n1r17 . ,I’ldrd)

=1Y =T m=0ny,ny,...,n;=0

Ui (t)dt

(x—rj—rk—t—):?:lniri

x - U_,-¢> (1) dt

d oo
+2Ek(2/ Z Y Ouia(mr,...,narq)
k=1 J

T'j m= 0”17”27 -Nd= 0

d mo+o—1
X—ri—rp—1t—) 1N

(mo+ o)

r
d 0
J=17T

d d 0
+2Uk<2/ c@Ot,og()C—}’j—l’k—l‘)Uj(])(l‘)dl‘)
k=1 j=1J-r;
d d 0
+2Ek€@8‘+ (Z/ Poa(x—rj—rg—t) qu)(t)dt).
k=1 j=17-r;

In a similar way, one can easily obtain

d 0
€©g+ <Z e@a@g (X—rj—t)E]€©g+¢(t)dt>

X

j:l —rj

d 0
:M<Z Poo (x—rj—f)Ej¢©g+¢(l')dt>

j:] —rj

d d 0
+ZUk<Z ya,a (x—rj—rk—l)Ej€©8‘+¢(t)dt)
k=1

J=17=r
d d 0
+Y ESDE Z/ Poa(x—rj—r—1)E;*DS. ¢ (t)dr | .
k=1 Jj=14-7j

Now we use variation of constant technique to determine the coefficient of the first
square bracket term in the statement theorem. With the help of Theorem 4.1 and the
obtained results of just above proof, the solution which satisfies the initial condition

z(x) = ¢ (x), —r <x <0, has in the following pattern formula,
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K

d
() [gzal Z Em

0

d
+ L | Pualx=r=0) [Up O+ EDE0 ()] dri= 0 ()
L

=1
where x is an unknown constants. For x =0, we get Py 1 (0) =1, Pg1 (—rm) = O,
and Pg.q (—rj—1) = O from the definition of £, g in (4.8). So, ¥ = ¢ (0). This
completes the proof. 0
So far we have found the parts of the step-by-step solution, now let’s put the parts

together in the below corollary which stands for a whole solution of system (4.5).

Corollary 4.1: The following R"-valued continuous function

( ) [yal Zc@al (P(O)
d 0
+L [ Paaleori=n) [Upo ) +EDF0 ()] d
j=17-7j

is a solution of system (4.5).

Now we are ready to share an equivalent definition of solution of system (4.6). The
following corollary expresses it.

Corollary 4.2: The solution of the following integral equation

() lgal Zgal ¢(O)

+Z | Paalx—r;=1) [U0 () +E D59 (1)] d

/@aa x—1)71(t,z(t))dt

is a solution of nonlinear system (4.6) and vice versa.
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Remark 4.3: Here are some special cases depending on selections of the coefficient

matrices.

. fE;=0,i=1,2,...,dand U; =0, i =2,...,d, then Corollary 4.1 matches up
with Corollary 1 in the reference [80].

2. Corollary 4.1 with 1= 0 reduces to Theorem 3.2 in the work [79] providing that
Ei=0,i=1,2,...,dand U;=0,i=2,....d M=0.

3. Corollary 4.1 overlaps with Theorem 4.2 in the study [9] under the condition
E=0,i=1,2,...,d.

4. Even if the constant coefficient matrices are commutative, our findings also are
valid. If the coefficient matrices are permutable in addition to appropriate
selections, Corollary 4.1 reduces to Theorem 6 in the paper [7].

5. Corollary 4.1 reduces to Theorem 3.5 in the paper [104] on taking d = 2 and

without loss of generality E1 = U, = ©.

4.3 Existence and Uniqueness, and Ulam-Hyers Stability

In this subsection, we look for answers to three kinds of questions : is there a solution
for system (4.6)?, is the solution unique? Subsequent to given answers, we finis
discussing. When we look at features of each term in system (4.6) like T(x,z(x)) is
continuous, we find an explicit solution in corollary 4.1. Unfortunately, these features
or conditions are not enough to make the explicit solution unique. So, we add one
more feature to the continuous function 7T(x,z(x)) in order to make the explicit
solution satisfy the uniqueness. This feature is : the continuous function 7T (x,z(x))
satisfies the Lipschitz condition in the second component with the Lipschitz constant

LA, that is

M2 =Tl <Lallz=yl, zyeR"
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Prior to carrying on, we discuss an equality about &y ¢ in the following lemma.

Lemma 4.2: Let P4 o (x) be as in (4.8).

/0 | Pae (x—5)l|ds = | Paresr (9]

holds true.

Proof. 1t is easy to see that

/ | P (x—5)]| ds
0

o+a—1

B /x i i Omy1(n1r narq) (X_Z?:lniri)ﬁ ds
prm— m+ e

0 ||m=0ny,ny,...,ny=0 7 ’ F(m(X—|—06)

at+a—1
Z Z Q (nyr Marq) /x (X_Z?ZIHiri)T ds
+1\11 71 dl’d
m=0n1,m3,...,n4= " i 0 [(ma+ a)

= |Za.a+1 (]|

Here is the following existence and uniqueness’ theorem.

Theorem 4.4: If the jointly continuous function T(x,z) satisfies the Lipschitz
condition in the second component with the Lipschitz constant L5 with
L+ H Paa+1 (T)H < 1, then the integral equation in the corollary 4.1 is of a unique
solution in [—r, T.

Proof. Define Y : C(|—r,T],R") — C([-r,T],R") by

d
Gz(x) = lgwal 2: 3Qa1 X —7m)Ep

For arbitrary z,y € C([—r,T],R"), we consider by using Lemma 4.2
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192 (x) =y ()| < /OXHB%,a(x—s)H 71 (s,2(s)) = T(s, ¥ (5)) | ds
=LA ngoc,owrl (T)H HZ_}’HC'
The statements of this theorem ensure that ¢ is a contraction. By the Banach
Contraction principle, ¢ is of a unique fixed point on [—rT], that is
Nzo € C([—1,T],R"), 79 (x) = Gz (x). O

As the last theoretical result, we investigate the stability of system (4.6).

Definition 4.2: Let € > 0. The system (4.6) is said to be Ulam-Hyers stable if for

every solution z € C ([0, T],R") of inequality,

DY <e, (4.12)

d d
z(x)— ;EiZ(x—ri)] —Mz(x) - ;UiZ(x—ri) —T(x,z(x))

there exists a solution zg € C ([0, T],R") of system (4.6), and u;, > 0 such that

llz(x) —z0 (X)|| < up.€, x€[0,T].

Remark 4.4: A function z € C' ([0,7],RR") is a solution of the inequality equation
(4.12) if and only if there exists a function u € C ([0, T],R"), such that
i [lu(x)]l <e,

ii. *DF, [2(x) =L Eiz(x—ri)] = Mz (x) + XL Uiz (x—ri) + T(x,2(x)) +u (x).

