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ABSTRACT

The existence uniqueness of solutions of the impulsive delayed fractional differential

equations(IDFDEs) was proved. The Ulam-Hyers stability of IDFDEs was

demonstrated. The controllability of IDFDEs was shown via iterative learning control

technique. In the sequel, the neutral fractional multi-delayed differential

equations(NFMDDEs) was introduced. The existence and uniqueness of NFMDDEs

was investigated in addition to its stability, and relative controllability of NFMDDEs

was proved by means of fixed point technique. Lastly, new fractional integral and

derivatives, i.e. φ -generalized Riemann Liouville k-fractional integral, φ -generalized

Riemann Liouville k-fractional derivative, φ -generalized Caputo k-fractional

derivative were defined and some fundamental features were discussed to build

theory’s basement.

Keywords: fractional derivative and integral, impulsive delayed differential equation,

neutral multi-delayed differential equation, existence and uniqueness, iterative learning

control, relative controllability, stability
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ÖZ

İmpulsif ve gecikmeli kesirli bir diferansiyel denklemin çözümünün var ve tek olduğu

ispatlandı. Bu kesirli diferansiyel denklemin Ulam-Hyers anlamında kararlı olduğu

gösterildi. Yinelemeli öğrenme kontrol edilebilirlik tekniği yardımıyla da bu

denklemin kontrol edilebileceği gösterildi. Hemen akabinde, çok gecikmeli nötr ve

kesirli diferansiyel denklemi tanıtıldı. Bu kesirli diferansiyel denklemin kararlılığına

ilaveten sistemin çözümünün var ve tek olduğu araştırıldı ve sabit nok teoremleri

tekniği aracılığıyla bu kesirli diferansiyel denklemin nisbi kontrol edilebileceği ispat

edildi. Son olarak, φ -genelleştirilmiş Riemann Liouville k-kesirli integrali,

φ -genelleştirilmiş Riemann Liouville k-kesirli türevi, φ -genelleştirilmiş Caputo

k-kesirli türevi olmak üzere yeni kesirli integral ve türevleri tanımlandı ve teorinin

temelini inşa etmek için bazı temel özellikler tartışıldı.

Anahtar Kelimeler: kesirli türev ve integral, impulsif gecikmeli diferansiyel denklem,

nötr çok gecikmeli differansiyel denklem, varlık ve teklik, yinelemeli öğrenme kontrol

edilebilirlik, nisbi kontrol edilebilirlik, kararlılık
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contributions during my PhD education.

I present my deep gratitude to all members of my committee for their valuable and

priceless evaluations and contributions.

I typeset this thesis using EMU Thesis LaTeX Template 2021 which is offered to our

use and facilitating thesis writing, so I am also thankful to people from Institute of

Graduate Studies and Research.

I am also thankful to my family, especially to my parents Dursun Aydın and Fethiye

Aydın, for their unlimited support and everyday understanding.

I want to send special thanks to all of my friends who accompanied me and contributed

to my works for their valuable support.

Lastly, I would like to add that I might have forgotten to thank some people who

contributed even a little bit to me, and so I seek their forgiveness.

vi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 IMPULSIVE DELAYED FRACTIONAL SYSTEM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Existence and Uniqueness of Solution of the System . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Ulam-Hyers Stability of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Iterative Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 P-Type Iterative Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 D-Type Iterative Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Dα -Type Iterative Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 An Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 THE NEUTRAL FRACTIONAL MULTI-DELAYED SYSTEM .. . . . . . . . . . . . . . . . 39

4.1 The Multi-Delayed Perturbation of Mittag-Leffler Type Matrix Function . . . . 42

4.2 The Explicit Solutions of Neutral Fractional Multi-Delayed System . . . . . . . . . 45

4.3 Existence and Uniqueness, and Ulam-Hyers Stability . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Relative Controllability of the Neutral Fractional Multi-Delayed System. . . . 56

4.5 Illustrated Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



4.6 New Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 NEW FRACTIONAL INTEGRAL AND DERIVATIVES . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 The φ -Generalized R-L k-Fractional Integral and Derivative . . . . . . . . . . . . . . . . . 73

5.2 The φ -Generalized Caputo k-Fractional Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Suggested Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



LIST OF TABLES

Table 3.1: Error ek (t) for Figure 3.2 in Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.2: Error ek (t) for Figure 3.3 in Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.3: Error ek (t) for Figure 3.4 in Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.4: ‖ek‖C for choosing α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 3.5: ‖ek‖C for choosing α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



LIST OF FIGURES

Figure 3.1: Block diagram of the iterative learning control method . . . . . . . . . . . . . . . . . 20

Figure 3.2: Trajectory yk (t) and error ek (t) for Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.3: Trajectory yk (t) and error ek (t) for Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.4: Trajectory yk (t) and error ek (t) for Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

x



LIST OF SYMBOLS AND ABBREVIATIONS

B(Y1,Y2) Space of All Linear Bounded Operators

C([a,b] ,Rn) Space of All Vector-valued Continuous Functions

L∞(J,Y2) Space of All Essentially Bounded Functions

PC([a,b] ,Rn) Space of All Piecewise Continuous Vector-valued Functions

φ -GC k-FD φ -Generalized Caputo k-Fractional Derivative

φ -GRL k-FI φ -Generalized Riemann Liouville k-Fractional Integral

φ -GRL k-FD φ -Generalized Riemann Liouville k-Fractional Derivative

IDFDE Impulsive Delayed Fractional Differential Equation

ILC Iterative Learning Control

MDP of ML The Multi-delayed Perturbation of the Mittag-Leffler

NFMDDE Neutral Fractional Multi-delayed Differential Equation

xi



Chapter 1

INTRODUCTION

When tracing the history of fractional calculus, we undoubtedly can say that the

foundation of the theory of fractional-order derivatives are laid with Leibniz’s note to

L’Hospital in 1695 [1]. On that note, the possible meaning of the derivative of

one-half order was debated. This also stimulates everyone who early encounters the

differential operator d/dx, d2/dx2,etc to ponder what the meanings of d1/2/dx1/2,

d−1/dx−1, and d
√

2/dx
√

2 are. As a result, these cause to appear the theory of

derivatives and integrals of any order. For the last three centuries, the theory of

fractional calculus was developed mostly as a pure theoretical area of mathematics.

However, for a couple of decades many researchers were aware of the fact that

fractional-order derivatives and integrals are more appropriate to express the real-life

world problems compared to previously used integer-order derivatives and integrals.

Especially, in comparison with the traditional integer-order models fractional

derivatives provide the miracle argument for the description of memory and

hereditary features of various processes and materials. In addition to describing

rheological features of rocks, the advantages of fractional derivatives also appear to

model mechanical and electrical properties of real materials and, in many other areas.

A fractional differential equation is an equation that consists of fractional derivatives.

Based on the features of fractional derivatives, the physical and mathematical

processes and modelling gave rise to fractional-order differential system having

fractional-order and oblige to solve(settle up) such equations. Fractional derivatives
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and integrals also become apparent in the theory of control of dynamical systems,

when the controller or controlled system is expressed by fractional differential

equations. Many articles are written on the subject of the history and applications of

fractional calculus [9, 79–82].

Fractional calculus which regards as a generalization of the traditional calculus or

integer calculus or classical calculus has been of widespread use in the scientific

world. Unlike the traditional calculus, fractional calculus is exponentially exploited in

many kinds of areas like mathematical physics [79], [80], electrochemistry, (Optimal)

control theory [145, 146], biophysics, engineering, signal, etc; see for

instance [81]- [83] to model a variety of phenomena as control theory, stability theory,

viscoelasticity, existence [144], and etc [7, 8, 17, 88–92, 97, 99, 100, 111].

In the most of previous applications, a system was examined according to a principle

of casualty. This means that the system’s future state did not depend on the past

states, that is, it is identified only with the present states. In this case, a differential

equation with the state and its rate of change becomes either ordinary or partial. Of

course, the future state was not logical not to depend on the past state. In the late

thirties, Volterra in his works [76], [77] like viscoelasticity and predator-prey model

formulated certain quite general differential equations including the past states. Again

on the same days, Minorksii [78] showed the importance of the delay in the feedback

mechanism in his studies of automatic steering and ship stabilization. This played a

significant role in the theory of differential equations with the past state and in the

control theory. The dependence of the past states can be expressed with the state

variable and not derivative of the state variable. In the literature, this kind of

differential equation is called retarded(delayed) differential equation. Neutral
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differential equation also involves derivatives of retardation(delay) in addition to the

function itself depending on the past and present states.

Recently, it is studied on the expression of solutions to delay differential equations.

Khusainov and Shukin [22], and Diblik and Khusainov [23, 24] managed to get the

accurate representations of solutions of linear continuous and discrete delay equations

by proposing the concept of delay matrix exponential function eBt
h as in (2.3). Li and

Wang [110] studied the fractional analogue of the same problem in the case A = Θ by

exploring delayed Mittag-Leffler type matrix function eBt
h,α as in (2.4). Motivated by

Khusainov & Shuklin [23] and Li and Wang [110], Mahmudov [86] consider

representation of solutions of the Caputo fractional delay differential equations by

introducing delay perturbation of Mittag-Leffler function XA,B
h,α,β (t) as in (3.3) which

does not need to satisfy that A and B are permutable.

Arimoto et al. introduced the concept of iterative learning control (ILC briefly) in

1980s, which has been widely used to apply to biological systems, robotics, industrial

control systems to get an awesome tracking performance in a finite interval of time.

ILC has been deeply researched from practical and theoretical applications [43–51,

55–59]. But the study on this subject is still at the beginning and there are a lots

of problems which are expected to solve. ILC is not restricted to the integer order

differential equations. For instance, it can be used for fractional differential equations

[43–45, 47, 48], for fractional impulsive equations [49, 52–54].

The paper [67] presents a second order Dα -type iterative learning control scheme for a

class of fractional-order linear time-delay systems with fractional order 0 < α < 1. In

[68] convergence conditions are derived in frequency domain via contraction mapping

3



principle. The convergent sufficient conditions of open-loop and closed-loop iterative

learning schemes are established in [52]. A robust second-order feedback PD type

iterative learning control for a class of uncertain fractional-order singular systems is

presented in [47]. PDα -type iterative learning control for fractional-order singular

time-delay system is studied in [69].

For an approximately one and half century, differential equations have been used to

formulate the dynamics of changing processes. The dynamics of several developing

processes depend on sudden changes like shocks, natural disasters. The phenomena

have short-term deviations(perturbations) from continuous and smooth dynamics.

Considering the course of the whole development, its duration is ignorable. In

formulations having such deviations, these deviations treat instantaneously or in the

form of ‘’impulses”. As a result, formulating impulsive problems have developed

impulsive differential equations in population dynamics, industrial robotics, ecology,

physics, optimal control and so on [93–96].

The impulsive method which is an efficient control approach is mostly exploited in

today’s sophisticated control systems. It is seen that perturbations can be generally

described in the shape of impulsive expressions for an examined sophisticated system.

In order to follow the discontinuous reference trajectory properly employing a couple

of iterations in an arbitrary finite time interval, an impulsive control method is

required. For an impulsive equation, there are a lot of tangible instances to describe it,

e.g. the computer networking, the population control systems, the automatic control

systems, and aircraft. It can be effortlessly remarked that the principle goal of the

impulsive control technique is not to compare or rival with the available other control

techniques. On quite the contrary, the impulsive control technique offers a novel point

4



of view when there is at least one changeable state variable in the system. There are

important theories widely used on impulsive differential systems, see [71], [72]. Also,

ILC is presented to shift the state of the impulsive equations when certain conditions

are hold. In fact, the ILC technique has been confirmed to be a sensible and

reasonable control system to deal with the impulsive systems. In [49], in order to

trace the craved discontinuous trajectory, ones discovered P-type ILC algorithm for

the impulsive differential system. In [53], D and P-type ILC algorithms have been

presented for fractional impulsive evolution system, and the convergency analysis of

these algorithms is done in the sense of λ -norm. In [73], D and P-type ILC algorithms

have been designed for a class of impulsive first order systems with distributed

parameter by employing λ -norm and Lp-norm. PDα -type iterative learning control

for the fractional-order nonlinear time-delay systems is investigated in [70].

As you would appreciate, our efforts to find a representation of solutions to linear

(fractional) differential equations provide positive results. However, we can not

always say the same things about the nonlinear and partial (fractional) differential

equations. Sometimes it is too difficult to solve such differential equations. In this

case, it is remarkably significant to determine whether such equations have any

solutions or under which conditions the solutions are existent or unique. The fixed

point theorems are mostly used to identify answers of these kinds of questions. So,

benefits of knowing existence and uniqueness results are beyond dispute.

Numerous researchers have debated the data dependence in the theory of differential

systems. All kind of stability properties have attracted the attention of many

mathematicians, see [62]- [66]. By the way, there are certain private data dependence

in the theory of functional equations like Ulam-Hyers-Bourgin, Ulam-Hyers-Rassias
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and Ulam-Hyers. Particularly, the Ulam-Hyers stability was exploited by lots of

mathematicians and the study of this area has the grown to be one of the central

subjects in the mathematical analysis area. Ulam and Hyers introduced and studied

the concept of the stability of systems [25–28]. This stabilities are known as the

Ulam-Hyers stability. Some papers as to the Ulam-Hyers stability can be reached

at [29–32] Also both the existence and the uniqueness and the stability of solutions of

fractional differential systems play an important role in the fractional calculus. These

studies can be found in [33–42].

This thesis consists of five principle chapters.

In Chapter 1, an introduction which expresses the available literatures and brief

histories about fractional calculus and subjects of our thesis is given to enable the

readers to easily understand our findings.

In Chapter 2, some special spaces endowed with their appropriate norms, the theory

of some special functions(gamma function, beta function, k-gamma function, k-beta

function, Mittag-Leffler (type) functions which play a wonderful role in the theory

of fractional calculus), some formal definitions of stability, controllability as well as

fractional derivatives and integrals, and related necessary tools are presented.

In Chapter 3, the fractional impulsive delayed system is granted. Existence

uniqueness and Ulam-Hyers stability of fractional time-delay impulsive semilinear

system with nonpermutable matrix coefficients are studied. Iterative learning control

problem for this system and study convergence of P, D, and Dα type of ILC schemes

is constructed. In addition to an example that satisfies all the conditions of types P, D,

6



and Dα , graphs of output functions, error tables and their histograms by three

different origin references trajectories for the example are offered. Possible open

problems are expressed.

In Chapter 4, the qualitative concepts for neutral fractional multi-delayed differential

equations with noncommutative coefficient matrices are discussed. An explicit

solution to the neutral fractional linear multi-delayed differential equations with

non-commutative matrices is given based on this multi-delayed perturbation function

of Mittag-Leffler type matrix function. The problem of existence uniqueness and

Ulam-Hyers stability of solutions to the nonlinear neutral fractional multi-delayed

differential system is investigated by using the Banach Contraction Principle. The

sufficient and necessary condition for relative controllability of the neutral

multi-delayed homogeneous system is determined by giving the concept of the neutral

fractional multi-delayed Gramian matrix. Lastly, the relative controllability result for

the neutral multi-delayed semi-linear system is studied by means of Krasnoselskii’s

fixed point theorem. Some new problems for the readers to research are stated.

In Chapter 5, quite comprehensive φ -generalized Riemann-Liouville k-fractional

integral and φ -generalized Riemann-Liouville and Caputo k-fractional derivatives

which can be reduced to most of the well-known fractional integrals and derivatives

depending on the choices of k,s,φ are presented in order to combine these

conceptions into an united one and improve a theory for FDEs with an unified novel

derivative due to lots of new types of fractional integral and derivatives and many of

their applications of real world problems. Some fundamental features are discussed to

build theory’s basement.
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Chapter 2

PRELIMINARY

Let a,b ∈ R(or R+) which is the set of all real numbers(or all positive real numbers).

For −∞ < a < b < ∞, [a,b] is the interval of R. Let C([a,b] ,Rn) be the Banach space

of vector-valued continuous functions from [a,b] to Rn endowed with the infinity norm

‖ f‖C := sup
t∈[a,b]

‖ f (t)‖

for an arbitrary norm ‖.‖ on Rn. For n ∈ {0,1,2, ...}, let Cn ([a,b] ,R) be the space

of complex-valued functions f (x) which have continuous derivatives up to order n

such that f (n) ∈ C ([a,b] ,R). We introduce the piecewise continuous vector-valued

functions space

PC([0,T ] ,Rn) := {x : [0,T ]→ Rn | x ∈C((tk, tk+1] ,Rn), k = 0, ...,m

and there exist x
(
t−k
)
,x
(
t+k
)

with x
(
t−k
)
= x(tk) , k = 1, ...,m

}
,

the jumps

x
(
t+i
)
= lim

ε→0+
x(ti + ε) , x

(
t−i
)
= lim

ε→0−
x(ti + ε)

represent the left and right limits of x(t) at t = ti, respectively, endowed with

‖x‖PC := sup
t∈[0,T ]

‖x(t)‖ .

A λ -norm also is defined on PC([0,T ] ,Rn) by

‖x‖
λ
= sup

t∈[0,T ]

{
e−λ t ‖x(t)‖

}
, λ > 0.

Remark 2.1: [143] PC([0,T ] ,Rn) is the Banach space with respect to the norm ‖.‖PC.
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For A ∈ Rn×m, n,m ∈ N; the well-known maximum norm of a matrix is defined as

‖A‖= max
1≤i≤n

m

∑
j=1
|ai j|

where ai j are the elements of the matrix A. Let Y1, Y2 be two Banach spaces, B(Y1,Y2)

consists of all linear bounded operator from Y1 to Y2. Let J be a bounded closed

interval. L∞(J,Y2) symbolizes the space of all essentially bounded functions which is

the Banach space with ‖.‖L∞(J,Y2).

Definition 2.1: [111] The gamma function Γ(z) is defined by

Γ(z) =
�

∞

0
tz−1e−tdt (Re(z)> 0)

where tz−1 = e(z−1) log(t). The integral is convergent for all complex z∈C, (Re(z)> 0).

For this function the reduction formula

zΓ(z) = Γ(z+1) , Re(z)> 0

holds.

Definition 2.2: [111] The beta function B(z,w) is defined by

B(z,w) =
� 1

0
tz−1 (1− t)w−1 dt (Re(z)> 0 Re(w)> 0)

The integral is convergent for all complex z,w ∈ C such that Re(z) > 0 Re(w) > 0.

The Beta function is closely related to the Gamma function; in fact, we have

B(z,w) =
Γ(z)Γ(w)
Γ(z+w)

holds.

Diaz and Pariguan define the generalisations of Gammma and Beta function as noted

below.
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Definition 2.3: [120] The k-gamma and the k-beta functions are defined as follows

Γk (ω) =

�
∞

0
e−

yk
k yω−1dy, (2.1)

and
Bk (ω,ϖ) =

1
k

� 1

0
y

ω

k −1 (1− y)
ϖ

k −1 dy, (2.2)

where Re(ω) > 0 and Re(ϖ) > 0, respectively. Their relations with the well-known

gamma and beta functions and themselves are given by

Γ(ω) = lim
k→1

Γk (ω) , Γk (ω) = k
ω

k −1
Γ

(
ω

k

)
, Γk (k) = 1, Γk (ω + k) = ωΓk (ω) ,

and
Bk (ω,ϖ) =

Γk (ω)Γk (ϖ)

Γk (ω +ϖ)
=

1
k

B
(

ω

k
,
ϖ

k

)
.

Gösta Mittag-Leffler defined the following series as the Mittag-Leffler function.

Definition 2.4: [132] Mittag-Leffler function Eη (ϕ) is defined by

Eη (ϕ) =
∞

∑
k=0

ϕk

Γ(ηk+1)
, η ∈ C, Re(η)> 0.

Subsequently, Wiman introduced a generalized Mittag-Leffler function as follows.

