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ABSTRACT 

This M.Sc. thesis studies the partitions of integers, mainly restricted integers and how 

to derive them methodically. Analysis is made of different theories of calculating 

integers which are generating functions, Euler’s identity, McMahon’s recurrence, 

Sylvester’s approach, Frobenius partitions and generalized partitions. Chapter 1 shows 

how to obtain partition identities using Ferrer’s diagram, Durfee square and Jacobi’s 

triple product identity. The basic generation of partition of integers is considered first. 

This is followed by the expression of partitions using Ferrer’s diagram in chapter 2. In 

chapter 3, the number of partitions in a set of integers is calculated using the method 

of function generation. Using the preceding chapters, partition identities are obtained 

and further explained them in chapter 5 using Durfee squares and its relation to Ferrer’s 

diagram. Euler’s identity is proven combinatorically by means of bijection in chapter 

6 and Euler’s pentagonal number is used to represent a special case of Jacobi’s triple 

product identity in chapter 7. When the pattern of a pentagonal number is notable, 

McMahon’s approach is used to generate functions to calculate partitions in restricted 

integers as discussed in chapter 8. The first Sylvester wave is defined which is an 

explicit formula for the polynomial part of a restricted partition function. The last three 

chapters looks at special cases in generalized partitions and use Euler’s result for 

identically distributed partitions. 

Keywords: Generating functions, Restricted integers, Euler’s identity, Euler’s 

pentagonal number, Ferrer’s diagram, Durfee square, McMahon’s approach, Bijection, 

Sylvester wave, Generalized partitions, Euler’s result. 
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ÖZ 

Bu tez, tamsayıların, özellikle kısıtlı tamsayıların bölümlerini ve bunların metodik 

olarak nasıl türetileceğini inceler. Analiz, üreten fonksiyonlar, Euler'in kanunu, 

McMahon'un tekrarı, Sylvester'ın yaklaşımı, Frobenius bölümleri ve genelleştirilmiş 

bölümler gibi tamsayıları hesaplamak için farklı teorilerden yapılmıştır. Bölüm 1, 

Ferrer diyagramı, Durfee karesi ve Jacobi'nin üçlü ürün kimliği kullanılarak bölüm 

kimliklerinin nasıl elde edileceğini gösterir. İlk önce tamsayıların bölünmesinin temel 

nesli düşünülür. Bunu, bölüm 2'deki Ferrer diyagramını kullanarak bölümlerin ifadesi 

takip eder. Bölüm 3'te, bir tamsayı kümesindeki bölümlerin sayısı, fonksiyon 

oluşturma yöntemi kullanılarak hesaplanır. Önceki bölümleri kullanarak, bölüm 

kimlikleri elde edilir ve Bölüm 5'te Durfee kareleri ve bunun Ferrer diyagramıyla 

ilişkisi kullanılarak daha ayrıntılı olarak açıklanır. Euler'in kanunu, 6. bölümde 

alıntılama yoluyla kombinatorik olarak kanıtlanmıştır ve Euler'in beşgen sayısı, 7. 

bölümde Jacobi'nin üçlü ürün kimliğinin özel bir durumunu temsil etmek için 

kullanılmıştır. Beşgen bir sayının modeli dikkate değer olduğunda, McMahon'un 

yaklaşımı, 8. bölümde tartışılan kısıtlı tamsayılardaki bölümleri hesaplamak için 

fonksiyonlar oluşturmak için kullanılır. Kısıtlı bir bölme fonksiyonunun polinom 

kısmı için açık bir formül olan ilk Sylvester dalgası tanımlanmıştır. Son üç bölüm, 

genelleştirilmiş bölmelerdeki özel durumlara bakar ve özdeş olarak dağıtılmış 

bölümler için Euler'in sonucunu kullanır. 

Anahtar Kelimeler: Üreten fonksiyonlar, Kısıtlı tamsayılar, Euler'in özdeşliği, 

Euler'in beşgen sayısı, Ferrer'in diyagramı, Durfee karesi, McMahon'un yaklaşımı, 

Bijection, Sylvester dalgası, Genelleştirilmiş bölümler, Euler'in sonucu. 
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Chapter 1 

INTRODUCTION 

In 1674, Gottfried Leibniz, a mathematician introduced the study of integer partitions. 

His main objective was to get a clear understanding of how many times a positive 

integer can be subdivided into partitions and still find the sum of the number 

(Cameron, 1994). For instance, let us consider n as the partition, it becomes a positive 

integer, having its parts as positive integers p1, p2, p3………. Pn which when added 

together totals to be the m value. The p1 or p2 is what is referred to as partition parts. 

The number of partitions is denoted by p(m) for m which is the integer. This paper 

examines what is integer partition identities, their terms, theorems, and applications. 

Example 1: p (5) =7, this means all the 7 partitions of integer m = 5 are: 5= (5), (4, 1), 

(3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1). 

•p (m, r) represents how many division of m with r segments, for example             

p(5,1) =1, p(5,2) =2,  p(5,3) =2, p (5,4) = 3,  p(5,5) = 3,  p(5,6) = 4 and p(5,7) =5. 

• p (m) represents the whole quantity of m. 

• q (m, r) represents how many divisions of m with r distinct parts. 

• p (m) represents the total quantity of division of m with distinct parts. 

 

The number of integer partition p(m) was difficult to find when m was a large value. 

