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ABSTRACT 

This thesis studies thermodynamical properties for position-dependent effective mass 

(PDM) in pseudoharmonic potential. We use a PDM Hamiltonian obtained by the 

creation 𝐴̂ and annihilation 𝐴̂+ operators approach. The PDM Hamiltonian operator is 

utilized to reach a PDM radial Schrödinger equation. Which is separated into a z-

dependent and a radial-dependent parts. Eigenenergies and eigenfunctions are 

determined for PDM model, 𝑀(𝑟) = 𝑚0𝑔(𝑟); 𝑔(𝑟) = − 𝜉 𝑟
2⁄ . We obtain the 

partition function, which is utilized to obtain thermodynamical properties like mean 

energy 𝑈, mean free energy 𝐹, entropy 𝑆 and specific heat capacity 𝐶. We show a 

graphical representation of the pseudoharmonic potential for different values of 

parameters. 

Keywords: position-dependent mass (PDM) Hamiltonian, posedoharmonic potential, 

thermodynamical properties, PDM creation and annihilation operators.   
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ÖZ 

Bu tez, psödoharmonik potansiyelde pozisyona bağlı etkin kütle (PDM) için 

termodinamik özellikleri inceler. 𝐴̂ oluşturma ve yok etme 𝐴̂+ operatörleri 

yaklaşımıyla elde edilen en basitleştirilmiş kullanıcı dostu PDM Hamiltonian'ı 

kullanıyoruz. PDM Hamiltonian operatörü, bir PDM radyal Schrödinger denklemine 

ulaşmak için kullanılır. Hangisi z bağımlı ve radyal bağımlı parçalara ayrılır. PDM 

modeli için özenerjiler ve özfonksiyonlar belirlenir, 𝑀(𝑟) = 𝑚0𝑔(𝑟); 𝑔(𝑟) = − 𝜉 𝑟
2⁄ . 

Ortalama enerji U, ortalama serbest enerji F, entropi S ve özgül ısı kapasitesi C gibi 

termodinamik özellikleri elde etmek için kullanılan bölme fonksiyonunu elde ederiz. 

Farklı parametre değerleri için psödoharmonik potansiyelin grafiksel bir temsilini 

gösteririz. 

Anahtar Kelimeler: pozisyona bağlı kütle (PDM) Hamiltoniyen, pozdoharmonik 

potansiyel, termodinamik özellikler, PDM oluşturma ve yok etme operatörleri. 
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Chapter 1 

INTRODUCTION 

Physical   models  for   position - dependent   mass (PDM)  have   received   a   lot  of 

attention in recent  years  [1-7].  Schrödinger  equations  with  position dependent   

mass   recently   achieved   extensive  analysis  in  semiconductor  electrical  

characteristics ,  inhomogeneous  crystals  [8],  quantum dots  [9],  quantum  liquids  

[10]   and   nuclear   many  body  problem  [11] .  It  is evident   that  research  on  the  

PDM  Schrödinger  equation  has  a  significant influence  on  condensed  matter  

physics  and  associated  disciplines  of physics . Similarly ,  some  accurately  solvable  

models  have  been  generated using  supersymmetric   quantum    mechanical   

techniques   [12-14] .   Particles having  position - dependent  effective  mass  would  

be  a  more  accurate  and enlightening  term .   That   is,   a   distortion   in  the 

coordinate system may  make   the mass   position - dependent.  A  moving  point  mass  

in curved space becomes  an effective  position - dependent  mass  in  Euclidean space  

[15-17] .   

1.1 Position-dependent Mass (PDM) Hamiltonians  

We begin with, the von Roos PDM Hamiltonian proposal [18] (with ℏ = 2𝑚0 = 1) 

𝐻 = −
1

2
{𝑚(𝑟)𝛼∇⃗⃗⃗ 𝑚(𝑟)𝛽 ∇⃗⃗⃗ 𝑚(𝑟)𝛾 + 𝑚(𝑟)𝛾 ∇⃗⃗⃗ 𝑚(𝑟)𝛽 ∇⃗⃗⃗ 𝑚(𝑟)𝛼} + 𝑉(𝑟),               (1.1) 

 with the von Roos condition  

                                         𝛼 + 𝛽 + 𝛾 = −1;  𝛼, 𝛽, 𝛾 ∈ ℝ                                             (1.2) 

By using equation (1.1) and equation (1.2), and considering cylindrical symmetric 

settings, it can easily be recast in a straightforward manner as follows [49, 50]  
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                                               𝐻 = −∇⃗⃗⃗ (
1

𝑚 (𝑟)
) ∇⃗⃗⃗ + 𝑉𝑃𝐷𝑀(𝑟),                                       (1.3) 

and  

𝑉𝑃𝐷𝑀(𝑟) =
1

2
(1 + 𝛽)

∇⃗⃗⃗2𝑚(𝑟)

𝑚(𝑟)2
− [𝛼(𝛼 + 𝛽 + 1) + 𝛽 + 1]

(∇⃗⃗⃗ 𝑚(𝑟))
2

𝑚(𝑟)3
+ 𝑉(𝑟),               (1.4) 

where the first two terms represent an additional potential produced by the structure of 

the PDM kinetic-energy operator. Equation (1.4) shows that, an ordering ambiguity is 

introduced as the kinetic energy operator changes when 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 change. Moreover, 

𝛼 , 𝛽 , 𝛾  are called the von Roos ambiguity parameters.  In   contrast   to   the   

quantum   mechanical, the   classical mechanical   Hamiltonian   does   not   have such   

ordering   ambiguities.   Nevertheless, it   has   been   proposed that   the   quantum and 

classical   mechanical   correspondence may resolve this ordering ambiguity issue [45].  

