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ABSTRACT

This thesis studies thermodynamical properties for position-dependent effective mass
(PDM) in pseudoharmonic potential. We use a PDM Hamiltonian obtained by the
creation A and annihilation A* operators approach. The PDM Hamiltonian operator is
utilized to reach a PDM radial Schrédinger equation. Which is separated into a z-
dependent and a radial-dependent parts. Eigenenergies and eigenfunctions are
determined for PDM model, M(7) = myg(r); g(r) = —&/r% We obtain the
partition function, which is utilized to obtain thermodynamical properties like mean
energy U, mean free energy F, entropy S and specific heat capacity C. We show a
graphical representation of the pseudoharmonic potential for different values of

parameters.

Keywords: position-dependent mass (PDM) Hamiltonian, posedoharmonic potential,

thermodynamical properties, PDM creation and annihilation operators.



oz

Bu tez, psddoharmonik potansiyelde pozisyona bagl etkin kiitle (PDM) igin
termodinamik G6zellikleri inceler. A olusturma ve yok etme A% operatorleri
yaklasgimiyla elde edilen en basitlestirilmis kullanici dostu PDM Hamiltonian
kullantyoruz. PDM Hamiltonian operatorii, bir PDM radyal Schrodinger denklemine
ulagsmak i¢in kullanilir. Hangisi z bagimli ve radyal bagiml pargalara ayrilir. PDM
modeli igin 6zenerjiler ve 6zfonksiyonlar belirlenir, M(#) = myg(r); g(r) = — &/12.
Ortalama enerji U, ortalama serbest enerji F, entropi S ve 0zgiil 1s1 kapasitesi C gibi
termodinamik Ozellikleri elde etmek i¢in kullanilan bélme fonksiyonunu elde ederiz.
Farkli parametre degerleri i¢in psddoharmonik potansiyelin grafiksel bir temsilini

gosteririz.

Anahtar Kelimeler: pozisyona bagl kiitle (PDM) Hamiltoniyen, pozdoharmonik

potansiyel, termodinamik 6zellikler, PDM olusturma ve yok etme operatorleri.
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Chapter 1

INTRODUCTION

Physical models for position - dependent mass (PDM) have received a lot of
attention in recent years [1-7]. Schrddinger equations with position dependent
mass recently achieved extensive analysis in semiconductor electrical
characteristics , inhomogeneous crystals [8], quantum dots [9], quantum liquids
[10] and nuclear many body problem [11]. It isevident that research on the
PDM Schrodinger equation has a significant influence on condensed matter
physics and associated disciplines of physics. Similarly , some accurately solvable
models have been generated using supersymmetric quantum mechanical
techniques [12-14]. Particles having position - dependent effective mass would
be a more accurate and enlightening term . That s, a distortion in the
coordinate system may make the mass position - dependent. A moving point mass
in curved space becomes an effective position - dependent mass in Euclidean space
[15-17] .
1.1 Position-dependent Mass (PDM) Hamiltonians
We begin with, the von Roos PDM Hamiltonian proposal [18] (with A = 2my = 1)
H= —%{m(?)“ﬁm(?)ﬁ’m(?)y +m@AYVm@EEV m@} + V@), (1.1)
with the von Roos condition

a+f+y=-1,apF7yER (1.2)
By using equation (1.1) and equation (1.2), and considering cylindrical symmetric

settings, it can easily be recast in a straightforward manner as follows [49, 50]
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— 1 — N
H=-V (m) V + Vopu (P, (1.3)
and
- ()
S 1 vZm(r mr N
Voou@ =531+ B2~ [ala + f+ D+ f+ 1] + V), (1.4)

where the first two terms represent an additional potential produced by the structure of
the PDM kinetic-energy operator. Equation (1.4) shows that, an ordering ambiguity is
introduced as the kinetic energy operator changes when a, 8 and y change. Moreover,
a, B, y are called the von Roos ambiguity parameters. In contrast to the
quantum mechanical, the classical mechanical Hamiltonian does not have such
ordering ambiguities. Nevertheless, it has been proposed that the quantumand

classical mechanical correspondence may resolve this ordering ambiguity issue [45].

