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ABSTRACT 

This thesis begins with an introduction of discussing the motion of P non interacting 

particles constrained in a curved surface of N dimensions. First the particles are 

described in the flat space R and Cartesian coordinates, an external potential, Vρ is 

considered to maintain the system constrained in a curved subspace DN. Assuming 

normal forces to keep particles on the curved surface, the part of Schrödinger 

equation which is independent of the potential Vρ and contains the curve space 

variables will be separated to internal and external parts, therefore a new Schrödinger 

equation is raised that depends on curved surface geometrical properties. 

In continuation, to explain this problem clearly, we study the motion of one quantum 

particle that is bounded at an arbitrary point p on a curved surface S in three 

dimensions. In order to get the true result, a potential V𝝀 is assumed for the 

constrained particle so the wave function will be uniformly compressed. Since 

classical mechanics principal guides us to avoid tangential forces, only normal 

constraint forces are acceptable to keep particle on the surface. Choosing point Q as 

an immediate neighborhood for point p and considering differential geometry 

relations for these points, Schrödinger equation can be obtained. Hence it will be 

demonstrated that, the internal potential for bounded particle is a function of surface 

curvatures which cannot be found from metric tensors or its derivatives and so on 

classical Lagrangian. Therefore there is a strike contrast with classical mechanics 

where Lagrangian and Newtonian approach give same results.   
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In addition, inconsequence, Schrödinger equation for a particle constrained on a 

Spherical shell, Cylindrical shell and a Toroid is determined. Finally we obtained 

Schrödinger equation for a particle constrained on a pseudosphere surface. 

Keywords: Schrödinger equation, constrain, space curve, quantum particle, 

differential geometry, curvature 
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ÖZ 

Bu tez, N boyutlu bir eğri uzayında sınırlandırılan P etkileşimsiz parçacıkların 

hareketinin tartışılmasıyla başlamaktadır. İlk olarak parçacıklar düz uzay R ve 

Kartezyen koordinatlarında tanımlanır, bir dış potansiyel olan Vρ, eğri bir alt uzayda 

DN sınırlandırılmış sistemi korumak için kabul edilir. Parçacıkları eğri uzayında 

tutmak için normal kuvvetler varsayarsak, Schrödinger denkleminin Vρ 

potansiyelinden bağımsız olan ve eğri uzayı değişkenlerini içeren kısmı iç ve dış 

parçalara ayrılacaktır, bu nedenle eğri uzayına bağlı yeni bir Schrödinger denklemi 

ortaya çıkar. geometrik özellikler. 

Devamında, bu sorunu açık bir şekilde açıklamak için, bir eğri yüzeyi S üzerinde 

keyfi bir p noktasında sınırlanan bir kuantum parçacığının hareketini üç boyutlu 

olarak inceliyoruz. Doğru sonucu elde etmek için, kısıtlı parçacık için bir potansiyel 

V𝝀 varsayılır, böylece dalga fonksiyonu düzgün bir şekilde sıkıştırılır. Klasik 

mekanik ilkesi teğetsel kuvvetlerden kaçınmamıza rehberlik ettiğinden, parçacığı 

yüzeyde tutmak için yalnızca normal kısıtlama kuvvetleri kabul edilebilir.  Q noktası 

p noktası için yakın komşuluk olarak seçilerek ve bu noktalar için diferansiyel 

geometri ilişkileri dikkate alınarak Schrödinger denklemi elde edilebilir. Dolayısıyla, 

sınırlı parçacık için iç potansiyelin, metrik tensörlerden veya türevlerinden ve klasik 

Lagrange'dan bulunamayan yüzey eğriliklerinin bir fonksiyonu olduğu 

gösterilecektir. Bu nedenle, Lagrange ve Newton yaklaşımının aynı sonuçları verdiği 

klasik mekanik ile bir vuruş karşıtlığı vardır. 
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Ayrıca Küresel kabuk, Silindirik kabuk ve Toroid üzerinde kısıtlanmış bir parçacık 

için tutarsızlık, Schrödinger denklemi belirlenir. Sonunda, bir psödoküre yüzeyi 

üzerinde kısıtlanmış bir parçacık için Schrödinger denklemini elde ettik. 

Anahtar Kelimeler: Schrödinger denklemi, kısıtlama, uzay eğrisi, kuantum 

parçacığı, diferansiyel geometri, eğrilik  
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Chapter 1 

INTRODUCTION 

One of the most famous problems in classical mechanic is particle’s motion analysis, 

which can be solved utilizing two different methods, Lagrangian equation and 

Newtonian approach. The first one deals with generalizing coordinates in which 

constraint is defined independent of the curve properties. It means that Lagrangian 

only depends on space metric properties. The second way is considering a particle 

free fall based on Newtonian equations where an external force is applied to bind the 

particles to the space curve. These two different ways give same result. 

However, in quantum mechanics the problem solving is completely different [1]. 

When a quantum particle is constrained on a curve or surface, Lagrangian equation 

cannot lead us to an appropriate Schrödinger equation as this equation depends only 

on the curve metric properties which are not affected by the path geometry. On the 

other hand, Newtonian approach leads us to a Schrödinger equation which is under 

an unfamiliar condition. To constrain particles on a curved surface, we assume 

external forces which are orthogonal based on uncertainty relations. Therefore wave 

function sees a sharp potential that is infinite for constrained particles and 

compresses wave packet in transverse direction. 

In this thesis we have to use the Newtonian approach which leads us to an 

appropriate Schrödinger equation that is dependent of curved surface geometry [1-8]. 
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At first we consider the Cartesian space R as a classic system with p constrains and N 

coordinates (q1…..qN) which are generalized, so we assumed a system of independent 

particles with p + N dimensions, in which xα = xα (q1, q2 ,…,qN) are coordinates 

where α =1,2,…,N + p . Then DN is introduced as a curved subspace of RN + p that we 

assumed that any configuration of the constraint system as a subtended to a point in 

DN .Since q’s are internal coordinates the external coordinates are introduced as u1 

,…,up then a set of coordinates (q1 ,q2 ,…, qN ,u1, …,u p) is imputed to all points of a 

neighborhood of S ⊂ RN + p of DN (where u1= u2 =....= up then it would be a point of 

DN ) [1]. It’s time that we enter the potential Vρ ( u
1,...,up), where ρ is compressing 

parameter to squeeze the system from RN + p to the S. In a small neighborhood, at a 

limit of u’s variation around α =0, we can write 

It should be noted that we cannot choose potential and external coordinates quite 

arbitrary, so based on classical mechanics the constrained motion can be found only 

when for all points of DN constrained forces are normal. As the position of quantum 

particle is not clear, it is reasonable to choose normal constrained forces in all points 

of our system in R N + p. So the gradient of potential should be selected ∇[Vρ( u
1,..., up 

)], that intersects the subset DN for all the points of neighborhood S orthogonally, it 

would be confirmed where internal and external coordinates are orthogonal, in this 

case for an optional position vector R(q1,...,qN, u1,..., up ) in subset S is given as 

where α =1,2,...,p and j=1,2,...,N and bold letters, in this study, are used for vectors. 

 lim
𝜌→∞

𝑉ρ(u
1, u2, ..., up) = {

       0         (𝑢1)2 +⋯+ (𝑢𝑝)2 = 0                      

∞         (𝑢1)2 +⋯+ (𝑢𝑝)2 ≠ 0.              
 

