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ABSTRACT

This thesis begins with an introduction of discussing the motion of P non interacting
particles constrained in a curved surface of N dimensions. First the particles are
described in the flat space R and Cartesian coordinates, an external potential, V, is
considered to maintain the system constrained in a curved subspace Dn. Assuming
normal forces to keep particles on the curved surface, the part of Schrodinger
equation which is independent of the potential V, and contains the curve space
variables will be separated to internal and external parts, therefore a new Schrddinger

equation is raised that depends on curved surface geometrical properties.

In continuation, to explain this problem clearly, we study the motion of one quantum
particle that is bounded at an arbitrary point p on a curved surface S in three
dimensions. In order to get the true result, a potential V. is assumed for the
constrained particle so the wave function will be uniformly compressed. Since
classical mechanics principal guides us to avoid tangential forces, only normal
constraint forces are acceptable to keep particle on the surface. Choosing point Q as
an immediate neighborhood for point p and considering differential geometry
relations for these points, Schrodinger equation can be obtained. Hence it will be
demonstrated that, the internal potential for bounded particle is a function of surface
curvatures which cannot be found from metric tensors or its derivatives and so on
classical Lagrangian. Therefore there is a strike contrast with classical mechanics

where Lagrangian and Newtonian approach give same results.



In addition, inconsequence, Schrodinger equation for a particle constrained on a
Spherical shell, Cylindrical shell and a Toroid is determined. Finally we obtained

Schrodinger equation for a particle constrained on a pseudosphere surface.

Keywords: Schrédinger equation, constrain, space curve, quantum particle,

differential geometry, curvature



Oz

Bu tez, N boyutlu bir egri uzayinda smirlandirilan P etkilesimsiz pargaciklarin
hareketinin tartisgiimasiyla baslamaktadir. Ik olarak parcaciklar diiz uzay R ve
Kartezyen koordinatlarinda tanimlanir, bir dis potansiyel olan V,, egri bir alt uzayda
Dn smirlandirilmis sistemi korumak igin kabul edilir. Pargaciklar1 egri uzayinda
tutmak icin normal kuvvetler varsayarsak, Schrodinger denkleminin V,
potansiyelinden bagimsiz olan ve egri uzay1 degiskenlerini i¢eren kismi i¢ ve dis
parcalara ayrilacaktir, bu nedenle egri uzayma baglh yeni bir Schrodinger denklemi

ortaya ¢ikar. geometrik 6zellikler.

Devaminda, bu sorunu agik bir sekilde agiklamak igin, bir egri yilizeyi S (zerinde
keyfi bir p noktasinda sinirlanan bir kuantum pargaciginin hareketini ii¢ boyutlu
olarak inceliyoruz. Dogru sonucu elde etmek i¢in, kisitl pargacik i¢in bir potansiyel
V. varsayilir, boylece dalga fonksiyonu diizgiin bir sekilde sikigtirihir. Klasik
mekanik ilkesi tegetsel kuvvetlerden kaginmamiza rehberlik ettiginden, pargacigi
ylizeyde tutmak i¢in yalnizca normal kisitlama kuvvetleri kabul edilebilir. Q noktast
p noktasi i¢cin yakin komsuluk olarak secilerek ve bu noktalar i¢in diferansiyel
geometri iligkileri dikkate alinarak Schrodinger denklemi elde edilebilir. Dolayisiyla,
smirlt pargacik i¢in i¢ potansiyelin, metrik tensorlerden veya tiirevlerinden ve klasik
Lagrange'dan  bulunamayan yilizey egriliklerinin bir fonksiyonu oldugu
gosterilecektir. Bu nedenle, Lagrange ve Newton yaklagiminin ayni sonuglar1 verdigi

klasik mekanik ile bir vurus karsithigi vardir.



Ayrica Kiiresel kabuk, Silindirik kabuk ve Toroid iizerinde kisitlanmis bir pargacik
icin tutarsizlik, Schrodinger denklemi belirlenir. Sonunda, bir psddokiire ylizeyi

iizerinde kisitlanmis bir pargacik i¢in Schrodinger denklemini elde ettik.

Anahtar Kelimeler: Schrédinger denklemi, kisitlama, uzay egrisi, kuantum

parcacigi, diferansiyel geometri, egrilik
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Chapter 1

INTRODUCTION

One of the most famous problems in classical mechanic is particle’s motion analysis,
which can be solved utilizing two different methods, Lagrangian equation and
Newtonian approach. The first one deals with generalizing coordinates in which
constraint is defined independent of the curve properties. It means that Lagrangian
only depends on space metric properties. The second way is considering a particle
free fall based on Newtonian equations where an external force is applied to bind the

particles to the space curve. These two different ways give same result.

However, in quantum mechanics the problem solving is completely different [1].
When a quantum particle is constrained on a curve or surface, Lagrangian equation
cannot lead us to an appropriate Schrodinger equation as this equation depends only
on the curve metric properties which are not affected by the path geometry. On the
other hand, Newtonian approach leads us to a Schrodinger equation which is under
an unfamiliar condition. To constrain particles on a curved surface, we assume
external forces which are orthogonal based on uncertainty relations. Therefore wave
function sees a sharp potential that is infinite for constrained particles and

compresses wave packet in transverse direction.

In this thesis we have to use the Newtonian approach which leads us to an

appropriate Schrodinger equation that is dependent of curved surface geometry [1-8].