 

In the literature there are several suggestions for the kinetic energy operator. Among 

them; the Gora and Williams (𝛽 = 𝛾 = 0, 𝛼 = −1)[19], Ben Danial and Duke (𝛼 =

𝛾 = 0, 𝛽 = −1) [20], Zhu and Kroemer (𝛼 = 𝛾 = −1 2⁄ , 𝛽 = 0) [21], and Li and 

Kuhm (𝛽 = 𝛾 = −1 2⁄ , 𝛼 = 0)[22]. However, the Hermiticity of the Hamiltonian, 

current density conservation, experimental studies of Brezini et al [23], and condensed 

matter theories (Burt [24] and Geller and Kolm [25]) may, provide some insight into 

the identity of the von Roos parameters ambiguity. The application of Hamiltonian 

(1.1) at the heterojunction between two crystals (see, for example, Burt [24], Geller 

and Kohn [25] Einevoll [26],), suggested that for  𝛼 ≠ 𝛾  the wavefunction disappears. 

Hence, the only feasible case is due 𝛼 = 𝛾 to ensure the continuity of the wavefunction 

and of 𝑚(𝑥)𝛼𝜓(𝑥) and 𝑚(𝑥)𝛼+𝛽[𝜕𝑥  𝜓(𝑥)] at the hetrojunction boundary. 
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Conversely, Dutra and Almeida [27] recently conducted a test on the reliability 

orderings. They utilized a perfectly solvable Morse model to establish that Gora and 

Williams' orderings are correct: (𝛽 = 𝛾 = 0, 𝛼 = −1)[19], and, that of Ben Danial 

and Duke (𝛼 = 𝛾 = 0, 𝛽 = −1)[20] should be discarded as their results given 

complex energies. They classified the ordering of Zhu and Kroemer ( 𝛼 = 𝛾 =

−1 2,⁄  𝛽 = 0)[21], and Li and Kuhn (𝛼 = 0, 𝛽 = 𝛾 = − 1 2⁄ )[22] as good ones. 

Eventually, following Mustafa and Mazharimousavi [45] at the prompt heterojunction 

the conditions, on the parameters setting, ( 𝛼 = 𝛾 = 𝑘, 𝛽 = 2𝑗) is found to yield 𝛼 =

𝛾 = −1 4⁄  and 𝛽 = − 1 2⁄  and is found to be good ordering. This ordering motivates 

our present methodological approach. 

 

Furthermore, the harmonic oscillator model is essential in quantum mechanics. Within 

quantum physics, rather than simply calculating the Schrödinger equation, this model 

is handled utilizing the creation 𝐴̂+ and annihilation 𝐴̂ operators. Therefore, the PDM 

harmonic oscillator is applied and PDM creation 𝐴̂+ and annihilation 𝐴̂  operators are 

introduced. However, the commutation relation for the harmonic oscillator is shown 

and fulfilled. 

 

Moreover, a number of theoretical articles exist on the quantum antidot structure in the 

context and exclusion of repulsive antidot possibility, parabolic confinement prospect, 

magnetic, and Aharonov-Bohm (AB) flux fields. Bogachek and Landman [29] 

represented an antidot by a repulsive potential  𝑉(𝑟)~ 1/𝑟2  and obtained a precise 

solution of the Schrödinger equation. They proved that edge states at the antidotes' 

boundaries produce magnetization oscillations as a consequence of magnetic flux 

through the inside opening. In presence of magnetic fields, Aquino et al. [31] described 
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a quantum antidot as an electron travelling beyond a cylinder of radius R. Reijniers et 

al. [32] investigated a setup in which electrons were restricted to move in 2-dimensions 

by a nonhomogeneous magnetic field. Their own quantum dot model was distinct from 

other quantum dot models. Because electrons are magnetically bound in their domain, 

this is known as magnetic antidot. 

 

Furthermore, the so called pseudoharmonic potential was first discussed by Gol'dman 

et al. [33]. Various researchers have studied this potential because of its relevance in 

Chemical Physics, Molecular Physics, and many fields of Physics [34-39] .Sage and 

Goodisman [40] emphasized the merits of such a potential possibility and 

straightforward building of the potential energy curve over the standard presentation.  

 

The mean purpose of studying thermodynamic properties is to find its partition 

function. The temperature dependent of partition function, helps us in obtaining 

additional thermodynamic properties. The partition function for pseudoharmonic 

potential models may be easily calculated by computing the energies of the quantum 

antidot potential and harmonic quantum dot potential [29-30] .Various scholars have 

used complex numerical ways to evaluate partition functions, including the Poisson 

summation technique [41], the commulant expansion methodology [42], the standard 

method [43], and the Wigner-Kirkwood formulation [44]. Moreover, to investigate the 

thermodynamical properties, one starts with the radially dependent part of Schrödinger 

equation with pseudoharmonic potential. The energies and related wave functions are 

then calculated. In the current study, we use the pseudoharmonic model, and study the 

thermodynamical properties like internal energy U, free energy F, entropy S and 

specific heat C. 
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The plan of the current study is as follows.  Chapter 2, describes the position-dependent 

mass (PDM) for Schrödinger equation, using PDM creation and annihilation operators 

approach [28]. Moreover, working with the PDM creation and annihilation operators 

for the harmonic oscillator potential that satisfy the commutation relation  [𝐴̂ , 𝐴̂+] =