The challenge was finally solved by the development of function generations which 

made it simple to calculate partitions total in an integer (Wilson & Van Lint, 2001).  
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The generating function for the number of partitions of m would be: 

 p(𝑧) =  (1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ )(1 + 𝑧2 + 𝑧4 + 𝑧6 + ⋯ )(1 + 𝑧3 + 𝑧6 + 𝑧9 + ⋯ ).. 

                      p(z) = (
1

1−𝑧
) (

1

1−𝑧2
) (

1

1−𝑧3
)…(

1

1−𝑧m
)… 

                               p(z) = ∏
1

1−𝑧𝑢
  𝑢≥1                                                                       (1.1) 

where (1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ ) gives number of 1s in the partition, 

           (1 + 𝑧2 + 𝑧4 + 𝑧6 + ⋯ ) gives number of 2s in the partition, and so on. 

However, various theories arose while trying to calculate the total number of partitions 

in all forms belonged to the integers. 
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Chapter 2 

FERRER’S DIAGRAM 

(Yee, 2003) defined Ferrer’s diagram as a model of integer partition that gives a great 

overview of visualizing the parts and giving identities. Ferrer came up with the model 

by constructing a stack on the left side row cells. The total cells in every row aligns 

with the part sizes. On the other hand, rows were aligned according to their size with 

the first-row corresponding to the largest part and so forth. For instance,  

 

 

 

 

 

 

 

Figure 1: The Ferrer’s diagram for (5, 3, 3, 2) 

When the conjugate is inverted for columns to be rows and rows to be columns, the 

diagram appears as Figure 2 and is represented as the λ∗ to denote the conjugate of λ, 

and λ∗ = (5, 3, 3, 2) ∗ = (4,4,3,1,1) is obtained. 
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Figure 2: Conjugate of figure 1 partition 

Firstly, we should notice that our original partition is the conjugate of the conjugate, 

meaning (λ∗) ∗ = λ. So (4,4,3,1,1) ∗ = (5,3,3,2) = λ. Secondly, λ total parts is the same 

to the λ∗ biggest part. In example 1, m=5 has r=4 parts which is λ∗ biggest part. Hence 

p(m, r) is likely the quantity of divisions of m with r parts, with the biggest part λ1 = r. 

The form λ∗ is constructed straightforwardly excluding the Ferrer’s charts. Consider λ 

= (λ1, λ2..., λk) and its form be λ∗ = (λ1
∗, λ2

∗...λh
∗), we find out λ1

∗ = k and λ1= h.  

We know that the size of λu
∗ is the size of column u in λ, likewise in this column, there 

is a single cell for each row of size at least u. Hence λu
∗ is equivalent to the quantity of 

parts ≥ u in λ, or same to the biggest v so that λv ≥ u.  

 

Example 2: By computing (4,4,3,3,3,1) ∗ to get (6,5,5,2), λ6 of λ becomes the last 1, 

λ5 is the last part ≥2 and the last 3, λ2 is the last 4 in λ.  

 

Example 3: Using Figure 1 for (5,3,3,2), λ4 is the last 2, λ3 is the last 3, λ1 is the last 

part ≥4 and the last 5.  
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We refer a partition as a self-conjugate when λ∗ = λ, implying that the Ferrer’s graph 

is symmetric, as shown in Figure 3, where λ = (5,4,2,2,1):  

 

 

 

 

 

 

 

Figure 3: Ferrer’s graph of λ = (5,4,2,2,1) 

Using the Ferrer’s diagrams, the following partition theory are proven; 

First theory: k(m) is another quantity of divisions of m into distinct, odd parts.  

Proof: φ(λ) is referred as the partition with hooks parts in the diagram of λ, by the self-

conjugate λ when a bijection φ from {self-conjugate λ |- m} to {λ |- m with distinct odd 

parts} is given. 

This gives us φ((5,4,2,2,1)) = (9,5). Each hook contains an odd size since it is 

symmetric in the middle, and each hook is bigger than the following one. Hence φ(λ) 

has unique odd parts. Likewise, we can create corresponding symmetric hooks by 

having the distinct odd a given distinct odd numbers, a related symmetric can be made 

to attach and rest them as one into a graph. We can have a bijection if φ−1 is defined. 

  

Second theory: The m total partitions with l, the parts are same to integer m total 

partition with l as its largest part. Considering Ferrer’s diagram, function p(m, l) 

defines the numbers of m partitions with its greatest part equaling to l.   
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Let’s consider looking for a simple way of defining the function which leads to 

∑ p(m)zm∞
m=0  by generating the function from Euler’s theory for the sequence 

{p(m)}m=0
∞ . 

 

Let’s consider, obtaining ∑ p(m)zm∞
m=0  as our result by expanding to 

  (1 + z + z2 + z3···) (1 + z2 + z4 + z6···) (1 + z3 + z6···) (1 + z4 + z8···) ···              (2.1) 

From the product of equation (2.1), we get a geometric series from every term and its 

products can be as: 

1

1 − z
⋅

1

1 − z2
⋅

1

1 − z3
… 

The above observation can lead to Euler’s Theorem that will be discussed later. 

 

Another example for similar variations can be derived; 

 Example 4: By taking z3 as a coefficient and choose z for the primary parenthesis, z2 

following, together with 1 from the other parentheses, the summation of 1 is gotten as 

the coefficient of z3. Likewise, if z3 is chosen from the third parenthesis, and 1 from all 

others, the result is the coefficient of z3 from the contribution of 1.  

 

The example is related to integer partition if the total times part u appear in the partition 

is denoted by monomial chosen from the u-th which is 1+xu+x2u+x3u . . ., in (2.1) above.  