In the literature there are several suggestions for the kinetic energy operator. Among
them; the Gora and Williams (8 =y = 0,a = —1)[19], Ben Danial and Duke (a =
y =0,8 =—1)[20], Zhu and Kroemer (e =y =—1/2,8 =0) [21], and Li and
Kuhm (B =y = —1/2,a = 0)[22]. However, the Hermiticity of the Hamiltonian,
current density conservation, experimental studies of Brezini et al [23], and condensed
matter theories (Burt [24] and Geller and Kolm [25]) may, provide some insight into
the identity of the von Roos parameters ambiguity. The application of Hamiltonian
(1.1) at the heterojunction between two crystals (see, for example, Burt [24], Geller
and Kohn [25] Einevoll [26],), suggested that for a # y the wavefunction disappears.
Hence, the only feasible case isdue a = y to ensure the continuity of the wavefunction

and of m(x)*y(x) and m(x)**#[a, y(x)] at the hetrojunction boundary.



Conversely, Dutra and Almeida [27] recently conducted a test on the reliability
orderings. They utilized a perfectly solvable Morse model to establish that Gora and
Williams' orderings are correct: (8 =y = 0,a = —1)[19], and, that of Ben Danial
and Duke (a¢ =y = 0,8 = —1)[20] should be discarded as their results given
complex energies. They classified the ordering of Zhu and Kroemer (a =y =
—1/2, B =0)[21], and Li and Kuhn (¢ =0,8 =y = —1/2)[22] as good ones.
Eventually, following Mustafa and Mazharimousavi [45] at the prompt heterojunction
the conditions, on the parameters setting, (a@ =y = k, § = 2j) is found to yield a =
y =—1/4and B = —1/2 and is found to be good ordering. This ordering motivates

our present methodological approach.

Furthermore, the harmonic oscillator model is essential in quantum mechanics. Within
quantum physics, rather than simply calculating the Schrddinger equation, this model
is handled utilizing the creation A* and annihilation A operators. Therefore, the PDM
harmonic oscillator is applied and PDM creation A* and annihilation A operators are
introduced. However, the commutation relation for the harmonic oscillator is shown

and fulfilled.

Moreover, a number of theoretical articles exist on the quantum antidot structure in the
context and exclusion of repulsive antidot possibility, parabolic confinement prospect,
magnetic, and Aharonov-Bohm (AB) flux fields. Bogachek and Landman [29]
represented an antidot by a repulsive potential V(#)~ 1/r? and obtained a precise
solution of the Schrédinger equation. They proved that edge states at the antidotes'
boundaries produce magnetization oscillations as a consequence of magnetic flux

through the inside opening. In presence of magnetic fields, Aquino et al. [31] described



a quantum antidot as an electron travelling beyond a cylinder of radius R. Reijniers et
al. [32] investigated a setup in which electrons were restricted to move in 2-dimensions
by a nonhomogeneous magnetic field. Their own quantum dot model was distinct from
other quantum dot models. Because electrons are magnetically bound in their domain,

this is known as magnetic antidot.

Furthermore, the so called pseudoharmonic potential was first discussed by Gol'dman
et al. [33]. Various researchers have studied this potential because of its relevance in
Chemical Physics, Molecular Physics, and many fields of Physics [34-39] .Sage and
Goodisman [40] emphasized the merits of such a potential possibility and

straightforward building of the potential energy curve over the standard presentation.

The mean purpose of studying thermodynamic properties is to find its partition
function. The temperature dependent of partition function, helps us in obtaining
additional thermodynamic properties. The partition function for pseudoharmonic
potential models may be easily calculated by computing the energies of the quantum
antidot potential and harmonic quantum dot potential [29-30] .Various scholars have
used complex numerical ways to evaluate partition functions, including the Poisson
summation technique [41], the commulant expansion methodology [42], the standard
method [43], and the Wigner-Kirkwood formulation [44]. Moreover, to investigate the
thermodynamical properties, one starts with the radially dependent part of Schrédinger
equation with pseudoharmonic potential. The energies and related wave functions are
then calculated. In the current study, we use the pseudoharmonic model, and study the
thermodynamical properties like internal energy U, free energy F, entropy S and

specific heat C.