1. Then, the corresponding PDM Hamiltonian 𝐻 = 𝜔 (𝐴̂+𝐴̂ +
1

2
) = 𝜔 (𝐴̂ 𝐴̂+ −

1

2
) 

determines the exact values for 𝛼 , 𝛽 , 𝑎𝑛𝑑 𝛾. The PDM momentum operator is 

utilized [15] to solve the corresponding PDM Schrödinger equation, which is separated 

into a z-dependent and a radial-dependent parts. In chapter 3, we use the 

pseudoharmonic potential, and find its exact energy eigenvalues and eigenfunctions 

for a PDM model, 𝑀(𝑟) = 𝑚0𝑔(𝑟); 𝑔(𝑟) = − 𝜉 𝑟
2⁄ . In the same chapter, we evaluate 

the thermodynamical properties for such PDM-particles in a pseudoharmonic 

potential. The partition function 𝑍(𝛽) of the system at a specified temperature T is 

determined.  Thermodynamical properties like mean energy 𝑈, mean free energy F, 

entropy S and specific heat capacity C are obtained. Our results are reported graphical 

for each of the thermodynamical properties for different parameters. Our conclusion 

is found in Chapter 4. 
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Chapter 2 

PDM- SCHRÖDINGER EQUATION 

In this chapter, the position-dependent mass (PDM) required for Schrödinger equation 

is developed following the PDM creation and annihilation operators’ approach. In 

quantum mechanics, it is imperative to start with the PDM Hamiltonian von Roos [18] 

𝐻 = −
ℏ2

4
{𝑀(𝑟)𝛼 ∇⃗⃗⃗ 𝑀(𝑟)𝛽 ∇⃗⃗⃗ 𝑀(𝑟)𝛾 + 𝑀(𝑟)𝛾 ∇⃗⃗⃗ 𝑀(𝑟)𝛽 ∇⃗⃗⃗ 𝑀(𝑟)𝛼} + 𝑉(𝑟),          (2.1) 

where the PDM is 𝑀(𝑟) = 𝑚0 𝑚(𝑟). Which, 𝑚0 is the rest mass, 𝑚(𝑟) is position-

dependent mass dimensionless scalar multiplies that forms the position-dependent 

mass 𝑀(𝑟), and the parameters 𝛼, 𝛽, and 𝛾 are the von Roos ambiguity parameters. 

This ambiguity is attributed to the infinite kinetic energy operators which fulfil the 

constraint (𝛼 + 𝛽 +  𝛾 = −1). Notably, the kinetic energy operators’ profile as well as 

the effective potential will differ as the values of 𝛼, 𝛽, and 𝛾 are changed within the 

allowable constraint limits. Moreover, according to Mustafa and Mazharimousavi [45] 

at the prompt heterojunction the conditions, on the parameters setting, 𝛽 = 2𝑗 and 𝛼 =

𝛾 = 𝑘 where 𝛼, 𝛽, 𝛾 ∈ ℝ, rewritten in one-dimension and using  𝑚0 = ℏ = 𝑐 = 1 

units, as  

                              𝐻 = −
1

2
 𝑚(𝑥)𝑘𝜕𝑥 𝑚(𝑥)

2𝑗𝜕𝑥 𝑚(𝑥)
𝑘 + 𝑉(𝑥).                                       (2.2) 

It should be noted that a PDM particle moving in 𝑉(𝑥) = 0, is considered to be a  

quasi-free particle. Thus, the assumption of a deformed harmonic oscillator is valid 

under PDM-settings leading to the constant mass harmonic oscillator potential 

( 𝜔2𝑞2/2) to  
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                𝑉(𝑥) =
1

2
 𝜔2𝑥2𝑄(𝑥) =   

1

2
 𝜔2𝑞(𝑥)2  ; 𝑞(𝑥) = √𝑄(𝑥) 𝑥.                                (2.3) 

This assumption remains valid as long as 𝑞(𝑥) is found during the construction of the 

PDM creation 𝐴̂+and annihilation 𝐴̂ operators. Consequently, substituting equation 

(2.3) into Hamiltonian (2.2) yields  

                  𝐻 = −
1

2
 𝑚(𝑥)𝑘𝜕𝑥 𝑚(𝑥)

2𝑗𝜕𝑥 𝑚(𝑥)
𝑘 +

1

2
 𝜔2𝑞(𝑥)2,                                         (2.4) 

Where  

                                                 𝑘 + 𝑗 = −
1

2
 , 𝑞(𝑥) = √𝑄(𝑥) 𝑥,                                         (2.5) 

𝑄(𝑥) represents a deformation function of the coordinate 𝑥 to be calculated in the 

sequel, and 𝑉(𝑞(𝑥)) =
1

2
 𝜔2𝑞(𝑥)2 is a deformed harmonic oscillator. As for the PDM 

creation 𝐴̂+ and annihilation 𝐴̂ operators, they can be, respectively, constructed in the 

following forms  

                            𝐴̂+ = −
1

√2𝜔
𝑚(𝑥)𝑘𝜕𝑥 𝑚(𝑥)

𝑗 + √
𝜔

2
𝑞(𝑥),                                                (2.6) 

                           𝐴̂ =
1

√2𝜔
𝑚(𝑥)𝑗𝜕𝑥 𝑚(𝑥)

𝑘 +√
𝜔

2
𝑞(𝑥).                                                (2.7) 

Then, the commutation relation  

                                 [𝐴̂ , 𝐴̂+] = 1 ⟺ 𝐴̂+𝐴̂ +
1

2
= 𝐴̂ 𝐴̂+ −

1

2
  ,                                                 (2.8) 

must be satisfied. Clearly, it is similar to the case of the textbook one. Therefore, given 

the nature of the commutation relationship for the PDM Hamiltonian, we obtained 

                      𝐴̂+𝐴̂ = −
1

2𝜔
𝑚(𝑥)𝑘𝜕𝑥 𝑚(𝑥)

2𝑗𝜕𝑥 𝑚(𝑥)
𝑘 − 2𝑘𝑞(𝑥) (

1

√𝑚(𝑥)
)
′

−

                     (
𝑞(𝑥)