Theorem 4.5: Suppose that all of statements of Theorem 4.4 are hold. Then system
(4.6) is Ulam-Hyers stable.

Proof. Let z € C([0,T],R") which satisfies the inequality (4.12), and let
z0 € C([0,T],R") which is the unique solution of system (4.6) with the initial
condition zg(x) = z(x) for each r € [—r,0]. By keeping the definition of ¥ and

Remark 4.4 in mind, we can acquire
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)l <e, 206 :gz(x)+/0x%,a (c—t)u(t)dr,

and also zo (1) = (¥zo) (t) for each r € [0,T]. One can easily make the following

estimation
9202011 < [ 1Zaal=s)]la(0)]ds <t e ()]
We are all set to estimate ||zo (1) —z (¢)]|:
120 (1) =z ()] < |€20 (1) = Fz ()] + |€2 (1) — 2 ()]
< L[| Zaait (T)] 2o = 2le+1 | Paar (T)]
which provides
(1 — LA nga,a—i—l (T)H) lz=yllc <1 nga,aﬂ (T)H €,

from this just above inequality, we obtain the desired result

T || Pa,a+1(T)]
| =L || Zaar1 (T)||

HZ_yHCSth: Up = ( ) > 0.

Remark 4.5: The results of existence and uniqueness and stability match up with
these ones of the study [104].

4.4 Relative Controllability of the Neutral Fractional Multi-Delayed
System.

In this subsection, we deal with the neutral Caputo type fractional multi-delayed

differential system while it is not only linear but also semilinear.

Itis clear that & p depends on the coefficient matrices E;, M,U; fori=1,2,...,d. In
order to make them visible, we use @gg“l instead of c@a,ﬁ where ¢ = Zj’: Ei and

)
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Definition 4.3: [109, Definition 4] System (4.5) is said to be relatively controllable, if
for the final state z; € R”, and time 7, any initial function ¢ € C' ([~r,0],R"), there is
a control u € L= (J,R") such that system (4.5) is of a solution z € C' ([~r, 7], R") that

holds the initial ¢ and z(7) = z¢.

Lemma 4.3: Let 2} be defined as in (4.8)

B
T
(Zap™) W=7 W,
X M 3L ML
* f() g,gc/[ (x—s) ds = ’@(ig-;-] (x),

’3@5;?{7” (x)H < MG for0 < @< 1,0< B <L anda+p > 1.
Proof. Their proofs are similar to Lemma 4.2 by employing fundamental definition
922“1 and Lemma 2.1. O
We firstly deal with the case T1(x,z(x)) =0 € R",x € J = [0, 7], i.e. the following linear
neutral fractional multi-delayed control system

%38& [z (x) — Yé Eiz(x— )] =Mz(x)+ Y& Uiz (x—r)+Su(x), x€J,

Z()C) :(P()C), —I‘SXSO,
(4.13)

whose solution is

d
z(x) = [@Sg%ﬂ W) = Y, 2" (x— 1) En| 6(0)
m=1
d
+Y [ 2ed (=) (U9 (0 + B D ()] ar
Jj=14=7j

Now, there is no barrier to present a representation of the neutral fractional multi-

delayed Gramian matrix as noted below:
feMul T €T Mt Ul
Wy [0,7] = / PEMN (1 _ ) 55T & MW (1) g (4.14)
0

where ¢7 = Zl‘-lzl EI-T and U7 = Zl‘.lzl UiT.
57



Theorem 4.6: System (4.13) is relatively controllable if and only if W,.4[0,7] is

nonsingular.

Proof. Necessity: Assume that Ww[O, 7] is singular, i.e., there exists at least nonzero

h € R" such that
W,.[0,7]h = 0.
One obtains
0= hTW; [0, 7]k = AT /OT PEMN (£ ) sST P MM (2 —5) dsh
= /OT HST@S;;MT’MT (*c—s)thds,
which implies that
ST@OQ;TO}MT’MT (t—s)h=0, 0<s<rT,
or
W 25 (1—5)S=0, 0<s<T.

Since system (4.13) is relatively exact controllable, according to definition, there exists

a control u; that drives the initial state to zero at time 7T, i.e.,

z<r>=[<@§;i“ Z@““‘ ") En| 9(0)

+Z PE (t=ry—1) U9 (1) + E; D% (1) di

—r;

/ PENM (T —1)Suy (1) dt = 0.

Similarly, there also exists a control u; that drives the initial state to nonzero 4 at time

T
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d
2(1) = [@5;1”’“(1)— Y, 2 (= 1) Em | 9(0)
m=1
d
+Y | 2 (- —1) [U () E D6 ()] ar
=177

T
+ | 25U (v —1)Suy (t)dt = h.
0

It follows that
T
h:/ PEM () Sy () — (1))
0
T
WTh— / T PEM (¢ 1) S (1) — uy ()] di = 0.
0

Thus & = 0, which contradicts with 4 being nonzero.

Sufficiency: Since W, 4|0, 7| is non-singular, its inverse (W, |0, 7))~ is well-defined.

For any final state 4, the following control functions can be selected:

T T (T
u(s):=ST 2L MM (1—5) (Weal0,7)) ',

where
d
n=h- [zﬂs;%ﬂ(r)— Y, 2" (T = 1) En | 9(0)
m=1
d 0 &M A
~Y [ 2 (=) U (0 +E; DG 0 ()] .
J=17T
Then
d
2(1) = [@5»{“@)— Y 2V (T 1) En| 9(0)
m=1

0
rj

d
>
j=1

T T AsT (T
n / PEM (o 1) §5T &M 0 gy (W, 4[0,7]) " ndi = h.
0

Pt (v=rj=1) [U0 (1) +E; D6 (1) ar

Remark 4.6: It should be stressed out that the rank condition for the relative
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controllability for single delayed neutral non-fractional linear systems was considered
n [102]. Rank condition for the relative controllability for single delayed neutral
Caputo fractional linear systems was considered in [113], [114]. Rank condition for
the relative controllability of fractional multi-delayed neutral linear system will be

considered in forthcoming papers.

Secondly we consider the case T1(x,z(x)) #0 € R", x € J = [0, 7], i.e. the following
semilinear neutral fractional multi-delayed control system

‘D%, [2(x) = X4 Ez(x— )] = Mz(x) + £ Uiz (x — 1) + Su (x) + T (x,2(x)) ,x € J,

4.15)
with the solution of a form
d
z(x) = [95;?“‘ @) = Y, 21" (x = 1) En| $(0)
m=1
/_ U (v 1y 1) U0 (1) + E, D0 ()] dr
/@@M” —t)Su(t)dt+/ Poax—1)T(2(0) . (4.16)
0

Prior to giving the pioneer theorem, let’s make some assumptions:

(Ry) The operator W, : L (J,R") — R" given by
T
Weu = / @S:%’u (T —s)Su(s)ds,
0
has an inverse operator W.~! which take values in L% (J,R") /kerW.,.