The value of u will be seen cu times in the partition if the monomial chosen from the   

u-th which is 1+xu+x2u+x3u …, in (2.1) above. The value of u will be seen cu times in 

the partition if the monomial  𝑧𝑐𝑢𝑢  from the u-th parenthesis is considered.  
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We generate a single contribution to the coefficient of zn and in general by choosing 

every monomial. If only the contributions occur in the form z1c
1 ·z2c

2 ·z
3c

3
 ··· = 

zc
1+2c

2+3c
3 . . .  

Hence, the coefficient of zn is the number of ways of representing n = c1 + 2c2 + 3c3 

+··· where each cu ≥ 0. 

2.1 The Frobenius Partitions 

Given λ, Frobenius saw the opportunity to give an immediate conjugate of a partition 

using Ferrer’s diagram of λ.  

 

Example 5:  the Frobenius notation for 7+7+5+4+2+2 is given as follows: 

First, we draw the Ferrer’s graph for the partition 

 

 

 

 

Figure 4: Ferrer’s graph of λ = (7,7,5,4,2,2) 

Then we delete the main diagonal shown in Figure 4. The columns and rows to the 

right and left of the diagonal, respectively, are computed as strictly decreasing 

sequence of integers.  
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If there are no ‘cells’ to the right and below of the diagonal’s last cell, we produce 0. 

Thus, for our example, we obtain the Frobenius notation as (
6 5 2 0
5 4 1 0

) and the 

conjugate partition will be (
5 4 1 0
6 5 2 0

). 

 Example 6: Given the partition 5+5+4+4+2+2+1, we draw the Ferrer’s graph and 

give the Frobenius notation as follows:  

 

 

 
 

 

Figure 5: Ferrer’s graph of λ = (5,5,4,4,2,2,1) 

Frobenius notation: (
4 3 1 0
6 4 1 0

) 

Example 7: Using m=27 in example 5, another partition for 27 is 7+6+6+3+3+2 and 

we give the Frobenius notation as follows: 

 

  

Figure 6: Ferrer’s graph of λ = (7,6,6,3,3,2) 
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Frobenius notation: (
6 4 3
5 4 2

) 
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Chapter 3 

GENERATING FUNCTIONS FOR PARTITIONS 

By generating function, the elements of one identity function are the same as the 

numbers of elements in another different identity (Yee,2003). However, this approach 

is different from the bijective proof where a bijection between the identity of two 

different sets of objects is used. 

We can consider generating function P(z) which is equal to ∑ p(n)zm∞
m=0  that 

represent the total partitions of m numbers in relation to quantity zm for a segment of 

m. 

 By considering a form segment λ of unrestricted m, each positive integer u can be 

chosen individually how many times it can be included as a part of λ.  We contribute 

each part of u to the overall size of m by using u as a part.  

The generating function for the choice of using any quantity of reoccurrence of part u, 

the generating function is represented as 1+ zu + z2u +···= 1/(1−zu). Multiplication of 

all u, the result obtained is; 

p(z) = ∑ p(m)zm

n

= ∏
1

1 − zu
=

∞

U=1

1

(1 − 𝑧)(1 − 𝑧2)(1 − 𝑧3)
… 

(3.1) 
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 To get any certain p(m) as a coefficient, all the terms having z to a power m or reduced 

are multiplied.  

 

An example to prove the above, consider multiplying the product,                           

1

1 − z
⋅

1

1 − z2
⋅

1

1 − z3

1

1 − z4

1

1 − z5
… 

taking z7 as our final consideration, every segments of m for m = 0 to 7 is computed 

by comparing the coefficient of the values of p(0) through p(7). We obtain endless 

variations through the strategy used to represent p(z).  

For instance; 

I. Work only with the terms for u = 1, 2..., n to obtain 

p≤m(z) = ∑ p≤m(m)zm =  ∏
1

1−zu =
n

U=1

1

(1−𝑧)(1−𝑧2)…(1−𝑧𝑛)
                                          (3.2) 

and to count partitions whose parts are represented by ≤ n. The division between 

divisions of m with most n parts and a partition of m with parts ≤ n is given by taking 

the conjugate partition. Hence P≤n(z) estimates also divisions no more than n parts.  

II. We use conjugates and quantity of segments having the biggest part equivalent to n 

to get the segments with specifically n parts. A similar case to equation 3.2, except 

that the factor 1/(1−zn) is replaced with zn +z2n +··· = zn / (1−zn) to prove that a single 

part should be same as n. Thus, giving the generating function as 

                                     pm(z) = ∑ p(m, n)zn
m =

xn

(1−𝑧)(1−𝑧2)…(1−𝑧𝑛)
 (3.3) 

III. We determine the number o(m) belonging to m as a partition working only odd 

parts by using the terms of odd values u, then obtain the function generated as 

          O(z) = ∑ 𝑂(𝑚)𝑧𝑚
𝑛  = ∏

1

1−zu
u odd

 = 
1

(1−𝑧)(1−𝑧3)(1−𝑧5)
…                (3.4) 
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IV. We can obtain the generating function by counting distinct parts partitions, by 

only selecting for every u by determining either to use the part u singly or not use it 

completely, meaning, our partition will be set instead of a multiset.  

Therefore, we replace the factor 1/(1−zu) in P(z) with (1+ zu), 

Q(z) = ∑ 𝑞(𝑚)𝑧𝑚
𝑚

 = ∏ (1 + zu)∞
u=1  =  (1 + z) (1 + z2) (1 + z3)…                     (3.5) 

V.  A generating function can be obtained by combining the formula of examples  

        III and IV by counting partitions with distinct, odd parts. 