Definition 2.5: [142] Mittag-Leffler function Eη ,µ (ϕ) is given by

Eη ,µ (ϕ) =
∞

∑
k=0

ϕk

Γ(ηk+µ)
, η ,µ ∈ C, Re(η)> 0.

Definition 2.6: [24] Delay matrix exponential function eBt
h is defined by

eBt
h =



Θ, −∞≤ t <−h,

I, −h≤ t < 0,
p

∑
j=0

B j (t− ( j−1)h) j

j!
, (p−1)h < t ≤ ph.

(2.3)
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Definition 2.7: [110] The delay Mittag-Leffler function eBt
h,α is defined by

eBt
h,α =



Θ, −∞≤ t <−h,

I, −h≤ t < 0,
p

∑
j=0

B j (t− ( j−1)h)α j

Γ(α j+1)
, (p−1)h < t ≤ ph.

(2.4)

Mahmudov generalizes them to that one including two independent coefficient

matrices by using double summation as follows.

Definition 2.8: [86] The delayed perturbation of Mittag-Leffler type matrix function

XA,B
h,α,β (·) : [0,∞)→ Rn generated by A,B is defined by

XA,B
h,α,β (t) :=



Θ, −h≤ t < 0,

I, t = 0,
∞

∑
k=0

p

∑
j=0

Qk+1 ( jh)
(t− jh)kα+β−1

+

Γ(kα +β )
, ph < t ≤ (p+1)h,

(2.5)

where (t)+ = max(0, t), Qk+1 ( jh) = AQk ( jh)+BQk ( jh−h), Q0(s) = Qk(−h) = Θ,

Q1(0) = I for k = 0,1,2, . . . and s = 0,h,2h, . . . Θ and I are the zero and identity

matrices.

Remark 2.2: As stated in [86, Figure 1] or will be shown with the aid of the

interpretation of the first derivative, the delayed perturbation of Mittag-Leffler type

matrix function XA,B
h,α,β is increasing on (0,∞).

Remark 2.3: By determining x which makes f
′
(x) bigger than zero, one can show

that the function f is increasing for x > 0 If f (x) = xα , α ∈ (0,1).

Lemma 2.1: [75] In addition to the fact that the exclusive function XA,B
h,α,β (·) is

continuous on (0,∞), for all t ≥ 0, 0 < α < 1, 0 < β ≤ 1 satisfying α + β ≥ 1, we

11



have∥∥∥XA,B
h,α,β (t)

∥∥∥≤ tβ−1Eα,β ((‖A‖+‖B‖) tα) ,
∥∥∥XA,B

h,α,β (t)
∥∥∥≤ X‖A‖,‖B‖h,α,β (t) . (2.6)

Lemma 2.2: [60] Let x ∈ PC ([0,T ] ,Rn) satisfy the following inequality

‖x(t)‖ ≤ c1 (t)+ c2

� t

0
(t− s)α−1 ‖x(s)‖ds+ ∑

0<tk<t
θk
∥∥x
(
t−k
)∥∥ ,

where c1 (t) is non-negative continuous and non-decreasing on [0,T ], c2, θk ≥ 0 are

constants. Then

‖x(t)‖ ≤ c1 (t)(1+θEα (c2Γ(α) tα))k Eα (c2Γ(α) tα)

for tk < t ≤ tk+1, where θ = max{θ1, ...,θm} and Eα (z) :=
∞

∑
k=0

zk

Γ(kα+1) , z ∈C.

Definition 2.9: [111, 112] The Riemann-Liouville fractional integrals RLIα

a+ f (t) of

order α ∈ R+(positive real numbers) are defined by

RLIα

a+ f (t) =
1

Γ(α)

� t

a
(t− s)α−1 f (s)ds

Definition 2.10: [111,112] The Riemann-Liouville fractional derivatives RLDα

a+ f (t)

of order 0 < α < 1 are defined by

RLDα

a+ f (t) =
1

Γ(1−α)

d
dt

� t

a
(t− s)−α f (s)ds.

Definition 2.11: [111] The Caputo fractional derivatives a
CDα

0+ f (t) of order 0 < α <

1 are defined by

CDα

a+ f (t) =
1

Γ(1−α)

� t

a
(t− s)−α f

′
(s)ds,

and their relations are

CDα

a+ f (t) = RLDα

a+ ( f (t)− f (a)) , RLIα

a+

(
RLDα

a+ f (t)
)
= f (t), (2.7)

and

12



RLDα

a+ (x−a)β−1 =
Γ(β )

Γ(β −α)
(x−a)β−α−1 = CDα

a+ (x−a)β−1 .

Theorem 2.1: [61] (Banach’s Contraction Principle) Let X be a complete metric

space with a contraction mapping T : X → X . Then T has an unique fixed point in X .

Lemma 2.3: (Krasnoselskii’s fixed point theorem, see [108]) Let D be a convex

closed and bounded subset of Banach space Y and let G = G1 +G2 be maps D into Y

such that G z = G1z+G2z ∈ D for every pair z ∈ D . If G2 is continuous and compact

and G1 is a contraction, then the equation G z = G1z+G2z = z is of a solution on D .
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Chapter 3

IMPULSIVE DELAYED FRACTIONAL SYSTEM

In the section of the introduction, we talked about advancements about both delayed

systems and impulsive systems. It will be interesting to combine the iterative learning

control and Ulam-Hyers stability issues with the semilinear fractional time-delay

impulsive systems. Therefore, we consider the following semilinear impulsive

fractional differential time-delay equations with noncommutative coefficients,
CDα

0+x(t) = Ax(t)+Bx(t−h)+ f (t,x(t)) , t ∈ [0,T ]\I,

x
(
t+i
)
= x
(
t−i
)
+g(x(ti)) , ti ∈ I,

x(t) = ϕ (t) , −h≤ t ≤ 0,

(3.1)

where k denotes the iterative times, I = {t1, t2, ..., tm} is the impulsive times and

satisfying 0 < t1 < ... < tm < T , T = lh for a fixed l ∈ N and h > 0. A,B ∈ Rn×n are

constant matrices which do not have to be commutative. f : [0,T ]× Rn → Rn and

g : Rn→ Rn are continuous vector functions. The jumps

x
(
t+i
)
= lim

ε→0+
x(ti + ε) , x

(
t−i
)
= lim

ε→0−
x(ti + ε)

represent the left and right limits of x(t) at t = ti, respectively. We introduce the

following integral equation

x(t) = XA,B
h,α,1 (t +h)ϕ (−h)+

� 0

−h
XA,B

h,α,α (t− s)
[
CDα

0+ϕ (s)−Aϕ (s)
]

ds

+

� t

0
XA,B

h,α,α (t− s) f (s,x(s))ds+ ∑
0<ti<t

XA,B
h,α,1 (t− ti)g(x(ti)) , (3.2)

where delayed perturbation of Mittag-Leffler type matrix function XA,B
h,α,β (·) : [0,∞)→
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Rn generated by A,B is defined by

XA,B
h,α,β (t) :=



Θ, −h≤ t < 0,

I, t = 0,
∞

∑
k=0

p

∑
j=0

Qk+1 ( jh)
(t− jh)kα+β−1

+

Γ(kα +β )
, ph < t ≤ (p+1)h,

(3.3)

where (t)+ = max(0, t), Qk+1 ( jh) = AQk ( jh)+BQk ( jh−h), Q0(s) = Qk(−h) = Θ,

Q1(0) = I for k = 0,1,2, . . . ands = 0,h,2h, . . . Θ and I are the zero and identity

matrices.

Remark 3.1: If we take α = β = 1 and omit the impulsive part and non-commutativity

of A and B, the solution in (3.2) coincides with that of the paper [22]. The solution in

(3.2) without the impulse reduces to that of the work [110] provided A = Θ. The

solution in (3.2) without the impulse is as in the work [86].

It is well known that fractional differential equation (3.1) and integral equation (3.2) are

equivalent. So far all of both impulsive and time-delay [22] [23] [24] [110] fractional

systems have been considered under the condition that the coefficient matrices A and

B are permutable, and also under this condition it has been investigated whether there

exists a solution of the system, the solution is existent and unique, and the system is

stable, controllable, etc. In the current system (3.1), the coefficient matrices A and

B in the impulsive fractional order time-delay systems examined do not need to be

permutable. This is the biggest difference from the peer-papers in addition to the idea

of combining impulsive systems with delayed systems . Accordingly, the obtained

results subsequent to principal contributions’ section are different from the others and

also pretty novel.
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3.1 Existence and Uniqueness of Solution of the System

In this subsection, the existence and uniqueness of solution of the semilinear impulsive

fractional differential time-delay equations with nonpermutable matrix coefficients is

offered by the following theorem and its proof.

Lemma 3.1: Let XA,B
h,α,β (t) be defined as in (3.3). The following equation holds.

� t

0
X‖A‖,‖B‖h,α,α (t− s)ds = X‖A‖,‖B‖h,α,α+1 (t) .

Proof. By using definition of delay perturbation function and properties of integration,

we have
� t

0
X‖A‖,‖B‖h,α,α (t− s)ds =

� t

0

∞

∑
i=0

p

∑
j=0
‖Qi+1 ( jh)‖

(t− s− jh)(i+1)α−1
+

Γ((i+1)α)
ds

=
∞

∑
i=0

p

∑
j=0
‖Qi+1 ( jh)‖ 1

Γ((i+1)α)

� t− jh

0
(t− s− jh)(i+1)α−1

+ ds

+
∞

∑
i=0

p

∑
j=0
‖Qi+1 ( jh)‖ 1

Γ((i+1)α)

� t

t− jh
(t− s− jh)(i+1)α−1

+ ds

=
∞

∑
i=0

p

∑
j=0
‖Qi+1 ( jh)‖ 1

Γ((i+1)α +1)

[
−(t− s− jh)(i+1)α

+

]t− jh

0

=
∞

∑
i=0

p

∑
j=0
‖Qi+1 ( jh)‖

(t− jh)(i+1)α
+

Γ((i+1)α +1)

= X‖A‖,‖B‖h,α,α+1 (t) ,

where (t− s− jh)+ = 0 for t− jh≤ s≤ t, j = 0,1, . . . , p due to its rule.

Theorem 3.1: If the following assumptions are hold true,

i) the function f : [0,T ]×Rn→ Rn is continuous;

ii) ‖ f (t,x)− f (t,y)‖ ≤ L f ‖x− y‖ , t ∈ [0,T ] , x,y ∈ Rn, L f > 0;

iii) ‖g(x)−g(y)‖ ≤ Lg ‖x− y‖ , x,y ∈ Rn, Lg > 0;

iv) L f X‖A‖,‖B‖h,α,α+1 (T ) + mMLg < 1, m is the number of the impulsive times, M :=

Eα,β ((‖A‖+‖B‖)T α)> 0 with β = α,1, is given in (2.6)
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then the integral equation (3.2) has a unique solution in [−h,T ] .

Proof. Define F : PC ([−h,T ] ,Rn)→ PC ([−h,T ] ,Rn) by

Fx(t) : = XA,B
h,α,1 (t +h)ϕ (−h)+

� 0

−h
XA,B

h,α,α (t− s)
[
CDα

0+ϕ (s)−Aϕ (s)
]

ds

+

� t

0
XA,B

h,α,α (t− s) f (s,x(s))ds+ ∑
0<ti<t

XA,B
h,α,1 (t− ti)g(x(ti)) (3.4)

By taking arbitrary x,y ∈ PC ([−h,T ] ,Rn) and employing (3.4), we consider

‖Fx(t)−Fy(t)‖ ≤
∥∥∥∥� t

0
XA,B

h,α,α (t− s) [ f (s,x(s))− f (s,y(s))]ds
∥∥∥∥

+

∥∥∥∥∥ ∑
0<ti<t

XA,B
h,α,1 (t− ti) [g(x(ti))−g(y(ti))]

∥∥∥∥∥
≤
� t

0
X‖A‖‖,B‖h,α,α (t− s)‖[ f (s,x(s))− f (s,y(s))]‖ds

+ ∑
0<ti<t

∥∥∥XA,B
h,α,1 (t− ti)

∥∥∥‖g(x(ti))−g(y(ti))‖

≤ L f

� t

0
X‖A‖,‖B‖h,α,α (t− s)‖x(s)− y(s)‖ds+mMLg ‖x− y‖PC

≤ L f

� t

0
X‖A‖,‖B‖h,α,α (t− s)ds‖x− y‖PC +mMLg ‖x− y‖PC (3.5)

By combining inequality 3.5 with Lemma 3.1, we get

‖Fx(t)−Fy(t)‖ ≤
[
L f X‖A‖,‖B‖h,α,α+1 (T )+mMLg

]
‖x− y‖PC .

The fourth condition (iv) of this theorem guarantees that F is a contraction. By

Banach’s Contraction Principle, F has a unique fixed point on [0,T ] . This shows us

the existence and uniqueness of solution of (3.1).

3.2 Ulam-Hyers Stability of the System

We present a theorem which proves that the nonlinear impulsive fractional differential

time-delay equation with Caputo fractional derivative is Ulam-Hyers stable.

Definition 3.1: Let η > 0. The system (3.1) is said to be Ulam - Hyers stable if for
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every solution z ∈ PC ([0,T ] ,Rn) of inequality,∥∥∥CDα

0+z(t)−Az(t)−Bz(t−h)− f (t,z(t))
∥∥∥≤ η , (3.6)

there exists a solution x ∈ PC ([0,T ] ,Rn) of the system (3.1), and uh > 0 such that

‖z(t)− x(t)‖ ≤ uh.η t ∈ [0,T ] . (3.7)

Remark 3.2: A function z ∈ PC1 ([0,T ] ,Rn) is a solution of the inequality equation

(3.6) if and only if there exists a function h ∈ PC ([0,T ] ,Rn), such that

• ‖h(t)‖< η ,

• CDα

0+z(t) = Az(t)+Bz(t−h)+ f (t,z(t))+h(t) .

Theorem 3.2: Assume that all statements of Theorem 3.1 are satisfied. Then system

(3.1) is Ulam-Hyers stable.

Proof. Let z ∈ PC ([0,T ] ,Rn) be a solution of the inequality (3.6), i.e.∥∥∥CDα

0+z(t)−Az(t)−Bz(t−h)− f (t,z(t))
∥∥∥≤ η . (3.8)

Let x ∈ PC ([0,T ] ,Rn) be the unique solution of the system (3.1), so that

CDα

0+x(t) = Ax(t)+Bx(t−h)+ f (t,x(t))

for each t ∈ [0,T ] and 0 < α < 1; x(t) = z(t) = ϕ (t), t ∈ [−h,0] and

g(x(ti)) = g(z(ti)), t ∈ I. By Remark 3.2 and inequality (3.8), there exists a function

h ∈ PC ([0,T ] ,Rn), such that ‖h(t)‖< η and

CDα

0+z(t) = Az(t)+Bz(t−h)+ f (t,z(t))+h(t) . (3.9)

So we get the solution z(t) from (3.9):

z(t) = XA,B
h,α,1 (t +h)ϕ (−h)+

� 0

−h
XA,B

h,α,α (t− s)
[
CDα

0+ϕ (s)−Aϕ (s)
]

ds

+

� t

0
XA,B

h,α,α (t− s) [ f (s,z(s))+h(s)]ds+ ∑
0<ti<t

XA,B
h,α,1 (t− ti)g(z(ti)) ,
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= XA,B
h,α,1 (t +h)ϕ (−h)+

� 0

−h
XA,B

h,α,α (t− s)
[
CDα

0+ϕ (s)−Aϕ (s)
]

ds

+

� t

0
XA,B

h,α,α (t− s) f (s,z(s))ds+ ∑
0<ti<t

XA,B
h,α,1 (t− ti)g(z(ti))

+

� t

0
XA,B

h,α,α (t− s)h(s)ds

= Fz(t)+
� t

0
XA,B

h,α,α (t− s)h(s)ds

By using Lemma 3.1, we have the following estimation

‖Fz(t)− z(t)‖ ≤
� t

0

∥∥∥XA,B
h,α,α (t− s)

∥∥∥‖h(s)‖ds≤ X‖A‖,‖B‖h,α,α+1 (T )η . (3.10)

Therefore, we deduce by the fixed point property of the operator F given in the proof

of Theorem 3.1,

‖x(t)− z(t)‖ ≤ ‖x(t)−Fz(t)‖+‖Fz(t)− z(t)‖

≤ ‖Fx(t)−Fz(t)‖+‖Fz(t)− z(t)‖

≤
[
L f X‖A‖,‖B‖h,α,α+1 (T )+mMLg

]
‖x− z‖PC +X‖A‖,‖B‖h,α,α+1 (T )η

Rearranging the inequality,(
1−
[
L f X‖A‖,‖B‖h,α,α+1 (T )+mMLg

])
‖x− z‖PC ≤ X‖A‖,‖B‖h,α,α+1 (T )η

then we get
‖x− z‖PC ≤ uh.η ,

where
uh =

X‖A‖,‖B‖h,α,α+1 (T )

1−
[
L f X‖A‖,‖B‖h,α,α+1 (T )+mMLg

] > 0.

This completes the proof.

Note that so far, we have investigated that the novel system (3.1) with nonpermutable

constant coefficient matrices is of an unique solution and stable. We wonder if the

system (3.1) is controllable. According to one of the traditional approaches to check

whether any system is controllable, a control problem we faced is made into a fixed

point problem. Unlike this approach, we would like to use the new iterative learning
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method for showing that the system (3.1) is controllable. Now we can pass the

following subsection.

3.3 Iterative Learning Control

In this subsection, we express the ILC method with the aid of its diagram. In the

sequel, we introduce our ILC problem and investigate it according to P, D, and Dα -

types updating laws, respectively.

Figure 3.1: Block diagram of the iterative learning control method

In any control system, the most significant stuff is to determine the control input. The

ILC system is solved repetitively in order to obtain the desired control input. ILC is

a method for enhancing the provisional signal and tracking the performance of any

tangible system that is needed to employ a certain operation repeatedly. By tracking

the error in the output signal subsequent to each of operations and employing this error

to adjust the input signal to the system, ILC tries to develop the system performance.
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We consider the following ILC problem
CDα

0+xk (t) = Axk (t)+Bxk (t−h)+ f (t,xk (t))+Cuk (t) , t ∈ [0,T ]\I,

xk
(
t+i
)
= xk

(
t−i
)
+g(xk (ti)) , ti ∈ I,

xk (t) = ϕ (t) , −h≤ t ≤ 0,

(3.11)

and
yk (t) = Dxk (t)+Euk (t) , t ∈ [0,T ]\I, (3.12)

where k denotes the iterative times, I = {t1, t2, ..., tm} is the impulsive times and

satisfying 0 < t1 < ... < tm < T . A,B ∈ Rn×n,C ∈ Rn×r,D ∈ Rn×s,E ∈ Rs×r are

constant matrices. f : [0,T ]× Rn → Rn and g : Rn → Rn are continuous vector

functions. xk ∈ Rn, uk ∈ Rr, and yk ∈ Rs symbolize state, input, and output,

respectively. Define ∆xk (t) := xk+1 (t) − xk (t), ∆uk (t) := uk+1 (t) − uk (t),

ek (t) := yd (t)− yk (t). Recall that the jumps

xk
(
t+i
)
= lim

ε→0+
xk (ti + ε) , xk

(
t−i
)
= xk (ti) = lim

ε→0−
xk (ti + ε)

represent the left and right limits of xk (t) at t = ti, respectively.

It is well known that if f (t,xk), g(xk) satisfy Lipschitz conditions with respect to xk,

then the system (3.11) has a unique solution which is represented by the following

integral equation:

xk (t) = XA,B
h,α,1 (t +h)ϕ (−h)+

� 0

−h
XA,B

h,α,α (t− s)
[
CDα

0+ϕ (s)−Aϕ (s)
]

ds

+

� t

0
XA,B

h,α,α (t− s) [ f (s,xk (s))+Cuk (s)]ds+ ∑
0<ti<t

XA,B
h,α,1 (t− ti)g(xk (ti)) .