(R3) The function 7:J x R" — R" is continuous and L(.) € L* (J,R™") such that for

arbitrary z,y € R"
[177(e,2(x)) = 0, y(0) | < La(x)[[z(x) —y(x)[], x€J.

now, let’s introduce the following notations:

= [IWe “ B(R™L2(J,R") [kerW, )’
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Hy = 2SIV ()16 0)]) + z 1Enll 225 (2 =) 00)]

d 0
N A HU’""’ 1)+ EnD% 0(1) Hdz
m=1Y —Im
&, || M]],||LL
4 N I ()

&, ||M]|,||L
Hy = 2L @) LAl o 2y

where N = max(q ¢ || 1(x,0)|. One can obtain the following information from Remark

3.3 [106]

H=/||W,«0,1]|.

Theorem 4.7: Suppose that 1 > a > 0.5, (Ry) and (R3) are hold. Then system (4.15)

is relatively controllable if

a,o+1

( ng@H 1M, ||11H< )HSHH) <1. 4.17)

Proof. With the aid of (Ry) for any z € C = C(J,R"), we define the below control

function u,(x) :

d
o (x) = W,! [zf— 2" (1) 9(0) = Y, 2™ (v — 1) Eng (0)

m=1

—Z " DM () U9 () +E;*D3.9(1)|d

—r;j

- / 0Tl ) @18)

0

By employing this control function, we define ¥ : C — C by

Hz(x)= [9”211‘“[ + Z WQMH Tm) Em | ¢(0)

+Z L PSS (xm ) [V )+ E DR 0 0]

—rj

+/ ygig’u(x—f)Su(t)dtJr/Xc%,a (x—1)T(t,2(t))dt.  (4.19)
0 0

which is of a fixed point z being the mild solution of system (4.15).
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If we take the definition of relative controllability into consideration, system (4.15)
with (4.18) is relatively controllable if and only if (4.19) is of a solution

z€ C([—r1],R") with z(7) = z; and z(x) = ¢ (x), x € [—r, 7]

It is well-known that for each € > 0
De={z€C:z]c < €}

is a convex, bounded and closed set of C. In an attempt to make the rest of this proof

more understandable, it is divided into three steps.

Step 1:One can find at least a positive real number € > 0 such that
H (De) C De.

It is time to compute the norm of the control function u,(x) by using (R;) and (Rj)

and Lemma 4.3 and Holder’s inequality, we get

e H<HW ! g ey 220+ | 24 ()| 19 0)

M
9611

¢ (0)]]

_ rm>

/

s /O | P <r—r>|||m<r,z<r>>udr}

it HHUq) (1) +ESD% ¢ (1 Hdt

<H [z + 205 M 2y 1(0) H+ZHE | 2l ) 19 0)]

+Z D el 1)t )+ .08 00)

—¥m

+ [ A ) (170,20 - 0+ 1T 0]

62



¢, I ¢, |10
<H ||z + 2 )M 2y 19 0)) + Z 1B 2L 2 g 0)))

0
+Z P (¢ 1) U9 0) + DG 9(0) |

—rm

X
&, 1M, ]|t €|, M}t
/gzI LML g — 1) dt | LA = s ) |\z||C+N—i/O @M} ] 4] (‘L'—t)dt]
< H ||z¢|| + HH; + HH ||2]| - -

To determine € > 0 such that #z(x) € P, we consider by using (Ry) and (R;) and

Lemma 4.3,

| 20 < 2 b 2y g0 ||+Z||E 12 )M 2 ) e 0)]

m=1

d 0
+ Y [ A ) U6 () + EDE 01 | e

=1Y—"m

+ [ A e st a
+ /O VWM (o gy |18 e (1) .

If we use control estimation in the last inequality, we get

|2 < (14+ 2L @y ) ) o+ (2 W (1) ) ) el

o,0+1

E|l,[|M]|, ||
+ (14 2R @) 1)) H

o,o+1

(IR[74IN[e €[, [[m]], ]
< (1+ 2UIR 2 ) )+ (@” P ) ) ) e

o,0o+1

+ (14 IS ()51 1) e =

One can easily obtain

( L eI o )HSHH> H1—|—<QZH€H ML )HSHH> Ize |

a,a+1 a,o+1
€= >0

E||,|| M|, ||L¢
= (1+ 2y @) s 1) b

which provides # (%) C % Now we split the operator %" into two operators ]

and % on Y as follows:
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d
L%g@):lgff”@y—i}@ﬁ%”a—nwﬂn¢HD
m=1

d

+Y gﬁ%”@—q—g[m¢m+ff@&¢aﬂw
J=177T

+ | 2 (x—1)Su(t)dt, (4.20)

0

and
Jhz(x) = / 2ot (—1)T(1,2(0)) dt,
0

for x € J, respectively.

Step 2: we will prove that .%#] is a contraction. Let z,y € Z. Keeping (R;) and (R;)
in mind, we get
T
E||,||M]], ||
uz (x) —uy (x)|| <H /0 UM 8y (1712, 200)) = T e, 0(0)) ) dr
© el ML)
<H /0 UM (2 ) 4| LA oy 12— Yl
<HH, ||lz—y|¢-
So,
X
E|[,||M]|, ||
|7z (x) — Hiy (x)]| < /0 2y WM e ) 181 |z (2) = wy (1) |
E|l,||M]|, ||
< IS (5) |5 HE ||z — )

Since (4.17), @gi‘ﬂf/[“uu (1) ||S||HH, < 1, this grants us that .#] is a contraction.

Step 3 : We will demonstrate that %5 is compact and continuous. Let z, € Z, with
zn — zin Ze. (Ry) ensures that 71(x,z,(x)) — T(x,z(x)) in C. By using dominated

convergence theorem
el Ml
[ 220 (x) — Sz (x)|] S/O P’ (=) [|T(E, 20 (1)) — (2, 2(2)) || dE = 0
as n — oo, S0 ¥, is continuous on Z,. In an attempt to be able to confirm that %5 is
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compact, we must show that %3 (%) C C is uniformly bounded and equicontinuous.

Foranyz€ Z, 0 <x<x+h<7
X+h &ML
iz (x+ h) — Aoz (x) = / PEM (1) (1, 2(0)) dt
X
Y e M €M 4
+ Poa” x+h—1t)—Pyo™ (x—1)) 1(t,2(1))dt.
0
Set the following notations:

x+h
n ::/ PEML (1) (1,2(0)) d,

m = /0 (@S:J&/I’u(x—kh—t) —pgat (x—t)) T(t,2(1)) dr.
Since
[ A2z (x+h) = Aoz (x) | < [[m | + [l
it is necessary to show that ||n ]H — 0as h— 0, ji,2. With a simple calculation

x+h x+h
EM sl e.M U
Il < [ IZE et =)l Ll s el N [ | 2E =),
X X

and
Imall < [ 5 et )= 2SS (o) Wl e el
+N1[)x“9§;%7”(x+h—t)—ﬁS;ﬁf’“(x—t)Hdt
So Hn ]H — 0 for j =1,2 as h — 0. As a consequence, one can immediately obtain
that for z € Z,

| A2z (x+h) — 5z (x)]| =0, h—0.