At first we consider the Cartesian space R as a classic system with p constrains and N
coordinates (q.....g") which are generalized, so we assumed a system of independent
particles with p + N dimensions, in which x* = x* (g%, g2 ,....¢") are coordinates
where o =1,2,...,N + p . Then Dy is introduced as a curved subspace of Ry +pthat we
assumed that any configuration of the constraint system as a subtended to a point in
Dn .Since s are internal coordinates the external coordinates are introduced as u*
,...,uP then a set of coordinates (9* ,q?, ..., ¢ ,ul, ...,u P) is imputed to all points of a
neighborhood of S < R+ p of Dy (Where ul= u? =....= uP then it would be a point of
Dn ) [1]. It’s time that we enter the potential V, ('ul,...,uP), where p is compressing
parameter to squeeze the system from Ry +p to the S. In a small neighborhood, at a
limit of u’s variation around o =0, we can write

0 (WH?+-+ WP)*=0
W2 + -+ (uP)? # 0. (1.1)

gi_r)go Vo(ut, u?, ..., uP) = {
It should be noted that we cannot choose potential and external coordinates quite
arbitrary, so based on classical mechanics the constrained motion can be found only
when for all points of Dy constrained forces are normal. As the position of quantum
particle is not clear, it is reasonable to choose normal constrained forces in all points
of our system in R n +p. So the gradient of potential should be selected F{V,( ul,..., uP
)], that intersects the subset Dy for all the points of neighborhood S orthogonally, it

would be confirmed where internal and external coordinates are orthogonal, in this

case for an optional position vector R(g,....q", u,..., uP) in subset Sis given as

- -
OR OR _
ou®* aq’ ' 1.2)

where a =1,2,...,p and j=1,2,...,N and bold letters, in this study, are used for vectors.



Based on the expressed situation, we will find an unfamiliar condition for
constrained particles, where subspace potential U (g, ...,¢") will be determined as a
function of mean and total curvatures that obviously couldn’t be found from
subspace’s metric properties. Finally the Schrodinger equation which depends on
curvatures will be obtained. Since Lagrangian could not be used, this result is in
contrary with the result of classical mechanics where Lagrangian equation and
Newtonian approach give same result [2].

1.1 Geometrical analysis in N dimensions

Let us continue by considering r = r (g*,..., V), with internal coordinates (q's), as

parameterization of Dn, where g's and external coordinates (u's) have to be chosen

orthogonal for making a coordinate system in Ry + p. Therefore for all points of

neighborhood S:
R(q%, ...,qN,ul, ..., uP) =
P
r(qu LA ] qN) + z fﬁ(qll h ] qN: ull ’up)'fiE (qll LA ] qN)r (1'3)
=1
with
fB
det ﬁ * 0. (14)

Then, ul,...,uP are spanned by normal system ng ((ng.My) = 84p) for all the points

of subspace Dy, so for R

p
R ofr
out = Lioua (3)
y=1
and
R Z off anAﬁ
aq) an an aqf' (1.6)

3



Since constraint force F, were introduced from classical mechanics as IV, imagine a
moment that u “’s and ¢ 1’s are orthogonal, F can be written in terms of variables Q !

where Q' =qJ,j=1,.N,Q"* *=u“and a =1,...,p , we can write

N+p p
F = VVp — z Gil ana_R = Z GIV+0(,N+/3 an dR
i l a8’
= aQ aQ oyt ou’ du (1.7)
where
__GR OR 0 1
Gy = 301301 G* = (G (1.8)

Now the orthogonally condition for internal and external varieties can be rewritten as

14 4

ofY |af”
23w ogr * 2, 1ol | =0 9
y=1 B=1

We can assume inside the parentheses equal to zero as there is no a (it doesn’t

contain the external variables ul,...,uP ) where

aong
o~ B
HjyB _'ny'aqj = THjpy (1.10)

that is antisymmetric in indexes y and f. Using partial differential theory [9], the

integrability condition for considering inside the parenthesis zero can be written as a

symmetric tensor

or dn,

'Qd,l'j = _a_ql_an = 'QG;ji . (111)
From differential geometry result, we know the components of x;;,s must satisfy the

condition [1],

Aygie = 9™ (2 028:m- 21/ Q%mi) = 0.
vB;jk g y;lk=4B;mj y;lj24B;mk
(1.12)



This condition enables us to get a particular solution fY(q%,...,q",u%,...,uP) that

y = 1,2,...,p therefore by taking derivative of f¥ with respect to each of u®'s, we

. . .- afﬁ . . afY Y
have p independent solutions. Reminding det [W] # 0 and introducing, i h(,

p 14
0
W[Z RERL | = = ) i (RERE+RT,RE) = 0. (113)
y=1 y.p=1

Since the values of fY can be arbitrarily selected at a fixed point (g3, ..., g}') of the

subspace D, we can write

fYaqd, ...qddH=uw , y=12,..,p. (1.14)
Here we selected a Cartesian coordinate system at points (g3, ..., qd') for normal
subspace. By considering Jacobian matrix h!, we start with matrix h} = & at
(g3, ..., qd) that will be always an orthogonal matrix. Change of normal 7" is

introducing as

p
—, e
n, :Zhg n;,

o=1 (1.15)
where h9 is orthogonal character, so new normals in every normal subspace form an

orthogonal basis. Choosing new normals leads us to write ,,,, as

ohg < ]
aqf + Z ,uj;az hp = 0.
z=1

Based on orthogonally condition, derivative of every ﬁ;’ for all points of Dn have to

— 14
/ _’r\anp_ he
.uj;vp_nvaqj— v

o=1

(1.16)

be contained in the tangent subspace. So for all points in Dy there are same f#°s as

aff
du®

B =fE@t,..,uP) det[ * 0.