2√𝑚(𝑥)
)
′

+ 
𝜔

2
𝑞(𝑥)2                                                                                                     (2.9) 

and 
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                    𝐴̂  𝐴̂+ = −
1

2𝜔
𝑚(𝑥)𝑗𝜕𝑥 𝑚(𝑥)

2𝑘𝜕𝑥 𝑚(𝑥)
𝑗 − 2𝑘𝑞(𝑥) (

1

√𝑚(𝑥)
)
′

−

                   (
𝑞(𝑥)

2√𝑚(𝑥)
)
′

+
𝜔

2
𝑞(𝑥)2 +

𝑞′(𝑥)

√𝑚(𝑥)
.                                                                                   (2.10)      

Furthermore, substituting (2.9) and (2.10) in (2.8) we get  

−
1

2
𝑚(𝑥)𝑘𝜕𝑥 𝑚(𝑥)

2𝑗𝜕𝑥 𝑚(𝑥)
𝑘 = −

1

2
𝑚(𝑥)𝑗𝜕𝑥 𝑚(𝑥)

2𝑘𝜕𝑥 𝑚(𝑥)
𝑗 +

𝑞′(𝑥)

√𝑚(𝑥)
− 1. (2.11) 

Consequently, we get   

           
𝑞′(𝑥)

√𝑚(𝑥)
− 1 = 0 ⟺ 𝑞(𝑥) = ∫√𝑚(𝑥) 𝑑𝑥 = √𝑄(𝑥)x,                                          (2.12) 

and the kinetic energy terms in the equation (2.11) are equal,  that is  

           −
1

2
𝑚(𝑥)𝑘𝜕𝑥 𝑚(𝑥)

2𝑗𝜕𝑥 𝑚(𝑥)
𝑘 = −

1

2
𝑚(𝑥)𝑗𝜕𝑥 𝑚(𝑥)

2𝑘𝜕𝑥 𝑚(𝑥)
𝑗 .                 (2.13)                                                                                                

As a result, two essential findings are obtained. The first establishes the composition 

of 𝑞(𝑥) in equation (2.12), while the second limits the ambiguity parameters to the 

identity 𝑘 = 𝑗  in equation (2.13). However, the substitution of this into von Roos 

constraint 𝑘 + 𝑗 = −1/2  yields 𝑘 = 𝑗 = −1/4. Thus, the creation  𝐴̂+(2.7) and 

annihilation 𝐴̂ (2.8) operators for the PDM settings are determined as  

𝐴̂+ = −
1

√2𝜔

1

√𝑚(𝑥)4 𝜕𝑥
1

√𝑚(𝑥)4 + √
𝜔

2
𝑞(𝑥) ⟺ 𝐴̂+ = −𝑖 (

𝑝̂(𝑥)

√2𝜔 𝑚(𝑥)
) + √

𝜔

2
𝑞(𝑥),      (2.14)  

and  

𝐴̂ =
1

√2𝜔

1

√𝑚(𝑥)4 𝜕𝑥
1

√𝑚(𝑥)4 +√
𝜔

2
𝑞(𝑥) ⟺ 𝐴̂+ = 𝑖 (

𝑝̂(𝑥)

√2𝜔𝑚(𝑥)
) + √

𝜔

2
𝑞(𝑥),                   (2.15) 

where 

                                                𝑝̂(𝑥) = −𝑖 (𝜕𝑥 −
1

4

𝑚′  (𝑥)

𝑚 (𝑥)
),                                                (2.16)    

is the momentum operator for the PDM as per the recent work of Mustafa and Algadhi 

[15]. Hence, the PDM Hamiltonian 𝐻 of equation (2.4) takes its operator form 

                                    𝐻 = 𝜔 (𝐴̂+𝐴̂ +
1

2
) = 𝜔 (𝐴̂ 𝐴̂+ −

1

2
),                                               (2.17) 
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and a differential form  

          𝐻 = −
1

2

1

√𝑚(𝑥)
4 𝜕𝑥

1

√𝑚(𝑥)
𝜕𝑥

1

√𝑚(𝑥)
4 +

1

2
 𝜔2𝑞(𝑥)2.                                                        (2.18) 

As a consequence, the ambiguity in the PDM kinetic energy operator of equation (2.2) 

is now removed, the PDM kinetic energy operator is now given by   

                     𝑇̂ = −
1

2

1

√𝑚(𝑟)4 ∇⃗⃗⃗
1

√𝑚(𝑟)
∇⃗⃗⃗

1

√𝑚(𝑟)4 = (
𝒑̂(𝒓⃗⃗)

√2𝑚(𝑟)
)
2

.                                               (2.19) 

Which essentially resembles the kinetic energy operator for constant mass, when 

𝑚(𝑥) = 1. Ultimately, the PDM harmonic oscillator Hamiltonian can be conveniently 

simplified and rewritten as  

                𝐻 = (
𝒑̂(𝒓⃗⃗)

√2𝑚(𝑟)
)
2

+
1

2
 𝜔2𝑞(𝑟)2.                                                                                    (2.20) 

In the next section, we work on the PDM Schrödinger equation to obtain the z-

dependent part and the one-dimensional radial-dependent part.    