5 (Ze) is bounded because one can easily reach to the following inequality with the

similar computation

| #3z(x)|| < el M1l (1) ||L_|||L°°(J7R+) 8+N—[¢@H€”’”MH’HMH (7).

a,o+1 o,o+1
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So by Arzela-Ascoli theorem #; (Z;) is relatively compact in C. Therefore, 75 is
compact and continuous. By Lemma 2.3, (Ry) and (R3), J# is of a fixed point z € Z;.
Obviously, z is such a solution of system (4.15) that it satisfies z(7) = z¢ and z(x) =
¢ (x) with —r < x < 0 is satisfied by (4.15). This completes the proof. O
4.5 Illustrated Examples

Here are some examples to illustrate theoretical results. We now consider the following

neutral Caputo fractional multi-delayed differential equations with distinct kinds of

parameters.
.
D02 [z(x) —E1z(x—0.2) — Epz(x— 0.1)] = Mz (x)
+Uz(x—0.2) + %xz sin(z(x)), x € (0,0.4], (4.21)
\ z(x)=¢ (x), —0.2<x<0,
0.870 0.130 033 0 0.66 0.34
where E| = , M = , U= , and
0 0.650 0.03 0.125 0.17 0.01

E, = I which are pairwise noncommutative matrices, e.g., E\U # UE; and

X3

MU # UM. The initial function is given by nonlinear functions ¢ (x) =
2x+1
From Corollary 4.2, one could easily obtain the closed-form formula of the solution

z(x) e C ([—0.2,0.4] ,]RZ) of system (4.21) is of the integral representation as noted

below
2(x) = [Pos51(x) + P51 (x—0.2)E1 + P51 (x—0.1)] ¢(0)
/ Po505(x=02-1) (U9 (1) + Ey D6 (1) ) dr
/ Pos05(x—0.10—1) "D, ¢ (1) dt

/ P0505( —f)

where 505 and P 5 is as in (4.8). It is clear that T(x,z(x)) = lfexxz sin (z(x))

t 2sin (z()) dt,

is continuous as well as being the Lipschitz function with the Lipschitz constant L4 =
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0.16 and L+ H P05.15(0.4) H =~ (.186 < 1. Hence, all of conditions of Theorem 4.4 and
4.5 holds, so system (4.21) is of an unique solution in addition to being Ulam-Hyers

stable.

In order to illustrate relative controllability of the neutral fractional differential linear
multi-delayed homogeneous system , we examine the following system
(

D0 [z(x) —E1z(x—0.5) — Epz (x— 0.2)] = Mz (x)

+U1z(x—0.5) + Su(x),x € (0, 1.5] (4.22)

z(x) =¢(x),—0.5 <x <0,
where

0.2 0.36 0.45 0.1 0.7 0.4

M= 096 0 012 |, Ui=1]036 0.52 0.2 |-

0.16 0.3 0.45 0.6 056 0.2
0.3 0.5 0.18 04 0098 0.4

Ei=1 021 0.41 0 , E2=103 081 0.87 |
1.01 0.8 0.43 02 041  0.87

0.7 0.44 0.9

S=1 2 091  0.56 |

0.1 0.3 0.4

and ¢ (x) = [x> +5 2x+4 5x+7]7 € R3. The closed form of the solution of system

(4.22) 1s
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2 E MU

BN 05) - B25) (x=0.2)1 ¢ (0)

Yr EsMU Y2
z(x) = {@0.97; (%) — E1 Py |
0 EM 5l
i / P56 (x=05-1) [U19 (1) + E1“D)29 (1) dr
—-0.5 ’
0 2 '
+ / P (0.2 1) B0 (1) d
—-0.2
Y T EMU;
+/ Poooe  (x—t)Su(t)dt.
0 o

On the other hand, a representation of the neutral fractional multi-delayed Gramian

matrix as follows:
1 2 2 T T T
2 E; MU 2 ET MU
Wo5,00[0,1] = /0 @5197(1).9 H(1-s) SST<@(§97(1).9 ' (1—s)ds

0.1171 1.9438 0.0338

= | 1.9438 0.3307 0.0353

0.0338 0.0353 0.5392

We calculate the determinant of Gramian matrix Wy 509 [0, 1] which is -2.0123, so

Wo.5.0.9[0, 1] is nonsingular. By Theorem 4.6, system (4.22) is relatively controllable.

To exemplify the neutral fractional differential semilinear multi-delayed system , we
investigate the following system
D0 [z(x) —Eiz(x—2) — Exz(x—1)] = Mz (x) + Uiz (x — 2)

+Su (x) + T(x,z(x)), 0<x<6, (4.23)

Z(X):(P(X), —2<x<0,

where
0 0.36 0.1 0.7 0.3 0
M == b Ul - 9 El - 9
0.96 0.81 0.3 0 0.21 0.41
0.4 0.98 1 0.44
E, = 5 S= )
0.3 0.81 2 0.91
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_ . T
and ¢ (x) =[1 57 and TT(x,z(x)) = ta?ﬂ;xz)(zx) “;ég J|" with the solution of a closed-

form obtained from (4.16). On having a look at the assumptions for system (4.23),

5.7296 — 0.000: —15.4580+5.4391i
W20.75(0,3] =
—15.4580+5.4391i  —23.8019 4+ 33.8270i
and
. 0.0817 —0.0123; —0.0292 —0.0148i
W2,0.75 [0,3] =

—0.0292 -0.0148;  —0.0079 — 0.0083:

From the reference [106, Remark 3.3], we know

H= W [wiet(o. 3],

1 HB R, L2(J, R”)/kech

H = \||Wsd5510,3]|| = 03397,

which ensures that the inverse operator W, ! exists, so the operator

and so, we acquire

W, : L ([0,3],R?) — R? satisfies (Ry). The function 7 : [0,3] x R* — R? is

continuous and L=(.) € L™ (J,R™) such that for arbitrary z,y € R”

[tanlz(x) sinz(x)r_[tanly(x) siny(x)r

(1222 o2 oS < L(x)|z(x) =y(x)]], x€[0,3]

where L+(x) = % e R*. So (Ry) is hold for system (4.23). It is time to verify whether

the inequality (4.17) is satisfied
H, (1 + eIV () ||S||H) —0.2765 < 1.
As a result, each of the conditions of Theorem 4.7 is verified. Theorem 4.7 provides
us that system (4.23) is relatively controllable under the control function
1y (x) = chl [ZT _ <9§1rE2,M7U1 (7)+E) 9E1+E2,M U (1’—2)) 1 S]T

(E E@E1+E2MU1( / c@EHrEzMU1 (t—2—1) Uldt) 1 5]

_/T 9§};E27M7U1 (t—1) {tan_ z(1) sinz(t)]le] ().