The plan of the current study is as follows. Chapter 2, describes the position-dependent
mass (PDM) for Schrédinger equation, using PDM creation and annihilation operators

approach [28]. Moreover, working with the PDM creation and annihilation operators

for the harmonic oscillator potential that satisfy the commutation relation [4,A*]

1. Then, the corresponding PDM Hamiltonian A = (A*A + %) =w (A At — %)

determines the exact values for a, §,and y. The PDM momentum operator is
utilized [15] to solve the corresponding PDM Schrddinger equation, which is separated
into a z-dependent and a radial-dependent parts. In chapter 3, we use the
pseudoharmonic potential, and find its exact energy eigenvalues and eigenfunctions
fora PDM model, M(#) = myg(7); g(r) = — &/r2. Inthe same chapter, we evaluate
the thermodynamical properties for such PDM-particles in a pseudoharmonic
potential. The partition function Z(f) of the system at a specified temperature T is
determined. Thermodynamical properties like mean energy U, mean free energy F,
entropy S and specific heat capacity C are obtained. Our results are reported graphical
for each of the thermodynamical properties for different parameters. Our conclusion

is found in Chapter 4.



Chapter 2

PDM- SCHRODINGER EQUATION

In this chapter, the position-dependent mass (PDM) required for Schrédinger equation
is developed following the PDM creation and annihilation operators’ approach. In
quantum mechanics, it is imperative to start with the PDM Hamiltonian von Roos [18]
A= —%Z{M(?)“V M@F)PEV MF)Y + MFYV MFE)PV MF) ) + V() (2.1)
where the PDM is M (#) = my m (7). Which, m, is the rest mass, m(#) is position-
dependent mass dimensionless scalar multiplies that forms the position-dependent
mass M (7), and the parameters a, 8, and y are the von Roos ambiguity parameters.
This ambiguity is attributed to the infinite kinetic energy operators which fulfil the
constraint (@ + 8 + y = —1). Notably, the kinetic energy operators’ profile as well as
the effective potential will differ as the values of «, 8, and y are changed within the
allowable constraint limits. Moreover, according to Mustafa and Mazharimousavi [45]
at the prompt heterojunction the conditions, on the parameters setting, § = 2j and a =
Y = k where @, 5,y € R, rewritten in one-dimension and using my=h=c=1
units, as

A

—% m(x)*9, m(x)?/ 9, m(x)* + V(x). (2.2)
It should be noted that a PDM particle moving in V(x) = 0, is considered to be a
quasi-free particle. Thus, the assumption of a deformed harmonic oscillator is valid

under PDM-settings leading to the constant mass harmonic oscillator potential

(w?q?/2)to



1 1
V) =3 w?x2Q(x) = E w?q(x)? ;q(x) = /O (x) x. (2.3)
This assumption remains valid as long as g(x) is found during the construction of the
PDM creation A*and annihilation A operators. Consequently, substituting equation

(2.3) into Hamiltonian (2.2) yields

H= —% m(x)*a, m(x)?/a, m(x)* + % w?q(x)?, (2.4)
Where
k+j=—3.,4() =00 x, (25)

Q(x) represents a deformation function of the coordinate x to be calculated in the
sequel, and V(q(x)) = % w?q(x)? isa deformed harmonic oscillator. As for the PDM

creation A* and annihilation A operators, they can be, respectively, constructed in the

following forms

At = —\/%_wm(x)kax m(x)/ + \/%q(x), (2.6)
A= %m(x)jax m(x)* + \/%q(x). (2.7)

Then, the commutation relation

=AAr -1, (2.8)

[4,4*] =1 A*A+
2

N | =

must be satisfied. Clearly, it is similar to the case of the textbook one. Therefore, given

the nature of the commutation relationship for the PDM Hamiltonian, we obtained

A*A = ——m(0)*d, m(x)? 0, m(x)* — 2kq (x) (ﬁ) N

(352 + 2407 (2.9)

and



A A% = ——m(x)/9, m(x)%a, m(x)’ — 2kq(x) (J%) -

a® \ o o, €@
(2 m(x)> + 2q(x) + ~el (2.10)

Furthermore, substituting (2.9) and (2.10) in (2.8) we get

—%m(x)kax m(x)%a, m(x)k = — %m(x)jax m(x)?*a, m(x)’ + \% —1.(2.11)
Consequently, we get
q'(x) _ _ _
g 1=0e q(x) = [ ym(x) dx = \/Q(x)X, (2.12)
and the kinetic energy terms in the equation (2.11) are equal, that is
—%m(x)kax m(x)? 0, m(x)k=— %m(x)jax m(x)?ka, m(x)/ . (2.13)