(1.17)

In this case, we can write the position vector and its derivatives as



p N (1.18)
=r(q},...,.q") + z @, ..., uPIn's(q ..., qV),
p=1
and
R or <~ o,
507 =507+ 2 s
q = (L.19)

Also we can see A, = 0 is always true when Dy is a curve or hypersurface of
RN+p-
1.2 Schrodinger equation for the constrained system
Now we should write the Schrédinger equation regard to the constrain, SO R N +p iS
14
R(q%, ...,q",uY, ..uP) =r(qL, ..,q") + z u[”ﬁ’;;(ql, v gV).
= (1.20)

Since the Cartesian coordinate is easier to interpret, it is chosen for normal subspaces

of Dy, SO
aR = —
S = Ma a=12,..,p. (1.22)
Then,
OR  Or Zp: ik 0T 1,2,..,N
—_— == U dgij9 2% o ] = Léen i
dq/  dq’ £ aq (1.22)
where

i o1 _or or
9" =06 i Iim _a_qlaq_m
(1.23)
Equations (1.21) and (1.22) for metric tensor G, we have



Gix = gjk — ZZ uﬁ.()ﬁ ke Z uﬁu”ﬂﬁ U.Qymkg

=1 Br=1 (1.24)
where
Gj’N+a = GN+a'j = 0’ GN+(X,N+B=6Q:B ]

(1.25)
where j,k = 1,2,..,N; a,f = ..p. Now it’s the time to write Schrodinger
equation in Ry,

h? 1 0 61/)
l] _r p i
2m /G 00" {‘/—G 6Q1} V@, uPyp = ih (1.26)

As it is known m is the particle mass and GY = (G™%);;, G = det(G;;). The only
quantities that can affect constraining potential are external variables, thus to obtain
the values of V, for all points of the neighborhood S they should be known in a
normal subspace selected at one point in Dy ,which is chosen arbitrary [1]. It means

since the values of V, can be selected as we like and the only condition is normality

in Dn, other subspaces would be explained by change in @(ql, e gM).

In order to solve Schrodinger equation, we divide equation (26) into two equations

regard to orthogonal coordinate. Where for a # 8, GN**N*8 = 0, we have

R2 1 0 oy R ( 0%y
‘ﬂ”:l\/_aa_qi{ﬁwa_cy}_ﬂ {a(ua)z (ln\/_)lp}

_ind (1.27)
ot

where one of them includes derivatives of internal variables and another one consists

external ones.



To solve Schrodinger equation, we are interested in write this equation to find the
possibility of obtain the internal coordinates in a specific volume element of Dy that
shouldn’t be dependent of external variables values. Also this possibility can be
written as |x;|%/gdq?, ..., dq" where y; = x;(q’,t), (i stands for internal) is defined

as internal wave function, thus

P = [y|?dD = |Y|*VGdq?, ...,dq" du?, ..., du?, (1.28)

and

G114
wlg|| Voaa . dgvant, . = 1 gagt, . dgat, o

where dP is the probability for volume element dD in Rn+p. . (u%,t), is introduced
that e means external. Therefore Schrodinger equation can be rewritten based on new

wave function, X = X;(q’, t)X.(u% t), as

hz 1 0 i, [)(]
VGG — &
v’aq 9q' lWh

d%h
Zm\/_ZIE)(uﬁ)Z 4h? Hauﬁ B 5( ﬁ)l l

X ot
,(u', ..., uP)y = ih ,
b X N (1.30)

* T
that, h = (g)%. When it’s studied at limit p goes to infinity, the potential barrier is
normal to Dy in all directions, which is completely far from zero except at small
values of external coordinates around u“=0, a=1,2,...,p .In last equation, we cancel

all the coefficients by taking u*—0, only we keep it in the last term .It is obvious

from (1.24) , (1.25) , (1.30) and h=1, in all points of the subspace that



Z\/—aq [‘/_gua_;f __Z“auﬁ afu:) A

1,j=1

14
h? 0%y oy
™ W‘F Vp(ul,...,up))( lha (1.31)
B=1

This equation can be broken into two parts regard to internal and external terms, as

p

—_—— ) —== o, uP =i 1.32
and
_h_z " | o
Zm Oql
0%h 0xi
- —_. 1.33
8mz Hauﬁ O(uﬁ) l = th ot (1.33)

The external term that is a Schrodinger equation in p dimensional Cartesian system
in the presence of potential V,, can be neglected in our study [1], [2] but the internal
term is the important part that consists internal potential which depends on D

geometry and appears as

0%h
Ui(q*, ....q" Z“auﬂ —ZWL“:O. (1.34)

Since the first and second derivatives of h are appeared, we need a series expansion

of h until second order in u*’s. Thus using (1.24), (1.25) we can write

h= H =1- Z” uf + Z (2.0, — 0k.00  JuPur + ., (1.35)

Byl

where we wrote a mixed tensor of g/, as ﬂé;i. From the expansion of h



_ah J 0*h i nk k i
[auﬁ vico - ' A (uP)? = g0 = 2pil2p00 (1.36)
- u%=0

add these two in (1.34)

8m
o=1 o=1

14 14
h? S .2
ui(qh, ..., q") = ——(Z(ng; ;) +2 z 0L 0k, — ag;lng;k). (1.37)
Introducing R as total curvature and M as mean curvature of the subspace Dn
imbedded in Rn+p,

16

14
o=1

P
> @)
o=1

where total curvature, R, is only dependent of intrinsic properties of subspace D,

that is not same for mean curvature [1]. Finally the potential is given by

hZ
Ui(q", ...q") = —%(Mz + 2R) (1.39)

Where Gaussian curvature, K; = 2R. This result is in a complete contrast with the

Lagrangian method used in classical scales.

10



Chapter 2

CURVE DIFFERENTIAL GEOMETRY AND QUANTUM
MECHANICS OF A CONSTRAINED PARTICLE IN 3

DIMENSIONAL CURVED SURFACE

In previous chapters Schrddinger equation was determined for P constrained
particles in N dimensions. Now for better understanding of the case, we investigate
the motion of one particle bounded on a surface in three dimensions. Before direct
heading to geometry analysis, Gauss-Weingarten equation (GWE) is explained [9].

2.1 Gauss-Weingarten equation

X

aX
E'XV = a—vand n

Regarding Figure.2.1 for an arbitrary point P on surface S, X,, =

are the basis vectors since they are linearly independent (where, bold letters are used

. . X
for vectors). So X,, = e, , X, = e, which, are not unit vectors however n = %=

ley Xey |

is unit normal.