2.1 The radially-dependent part of the PDM Schrödinger equation  

Upon obtaining the kinetic energy operator (2.19), which contains the PDM 

momentum operator 𝑷 ̂(𝒓⃗⃗), and the simplified Hamiltonian (2.20), now we consider 

the PDM Schrödinger equation (using 2𝑚0 = ℏ = 𝑐 = 1 units)  

                              [(
𝑷 ̂(𝒓⃗⃗)

√𝑚(𝑟)
)
2

+ 𝑉 (𝑟)]𝜓(𝑟) = 𝐸𝜓(𝑟),                                                        (2.21) 

where, 𝑉(𝑟) is the interaction potential energy. Furthermore, we follow the PDM-

momentum operator, defined by Mustafa and Algadhi [15], for the PDM Schrödinger 

equation, 

                               𝑷 ̂(𝒓⃗⃗) = −𝑖 [ ∇⃗⃗⃗ ⃗ −
1

4
(
∇⃗⃗⃗ 𝑚(𝑟)

𝑚 (𝑟)
)].                                                  (2.22) 

This PDM-operator is shown to satisfy the PDM kinetic energy operator of equation 

(2.19).  At this point, equation (2.22) can be used to rewrite equation (2.21) as   
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           [−
1

𝑚 (𝑟)
∇2 + (

∇⃗⃗⃗ 𝑚 (𝑟)

𝑚 (𝑟)2
) . ∇⃗⃗⃗ +

1

4
(
∇⃗⃗⃗2𝑚 (𝑟)

𝑚 (𝑟)2
) −

7

16
(
(∇⃗⃗⃗ 𝑚 (𝑟))

2

𝑚 (𝑟)3
) + 𝑉 (𝑟)]𝜓 (𝑟)  =

         𝐸𝜓 (𝑟).                                                                                                              (2.23)     

Let us assume that 𝑚 (𝑟) is just radially-dependent, so that   

𝑚 (𝑟) = 𝑚(𝑟, 𝜑, 𝑧) = g (𝑟) 𝑓(𝜑) 𝑘(𝑧) = g (𝑟);  𝑓(𝜑) = 𝑘(𝑧) = 1 ,                   (2.24)  

and 

g (𝑟) 𝑉(𝑟, 𝜑, 𝑧) = 𝑉(𝑟) + 𝑉(𝜑) + 𝑉(𝑧) = 𝑉(𝑟) + 𝑉(𝑧);𝑉(𝜑) = 0.                        (2.25)   

It should be noted that 𝑉(𝜑) = 0 implies azimuthal symmetry, while the scalar 

multiplier 𝑚 (𝑟) = g (r) has only radially-dependent part. This would, secure the 

separation of the PDM-Schrödinger equation (2.23). We now use the substitution  

                                  𝜓 (𝑟) = 𝜓 (𝑟, 𝜑, 𝑧) = 𝑅 (𝑟) 𝑍 (𝑧) 𝑒𝑖𝑚𝜑,                                      (2.26) 

(with, 𝑚 = 0, ±1, ±2,… . , ±ℓ the magnetic quantum number, and ℓ the angular 

momentum quantum number) and obtain  

[
𝑅′′(𝑟)

𝑅 (𝑟)
− (

g′(𝑟)

g (r)
−
1

𝑟
)
𝑅′ (𝑟)

𝑅 (𝑟)
−
1

4
(
g′′(𝑟)

g (r)
+
g′(𝑟)

rg (r)
) +  

7

16
(
g′(𝑟)

g (r)
)
2

− 
𝑚2

𝑟2
+ g (r) 𝐸 −

𝑉 (𝑟)] + [
𝑍′′(𝑧)

𝑍 (𝑧)
− 𝑉 (𝑧)] = 0,                                                                                                        (2.27)        

where, the z-dependent part of the eigenvalues is presented by 𝑘𝑧
2, i.e.,                      

                               [−𝜕𝑧
2 + 𝑉 (𝑧)]𝑍 (𝑧) = 𝑘𝑧

2 𝑍 (𝑧),                                                         (2.28) 

and, the corresponding radially-dependent part is  

[
𝑅′′(𝑟)

𝑅 (𝑟)
− (

g′(𝑟)

g (r)
−
1

𝑟
)
𝑅′ (𝑟)

𝑅 (𝑟)
−
1

4
(
g′′(𝑟)

g (r)
+
g′(𝑟)

rg (r)
) +  

7

16
(
g′(𝑟)

g (r)
)
2

−
𝑚2

𝑟2
− 𝑘𝑧

2 + g (r) 𝐸 −

𝑉 (𝑟)] = 0.                                                                                                                    (2.29) 

Additionally, the radial equation can be further simplified through the use of 

                                               𝑅 (𝑟) = √
g (r)

𝑟
𝑈 (𝑟),                                                    (2.30) 

to obtain the one-dimensional formulation of equation (2.29) as  



11 

 

                   [−
𝑑2

𝑑𝑟2
+
𝑚2−1 4⁄

𝑟2
 +  𝑉𝑒𝑓𝑓(𝑟)]𝑈 (𝑟) = Ẽ 𝑈 (𝑟),                                              (2.31) 

where,  

         𝑉𝑒𝑓𝑓(𝑟) = 𝑉 (𝑟) − g (r) 𝐸 + [ 
5

16
(
g′(𝑟)

g (r)
)
2

−
1

4
(
g′′(𝑟)

g (r)
)−

1

4
(
g′(𝑟)

r g (r)
)],                  (2.32) 

and, 

                                                         Ẽ = − 𝑘𝑧
2                                                           (2.33) 

At this point of the current study, two types of Schrödinger equations have been 

constructed and developed. Namely, the z-dependent part (2.28) and the radial-

dependent part (2.31). These differential equations will be vital in finding an exact 

solution to the problem in terms of eigenvalues and eigenfunctions for a power-low 

type position-dependent mass in a pseudoharmonic potential. 
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Chapter 3 

A PDM IN A PSEUDOHARMONIC POTENTIAL 

This chapter is intended to discuss the PDM-Schrödinger equation (2.31), in its one-

dimensional radial form, with a pseudoharmonic potential given by [30] 

       𝑉(𝑟) = 𝑣1𝑟
2 +

𝑣2

𝑟2
− 2𝑣0; 𝑣1 =

𝑣0

𝑟0
2   ,𝑣2 = 𝑣0𝑟0

2, 𝑣0 > 0.                                          (3.1)                  

Where, 𝑟0 is the point of zero pseudoharmonic potential, and 𝑣0 is the chemical 

potential. However, this potential comprises a harmonic quantum dot potential (𝑣1𝑟
2) 

as well as an antidote potential (𝑣2 /𝑟
2) [29, 30]. For a sample of PDM settings, it has 

been reported that a pseudoharmonic potential, is befitted to achieve an exact solution 

for one-dimensional radial PDM-Schrödinger equation. Therefore, the corresponding 

models to reach the desired solutions are presented in the followings. 