         K(z) = ∑ 𝑘(𝑚)𝑧𝑚
𝑚

 = ∏ (1 + 𝑧𝑢)
𝑢=𝑜𝑑𝑑

 = (1 + z) (1 + z3) (1 + z5)···                    (3.6) 

This is also an example of obtaining a function generated by recording self-conjugate 

segments:  

                                       K(z) = ∑ 𝑘(𝑚)𝑧𝑚
𝑚

                                                                                       (3.7) 

VI. Considering two-variable generating function for all partitions, p (m, n) can be 

obtained as a generating function by counting segment λ = (λ1, λ2..., λn) |- m with 

quality of snzm having m as the size and n as the quantity of parts. Then szu becomes 

the factor that gives the quantity summation for one part instead of just zu and 

accordingly, the generating function is obtained  

 p(z, s) = ∑ p(m, n)snzm
m,n  =∏

1

1−szu
=

∞

u=1

1

(1−𝑠𝑧)(1−𝑠𝑧2)(1−𝑠𝑧3)
 … (3.8) 

      We go back to our actual generating function P(z) by setting s = 1. 
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Chapter 4 

PARTITION IDENTITIES 

According to (Andrews & Eriksson, 2004), partition identities can be determined in 

several ways.  

For instance, p(m, n) was counted into two essentially different ways in the previous 

section. By applying the 2-variable generating function directly to get, 

          p(z, s) = ∑ p(m, n)snzm
m,n  = ∏

1

1−szu

∞

u=1
                                            (4.1) 

and by applying conjugation indirectly as our second method to get 

     pn(z) = ∑ p(m, n)zn
m =

xn

(1−𝑧) … (1−𝑧𝑛)
 .                                                            (4.2) 

 By summing these two equations we obtain a 2-variable generating function with a 

factor sn for all n: 

     p(z, s) = ∑ p(m, n)snzm
m,n = ∑ pn(z)sn

n = ∑
snzn

(1−z)⋯(1−zn)
n

         

getting our partition identity as 

    ∏
1

1−szu

∞

u=1
 = ∑

snzn

(1−z)⋯(1−zn)

∞

n=0
                                                       (4.3) 

The result is a purely algebraic identity, though we derived it combinatorically.  

Mainly in combinatorics, we focus on finding combinatorial elaborations for algebraic 

identities however, the above identities are primarily derived with completely different 

methods which can be explained in future combinatorically.  
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A subtler combinatorial analysis of the Ferrer’s diagram enables us to obtain further 

identities. For instance, an analog for partitions with distinct parts like the above work. 

If n distinct parts belong to λ, its diagram should obtain a “staircase” segment (n−1, 

n−2...,1). Besides, it should be noted that, the segments of a common division with n 

parts are the same as the rows of the difference, and the former partition might be 

arbitrary. This is illustrated in the figure below using λ = (6,5,3,1). 

 
 

Figure 7: Ferrer’s diagram for λ = (6,5,3,1) 

On the left of Figure 7 is the model of λ together with some staircase diagram denoted 

as ∗’s found inside it. On the right is the corresponding difference partition. A partition 

with n distinct parts can be chosen by considering an ordinary partition with n parts 

and later use a staircase to boost it. This leads to the addition of (
n
2

) on n whole 

estimate or multiplication of the function generated by z(n
2).  

This gives the function generated below: 

 Qn(z) = ∑ q(m, n)zn
m  = 

zn+(n
2)

(1−z)⋯(1−z)n
                                                       (4.4) 

For partitions with distinct parts, we work out as above and result to partition identity 

for: 

∗ ∗ ∗ 

∗ ∗ 

∗ 
←→ 
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Q(z, s) = ∑ q(m, n)snzm
m,n  = ∏ (1 + szu)∞

u=1 = ∑
snzn+(n

z)

(1−z)⋯(1−zn)

∞

n=0

 .              (4.5) 

Reversibly, we can also apply the connection between partition combinatorics and 

algebraic identities and obtain complex combinatorial facts.  

We can use the generating functions found in the previous section that were applied 

on segments with distinct parts, 

                                        Q(z) = (1 + z) (1 + z2) (1 + z3) ···                                     (4.6) 

and those applied on partitions with odd parts 

                                             O(z) = 
1

(1−𝑧)(1−𝑧3)(1−𝑧5)
…                                     (4.7) 

We write O(z) with the results of (1−zu) with every u in the lower part (denominator), 

canceled with the result for even u in the upper part (numerator) in order to simplify 

it, 

                                       O(z) = 
(1−𝑧2)(1−𝑧4)(1−𝑧6)…

(1−𝑧)(1−𝑧2)(1−𝑧3)…
 

                                         = 
∏ (1− 𝑧2u) 

u

∏ (1− 𝑧u) 
u

 

but (1 − z2u)/ (1 – zu) = 1 + zu, giving  

                                        O(z) = ∏ (1 +  𝑧u) 
u

= Q(z)                                             (4.8) 

Thus, using simple algebraic manipulation together with the generating function we 

have proved the combinatorial identity that is equation (4.8).  