 

(1.1) 

 
𝜕𝑹
→ 

𝜕𝑢𝛼
. 𝜕𝑹
→ 

𝜕𝑞𝑗
= 0, 

 

(1.2) 
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Based on the expressed situation, we will find an unfamiliar condition for 

constrained particles, where subspace potential U (q1,…,qN ) will be determined as a 

function of mean and total curvatures that obviously couldn’t be found from 

subspace’s metric properties. Finally the Schrödinger equation which depends on 

curvatures will be obtained. Since Lagrangian could not be used, this result is in 

contrary with the result of classical mechanics where Lagrangian equation and 

Newtonian approach give same result [2]. 

1.1 Geometrical analysis in N dimensions 

Let us continue by considering r = r (q1,..., qN), with internal coordinates (q's), as 

parameterization of DN, where q's and external coordinates (u's) have to be chosen 

orthogonal for making a coordinate system in RN + p. Therefore for all points of 

neighborhood S: 

with 

Then, u1,…,up are spanned by normal system 𝒏𝛽̂ ((𝒏𝛽̂ . 𝒏𝛼̂) = 𝛿𝛼𝛽) for all the points 

of subspace DN , so for R 

and 

 
𝑹(𝑞1, … , 𝑞𝑁 , 𝑢1, … , 𝑢𝑝) = 

𝒓(𝑞1, … , 𝑞𝑁) +∑𝑓𝛽(𝑞1, … , 𝑞𝑁 , 𝑢1, … , 𝑢𝑝)𝒏𝛽̂

𝑝

𝛽=1

(𝑞1, … , 𝑞𝑁), 

 

 

 

(1.3) 

 𝑑𝑒𝑡 [
𝜕𝑓𝛽

𝜕𝑢𝛼
] ≠ 0. 

 

(1.4) 

 
𝜕𝑹

𝜕𝑢𝛼
=∑

𝜕𝑓𝛾

𝜕𝑢𝛼
𝒏𝛾̂

𝑝

𝛾=1

, 
 

(1.5) 

 
𝜕𝑹

𝜕𝑞𝑗
=
𝜕𝒓

𝜕𝑞𝑗
+∑ [

𝜕𝑓𝛽

𝜕𝑞𝑗
𝒏𝛽̂ + 𝑓

𝛽
𝜕𝒏𝛽̂

𝜕𝑞𝑗
]

𝑝

𝛽=1

. 
 

 

(1.6) 
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Since constraint force F, were introduced from classical mechanics as ∇Vρ, imagine a 

moment that u α’s and q j’s are orthogonal, F can be written in terms of variables Q j 

where Q j = q j, j=1,...,N, QN +  α  = u α and α =1,...,p , we can write 

where 

Now the orthogonally condition for internal and external varieties can be rewritten as 

We can assume inside the parentheses equal to zero as there is no α (it doesn’t 

contain the external variables u1,...,up ) where 

that is antisymmetric in indexes γ and β. Using partial differential theory [9], the 

integrability condition for considering inside the parenthesis zero can be written as a 

symmetric tensor 

From differential geometry result, we know the components of μj;γβ must satisfy the 

condition [1], 

 𝐹 = 𝛁𝑽𝜌 = ∑ 𝐺𝑖𝑙
𝑁+𝑝

𝑖,𝑙=1

𝜕𝑽𝜌

𝜕𝑄𝑖
𝜕𝑹

𝜕𝑄𝑙
= ∑ 𝐺𝑁+𝛼,𝑁+𝛽

𝜕𝑽𝜌

𝜕𝑢𝛼
𝜕𝑹

𝜕𝑢𝛽

𝑝

𝛼,𝛽=1

 , 

 

 

(1.7) 

 𝐺𝑖𝑙 =
𝜕𝑹

𝜕𝑄𝑖
.
𝜕𝑹

𝜕𝑄𝑙
         ,          𝐺𝑖𝑙 = (𝐺−1)𝑖𝑙. 

 

(1.8) 

 ∑
𝜕𝑓𝛾

𝜕𝑢𝛼
[
𝜕𝑓𝛾

𝜕𝑞𝑗
+∑𝜇𝑗;𝛾𝛽𝑓

𝛽

𝑝

𝛽=1

] = 0.

𝑝

𝛾=1

 

 

(1.9) 

 𝜇𝑗;𝛾𝛽 = 𝒏𝛾̂.
𝜕𝒏𝛽̂

𝜕𝑞𝑗
= −𝜇𝑗;𝛽𝛾 , 

 

(1.10) 

 
𝛺𝜎,𝑖𝑗 = −

𝜕𝒓

𝜕𝑞𝑖
.
𝜕𝒏̂𝜎
𝜕𝑞𝑗

= 𝛺𝜎;𝑗𝑖 . 
 

(1.11) 

 
𝐴𝛾𝛽;𝑗𝑘 = 𝑔

𝑙𝑚(𝛺𝛾;𝑙𝑘𝛺𝛽;𝑚𝑗−𝛺𝛾;𝑙𝑗𝛺𝛽;𝑚𝑘) = 0.  