0 (m2t)2 762
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Remark 4.7: We want to note that if we reduce relative controllability of the
semilinear neutral fractional multi-delayed control system (4.15) with permutable
matrices and one single delay and oo = 8 = 1 to the relative controllability of neutral
delay differential equations [105], their results overlap.

4.6 New Problems

We are sure that this paper will become a source of inspiration for the works which
will be conducted in this subject. A possible duty is to verify the explicit solution
result of the nonlinear neutral fractional multi-delayed differential system with the aid
of the Laplace transform which is the most powerful tool for differential equations.
Another possible duty is to investigate approximate controllability, exponential
stability, finite time stability, asymptotic stability, and also Lyapunov type stability of
the neutral fractional multi-delayed differential equations with noncommutative
coefficient matrices. Another possible duty is to extend our system (4.5) to the
nonlinear neutral fractional multi-delayed differential evolution equation or u-the
nonlinear neutral fractional multi-delayed differential system which means that (4.5)
is reconsidered via Caputo fractional derivative with respect to another function U.

All possibilities as noted above can be questioned once again for these new systems.
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Chapter 5

NEW FRACTIONAL INTEGRAL AND DERIVATIVES

In order to make this section more understandable, we talk about the history of
fractional derivatives and integrals and their related notions again in addition to
information given in the section of introduction. It was understood that n was one of
the non-negative integers when one talked about derivative of order n or n-fold
integrals. Because the former was in need of knowing instantaneous rates of change,
areas under or between curves, the slopes of curves, and accumulation of quantities.
These needs produced the well-known traditional calculus.  Unlike traditional
calculus, although fractional calculus at that time was a production of only innocent
curiosity which is in Leibnitz’s letter to I’ Hospital in 1695, it has been widely
improved along with the extension of the needs in the recent decades. Many
researchers not only in the past like Euler, Fourier, Abel, Liouville, Riemann,
Griinwald, Hadamard, Weyl, Erdélyi-Kober, Caputo have tried to understand and
define fractional derivatives and
integrals [131] [130] [134] [141] [135] [136] [118] [133], ones but also in the present
make an attempt to define a new derivative or integral of fractional order depending
generalizing available concepts like gamma function and appearing new ones and
needs. For instance, Katugampola [126] introduced a novel fractional operator
generalising the well-known Hadamard fractional and the Riemann-Liouville
derivatives to a individual form. Romero [137] et al. presented a novel fractional

derivative named by k-Riemann-Liouville fractional derivative by utilizing the
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k-gamma function and relationships with the k-Riemann-Liouville integral and some
features employing Laplace and Fourier transforms. Sarikaya [140] et al. gave a new
version of fractional integral called (k,s)-Riemann-Liouville fractional integral
generalising the Riemann-Liouville fractional integral and presented some features
for this one as well as new integral inequalities employing the novel version of
fractional integral. Subsequently, Azam [117] et al. developed the generalized
k-fractional derivative in the sense of Riemann-Liouville and generalized Caputo type
k-fractional derivative which are the generalized forms of some existing fractional
derivatives. Almeida [115] studied a Caputo type fractional derivative with respect to
another function and investigated some features, like the inverse law and the

semigroup law, Fermat’s and Taylor’s Theorems, etc.

Fractional calculus has a prevailing usage in the scientific world. Nowadays, it has
been employed in the areas of mathematical physics, statistical mechanics,
electrochemistry, electric conductance of biological systems, astrophysics, computed
tomography, control theory, the mathematical modelling of viscoelastic material,
thermodynamics, the modelling of diffusion, biophysics, electric conductance of
biological systems, fractional order models of neurons, hydrology, geological
surveying, signal and image possessing, engineering, finance, etc. Almeida [115] et
al. took a Population Growth Model into consideration and demonstrated that the
process utilizing a Caputo FD with respect to different functions(kernels) can be more
accurately modelled. With the help of the generalized fractional derivatives,
mathematically the variant of post-Newtonian mechanics and the relativistic-covariant
generalization of the traditional equations in the gravitational field are studied by

Kobelev [128]
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As a source of inspiration, the main works [140] [117] [115] and papers mentioned
above encourage us to describe a new fractional integral including sorts of fractional-
order integrals and two fractional derivatives which are novel and can include many
available fractional derivatives. We looked for certain their properties and found their

relations, and coped with the fundamental Cauchy problem.

5.1 The ¢-Generalized R-L k-Fractional Integral and Derivative

In this section, we introduce both the ¢-generalized Riemann Liouville k-fractional
integral(¢-GRL k-FI) of order o > 0 and the ¢-generalized Riemann Liouville
k-fractional derivative(@-GRL k-FD) of order & > 0. we examine some properties and

relations between them. Now, let’s start with the definition of (¢-GRL k-FI).

Definition 5.1: Let f be a continuous function on the real interval [a,b] and let ¢ €
C'[a,b] be an increasing function with ¢’ (x) # 0, Vx € [a,b]. Then the ¢-generalized

Riemann Liouville k-fractional integral of o« > 0 is given by

o
si=%

() 0= g [ @ 0-0 @)

where k > 0 and s € R\{—1}. For the sake of simplicity, we denote ¢-GRL k-FI using

the differential concept by

S

() 0= g | @@= 0)

IR

a
k

Lr()de ().

Depending on the selections of s,k,¢, we acquire distinct kinds of the available
definitions of fractional integrals, e.g. ¢-GRL k-FI coincides with
(k,s)-Riemann-Liouville fractional integral [140] if ¢ (x) =x. Ifs =1, k — 1, it
reduces to the @-Riemann-Liouville fractional integrals [127] [139] [116] [115].

¢-GRL k-FI under the choices of s = 1, ¢ (x) = x, k — 1 reduces to the traditional
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Riemann-Liouville fractional integrals. Selecting ¢ (x) = x, k — 1, s — 0T turns

(@-GRL k-FI into the Hadamard fractional integral [124], etc.

The following theorem expresses semi-group and commutative property of ¢-GRL k-FIL.
Theorem 5.1: Let f be a continuous function on the real interval [a,b] and let ¢ €

C'[a,b] be an increasing function with ¢ (x) #0, Vx € [a,b]. Then, Ve, B > 0
~W, ~ + ~ ~
Rapd [RIP 0] =3 3P p e = o [l r ).
Proof. Assume that given conditions are satisfied. By using Fubini’s theorem,

consider

napl [l r ]

§

E s N e L s Bl ;
| @@= 1[krk(ﬁ) [ @ m-emfas (t)f(t)] 49° ()

_ * ! S(x) — 0° E—1 /45 A4S %—1 s s
@ 0| [ @@-e T @o-e 0t awo)deo
% we obtainz=0,z=1, [¢* (x) — ¢*(¢)]z=d@* (y), and

napd (Rl )

_atB
:

Q

s x N | .
= pr@n @, W00 [/0 S —ZV”Zfldz} a9’ (1

_otp
Ky k +

_ * s P e (04 B
et [ W0 0w 0 (§F)

a+p
I SR CPPRTR L@ T(B)
_kzrk(a)rk(ﬁ)/aw() 0" 0) % F(0de* it kS

:Zi jZ:‘ﬁKPf (x) .