Figure 2.1: Illustration of the surface parametrization for arbitrary point p.

11



GWE connects the partial derivatives of e, ,e, and n in terms of their linear

combination. Let us define the surface metric tensor to be

w5 e

suchthatE = e,.e,,G =e,.e,and F = e,.e, . Since n.n = 1 then

n. n n. n- n O, ( )
nn n. n. nv O. ( )

Therefore n L n,, also n L n, which, mean n,, and n,, lie on the surface, where they

can be written as a linear combination of e, and e,, as

n, = ae, + be,, (2.4)

n, =ce, +de,. (2.5)

Also we know e,.n = e,.n = 0, then

d0,(e,,n)=0 = e,,.n+e,n, =0, (2.6)
d,(e,.m)=0 = ey,.n+e,.n, =0, (2.7)
d,(e,, ) =0 = e,,.n+e,n, =0, (2.8)
d,(e,,n) =0 = e,,.n+e,n, =0. (2.9)

From (2.4) and (2.5)

nn,=0= an.e, + bn.e, =0, (2.10)
nn,=0=cn.e, +dn.e, =0, (2.11)

from (2.6)
e-m=—e,.n,=hy,, (2.12)

12



and from (2.7) and (2.8)

ewN=—e,n,=e,.n=—e,n, =h, =h,,. (2.13)

Also from (2.9)

e, n=—e,.n, =h,, (2.14)
in which
W = (huu huv) _ (e f) (2.15)
ab hvu hvv f g .

Where, h is called the second fundamental form of the surface S, which plays an

important role in geometry analysis in the next section.

Next, from (2.1)

oE 1 (2.16)
- 2e,,-e, = e,,.e, = EE“'

)] 1

— =2ey,.e, = ey,.e, =-E,.

v uv u uv u 2 v (217)

Same calculation for G gives

1 2.18
€yy- €y = EGV' ( )
€yu- €y E ur (2.19)
For F
F=e,.e,=F =ey.e, te, e, =ey.e, +§Ev =
=F,—-E
AR (2.20)

And same calculations for F, gives

13



e,,.e, =F, —%Gu. (2.21)

Regarding (2.15), (2.16) and (2.20)

e =Ine, +I7, e, +en, (2.22)

where, I'y,.’s are the Christoffel symbols and same for e,,, and e,,, = e,,, We have,

e, =Ty,e, +1Y,e,+gn, (2.23)
Cuy = ngeu + Fllivev + fn, (2-24)

Equation (2.4) and (2.5) are modified as
n, = a; e, +age,, (2.25)
n, =aye, + a,e,, (2.26)
considering, a = a, b = a}, ¢ = a¥} and d = a, when a}’s are surface curvature

tensor elements. From (2.16) to (2.24) we can write

e, -Cyu =

EE” =I[ey ey +Thuey-e, +0, (2.27)

ey ey = Fy =5 By = Tiyey. ey + Tiyey. e, +0, (2.28)
1 u "

ey eyy =5 By = Tipey. e, + ey e, +0, (2.29)

ey.ey, = EGu = ey ey + ey e, +0, (2.30)

ey e =5 Gy =Thyey. e, + e, e, +0, (2.31)

e, e, =F — EGu = Ivey. ey +Typey. e, + 0. (2.32)

In addition from (2.12) to (2.14) and (2.25) and (2.26), we have

e, n, = a;feu_ e, + al“ieU' e, = —e, (233)

14



also
e, n, =aje, e, +a,e,e,=—f,
—_ u v —_
e, n,=aye,e,+aye,e,=—g.

From (27) to (32)

1
EEu = E + TLF,

1
F, — EE,, = [ F + TG,

1
EE,, =TI, E + T, F,

1

5 Gu = Tl F +T0G,
1 u 1%

Fy =5 Gy = THE + T F,

1
=G, =I5 F +T7,G,

2
they can be written as
1 E 1 E, E ! G
27w 2tvo v (E F) (Fﬁu M T
1 1 1 F G/ \IY, 1%, IV
Fu _ - Ev - Gu - Gv uu uv (4%
2 2
! E ! E, E ! G
(Fﬁu s F%v) _ (E F)‘1 27w 2ty vt
rv, re, rv,) \F G 1 1 1
uu uv v Fu _ E Ev E Gu E Gv

In addition, same calculations for (2.33) to (2.35)

a E + ajF = —e,
ajF +alG = —f,
ayF + ayG = —g.

Then

15

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
(2.44)

(2.45)



(G E)E H=-( 1) 249

finally, Gauss-Weingaten equation is defined as

u u -1
(Z}E ZZ’) - (1€ g) (; f;) (2.47)
2.2 Mean and principal curvatures

As it was explained before, potential of the constrained particle depends on mean and
principal curvatures which should be calculated using curvilinear geometry [9].
Hence, let us consider point P on a two-dimensional curved surface embedded in a
three-dimensional space, where, {q*, g%} are described as surface coordinates
(¢%,q% € R), a mapping that dedicate {g*, g?} to some point in 3D space can be
introduced as

X(q".4®)

r(q'.q®) =|Y(q@"q*) |

ACR'D (2.48)
where, r is the surface parametrization in three dimensions described using Cartesian
coordinates. In order to construct a coordinate system, two considered vectors on the

surface are given by

_or L
el —_ a_ql 1] L= 1,2, (2.49)

where, it is tangent to the surface and some points that are in a direction where g*
increases. It is time to utilize these tangent vectors to introduce the affiliated normal

vector

e xXe,
"= le xe,l (2.50)
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It is common to choose n as a unit vector, which is not correct for e; and e,, also
they are not introduced to be perpendicular, hence the lack of orthogonality will be
fixed by using the first fundamental form (metric) as g;; = e;.e; where i,j = 1, 2.
Next step for calculating the surface curvature is assuming second fundamental form.
Therefore