3.3.1 P-Type Iterative Learning Control

In this subsection, we share some details about the concept of P-type and, investigate

its convergency with P-type under some conditions. For (3.11), we employ open-loop

P-type updating law with non-initial state learning

∆uk (t) = Γ1ek (t) (3.13)
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where t ∈ [0,T ] and Γ1 ∈ Rs×r is unknowable element which can be obtained. Here

the primary aim is to use delayed perturbation of Mittag-Leffler type matrix function

to obtain the control input uk such that the time-delay system output yk is tracking the

iteratively varying reference trajectories yd as far as possible when k→ ∞ uniformly

on [0,T ] in the sense of the λ -norm by adopting P-type updating ILC.

Theorem 3.3: Let yd : [0,T ]→Rs be a desired trajectory from the system (3.11). The

vector functions f (t,x) and g(x) satisfy Lipschitz condition, which means that for any

x1,x2 ∈ Rn that there exist constants L f > 0 and Lg > 0, such that

‖ f (t,x1)− f (t,x2)‖ ≤ L f ‖x1− x2‖ ,‖g(x1)−g(x2)‖ ≤ Lg ‖x1− x2‖ .

If ‖I−EΓ1‖ < 1, then for any initial input u0, the P-type updating ILC law (3.13)

guarantees that yk tends to yd as k→ ∞ in the sense of λ -norm.

Proof. Consider ek+1 (t)− ek (t) :

ek+1 (t)− ek (t) = yk (t)− yk+1 (t)

= Dxk (t)+Euk (t)−Dxk+1 (t)−Euk+1 (t)

=−D∆xk (t)−E∆uk (t) .

It follows that

ek+1 (t) = ek (t)−D∆xk (t)−E∆uk (t)

= ek (t)−EΓ1ek (t)−D∆xk (t)

= (I−EΓ1)ek (t)−D∆xk (t) . (3.14)

For an arbitrary t ∈ (ti, ti+1], i = 0,1, ...,m, we have
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∆xk (t) = xk+1 (t)− xk (t)

=

� t

0
XA,B

h,α,α (t− s) [ f (s,xk+1 (s))− f (s,xk (s))+C∆uk (s)]ds

+ ∑
0<ti<t

XA,B
h,α,1 (t− ti)(g(xk+1 (ti))−g(xk (ti))) .

Next we estimate ∆xk (t) as follows by keeping Lemma 2.1 in our mind,

‖∆xk (t)‖ ≤
� t

0

∥∥∥XA,B
h,α,α (t− s)

∥∥∥(L f ‖∆xk (s)‖+‖C‖‖Γ1‖‖ek (s)‖
)

ds

+Lg ∑
0<ti<t

∥∥∥XA,B
h,α,1 (t− ti)

∥∥∥‖∆xk (ti)‖

≤ L f

� t

0
(t− s)α−1 Eα,α

(
(‖A‖+‖B‖)(t− s)α

)
‖∆xk (s)‖ds

+‖C‖‖Γ1‖
� t

0
(t− s)α−1 Eα,α

(
(‖A‖+‖B‖)(t− s)α

)
‖ek (s)‖ds

+Lg ∑
0<ti<t

Eα,1
(
(‖A‖+‖B‖)(t− ti)

α
)
‖∆xk (ti)‖ . (3.15)

Introduce the following notations:

M := Eα,β ((‖A‖+‖B‖)T α) , (β = α or 1) ,

c(t) := M ‖C‖‖Γ1‖
� t

0
(t− s)α−1 ‖ek (s)‖ds.

Inequality (3.15) can be written as follows:

‖∆xk (t)‖ ≤ c(t)+L f M
� t

0
(t− s)α−1 ‖∆xk (s)‖ds+LgM ∑

0<ti<t
‖∆xk (ti)‖ .

By the Gronwall lemma, we have

‖∆xk (t)‖ ≤ c(t)
(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
(3.16)

for tk < t ≤ tk+1. To take λ -norm, we multiply both sides of the above inequality by

e−λ t :

‖∆xk‖λ
≤
(

M ‖C‖‖Γ1‖
� t

0
(t− s)α−1 e−λ (t−s)ds‖ek‖λ

)
×
(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
.

Let’s compute the inner integral in the above inequality
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� t

0
(t− s)α−1 e−λ (t−s)ds =

� 0

λ t

( u
λ

)α−1
e−u
(
−du

λ

)
=

1
λ α

�
λ t

0
uα−1e−udu

≤ 1
λ α

�
∞

0
uα−1e−udu =

Γ(α)

λ α
(3.17)

By use of estimation of (3.14), we have

‖ek+1‖λ
≤ ‖I−EΓ1‖‖ek‖λ

+‖D‖‖∆xk‖λ
≤ ρ1 ‖ek‖λ

,

where

ρ1 := ‖I−EΓ1‖+
(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
×‖D‖M ‖C‖‖Γ1‖

Γ(α)

λ α
.

Having in mind the condition ‖I−EΓ1‖ < 1, it is possible to make ρ1 < 1 for

sufficiently large λ . Therefore,

‖ek+1‖λ
≤ ρ

k
1 ‖e1‖λ

,

implies that

lim
k→∞

‖ek+1‖λ
= 0,

which in fact says that limk→∞ yk = yd . The proof is completed.

Remark 3.3: Theorem 3.3 with α = β = 1 without the impulse and with commutative

matrices reduces to Theorem 3.1 in the study [74].

3.3.2 D-Type Iterative Learning Control

In this section, we hand in brief details about the concept of D-type and, investigate

its convergency with D-type for (3.11) under some conditions. For (3.11), we employ

open-loop D-type updating law with non-initial state learning

∆uk (t) = Γ2

[
CDα

0+ek (t)
]

(3.18)
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where t ∈ [0,T ] and Γ2 ∈ Rs×r is unknowable element which can be obtained. Here

the primary aim is to use delayed perturbation of Mittag-Leffler type matrix function

to obtain the control input uk such that the time-delay system output yk is tracking the

iteratively varying reference trajectories yd as far as possible when k→ ∞ uniformly

on [0,T ] in the sense of the λ -norm by adopting D-type updating ILC.

Theorem 3.4: Let yd : [0,T ]→Rs be a desired trajectory from the system (3.11) with

E = Θ. The vector functions f (t,x) and g(x) satisfy Lipschitz condition, which means

that for any x1,x2 ∈ Rn that there exist constants L f > 0 and Lg > 0, such that

‖ f (t,x1)− f (t,x2)‖ ≤ L f ‖x1− x2‖ ,‖g(x1)−g(x2)‖ ≤ Lg ‖x1− x2‖ .

If ‖I−DCΓ2‖< 1, and ek (0) = 0,k = 1,2, ..., then for any initial input u0, the D-type

updating ILC law (3.18) guarantees that yk tends to yd as k→∞ in the sense of λ -norm.

Proof. By

CDα

0+ek+1 (t)− CDα

0+ek (t) = CDα

0+yk (t)−C Dα
t yk+1 (t)

= DCDα

0+xk (t)−DCDα

0+xk+1 (t)

= DA [xk (t)− xk+1 (t)]+DB [xk (t−h)− xk+1 (t−h)]

+DC [uk (t)−uk+1 (t)]+ [ f (t,xk (t))− f (t,xk+1 (t))] ,

=−DA [∆xk (t)]−DB [∆xk (t−h)]−DC [∆uk (t)]

− [ f (t,xk+1 (t))− f (t,xk (t))]

Therefore we have

CDα

0+ek+1 (t) = (I−DCΓ2)
[
CDα

0+ek (t)
]
−DA [∆xk (t)]−DB [∆xk (t−h)]

− [ f (t,xk+1 (t))− f (t,xk (t))]

It follows that
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∥∥∥CDα

0+ek+1 (t)
∥∥∥≤ ‖(I−DCΓ2)‖

∥∥∥CDα

0+ek (t)
∥∥∥+‖D‖‖A‖‖∆xk (t)‖

+‖D‖‖B‖‖∆xk (t−h)‖+L f ‖∆xk (t)‖ (3.19)

On taking λ -norm, we multiply both sides of the above inequality by e−λ t

∥∥∥CDα

0+ek+1

∥∥∥
λ
≤ ‖(I−DCΓ2)‖

∥∥∥CDα

0+ek

∥∥∥
λ
+‖D‖‖A‖‖∆xk‖λ

+‖D‖‖B‖‖∆xk‖λ
+L f ‖∆xk‖λ

then ∥∥∥CDα

0+ek+1

∥∥∥
λ
≤ ‖(I−DCΓ2)‖

∥∥∥CDα

0+ek

∥∥∥
λ

+
(
L f +‖D‖‖A‖+‖D‖‖B‖

)
‖∆xk‖λ

(3.20)

We know that by property (2.7)

RLIα

0+

[
CDα

0+ek (t)
]
= ek (t)− ek (0)

Keeping the statement ek (0) = 0,k = 1,2, ..., in mind, we get

RLIα

0+

[
CDα

0+ek (t)
]
= ek (t)

By using the definition of Riemann-Liouville fractional integral,

ek (t) = RLIα

0+

[
CDα

0+ek (t)
]

=
1

Γ(α)

� t

a
(t− s)α−1

[
CDα

0+ek (s)
]

ds.

By taking the norm on the both sides, we have

‖ek (t)‖ ≤
1

Γ(α)

� t

a
(t− s)α−1

∥∥∥CDα

0+ek (s)
∥∥∥ds.

In order to take λ -norm, we multiply the both sides of the above inequality by e−λ t ,

‖ek (t)‖e−λ t ≤ 1
Γ(α)

� t

0
(t− s)α−1 e−λ teλ sds

∥∥∥CDα

0+ek

∥∥∥
λ
.

We rewrite the inequality and take λ -norm on the left-hand side to obtain the following

inequality
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‖ek (t)‖λ
≤ 1

Γ(α)

� t

0
(t− s)α−1 e−λ (t−s)ds

∥∥∥CDα

0+ek

∥∥∥
λ

with the similar calculation in the proof of Theorem 3.3, we get

‖ek (t)‖λ
≤ 1

λ α

∥∥∥CDα

0+ek

∥∥∥
λ

(3.21)

In the proof of Theorem 3.3, we have by using the equation (3.16) with (3.18)

‖∆xk (t)‖ ≤
(

M ‖C‖‖Γ2‖
� t

0
(t− s)α−1

∥∥∥CDα

0+ek (s)
∥∥∥ds

)
×
(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
To take λ -norm, we multiply both sides of the above inequality by e−λ t :

‖∆xk‖λ
≤
(

M ‖C‖‖Γ2‖
� t

0
(t− s)α−1 e−λ (t−s)ds

∥∥∥CDα

0+ek

∥∥∥
λ

)
×
(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
.

By making the integral calculation in the above inequality

‖∆xk‖λ
≤M ‖C‖‖Γ2‖

Γ(α)

λ α

(
1+LgMEα

(
L f MΓ(α)T α

))m

×Eα

(
L f MΓ(α)T α

)∥∥∥CDα

0+ek

∥∥∥
λ
.

By combining the last inequality with (3.20)∥∥∥CDα

0+ek+1

∥∥∥
λ
≤ ρ2

∥∥∥CDα

0+ek

∥∥∥
λ

where

ρ2 : =
(
L f +‖D‖‖A‖+‖D‖‖B‖

)
×M ‖C‖‖Γ2‖

Γ(α)

λ α

(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
+‖(I−DCΓ2)‖

Keeping the condition ‖I−DCΓ2‖ < 1 in mind, it is possible to make ρ2 < 1 for

sufficiently large λ . Therefore,∥∥∥CDα

0+ek+1

∥∥∥
λ
≤ ρ

k
2

∥∥∥CDα

0+e1

∥∥∥
λ
,
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implies that

lim
k→∞

∥∥∥CDα

0+ek+1

∥∥∥
λ
= 0.

By employing the inequality (3.21) with the last information, we get

lim
k→∞

‖ek+1‖λ
= 0,

which in fact says that limk→∞ yk = yd . The proof is completed.

Remark 3.4: Theorem 3.4 with α = β = 1 without the impulse and

non-commutativity reduces to Theorem 4.1 in the study [74].

3.3.3 Dα -Type Iterative Learning Control

In this section, we talk about some details about the concept of Dα -type and, investigate

its convergency with Dα -type for (3.11) under some conditions. Define the output

equation

yk (t) = Dxk (t)+ERLIα

0+uk (t) . (3.22)

where t ∈ [0,T ]\I. For (3.11), we employ open-loop Dα -type updating law with non-

initial state learning

∆uk (t) = Γ3

[
CDα

0+ek (t)
]

(3.23)

where t ∈ [0,T ] and Γ3 ∈ Rs×r is unknowable element which can be obtained. Here

the primary aim is to use delayed perturbation of Mittag-Leffler type matrix function

to obtain the control input uk such that the time-delay system output yk is tracking the

iteratively varying reference trajectories yd as far as possible when k→ ∞ uniformly

on [0,T ] in the sense of the λ -norm by adopting Dα -type updating ILC.

Theorem 3.5: Let yd : [0,T ]→Rs be a desired trajectory from the system (3.11). The

vector functions f (t,x) and g(x) satisfy Lipschitz condition, which means that for any
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x1,x2 ∈ Rn that there exist constants L f > 0 and Lg > 0, such that

‖ f (t,x1)− f (t,x2)‖ ≤ L f ‖x1− x2‖ ,‖g(x1)−g(x2)‖ ≤ Lg ‖x1− x2‖ .

If ‖I− (DC+E)Γ3‖ < 1, then for any initial input satisfying u0 (t) the Dα -type

updating ILC law (3.23) guarantees that yk tends to yd as k → ∞ in the sense of

λ -norm.

Proof. Consider ek+1 (t)− ek (t) :

ek+1 (t)− ek (t) = yd (t)− yk+1 (t)− (yd (t)− yk (t))

=−(yk+1 (t)− yk (t))

=
[
Dxk+1 (t)+ERLIα

0+uk+1 (t)−Dxk (t)−ERLIα

0+uk (t)
]

=−D∆xk (t)−ERLIα

0+∆uk (t)

We apply the operator CDα

0+ to the last equation,

CDα

0+ek+1 (t)− CDα

0+ek (t)

=−D
[
CDα

0+∆xk (t)
]
−E

[
CDα

0+
(
D−α

t ∆uk (t)
)]

=−D
[
CDα

0+∆xk (t)
]
−E∆uk (t)

=−D [A∆xk (t)+B∆xk (t−h)+C∆uk (t)+ [ f (t,xk+1 (t))− f (t,xk (t))]]

−E∆uk (t)

=−DC∆uk (t)−E∆uk (t)−DA∆xk (t)−DB∆xk (t−h)

−D [ f (t,xk+1 (t))− f (t,xk (t))]

=−(DC+E)∆uk (t)−DA∆xk (t)−DB∆xk (t−h)

−D [ f (t,xk+1 (t))− f (t,xk (t))]

=−(DC+E)Γ3

[
CDα

0+ek (t)
]
−DA∆xk (t)−DB∆xk (t−h)

−D [ f (t,xk+1 (t))− f (t,xk (t))]
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One can rewrite the above inequality again,

CDα

0+ek+1 (t) = (I− (DC+E)Γ3)
[
CDα

0+ek (t)
]
−DA∆xk (t)

−DB∆xk (t−h)−D [ f (t,xk+1 (t))− f (t,xk (t))]

By taking the norm on the both sides, we reach to∥∥∥CDα

0+ek+1 (t)
∥∥∥≤ ‖I− (DC+E)Γ3‖

∥∥∥CDα

0+ek (t)
∥∥∥+‖D‖‖A‖‖∆xk (t)‖

+‖D‖‖B‖‖∆xk (t−h)‖+L f ‖D‖‖∆xk (t)‖

To take λ -norm, we multiply both sides of the above inequality by e−λ t ,∥∥∥CDα

0+ek+1 (t)
∥∥∥e−λ t ≤ ‖I− (DC+E)Γ3‖

∥∥∥CDα

0+ek (t)
∥∥∥e−λ t +‖D‖‖A‖‖∆xk (t)‖e−λ t

+‖D‖‖B‖‖∆xk (t−h)‖e−λ t +L f ‖D‖‖∆xk (t)‖e−λ t

and, so we get∥∥∥CDα

0+ek+1

∥∥∥
λ
≤ ‖I− (DC+E)Γ3‖

∥∥∥CDα

0+ek

∥∥∥
λ
+‖D‖‖A‖‖∆xk‖λ

+‖D‖‖B‖‖∆xk‖λ
+L f ‖D‖‖∆xk‖λ

≤ ‖I− (DC+E)Γ3‖
∥∥∥CDα

0+ek

∥∥∥
λ

+
(
L f ‖D‖+‖D‖‖A‖+‖D‖‖B‖

)
‖∆xk‖λ

≤ σ1

∥∥∥CDα

0+ek

∥∥∥
λ
+σ2 ‖∆xk‖λ

(3.24)

where σ1 = ‖I− (DC+E)Γ3‖, σ2 =
(
L f ‖D‖+‖D‖‖A‖+‖D‖‖B‖

)
. In the proof of

Theorem (3.3), we have by using the equation (3.16) with (3.23)

‖∆xk (t)‖ ≤
(

M ‖C‖‖Γ3‖
� t

0
(t− s)α−1

∥∥∥CDα

0+ek (s)
∥∥∥ds

)
×
(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
To take λ -norm, we multiply both sides of the above inequality by e−λ t :
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‖∆xk‖λ
≤
(

M ‖C‖‖Γ3‖
� t

0
(t− s)α−1 e−λ (t−s)ds

∥∥∥CDα

0+ek

∥∥∥
λ

)
×
(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
.

by making the integral calculation in the above inequality

‖∆xk‖λ
≤ σ3

∥∥∥CDα

0+ek

∥∥∥
λ

where

σ3 = M ‖C‖‖Γ3‖
Γ(α)

λ α

(
1+LgMEα

(
L f MΓ(α)T α

))m Eα

(
L f MΓ(α)T α

)
.

By combining the last inequality with (3.24), we get∥∥∥CDα

0+ek+1

∥∥∥
λ
≤ (σ1 +σ2σ3)

∥∥∥CDα

0+ek

∥∥∥
λ
.

Since σ1 < 1, it is possible to make ρ3 := σ1 + σ2σ3 < 1 for sufficiently large λ .

Therefore, ∥∥∥CDα

0+ek+1

∥∥∥
λ
≤ ρ

k
3

∥∥∥CDα

0+e1

∥∥∥
λ
,

implies that

lim
k→∞

∥∥∥CDα

0+ek+1

∥∥∥
λ
= 0,

and employing the inequality (3.21) with the last information, we get

lim
k→∞

‖ek+1‖λ
= 0,

which in fact says that limk→∞ yk = yd . This completes the proof.

Remark 3.5: If we remove the impulsive and non-linear parts, Theorem 3.5 in this

paper reduces to Theorem 1 with γ = 1 in the study [67] on ignoring the bounded

external disturbance since ρ (I− (DC+E)Γ3) ≤ ‖I− (DC+E)Γ3‖ < 1, where ρ is

the spectral radius.

31



3.4 An Illustrative Example

We consider the iterative learning control problem of the impulsive fractional

differential time-delay equation

CD0.5
0+ xk (t) = xk (t)+ xk (t−0.3)+uk (t) , t ∈

[
0, 3

5

]
\{0.4},

xk (0,4+) = xk (0.4−)

xk (t) = t, −0.3≤ t ≤ 0,

yk (t) = xk (t)+1.2uk (t) or yk (t) = xk (t)+1.2RLI0.5
0+ uk (t) , t ∈

[
0, 3

5

]
\{0.4},

(3.25)

and P-type, D-type and Dα -type updating laws are

∆uk (t) = 0.3ek (t) ,∆uk (t) = 0.3
[
CDα

0+ek (t)
]

It is clear that the vector functions f (t,x) and g(x) satisfy Lipschitz condition.