3.1 A radially-dependent PDM with  𝒎 (𝒓⃗⃗) = 𝒈(𝒓) = −
𝝃
𝒓𝟐
⁄   

Having the radial PDM with  𝑚 (𝑟) = 𝑔(𝑟) = − 𝜉
𝑟2
⁄  allows for equation (2.31) to 

be rewritten as  

                        [−
𝑑2

𝑑𝑟2
+
ℓ̃2−1 4⁄

𝑟2
+ 𝑣1𝑟

2]𝑈(𝑟) = 𝐸𝑒𝑓𝑓 𝑈(𝑟),                                                  (3.2) 

where, 

               ℓ̃2 − 1 4⁄ = 𝑚2 + 𝑣2 + 𝜉𝐸 ⟺ |ℓ̃| = √𝑚2+ 𝑣2 + 𝜉𝐸 + 1 4⁄                 (3.3 a)  

               𝐸𝑒𝑓𝑓 = 2𝑣0 − 𝑘𝑧
2                                                                                      (3.3 b) 

Equation (3.2) is, in fact, the one-dimensional form of the two-dimensional radial 

harmonic oscillator [46] which has the exact eigenvalues 
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                𝐸𝑒𝑓𝑓 = 2√ 𝑣1  (2𝑛𝑟 + |ℓ̃| + 1) = 2𝑣0 − 𝑘𝑧
2,                                                          (3.4) 

where 𝑛𝑟 is described the radial quantum number. Upon substituting the magnetic 

quantum number ℓ from (3.3 a) the following can be obtained 

      𝐸𝑒𝑓𝑓 = 2√ 𝑣1  (2𝑛𝑟 +√𝑚
2 + 𝑣2 + 𝜉𝐸 + 1 4⁄ + 1) = 2𝑣0 − 𝑘𝑧

2 ,                         (3.5) 

with the corresponding eigenenergies 

         𝐸𝑛𝑟,𝑚 = −
1

𝜉
 (𝑚2 + 𝑣2 + 1 4⁄  − (

2𝑣0−𝑘𝑧
2

2√ 𝑣1
− (2𝑛𝑟 + 1))

2

).                                  (3.6) 

Furthermore, the radial eigenfunctions can be then determined as 

         𝑅𝑛𝑟,𝑚(𝑟)~ 𝑟
−1+|ℓ̃|𝑒𝑥𝑝 (− √

 𝑣1

2
𝑟2)  1F1 (−𝑛𝑟  ;  |ℓ̃| + 1;  

√ 𝑣1

2
 𝑟2).                   (3.7)   

 

At the instant, eigenenergies equation (3.6) and eigenfucntions equation (3.7) are 

obtained by using the radial-dependent of the PDM in a pseudoharmonic potential. In 

the next section, the partition function will be determined by using eigenenergies 

equation (3.6).     

3.2 Thermal properties for the position-dependent mass in 

pseudoharmonic potential 

In this context, the partition function of our PDM system at a specified temperature 𝑇 

is given by [47, 48] 

                          𝑍(𝛽) = ∑ 𝑒−𝛽 𝐸𝑛𝑟,𝑚  
𝑛𝑚𝑎𝑥
𝑛=0 , 𝛽 =

1

𝑘𝛽𝑇
 ,                                                            (3.7) 

where 𝐸𝑛𝑟,𝑚  are the energies in equation (3.6) , and 𝑘𝛽  is the Boltzmann constant. The 

thermodynamic properties of our PDM in the pseudoharmonic potential, associated 

with the energies in (3.6), are obtained by rewriting (3.6) as  

                          𝐸𝑛𝑟,𝑚 =
1

𝜉
 ((𝜎2 − 2𝑛𝑟)

2 − 𝜎1),                                                                       (3.8)    

where, 

                           𝜎1 = 𝑚
2 + 𝑣2 +

1

4
  ,                                                                                                 (3.9) 
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                           𝜎2 =
2 𝑣0−𝑘𝑧

2

2√ 𝑣1
− 1.                                                              (3.10)                                                                                                                                           

Then, equation (3.8) is substituted in (3.7) to obtain  

                            𝑍(𝛽) = ∑ 𝑒
−
𝛽

𝜉
((𝜎2−2𝑛)

2−𝜎1)𝑛𝑚𝑎𝑥
𝑛=0 ,                                                                 (3.11) 

where we take   𝑛 = 𝑛𝑟 for simplicity of notation and 𝑛𝑚𝑎𝑥 is obtained by requiring  

                                  
 𝑑𝐸𝑛,𝑚

𝑑𝑛
=
1

𝜉
 [2(𝜎2 − 2𝑛𝑚𝑎𝑥)(−2)] = 0,     

                                     ⇒ 𝜎2 − 2𝑛𝑚𝑎𝑥 = 0,       

                                       𝑛𝑚𝑎𝑥 = |
𝜎2

2
|.                                                                                                (3.12) 

At this point, an integral in the classical limit is used to replace the summation term in 

equation (3.11), hence  

                               𝑍(𝛽) = ∫ 𝑒
−
𝛽

𝜉
((𝜎2−2𝑛)

2−𝜎1)𝑛𝑚𝑎𝑥
0

𝑑𝑛,                                                      (3.13) 

 to yield.  