K - on de; 0%r
0= el.aqj = n'c’)qiaqj'

_”'a_qj = (2.51)
where, K;; is called extrinsic curvature tensor. Considering a plane that contains
normal n and unit tangent vector t at point P, which cuts the surface and constructs a
cross sectional curve whose normal curvature at the considered point is K = K;;t't/.
Regarding to quadratic form of normal curvature, there are two directions for

external curvature as P, = Ple; , called principal directions, which are the

eigenvectors of K;; and they are orthogonal (P,. P, = 0), so we have

Ki;P] = K,9:;P} :Kjipa] = K, P}

(2.52)
Then, the total curvature, k = gV K; = K}, gives the mean curvature as
S P TN
M —E —E(Kl +K2) _E(KI-I_KZ)' (2.53)

In order to obtain Gaussian curvature, determinant of Kij should be taken, therefore it

can be written as

K¢ = detK/! = K/K, .
(2.54)
Knowing mean and principal curvature, M and K;, we can easily compute the

Schrodinger equation for constrained particle on curved surfaces.
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2.3 Quantum mechanics of a constrained particle on a surface

In order to keep a particle constrained to a surface S, particle feels forces normal to S
in all of its points that compress the wave function in transverse direction. It causes a
constant potential on S which is infinity in orthogonal direction. As it was studied, an
immediate neighborhood for particle position should be introduced in which particle
can be released from constraining. Therefore, let us consider a particle at point P on
the surface S with parametric position equation r = (g%, g?) and neighborhood

Q(q%, g%, ¢®) with position equation as

R(q',q% q*) =r(q",q*) + ¢°n(q*, ¢?).
(2.55)

Figure 2.2: Curvilinear system for a particle at arbitrary point p on the surface S.

Where, as it’s shown in figure.2.2, n is the normal at point p. Since to write
Schrodinger equation, we need Laplacian of neighborhood metric tensor [1-8], the

first step is finding components of the metric tensor G;;

(2.56)

dR OR or on(qt,q?)\ [ or on(q',q%)
=, = —+q3 ; . +q3 : )
Yo 0qi'aq) \9q! aqt oq/ aq/

withi,j=1,2,3and
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oR |
Freie n(q’,q°). (2.57)

And for the surface S, the metric tensor components that are the coefficients of first

. or Oor . . , On
fundamental form are defined as g;; = PP To obtain G;; as functions of g’s, pPE
that embedded in the tangent plain can be written as

on _ ;or
agt~ “oqr (2.58)
when
1 1 2 1
a; == (gizhz1 — g22h11), ai =—(h11921 — h21911), (2.59)
g g :
1 1 2 1
a; = E (h22912 — h12922), a; = E (h21912 — h22911), (2.60)

where g is determinant of g;; and h;;’s are the coefficients of the second fundamental
form defined the extrinsic curvature of the surface. For more clarification of
geometry analysis refer to section 2.1(Gauss-Weingarten equation). From equation

(2.56)

Jr or 3<6n or Jr on
q

J 9qi oq) dqi ' 0q/  0q' dq’ dqt 0q’ (2.61)

Using g;; = ;—;.% and (2.58), G;; can be written as

Gij = gij + @ (af gij + af gu) + (af grua})(g)?

=gij + (ag + (ag)T)ijq3 + (agaT)ij(q3)2, (2.62)

where, T stands for transposed matrix. G;3 = Gs; = 0 ,withi,j = 1,2, G35-1.

Therefore
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Gll GlZ 0
Gij=| Gy Gy 0. (2.63)
0o 0 1

Since for an arbitrary metric tensor f in a curvilinear coordinates, for a general scalar

function Y Laplacian is define as

[aq (J—f ’ a_qf) (2.64)

where f = det f;; [10]. Now Schrddinger equation can be written as

K2 l oY
_%\/—_ﬁ[x/—c j —] F V(@) = ih— (2.65)

where V; is the potential that keeps the particle constrained on the surface, which is

obviously equal to zero when g3 = 0. Therefore the Schrédinger equation is given as

h2
_2_H(q Ve q3)¢__[(a ( \/—) 3|+ Va@®y (2.66)

3)2
— 0¥
= ih o
where H(qt, q?, %) is defined as surface part, with i,j = 1, 2. Now this equation is
divided to two exterior and interior parts while in internal part G;; that represents
exterior metric tensor should be eliminated in a way that g;; appears. Therefore

probability of finding internal coordinate in dV as a volume element of the curve

space that is independent of outer variables should be found, which can be written as

dp = [Y|?dV = |$|*VGdq'dq?dq.
(2.67)

To obtain VG from (2.62) for matrix G;;
G = J11 912] n [a% Oif] [911 912 911 921” ai 06%]
Y 921 Y22 ai azll921 922 912 9221 la? a2 EE

_I_[a% “f] 911 912”“% “%](qs)z
ai a2ll921 922lla? o '



after simplifying and determining elements of this matrix, determinant of G;;can be

calculated as

1
det Gij = 5{(h11h22 - h212)(q3)2 + q3(_h22911 — g22h11 + 2912024

+ g}z.

For the first part in parentheses, using (2.59), (2.60) we can write
1,2 2.1 1 2 2
deta = aja; —aja; = ?(hnhzz — hyy )(911922 — 921°)
_1 2 _ 2
= E(huhzz — hyq ) = gdeta = hy1hy; — hyy”,
and for second part where Tra = ai + a3

gTra = (=hz2911 — g22h11 + 2912h21) .

Using (2.69), (2.70) and (2.71)

d G--=l d 3)2 3g(T 2
etGy; g{(g eta)(Q) +q g( Ta)"'g};

= V6 = /g1 + ¢*Tra + (¢°)? deta).