‖I−EΓ1‖ = 0.64 < 1, ‖I−DCΓ2‖ = 0.7 < 1, ‖I− (DC+E)Γ3‖ = 0.34 < 1, so all

of conditions of Theorem 3.3, 3.4 and 3.5 are satisfied. Especially, we give extra

information like graphs and tables about P-type for each of three different original

reference trajectories. The first original reference trajectory is a continuous function

yd (t) = 12t (1− t) ,

the second original reference trajectory is a piecewise continuous function

yd(t) =


2t3, 0≤ x≤ 0.4;

3t3 +2, 0.4 < x≤ 0.6 ,

the third original reference trajectory is a piecewise trigonometric continuous function

yd(t) =


2sin4πt−1, 0≤ x≤ 0.4;

2sin4πt + cos4πt +3, 0.4 < x≤ 0.6 .

So, we have three cases. For case i, i = 1,2,3, we use the ith original reference

trajectory in the P-type iterative learning control problem (3.25) and share one figure

which includes one histogram graph as well as one chart with graphs of yd(t) and
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yk(t), i = 1,2, . . . ,10 and one table about the obtained results for each of the original

reference trajectories. The left-hand side of Figure i, i = 1,2,3 presents the output

yk (t) of the P-type iterative learning control problem (3.25) of the first 10th iterations

and the ith original reference trajectory yd (t). The right-hand side of Figure i,

i = 1,2,3 shows the infinity norm of the tracking error (see also Table i, i = 1,2,3) in

each iteration.

Table 3.1: Error ek (t) for Figure 3.2 in Case 1.
k 1 2 3 4 5 6 7 8 9 10

error 1.307 0.467 0.187 0.088 0.047 0.030 0.019 0.012 0.008 0.005
The tracking error of each iteration for the first original reference trajectory

Table 3.2: Error ek (t) for Figure 3.3 in Case 2.
k 1 2 3 4 5 6 7 8 9 10

error 1.702 0.360 0.118 0.074 0.047 0.030 0.019 0.012 0.008 0.005
The tracking error of each iteration for the second original reference trajectory

Table 3.3: Error ek (t) for Figure 3.4 in Case 3.
k 1 2 3 4 5 6 7 8 9 10

error 4.670 1.062 0.333 0.190 0.121 0.077 0.049 0.031 0.020 0.010
The tracking error of each iteration for the third original reference trajectory

Remark 3.6: We demonstrated that system (3.1) is controllable via iterative learning

control technique in spite of three different sorts of P, D, and Dα -types updating laws
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under the certain conditions of Theorems 3.3, 3.4, and 3.5 which express how to select

the design parameters. With the help of example’s section, we verified the theoretical

control results. We also showed that by using P-type updating law the output signal
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Figure 3.2: Trajectory yk (t) and error ek (t) for Case 1.
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yk tends to the original reference trajectory yd which is continuous or discontinuous

or trigonometric discontinuous. These results can be extended for D and Dα -types

updating laws.
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Figure 3.3: Trajectory yk (t) and error ek (t) for Case 2.

35



Remark 3.7: For h = 1 and T = 2, we reconsider (3.25) to show how the parameter

α effects the control performance. As one can easily observe from Tables 3.4 and 3.5,

the speed of convergence is faster when α ∈ (0,1) approaches to 1 and the other design
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Figure 3.4: Trajectory yk (t) and error ek (t) for Case 3.
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Table 3.4: ‖ek‖C for choosing α .
α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

‖e1‖C 3.1983 2.7349 2.7798 2.6463 2.5412
‖e2‖C 2.0469 1.7504 1.5416 1.3975 1.2927
‖e3‖C 1.3100 1.1202 0.9866 0.8944 0.8273
‖e4‖C 0.8384 0.7169 0.6314 0.5724 0.5295
‖e5‖C 0.5366 0.4588 0.4041 0.3664 0.3389

Table 3.5: ‖ek‖C for choosing α .
α = 0.6 α = 0.7 α = 0.8 α = 0.9

‖e1‖C 2.4310 2.3536 2.3749 2.4149
‖e2‖C 1.2085 1.1345 1.0835 1.1269
‖e3‖C 0.7734 0.7261 0.6824 0.6417
‖e4‖C 0.4950 0.4647 0.4367 0.4107
‖e5‖C 0.3168 0.2974 0.2795 0.2628

parameters connected with P-type updating law which are given in (3.12) and (3.13)

are chosen to satisfy the statements of Theorem 3.3.

3.5 Open Problems

We are sure that this paper will become a source of inspiration for the works which

will be conducted in this subject. A possible duty is to investigate approximate

controllability, exponential stability, finite time stability, asymptotic stability, and also

Lyapunov type stability of the semilinear impulsive fractional differential time-delay

equations with noncommutative coefficients. Another possible duty is to extend our

system (3.1) to the µ-semilinear impulsive fractional differential time-delay equations

with noncommutative coefficients which means that system (3.1) is reconsidered via

Caputo fractional derivative with respect to another function µ , or the semilinear

neutral impulsive fractional differential time-delay equations with noncommutative

coefficients, or the semilinear neutral impulsive fractional multi-delayed differential

equations with noncommutative coefficients, or the semilinear neutral impulsive

fractional multi-delayed differential evolution equations with noncommutative

37



coefficients, or the µ-semilinear neutral impulsive fractional multi-delayed

differential evolution equations with noncommutative coefficients. All possibilities as

noted above can be questioned once again for these new systems.
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Chapter 4

THE NEUTRAL FRACTIONAL MULTI-DELAYED

SYSTEM

Just as the most important notion in the traditional calculus is a derivative of order

n ∈ Z+, fractional derivative of order α ∈ R+ and a fractional differential equation

related to it are the heart of the fractional calculus. For this and similar reasons, many

differential equations of integer order have been converted into fractional differential

equations and their solutions, controllability and stability, etc have been examined.

Two of them are delayed fractional differential equations and neutral fractional

differential equations.

When we have a look at the studies conducted in this subject more specifically,

Khusainov and Shuklin in pioneering work [84] managed to obtain a representation of

a solution of the following delayed homogeneous linear system by defining the

delayed exponential matrix.
z
′
(x) = T z(x)+U z(x− r) , x > 0 r > 0 (delay),

z(x) = φ (x) , −r ≤ x≤ 0.

The first result for pure delay fractional differential equations is solved by Li and

Wang [85]. The first result for delay fractional differential equations with

nonpermutable case is solved by Mahmudov [86]. He was able to get a solution by

introducing delay perturbation of Mittag-Leffler type matrix function with two

parameters. You et al. [75] investigated the relative controllability of fractional delay
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system whose solution is as in the work [86]. In the sequel, Mahmudov [87] extended

the fractional delay differential equations [86] to the fractional multi-delay

differential equation with nonpermutable matrices by defining multi-delayed

perturbation of Mittag-Leffler type matrix function. The research [84] yielded plenty

of novel results on the representation of solutions [88]- [96], which are applied in the

stability analysis [97], [98], and control problems [99], [100] of time-delay systems.

On the other hand, Pospíšil and Škripková [101] considered the following neutral linear

differential equations
z
′
(x)−I z

′
(x− r) = T z(x)+U z(x− r)+ f (x), x > 0 r > 0 ,

z(x) = φ (x) , −r ≤ x≤ 0.
(4.1)

where r is a retardation, φ is continuously differentiable from [−r,0] to Rn and f is

continuous from [0,∞) to Rn. The coefficient matrices I ,T ,U are permutable, that

is I T =T I , U T =T U , I U =U I . As a special case, T = Θ, Pospíšil [102]

made a study of relative controllability of the below neutral system with permutable

matrices 
z
′
(x)−I z

′
(x− r) = U z(x− r)+ f (x), x > 0 r > 0 ,

z(x) = φ (x) , −r ≤ x≤ 0.
(4.2)

Pospíšil in this work [102] achieved to supply a description of all control functions

for system (4.2) with the aid of the shifted Legendre polynomial and granted an equal

condition of Kalman type for the relative controllability of system (4.2). You et al.

[105] proved the relative controllability for system (4.1) by Krasnoselskii’s fixed point

theorem. Zhang et al. [103] looked into the representation of the solution to the neutral

fractional linear differential system having a constant delay
CDα

0+ (z(x)−I z(x− r)) = T z(x)+U z(x− r)+ f (x), x > 0

z(x) = φ (x) , −r ≤ x≤ 0, r > 0.
(4.3)
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where CDα

0+ is Caputo fractional derivative of order α , 0 < α < 1, I ,T ,U ∈ Rn×n.

φ is continuously differentiable from [−r,0] to Rn and f is continuous from [0,∞) to

Rn. In an attempt to solve system (4.3), Zhang et al. [103] exploited Laplace integral

transform. This produced some drawback and mistakes because the representation of

power series of the fundamental solution is unknowable. Huseynov and Mahmudov in

the study [104] took the following system into consideration
CDα

0+z(x) = T z(x)+U z(x− r1)+I CDα

0+z(x− r2)+ f (x), x > 0,

z(x) = φ (x) , −r ≤ x≤ 0, r = max{r1,r2}, r1,r2 > 0.
(4.4)

By proposing delayed Mittag-Leffler type matrix function, they [104] gave the

analytic representation of solutions to linear and semilinear neutral fractional

differential difference system with time delay. The existence and uniqueness of the

solutions was demonstrated by the Banach contraction principle along with a

weighted space of continuous functions with respect to classical Mittag-Leffler

functions besides showing that it is Ulam-Hyers stable based on fixed-point approach.

Motivated by studies [84], [85], [86], [101], we consider the following neutral Caputo

fractional multi-delayed differential equations with noncommutative coefficient

matrices
CDα

0+
[
z(x)−∑

d
i=1Eiz(x− ri)

]
= Mz(x)+∑

d
i=1Uiz(x− ri)+k(x) ,x > 0,

z(x) = φ (x) , −r ≤ x≤ 0,
(4.5)

where CDα

0+ is the Caputo fractional derivative of order α ∈ (0,1). For each of

i = 1,2,3, . . . ,d, ri > 0 is a retardation and Ei, M, Ui are n-by-n coefficient matrices

which do not have to be commutative. φ (x) is an arbitrary continuously differentiable

vector function and k ∈ C ([0,T ] ,Rn) with T = lr for a fixed l ∈ N,

r = max{ri : i = 1,2,3, . . . ,d}. Subsequent to investigating the explicit solutions of
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(4.5), we reach to the explicit solutions to the below equations
CDα

0+
[
z(x)−∑

d
i=1Eiz(x− ri)

]
= Mz(x)+∑

d
i=1Uiz(x− ri)+k(x,z(x)) ,

z(x) = φ (x) , −r ≤ x≤ 0,
(4.6)

where the function k is continuous from [0,T ]×Rn to Rn and the rest of terms are the

same as (4.5).

Remark 4.1: It is clear that neutral Caputo fractional multi-delayed differential

equations with noncommutative coefficient matrices reduces to fractional linear

multi-delay differential equations in the reference [9] when for each of

i = 1,2,3, . . . ,d, Ei = Θ which is the suitable dimensional zero matrix.

4.1 The Multi-Delayed Perturbation of Mittag-Leffler Type Matrix

Function

In this section, we share main findings like introducing the neutral multi-delayed

perturbation of Mittag-Leffler type matrix function, an explicit solution of system

(4.5), the existence and uniqueness of solutions and Ulam-Hyers stability of system

(4.5).

In the rest of this chapter, we use the abbreviation the MDP of ML function for the

multi-delayed perturbation of Mittag-Leffler type matrix function.

It is a fact that the ML function is known as a generalization of the exponential

function. Delayed version which is called delayed Mittag-Leffler type matrix function

is presented in the reference [110]. Delayed perturbation version which is named as

delayed perturbation of Mittag-Leffler type matrix function is introduced in the

reference [86] and multi-delayed perturbation version which is recently given by

multi-delayed perturbation of Mittag-Leffler type matrix function is introduced in the
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reference [87] . In the current study, the MDP of ML function is given through

determining matrix equation for Q j (s) for j = 0,1,2, . . .

Q j+1 (s1,s2, . . . ,sd) = MQ j (s1,s2, . . . ,sd)+
d

∑
i=1

UiQ j (s1,s2, . . . ,si− ri, . . . ,sd)

+
d

∑
i=1

EiQ j+1 (s1,s2, . . . ,si− ri, . . . ,sd) (4.7)

Q0 (s1,s2, . . . ,sd) =Q j (−r1, . . . ,sd) = Q j (s1, . . . ,−rd) = Θ, Q1 (0, . . . ,0) = I,

Q1 (s1,s2, . . . ,sd) = Θ, si 6= 0

where si = 0,ri,2ri, . . . , Θ is the zero matrix, and I is the unit matrix.

If d = 1 for the problem with single delay determining equation has the following

simple form.

Q j+1 (s) = MQ j (s)+UQ j (s− r)+EQ j+1 (s− r)

Q0 (s) = Q j (−r) = Θ, Q1 (0) = I.

In order to calculate Q j (s) we may use the following table.

s = 0 s = r s = 2r · · ·

Q1 (s) I E E2 · · ·

Q2 (s) M ME +U +EM ME2 +UE +E (ME +U +EM) · · ·

Q3 (s) M2 M (ME +U +EM)+UM+EM2 MQ2 (2r)+UQ2 (r)+EQ3 (r) · · ·

Q4 (s) M3 MQ3 (r)+UQ3 (0)+EQ4 (0) MQ3 (2r)+UQ3 (r)+EQ4 (r) · · ·

· · · · · · · · · · · · · · ·

If M = Θ then the above table becomes simpler:
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s = 0 s = r s = 2r s = 3r · · · s = pr

Q1 (s) I E E2 E3 · · · E p

Q2 (s) Θ U UE +EU UE2 +E (UE +EU) · · ·

Q3 (s) Θ Θ U2 U (UE +EU)+EU2 · · · Θ

Q4 (s) Θ Θ Θ U3 · · ·

· · · · · · · · · · · · · · · Θ

Qp+1 (s) Θ Θ Θ Θ · · · U p

It is a high time to define the MDP of ML type matrix function by employing the

multivariate function Qk+1 (s1,s2, . . . ,sd) in the below definition.

Definition 4.1: The multi-delayed perturbation of the Mittag-Leffler type matrix

function Pα,β (x) is given by

Pα,β (x) =



Θ, x ∈ [−r,0) ,

I, x = 0,
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)
(x−∑

d
i=1niri)

mα+β−1
+

Γ(mα+β ) , x ∈ (0,∞)

(4.8)

where Θ is the zero matrix, I is the identity matrix, and (t)+ = max(0, t).

Remark 4.2: Here are some special cases depending on selections of the coefficient

matrices.

1. The MDP of ML type matrix function coincides with the Mittag-Leffler matrix

function [111], [112] provided that Ei = Ui = Θ, i = 1,2, . . . ,d i.e. Pα,β (x) =

xβ−1Eα,β (Mxα).

2. If Ei = Θ, i = 1,2, . . . ,d and Ui = Θ, i = 2, . . . ,d, then the MDP of ML type
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matrix function matches up with delay perturbation of two-parameter Mittag-

Leffler matrix function [86].

3. Pα,β (x) reduces to delayed Mittag-Leffler type matrix function [110] providing

that Ei = Θ, i = 1,2, . . . ,d and Ui = Θ, i = 2, . . . ,d, M = Θ .

4. Since the determining matrix function Qk (s) for k = 0,1,2, . . . in (4.7) is

accurately different from that one of the reference [87], the definition of the

MDP of ML function is not equal to that one of [87, Def. 3.3]. But they overlap

under the condition Ei = Θ, i = 1,2, . . . ,d. As it is remarked in [87]

multivariate determining matrix equation (4.7) is a delayed analogue of the

multinomial formula (theorem) for non-commutative matrices.

5. If d = 1, M = Θ, α = β = 1 and the coefficient matrices are permutable, in

addition to appropriate selections, Pα,β (t) reduces to X(t) in (2.4) in the paper

[101]:

X (t) =


Θ, t < 0,

k

∑
j=0

k− j

∑
i=0

U iE j

 i+ j

i

 [t−(i+ j)r] j

j! , kr ≤ t < (k+1)r, k = 0,1, ...

6. ε
r1,r2
α,β (T ,U ,I ;x) in Definition 3.1 in the work [104] can be obtained from

Pα,β (x) depending on appropriate selections ri,Ei,Ui,T , i = 1,2, ...,d.

4.2 The Explicit Solutions of Neutral Fractional Multi-Delayed

System

Prior to investigating an explicit solution of system (4.5), we present some useful

lemma and theorem to be used in the coming proofs.

Theorem 4.1: Let Pα,β (x) be as defined in (4.8).

CDα

0+

[
Pα,1 (x)−

d

∑
i=1

EiPα,1 (x− ri)

]
= MPα,1 (x)+

d

∑
i=1

UiPα,1 (x− ri)
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hold true.

Proof. To begin with the first item, we need to separately calculate

CDα

0+Pα,1 (x) =? and CDα

0+Pα,1 (x− ri) =?.

The latter is easily obtained from the former, so it is enough to compute the first one.

CDα

0+Pα,1 (x)

=
∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)
CDα

0+

((
x−∑

d
i=1 niri

)mα

+

Γ(mα +1)

)

=
∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

(
Γ(mα +1)

Γ(mα−α +1)

(
x−∑

d
i=1 niri

)mα−α

+

Γ(mα +1)

)

=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

(
x−∑

d
i=1 niri

)mα

+

Γ(mα +1)
. (4.9)

One can easily obtain

CDα

0+Pα,1 (x− rk) :=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

(
x− rk−∑

d
i=1 niri

)mα

+

Γ(mα +1)
.

If we use (4.7) in (4.9), we carry on

CDα

0+Pα,1 (x)

= M
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

(
x−∑

d
i=1 niri

)mα

+

Γ(mα +1)

+
d

∑
k=1

Uk

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,nkrk− rk, . . . ,ndrd)

(
x−∑

d
i=1 niri

)mα

+

Γ(mα +1)

+
d

∑
k=1

Ek

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,nkrk− rk, . . . ,ndrd)

(
x−∑

d
i=1 niri

)mα

+

Γ(mα +1)

= M
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

(
x−∑

d
i=1 niri

)mα

+

Γ(mα +1)

+
d

∑
k=1

Uk

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

(
x− rk−∑

d
i=1 niri

)mα

+

Γ(mα +1)

+
d

∑
k=1

Ek

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

(
x− rk−∑

d
i=1 niri

)mα

+

Γ(mα +1)

= MPα,1 (x)+
d

∑
k=1

UkPα,1 (x− rk)+
d

∑
k=1

Ek
CDα

0+Pα,1 (x− rk) ,
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which is the desired result concluding the proof of this lemma.

Lemma 4.1: Let Pα,β (x) be as in (4.8). The following mathematical equation is true:
� x

0
(x− s)−α

� s

0
Pα,α (s− t)k(t)dtds

=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

� x

0

Γ(1−α)
(
x− t−∑

d
i=1 niri

)mα

+

Γ(mα +1)
k(t)dt.

Proof. With a simple substitution as v = s−∑
d
i=1 niri−t

x−∑
d
i=1 niri−t

, we get
� x

0
(x− s)−α

� s

0
Pα,α (s− t)k(t)dtds

=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

×
� x

0

� x

t
(x− s)−α

(
s− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
dsk(t)dt

=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

×
� x

0

� x

t+∑
d
i=1 niri

(x− s)−α

(
s− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
dsk(t)dt

=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

� x

0

Γ(1−α)
(
x− t−∑

d
i=1 niri

)mα

+

Γ(mα +1)
k(t)dt.

Now, the coming theorem is one of main theorems as to the desired solutions. It gives

a part of the solution under the zero initial condition .