As a result, two essential findings are obtained. The first establishes the composition
of g(x) in equation (2.12), while the second limits the ambiguity parameters to the
identity k = j in equation (2.13). However, the substitution of this into von Roos
constraint k +j = —1/2 vyields k = j = —1/4. Thus, the creation A*(2.7) and

annihilation A (2.8) operators for the PDM settings are determined as

i+ -1 1 ! @ i+ — i (PX) w
At = m‘vm@)ax‘vm(xﬁ\ﬁq“)‘:"l = l(m>+\/:q(x), (2.14)

and

f_ 11 1 w e o P w
A= V2% D Oy e + \/Zq(x) s At = l(—'72wm(x)> + \/;q(x), (2.15)
where

s — _ifa _1m ()

p(x) = l(ax pip ), (2.16)

is the momentum operator for the PDM as per the recent work of Mustafa and Algadhi

[15]. Hence, the PDM Hamiltonian H of equation (2.4) takes its operator form

A 1

A=ow(Atd+5)=w(di+-3) (2.17)



and a differential form

1 1 1 1

H=- 2 *fm(x) Ox Jm(x) Ox */m(x)

+% w?q(x)2. (2.18)

As a consequence, the ambiguity in the PDM kinetic energy operator of equation (2.2)

is now removed, the PDM Kinetic energy operator is now given by

A_11—>1—>1_ﬁ(7~)2
i Y ()

T2 m@®  m@)  Am@ (2.19)

Which essentially resembles the kinetic energy operator for constant mass, when
m(x) = 1. Ultimately, the PDM harmonic oscillator Hamiltonian can be conveniently

simplified and rewritten as

~ = 2
7 _ p(@) 1 5 a2
H = <\/W(7)> +ow q(r)=. (2.20)
In the next section, we work on the PDM Schrddinger equation to obtain the z-
dependent part and the one-dimensional radial-dependent part.

2.1 The radially-dependent part of the PDM Schrodinger equation

Upon obtaining the Kinetic energy operator (2.19), which contains the PDM
momentum operator P (¥), and the simplified Hamiltonian (2.20), now we consider

the PDM Schrddinger equation (using 2my = A = ¢ = 1 units)

[( PO v (f)] () = EY(D), (2.21)

where, V(¥) is the interaction potential energy. Furthermore, we follow the PDM-
momentum operator, defined by Mustafa and Algadhi [15], for the PDM Schrddinger

equation,

P =-i[V-2 (_‘7)"‘(?))]. (2.22)

m(7)
This PDM-operator is shown to satisfy the PDM Kkinetic energy operator of equation

(2.19). At this point, equation (2.22) can be used to rewrite equation (2.21) as



m (7) m (7)2 4a\m@?2) 16\ m@)3

I— vz 4 (IO g4 (T 7<(V’"(F))Z>+V(?)]¢(?) _

EY (7). (2.23)

Let us assume that m () is just radially-dependent, so that

m@) =m(r,0,z2)=g@) f(pk(2)=g(); flp) =k(2) =1, (2.24)
and
gV, ,z)=VEr)+V(ip)+ V() =V(@r)+V(2);V(p) =0. (2.25)

It should be noted that V(¢) = 0 implies azimuthal symmetry, while the scalar
multiplier m (#) = g (r) has only radially-dependent part. This would, secure the
separation of the PDM-Schrddinger equation (2.23). We now use the substitution
Y@ =9 (r,p,2) =R (@) Z(2) e™?, (2.26)
(with, m =0,%1, £2,...., £¢ the magnetic quantum number, and ¢ the angular

momentum quantum number) and obtain

[R"(r) B (g'(r) 3 1) R' (1) l(g”(r) n g'(T)) + Z (@)2 _my g(E -
r2

RO \g® mJRm  2\gm re®/ " T6\g®
ZII
% (r)] + [T(ZZ; ~v (2] =0, (2.27)

where, the z-dependent part of the eigenvalues is presented by k2, i.e.,
[-02+V (2)]Z (z) = k2 Z (2), (2.28)

and, the corresponding radially-dependent part is

2
R') (@) N\R' @™ 108", g 7 (8O _m 5 _
[R(r) (g(r) r) R (1) 4—(g(r) +rg(r))+ 16(g(r)) r2 kz +g(r)E

v (r)] _ 0. (2.29)
Additionally, the radial equation can be further simplified through the use of