It is time to write the volume element as

dv = f(q',q% q*)dSdq?,

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

where, f = 1+ ¢3Tra + (¢3)? deta and the element of surface dS can be obtained

as

dS = |q*dq"' x q*dq?|,

(2.74)

where, g'dq'’s are immeasurably small element of surface. From determinant of

surface metric, we have
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9 = 911922 — 912921 = 911922 — (q1_q2)2 = 9119221 — cos® 0)

= 1q*1?|q*|*sin? 6 = |q* x ¢*|* = |q" x ¢*| = /g,

= ds = [gdqidq? . (2.75)
Referring (2.67)
2
dp = [YI*f[gdq*dq*dq® = [p/f| Jgdg*dg*dq®
= IXIZ\/Edqldqqu3, (2.76)

since the wave function can be modified as X(q%,q? ¢%) = \/f¥(q" 4% q°),

Schradinger equation (2.66) is expressed as

3

hz 1 al 9 X| A2 1 9%
0q7 \[f] 2m [f (0q%)?

of °f 1, 1. 10X 277
4-f2 [(—) me- X+ﬁVAX = lhﬁ% ( )

The wave function value is clearly far from zero at limit around g = 0 where the
squeezing parameter A goes to infinity and the wave function feels sharp potential
from two sides of the S in the normal directions. At this time Schrodinger equation

can be written as

h2 ox af 92f h? 92X
____[fg]@ “8m (aq) Z(aq3)2]x_%(aq3>2

)
V,X =ih—. (2.78)
+ 2 l at

Now obviously wave function can be separated into internal (X;;,,) and external (X,)

parts

h? 1 9 [ Uaxm <6f 'h
2m J5 o0t V99 B 327) (aq3> e @)
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and

h? 02X,
2m (9q3)?

., 0Xe
+Vi(g®)X, = ih 5 (2.80)

Where, exterior part as one-dimensional Schrodinger equation is ignorable in this
study, on the other hand interior part is the important one as serves Schrodinger
equation for the wave function of constrained particle on the surface under an

internal potential which depends on surface geometrical properties and is given as

2 (1 af)2 a2 f l

U(ghq®) = “m|\2557) T (g2 (2.81)
By calculating first and second derivatives of f with respect to g
2 2
aa—é; = (é (g11ha2 + g22hq1 — 2g12h12)) , % = édet hij . (2.82)

Introducing mean and Gaussian curvatures as M and Kg respectively [9], internal

potential can be written as

2

U(qt,q?) = —ﬂ[MZ — K¢, (2.83)

where k; and k, are principle curvatures of surface

KG = klkZ ) (2 84)

1
Presence of internal potential as a function of mean and Gaussian curvatures

significantly demonstrates dependent of constraint particle motion to surface

geometry which can be different for various surfaces with different g;;’s. Since

Lagrangian (L = %meFl 9:;(q", qz)q'lq'z) is independent of surface geometry and
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clearly depends only on surface metric variables, it is not an appropriate method to

solve this problem.
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Chapter 3

EXAMPLES OF CONSTRAINING A QUANTUM

PARTICLE TO A SURFACE

3.1 Constrained particle on a spherical shell

Computing the mean and principal curvature was explained thoroughly in previous

chapter. Defining local coordinates as, gt = 8,q% = ¢, a parametrization for a

sphere with radius a is given by

asin @ cos ¢
r= (asinesimp).

acos 6 (3.1)
-
Figure 3.1: A spherical surface of radius a.
The tangent vectors on the sphere surface are defined as
or acos 6 cos ¢
eg =—=|acosBfsing |, (3.2
a0 :
—asinf
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and

or —asin @ sin @
€, :_<p: ( asin @ cos @ ) (3.3)
0

therefore, the unit normal is described as

eg X e, sin 6 cos ¢
n=———-—=|sinfsing | (3.4)
les x €, cos 8
In addition, the for the first fundamental form on the sphere we get
_ _ €g.€9 eg.e(p) _ a2 0
9ij = €i-¢; = (e(p' €y €y,.€, - ( 0 a?sin? 0)' (35)
1
|z 0
lj —
=g 1
a?sin? 6 (3.6)
Now the second fundamental form coefficients on the sphere are described as
0%r
Kop = Kpo = —n-agaq) =0, (3.7)
9%r sin @ cos ¢ —asinf cos ¢
Kgg = —M.—o—= —| sinfsing |.| —asinfsing
026
cos —acos@
= a(sin? 6 cos? ¢ + sin? B sin? ¢ + cos? §) = q, (3.8)
9%r sin 6 cos ¢ —asin 6 cos ¢
Kpp = —n.aT = - <sin0 singo) . <— asin@sin g )
¢ cos @ 0
(3.9)
= a(sin? @ cos? ¢ + sin? O sin? @) = asin? 4.
Where extrinsic curvature tensor is determined as K;; = (a .02 )which leads
0 asin“@

us to obtain matrix Kl.’ where diagonal components are surface principal curvatures

s0 we compute K;’s as
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0 oi 06 09 1 1
Ky =Ky = Keig™ = Koog™" + Kopg"" =a—3+0=—, (3.10)

1 1

a?sin2 0 +0= a’  (311)

— K _ i 0 — ;4 cin?
Ky = Ky = Kpi9% = Kpp9g®? + Kpgg?” = asin”6
Knowing K;and K, are principle curvatures, the mean and Gaussian curvatures are

given by

1 1
MZE(K1+K2) ZE; (3.12)

and

1
K¢ = (K1-K2) = E (3_13)

As it was argued, internal potential for a spherical shell can be written as

() -2
a a?