Theorem 4.2: The following function

z(x) =
� x

0
Pα,α (x− t)k(t)dt, x≥ 0,

is a solution of inhomogeneous system (4.5) under the condition z(x) = 0 with −r ≤

x≤ 0.

Proof. To see this, we consider the following expression by keeping Lemma 4.1 in

mind
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CDα

0+

(� x

0
Pα,α (x− t)k(t)dt

)
=

1
Γ(1−α)

d
dx

� x

0
(x− s)−α

� s

0
Pα,α (s− t)k(t)dtds

=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)
d
dx

� x

0

(
x− t−∑

d
i=1 niri

)mα

+

Γ(mα +1)
k(t)dt

=
∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)
d
dx

� x

0

(
x− t−∑

d
i=1 niri

)mα

+

Γ(mα +1)
k(t)dt

+k(x)

=
∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)
d
dx

� x−∑
d
i=1 niri

0

(
x− t−∑

d
i=1 niri

)mα

+

Γ(mα +1)
k(t)dt

+k(x)

=
∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)
d
dx

� x−∑
d
i=1 niri

0

(
x− t−∑

d
i=1 niri

)mα

+

Γ(mα +1)
k(t)dt

+k(x)

=
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

� x

0

(
x− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt +k(x) .

(4.10)

One can easily obtain

CDα

0+

(� x

0
Pα,α (x− t− rk)k(t)dt

)
=

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

� x

0

(
x− t− rk−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt

We put (4.7) and Lemma 4.1 into (4.10) to obtain the following
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CDα

0+

(� x

0
Pα,α (x− t)k(t)dt

)
= M

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

� x

0

(
x− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt +k(x)

+
d

∑
k=1

Uk

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,nkrk− rk, . . . ,ndrd)

×
� x

0

(
x− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt

+
d

∑
k=1

Ek

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,nkrk− rk, . . . ,ndrd)

×
� x

0

(
x− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt

= M
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

� x

0

(
x− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt +k(x)

+
d

∑
k=1

Uk

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

� x

0

(
x− t− rk−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt

+
d

∑
k=1

Ek

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

� x

0

(
x− t− rk−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
k(t)dt

= M
� x

0
Pα,α (x− t)k(t)dt +

d

∑
k=1

Uk

� x

0
Pα,α (x− t− rk)k(t)dt

+
d

∑
k=1

Ek
CDα

0+

(� x

0
Pα,α (x− t− rk)k(t)dt

)
+k(x)

which gives the inevitable result.

The next theorem is the last one of main theorems as to a solution of the homogeneous

part of system (4.5).

Theorem 4.3: The following Rn-valued continuous function

z(x) =

[
Pα,1 (x)−

d

∑
m=1

Pα,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

is a solution of homogeneous system (4.5) with z(x) = φ (x), −r ≤ x≤ 0 and k= 0.

Proof. Now we consider
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CDα

0+

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)
U jφ (t)dt

)

=
d

∑
j=1

� 0

−r j

∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)
CDα

0+

×

(x− r j− t−∑
d
i=1 niri

)mα+α−1
+

Γ(mα +α)

U jφ (t)dt

=
d

∑
j=1

� 0

−r j

∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

×
(
x− r j− t−∑

d
i=1 niri

)mα−1
+

Γ(mα)
U jφ (t)dt

=
d

∑
j=1

� 0

−r j

∞

∑
m=1

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

×
(
x− r j− t−∑

d
i=1 niri

)mα−1
+

Γ(mα)
U jφ (t)dt

=
d

∑
j=1

� 0

−r j

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

×
(
x− r j− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
U jφ (t)dt (4.11)

By applying (4.7) to (4.11), we get

CDα

0+

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)
U jφ (t)dt

)

= M
d

∑
j=1

� 0

−r j

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

×
(
x− r j− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
U jφ (t)dt

+
d

∑
k=1

Uk

d

∑
j=1

� 0

−r j

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,nkrk− rk, . . . ,ndrd)

×
(
x− r j− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
U jφ (t)dt

+
d

∑
k=1

Ek

( d

∑
j=1

� 0

−r j

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,nkrk− rk, . . . ,ndrd)

×
(
x− r j− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
U jφ (t)dt

)
,
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= M
d

∑
j=1

� 0

−r j

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

×
(
x− r j− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
U jφ (t)dt

+
d

∑
k=1

Uk

d

∑
j=1

� 0

−r j

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

×
(
x− r j− rk− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
U jφ (t)dt

+
d

∑
k=1

Ek

( d

∑
j=1

� 0

−r j

∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+2(n1r1, . . . ,ndrd)

×
(
x− r j− rk− t−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
U jφ (t)dt

)
= M

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)
U jφ (t)dt

)

+
d

∑
k=1

Uk

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− rk− t

)
U jφ (t)dt

)

+
d

∑
k=1

Ek
CDα

0+

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− rk− t

)
U jφ (t)dt

)
.

In a similar way, one can easily obtain

CDα

0+

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)
E j

CDα

0+φ (t)dt

)

= M

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)
E j

CDα

0+φ (t)dt

)

+
d

∑
k=1

Uk

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− rk− t

)
E j

CDα

0+φ (t)dt

)

+
d

∑
k=1

Ek
CDα

0+

(
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− rk− t

)
E j

CDα

0+φ (t)dt

)
.

Now we use variation of constant technique to determine the coefficient of the first

square bracket term in the statement theorem. With the help of Theorem 4.1 and the

obtained results of just above proof, the solution which satisfies the initial condition

z(x) = φ (x), −r ≤ x≤ 0, has in the following pattern formula,
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z(x) =

[
Pα,1 (x)−

d

∑
m=1

Pα,1 (x− rm)Em

]
κ

+
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt := φ (x)

where κ is an unknown constants. For x = 0, we get Pα,1 (0) = I, Pα,1 (−rm) = Θ,

and Pα,α

(
−r j− t

)
= Θ from the definition of Pα,β in (4.8). So, κ = φ (0). This

completes the proof.

So far we have found the parts of the step-by-step solution, now let’s put the parts

together in the below corollary which stands for a whole solution of system (4.5).

Corollary 4.1: The following Rn-valued continuous function

z(x) =

[
Pα,1 (x)−

d

∑
m=1

Pα,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

� x

0
Pα,α (x− t)k(t)dt

is a solution of system (4.5).

Now we are ready to share an equivalent definition of solution of system (4.6). The

following corollary expresses it.

Corollary 4.2: The solution of the following integral equation

z(x) =

[
Pα,1 (x)−

d

∑
m=1

Pα,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

� x

0
Pα,α (x− t)k(t,z(t))dt

is a solution of nonlinear system (4.6) and vice versa.
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Remark 4.3: Here are some special cases depending on selections of the coefficient

matrices.

1. If Ei = Θ, i = 1,2, . . . ,d and Ui = Θ, i = 2, . . . ,d, then Corollary 4.1 matches up

with Corollary 1 in the reference [80].

2. Corollary 4.1 with k= 0 reduces to Theorem 3.2 in the work [79] providing that

Ei = Θ, i = 1,2, . . . ,d and Ui = Θ, i = 2, . . . ,d, M = Θ .

3. Corollary 4.1 overlaps with Theorem 4.2 in the study [9] under the condition

Ei = Θ, i = 1,2, . . . ,d.

4. Even if the constant coefficient matrices are commutative, our findings also are

valid. If the coefficient matrices are permutable in addition to appropriate

selections, Corollary 4.1 reduces to Theorem 6 in the paper [7].

5. Corollary 4.1 reduces to Theorem 3.5 in the paper [104] on taking d = 2 and

without loss of generality E1 =U2 = Θ.

4.3 Existence and Uniqueness, and Ulam-Hyers Stability

In this subsection, we look for answers to three kinds of questions : is there a solution

for system (4.6)?, is the solution unique? Subsequent to given answers, we finis

discussing. When we look at features of each term in system (4.6) like k(x,z(x)) is

continuous, we find an explicit solution in corollary 4.1. Unfortunately, these features

or conditions are not enough to make the explicit solution unique. So, we add one

more feature to the continuous function k(x,z(x)) in order to make the explicit

solution satisfy the uniqueness. This feature is : the continuous function k(x,z(x))

satisfies the Lipschitz condition in the second component with the Lipschitz constant

Lk, that is

‖k(x,z)−k(x,y)‖ ≤ Lk ‖z− y‖ , z,y ∈ Rn.
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Prior to carrying on, we discuss an equality about Pα,α in the following lemma.

Lemma 4.2: Let Pα,α (x) be as in (4.8).
� x

0
‖Pα,α (x− s)‖ds =

∥∥Pα,α+1 (x)
∥∥

holds true.

Proof. It is easy to see that
� x

0
‖Pα,α (x− s)‖ds

=

� x

0

∥∥∥∥∥∥
∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

(
x−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)

∥∥∥∥∥∥ds

=

∥∥∥∥∥ ∞

∑
m=0

∞

∑
n1,n2,...,nd=0

Qm+1(n1r1, . . . ,ndrd)

∥∥∥∥∥
� x

0

(
x−∑

d
i=1 niri

)mα+α−1
+

Γ(mα +α)
ds

=
∥∥Pα,α+1 (x)

∥∥ .

Here is the following existence and uniqueness’ theorem.

Theorem 4.4: If the jointly continuous function k(x,z) satisfies the Lipschitz

condition in the second component with the Lipschitz constant Lk with

Lk
∥∥Pα,α+1 (T )

∥∥ < 1, then the integral equation in the corollary 4.1 is of a unique

solution in [−r,T ].

Proof. Define G : C ([−r,T ] ,Rn)→C ([−r,T ] ,Rn) by

G z(x) =

[
Pα,1 (x)−

d

∑
m=1

Pα,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

Pα,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

� x

0
Pα,α (x− t)k(t,z(t))dt

For arbitrary z,y ∈C ([−r,T ] ,Rn), we consider by using Lemma 4.2
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‖G z(x)−G y(x)‖ ≤
� x

0
‖Pα,α (x− s)‖‖k(s,z(s))−k(s,y(s))‖ds

= Lk
∥∥Pα,α+1 (T )

∥∥‖z− y‖C .

The statements of this theorem ensure that G is a contraction. By the Banach

Contraction principle, G is of a unique fixed point on [−r,T ], that is

∃!z0 ∈C ([−r,T ] ,Rn), z0 (x) = G z0 (x).

As the last theoretical result, we investigate the stability of system (4.6).

Definition 4.2: Let ε > 0. The system (4.6) is said to be Ulam-Hyers stable if for

every solution z ∈C ([0,T ] ,Rn) of inequality,∥∥∥∥∥CDα

0+

[
z(x)−

d

∑
i=1

Eiz(x− ri)

]
−Mz(x)−

d

∑
i=1

Uiz(x− ri)−k(x,z(x))

∥∥∥∥∥≤ ε, (4.12)

there exists a solution z0 ∈C ([0,T ] ,Rn) of system (4.6), and uh > 0 such that

‖z(x)− z0 (x)‖ ≤ uh.ε, x ∈ [0,T ] .

Remark 4.4: A function z ∈ C1 ([0,T ] ,Rn) is a solution of the inequality equation

(4.12) if and only if there exists a function u ∈C ([0,T ] ,Rn), such that

i. ‖u(x)‖< ε ,

ii. CDα

0+
[
z(x)−∑

d
i=1Eiz(x− ri)

]
= Mz(x)+∑

d
i=1Uiz(x− ri)+k(x,z(x))+u(x).

Theorem 4.5: Suppose that all of statements of Theorem 4.4 are hold. Then system

(4.6) is Ulam-Hyers stable.

Proof. Let z ∈ C ([0,T ] ,Rn) which satisfies the inequality (4.12), and let

z0 ∈ C ([0,T ] ,Rn) which is the unique solution of system (4.6) with the initial

condition z0 (x) = z(x) for each t ∈ [−r,0]. By keeping the definition of G and

Remark 4.4 in mind, we can acquire
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‖u(x)‖< ε, z(x) = G z(x)+
� x

0
Pα,α (x− t)u(t)dt,

and also z0 (t) = (G z0)(t) for each t ∈ [0,T ]. One can easily make the following

estimation

‖G z(t)− z(t)‖ ≤
� t

0
‖Pα,α (t− s)‖‖u(s)‖ds≤ t

∥∥Pα,α+1 (T )
∥∥ε.

We are all set to estimate ‖z0 (t)− z(t)‖:

‖z0 (t)− z(t)‖ ≤ ‖G z0 (t)−G z(t)‖+‖G z(t)− z(t)‖

≤ Lk
∥∥Pα,α+1 (T )

∥∥‖z0− z‖C + t
∥∥Pα,α+1 (T )

∥∥ε,

which provides

(
1−Lk

∥∥Pα,α+1 (T )
∥∥)‖z− y‖C ≤ t

∥∥Pα,α+1 (T )
∥∥ε,

from this just above inequality, we obtain the desired result

‖z− y‖C ≤ uhε, uh =
T
∥∥Pα,α+1 (T )

∥∥(
1−Lk

∥∥Pα,α+1 (T )
∥∥) > 0.

Remark 4.5: The results of existence and uniqueness and stability match up with

these ones of the study [104].

4.4 Relative Controllability of the Neutral Fractional Multi-Delayed

System.

In this subsection, we deal with the neutral Caputo type fractional multi-delayed

differential system while it is not only linear but also semilinear.

It is clear that Pα,β depends on the coefficient matrices Ei,M,Ui for i = 1,2, . . . ,d. In

order to make them visible, we use PE,M,U
α,β instead of Pα,β where E = ∑

d
i=1 Ei and

U= ∑
d
i=1Ui.
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Definition 4.3: [109, Definition 4] System (4.5) is said to be relatively controllable, if

for the final state zτ ∈ Rn, and time τ , any initial function φ ∈C1 ([−r,0] ,Rn), there is

a control u ∈ L∞(J,Rn) such that system (4.5) is of a solution z ∈C1 ([−r,τ] ,Rn) that

holds the initial φ and z(τ) = zτ .

Lemma 4.3: Let PE,M,U
α,β be defined as in (4.8)

•
(
PE,M,U

α,β

)T
(x) = PET ,MT ,UT

α,β (x),

•
� x

0 PE,M,U
α,α (x− s)ds = PE,M,U

α,α+1 (x),

•
∥∥∥PE,M,U

α,β (x)
∥∥∥≤P

‖E‖,‖M‖,‖U‖
α,β (x), for 0 < α < 1, 0 < β ≤ 1, and α +β ≥ 1.

Proof. Their proofs are similar to Lemma 4.2 by employing fundamental definition

PE,M,U
α,β and Lemma 2.1.

We firstly deal with the case k(x,z(x)) = 0∈Rn, x∈ J = [0,τ], i.e. the following linear

neutral fractional multi-delayed control system
CDα

0+
[
z(x)−∑

d
i=1 Eiz(x− ri)

]
= Mz(x)+∑

d
i=1Uiz(x− ri)+Su(x) , x ∈ J,

z(x) = φ (x) , −r ≤ x≤ 0,
(4.13)

whose solution is

z(x) =

[
PE,M,U

α,1 (x)−
d

∑
m=1

PE,M,U
α,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

� x

0
PE,M,U

α,α (x− t)Su(t)dt.

Now, there is no barrier to present a representation of the neutral fractional multi-

delayed Gramian matrix as noted below:

Wr,α [0,τ] =
�

τ

0
PE,M,U

α,α (τ− s)SST PET ,MT ,UT

α,α (τ− s)ds (4.14)

where ET = ∑
d
i=1 ET

i and UT = ∑
d
i=1UT

i .
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Theorem 4.6: System (4.13) is relatively controllable if and only if Wr,α [0,τ] is

nonsingular.

Proof. Necessity: Assume that Wr,α [0,τ] is singular, i.e., there exists at least nonzero

h ∈ Rn such that

Wr,α [0,τ]h = 0.

One obtains

0 = hᵀWr,α [0,τ]h = hᵀ
�

τ

0
PE,M,U

α,α (τ− s)SST PET ,MT ,UT

α,α (τ− s)dsh

=

�
τ

0

∥∥∥ST PET ,MT ,UT

α,α (τ− s)h
∥∥∥2

ds,

which implies that

ST PET ,MT ,UT

α,α (τ− s)h = 0, 0≤ s≤ τ,

or

hT PE,M,U
α,α (τ− s)S = 0, 0≤ s≤ τ.

Since system (4.13) is relatively exact controllable, according to definition, there exists

a control u1 that drives the initial state to zero at time T , i.e.,

z(τ) =

[
PE,M,U

α,1 (τ)−
d

∑
m=1

PE,M,U
α,1 (τ− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
τ− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

�
τ

0
PE,M,U

α,α (τ− t)Su1 (t)dt = 0.

Similarly, there also exists a control u2 that drives the initial state to nonzero h at time

τ
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z(τ) =

[
PE,M,U

α,1 (τ)−
d

∑
m=1

PE,M,U
α,1 (τ− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
τ− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

�
τ

0
PE,M,U

α,α (τ− t)Su2 (t)dt = h.

It follows that

h =

�
τ

0
PE,M,U

α,α (τ− t)S [u2 (t)−u1 (t)]dt,

hᵀh =

�
τ

0
hᵀPE,M,U

α,α (τ− t)S [u2 (t)−u1 (t)]dt = 0.

Thus h = 0, which contradicts with h being nonzero.

Sufficiency: Since Wr,α [0,τ] is non-singular, its inverse (Wr,α [0,τ])
−1 is well-defined.

For any final state h, the following control functions can be selected:

u(s) := ST PET ,MT ,UT

α,α (τ− s)(Wr,α [0,τ])
−1

η ,

where

η = h−

[
PE,M,U

α,1 (τ)−
d

∑
m=1

PE,M,U
α,1 (τ− rm)Em

]
φ(0)

−
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
τ− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt.

Then

z(τ) =

[
PE,M,U

α,1 (τ)−
d

∑
m=1

PE,M,U
α,1 (τ− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
τ− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

�
τ

0
PE,M,U

α,α (τ− t)SST PET ,MT ,UT

α,α (τ− t)(Wr,α [0,τ])
−1

ηdt = h.

Remark 4.6: It should be stressed out that the rank condition for the relative
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controllability for single delayed neutral non-fractional linear systems was considered

in [102]. Rank condition for the relative controllability for single delayed neutral

Caputo fractional linear systems was considered in [113], [114]. Rank condition for

the relative controllability of fractional multi-delayed neutral linear system will be

considered in forthcoming papers.

Secondly we consider the case k(x,z(x)) 6= 0 ∈ Rn, x ∈ J = [0,τ], i.e. the following

semilinear neutral fractional multi-delayed control system
CDα

0+
[
z(x)−∑

d
i=1Eiz(x− ri)

]
= Mz(x)+∑

d
i=1Uiz(x− ri)+Su(x)+k(x,z(x)) ,x ∈ J,

z(x) = φ (x) , −r ≤ x≤ 0,
(4.15)

with the solution of a form

z(x) =

[
PE,M,U

α,1 (x)−
d

∑
m=1

PE,M,U
α,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

� x

0
PE,M,U

α,α (x− t)Su(t)dt +
� x

0
Pα,α (x− t)k(t,z(t))dt. (4.16)

Prior to giving the pioneer theorem, let’s make some assumptions:

(R1) The operator Wc : L∞ (J,Rn)→ Rn given by

Wcu =

�
τ

0
PE,M,U

α,α (τ− s)Su(s)ds,

has an inverse operator W−1
c which take values in L2 (J,Rn)/kerWc.