The total o(m) segments of m into odd parts is equivalent to the q(m) partitions of m 

into specific parts for every m. 
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Chapter 5 

THE DURFEE SQUARE 

Through the analysis of the Ferrer’s diagrams another method of obtaining partition 

identities using the Durfee square is discovered (Gessel, 1984).  The only biggest 

model of partition that can occupy the above left side in the Ferrer’s graph is the Durfee 

square of λ. For instance, in Figure 8, the Durfee square is denoted with ∗’s: 

 

 

 

 

 

 

Figure 8: Durfee Square in Ferrer’s diagram  

When the square is d by d, d becomes λ representing the Durfee quantity. The other 

parts of the illustration λ have double parts, known as the hand (denoted by h’s) and 

another the toes (denoted by t’s). Both the hand and the toes represent diagrams 

themselves.  The partition with at most d segments can have both the hand and the 

toes. 

∗ ∗ ∗ h h h 

∗ ∗ ∗ h h  

∗ ∗ ∗   

t   

t 

∗ ∗ h 

   

∗ ∗ h 

t t  

t  

∗ h h h 

t    

t 
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In case Durfee number d with a part of unrestricted n is shown, the D square is started 

later the hand and toes can be chosen independently. The D square adds up d2 to the 

whole n size. The choice of the hand and of a toe generating function is given as; 

                                  P≤d(z)=
1

(1−z)(1−z2)…(1−𝑧𝑑)
                                                     (5.1) 

By multiplication, we obtain the Durfee number d together with the generating 

function as;  

                                  zd2
 P≤d(z)2 = 

zd2

(1−z)2(1−z2)2.  .  .  (1−zd)
2               (5.2)                                 

We get the identity below by totaling all the values of d which by addition principle 

gives P(z). 

∏
1

1−xi

∞

i=1
 = ∑

xd2

(1−x)2(1−x2)2.  .  .  (1−xd)
2

∞

d=0

 

                  = 1 +
𝑥

(1−𝑥)2
+

𝑥4

(1−𝑥)2(1−𝑥2)2
 + 

x9

(1−x)2(1−x2)2(1−x3)2
 + . . .       (5.3) 
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Chapter 6 

THE EULER’S IDENTITY 

Euler discovered the partition equivalences below, 

 ∏ (1 −  𝑧u) 
u

= 1 + ∑ (−1)n(z(3n2− n)∕2 + z(3n2+ n)∕2)
∞

n=1
                                         (6.1) 

Starting from the right, it elaborates a power series having many terms as zero, the rest 

having a coefficient t±1; this occurs from the exponents zm having m as the form 

(3n2±n)/2 (Andrews, 1986). The equation can be written clearer by writing terms to 

read as:  

(1 − z) (1 − z2) (1 − z3) ··· = 1 − z − z2 + z5 + z7 − z12 − z15 + z22 + z26 − ··· 

Euler’s identity can be interpreted combinatorically and proven to employ a bijection 

                               Q(z, s) = ∏ (1 + szu)∞
u=1                                                          (6.2) 

which represent partition into specific parts from the generating function, considered 

having weight of snzm for the partition λ belonging to m with n parts. λ is represented 

as a partition of m into distinct parts by using a notation λ |= m. 

Using s = −1 in Q(z, s), if a partition into distinct parts has an even number of parts 

then its weight is set to zm and−zm, if it possesses an odd number of parts. We know, 

Q(z, −1) is the left hand side of Euler’s identity. 

Therefore, the coefficient of zm in Q(z, −1) is  

| {λ |= m, even number of parts} |−| {λ |= m, odd number of parts} |.                    (6.3) 
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We must show the equivalence by proving the contrast in equation (6.3) is likewise 

estimated by the right-hand side of the generating function in equation (6.2).  

 

Identity (6.1) holds when we can prove that (λ |= m, even number of parts) equals the 

same number as (λ |= m, odd number of parts) unless m is a pentagonal number. A 

number is a pentagonal number if it can be represented as a pattern of pentagonal dots. 

The first few are 0,1,2,5,7,12,15. In the case m is a pentagonal number, when n is even, 

we will have an additional segment λ of even parts and when n is odd, we will have 

similar additional segment but with odd parts. We obtain our “wedge-shaped” 

segments (2n −1, 2n −2,…, n) and (2n, 2n−1,..., n +1), for every n for the additional 

partitions (George E. Andrews and Kimmo Eriksson, 2004). For n=3, we have the 

following: 

 

                      

  

 

            Figure 9: Ferrer’s diagram for n=3 

From the above, the initial wedge (left) is a segment of (3n2 −n)/2 and the following 

(right) is a segment of (3n2+n)/2.  
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It is then proven that the properties below are specifically for wedges partition. First, 

every one of the parts is successive. Secondly, the final part can be equivalent to the 

quantity of parts n, or n+1.  

The hypothesis is proven by making a bijection between non-wedge having distinct 

even parts of λ and non-wedge odd distinct odd parts of λ. 

 

The involution S is used for all non-wedge parts having distinct parts and a bijection 

is defined. S involution is defined as an activity with an end goal making S◦S the 

identity, for instance, in the event that it is done two times, it is returned to where it 

started. The involution is arranged to convert the quantity of parts by 1 or -1, therefore 

S(λ) should consistently consist precisely one less or more part than λ. 

  

Double numbers dictated by the outline of λ |= n is utilized to characterize S, and a(λ) 

define as the most little piece of λ or the length of the last row in the illustration.  We 

have b(λ) defined as the length of the slanting line to the left bottom from the last cell 

of first row of the illustration. The letters ‘a’ and ‘b’ are some marked cells on the 

diagram and not numbers. 