R(r) = \/@ U (r), (2.30)

to obtain the one-dimensional formulation of equation (2.29) as

10



d? 2 ~
L+ s v v =EU (), (231)
where,
_ _ 5 g\ 18’ @\ 1/gm
Veff(r) =V @) g(r) B+ [16 (g(r)) 4(g(r) ) 4(rg(r))]’ (2'32)
and,
E=—k} (2.33)

At this point of the current study, two types of Schrddinger equations have been
constructed and developed. Namely, the z-dependent part (2.28) and the radial-
dependent part (2.31). These differential equations will be vital in finding an exact
solution to the problem in terms of eigenvalues and eigenfunctions for a power-low

type position-dependent mass in a pseudoharmonic potential.

11



Chapter 3

A PDM IN A PSEUDOHARMONIC POTENTIAL

This chapter is intended to discuss the PDM-Schrodinger equation (2.31), in its one-
dimensional radial form, with a pseudoharmonic potential given by [30]

V(i) =viri+ :—; — 2v0; V4 =:—§ Uy = Vo1, vg > 0. (3.1)
Where, 1, is the point of zero pseudoharmonic potential, and v, is the chemical
potential. However, this potential comprises a harmonic quantum dot potential (v;72)
as well as an antidote potential (v, /r?2) [29, 30]. For a sample of PDM settings, it has
been reported that a pseudoharmonic potential, is befitted to achieve an exact solution

for one-dimensional radial PDM-Schrédinger equation. Therefore, the corresponding

models to reach the desired solutions are presented in the followings.

3.1 A radially-dependent PDM with m (7) = g(r) = %/ ,

Having the radial PDM with m () = g(r) = — E/rz allows for equation (2.31) to

be rewritten as

[—:—:2 22;;/4 + vlrz] U(r) = Egpp U(r), (3.2)

where,
P2 —1/4=m?+v,+{E o |[P|=/m>+ v, +EE +1/4 (3.3a)
Eof = 20y — k2 (3.3 b)

Equation (3.2) is, in fact, the one-dimensional form of the two-dimensional radial

harmonic oscillator [46] which has the exact eigenvalues

12



Eorr =24y (2n, + 2| + 1) = 2v, — k2, (3.4)
where n,. is described the radial quantum number. Upon substituting the magnetic

quantum number £ from (3.3 a) the following can be obtained

Eoyrp =24 vy (2n, +ym2 + v, + EE + 1/4 + 1) = 2v, — k2, (3.5)

with the corresponding eigenenergies

2
1 2vy—k2
En,m=—% (mz +vy +1/4 — <;’°—m - (@2n, + 1)) ) (3.6)

Furthermore, the radial eigenfunctions can be then determined as

Ry m(r)~ r= e exp (— %rz) 1F1 (—nr; 12| + 1; % T'Z). (3.7)
At the instant, eigenenergies equation (3.6) and eigenfucntions equation (3.7) are
obtained by using the radial-dependent of the PDM in a pseudoharmonic potential. In
the next section, the partition function will be determined by using eigenenergies
equation (3.6).

3.2 Thermal properties for the position-dependent mass in

pseudoharmonic potential

In this context, the partition function of our PDM system at a specified temperature T

is given by [47, 48]

1

2(5) = Yyzgre P iem = @)

where E,, ,, are the energies in equation (3.6) , and kg is the Boltzmann constant. The

thermodynamic properties of our PDM in the pseudoharmonic potential, associated

with the energies in (3.6), are obtained by rewriting (3.6) as
Enr,m = é ((0-2 - znr)z - 01); (38)
where,

0-1:m2+v2 +i, (39)

13



_ 2U0—k§ _
o=y, (3.10)

Then, equation (3.8) is substituted in (3.7) to obtain

2() = yimax (@72 01) (3.11)

n=0
where we take n = n,. for simplicity of notation and n,,,, is obtained by requiring

dEpm

1
=7 [2(0; — 2Np0,)(—2)] = 0,
= 0'2 —_ anax = 0,

02
5 |

(3.12)