Therefore, the Schrédinger equation for a constrained particle on a spherical shell

h? h?
U(q1,q2) = —_[MZ - Kl =——

2m 2m =0 (3.14)

can be written as

____[\/_ ijaX_i”] — ihaxin
2m Jgoq V99 aqi 9t (3.15)

Regarding (3.5) and (3.6), time independent Schrédinger equation can be written as

1
sin @

0 [ . eaXin + 1 d aXin] _ 2mEa2X

26 15" 90 | Tsinzeaplap | T T a2z i (3.16)
considering X;, = R(a)Y;m,(8,9) where on the surface R(a) is constant and
Yim,(0,90) = 0(0)P(p) is spherical harmonics with [=10,1,2,.. and m; =

0,+1,£2,...are orbital and magnetic quantum numbers respectively, for Laplacian

L2 we can write
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) 1 0.
LYy m, = == 55 [sin6

a Yl,ml 1 a 2 Yl,ml
sin 8 06

a0 sin26 a2 A Dl

that can be separated as

9%® ,
a7 =

0 00
. i . il ) _ 2 —
smeae sm@ag + [I(l + 1) sin* 8 — m;“]O = 0.

Therefore, general solution for this Schrédinger equation is given as
Xin(0,9) = Re'™%p ™ (cosH),

where plml is associated Legendre function [11].

3.2 Constrained particle on a cylindrical shell

(3.17)

(3.18)

(3.19)

Defining local coordinates as, g = 8, g2 = z, a parametrization for a cylinder with

radius p is given by

p COS @
r= <psin<p>.

Z

Q ffffffffffff ( ffffff 2\

Figure 3.2: A cylindrical surface of coordinates (p, ¢, z).

The tangent vectors on the sphere surface are defined as

e. =5~ (o)
2= 5, = 1,
or —psing
e(p=%=<pcc(>)5(p )
28
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(3.21)
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in this case the unit normal is described as

e, X e, cos ¢
n=——"2—{(sing | (3.23)
e, x e, 0

In addition for metric on the cylindrical surface we get

_ _(€o-€o €p-€2\ _(p2 0
9ij = €;.¢; = (ez.e(p ez.ez> = (0 1>'

1
= g = <p 0). (3.24)
0 1

The second fundamental form coefficients are given by

0%r
Kpz = Kzp = —1. 090z =0, (3.25)
9%r COS @\ ,—pCOS
Kpp = =" <sir(1)go> . < —psoingo ) = p(cos? ¢ +sin®¢@) = p, (3.26)
9%y cos @\ /0
Kz =~ = = <Sin <P> : <0> = 0. (3.27)
z 0 0

Then extrinsic curvature tensor is computed as K;; = (‘8 8) which leads us to find

principal curvatures so

. 1 1
K; = K$ = (pig(pl = K(p(pg(p(p + K(ng(pz = pp_‘l' 0=-

(3.28)
K, =K7 = KzigZi = K;,9"" + K(ng(pz = 0.

Determining K, = 0, Gaussian curvature is clearly zero and mean curvature

obviously is equal to M = %Kl = %. Therefore, internal potential for a cylindrical

shell can be written as

. a1
U(q1,92) = _%[M —Kgl = _%? (3.29)
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Finally the Schrodinger equation for a constrained particle on a cylindrical shell is

given by

h2 [ I ) o
Zthaq V99" 37|~ G g Xin = th 5 (3:30)

using this equation and (3.23) and assuming X;, = ®(¢)Z(z) , independent

Schrodinger is modified as

1 9*0(p)  2mEp®> 1 10°Z

o(p) 092 hz 4 zoazzP T 7% (3.31)
Hence applying separation method [12], it can be written as
02D (p)
a¢2 = _az(b((p): (332)
and
0%Z 5
52 Pz (3.33)
Where g2 = 4—;2+ 2:;5 —“—z and a are constants. Considering L, the length of

cylinder, using boundary conditions, Z(0) = Z(L) = 0, so (3.33) can be written as

nm
Z(2) = sin(Bz) = sin (—z) ,  n=123.. (3.34)
L
Therefore, the general solution can be written as
in (22 7) el 3.35
Xin((p, Z) = SIn (TZ) eta?, ( )

2 27242
where using (3.34) and S definition, it is clear that, a = \/% + 2";”;" —_ ’LTZP .
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3.3 Constrained particle on a Toroid

The same computing structure leads us to Schrodinger equation for a constrained
particle on a toroid where local coordinates are g1 = 8, g? = ¢, the parametrization

IS given by

(3.36)

(R+rcosf)sing
rsin @

((R + rcosf) cos<p>
r= )

Figure 3.3: A Toroid surface major radius R and minus radius r.

Where R is the distance between toroid center and center of the tube also r is tube
radius, which are called major and minus radiuses respectively. The tangent vectors

on the toroid surface are defined as

or —rsin 6 cos ¢
ey =30 —rsinfsing |,

r cos @ (3.37)
ar —(R+1rcosf)sing
e, = % = ( (R +rcosB)cos @ >, (3.38)
0
therefore, the unit normal is described as
en X e 1 r(R 4+ 1rcosB)cosbcos g
n=—2 e = R 7 r(R +1rcosf)cosfsing
eQXe(p| r(R +7cosb) r(R+1rcosf)sinf
—cos 8 cos @
= (— cos 0 sin (p). (3.39)
—sin 6
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In addition the for the first fundamental form on the toroid we get

€g.€9 eg.e(p) (1"2 0 )
~\0 (R+rcos0)?)

9ij = €i-€ = (e(p.eg €p-€gp

1
— 0
ij_|T
=9 = 1 : (3.40)
(R + 1 cos 0)?