 

An instance, when λ of Figure 10 is considered, |a| = 3, and |b| = 3 on the grounds that 

the first 3 section (8,7,6) are back-to-back. Outline will appear as it is shown on Figure 

10. 
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The activity S can transfer all ‘a’ cell to the ‘b’ cell position or the other way, 

depending on which one makes sense. We end up with different cases:  

First model (|a| ≤ |b|). In such situation, as shown in Figure 11, the last column of λ 

or all marked ‘a’ cells are eliminated and every one of the main ‘b’ line is expanded 

by one cell. 

 

Example 8; 

 

Figure 11: Partition identity of λ = (8,7,6,4,3) 

The method works only when the row being removed, that is the last one, is not 

amongst the one being extended, which is the first one and can make sense if |a| ≤ |b|, 

hence |a| = |b|, which makes λ a wedge of the first type, that is removed. With the 

application of S in the first case, b for the introduced segment S(λ) is a for old λ.  

   

 

∗ ∗ ∗ 

→ 

∗ 

∗ 

∗ 

b 

b

 b

 

a

 

a

 

a

 
Figure 10: Ferrer’s diagram for λ = (8,7,6,4,3)  
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Also, a for S(λ) becomes the length of the next to the last row of λ, hence b(λ) becomes 

larger.  

Second model (|a| > |b|). This means, from every first a rows, 1 cell is removed, and 

an addition length |a| of new last row. 

 

Example 9; 

 
 

Figure 12: Partition identity of λ = (9,8,7,4) 

The method works only when the row we are putting below is bigger than the new row 

of size |a| that is being added.  

Length I represent the old last row, by peeling off cells from the principle ‘a’ line, it is 

lessened to b−1, if there were only ‘a’ row, to start with. An instance where |b| >|a|, 

the impossibility occurs when |b| = |a| +1 and the last row is included by the ‘a’ rows. 

Meaning the part is a wedge of the subsequent form, that is removed.  

However, the second model, a for S(λ) is b for λ. From every first ‘a’ row, we 

eliminated 1 and they are still sequential, so ‘a’ for S(λ) is at least ‘a’(λ). We can now 

prove S belongs to an involution.  

∗ 

∗ 

∗ 
→ 

∗ ∗ ∗ 



23 

 

In the first model, we notice that ‘b’(S(λ)) = ‘a’(λ) and ‘a’(S(λ)) > ‘a’(λ). Hence S(λ) 

is categorized in the second model if λ is in the first model. In the same way, in the 

second model, ‘a’(S(λ)) = ‘b’(λ) and ‘b’(S(λ)) ≥ ‘b’(λ). 

Therefore, S(λ) is categorized in the first model if λ is in the second model.  

A complete proof of Euler’s identity is concluded when the operations in both the first 

and second model undo each other, and S(S(λ)) = λ, in either case, is concluded 

(George E. Andrews and Kimmo Eriksson, 2004). 
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Chapter 7 

THE JACOBI TRIPLE PRODUCT IDENTITY 

Here we use Euler’s pentagonal number method which is 

 ∏ (1 − 𝑧𝑗)∞
𝑗=1 = ∑ (−1)𝑚𝑧𝑚(3𝑚+1)∕2∞

𝑚=−∞
= 1 − 𝑧 − 𝑧2 + 𝑧5 + 𝑧7− 𝑧12 −  𝑧15 +

⋯ (7.1)   

which represents a special case of the Jacobi triple product identity (Yee, 2015) 

represented as follows; 

∏ (1 − 𝑧2𝑚)∞
𝑚=1 (1 + 𝑥2𝑚−1 𝑧2)(1 + 𝑥2𝑚−1 𝑧−2) = ∑ 𝑥𝑚2

𝑧2𝑚
∞

𝑚=−∞
           … (7.2) 

To prove this identity is lengthy, and in this section we get a new expression by 

replacing z with zn and v2 with −xℓ as represented below: 

∏ (1 − 𝑧2𝑛𝑚−𝑛−𝑙)∞
𝑚=1 (1 + 𝑧2𝑛𝑚−𝑛+𝑙 𝑣2)(1 − 𝑧2𝑛𝑚) = ∑ (−1)𝑚𝑧𝑛𝑚2+𝑙𝑚

∞

𝑚=−∞
     

… (7.3)  

We obtain the pentagonal number theorem delivered by Euler by taking n = 3/2 and    

ℓ = 1/2 and work with the obtained results for the expression and the above expression 

(7.3) is considered as a formal product. 
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Chapter 8 

MACMAHON’S RECURRENCE 

This is another theorem of Euler’s identity that is useful in the calculation of partitions 

in restricted integers. McMahon also noted that an efficient recurrence of the partition 

number p(m) can be obtained using this theorem (Rapudi, 2019). 

Let’s consider 1/P(z) as the one side of Euler’s identity(left) the following functions 

identity is obtained. 

(1 − z − z2 + z5 + z7 − z12 − z15 + z22 + z26 − ···) P(z) = 1 

Having zm as a coefficient of the identity, it is observed as below 

p(m) − p(m − 1) − p(m − 2) + p(m − 5) + p(m − 7) – p(m − 12) – p(m − 15) +… = 0. 

In another case, 

p(m) = p(m − 1) + p(m − 2) – p(m − 5) – p(m − 7) + p(m − 12) + p(m − 15) − . . .   

The total for every m simply proceeds so long as the forms remain p(h) for h ≥0 and 

initial mark is p (0) = 1. This proves that the sum should not be infinite.  