(1.12) 
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This condition enables us to get a particular solution 𝑓𝛾( 𝑞1, . . . , 𝑞𝑁 , 𝑢1, . . . , 𝑢𝑝 ) that 

𝛾 = 1,2, . . . , 𝑝 therefore by taking derivative of 𝑓𝛾 with respect to each of 𝑢𝛼 's, we 

have p independent solutions. Reminding 𝑑𝑒𝑡 [
𝜕𝑓𝛽

𝜕𝑢𝛼
] ≠ 0 and introducing, 

𝜕𝑓𝛾

𝜕𝑢𝛼
= ℎ𝛼

𝛾
, 

Since the values of 𝑓𝛾 can be arbitrarily selected at a fixed point (𝑞0
1, … , 𝑞0

𝑁) of the 

subspace DN , we can write 

Here we selected a Cartesian coordinate system at points (𝑞0
1, … , 𝑞0

𝑁) for normal 

subspace. By considering Jacobian matrix ℎ𝛼
𝛾

 we start with matrix ℎ𝛼
𝛾
= 𝛿𝛼

𝛾
 at 

(𝑞0
1, … , 𝑞0

𝑁)  that will be always an orthogonal matrix. Change of normal 𝒏𝜈̂ ' is 

introducing as 

where ℎ𝜈
𝜎 is orthogonal character, so new normals in every normal subspace form an 

orthogonal basis. Choosing new normals leads us to write 𝜇𝑗;𝜈𝜌 as 

Based on orthogonally condition, derivative of every 𝒏𝜈 ′̂ for all points of DN have to 

be contained in the tangent subspace. So for all points in DN there are same 𝑓𝛽’s as 

In this case, we can write the position vector and its derivatives as 

 𝜕

𝜕𝑞𝑗
[∑ℎ𝛼

𝛾
ℎ𝛼′
𝛾

𝑝

𝛾=1

] = − ∑ 𝜇𝑗;𝛾𝛽

𝑝

𝛾,𝛽=1

(ℎ𝛼
𝛾
ℎ
𝛼′
𝛽
+ℎ

𝛼′
𝛾
ℎ𝛼
𝛽
) = 0. 

 

(1.13) 

 
𝑓𝛾(𝑞0

1, … , 𝑞0
𝑁) = 𝑢𝛾    ,     𝛾 = 1,2, … , 𝑝. (1.14) 

 𝒏𝜈 ′̂ = ∑ℎ𝜈
𝜎  𝒏𝜎̂

𝑝

𝜎=1

 , 
 

 

(1.15) 

 𝜇′𝑗;𝜈𝜌 = 𝒏′𝜈̂
𝜕𝒏′𝜌̂

𝜕𝑞𝑗
= ∑ℎ𝜈

𝜎 [
𝜕ℎ𝜌

𝜎

𝜕𝑞𝑗
+∑𝜇𝑗;𝜎𝑧

𝑝

𝑧=1

ℎ𝜌
𝑧]

𝑝

𝜎=1

= 0. 
 

 

(1.16) 

 𝑓𝛽 = 𝑓𝛽(𝑢1, … , 𝑢𝑝)     ,    det [
𝜕𝑓𝛽

𝜕𝑢𝛼
] ≠ 0. 

 

 

(1.17) 
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and  

Also we can see 𝐴𝛾𝛽;𝑗𝑘 = 0 is always true when DN is a curve or hypersurface of 

𝑅𝑁+𝑝.  

1.2 Schrödinger equation for the constrained system 

Now we should write the Schrödinger equation regard to the constrain, so R N + p is  

Since the Cartesian coordinate is easier to interpret, it is chosen for normal subspaces 

of DN, so 

Then, 

where 

Equations (1.21) and (1.22) for metric tensor 𝐺𝑙𝑚we have 

 
𝑹(𝑞1, … , 𝑞𝑁 , 𝑢1, … , 𝑢𝑝)

= 𝒓(𝑞1, … , 𝑞𝑁) +∑𝑓𝛽(𝑢1, … , 𝑢𝑝)𝑛′𝛽(̂ 𝑞1, … , 𝑞𝑁)

𝑝

𝛽=1

, 

 

 

(1.18) 

 
𝜕𝑹

𝜕𝑞𝑗
=
𝜕𝒓

𝜕𝑞𝑗
+∑𝑓𝛽

𝑝

𝛽=1

𝜕𝑛′𝛽̂

𝜕𝑞𝑗
. 

 

 

(1.19) 

 𝑹(𝑞1, … , 𝑞𝑁 , 𝑢1, … 𝑢𝑝) = 𝒓(𝑞1, … , 𝑞𝑁) +∑𝑢𝛽𝑛′𝛽̂(𝑞
1, … , 𝑞𝑁)

𝑝

𝛽=1

. 
 

 

(1.20) 

 
𝜕𝑹

𝜕𝑢𝛼
= 𝒏′̂𝛼     ,     𝛼 = 1,2, … , 𝑝. 

 

(1.21) 

 
𝜕𝑹

𝜕𝑞𝑗
=
𝜕𝒓

𝜕𝑞𝑗
−∑𝑢𝛽𝛺𝛽;𝑖𝑗𝑔

𝑖𝑘

𝑝

𝛽=1

𝜕𝒓

𝜕𝑞𝑘
    ,    𝑗 = 1,2, … , 𝑁, 

 

 

(1.22) 

 𝑔𝑖𝑘 = (𝑔−1)𝑖𝑘,    𝑔𝑙𝑚 =
𝜕𝒓

𝜕𝑞𝑙
.
𝜕𝒓

𝜕𝑞𝑚
 . 

 

 

(1.23) 
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where 

where 𝑗, 𝑘 = 1,2, … ,𝑁;  𝛼, 𝛽 = 1,2, … 𝑝. Now it’s the time to write Schrödinger 

equation in 𝑅𝑁+𝑝 

As it is known m is the particle mass and 𝐺𝑖𝑗 = (𝐺−1)𝑖𝑗, 𝐺 = 𝑑𝑒𝑡(𝐺𝑖𝑗). The only 

quantities that can affect constraining potential are external variables, thus to obtain 

the values of Vρ for all points of the neighborhood S they should be known in a 

normal subspace selected at one point in DN ,which is chosen arbitrary [1]. It means 

since the values of Vρ can be selected as we like and the only condition is normality 

in DN, other subspaces would be explained by change in 𝒏′𝛽̂(𝑞
1, … , 𝑞𝑁). 

In order to solve Schrödinger equation, we divide equation (26) into two equations 

regard to orthogonal coordinate. Where for 𝛼 ≠ 𝛽 , 𝐺𝑁+𝛼,𝑁+𝛽 = 0, we have  

where one of them includes derivatives of internal variables and another one consists 

external ones. 

 𝐺𝑗𝑘 = 𝑔𝑗𝑘 − 2∑𝑢𝛽𝛺𝛽;𝑗𝑘

𝑝

𝛽=1

+ ∑ 𝑢𝛽𝑢𝛾𝛺𝛽;𝑖𝑗𝛺𝛾;𝑚𝑘𝑔
𝑖𝑚

𝑝

𝛽,𝛾=1

, 
 

 

(1.24) 

 
𝐺𝑗,𝑁+𝛼 = 𝐺𝑁+𝛼,𝑗 = 0,     𝐺𝑁+𝛼,𝑁+𝛽=𝛿𝛼𝛽 ,  

(1.25) 

 −
ℏ2

2m

1

√𝐺

𝜕

𝜕𝑄𝑖
{√𝐺𝐺𝑖𝑗

𝜕𝜓

𝜕𝑄𝑗
} + 𝑉𝜌(𝑢

1, … , 𝑢𝑝)𝜓 = 𝑖ℏ
𝜕𝜓

𝜕𝑡
 . 