Q

‘m

Q

‘m

By changing places of o and 3, commutativity of ¢-GRL k-FI can be easily followed.
]
The following corollary says that ¢-GRL k-FI is linear.

Corollary 5.1: Let g and % be a continuous function on the real interval [a,b] and let
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¢ € C'[a,b] be an increasing function with ¢ (x) # 0, Vx € [a,b], & € RT, u € R.

Then

NI (g (x) + uh (1) =0 35 g () + uB I (x).

Lemma 5.1: Let an increasing function ¢ € C![a,b] have the property of 0 (x) #
0, Vx € [a,b] and let o, B,k > 0 and s € R\{—1}. Then we have

Iy (ﬁ) K s Ltﬁfl.

3% (6% (x) — 9 (a)) F ' = a0 @)

. .. R ~0,0
Proof. 1In the light of the definition of % J ks

N

2309 (95 (1) — ¢* (@) = 2 [ (9° () - 0° (1)
krk(a) a

=R

o
k

(07 (1) — 9% (@) " dg? (1)

OU-00) e obtain z =0, 2= 1, [¢° (x) — ° (a)] 2= d¢* (1), and

By substituting z = Wﬁé(a)

_a
k

1 s .
2 @ W= @) = s [ @) g
_ S_% K 4 atP_q
_ krk(OC) (‘P (x) ¢ (a)) kBk(OC ﬁ)
which provides the desired result. .

Definition 5.2: Let f be a continuous function on [0,0) and let ¢ € C'[0,0) be an
increasing function with ¢’ (x) # 0, Vx € [0,00). s, € RT, and n,k € N with n =
[a] + 1. Then the ¢-generalized Riemann Liouville k-fractional derivative of o > 0 is

given by

R 0.0 _ s 1—s 1 d\
<a+@k7s f> (x) = KTy (nk — @) (¢ (x) P E)

<[ @ -0 e 0 rwar

where V0O < a < x. For the sake of simplicity and making calculations easy, we denote

(@-GRL k-FD using the differential concept by

(o) 0= (,j,f_ 5 (d¢§l<x))" / (0T @) - 9T () T (00" 1),
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It can be expressed as follows

(o) = (0w 0t ) (B2 “0) .

Depending on the selections of ¢@,s,k, we can reach to many of fractional derivatives,
e.2. @-GRL k-FD coincides with the generalized k-fractional derivative [117] if
¢ (x) =x. If s=1, k— 1, it corresponds to the ¢-Riemann-Liouville fractional
derivative [127] [139] [116] [115]. @-GRL k-FD under the special choices of s = 1,
¢ (x) = x, k — 1, reduces to the traditional Riemann-Liouville fractional derivative.
Depending on selecting suitable choices of ¢,s,k from ¢-GRL k-FD, one can easily
obtain the generalized fractional derivative [126], the k-Riemann-Liouville fractional
derivative [137], the k-Weyl fractional derivative [138], the k-Hadamard fractional
derivative [121] as well as classical Riemann-Liouville fractional derivative, Weyl
fractional derivative, Hadamard fractional derivative, etc. One can find more details in

the references [127] [139] [116] [115].

Now, we discuss the inverse property of the ¢§-GRL k-FD.
Theorem 5.2: Let f be a continuous function on [0,0) and let ¢ € C'[0,) be an
increasing function with ¢’ (x) # 0, Vx € [0,00). s, € RT, and n,k € N with n =
[a] 4+ 1. Then V0 < a < x,

Bl (R ) ()= 5/ ().
Proof. With the help of both their definitions, we get

nopt (Rantr)

= m (¢“S (x) dq,d(x))" / 00— 00 )" (29 ) (1) a0 ()

_ k 1—s X d " s X) — s "kT*a—l
N iy (¢ <>d¢(x>)/a<¢<> )

X { / y(d)s(y)— ) f (t)d¢s(t)} do’ (y)

=R
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By utilizing Fubini’s theorem, we have

R &P (R ~00
a+®k7s (a*Jk7s f> (x)
s%_n_%

o 1—s X d "
= 12T, (nk — ) Ty () ("’ R <x>> IRG
9 [ [ @@= @ m-e o) <r>] d9* (y)

0:0)-0U1) '\we obtain z =0, z = 1, [¢* (x) — ¢* (t)]z = d¢* (y), and

By substituting z = SW=6°(1)

S—n

o 1—s X d "
KTy (nk— o) Ty (o) (¢ ( )d¢> (x))
X 1 k—a a
<[ @ -0y o [ -0 e )

In the light of the definition and properties of beta function,

SOl (I r) )

_ 1 d n px s x) — s n—1 s nk —

o kzrk(nk_a)rk(a) (dq)s(x)) /a (¢ ( ) (P (t)) f(t)d(z) (t)kBk( k OC,OC)
— s_n 1—s X d " * s x) — K n—1 s

o (00 ) [[@w-eortmawo

1 d noopex o g (] S
_knr(n) (d(PS(x)) /a (0°(x) =0 ()" f(t)do’(z).

By applying derivative of an integral of a two-variable function by n-times to the above

equality, we get the required result as follows,
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1 d \"' M 4 )

v (o) [ g @ 0=0 O £’
_ n—1 X

v ) [ @w-eoriromo

_(n—l
oo d¢s /f )dg* (1

_ I'(n) -

= kT (n) s¢s1 dx/f )50t (09 (1) ar
1

:k—nf(x).

Corollary 5.2: Let f be a continuous function on [0,0) and let ¢ € C'[0,0) be an
increasing function with ¢’ (x) # 0, Vx € [0,00). s,0,8 € RT, and n,k € N with

n=[o|+ 1. Then V0 < a < x,

Hol? (R ) (0= (R P0F) ().

Theorem 5.3: Let f be a continuous function on [0,%0) and let ¢ € C'[0,) be an
increasing function with ¢’ (x) # 0, Vx € [0,00). 5, € R*, and n,k e Nwith0 < <

1. Then V0 < a < x,

a0 (L) ) = ) - g (RIP) (@) 00— et @)

Proof. Under given conditions, we have
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-5 B) / (0 ()= 9° ()" (T 0L 7) e ()
B
“m ), @00 o0z ) (Fakh) oo

d sl_% PO E % d 1 kB, )
~d¢r (x) (k’ir(%+1)/a (¢°(x) = ¢° (1)) (d¢s(r)> (Ra5P07) (a9 (f)),

applying integration by parts, we acquire

nad (Rol?r) @

LI (Rl )

d¢* (x)
- ,jfké) (F9207) (@) (9° () - 0* (@) T

= dq,f(x) (s (B3t r) ) k;lk_(;) (F9.20) @(9° @) - ¢* (@)
= () ki“k_(é) (F9P0F) (@) (0 ()~ 9 () !