Considering the quantity of terms being repeated for p(m). They are p(h) with                      

h = m − (3n2 ± n)/2, making the final one relates with biggest n for which                         

(3n2 − n)/2 ≤ m. This might be around √2m ∕ 3, in that case, a repeat that just includes 

around 3 terms. Therefore, we need to use 36 previous values on about 2√2m ∕ 3 to 

compute p (500).  
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Chapter 9 

THE SYLVESTER’S APPROACH 

The theory is applied when calculating the partitions in restricted integers forming an 

explicit formula for the polynomial part of the restricted partition function also known 

as the first Sylvester wave (Agnarsson, 2002). Let W (n, d) be the number of partitions 

of n with parts in d, where d = (d1, d2, …, ds) of positive integers. 

                     f(t, d) = ∏
1

1−tdv

s

v=1
= ∑ W(n, d)tn∞

n=0                                                (9.1) 

Where W (n, d) is taken as a sum of “waves” 

                               W(n, d) =  ∑ Wv(n, d)v≥1                                                                    (9.2) 

and this sum is taken over distinct divisors of v of the components d and for each              

v, Wv (n, d) is the coefficient of t-1 in the series expansion of equation (9.1) in ascending 

powers of t of 

F(n, ds, m; t) = ⅇnwm  ∏
1

1−ed,um

m

r=1
 ,                                                                    (9.3) 

wm = 2πi
Pm

q
+ t  ,  

wm = 2πi
pm

q
− t 

where P1, P2,… , Pmax m are all numbers less than q and prime to it. 
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Chapter 10 

GENERALIZED PARTITIONS 

(Exponential structures) 

 

 
The general structure deals with special cases such as,  

10.1 Integer partitions 

In this case, we follow the sequence of a segment (part) which is the number n that is 

being divided. Overall, from the blend of double objects, we acquire our outcome 

through recording the double items next to each other.  Considering the instance of 

whole number divisions, where the combination 6 = 4 + 2 and 7= 5 + 1 + 1 segments, 

we basically get 13 = 5 + 4 + 2 + 1 + 1. Hence the segments belong to the primes           

1 = 1, 2 = 2, 3 = 3, 4=4, and continues.  

10.2 Rooted unlabeled forests 

Considering rooted forests as another example, we obtain the order of a rooted forest 

by counting how many hubs or vertices are in the woodland.  The result of the synthesis 

of two woodland is the woodland that is obtained when the two given woodlands are 

written next to each other, and the unlabeled rooted trees are given as the primes. 

 10.3 Plane partitions 

It is a segment whose partition of the whole number m is into two-dimensional array 

of integers Pu, v for u, v ≥ 0 to make every Pu, v a non-negative integer (Bodini, Fusy & 

Pivoteau, 2010).  
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That is to say, Pu, v ≥ Pu+1, v and Pu, v ≥ Pu, v+1    where    ∀u, v ∈ ℕ2
 and 

     |𝑝| ≔ ∑ pu,vu,v
= m                                                                                                                                     (10.1) 

Example 10: We consider partitions of 5= (5), (4,1), (2,2,1), (1,1,1,1,1). Each section 

(row) is a plane partition of m=5 as shown below in Figure 13. Using equation 10.1, 

we describe the top row plane partition as 

 p= (pu, v) = p1, 1 + p1,2 + p1,3 + p1, 4 + p1,5 = 1+1+1+1+1 = 5 = m, and for the second row, 

p= (pu, v) = p2, 1 + p2,2 + p2,3 = 2+2+1 = 5 = m. 

1 1 1 1 1 

2 2 1 

4 1 

5 

 

 

Moving high upward the section, the segment is none expanding, likewise, going 

across a line (row), the segments are additionally none expanding.  

Example 11: We consider partitions of m= 8= (8), (1,7), (2,6), (3,5), (4,4) and looking 

at partition (3,5), we can further expand it to get more partitions of 8 as (3,4,1), (3,3,2), 

(3,2,1,1,1), (3,1,1,1,1,1), where each represent a row carrying a plane partition of 8. 

For plane partition (3,3,2), we have p3, v = p3, 1 + p3,2 + p3,3 = 3+3+2=8=m. 

 

 

 

 

Figure 13: Plane partitions of m = 5 
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Chapter 11 

AN EXTENSION OF EULER’S RESULT 

This is an example of identically distributed partition statistics where the quantity of 

segment of m with precisely v reoccurred part sizes is equivalent to the quantity of 

partitions of m with precisely v even part estimates. The ‘odd-particular hypothesis’ 

originally by Euler’s theorem is considered a unique situation where v = 0.  

From a sieve point of view, it is noted as a simple consequence which can be stated 

more clearly, as follows. By considering the measurement of a partition is nonnegative 

integer-esteemed capacity illustrated on the integer’s partitions. The quantity of parts 

is an illustration of how many even parts, how many repeated parts are multiples of 6, 

and the list continues (George E. Andrews and Kimmo Eriksson, 2004). 

By defining the equation below, in relation to every partition measurement Z a 

likelihood arrangement is formed. 

                     probm(Z = v)  ≝ |{π ε p(m) ∶ z(π) = v}| 

The arrangement of segment of m is represented by p(m). We get the Remmel’s 

theorem which states that let C, D are dual sieve-equivalent arrangement of non-empty 

multisets, and C = {Ci}u∈ω, D = {Du}u∈ω such that the following holds. 