(R2) The function k : J×Rn→ Rn is continuous and Lk(.) ∈ L∞ (J,R+) such that for

arbitrary z,y ∈ Rn

‖k(x,z(x))−k(x,y(x))‖ ≤ Lk(x)‖z(x)− y(x)‖, x ∈ J.

now, let’s introduce the following notations:

H = ‖Wc‖−1
B(Rn,L2(J,Rn)/kerWc)

,
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H1 = P
‖E‖,‖M‖,‖U‖
α,1 (τ)‖φ(0)‖+

d

∑
m=1
‖Em‖P‖E‖,‖M‖,‖U‖

α,1 (τ− rm)‖φ(0)‖

+
d

∑
m=1

� 0

−rm

P
‖E‖,‖M‖,‖U‖
α,α (τ− rm− t)

∥∥∥Umφ(t)+Em
CDα

0+φ(t)
∥∥∥dt

+NkP
‖E‖,‖M‖,‖U‖
α,α+1 (τ) ,

H2 = P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖Lk‖L∞(J,Rn) ,

where Nk=max[0,τ] ‖k(x,0)‖. One can obtain the following information from Remark

3.3 [106]

H =
√∥∥W−1

r,α [0,τ]
∥∥.

Theorem 4.7: Suppose that 1 > α ≥ 0.5, (R1) and (R2) are hold. Then system (4.15)

is relatively controllable if

H2

(
1+P

‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
< 1. (4.17)

Proof. With the aid of (R1) for any z ∈ C = C (J,Rn), we define the below control

function uz(x) :

uz(x) =W−1
c

[
zτ −PE,M,U

α,1 (τ)φ(0)−
d

∑
m=1

PE,M,U
α,1 (τ− rm)Emφ(0)

−
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
τ− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

−
�

τ

0
PE,M,U

α,α (τ− t)k(t,z(t))dt
]
(x). (4.18)

By employing this control function, we define K : C→C by

K z(x) =

[
PE,M,U

α,1 (x)+
d

∑
m=1

PE,M,U
α,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

� x

0
PE,M,U

α,α (x− t)Su(t)dt +
� x

0
Pα,α (x− t)k(t,z(t))dt. (4.19)

which is of a fixed point z being the mild solution of system (4.15).
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If we take the definition of relative controllability into consideration, system (4.15)

with (4.18) is relatively controllable if and only if (4.19) is of a solution

z ∈C ([−r,τ] ,Rn) with z(τ) = zτ and z(x) = φ(x), x ∈ [−r,τ].

It is well-known that for each ε > 0

Dε = {z ∈C : ‖z‖C ≤ ε}

is a convex, bounded and closed set of C. In an attempt to make the rest of this proof

more understandable, it is divided into three steps.

Step 1 : One can find at least a positive real number ε > 0 such that

K (Dε)⊆Dε .

It is time to compute the norm of the control function uz(x) by using (R1) and (R2)

and Lemma 4.3 and Hölder’s inequality, we get

‖uz(x)‖ ≤
∥∥W−1

c
∥∥

B(Rn,L∞(J,Rn)/kerWc)

[
‖zτ‖+

∥∥∥PE,M,U
α,1 (τ)

∥∥∥‖φ(0)‖
+

∥∥∥∥∥ d

∑
m=1

EmPE,M,U
α,1 (τ− rm)

∥∥∥∥∥‖φ(0)‖
+

d

∑
j=1

� 0

−r j

∥∥∥PE,M,U
α,α

(
τ− r j− t

)∥∥∥∥∥∥U jφ (t)+E j
CDα

0+φ (t)
∥∥∥dt

+

�
τ

0
‖Pα,α (τ− t)‖‖k(t,z(t))‖dt

]
≤ H

[
‖zτ‖+P

‖E‖,‖M‖,‖U‖
α,1 (τ)‖φ(0)‖+

d

∑
m=1
‖Em‖P‖E‖,‖M‖,‖U‖

α,1 (τ− rm)‖φ(0)‖

+
d

∑
m=1

� 0

−rm

P
‖E‖,‖M‖,‖U‖
α,α (τ− rm− t)

∥∥∥Umφ(t)+Em
CDα

0+φ(t)
∥∥∥dt

+

� x

0
P
‖E‖,‖M‖,‖U‖
α,α (τ− t)(‖k(t,z(t))−k(t,0)‖+‖k(t,0)‖)dt

]
,
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≤ H

[
‖zτ‖+P

‖E‖,‖M‖,‖U‖
α,1 (τ)‖φ(0)‖+

d

∑
m=1
‖Em‖P‖E‖,‖M‖,‖U‖

α,1 (τ− rm)‖φ(0)‖

+
d

∑
m=1

� 0

−rm

P
‖E‖,‖M‖,‖U‖
α,α (τ− rm− t)

∥∥∥Umφ(t)+Em
CDα

0+φ(t)
∥∥∥dt

+

� x

0
P
‖E‖,‖M‖,‖U‖
α,α (τ− t)dt ‖Lk‖L∞(J,R+) ‖z‖C +Nk

� x

0
P
‖E‖,‖M‖,‖U‖
α,α (τ− t)dt

]
≤ H ‖zτ‖+HH1 +HH2 ‖z‖C .

To determine ε > 0 such that K z(x) ∈ Dε , we consider by using (R1) and (R2) and

Lemma 4.3,

‖K z(x)‖ ≤P
‖E‖,‖M‖,‖U‖
α,1 (τ)‖φ(0)‖+

d

∑
m=1
‖Em‖P‖E‖,‖M‖,‖U‖

α,1 (τ− rm)‖φ(0)‖

+
d

∑
m=1

� 0

−rm

P
‖E‖,‖M‖,‖U‖
α,α (τ− rm− t)

∥∥∥Umφ(t)+Em
CDα

0+φ(t)
∥∥∥dt

+

� x

0
P
‖E‖,‖M‖,‖U‖
α,α (τ− t)‖k(t,z(t))‖dt

+

� x

0
P
‖E‖,‖M‖,‖U‖
α,α (τ− t)‖S‖‖uz(t)‖dt.

If we use control estimation in the last inequality, we get

‖K z(x)‖ ≤
(

1+P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
H1 +

(
P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
‖zτ‖

+
(

1+P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
H2 ‖z‖C

≤
(

1+P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
H1 +

(
P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
‖zτ‖

+
(

1+P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
H2ε = ε

One can easily obtain

ε :=

(
1+P

‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
H1 +

(
P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
‖zτ‖

1−
(

1+P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
H2

> 0

which provides K (Dε) ⊆ Dε Now we split the operator K into two operators K1

and K2 on Dε as follows:
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K1z(x) =

[
PE,M,U

α,1 (x)−
d

∑
m=1

PE,M,U
α,1 (x− rm)Em

]
φ(0)

+
d

∑
j=1

� 0

−r j

PE,M,U
α,α

(
x− r j− t

)[
U jφ (t)+E j

CDα

0+φ (t)
]

dt

+

� x

0
PE,M,U

α,α (x− t)Su(t)dt, (4.20)

and

K2z(x) =
� x

0
PE,M,U

α,α (x− t)k(t,z(t))dt,

for x ∈ J, respectively.

Step 2 : we will prove that K1 is a contraction. Let z,y ∈Dε . Keeping (R1) and (R2)

in mind, we get∥∥uz (x)−uy (x)
∥∥≤ H

�
τ

0
P
‖E‖,‖M‖,‖U‖
α,α (τ− t)(‖k(t,z(t))−k(t,y(t))‖)dt

≤ H
�

τ

0
P
‖E‖,‖M‖,‖U‖
α,α (τ− t)dt ‖Lk‖L∞(J,R+) ‖z− y‖C

≤ HH2 ‖z− y‖C .

So,

‖K1z(x)−K1y(x)‖ ≤
� x

0
P
‖E‖,‖M‖,‖U‖
α,α (x− t)‖S‖

∥∥uz (t)−uy (t)
∥∥dt

≤P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖HH2 ‖z− y‖C .

Since (4.17), P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖HH2 < 1, this grants us that K1 is a contraction.

Step 3 : We will demonstrate that K2 is compact and continuous. Let zn ∈ Dε with

zn → z in Dε . (R2) ensures that k(x,zn(x))→ k(x,z(x)) in C. By using dominated

convergence theorem

‖K2zn (x)−K2z(x)‖ ≤
� x

0
P
‖E‖,‖M‖,‖U‖
α,α (x− t)‖k(t,zn(t))−k(t,z(t))‖dt→ 0

as n→ ∞. So K2 is continuous on Dε . In an attempt to be able to confirm that K2 is
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compact, we must show that K2 (Dε) ⊆C is uniformly bounded and equicontinuous.

For any z ∈Dε , 0 < x < x+h < τ

K2z(x+h)−K2z(x) =
� x+h

x
PE,M,U

α,α (x+h− t)k(t,z(t))dt

+

� x

0

(
PE,M,U

α,α (x+h− t)−PE,M,U
α,α (x− t)

)
k(t,z(t))dt.

Set the following notations:

η1 :=
� x+h

x
PE,M,U

α,α (x+h− t)k(t,z(t))dt,

η2 :=
� x

0

(
PE,M,U

α,α (x+h− t)−PE,M,U
α,α (x− t)

)
k(t,z(t))dt.

Since

‖K2z(x+h)−K2z(x)‖ ≤ ‖η1‖+‖η2‖ ,

it is necessary to show that
∥∥η j
∥∥→ 0 as h→ 0, j1,2. With a simple calculation

‖η1‖ ≤
� x+h

x
‖PE,M,U

α,α (x+h− t)‖dt ‖Lk‖L∞(J,R+) ‖z‖C +Nk

� x+h

x
‖PE,M,U

α,α (x+h− t)‖dt,

and

‖η2‖ ≤
� x

0

∥∥∥PE,M,U
α,α (x+h− t)−PE,M,U

α,α (x− t)
∥∥∥dt ‖Lk‖L∞(J,R+) ‖z‖C

+Nk

� x

0

∥∥∥PE,M,U
α,α (x+h− t)−PE,M,U

α,α (x− t)
∥∥∥dt

So
∥∥η j
∥∥→ 0 for j = 1,2 as h→ 0. As a consequence, one can immediately obtain

that for z ∈Dε ,

‖K2z(x+h)−K2z(x)‖→ 0, h→ 0.

K2 (Dε) is bounded because one can easily reach to the following inequality with the

similar computation

‖K2z(x)‖ ≤P
‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖Lk‖L∞(J,R+) ε +NkP

‖E‖,‖M‖,‖U‖
α,α+1 (τ) .
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So by Arzelà-Ascoli theorem K2 (Dε) is relatively compact in C. Therefore, K2 is

compact and continuous. By Lemma 2.3, (R1) and (R2), K is of a fixed point z ∈Dε .

Obviously, z is such a solution of system (4.15) that it satisfies z(τ) = zτ and z(x) =

φ(x) with −r ≤ x≤ 0 is satisfied by (4.15). This completes the proof.

4.5 Illustrated Examples

Here are some examples to illustrate theoretical results. We now consider the following

neutral Caputo fractional multi-delayed differential equations with distinct kinds of

parameters. 
CD0.5

0+ [z(x)−E1z(x−0.2)−E2z(x−0.1)] = Mz(x)

+Uz(x−0.2)+ ex

1+ex x2 sin(z(x)) , x ∈ (0,0.4] ,

z(x) = φ (x) , −0.2≤ x≤ 0,

(4.21)

where E1 =

0.870 0.130

0 0.650

, M =

0.33 0

0.03 0.125

, U =

0.66 0.34

0.17 0.01

, and

E2 = I which are pairwise noncommutative matrices, e.g., E1U 6= UE1 and

MU 6=UM. The initial function is given by nonlinear functions φ (x) =

 x3

2x+1

.

From Corollary 4.2, one could easily obtain the closed-form formula of the solution

z(x) ∈ C
(
[−0.2,0.4] ,R2) of system (4.21) is of the integral representation as noted

below

z(x) =
[
P0.5,1 (x)+P0.5,1 (x−0.2)E1 +P0.5,1 (x−0.1)

]
φ(0)

+

� 0

−0.2
P0.5,0.5 (x−0.2− t)

(
Uφ (t)+E1

CDα

0+φ (t)
)

dt

+

� 0

−0.1
P0.5,0.5 (x−0.10− t)CDα

0+φ (t)dt

+

� x

0
P0.5,0.5 (x− t)

et

1+ et t2 sin(z(t))dt,

where P0.5,0.5 and P0.5,1 is as in (4.8). It is clear that k(x,z(x)) = ex

1+ex x2 sin(z(x))

is continuous as well as being the Lipschitz function with the Lipschitz constant Lk =
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0.16 and Lk
∥∥P0.5,1.5 (0.4)

∥∥∼= 0.186 < 1. Hence, all of conditions of Theorem 4.4 and

4.5 holds, so system (4.21) is of an unique solution in addition to being Ulam-Hyers

stable.

In order to illustrate relative controllability of the neutral fractional differential linear

multi-delayed homogeneous system , we examine the following system
CD0.9

0+ [z(x)−E1z(x−0.5)−E2z(x−0.2)] = Mz(x)

+U1z(x−0.5)+Su(x),x ∈ (0,1.5]

z(x) = φ(x),−0.5≤ x≤ 0,

(4.22)

where

M =


0.2 0.36 0.45

0.96 0 0.12

0.16 0.3 0.45

 , U1 =


0.1 0.7 0.4

0.36 0.52 0.2

0.6 0.56 0.2

 ,

E1 =


0.3 0.5 0.18

0.21 0.41 0

1.01 0.8 0.43

 , E2 =


0.4 0.98 0.4

0.3 0.81 0.87

0.2 0.41 0.87

 ,

S =


0.7 0.44 0.9

2 0.91 0.56

0.1 0.3 0.4

 ,

and φ(x) = [x2 +5 2x+4 5x+7]T ∈ R3. The closed form of the solution of system

(4.22) is
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z(x) =
[
P

∑
2
i=1 Ei,M,U1

0.9,1 (x)−E1P
∑

2
i=1 Ei,M,U1

0.9,1 (x−0.5)−E2P
∑

2
i=1 Ei,M,U1

0.9,1 (x−0.2)
]

φ(0)

+

� 0

−0.5
PE,M,U

0.9,0.9 (x−0.5− t)
[
U1φ (t)+E1

CD0.9
0+ φ (t)

]
dt

+

� 0

−0.2
P

∑
2
i=1 Ei,M,U1

0.9,0.9 (x−0.2− t)E2
CD0.9

0+ φ (t)dt

+

� x

0
P

∑
2
i=1 Ei,M,U1

0.9,0.9 (x− t)Su(t)dt.

On the other hand, a representation of the neutral fractional multi-delayed Gramian

matrix as follows:

W0.5,0.9 [0,1] =
� 1

0
P

∑
2
i=1 Ei,M,U1

0.9,0.9 (1− s)SST P
∑

2
i=1 ET

i ,M
T ,UT

1
0.9,0.9 (1− s)ds

=


0.1171 1.9438 0.0338

1.9438 0.3307 0.0353

0.0338 0.0353 0.5392

 .
We calculate the determinant of Gramian matrix W0.5,0.9 [0,1] which is -2.0123, so

W0.5,0.9 [0,1] is nonsingular. By Theorem 4.6, system (4.22) is relatively controllable.

To exemplify the neutral fractional differential semilinear multi-delayed system , we

investigate the following system
CD0.75

0+ [z(x)−E1z(x−2)−E2z(x−1)] = Mz(x)+U1z(x−2)

+Su(x)+k(x,z(x)) , 0≤ x≤ 6,

z(x) = φ (x) , −2≤ x≤ 0,

(4.23)

where

M =

 0 0.36

0.96 0.81

 , U1 =

 0.1 0.7

0.3 0

 , E1 =

 0.3 0

0.21 0.41

 ,

E2 =

 0.4 0.98

0.3 0.81

 , S =

 1 0.44

2 0.91

 ,
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and φ(x) = [1 5]T and k(x,z(x)) =
[

tan−1 z(x)
(π2x)2

sinz(x)
π6x2

]T
with the solution of a closed-

form obtained from (4.16). On having a look at the assumptions for system (4.23),

W2,0.75 [0,3] =

 5.7296−0.000i −15.4580+5.4391i

−15.4580+5.4391i −23.8019+33.8270i


and

W−1
2,0.75 [0,3] =

 0.0817−0.0123i −0.0292−0.0148i

−0.0292−0.0148i −0.0079−0.0083i


From the reference [106, Remark 3.3], we know

H =
∥∥W−1

c
∥∥

B(Rn,L2(J,Rn)/kerWc)
=
√∥∥W−1

r,α [0,τ]
∥∥,

and so, we acquire

H =

√∥∥∥W−1
2,0.75 [0,3]

∥∥∥= 0.3397,

which ensures that the inverse operator W−1
c exists, so the operator

Wc : L∞
(
[0,3],R2) → R2 satisfies (R1). The function k : [0,3] × R2 → R2 is

continuous and Lk(.) ∈ L∞ (J,R+) such that for arbitrary z,y ∈ Rn∥∥∥∥∥
[

tan−1 z(x)
(π2x)2

sinz(x)
π6x2

]T

−
[

tan−1 y(x)
(π2x)2

siny(x)
π6x2

]T
∥∥∥∥∥≤ Lk(x)‖z(x)− y(x)‖, x ∈ [0,3]

where Lk(x) = 1
π2x ∈R

+. So (R2) is hold for system (4.23). It is time to verify whether

the inequality (4.17) is satisfied

H2

(
1+P

‖E‖,‖M‖,‖U‖
α,α+1 (τ)‖S‖H

)
= 0.2765 < 1.

As a result, each of the conditions of Theorem 4.7 is verified. Theorem 4.7 provides

us that system (4.23) is relatively controllable under the control function

uz(x) =W−1
c

[
zτ −

(
PE1+E2,M,U1

α,1 (τ)+E1P
E1+E2,M,U1
α,1 (τ−2)

)
[1 5]T

−
(

E2P
E1+E2,M,U1
α,1 (τ−1)+

� 0

−2
PE1+E2,M,U1

α,α (τ−2− t)U1dt
)
[1 5]T

−
�

τ

0
PE1+E2,M,U1

α,α (τ− t)
[

tan−1 z(t)
(π2t)2

sinz(t)
π6t2

]T

dt

]
(x).
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Remark 4.7: We want to note that if we reduce relative controllability of the

semilinear neutral fractional multi-delayed control system (4.15) with permutable

matrices and one single delay and α = β = 1 to the relative controllability of neutral

delay differential equations [105], their results overlap.

4.6 New Problems

We are sure that this paper will become a source of inspiration for the works which

will be conducted in this subject. A possible duty is to verify the explicit solution

result of the nonlinear neutral fractional multi-delayed differential system with the aid

of the Laplace transform which is the most powerful tool for differential equations.

Another possible duty is to investigate approximate controllability, exponential

stability, finite time stability, asymptotic stability, and also Lyapunov type stability of

the neutral fractional multi-delayed differential equations with noncommutative

coefficient matrices. Another possible duty is to extend our system (4.5) to the

nonlinear neutral fractional multi-delayed differential evolution equation or µ-the

nonlinear neutral fractional multi-delayed differential system which means that (4.5)

is reconsidered via Caputo fractional derivative with respect to another function µ .

All possibilities as noted above can be questioned once again for these new systems.
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Chapter 5

NEW FRACTIONAL INTEGRAL AND DERIVATIVES

In order to make this section more understandable, we talk about the history of

fractional derivatives and integrals and their related notions again in addition to

information given in the section of introduction. It was understood that n was one of

the non-negative integers when one talked about derivative of order n or n-fold

integrals. Because the former was in need of knowing instantaneous rates of change,

areas under or between curves, the slopes of curves, and accumulation of quantities.