 

(1.26) 

 −
ℏ2

2m
∑

1

√𝐺

𝜕

𝜕𝑞𝑖

N

i,j=1

{√𝐺𝐺𝑖𝑗
𝜕𝜓

𝜕𝑞𝑗
} −

ℏ2

2m
∑{

𝜕2𝜓

𝜕(𝑢𝛼)2
+
𝜕

𝜕𝑢𝛼
(𝑙𝑛√𝐺)𝜓}

p

α=1

+ 𝑉𝜌𝜓 

                                                                                                                                                     = 𝑖ℏ
𝜕𝜓

𝜕𝑡
 , 

 

 

(1.27) 
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 To solve Schrödinger equation, we are interested in write this equation to find the 

possibility of obtain the internal coordinates in a specific volume element of DN that 

shouldn’t be dependent of external variables values. Also this possibility can be 

written as |𝜒𝑖|
2√𝑔𝑑𝑞1, … , 𝑑𝑞𝑁 where 𝜒𝑖 = 𝜒𝑖(𝑞

𝑗 , 𝑡), (i stands for internal) is defined 

as internal wave function, thus 

and  

where dP is the probability for volume element dD in RN+P. 𝜒𝑒(𝑢
𝛼, 𝑡), is introduced 

that e means external. Therefore Schrödinger equation can be rewritten based on new 

wave function, 𝑋 = 𝑋𝑖(𝑞
𝑗 , 𝑡)𝑋𝑒(𝑢

𝛼, 𝑡), as 

that, ℎ = (
𝐺

𝑔
)
1

2. When it’s studied at limit ρ goes to infinity, the potential barrier is 

normal to DN in all directions, which is completely far from zero except at small 

values of external coordinates around uα=0, α=1,2,…,p .In last equation, we cancel 

all the coefficients by taking  uα→0, only we keep it in the last term .It is obvious 

from (1.24) , (1.25) , (1.30) and h=1, in all points of the subspace that 

 
𝑑𝑃 = |𝜓|2𝑑𝐷 = |𝜓|2√𝐺𝑑𝑞1, … , 𝑑𝑞𝑁𝑑𝑢1, … , 𝑑𝑢𝑝, (1.28) 

 
|𝜓 [

𝐺

𝑔
]

1
4
|

2

√𝑔 𝑑𝑞1, … , 𝑑𝑞𝑁𝑑𝑢1, … , 𝑑𝑢𝑝 = |𝜒|2√𝑔𝑑𝑞1, … , 𝑑𝑞𝑁𝑑𝑢1, … , 𝑑𝑢𝑝, 

 

 

(1.29) 

 −
ℏ2

2𝑚
∑

1

√𝐺

𝜕

𝜕𝑞𝑖
[√𝐺𝐺𝑖𝑗

𝜕

𝜕𝑞𝑖
[
𝜒

√ℎ
]]

𝑁

𝑖,𝑗=1

−
ℏ2

2𝑚

1

√ℎ
∑ [

𝜕2𝜒

𝜕(𝑢𝛽)2
+
1

4ℎ2
[[
𝜕ℎ

𝜕𝑢𝛽
]
2

− 2ℎ
𝜕2ℎ

𝜕(𝑢𝛽)2
] 𝜒]

𝑝

𝛽=1

+
1

√ℎ
𝑉𝜌(𝑢

1, … , 𝑢𝑝)𝜒 = 𝑖ℏ

𝜕𝜒
𝜕𝑡
⁄

√ℎ
 , 

 

 

 

 

 

 

 

 

 

 

(1.30) 
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This equation can be broken into two parts regard to internal and external terms, as 

and  

The external term that is a Schrödinger equation in p dimensional Cartesian system 

in the presence of potential Vρ, can be neglected in our study [1], [2]  but the internal 

term is the important part that consists internal potential which depends on DN 

geometry and appears as 

Since the first and second derivatives of h are appeared, we need a series expansion 

of h until second order in uα’s. Thus using (1.24), (1.25) we can write 

where we wrote a mixed tensor of 𝑔𝑗𝑙𝛺𝛽;𝑖𝑙 as 𝛺𝛽;𝑖
𝑗

. From the expansion of h 

 −
ℏ2

2𝑚
∑

1

√𝑔

𝜕

𝜕𝑞𝑖
[√𝑔𝑔𝑖𝑗

𝜕𝜒

𝜕𝑞𝑗
]

𝑁

𝑖,𝑗=1

−
ℏ2

8𝑚
∑ [[

𝜕ℎ

𝜕𝑢𝛽
]
2

− 2
𝜕2ℎ

𝜕(𝑢𝛽)2
]
𝑢𝛼=0

𝜒

𝑝

𝛽=1

−
ℏ2

2𝑚
∑

𝜕2𝜒

𝜕(𝑢𝛽)2

𝑝

𝛽=1

+ 𝑉𝜌(𝑢
1, … , 𝑢𝑝)𝜒 = 𝑖ℏ

𝜕𝜒

𝜕𝑡
 . 

 

 

 

 

 

(1.31) 

 −
ℏ2

2𝑚
∑

𝜕2𝜒𝑒

𝜕(𝑢𝛽)2

𝑝

𝛽=1

+ 𝑉𝜌(𝑢
1, … , 𝑢𝑝)𝜒𝑒 = 𝑖ℏ

𝜕𝜒𝑒
𝜕𝑡
 , 

 

(1.32) 

 −
ℏ2

2𝑚
∑

𝜕

𝜕𝑞𝑗
[√𝑔𝑔𝑗𝑘

𝜕𝜒𝑖
𝜕𝑞𝑘

]

𝑁

𝑗,𝑘=1

−
ℏ2

8𝑚
∑ [[

𝜕ℎ

𝜕𝑢𝛽
]
2

− 2
𝜕2ℎ

𝜕(𝑢𝛽)2
]
𝑢𝛼=0

𝜒𝑖 = 𝑖ℏ
𝜕𝜒𝑖
𝜕𝑡
 .