Nmax =
At this point, an integral in the classical limit is used to replace the summation term in

equation (3.11), hence

_B((.—2m)2—
Z(ﬂ) — fonmaxe 5((0'2 2n) 01) dn, (313)
to yield.
erf <&) \/Eeﬁ%
1
z(p) =7 —H (3.14)
Ve

Using the partition function (3.14), the mean energy U, mean free energy F, entropy S

and specific heat capacity C can be easily derived following [47, 48]:

Q) mean energy, U

d Inz(B)

up) = -0 .19
_Ba3
(—2B01+§)erf<%)\/§ﬁ—zﬁe $ o, ?
1
U == 3.16
8 = e (3.16)

14



(i) mean free energy, F

F(B)=~7 InZ(B), (3.17)
Boy
er Boy ﬁeT
lnl/— f<‘/§ \l
jE
F(B) = - 5 : / (3.18)
(iii)  Entropy, S
SB) =k InzB) —kp 2 “‘Z(’” (3.19)
Boy
N N e IR AR
Lk \ \ﬂ ~2B0,+| 2In| F /|+1/|g/wﬁ-ﬁe G 02/|
£
SB) = ; ,;,,1\ . (3.20)
erf (292 \/EeT
BVmerf] = f<‘/§ |
B
)
(iv)  Specific heat capacity, C
() = kp? 52 (3.21)
cp) =
2 62\ 2
(ﬂsnm erf(%)z-wzn(—z ﬁﬁ+(§ﬁa§+f)(§)3/ 2>e_ﬁ_fzferf(ja_2> 2627 ( ﬁ_fz> 022>k
1
2 ﬁfﬂ3/2erf<%)2 .
(3.22)

In figure 1, the pseudoharmonic potential (3.1) is plotted for different values of the
harmonic quantum dote potential parameter v,. it could be seen from the figure that

potential energy rapidly converges to infinity as the related potential parameters

15



increase. The harmonic quantum dote potential parameter v, appears to rapidly

influence V(r) as it greatly increases with higher parameter v, values.

3000

2000+

wi =0
wl = 0.25

vl =1.25
wl = 2.5
wi = 3.75

1000

Figure 1. The pseudoharmonic potential (3.1) for different values of the
harmonic quantum dote potential parameter v; and fixed values for v, = 1 and
vz = 1

In the Figure 2, the shape of the pseudoharmonic potential with the change in the
antidote potential parameter v,. It could be seen that figure of the potential energy

increases directly in one line as the potential parameters & increase.

80

70

60

5 O

w2 =0
w2 =1
w2 =5
w2 =10
w2 =15

40

Vi)

30+

Figure 2. The pseudoharmonic potential (3.1) for different values of the harmonic
quantum antidote potential parameter v, and fixed values for v, = 1and v; = 0.25.
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Whereas, figure 3 shows the effect of chemical potential parameter v, on the shape of
the pseudoharmonic potential. Generally, it could be seen that the potential energy

spreads to infinity as the related potential parameters ¢ increases.
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Figure 3. The pseudoharmonic potential (3.1) for different values of the chemical
potential parameter v, and fixed values for v; = 0.25and v, = 1.

Figures 4-8, we show a graphical representation of the thermal properties obtained via
the standard Boltzmann approach. The aim is to analyze and present the
interrelationship of the thermodynamical properties with 8 at different form factors (¢
=0.1,0.2,0.5, 0.6, 0.9). Figure 4 shows the partition function variation with g. It can
be seen that the function increases as the temperature decreases for small ¢&. However,

the line is almost constant with higher & values.
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Figure (4). The partition function Z(f) (3.14) as a function of g for different values
of &, whenm=1,v,=2,v; =1,v, =175k, = 1.

On the other hand, is depicted in figure 5, the mean energy U(B) decreases with
decreasing temperature T.
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Figure (5). The mean energy U(f) (3.16) as a function of g for different values of ¢,
whenm=1, vy =2,v; =1,v, =175k, = 1.

The mean free energy F(B) increases monotonically as the temperature T decreases

as shown in figure 6.
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Figure (6). The mean free energy F(f) (3.18) as a function of £ for different values
of§,whenm=1,v,=2,v;, =1,v, =175k, = 1.