These needs produced the well-known traditional calculus. Unlike traditional

calculus, although fractional calculus at that time was a production of only innocent

curiosity which is in Leibnitz’s letter to L’ Hospital in 1695, it has been widely

improved along with the extension of the needs in the recent decades. Many

researchers not only in the past like Euler, Fourier, Abel, Liouville, Riemann,

Grünwald, Hadamard, Weyl, Erdélyi-Kober, Caputo have tried to understand and

define fractional derivatives and

integrals [131] [130] [134] [141] [135] [136] [118] [133], ones but also in the present

make an attempt to define a new derivative or integral of fractional order depending

generalizing available concepts like gamma function and appearing new ones and

needs. For instance, Katugampola [126] introduced a novel fractional operator

generalising the well-known Hadamard fractional and the Riemann-Liouville

derivatives to a individual form. Romero [137] et al. presented a novel fractional

derivative named by k-Riemann-Liouville fractional derivative by utilizing the
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k-gamma function and relationships with the k-Riemann-Liouville integral and some

features employing Laplace and Fourier transforms. Sarikaya [140] et al. gave a new

version of fractional integral called (k,s)-Riemann-Liouville fractional integral

generalising the Riemann-Liouville fractional integral and presented some features

for this one as well as new integral inequalities employing the novel version of

fractional integral. Subsequently, Azam [117] et al. developed the generalized

k-fractional derivative in the sense of Riemann-Liouville and generalized Caputo type

k-fractional derivative which are the generalized forms of some existing fractional

derivatives. Almeida [115] studied a Caputo type fractional derivative with respect to

another function and investigated some features, like the inverse law and the

semigroup law, Fermat’s and Taylor’s Theorems, etc.

Fractional calculus has a prevailing usage in the scientific world. Nowadays, it has

been employed in the areas of mathematical physics, statistical mechanics,

electrochemistry, electric conductance of biological systems, astrophysics, computed

tomography, control theory, the mathematical modelling of viscoelastic material,

thermodynamics, the modelling of diffusion, biophysics, electric conductance of

biological systems, fractional order models of neurons, hydrology, geological

surveying, signal and image possessing, engineering, finance, etc. Almeida [115] et

al. took a Population Growth Model into consideration and demonstrated that the

process utilizing a Caputo FD with respect to different functions(kernels) can be more

accurately modelled. With the help of the generalized fractional derivatives,

mathematically the variant of post-Newtonian mechanics and the relativistic-covariant

generalization of the traditional equations in the gravitational field are studied by

Kobelev [128]
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As a source of inspiration, the main works [140] [117] [115] and papers mentioned

above encourage us to describe a new fractional integral including sorts of fractional-

order integrals and two fractional derivatives which are novel and can include many

available fractional derivatives. We looked for certain their properties and found their

relations, and coped with the fundamental Cauchy problem.

5.1 The φ -Generalized R-L k-Fractional Integral and Derivative

In this section, we introduce both the φ -generalized Riemann Liouville k-fractional

integral(φ -GRL k-FI) of order α > 0 and the φ -generalized Riemann Liouville

k-fractional derivative(φ -GRL k-FD) of order α > 0. we examine some properties and

relations between them. Now, let’s start with the definition of (φ -GRL k-FI).

Definition 5.1: Let f be a continuous function on the real interval [a,b] and let φ ∈

C1 [a,b] be an increasing function with φ
′
(x) 6= 0, ∀x ∈ [a,b] . Then the φ -generalized

Riemann Liouville k-fractional integral of α > 0 is given by(
R
a+I

α,φ
k,s f

)
(x) =

s1−α

k

kΓk (α)

� x

a
(φ s (x)−φ

s (t))
α

k −1
φ
′
(t)φ

s−1 (t) f (t)dt,

where k > 0 and s ∈ R\{−1}. For the sake of simplicity, we denote φ -GRL k-FI using

the differential concept by(
R
a+I

α,φ
k,s f

)
(x) =

s−
α

k

kΓk (α)

� x

a
(φ s (x)−φ

s (t))
α

k −1 f (t)dφ
s (t) .

Depending on the selections of s,k,φ , we acquire distinct kinds of the available

definitions of fractional integrals, e.g. φ -GRL k-FI coincides with

(k,s)-Riemann-Liouville fractional integral [140] if φ (x) = x. Ifs = 1, k → 1, it

reduces to the φ -Riemann-Liouville fractional integrals [127] [139] [116] [115].

φ -GRL k-FI under the choices of s = 1, φ (x) = x, k → 1 reduces to the traditional
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Riemann-Liouville fractional integrals. Selecting φ (x) = x, k → 1, s → 0+ turns

φ -GRL k-FI into the Hadamard fractional integral [124], etc.

The following theorem expresses semi-group and commutative property of φ -GRL k-FI.

Theorem 5.1: Let f be a continuous function on the real interval [a,b] and let φ ∈

C1 [a,b] be an increasing function with φ
′
(x) 6= 0, ∀x ∈ [a,b] . Then, ∀α,β > 0

R
a+I

α,φ
k,s

[
R
a+I

β ,φ
k,s f (x)

]
=R

a+ I
α+β ,φ
k,s f (x) =R

a+ I
β ,φ
k,s

[
R
a+I

α,φ
k,s f (x)

]
.

Proof. Assume that given conditions are satisfied. By using Fubini’s theorem,

consider

R
a+I

α,φ
k,s

[
R
a+I

β ,φ
k,s f (x)

]
=

s−
α

k

kΓk (α)

� x

a
(φ s (x)−φ

s (y))
α

k −1

[
s−

β

k

kΓk (β )

� y

a
(φ s (y)−φ

s (t))
β

k−1 dφ
s (t) f (t)

]
dφ

s (y)

=
s−

α+β

k

k2Γk (α)Γk (β )

� x

a
f (t)

[� x

t
(φ s (x)−φ

s (y))
α

k −1 (φ s (y)−φ
s (t))

β

k−1 dφ
s (y)

]
dφ

s (t)

By substituting z = φ s(y)−φ s(t)
φ s(x)−φ s(t) , we obtain z = 0, z = 1, [φ s (x)−φ s (t)]z = dφ s (y), and

R
a+I

α,φ
k,s

[
R
a+I

β ,φ
k,s f (x)

]
=

s−
α+β

k

k2Γk (α)Γk (β )

� x

a
(φ s (x)−φ

s (t))
α+β

k −1 f (t)
[� 1

0
(1− z)

α

k −1 z
β

k−1dz
]

dφ
s (t)

=
s−

α+β

k

k2Γk (α)Γk (β )

� x

a
(φ s (x)−φ

s (t))
α+β

k −1 f (t)dφ
s (t)Bk

(
α

k
,
β

k

)
=

s−
α+β

k

k2Γk (α)Γk (β )

� x

a
(φ s (x)−φ

s (t))
α+β

k −1 f (t)dφ
s (t)k

Γk (α)Γk (β )

Γk (α +β )

=R
a+ I

α+β ,φ
k,s f (x) .

By changing places of α and β , commutativity of φ -GRL k-FI can be easily followed.

The following corollary says that φ -GRL k-FI is linear.

Corollary 5.1: Let g and h be a continuous function on the real interval [a,b] and let
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φ ∈ C1 [a,b] be an increasing function with φ
′
(x) 6= 0, ∀x ∈ [a,b], α ∈ R+, µ ∈ R.

Then

R
a+I

α,φ
k,s [g(x)+µh(x)] =R

a+ I
α,φ
k,s g(x)+µ

R
a+I

α,φ
k,s h(x) .

Lemma 5.1: Let an increasing function φ ∈ C1 [a,b] have the property of φ
′
(x) 6=

0, ∀x ∈ [a,b] and let α,β ,k > 0 and s ∈ R\{−1}. Then we have

R
a+I

α,φ
k,s (φ s (x)−φ

s (a))
β

k−1 =
Γk (β )

s
α

k Γk (α +β )
(φ s (x)−φ

s (a))
α+β

k −1 .

Proof. In the light of the definition of R
a+I

α,φ
k,s

R
a+I

α,φ
k,s (φ s (x)−φ

s (a))
β

k−1 =
s−

α

k

kΓk (α)

� x

a
(φ s (x)−φ

s (t))
α

k −1 (φ s (t)−φ
s (a))

β

k−1 dφ
s (t)

By substituting z = φ s(t)−φ s(a)
φ s(x)−φ s(a) , we obtain z = 0, z = 1, [φ s (x)−φ s (a)]z = dφ s (t), and

R
a+I

α,φ
k,s (φ s (x)−φ

s (a))
β

k−1 =
s−

α

k

kΓk (α)

� 1

0
(φ s (x)−φ

s (a))
α+β

k −1 (1− z)
α

k −1 z
β

k−1dz

=
s−

α

k

kΓk (α)
(φ s (x)−φ

s (a))
α+β

k −1 kBk (α,β ) .

which provides the desired result.

Definition 5.2: Let f be a continuous function on [0,∞) and let φ ∈ C1 [0,∞) be an

increasing function with φ
′
(x) 6= 0, ∀x ∈ [0,∞). s,α ∈ R+, and n,k ∈ N with n =

[α]+1. Then the φ -generalized Riemann Liouville k-fractional derivative of α > 0 is

given by (
R
a+D

α,φ
k,s f

)
(x) =

s
α−nk+k

k

kΓk (nk−α)

(
φ

1−s (x)
1

φ
′
(x)

d
dx

)n

×
� x

a
(φ s (x)−φ

s (t))
nk−α

k −1
φ
′
(t)φ

s−1 (t) f (t)dt,

where ∀0 < a < x. For the sake of simplicity and making calculations easy, we denote

φ -GRL k-FD using the differential concept by(
R
a+D

α,φ
k,s f

)
(x) =

s
α

k

kΓk (nk−α)

(
d

dφ s (x)

)n� x

a
(φ s (x)−φ

s (t))
nk−α

k −1 f (t)dφ
s (t) .
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It can be expressed as follows(
R
a+D

α,φ
k,s f

)
(x) =

(
φ

1−s (x)
d

dφ (x)

)n(
R
a+I

nk−α,φ
k,s f

)
(x) .

Depending on the selections of φ ,s,k, we can reach to many of fractional derivatives,

e.g. φ -GRL k-FD coincides with the generalized k-fractional derivative [117] if

φ (x) = x. If s = 1, k → 1, it corresponds to the φ -Riemann-Liouville fractional

derivative [127] [139] [116] [115]. φ -GRL k-FD under the special choices of s = 1,

φ (x) = x, k→ 1, reduces to the traditional Riemann-Liouville fractional derivative.

Depending on selecting suitable choices of φ ,s,k from φ -GRL k-FD, one can easily

obtain the generalized fractional derivative [126], the k-Riemann-Liouville fractional

derivative [137], the k-Weyl fractional derivative [138], the k-Hadamard fractional

derivative [121] as well as classical Riemann-Liouville fractional derivative, Weyl

fractional derivative, Hadamard fractional derivative, etc. One can find more details in

the references [127] [139] [116] [115].

Now, we discuss the inverse property of the φ -GRL k-FD.

Theorem 5.2: Let f be a continuous function on [0,∞) and let φ ∈ C1 [0,∞) be an

increasing function with φ
′
(x) 6= 0, ∀x ∈ [0,∞). s,α ∈ R+, and n,k ∈ N with n =

[α]+1. Then ∀0 < a < x,

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) =

1
kn f (x) .

Proof. With the help of both their definitions, we get

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
s

α−nk
k

kΓk (nk−α)

(
φ

1−s (x)
d

dφ (x)

)n� x

a
(φ s (x)−φ

s (y))
nk−α

k −1
(
R
a+I

α,ϕ
k,s f

)
(y)dφ

s (y)

=
s

α

k −n−α

k

k2Γk (nk−α)Γk (α)

(
φ

1−s (x)
d

dφ (x)

)n� x

a
(φ s (x)−φ

s (y))
nk−α

k −1

×
[� y

a
(φ s (y)−φ

s (t))
α

k −1 f (t)dφ
s (t)
]

dφ
s (y)
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By utilizing Fubini’s theorem, we have

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
s

α

k −n−α

k

k2Γk (nk−α)Γk (α)

(
φ

1−s (x)
d

dφ (x)

)n� x

a
f (t)

×
[� x

t
(φ s (x)−φ

s (y))
nk−α

k −1 (φ s (y)−φ
s (t))

α

k −1 dφ
s (t)
]

dφ
s (y)

By substituting z = φ s(y)−φ s(t)
φ s(x)−φ s(t) , we obtain z = 0, z = 1, [φ s (x)−φ s (t)]z = dφ s (y), and

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
s−n

k2Γk (nk−α)Γk (α)

(
φ

1−s (x)
d

dφ (x)

)n

×
� x

a
(φ s (x)−φ

s (t))n−1 f (t)
� 1

0
(1− z)

nk−α

k −1 z
α

k −1dzdφ
s (t)

In the light of the definition and properties of beta function,

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
1

k2Γk (nk−α)Γk (α)

(
d

dφ s (x)

)n� x

a
(φ s (x)−φ

s (t))n−1 f (t)dφ
s (t)kBk (nk−α,α)

=
s−n

knΓ(n)

(
φ

1−s (x)
d

dφ (x)

)n� x

a
(φ s (x)−φ

s (t))n−1 f (t)dφ
s (t)

=
1

knΓ(n)

(
d

dφ s (x)

)n� x

a
(φ s (x)−φ

s (t))n−1 f (t)dφ
s (t) .

By applying derivative of an integral of a two-variable function by n-times to the above

equality, we get the required result as follows,
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=
1

knΓ(n)

(
d

dφ s (x)

)n−1� x

a

d
dφ s (x)

(φ s (x)−φ
s (t))n−1 f (t)dφ

s (t)

=
(n−1)
knΓ(n)

(
d

dφ s (x)

)n−1� x

a
(φ s (x)−φ

s (t))n−2 f (t)dφ
s (t)

=
(n−1)(n−2)

knΓ(n)

(
d

dφ s (x)

)n−2� x

a
(φ s (x)−φ

s (t))n−3 f (t)dφ
s (t)

...

=
(n−1)!
knΓ(n)

d
dφ s (x)

� x

a
f (t)dφ

s (t)

=
Γ(n)

knΓ(n)
1

sφ s−1 (x)φ
′
(x)

d
dx

� x

a
f (t)sφ

s−1 (t)φ
′
(t)dt

=
1
kn f (x) .

Corollary 5.2: Let f be a continuous function on [0,∞) and let φ ∈ C1 [0,∞) be an

increasing function with φ
′
(x) 6= 0, ∀x ∈ [0,∞). s,α,β ∈ R+, and n,k ∈ N with

n = [α]+1. Then ∀0 < a < x,

R
a+D

α,ϕ
k,s

(
R
a+I

β ,ϕ
k,s f

)
(x) =

1
kn

(
R
a+D

α−β ,ϕ
k,s f

)
(x) .

Theorem 5.3: Let f be a continuous function on [0,∞) and let φ ∈ C1 [0,∞) be an

increasing function with φ
′
(x) 6= 0, ∀x ∈ [0,∞). s,β ∈R+, and n,k ∈N with 0≤ β <

1. Then ∀0 < a < x,

R
a+I

β ,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x) =

1
k

f (x)− s1− β

k

kΓk(β )

(
R
a+I

k−β ,φ
k,s f

)(
a+
)
(φ s (x)−φ

s (a))
β

k−1 .

Proof. Under given conditions, we have
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R
a+I

β ,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x)

=
s−

β

k

kΓk (β )

� x

a
(φ s (x)−φ

s (t))
β

k−1
(
R
a+D

β ,φ
k,s f

)
(t)dφ

s (t)

=
s−

β

k

kΓk (β )

� x

a
(φ s (x)−φ

s (t))
β

k−1
(

φ
1−s (t)

d
dφ (t)

)1(
R
a+I

k−β ,φ
k,s f

)
(t)dφ

s (t)

=
s1− β

k

k
β

k Γ

(
β

k

) � x

a
(φ s (x)−φ

s (t))
β

k−1
(

d
dφ s (t)

)1(
R
a+I

k−β ,φ
k,s f

)
(t)dφ

s (t)

=
d

dφ s (x)

 s1− β

k

k
β

k Γ

(
β

k +1
) � x

a
(φ s (x)−φ

s (t))
β

k

(
d

dφ s (t)

)1(
R
a+I

k−β ,φ
k,s f

)
(t)dφ

s (t)

 ,

applying integration by parts, we acquire

R
a+I

β ,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x)

=
d

dφ s (x)

− s1− β

k

k
β

k Γ

(
β

k +1
) (Ra+Ik−β ,φ

k,s f
)(

a+
)
(φ s (x)−φ

s (a))
β

k


+

d
dφ s (x)

 s1− β

k

k
β

k Γ

(
β

k

) � x

a
(φ s (x)−φ

s (t))
β

k−1
(
R
a+I

k−β ,φ
k,s f

)
(t)dφ

s (t)


=− s1− β

k

k
β

k Γ

(
β

k

) (Ra+Ik−β ,φ
k,s f

)(
a+
)
(φ s (x)−φ

s (a))
β

k−1

+
d

dφ s (x)

(
s1− β

k

kΓk (β )

� x

a
(φ s (x)−φ

s (t))
β

k−1
(
R
a+I

k−β ,φ
k,s f

)
(t)dφ

s (t)

)
,

arranging the last equality

R
a+I

β ,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x)

=
d

dφ s (x)

(
s
(
R
a+I

β ,φ
k,s f

)(
R
a+I

k−β ,φ
k,s f

)
(x)
)

− s1− β

k

kΓk (β )

(
R
a+I

k−β ,φ
k,s f

)(
a+
)
(φ s (x)−φ

s (a))
β

k−1

=
d

dφ s (x)

(
s
(
R
a+I

k,φ
k,s f

)
(x)
)
− s1− β

k

kΓk (β )

(
R
a+I

k−β ,φ
k,s f

)
(a)(φ s (x)−φ

s (a))
β

k−1

=
1
k

f (x)− s1− β

k

kΓk(β )

(
R
a+I

k−β ,φ
k,s f

)(
a+
)
(φ s (x)−φ

s (a))
β

k−1 .

In the following theorem, semi-group property of φ -GRL k-FD is demonstrated.
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Theorem 5.4: Let φ ∈C1 [0,∞) be an increasing function with φ
′
(x) 6= 0, ∀x∈ [0,∞).

For continuous f on [0,∞), s,α,β ∈ R+, and k ∈ N with 0 ≤ α < 1, 0 ≤ β < 1 such

that α +β < k. Assume that Ra+I
k−β ,φ
k,s f (a+) = 0. Then ∀0 < a < x,

R
a+D

α,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x) =

1
k

(
R
a+D

α+β ,φ
k,s f

)
(x) .

Proof. From the inverse and semi-group properties of φ -GRL k-FD and φ -GRL k-FI,

respectively, we obtain

R
a+D

α,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x) =

(
φ

1−s (x)
d

dφ (x)

)1
R
a+I

k−α,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x)

=

(
φ

1−s (x)
d

dφ (x)

)1
R
a+I

k−α−β ,φ
k,s

(
R
a+I

β ,φ
k,s

)(
R
a+D

β ,φ
k,s f

)
(x)

=
1
k

(
φ

1−s (x)
d

dφ (x)

)1
R
a+I

k−α−β ,φ
k,s f (x)

=
1
k

(
φ

1−s (x)
d

dφ (x)

)1(
R
a+I

k−(α+β ),φ
k,s f

)
(x)

=
1
k

(
R
a+D

α+β ,φ
k,s f

)
(x)

which is the wanted result.

Here is the commutativity and linearity of φ -GRL k-FD.

Corollary 5.3: Let φ ∈C1 [0,∞) be an increasing function with φ
′
(x) 6= 0, ∀x∈ [0,∞).

For continuous f on [0,∞), s,α,β ∈ R+, and k ∈ N with 0 ≤ α < 1, 0 ≤ β < 1 such

that α +β < k. If
(
R
a+I

k−p,φ
k,s f

)
(a+) = 0 for p = α,β , then ∀0 < a < x,

R
a+D

α,φ
k,s

(
R
a+D

β ,φ
k,s f

)
(x) =R

a+ D
β ,φ
k,s

(
R
a+D

α,φ
k,s f

)
(x) .

Corollary 5.4: Let φ ∈C1 [0,∞) be an increasing function with φ
′
(x) 6= 0, ∀x∈ [0,∞).