𝑝

𝛽=1

 

 

 

 

 

 

(1.33) 

 𝑈𝑖(𝑞
1, … , 𝑞𝑁) = −

ℏ2

8𝑚
∑ [[

𝜕ℎ

𝜕𝑢𝛽
]
2

− 2
𝜕2ℎ

𝜕(𝑢𝛽)2
]
𝑢𝛼=0

𝑝

𝛽=1

. 
 

(1.34) 

 ℎ = [
𝐺

𝑔
]

1
2⁄

= 1 −∑𝛺𝛽;𝑗
𝑗

𝑝

𝛽=1

𝑢𝛽 +
1

2
∑ (𝛺𝛽;𝑖

𝑖 𝛺𝛾;𝑘
𝑘 − 𝛺𝛽;𝑖

𝑘 𝛺𝛾;𝑘
𝑖 )𝑢𝛽𝑢𝛾 +

𝑝

𝛽,𝛾=1

…, 
 

(1.35) 
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add these two in (1.34) 

Introducing 𝑅  as total curvature and M as mean curvature of the subspace DN 

imbedded in RN+P, 

where total curvature, 𝑅, is only dependent of intrinsic properties of subspace DN , 

that is not same for mean curvature [1]. Finally the potential is given by 

Where Gaussian curvature, 𝐾𝐺 = 2𝑅. This result is in a complete contrast with the 

Lagrangian method used in classical scales.  

 [
𝜕ℎ

𝜕𝑢𝛽
]
𝑢𝛼=0

= −𝛺𝛽;𝑗
𝑗
               ,              [

𝜕2ℎ

𝜕(𝑢𝛽)2
]
𝑢𝛼=0

= 𝛺𝛽;𝑖
𝑖 𝛺𝛽;𝑘

𝑘 − 𝛺𝛽;𝑖
𝑘 𝛺𝛽;𝑘

𝑖 , 
 

(1.36) 

 𝑈𝑖(𝑞
1, … , 𝑞𝑁) = −

ℏ2

8𝑚
(∑(𝛺𝜎;𝑗

𝑗
)
2
+

𝑝

𝜎=1

2∑𝛺𝜎;𝑘
𝑙 𝛺𝜎;𝑙

𝑘 − 𝛺𝜎;𝑙
𝑙 𝛺𝜎;𝑘

𝑘

𝑝

𝜎=1

). 
 

(1.37) 

 
𝑀 = [∑(𝛺𝜎;𝑗

𝑗
)2

𝑝

𝜎=1

]

1
2⁄

       ,        𝑅 = ∑(𝛺𝜎;𝑘
𝑙 𝛺𝜎;𝑙

𝑘 − 𝛺𝜎;𝑙
𝑙 𝛺𝜎;𝑘

𝑘 )

𝑝

𝜎=1

, 

 

 

(1.38) 

 𝑈𝑖(𝑞
1, … , 𝑞𝑁) = −

ℏ2

8𝑚
(𝑀2 + 2𝑅) 

 

(1.39) 
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Chapter 2 

CURVE DIFFERENTIAL GEOMETRY AND QUANTUM 

MECHANICS OF A CONSTRAINED PARTICLE IN 3 

DIMENSIONAL CURVED SURFACE 

In previous chapters Schrödinger equation was determined for P constrained 

particles in N dimensions. Now for better understanding of the case, we investigate 

the motion of one particle bounded on a surface in three dimensions. Before direct 

heading to geometry analysis, Gauss-Weingarten equation (GWE) is explained [9]. 

2.1 Gauss-Weingarten equation 

Regarding Figure.2.1 for an arbitrary point P on surface S, 𝑿𝑢 =
𝜕𝑿

𝜕𝑢
, 𝑿𝑣 =

𝜕𝑿

𝜕𝑣
 and n 

are the basis vectors since they are linearly independent (where, bold letters are used 

for vectors). So 𝑿𝑢 = 𝒆𝑢 , 𝑿𝑣 = 𝒆𝑣 which, are not unit vectors however 𝒏 =
𝒆𝑢 ×𝒆𝑣 

|𝒆𝑢 ×𝒆𝑣 |
 

is unit normal. 

 
Figure 2.1: Illustration of the surface parametrization for arbitrary point p.  
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 GWE connects the partial derivatives of 𝒆𝑢 , 𝒆𝑣  and 𝒏  in terms of their linear 

combination. Let us define the surface metric tensor to be 

such that 𝐸 = 𝒆𝑢. 𝒆𝑢 , 𝐺 = 𝒆𝑣. 𝒆𝑣 and 𝐹 = 𝒆𝑢. 𝒆𝑣 . Since 𝒏. 𝒏 = 1 then 

and 

Therefore 𝒏 ⊥ 𝒏𝑢 also 𝒏 ⊥ 𝒏𝑣 which, mean 𝒏𝑢 and 𝒏𝑣 lie on the surface, where they 

can be written as a linear combination of 𝒆𝑢 and 𝒆𝑣 as 

Also we know 𝒆𝑢. 𝒏 = 𝒆𝑣. 𝒏 = 0, then 

From (2.4) and (2.5) 

from (2.6) 

 𝑔𝑖𝑗 = (
𝐸 𝐹
𝐹 𝐺

), (2.1) 

 
𝜕

𝜕𝑢
(𝒏.𝒏) = 2𝒏.

𝜕𝒏

𝜕𝑢
= 2𝒏. 𝒏𝑢 = 0, 

 

(2.2) 

 
𝜕

𝜕𝑣
(𝒏. 𝒏) = 2𝒏.

𝜕𝒏

𝜕𝑣
= 2𝒏. 𝒏𝑣 = 0. 

 

(2.3) 

 𝒏𝑢 = 𝑎𝒆𝑢 + 𝑏𝒆𝑣, 

𝒏𝑣 = 𝑐𝒆𝑢 + 𝑑𝒆𝑣. 

(2.4) 

(2.5) 

 𝜕𝑢(𝒆𝑢. 𝒏) = 0 ⟹ 𝒆𝑢𝑢. 𝒏 + 𝒆𝑢. 𝒏𝑢 = 0, 

𝜕𝑣(𝒆𝑢. 𝒏) = 0 ⟹ 𝒆𝑢𝑣. 𝒏 + 𝒆𝑢. 𝒏𝑣 = 0, 

𝜕𝑢(𝒆𝑣. 𝒏) = 0 ⟹ 𝒆𝑣𝑢. 𝒏 + 𝒆𝑣. 𝒏𝑢 = 0, 

𝜕𝑣(𝒆𝑣. 𝒏) = 0 ⟹ 𝒆𝑣𝑣. 𝒏 + 𝒆𝑣. 𝒏𝑣 = 0. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

 𝒏.𝒏𝑢 = 0 ⟹ 𝑎𝒏. 𝒆𝑢 + 𝑏𝒏. 𝒆𝑣 = 0, 

𝒏.𝒏𝑣 = 0 ⟹ 𝑐𝒏. 𝒆𝑢 + 𝑑𝒏. 𝒆𝑣 = 0, 

(2.10) 

(2.11) 

 𝒆𝑢𝑢. 𝒏 = −𝒆𝑢. 𝒏𝑢 = ℎ𝑢𝑢, (2.12) 
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and from (2.7) and (2.8) 

Also from (2.9) 

in which 

Where, h is called the second fundamental form of the surface S, which plays an 

important role in geometry analysis in the next section. 