                                  𝑍(𝛽) =
1

4
 
erf  (

𝛽𝜎2

√𝜉𝛽
)   √𝜋 𝑒

𝛽 𝜎1
𝜉

√
𝛽

𝜉

.                                                                       (3.14) 

                                   

Using the partition function (3.14), the mean energy 𝑈, mean free energy 𝐹, entropy 𝑆  

and specific heat capacity 𝐶 can be easily derived following [47, 48]: 

 

(i) mean energy, 𝑈 

                          𝑈(𝛽) = −
𝜕 ln𝑍(𝛽)

𝜕𝛽
,                                                                             (3.15) 

 

                              𝑈(𝛽) =
1

2
 

((−2𝛽𝜎1+𝜉) erf(
𝛽𝜎2

√𝜉𝛽
)√

𝛽

𝜉
 √𝜋−2𝛽𝑒

−
𝛽𝜎2
2

𝜉 𝜎2)√
𝛽

𝜉

√𝜋 𝛽2 erf(
𝛽𝜎2

√𝜉𝛽
) 

 .                           (3.16)  
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(ii) mean free energy, 𝐹 

                                   𝐹(𝛽) = −
1

𝛽
 ln 𝑍(𝛽),                                                                     (3.17) 

                                  𝐹(𝛽) = −

ln

(

 
 1
4
 

erf  (
𝛽𝜎2
√𝜉𝛽

)  √𝜋 𝑒

𝛽 𝜎1
𝜉

√
𝛽
𝜉

)

 
 

𝛽
.                                                     (3.18) 

(iii) Entropy, 𝑆 

                                 𝑆(𝛽) = 𝑘 ln 𝑍(𝛽) − 𝑘𝛽 
𝜕 ln𝑍(𝛽)

𝜕𝛽
,                                                 (3.19) 

𝑆(𝛽) =

√
𝛽

𝜉
 𝑘

(

 
 1
2
erf(

𝛽𝜎2

√𝜉𝛽
)√

𝛽

𝜉
 

(

 
 
−2𝛽𝜎1+

(

 
 
2ln

(

 
 1
4
 
erf (

𝛽𝜎2
√𝜉𝛽

) √𝜋 𝑒

𝛽 𝜎1
𝜉

√
𝛽
𝜉

)

 
 
+1

)

 
 
𝜉

)

 
 
√𝜋−𝛽𝑒

−
𝛽𝜎2
2

𝜉 𝜎2

)

 
 

𝛽√𝜋erf

(

 
 1
4
 

erf  (
𝛽𝜎2
√𝜉𝛽

) √𝜋 𝑒

𝛽 𝜎1
𝜉

√
𝛽
𝜉 )

 
 

.        (3.20)  

(iv) Specific heat capacity, 𝐶 

                                              𝐶(𝛽) = 𝑘𝛽2
𝜕2 ln𝑍(𝛽)

𝜕𝛽2
,                                                                    (3.21) 

 

𝐶(𝛽) =

1

2

(𝛽𝜉𝜋3 2⁄ erf(
𝛽𝜎2

√𝜉𝛽
)
2

−4𝜎2𝜋(−
3

4
√
𝛽

𝜉
 𝛽+(

1

2
𝛽𝜎2

2+𝜉)(
𝛽

𝜉
)
3 2⁄

)𝑒
−
𝛽𝜎2
2

𝜉 𝜉 erf(
𝛽𝜎2

√𝜉𝛽
)−2𝛽2√𝜋(𝑒

−
𝛽𝜎2
2

𝜉 )

2

𝜎2
2)𝑘

𝛽𝜉𝜋3 2⁄ erf(
𝛽𝜎2

√𝜉𝛽
)
2  .                                                                                                                                

                                                                                                                              (3.22) 

 

In figure 1, the pseudoharmonic potential (3.1) is plotted for different values of the 

harmonic quantum dote potential parameter 𝑣1. it could be seen  from the figure that 

potential energy rapidly converges to infinity as the related potential parameters 
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increase. The harmonic quantum dote potential parameter 𝑣1 appears to rapidly 

influence V(r) as it greatly increases with higher parameter  𝑣1 values.  

 

Figure 1. The pseudoharmonic potential (3.1) for different values of the                                           

harmonic quantum dote potential parameter 𝑣1 and fixed values for  𝑣0 = 1 and 

 𝑣2 = 1. 

In the Figure 2, the shape of the pseudoharmonic potential with the change in the 

antidote potential parameter 𝑣2. It could be seen that figure of the potential energy 

increases directly in one line as the potential parameters 𝜉 increase.  

 

Figure 2. The pseudoharmonic potential (3.1) for different values of the harmonic 

quantum antidote potential parameter 𝑣2 and fixed values for  𝑣0 = 1 and  𝑣1 = 0.25. 
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Whereas, figure 3 shows the effect of chemical potential parameter 𝑣0 on the shape of 

the pseudoharmonic potential. Generally, it could be seen that the potential energy 

spreads to infinity as the related potential parameters 𝜉 increases. 

 

Figure 3. The pseudoharmonic potential (3.1) for different values of the chemical 

potential parameter 𝑣0 and fixed values for  𝑣1 = 0.25 and  𝑣2 = 1. 