For continuous g,h on [0,∞), s,α ∈ R+, µ ∈ R+ and n,k ∈ N with n = [α]+ 1, then

∀0 < a < x,

R
a+D

α,φ
k,s [g(x)+µh(x)] =R

a+ D
α,φ
k,s g(x)+µ

R
a+D

α,φ
k,s h(x) .
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Lemma 5.2: Let φ ∈C1 [0,∞) be an increasing function with φ
′
(x) 6= 0, ∀x ∈ [0,∞)

, and let s,α,γ ∈ R+, n,k ∈ N with n = [α]+1. Then ∀0 < a < x,

R
a+D

α,φ
k,s (φ s (x)−φ

s (a))
γ

k =
s

α

k Γk (k+ γ)

Γk (nk+ k+ γ−α)

(
d

dφ s (x)

)n

(φ s (x)−φ
s (a))n+ γ

k−
α

k .

Proof. Because of its definition, we have

R
a+D

α,φ
k,s (φ s (x)−φ

s (a))
γ

k

=
s

α

k

kΓk (nk−α)

(
d

dφ s (x)

)n� x

a
(φ s (x)−φ

s (t))
nk−α

k −1 (φ s (t)−φ
s (a))

γ

k dφ
s (t)

By substituting z = φ s(t)−φ s(a)
φ s(x)−φ s(a) , we obtain z = 0, z = 1, [φ s (x)−φ s (a)]z = dφ s (t), and

R
a+D

α,φ
k,s (φ s (x)−φ

s (a))
γ

k

=
s

α−nk
k

kΓk (nk−α)

(
φ

1−s (x)
d

dφ (x)

)n� 1

0
(φ s (x)−φ

s (a))n+ γ

k−
α

k (1− z)
nk−α

k −1 z
γ

k dz

=
s

α−nk
k

kΓk (nk−α)

(
φ

1−s (x)
d

dφ (x)

)n

(φ s (x)−φ
s (a))n+ γ

k−
α

k kBk (nk−α,γ + k) .

which grants the desired result.

5.2 The φ -Generalized Caputo k-Fractional Derivative

In this section, we introduce the φ -generalized Caputo k-fractional derivative(φ -GC

k-FD) of order α > 0. We will discuss relations of φ -GC k-FD with φ -GRL k-FD and

φ -GRL k-FI as well as some simple properties.

Here is the definition of φ -GC k-FD.

Definition 5.3: Let f ,φ ∈ Cn [0,∞) be two functions such that φ is increasing and

φ
′
(x), x ∈ [0,∞) and let s,α ∈R+, n,k ∈N such that n := [α]+1 and k (n−1)< α <

nk. Then ∀0 < a < x, the φ -generalized Caputo k-fractional derivative(φ -GC k-FD) of

order α > 0 is(
C
a+D

α,φ
k,s f

)
(x)

=
s

α−nk
k

kΓk (nk−α)

� x

a
(φ s (x)−φ

s (t))
nk−α

k −1
[(

φ
1−s (t)

d
dφ (t)

)n

f (t)
]

dφ
s (t) .
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It can be expressed as follows(
C
a+D

α,φ
k,s f

)
(x) =R

a+ I
nk−α,φ
k,s

(
φ

1−s (x)
d

dφ (x)

)n

f (x) .

Again, we want to emphasize that we can obtain different kinds of fractional

derivatives apart from the above-mentioned ones depending on selecting the choices

of k,s,φ . For instance, φ -GC k-FD reduces to the a generalized Caputo type

k-fractional derivative [117] when φ (x) = x. On choosing k→ 1, s = 1, it coincides

with the φ -Caputo fractional derivative [127] [139] [116] [115]. φ -GC k-FD with

φ (x) = x, k→ 1, s = 1 corresponds to the well-known Caputo fractional derivative.

With the appropriate selections of φ ,s,k, one can derive a k-Caputo fractional

derivative [119], the k-Caputo Hadamard fractional derivative, the Caputo

modification of the Hadamard fractional derivative [122], the Caputo type Weyl

fractional derivative in addition to the Caputo–Hadamard fractional

derivative [122] [125], theCaputo–Erdélyi–Kober fractional derivative [129]. One can

find more details in the references [127] [139] [116] [115].

Lemma 5.3: Let φ ∈Cn [0,∞) be a function with φ
′ 6= 0, x ∈ [0,∞) and let α,β ,s ∈

R+, n,k ∈ N. Then 0 < a < x,

C
a+D

α,φ
k,s (φ s (x)−φ

s (a))
β

k−1 = s
α

k

Γk (β −nk)Γ

(
β

k

)
Γk (β −α)Γ

(
β

k −n
) (φ s (x)−φ

s (a))
β−α

k −1 .

Proof. It is easy to calculate the following equality

s−n
(

φ
1−s (x)

d
dφ (x)

)n

(φ s (x)−φ
s (a))

β

k−1 =
Γ

(
β

k

)
Γ

(
β

k −n
) (φ s (x)−φ

s (a))
β

k−n−1 .

By using the given definition of φ -GC k-FD
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C
a+D

α,φ
k,s (φ s (x)−φ

s (a))
β

k−1

=
s

α

k

kΓk (nk−α)

� x

a
(φ s (x)−φ

s (t))
nk−α

k −1
(

d
dφ s (x)

)n

(φ s (t)−φ
s (a))

β

k−1 dφ
s (t)

=
s

α

k Γ

(
β

k

)
kΓk (nk−α)Γ

(
β

k −n
) � x

a
(φ s (x)−φ

s (t))
nk−α

k −1 (φ s (x)−φ
s (a))

β

k−n−1 dφ
s (t) .

The desired thing is obtained from substituting y = φ s(t)−φ s(a)
φ s(x)−φ s(a) , and using k-Beta

function and its properties as follows,

=
s

α

k Γ

(
β

k

)
kΓk (nk−α)Γ

(
β

k −n
) (φ s (x)−φ

s (a))
nk−α

k −1+ β

k−n−1+1 kBk(nk−α,β −nk)

= s
α

k

Γk (β −nk)Γ

(
β

k

)
Γk (β −α)Γ

(
β

k −n
) (φ s (x)−φ

s (a))
β−α

k −1 .

Theorem 5.5: Let f ,φ ∈ Cn [0,∞) be two functions such that φ is increasing and

φ
′
(x), x ∈ [0,∞) and let s,α ∈ R+, n,k ∈ N such that n := [α] + 1 and

k (n−1)< α < nk. Then ∀0 < a < x,

R
a+I

α,φ
k,s

(
C
a+D

α,φ
k,s f

)
(x) =

1
kn

(
f (x)−

n−1

∑
m=0

1
m!

(φ s (x)−φ
s (a))m f (m)

φ
(a)

)

where f (m)
φ

(x) = s−m
(

φ 1−s (x) d
dφ(x)

)m
f (x).

Proof. We have

R
a+I

α,φ
k,s

(
C
a+D

α,φ
k,s f

)
(x) = R

a+I
α,φ
k,s

R

a+
I

nk−α,φ
k,s

(
φ

1−s (x)
d

dφ (x)

)n

f (x)

=R
a+ I

nk,φ
k,s

(
φ

1−s (x)
d

dφ (x)

)n

f (x)

=
s−n

kΓk (nk)

� x

a
(φ s (x)−φ

s (t))n−1
[(

φ
1−s (t)

d
dφ (t)

)n

f (t)
]

dφ
s (t)

=:
(
C
a+D

0,φ
k,s f

)
(x)
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=
1

kΓk (nk)

� x

a
(φ s (x)−φ

s (t))n−1
[(

d
dφ s (t)

)n

f (t)
]

dφ
s (t)

=
1

knΓ(n)

� x

a
(φ s (x)−φ

s (t))n−1
[(

d
dφ s (t)

)n

f (t)
]

dφ
s (t) . (5.1)

Applying n-times integration by parts, we get

= (φ s (x)−φ
s (t))n−1

(
d

dφ s (t)

)n−1

f (t)
∣∣∣∣x
a

+(n−1)
� x

a
(φ s (x)−φ

s (t))n−2

[(
d

dφ s (t)

)n−1

f (t)

]
dφ

s (t)

=−(φ s (x)−φ
s (a))n−1

(
d

dφ s (t)

)n−1

f (t)
∣∣∣∣
a

+(n−1)
� x

a
(φ s (x)−φ

s (t))n−2

[(
d

dφ s (t)

)n−1

f (t)

]
dφ

s (t)

=−(φ s (x)−φ
s (a))n−1

(
d

dφ s (t)

)n−1

f (t)
∣∣∣∣
a

− (n−1)(φ s (x)−φ
s (a))n−2

(
d

dφ s (t)

)n−2

f (t)
∣∣∣∣
a

+(n−1)(n−2)
� x

a
(φ s (x)−φ

s (t))n−3

[(
d

dφ s (t)

)n−2

f (t)

]
dφ

s (t)

...

=−(φ s (x)−φ
s (a))n−1

(
d

dφ s (t)

)n−1

f (t)
∣∣∣∣
a

− (n−1)(φ s (x)−φ
s (a))n−2

(
d

dφ s (t)

)n−2

f (t)
∣∣∣∣
a

− (n−1)(n−2)(φ s (x)−φ
s (a))n−3

(
d

dφ s (t)

)n−3

f (t)
∣∣∣∣
a

...

+(n−1)!
� x

a

d
dφ s (t)

f (t)dφ
s (t) . (5.2)

Combining (5.1) with (5.2), we reach to the craved result.

Corollary 5.5: Let f ,φ ∈ Cn [0,∞) be two functions such that φ is increasing and

φ
′
(x), x ∈ [0,∞) and let s,α ∈R+, n,k ∈N such that n := [α]+1 and k (n−1)< α <

nk. Then ∀0 < a < x,
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R
a+I

β ,φ
k,s

(
C
a+D

α,φ
k,s f

)
(x) =

(
C
a+D

α−β ,φ
k,s f

)
(x) .

Corollary 5.6: Let g,h,φ ∈ Cn [0,∞) be two functions such that φ is increasing and

φ
′
(x), x ∈ [0,∞) and let c1,c2 ∈ R, s,α ∈ R+, n,k ∈ N such that n := [α] + 1 and

k (n−1)< α < nk. Then ∀0 < a < x,

C
a+D

α,φ
k,s [c1g(x)+ c2h(x)] = c1

C
a+D

α,φ
k,s g(x)+ c2

C
a+D

α,φ
k,s h(x) .

Corollary 5.7: Let f ,φ ∈ Cn [0,∞) be two functions such that φ is increasing and

φ
′
(x), x ∈ [0,∞) and let s,α ∈R+, n,k ∈N such that n := [α]+1 and k (n−1)< α <

nk. Then ∀0 < a < x,(
C
a+D

α,φ
k,s f

)
(x) = R

a+D
α,φ
k,s

(
f (x)−

n−1

∑
m=0

1
m!

(φ s (x)−φ
s (a))m f (m)

φ
(a)

)
.

Theorem 5.6: φ ∈C1 [a,b] ,a > 0 is increasing with φ
′
(x) 6= 0, x ∈ [a,b] and let s,α ∈

R+, n,k ∈ N such that n := [α] + 1 and k (n−1) < α < nk. If f ∈ C1 [a,b], then

∀0 < a < x,

C
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) =

1
kn f (x) .

Proof. By using corollary 5.7, we have

C
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

= R
a+D

α,φ
k,s

((
R
a+I

α,φ
k,s f

)
(x)−

n−1

∑
m=0

1
m!

(φ s (x)−φ
s (a))m

(
R
a+I

α,φ
k,s f

)(m)

φ
(a)

)
Considering that(
R
a+I

α,φ
k,s f

)(m)

φ
(x) = s−m

(
φ

1−s (x)
d

dφ (x)

)m(
R
a+I

α,φ
k,s f

)
(x)

= s−m
(

φ
1−s (x)

d
dφ (x)

)m s−
α

k

kΓk (α)

� x

a
(φ s (x)−φ

s (t))
α

k −1 f (t)dφ
s (t) .

One can easily infer the following inequality from the above equation
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∣∣∣∣(Ra+Iα,φ
k,s f

)(m)

φ
(x)
∣∣∣∣≤ s−

α

k

k
α

k Γk
(

α

k −m+1
) (φ s (x)−φ

s (a))
α

k −(m+1) ‖ f‖C ,

and so
(
R
a+I

α,φ
k,s f

)(m)

φ
(a) = 0 for all m = 0,1, ...,n−1. Therefore,

C
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) = R

a+D
α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) =

1
kn f (x) .

This completes the proof.

Define the norm on Cn ([a,b] ,R) ‖.‖
C[n]

φ

: Cn ([a,b] ,R)→ R by

‖ f‖
C[n]

φ

:=
n

∑
m=0

∥∥∥ f [m]
φ

∥∥∥
C
,

where n ∈ N.

Theorem 5.7: The φ generalized Caputo k-fractional derivatives of order α > 0 are

bounded operators, i.e let f ,φ ∈ Cn [a,b] ,a > 0 be two functions such that φ is

increasing and φ
′
(x), x ∈ [a,b] and let s,α ∈ R+, n,k ∈ N such that n := [α]+ 1 and

k (n−1)< α < nk. ∥∥∥(Ca+Dα,φ
k,s f

)
(x)
∥∥∥

C
≤M ‖ f‖

C[n]
φ

where

M =
s

α−nk
k

Γk (nk−α +1)

[
φ 1−s (b)

minx∈[a,b]
∣∣φ ′ (x)∣∣

]n

(φ s (x)−φ
s (a))

nk−α

k .

Proof. Since
∥∥∥ f [m]

φ

∥∥∥
C
≤ ‖ f‖

C[n]
φ

for all 0 < a < x, we get∣∣∣(Ca+Dα,φ
k,s f

)
(x)
∣∣∣

≤ s
α−nk

k

kΓk (nk−α)

� x

a
(φ s (x)−φ

s (t))
nk−α

k −1 dφ
s (t)

[
φ 1−s (b)

minx∈[a,b]
∣∣φ ′ (x)∣∣

]n

‖ f‖
C[n]

φ

=
s

α−nk
k

kΓk (nk−α)

[
φ 1−s (b)

minx∈[a,b]
∣∣φ ′ (x)∣∣

]n
(φ s (x)−φ s (a))

nk−α

k

nk−α

k

‖ f‖
C[n]

φ

=
s

α−nk
k

(nk−α)Γk (nk−α)

[
φ 1−s (b)

minx∈[a,b]
∣∣φ ′ (x)∣∣

]n

(φ s (x)−φ
s (a))

nk−α

k ‖ f‖
C[n]

φ

,
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=
s

α−nk
k

Γk (nk−α +1)

[
φ 1−s (b)

minx∈[a,b]
∣∣φ ′ (x)∣∣

]n

(φ s (x)−φ
s (a))

nk−α

k ‖ f‖
C[n]

φ

.

which is obtained the desired result.

The solution of non-homogenous linear differential equation with the φ -generalized

Caputo k-fractional derivative under special choices of parameters is given in following

section.

5.3 Applications

In this section, we look for a solution of the Cauchy-type problem for

non-homogeneous linear φ - generalized Caputo k- fractional differential equation. A

solution of the Cauchy-type problem for φ -GRL k-FDEs in the same form can be

examined in the similar manner.

Theorem 5.8: For two functions y,φ ∈ C [0,∞) such that φ is increasing and φ
′
(x),

x ∈ [0,∞) and s ∈ R+, 0 < α < 1, k ∈ N such that 0 < α < k and λ ,c ∈ R. The

following fractional initial value problem

C
a+D

α,φ
k,s y(x)−λy(x) = f (x) , (5.3)

y(a) = c, (5.4)

is of the solution

y(x) = cE α

k

(
ϕ

α,φ
k,s (x,a)

)
+

s−
α

k

k
α

k −1

� x

a
(φ s (x)−φ

s (t))
α

k −1 E α

k ,
α

k

(
ϕ

α,φ
k,s (x, t)

)
f (t)dφ

s (t) ,

(5.5)

where ϕ
α,φ
k,s (x,y) := k1−α

k λ

(
φ s(x)−φ s(y)

s

)α

k .

Proof. By applying R
a+I

α,φ
k,s to both sides of 5.3 and using Theorem 5.2 and Corollary

5.7, we get

y(x) = y(a)+ kλ
R
a+I

α,φ
k,s y(x)+ kRa+I

α,φ
k,s f (x) .
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To solve this integral equation, we use the method of successive approximation.

According to this method, we set:

y0 (x) = y(a) ,

ym (x) = y0 (x)+ kλ
R
a+I

α,φ
k,s ym−1 (x)+ kRa+I

α,φ
k,s f (x)

where m≥ 1. For m = 1, we have

y1 (x) = y0 (x)+ kλ
R
a+I

α,φ
k,s y0 (x)+ kRa+I

α,φ
k,s f (x) .

By rewriting and regulating

y1 (x) = y(a)+ kλy(a)
s−

α

k

Γk (α + k)
(φ s (x)−φ

s (a))
α

k + kRa+I
α,φ
k,s f (x) .

Similarly we find for y2 (x) that

y2 (x) = y0 (x)+ kλ
R
a+I

α,φ
k,s

[
y(a)+ kλy(a)

s−
α

k

Γk (α + k)
(φ s (x)−φ

s (a))
α

k + kRa+I
α,φ
k,s f (x)

]

+ kRa+I
α,φ
k,s f (x) .

With the help of Lemma 5.1, one can easily reach to

y2 (x) = y(a)
3

∑
j=1

k j−1λ j−1s−( j−1)α

k

Γk (( j−1)α + k)
(φ s (x)−φ

s (a))
( j−1)α

k +
2

∑
j=1

k j
λ

j−1R
a+I

jα,φ
k,s f (x) .

By keeping on this process, we derive the following equation for ym (x), m≥ 1

ym (x) = y(a)
m+1

∑
j=1

k j−1λ j−1s−( j−1)α

k

Γk (( j−1)α + k)
(φ s (x)−φ

s (a))
( j−1)α

k +
m

∑
j=1

k j
λ

j−1R
a+I

jα,φ
k,s f (x) .

Taking the limit while m tends to ∞, we get the following explicit pattern of y(x) to the

solution of 5.3 and 5.4:

y(x) = y(a)
∞

∑
j=1

k j−1λ j−1s−( j−1)α

k

Γk (( j−1)α + k)
(φ s (x)−φ

s (a))
( j−1)α

k +
∞

∑
j=1

k j
λ

j−1R
a+I

jα,φ
k,s f (x) .

By replacing the index of summation j by j−1, we have

y(x) = y(a)
∞

∑
j=0

k jλ js− j α

k

Γk ( jα + k)
(φ s (x)−φ

s (a))
jα
k +

∞

∑
j=0

k j+1
λ

jR
a+I

( j+1)α,φ
k,s f (x) .

which provides us the required result by keeping in mind the given definition of φ -GRL

k-FI and k-Gamma and k-Beta functions and their features .
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Corollary 5.8: For 0 < α < 1, the following special case of the fractional initial value

problem (5.3)-(5.4):

C
0+D

α,x2

2,1 y(x)−2
α

2−1y(x) = 1,

y(0) = 1,

is of the solution obtained from the equation 5.6

y(x) = E α

2

((
x2)α

2
)
+2

α

2−1
� x

0

(
x2− t2)α

2−1
E α

2 ,
α

2

((
x2− t2)α

2
)

dt2, (5.6)

which is equal to

y(x) = E α

2
(xα)+21−α

2 xαE α

2
α

2 +1 (x
α) .

5.4 Suggested Problems

It is surely beyond doubt that there are lots of new things over the basement of theory

consisting of new fractional derivatives and integrals. One can research for chain rule,

exponential functions, Gronwall’s inequality, integration by parts, Taylor power series

expansions, Laplace transforms, the Rolle’s, Cauchy, Lagrange’s and Darboux’s

theorem, and all the rest in the context of both φ -generalized Riemann-Liouville and

Caputo k-fractional derivatives.
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