Next, from (2.1) 

Same calculation for G gives 

For F  

And same calculations for 𝐹𝑣 gives 

 𝒆𝑢𝑣. 𝒏 = −𝒆𝑢. 𝒏𝑣 = 𝒆𝑣𝑢. 𝒏 = −𝒆𝑣. 𝒏𝑢 = ℎ𝑢𝑣 = ℎ𝑣𝑢. (2.13) 

 𝒆𝑣𝑣. 𝒏 = −𝒆𝑣. 𝒏𝑣 = ℎ𝑣𝑣, (2.14) 

 
ℎ𝑎𝑏 = (

ℎ𝑢𝑢 ℎ𝑢𝑣
ℎ𝑣𝑢 ℎ𝑣𝑣

) = (
𝑒 𝑓
𝑓 𝑔

). 
(2.15) 

 𝜕𝐸

𝜕𝑢
= 2𝒆𝑢𝑢. 𝒆𝑢⟹ 𝒆𝑢𝑢. 𝒆𝑢 =

1

2
𝐸𝑢,  

𝜕𝐸

𝜕𝑣
= 2𝒆𝑢𝑣. 𝒆𝑢⟹ 𝒆𝑢𝑣. 𝒆𝑢 =

1

2
𝐸𝑣. 

(2.16) 

 

(2.17) 

 
𝒆𝑣𝑣. 𝒆𝑣 =

1

2
𝐺𝑣, 

𝒆𝑣𝑢. 𝒆𝑣 =
1

2
𝐺𝑢. 

(2.18) 

 

(2.19) 

 
𝐹 = 𝒆𝑢. 𝒆𝑣⟹ 𝐹𝑢 = 𝒆𝑢𝑢. 𝒆𝑣 + 𝒆𝑢. 𝒆𝑣𝑢 = 𝒆𝑢𝑢. 𝒆𝑣 +

1

2
𝐸𝑣 ⟹ 

𝒆𝑢𝑢. 𝒆𝑣 = 𝐹𝑢 −
1

2
𝐸𝑣 . 

 

 

(2.20) 
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Regarding (2.15), (2.16) and (2.20) 

where, Г𝑏𝑐
𝑎 ’s are the Christoffel symbols and same for 𝒆𝑣𝑣 and 𝒆𝑢𝑣 = 𝒆𝑣𝑢 we have, 

Equation (2.4) and (2.5) are modified as 

considering, 𝑎 = 𝛼𝑢
𝑢 , 𝑏 = 𝛼𝑢

𝑣, 𝑐 = 𝛼𝑣
𝑢 and 𝑑 = 𝛼𝑣

𝑣 when 𝛼𝑗
𝑖 ’s are surface curvature 

tensor elements. From (2.16) to (2.24) we can write  

In addition from (2.12) to (2.14) and (2.25) and (2.26), we have 

 𝒆𝑣𝑣. 𝒆𝑢 = 𝐹𝑣 −
1

2
𝐺𝑢. (2.21) 

 𝒆𝑢𝑢 = Г𝑢𝑢
𝑢 𝒆𝑢 + Г𝑢𝑢

𝑣 𝒆𝑣 + 𝑒𝒏, (2.22) 

 𝒆𝑣𝑣 = Г𝑣𝑣
𝑢 𝒆𝑢 + Г𝑣𝑣

𝑣 𝒆𝑣 + 𝑔𝒏, 

𝒆𝑢𝑣 = Г𝑢𝑣
𝑢 𝒆𝑢 + Г𝑢𝑣

𝑣 𝒆𝑣 + 𝑓𝒏, 

(2.23) 

(2.24) 

 𝒏𝑢 = 𝛼𝑢
𝑢𝒆𝑢 + 𝛼𝑢

𝑣𝒆𝑣, (2.25) 

 𝒏𝑣 = 𝛼𝑣
𝑢𝒆𝑢 + 𝛼𝑣

𝑣𝒆𝑣, (2.26) 

 
𝒆𝑢. 𝒆𝑢𝑢 =

1

2
𝐸𝑢 = Г𝑢𝑢

𝑢 𝒆𝑢. 𝒆𝑢 + Г𝑢𝑢
𝑣 𝒆𝑢. 𝒆𝑣 + 0, 

𝒆𝑣. 𝒆𝑢𝑢 = 𝐹𝑢 −
1

2
𝐸𝑣 = Г𝑢𝑢

𝑢 𝒆𝑣. 𝒆𝑢 + Г𝑢𝑢
𝑣 𝒆𝑣. 𝒆𝑣 + 0, 

𝒆𝑢. 𝒆𝑢𝑣 =
1

2
𝐸𝑣 = Г𝑢𝑣

𝑢 𝒆𝑢. 𝒆𝑢 + Г𝑢𝑣
𝑣 𝒆𝑢. 𝒆𝑣 + 0, 

𝒆𝑣. 𝒆𝑢𝑣 =
1

2
𝐺𝑢 = Г𝑢𝑣

𝑢 𝒆𝑣. 𝒆𝑢 + Г𝑢𝑣
𝑣 𝒆𝑣. 𝒆𝑣 + 0, 

𝒆𝑣. 𝒆𝑣𝑣 =
1

2
𝐺𝑣 = Г𝑣𝑣

𝑢 𝒆𝑣. 𝒆𝑢 + Г𝑣𝑣
𝑣 𝒆𝑣. 𝒆𝑣 + 0, 

𝒆𝑢. 𝒆𝑣𝑣 = 𝐹𝑣 −
1

2
𝐺𝑢 = Г𝑣𝑣

𝑢 𝒆𝑢. 𝒆𝑢 + Г𝑣𝑣
𝑣 𝒆𝑢. 𝒆𝑣 + 0. 