Figures 4-8, we show a graphical representation of the thermal properties obtained via 

the standard Boltzmann approach. The aim is to analyze and present the 

interrelationship of the thermodynamical properties with 𝛽 at different form factors (𝜉 

= 0.1, 0.2, 0.5, 0.6, 0.9). Figure 4 shows the partition function variation with 𝛽. It can 

be seen that the function increases as the temperature decreases for small 𝜉. However, 

the line is almost constant with higher 𝜉 values. 
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Figure (4).  The partition function 𝑍(𝛽) (3.14) as a function of 𝛽 for different values 

of 𝜉, when m=1, 𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 1. 

On the other hand, is depicted in figure 5, the mean energy 𝑈(𝛽) decreases with 

decreasing temperature 𝑇. 

 

Figure (5). The mean energy 𝑈(𝛽) (3.16) as a function of 𝛽 for different values of 𝜉, 

when m=1, 𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 1. 

The mean free energy 𝐹(𝛽) increases monotonically as the temperature 𝑇 decreases 

as shown in figure 6. 
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Figure (6). The mean free energy 𝐹(𝛽) (3.18) as a function of 𝛽 for different values 

of 𝜉, when m=1, 𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 1. 

 Figure 7, illustrates the Entropy 𝑆(𝛽) exponential decrease with decreasing 𝑇 values 

and, similar to the case of mean energy 𝑈(𝛽), the increase in 𝜉 yields higher entropy. 

 

Figure (7). Entropy 𝑆(𝛽) (3.20) as a function of 𝛽 for different values of 𝜉, when 

m=1, 𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 1. 
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Figure 8, shows a decrease in specific heat from the value of 𝐶(𝛽) = 1 as the 

temperature 𝑇 decreases. Here, it is observed that the curve for the form factor 𝜉 = 0.1 

distinguishes itself from other curves, as it shows a rapid exponential decrease. 

 

Figure (8). Specific heat capacity 𝐶(𝛽) (3.22) as a function of 𝛽 for different values 

of 𝜉, when m=1, 𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 1. 

Finally, figures 9-11 show a graphical representation of the energy eigenvalues 

variation against the parameter ξ for various magnetic quantum number denoted by m 

m = 0,1,2,3,4. Figure 9 illustrates the energy eigenvalue for 𝑛𝑟=0. As shown, the 

eigenvalue increases rapidly as the parameter ξ increases, the function however 

approaches zero with higher ξ values. 
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Figure (9). Plot of energy eigenvalue (3.8) as a function of 𝜉 for various magnetic 

quantum number 𝑚, for 𝑛𝑟=0, 𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 2. 

In figure 10, the energy eigenvalue for 𝑛𝑟=1 appears to take a shape having the zero-

x-axis as a horizontal asymptote with the eigenvalues being positive when m<2 and 

negative when m>2. 

 

Figure (10). Plot of energy eigenvalue (3.8) as a function of 𝜉 for various magnetic 

quantum number 𝑚, for 𝑛𝑟=1,𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 2. 
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 Moreover, for 𝑛𝑟=2 the energy eigenvalue for the various magnetic quantum numbers 

is almost the mirror version of data observed for 𝑛𝑟=0 (figure 9) about the x-axis, and 

illustrates the energy eigenvalue decreases rapidly as the parameter 𝜉 increases, which 

can be seen in figure 11. 

 

Figure (11). Plot of energy eigenvalue (3.8) as a function of 𝜉 for various magnetic 

quantum number 𝑚, for 𝑛𝑟=2, 𝑣0 = 2, 𝑣1 = 1, 𝑣2 = 1.75, 𝑘𝑧 = 2. 
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Chapter 4 

CONCLUSION 

The thermodynamic properties for a PDM in the pseudoharmonic potential is 

discussed in this thesis extensively. We have started with  the  PDM  creation  and  

annihilation  operators  for  the  PDM harmonic  oscillators  through  the  von  Roos  

PDM- Hamiltonian (2.1). The PDM of Schrödinger equation is implemented (2.21), 

and the formulation of the one-dimensional radial Schrödinger equation (2.31) is 

obtained. The partition function and thermodynamical properties for PDM-particles in 

the pseudoharmonic potential have been studied. Their variations with temperature are 

also presented carefully. Thermodynamical properties like mean energy 𝑈(𝛽), mean 

free energy 𝐹(𝛽), entropy 𝑆(𝛽) and specific heat capacity 𝐶(𝛽) are determined in 

equation (3.16, 3.18, 3.20, 3.22). Results have been discussed extensively using plots. 

We noted that, mean energy 𝑈(𝛽) and entropy 𝑆(𝛽) are reduced as temperature T is 

decreased, see figure (7,9). We illustrated mean free energy 𝐹(𝛽) is raised with 

temperature T decreased monotonically. In contrast to specific heat capacity 𝐶(𝛽), it 

has shown the exponentially decreased specific heat capacity  𝐶(𝛽) for value (𝐶(𝛽)= 

1) with reducing temperature T in figure (6,8). It was found that our results agree with 

the existing literature. Also the partition function 𝑍(𝛽) is growth up as temperature T 

decreased in figure (4). As we expected, the pseudoharmonic potential is increased 

with change of the values of the harmonic quantum dote parameter 𝑣1, the harmonic 

quantum antidote parameter 𝑣2 and the chemical potential parameter 𝑣0, we have 

shown in figure (1-3). Moreover, effective of the pseudoharmonic potential to our 
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eigenenergies is illustrated the graphical context. It is noted that in the results, our 

eigenenergies for the radial quantum number 𝑛𝑟=0 are increased swiftly as the 

parameter 𝜉 is increased. In contrast to our eigenenergies for 𝑛𝑟=2 is almost mirror 

version of data about x-axis to observed for 𝑛𝑟=0. Which could be seen in figure (9,11).  

And our eigenenergies for 𝑛𝑟=1 are positive when m<2 and negative when m>2 as 

shown in Figure (10).   
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