                         |⋃ CuuεS
| = |⋃ DuuεS

|                     (∀S ⊆ w) 

Then the number of partitions of m that contain no Cu is equal to the number of 

partitions of m that contain no Du.  
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For example, if set S = {3,5,7}, we see that 

                                     | ⋃ Cuu∈S
 | = | ⋃ Duu∈S

| = 3  

since 6+10+14= 3+3+5+5+7+7.  

Let P, Q be two comparable appropriated partition measurements, the quality of the 

measurement P(π) (resp. Q (π)) on a partition π is the quantity of u with the end goal 

π have the multiset Cu (resp. Du).  

From the sieve-equivalence (the principle of inclusion-exclusion) machinery, the 

following are constructed examples for the pairs of similar distributed partition 

measurements: 

a. The total of even part measures =P, the total reoccurring part sizes=Q. 

b. The total successive even part measures =P, the total successive reoccurred part 

sizes =Q.  

c. All total part estimate having the complete squares =P; all total part measures u 

whose variety is ≥ u= Q 

d.  All total segment measures with number ≡ 2,3,4 mod 6= P, all total segment 

estimates that are either an odd multiple of 3 or, likelihood reoccurred and not a 

multiple of 3 =Q. 

e.  By fixing a whole number d > 1. We allow the total part estimates belonging to 

the product of d =P; the total part measures whose multiplicity is ≥ d= Q. 

f. Sets of positive integers are represented by G1, G2. Address 2G1 = {v: (v/2) ∈ G1}. 

Assume that 2G1 ⊆ G1 and G2 = G1 −2G1.  
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At that point we represent the measurement P the quantity of part estimates that are 

not in G2; Q = the quantity of part measure u such an extent that possibly u ∈ G1 and 

is rehashed. 

We can obtain this in the other direction by considering the example below; 

Example 12: In this case, we use the theory of Rogers-Ramanujan Identity, defined 

as the quantity for m partitions in forms of parts consistence to 1 or 4 mod 5 is 

equivalent to the partitions quantity that its segments cannot reoccur or be continuous. 

In our case, the hypothesis of Remmel lack significance, and it can be shown by 

recording down the properties lists as:  

Figure 14: Properties of Rogers-Ramanujan Identity 

It tends to be noticed the Remmel’s theorem will not apply by ordering the properties. 

The sieve strategy cannot apply here and this is shown when, the segments of 4 with 

precisely single space of estimate 0 or 1 are (22,1111) and the division of 4 with 

precisely single-part estimate congruent to 0, 2, or 3 mod 5 are (31,22,211). 

Hence, the above arrangement of terms cannot be sieve-equally because these 

quantities of divisions appear not the same. 
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Chapter 12 

ESTIMATES OF THE RATIONAL QUANTITIES 

This additional section shows the application of whole number division estimating 

functions in a unique way checking the rationales (Verdooleage & Woods, 2008). 

Below is a constructed list being of the positive rational numbers and is represented 

as: 

1/1, 1 /2, 2/ 1, 1 /3, 3/ 2, 2/ 3, 3/ 1, 1/ 4, 4/ 3, 3/ 5, 5/ 2, 2/ 5, 5/ 3, 3/ 4, 4/ 1, 1/ 5, 5/ 4, 

4/ 7, 7/ 3, 3/ 8, 8/ 5, 5/ 7, 7/ 2, 2/ 7, 7/ 5, ...  

From the list and Figure 14, we observe the following; 

1. numerators of each fraction are from the previous denominators. Meaning the mth 

rational quantity in the arrangement is represented as c(m)/c(m+1) where (m = 0,1, 

2...), having c to represent a particular function of the nonnegative whole numbers 

having terms as {c(m)} m≥0 = {1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4, 7…}. 

2. We can write integer m as the total of power of 2 using it at most twice by applying 

the function values c(m), an example, by representing 6 = 5+ 1 = 2 + 2 + 1+1. 

Therefore, 6 can be represented by two such ways, so c (6) = 2.  Considering c(m) as 

the quantity of hyper binary representations of the integer m. 

3. When every rational occurs, it occurs in reduced form when the back-to-back 

estimations of the function c are generally prime. 

4. On the list each positive rational only occur once and not any other time. 
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Chapter 13 

CONCLUSION 

This thesis was about the definition of different terms in partition identity such as 

generating function, bijective, and Durfee diagram. We used Ferrer’s diagram to 

represent models of different integer partitions and obtain partition identities with 

distinct parts. A discussion and generalization of basic theories that are used in 

partition identities such as the Euler’s identity, Jacobi triple product identity and the 

Sylvester’s approach was made. The theories and their application were also discussed.  

Euler’s identity theorem was used to show there are the same number of partitions of 

m into an even number of distinct parts as there are partitions into an odd number of 

distinct parts unless m is a pentagonal number. We also introduced the concept of 

‘wedge-shaped’ partitions to produce such identities. 

In McMahon’s approach, Euler’s identity was used to note a recurrence of partition 

number p(m). In Sylvester’s approach, we used the first Sylvester wave to obtain 

partitions of restricted integers.  

In exponential structures, we looked at generalized structures such as rooted unlabeled 

forests and plane partitions.  

Remmel’s theorem was discussed for partitions of m into odd parts by excluding 

elements of the multisets holding even parts, and vice versa for odd parts of a partition. 
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In Rogers-Ramanujan Identity, it was shown that sieve strategy or equivalence does 

not appear and Remmel’s theory cannot be applied. Besides the latter, an additional 

concept was also discussed which is counting the rational numbers using whole 

number divisions. 
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