 

(2.27) 

 

(2.28) 

 

(2.29) 

 

(2.30) 

 

(2.31) 

 

 

(2.32) 

 𝒆𝑢. 𝒏𝑢 = 𝛼𝑢
𝑢𝒆𝑢. 𝒆𝑢 + 𝛼𝑢

𝑣𝒆𝑢. 𝒆𝑣 = −𝑒, (2.33) 
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From (27) to (32) 

they can be written as 

In addition, same calculations for (2.33) to (2.35) 

Then 

also 

𝒆𝑣. 𝒏𝑢 = 𝛼𝑢
𝑢𝒆𝑣. 𝒆𝑢 + 𝛼𝑢

𝑣𝒆𝑣. 𝒆𝑣 = −𝑓, 

𝒆𝑣. 𝒏𝑣 = 𝛼𝑣
𝑢𝒆𝑣. 𝒆𝑢 + 𝛼𝑣

𝑣𝒆𝑣. 𝒆𝑣 = −𝑔. 

 

(2.34) 

(2.35) 

 1

2
𝐸𝑢 = Г𝑢𝑢

𝑢 𝐸 + Г𝑢𝑢
𝑣 𝐹, 

𝐹𝑢 −
1

2
𝐸𝑣 = Г𝑢𝑢

𝑢 𝐹 + Г𝑢𝑢
𝑣 𝐺, 

 

(2.36) 

 

 

(2.37) 

 1

2
𝐸𝑣 = Г𝑢𝑣

𝑢 𝐸 + Г𝑢𝑣
𝑣 𝐹, 

1

2
𝐺𝑢 = Г𝑢𝑣

𝑢 𝐹 + Г𝑢𝑣
𝑣 𝐺, 

𝐹𝑣 −
1

2
𝐺𝑢 = Г𝑣𝑣

𝑢 𝐸 + Г𝑣𝑣
𝑣 𝐹, 

1

2
𝐺𝑣 = Г𝑣𝑣

𝑢 𝐹 + Г𝑣𝑣
𝑣 𝐺, 

 

(2.38) 

 

  

(2.39) 

 

 

(2.40) 

 

 

(2.41) 

 

(

1

2
𝐸𝑢

1

2
𝐸𝑣 𝐹𝑣 −

1

2
𝐺𝑢

𝐹𝑢 −
1

2
𝐸𝑣

1

2
𝐺𝑢

1

2
𝐺𝑣

) = (
𝐸 𝐹
𝐹 𝐺

) (
Г𝑢𝑢
𝑢 Г𝑢𝑣

𝑢 Г𝑣𝑣
𝑢

Г𝑢𝑢
𝑣 Г𝑢𝑣

𝑣 Г𝑣𝑣
𝑣 ) 

⟹ (
Г𝑢𝑢
𝑢 Г𝑢𝑣

𝑢 Г𝑣𝑣
𝑢

Г𝑢𝑢
𝑣 Г𝑢𝑣

𝑣 Г𝑣𝑣
𝑣 ) = (

𝐸 𝐹
𝐹 𝐺

)
−1

(

1

2
𝐸𝑢

1

2
𝐸𝑣 𝐹𝑣 −

1

2
𝐺𝑢

𝐹𝑢 −
1

2
𝐸𝑣

1

2
𝐺𝑢

1

2
𝐺𝑣

). 

 

 

 

 

(2.42) 

 𝛼𝑢
𝑢𝐸 + 𝛼𝑢

𝑣𝐹 = −𝑒, 

𝛼𝑢
𝑢𝐹 + 𝛼𝑢

𝑣𝐺 = −𝑓, 

𝛼𝑣
𝑢𝐹 + 𝛼𝑣

𝑣𝐺 = −𝑔. 

(2.43) 

(2.44) 

(2.45) 
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finally, Gauss-Weingaten equation is defined as 

2.2 Mean and principal curvatures 

As it was explained before, potential of the constrained particle depends on mean and 

principal curvatures which should be calculated using curvilinear geometry [9]. 

Hence, let us consider point P on a two-dimensional curved surface embedded in a 

three-dimensional space, where, {𝑞1, 𝑞2}  are described as surface coordinates 

(𝑞1, 𝑞2  ∈ 𝑅), a mapping that dedicate {𝑞1, 𝑞2} to some point in 3D space can be 

introduced as 

where, r is the surface parametrization in three dimensions described using Cartesian 

coordinates. In order to construct a coordinate system, two considered vectors on the 

surface are given by 

where, it is tangent to the surface and some points that are in a direction where 𝑞𝑖 

increases. It is time to utilize these tangent vectors to introduce the affiliated normal 

vector 

 
(
𝛼𝑢
𝑢 𝛼𝑣

𝑢

𝛼𝑢
𝑣 𝛼𝑣

𝑣) (
𝐸 𝐹
𝐹 𝐺

) = −(
𝑒 𝑓
𝑓 𝑔

), 
 

(2.46) 

 
(
𝛼𝑢
𝑢 𝛼𝑣

𝑢

𝛼𝑢
𝑣 𝛼𝑣

𝑣) = −(
𝐸 𝐹
𝐹 𝐺

)
−1

(
𝑒 𝑓
𝑓 𝑔

). 
 

(2.47) 

 

𝒓(𝑞1, 𝑞2) = (

𝑋(𝑞1, 𝑞2)

𝑌(𝑞1, 𝑞2)

𝑍(𝑞1, 𝑞2)

), 

 

 

(2.48) 

 
𝒆𝑖 =

𝜕𝒓

𝜕𝑞𝑖
 ,     𝑖 = 1,2, 

 

(2.49) 

 
𝒏 =

𝒆1 × 𝒆2
|𝒆1 × 𝒆2|

 . 
 

(2.50) 
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It is common to choose n as a unit vector, which is not correct for 𝒆1 and 𝒆2, also 

they are not introduced to be perpendicular, hence the lack of orthogonality will be 

fixed by using the first fundamental form (metric) as 𝑔𝑖𝑗 = 𝒆𝑖. 𝒆𝑗 where 𝑖, 𝑗 = 1, 2. 

Next step for calculating the surface curvature is assuming second fundamental form. 

Therefore 

where, 𝐾𝑖𝑗  is called extrinsic curvature tensor. Considering a plane that contains 

normal n and unit tangent vector t at point P, which cuts the surface and constructs a 

cross sectional curve whose normal curvature at the considered point is 𝐾 = 𝐾𝑖𝑗𝑡
𝑖𝑡𝑗 . 

Regarding to quadratic form of normal curvature, there are two directions for 

external curvature as 𝑷𝑎 = 𝑃𝑎
𝑖𝒆𝑖 , called principal directions, which are the 

eigenvectors of 𝐾𝑖𝑗 and they are orthogonal (𝑷1. 𝑷2 = 0), so we have 

Then, the total curvature, 𝑘 = 𝑔𝑖𝑗𝐾𝑖𝑗 = 𝐾𝑖
𝑖, gives the mean curvature as 

In order to obtain Gaussian curvature, determinant of 𝐾𝑖
𝑗
 should be taken, therefore it 

can be written as 

Knowing mean and principal curvature, 𝑀  and 𝐾𝐺 , we can easily compute the 

Schrödinger equation for constrained particle on curved surfaces. 