Now the second fundamental form coefficients on the toroid are described as

0%r
Kop = Koo = ~1-5555 = (3.41)
9%r cos 6 cos ¢ —7r cos 6 cos @
Kgg = —n.% = <cos 0 sin (p) . (—r cos 0 sin go) = —71, (3.42)
sin 6 —rsinf
927 cosfBcosp\ /—(R+rcosf)cose
Kyp = —n.aT =|cosfOsing |.| -(R+rcosf)sing
¢ sin 6 0
(3.43)
= —(R + rcos0)coséb.
Therefore K, —(_r 0 ) d K©’s are given b
erefore Ki; = | —(R + 7 cos 8) cos 0 and K;’s are given by
; 1 -1 3.44
Ky = K§ = Kgig% = Ko g%® + Ko g%% = —rzt0=— (3.44)

K, = K;f’ = <pig"’i = K,p,9%? + K(pgg"’e

—cos 6@

( +TCOSH)COSH(R+7‘COSB)2+O R+ 1rcosf (3.45)

Knowing K;and K,as principle curvatures, the mean and Gaussian curvatures are

given by

-1 —cos 6 —(R + 2rcos6)
o e
r R+7rcosf 2r(R + 1 cos ) (3.46)

and
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cos (3.47)
r(R+rcosf)’

KG =
As it was argued, internal potential for a toroid can be written as

h? h? R?
= ——[M2—K;] = —— .
U(ar a2) 2m [ d 8mr2(R + r cos 0)? (3.48)

Finally the independent Schrodinger equation for a constrained particle on a toroid

[13] is defined as

h2

‘%7£[f9 7

RZ
I 2(R + 1 cos )2 lX = EXin (3.49)

which can be separated where X;,, = 0(0)®(¢) as

(R+rcosf) 1 R4 0 (9)
27 0(8) ae (R+1cosb) 55— 4r2
E 6 O
—(R+1cos0) = ((p) :
h dJ((p) (3.50)
Therefore
Xin = 0(0)e'*, (3.51)

where 0 (6) satifies

(R+7rcos0)20%0(0) (R+rcosh) 966(9)
sin

r2 902 r 90 (3.52)
+R2+ ER+ 0)? 0(6) = 0.
o 3 ( r cos 8)% — a?

3.4 Constrained particle on a pseudosphere

In this section we find the Schrodinger equation for a constrained particle on a
pseudosphere surface which is called antisphere or tractrisoid too [14-16]. For local

coordinates g* = uand g2 = v, the pseudosphere parametrization is
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sechu cosv
r=| sechusinv | (3.53)

u —tanhu

Figure 3.4: Illustration of pseudosphere upper half. [14]

Then tangent vectors on this surface are computed as

or —sechutanhucosv
e, = M = | —sechutanhusinv ),
1 —sech?u (3.54)
or —sechusinv
ey == sechucosv |, (3.55)
0
thus the unit normal is defined as
e, X e, 1 —sechu cosv + sech® ucosv
= e xe.] = echutanhu —sechusinv + sech® usinv
u "t —sech? utanhu

—tanhu cosv

=| —tanhusinv |. (3.56)
—sechu

Also, for the first fundamental form on this surface we can write
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L —e.e = (e“'e“ e“'e”) - (tanhzu 0 )
9ij = €i:€j = \e,.e, e,e, ’

0 sech?u
! 0
= gl = tanh? u )
sech? u (3.57)

Now the second fundamental form coefficients in this case are described as

0%r

Ky = Kypy = —n. Judv 0, (3.58)
%r
Kuu = —n.%

(tanh ucos v) (sech utanh? u cos v — sech3 u cos v)

tanh u sin v sech u tanh? usin v — sech® usin v
sechu 2 sech?utanhu
(3.59)
= sechu tanhu,
52y (tanhucosv\ /—sechucosv (3.60)
Ky = —n.——=| tanhusinv |.{ —sechusinv | = —sechutanhu.
0%v
sechu 0
And Kii’s are given by

, 1 (3.61)

Ki = K} = Ky g™ = Ky g™ + Ky g™’ = sinhu’

K; = K,}’ = Kvigvi = vagvv + Kvugvu = —sinhw.
(3.62)

Using K;and K,that are principle curvatures, the mean and Gaussian curvatures are

written as

1 1
M= (K, +K,) = > (sinhu — cschw), (3.63)

K;=-1. (3.64)
Therefore, pseudosphere has constant negative Gaussian curvature. Hence internal

potential for the surface is obtained as
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2 2

h
U(q1,qz) = —5—=[M?* = Kg] =

——|[(sinhu — cschu)? + 4]
2m 8m

hZ
= -5 (cosh? u + coth? u), (3.65)

finally, the Schrodinger equation can be written as

hZ

m_( ) ~8m (cosh? u + coth? u)X;, (u, v)

£l

That shows Schrodinger equation for a bounded particle on a pseudosphere. Using

separation method

Xipn(u,v) =U)V(v), (3.67)

and Schrodinger equation can be modified as

1 6[ 1 0U] 2mE

1 1
_ _ _ _ h2 h2
U sech u tanh u du Lsinh u ou + h2 + 4 (cosh®u + coth®u) (3.68)

1 19%V
sech2uV dv?"’

So

1 1 a[ 1 09U +2mE b2 +1+ 1 _ 190%V
U sinh u du lsinh u du Rz S U T T dsinhzu . Vov?’ (3.69)

which, should be equal to a? where, « is a constant. Therefore

Xin = U(u)e'®,
(3.70)
and U (u) satisfies
1 a[ 1 6U+<1+ 1 +2mE b2 Z)U()—O
sinh u du Lsinh u du 4  4sinhZu hZ2 seciu—a w==u. (3.70)
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Chapter 4

CONCLUSION

In classical mechanics, Lagrangian equation and Newton approach give same results,
also for two isometric surfaces the equation of motion is identical, in contrast, in
quantum scales, on a curve space, Schrédinger equation depends on the mean and
Gaussian curvatures. This dependency is more important where in internal potential
equation, M as mean curvature appears, which cannot be found just using metric
tensor components of surface and its derivatives (unlike Gaussian curvature K;). It

shows disability of Lagrangian in motion of quantum particles on curve spaces.
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