Figure 7, illustrates the Entropy S(B) exponential decrease with decreasing T values

and, similar to the case of mean energy U (), the increase in ¢ yields higher entropy.

— =01
— =02
] — =05
£E=06
£=00

S(B)

o
M
(=]
o+
(=]
2]
[=]

v

o

=

o

=]

Figure (7). Entropy S(B) (3.20) as a function of g for different values of &, when
m=1, 170 = 2, 171 = 1, vz = 1.75, kZ =1.



Figure 8, shows a decrease in specific heat from the value of C(B) =1 as the
temperature T decreases. Here, it is observed that the curve for the form factor £ = 0.1

distinguishes itself from other curves, as it shows a rapid exponential decrease.
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Figure (8). Specific heat capacity C(B) (3.22) as a function of g for different values
of &, whenm=1, vy =2,v;, =1, v, =175, k, = 1.

Finally, figures 9-11 show a graphical representation of the energy eigenvalues
variation against the parameter & for various magnetic quantum number denoted by m
m = 0,1,2,3,4. Figure 9 illustrates the energy eigenvalue for n,=0. As shown, the

eigenvalue increases rapidly as the parameter & increases, the function however

approaches zero with higher & values.
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Figure (9). Plot of energy eigenvalue (3.8) as a function of & for various magnetic
quantum number m, for n,=0, vy = 2, v; = 1, v, = 1.75, k, = 2.

In figure 10, the energy eigenvalue for n,.=1 appears to take a shape having the zero-
x-axis as a horizontal asymptote with the eigenvalues being positive when m<2 and

negative when m>2.
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Figure (10). Plot of energy eigenvalue (3.8) as a function of ¢ for various magnetic
quantum number m, for n,=1,v, = 2,v; =1, v, = 1.75, k, = 2.
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Moreover, for n,.=2 the energy eigenvalue for the various magnetic quantum numbers
is almost the mirror version of data observed for n,.=0 (figure 9) about the x-axis, and
illustrates the energy eigenvalue decreases rapidly as the parameter & increases, which

can be seen in figure 11.
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Figure (11). Plot of energy eigenvalue (3.8) as a function of ¢ for various magnetic
quantum number m, for n,=2, v, = 2, v, = 1, v, = 1.75, k, = 2.
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Chapter 4

CONCLUSION

The thermodynamic properties for a PDM in the pseudoharmonic potential is
discussed in this thesis extensively. We have started with the PDM creation and
annihilation operators for the PDM harmonic oscillators through the von Roos
PDM- Hamiltonian (2.1). The PDM of Schrédinger equation is implemented (2.21),
and the formulation of the one-dimensional radial Schrédinger equation (2.31) is
obtained. The partition function and thermodynamical properties for PDM-particles in
the pseudoharmonic potential have been studied. Their variations with temperature are
also presented carefully. Thermodynamical properties like mean energy U(f), mean
free energy F(B), entropy S(B) and specific heat capacity C(f) are determined in
equation (3.16, 3.18, 3.20, 3.22). Results have been discussed extensively using plots.
We noted that, mean energy U () and entropy S(B) are reduced as temperature T is
decreased, see figure (7,9). We illustrated mean free energy F(f) is raised with
temperature T decreased monotonically. In contrast to specific heat capacity C(B), it
has shown the exponentially decreased specific heat capacity C(f) for value (C(8)=
1) with reducing temperature T in figure (6,8). It was found that our results agree with
the existing literature. Also the partition function Z () is growth up as temperature T
decreased in figure (4). As we expected, the pseudoharmonic potential is increased
with change of the values of the harmonic quantum dote parameter v,, the harmonic
quantum antidote parameter v, and the chemical potential parameter v,, we have

shown in figure (1-3). Moreover, effective of the pseudoharmonic potential to our
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eigenenergies is illustrated the graphical context. It is noted that in the results, our
eigenenergies for the radial quantum number n,=0 are increased swiftly as the
parameter ¢ is increased. In contrast to our eigenenergies for n,.=2 is almost mirror
version of data about x-axisto observed for n,.=0. Which could be seen in figure (9,11).
And our eigenenergies for n,.=1 are positive when m<2 and negative when m>2 as

shown in Figure (10).
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