In the following theorem, semi-group property of ¢-GRL k-FD is demonstrated.
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Theorem 5.4: Let ¢ € C! [0,00) be an increasing function with ¢ (x) 0, Vx € [0, o).
For continuous f on [0,0), s,a, 8 € RT, and k e Nwith0 < ot < 1,0 < 8 < 1 such

that o + 8 < k. Assume that z}ijl]zsﬁ ?f(a*)=0. Then V0 < a < x,
ot (Rolr) =4 (5 07) ).

Proof. From the inverse and semi-group properties of ¢-GRL k-FD and ¢-GRL k-FI,

respectively, we obtain

2oft (1ofer) = (0 5 ) gt (RoPe ) (o
- (W(x) dq,d(x))l?lﬁ’;s“ Po (o) (Rofr)
(005 EERatI
(0wt ) @A)
= (o)

which is the wanted result. ]

Here is the commutativity and linearity of ¢-GRL k-FD.
Corollary 5.3: Let ¢ € C'[0,o0) be an increasing function with ¢’ (x) 0, Vx € [0, o).
For continuous f on [0,), s,a,f € RT, and ke Nwith0 < ¢ < 1,0 < < 1 such

that & + B < k. If( +J,””"’f)( +) =0 for p = a, B, then V0 < a < x,

B0l (Rf0r) 0= off (Boflf) ().

Corollary 5.4: Let ¢ € C'[0,00) be an increasing function with ¢ (x) %0, Vx € [0, o).
For continuous g,h on [0,%), s,a € R, u € R" and n,k € N with n = [@] + 1, then

VO <a<x,

RD% (g (x) + h (x)] =% DXL g (x) + uB DLk (x).

80



Lemma 5.2: Let ¢ € C'[0,c0) be an increasing function with ¢ (x) # 0, Vax € [0, )
,and lets,o,y € RT, n,k € Nwithn=[a]+ 1. Then V0 < a < x,

7 STy (k+7)

d ! s s n+
T Dk tkty—a) (d¢s(x)) (07 (x) = ¢7(a)

Ea

=R

ROX (9° (x) — 9 (a))

Proof. Because of its definition, we have

nk—o
L |

(¢° (1) — ¢ (a)) F dg* (1)

By substituting z = ¢ (x) f)s(a)) we obtainz=0,z=1, [¢* (x) — ¢*(a)]z=d¢*(t), and

nk—a 1

TE(1—z) ¥ Zhdz

=
)1
x~
S
=
R
S—
N
<
J
—~
Na)
QU
<
~~
Ry
~_
=
S—
—~
<
—
Na)
|
<
—

S
S~—
=

+
>v-\‘<
»\ R

which grants the desired result. ]
5.2 The ¢-Generalized Caputo k-Fractional Derivative

In this section, we introduce the ¢-generalized Caputo k-fractional derivative(¢-GC
k-FD) of order ¢ > 0. We will discuss relations of ¢-GC k-FD with ¢-GRL k-FD and

(@-GRL k-FI as well as some simple properties.

Here is the definition of ¢-GC k-FD.

Definition 5.3: Let f,¢ € C"[0,) be two functions such that ¢ is increasing and
¢’ (x), x € [0,00) and let 5,0 € Rt n,k € Nsuch that n:= [a] + 1 and k(n— 1) < &t <
nk. Then V0 < a < x, the ¢-generalized Caputo k-fractional derivative(¢-GC k-FD) of
order @ > 0 is

(&2807) ()

a—nk

i [ @@-o 0 (60 0] ae o
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It can be expressed as follows

(808 7) =2 370 (010 15 ) 7.

Again, we want to emphasize that we can obtain different kinds of fractional
derivatives apart from the above-mentioned ones depending on selecting the choices
of k,s,¢. For instance, ¢-GC k-FD reduces to the a generalized Caputo type
k-fractional derivative [117] when ¢ (x) = x. On choosing k — 1, s = 1, it coincides
with the @-Caputo fractional derivative [127] [139] [116] [115]. ¢-GC k-FD with
¢ (x) =x, k— 1, s = 1 corresponds to the well-known Caputo fractional derivative.
With the appropriate selections of ¢,s,k, one can derive a k-Caputo fractional
derivative [119], the k-Caputo Hadamard fractional derivative, the Caputo
modification of the Hadamard fractional derivative [122], the Caputo type Weyl
fractional derivative in addition to the Caputo—Hadamard fractional
derivative [122] [125], theCaputo—Erdélyi—Kober fractional derivative [129]. One can

find more details in the references [127] [139] [116] [115].

Lemma 5.3: Let ¢ € C"[0,00) be a function with ¢’ # 0, x € [0,c0) and let &, B,s €

R*, n,k € N. Then 0 < a < x,

EOF(¢° (x) - ¢°(a))

d
dg (x)

o (i i s Bl ck) o B
s <¢1 ) )<¢ (9)— " (a)) I_WW ()~ ¢* (@)t

By using the given definition of ¢-GC k-FD
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EOX (6° (x) — 9° (@)

o (,j,ﬁ o [ @w-e0 = (s) wo-e@t o
Skr E . nk—o
- (5 5 [ @0 ) 0w -0 @) o).
ka(nk—oc)FG—n) a

The desired thing is obtained from substituting y = gé)) 2)5(( )), and using k-Beta

function and its properties as follows,

() (0° (0= 9° (@) "7~ ey k- . B — k)
x a kit P
Tk —a)T (£-n)

re(B T (£) » b
T (B —a)r(g—n>

a
k

=S

Theorem 5.5: Let f,¢ € C"[0,) be two functions such that ¢ is increasing and

¢ (x), x € [0,0) and let s,& € RT, nk € N such that n := [@] + 1 and

k(n—1) < o <nk. Then V0 < a < x,
o n—1 1 m alm
R (SEr) ()= ( e M CROR O ><a>)

where £{") (x) =5~ (917 (x) 7 )'" 7).

Proof. We have

a8
% J’Zi“’ (<z> “( d¢d(x))"f< )
o [@o-eor| (o0l ro]a o
= (&00F)
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~ o @ w-e 0|8 s
ot | @0 () rolao. ey

Applying n-times integration by parts, we get

n—1
w00y () 10

X n—1
s [0 @-0 0y [(dq,‘f(t)) f(t)] 46" 1)
— (0% (x)— 0°(a n—1 d "
W@ () 0]
2 d

+(n— 1)!/: dq;l(t)f(t)d(ps (t). (5.2)

Combining (5.1) with (5.2), we reach to the craved result. [

Corollary 5.5: Let f,¢ € C"[0,) be two functions such that ¢ is increasing and
¢’ (x), x € [0,00) and let 5,0 € Rt, n,k € N such that n:= [a] + 1 and k(n— 1) < & <
nk. Then V0 < a < x,

84



Corollary 5.6: Let g,h,¢ € C"[0,0) be two functions such that ¢ is increasing and

¢ (x), x € [0,00) and let c1,c2 € R, s, € RT, n,k € N such that n := [&] + 1 and

k(n—1) < o < nk. Then V0 < a < x,

S+®Z;¢ [c18 (x) +c2h (x)] = ¢ S+@Z’S¢g (x) + czg+©,ff’s¢h (x).

Corollary 5.7: Let f,¢ € C"[0,) be two functions such that ¢ is increasing and

¢ (x),x€[0,00) and lets,&t € R, n,k € Nsuchthatn:=[o]+1andk(n—1) < o <

nk. Then VO < a < x,

n—1 1

(&80 r) () = Ro? (f 6= X i (0° = ()" f3" <a>> .

Theorem 5.6: ¢ € C'[a,b],a > 0is increasing with ¢’ (x) #0, x € [a,b] and let s, 0 €
R*, n,k € N such that n:= [a] + 1 and k(n—1) < & < nk. If f € C'[a,b], then
V0 <a<x,

o8 (IR0 F) () = 1 f ().
Proof. By using corollary 5.7, we have

S0l (gl ) ()

=0 ¢<(aﬂi‘f’f) Zlmi —ot @) (Raeer) " <a>>
Considering that
(o) ) = (010 75 ) (B8
=5 (¢“< >d¢"(x))mk§kfa> /:<¢S<x>—¢s<r>> f(6)dg* (1)

One can easily infer the following inequality from the above equation
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sk
< a
T kT (E—m+1)

(0% (x) = ¢° (@) E "D 7]l

(aeer) " o

(m)
and so (Zij]?’;bf)q) (a) =0forallm=0,1,...,n— 1. Therefore,

~ ~ 1
! (R0 ) 0 =20 (50 ) (0= 1 f (o).
This completes the proof. U

Define the norm on C" ([a,b],R) H'Hc([p”] :C"([a,b],R) — R by

Hf||cga] = i_:o“f(,[,m]“c,

where n € N.

Theorem 5.7: The ¢ generalized Caputo k-fractional derivatives of order & > 0 are
bounded operators, i.e let f,¢ € C"[a,b],a > 0 be two functions such that ¢ is
increasing and ¢ (x), x € [a,b] and let 5,00 € R, n,k € N such that n := [&t] + 1 and

k(n—1) < o < nk.

(5287) @) <M1

where

a—nk
S k

Fk(nk—oH—l)

¢!~ (b)

minxe [a,b] ¢/ ()C) ‘

Proof. Since qu[)m} HC < Hf”c[nl for all 0 < a < x, we get
9

nk—o

M= ](W@—W@»k

(&807) )
S%M * s s nk;a_l s ‘Pl—s (b) n
< m/ﬂ (¢° (x) —9°(2)) do* (1) [minxe[a,b] o (x)|] ||f||cg1]
_ s 0w ] ww-e@
kL) (nk — o) mine(q ) |q)' (x)} nkT_a ng]

nk—o

‘] (9" (9= 0" (@) "% 1

0! (b)
(nk OC) (I’lk - OC) minxe[a,b] }(pl (x)
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a—nk

n
N ¢ I=s (b) s s nk—o
= : 7 X)— a)) k al
Fik— o 1) | miney [0 (x)‘] (97 ()= 9" (@) 7" 1/l
which is obtained the desired result. O]

The solution of non-homogenous linear differential equation with the ¢-generalized
Caputo k-fractional derivative under special choices of parameters is given in following
section.

5.3 Applications

In this section, we look for a solution of the Cauchy-type problem for
non-homogeneous linear ¢- generalized Caputo k- fractional differential equation. A
solution of the Cauchy-type problem for ¢-GRL k-FDEs in the same form can be

examined in the similar manner.

Theorem 5.8: For two functions y,¢ € C[0,00) such that ¢ is increasing and ¢ (x),
x€[0,00) and s e RT, 0 < ¢ < 1, k € N such that 0 < & < k and A,c € R. The
following fractional initial value problem

EDEy(x) = Ay (x) = (x), (5.3)

y(a) =c, (5.4)

is of the solution

y(x) = cEg (98 (x.a)) + L / 0 ) -0 ) g g (0 (00)) £ (0407 (1),

ki

where (p,fs’q) (x,y) :=k'"%A (M) k,
Proof. By applying 2‘;32‘;‘# to both sides of 5.3 and using Theorem 5.2 and Corollary

5.7, we get

y(x) =y (a) +hAT Ty () + KR TEL £ ().

87



To solve this integral equation, we use the method of successive approximation.

According to this method, we set:

i () = 30 (0) KA I vt () + LT ()
where m > 1. For m = 1, we have
y1 () =30 () + KA I 0 () + KT ().
By rewriting and regulating
y1(x) =y(a)+kAy(a)
Similarly we find for y; (x) that

y2 (x) = yo (x) + kAT 30 |y (a) +kAy (a)
+ka+J;‘;” £ ().

With the help of Lemma 5.1, one can easily reach to

3 pi—1pi-1g—0G-D% (-1
(¢° (x) — ¢° (a)) Jk-+2:wz’1“3”¢f<>

j=1

yZ(X):y(a)j_l Fk((]—l)a+k)

By keeping on this process, we derive the following equation for y,, (x), m > 1

mtl g j— IAJ 1—(] )% (j—l)
s s Jj1Jj— 19{,-.](14)

ym (x) =y (a)

Taking the limit while m tends to oo, we get the following explicit pattern of y (x) to the

solution of 5.3 and 5.4:

o pi—1pJi-1g-(-D%
= I ((j—1)a+k)

(6° (1) — 0% (@) T + Y KA IR 5090 £ ().

=1

y(¥) :y(a)

By replacing the index of summation j by j — 1, we have

— ooM S (%) — k +119 iR ~(+D ¢
y()=3(@) ¥ Gy (009 9"(@) +§HAJ%S f@).

which provides us the required result by keeping in mind the given definition of ¢-GRL

k-FI and k-Gamma and k-Beta functions and their features . O]
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Corollary 5.8: For 0 < o < 1, the following special case of the fractional initial value

problem (5.3)-(5.4):

is of the solution obtained from the equation 5.6

y (W) =Eg ((2)7)+25! / (=) By e (2 )a, 66

0

which is equal to

5.4 Suggested Problems

It is surely beyond doubt that there are lots of new things over the basement of theory
consisting of new fractional derivatives and integrals. One can research for chain rule,
exponential functions, Gronwall’s inequality, integration by parts, Taylor power series
expansions, Laplace transforms, the Rolle’s, Cauchy, Lagrange’s and Darboux’s
theorem, and all the rest in the context of both ¢-generalized Riemann-Liouville and

Caputo k-fractional derivatives.
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