 

 

 
𝐾𝑖𝑗 = 𝒆𝑖 .

𝜕𝒏

𝜕𝑞𝑗
= −𝒏.

𝜕𝒆𝑖
𝜕𝑞𝑗

= −𝒏.
𝜕2𝒓

𝜕𝑞𝑖𝜕𝑞𝑗
 , 

 

(2.51) 

 𝐾𝑖𝑗𝑃𝑎
𝑗
= 𝐾𝑎𝑔𝑖𝑗𝑃𝑎

𝑗
⟹𝐾𝑗

𝑖𝑃𝑎
𝑗
= 𝐾𝑎𝑃𝑎

𝑖 .  

(2.52) 

 
𝑀 =

1

2
𝑘 =

1

2
(𝐾1

1 +𝐾2
2) =

1

2
(𝐾1 + 𝐾2). 

 

(2.53) 

 𝐾𝐺 = det 𝐾𝑖
𝑗
= 𝐾1𝐾2 .  

(2.54) 
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2.3 Quantum mechanics of a constrained particle on a surface 

In order to keep a particle constrained to a surface S, particle feels forces normal to S 

in all of its points that compress the wave function in transverse direction. It causes a 

constant potential on S which is infinity in orthogonal direction. As it was studied, an 

immediate neighborhood for particle position should be introduced in which particle 

can be released from constraining. Therefore, let us consider a particle at point P on 

the surface S with parametric position equation 𝒓 = 𝒓(𝑞1, 𝑞2)  and neighborhood 

𝑄(𝑞1, 𝑞2, 𝑞3) with position equation as 

 
Figure 2.2: Curvilinear system for a particle at arbitrary point p on the surface S. 

Where, as it’s shown in figure.2.2, n is the normal at point p. Since to write 

Schrödinger equation, we need Laplacian of neighborhood metric tensor [1-8], the 

first step is finding components of the metric tensor 𝐺𝑖𝑗 

with i, j = 1, 2, 3 and 

 𝑹(𝑞1, 𝑞2, 𝑞3) = 𝒓(𝑞1, 𝑞2) + 𝑞3𝒏(𝑞1, 𝑞2).  

(2.55) 

 
𝐺𝑖𝑗 =

𝜕𝑹

𝜕𝑞𝑖
.
𝜕𝑹

𝜕𝑞𝑗
= (

𝜕𝒓

𝜕𝑞𝑖
+ 𝑞3

𝜕𝒏(𝑞1, 𝑞2)

𝜕𝑞𝑖
) . (

𝜕𝒓

𝜕𝑞𝑗
+ 𝑞3

𝜕𝒏(𝑞1, 𝑞2)

𝜕𝑞𝑗
),  

 

(2.56) 
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And for the surface S, the metric tensor components that are the coefficients of first 

fundamental form are defined as 𝑔𝑖𝑗 =
𝜕𝒓

𝜕𝑞𝑖
.
𝜕𝒓

𝜕𝑞𝑗
 . To obtain 𝐺𝑖𝑗 as functions of q’s, 

𝜕𝒏

𝜕𝑞𝑖
  

that embedded in the tangent plain can be written as 

when 

where g is determinant of 𝑔𝑖𝑗 and ℎ𝑖𝑗’s are the coefficients of the second fundamental 

form defined the extrinsic curvature of the surface. For more clarification of 

geometry analysis refer to section 2.1(Gauss-Weingarten equation). From equation 

(2.56)  

Using 𝑔𝑖𝑗 =
𝜕𝒓

𝜕𝑞𝑖
.
𝜕𝒓

𝜕𝑞𝑗
 and (2.58), 𝐺𝑖𝑗 can be written as 

where, T stands for transposed matrix. 𝐺𝑖3 = 𝐺3𝑖 = 0 ,with 𝑖, 𝑗 = 1, 2, 𝐺33=1. 

Therefore 

 𝜕𝑹

𝜕𝑞3
= 𝒏(𝑞1, 𝑞2). 

 

(2.57) 

 𝜕𝒏

𝜕𝑞𝑖
= 𝛼𝑖

𝑗 𝜕𝒓

𝜕𝑞𝑗
 , 

 

(2.58) 

 
𝛼1
1 =

1

𝑔
(𝑔12ℎ21 − 𝑔22ℎ11),                    𝛼1

2 =
1

𝑔
(ℎ11𝑔21 − ℎ21𝑔11), 

𝛼2
1 =

1

𝑔
(ℎ22𝑔12 − ℎ12𝑔22),                     𝛼2

2 =
1

𝑔
(ℎ21𝑔12 − ℎ22𝑔11), 

 

(2.59) 

 

 

(2.60) 

 
𝐺𝑖𝑗 =

𝜕𝒓

𝜕𝑞𝑖
.
𝜕𝒓

𝜕𝑞𝑗
+ 𝑞3 (

𝜕𝒏

𝜕𝑞𝑖
.
𝜕𝒓

𝜕𝑞𝑗
+
𝜕𝒓

𝜕𝑞𝑖
.
𝜕𝒏

𝜕𝑞𝑗
) + (𝑞3)2

𝜕𝒏

𝜕𝑞𝑖
.
𝜕𝒏

𝜕𝑞𝑗
 . 

 

(2.61) 

 𝐺𝑖𝑗 = 𝑔𝑖𝑗 + 𝑞
3(𝛼𝑖

𝑘𝑔𝑘𝑗 + 𝛼𝑗
𝑘𝑔𝑖𝑘) + (𝛼𝑖

𝑘𝑔𝑘𝑙𝛼𝑗
𝑙)(𝑞3)2

= 𝑔𝑖𝑗 + (𝛼𝑔 + (𝛼𝑔)
𝑇)𝑖𝑗𝑞

3 + (𝛼𝑔𝛼𝑇)𝑖𝑗(𝑞
3)2, 

 

 

(2.62) 
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Since for an arbitrary metric tensor f in a curvilinear coordinates, for a general scalar 

function ψ Laplacian is define as  

where 𝑓 = det 𝑓𝑖𝑗 [10]. Now Schrödinger equation can be written as 

where 𝑉𝜆 is the potential that keeps the particle constrained on the surface, which is 

obviously equal to zero when 𝑞3 = 0. Therefore the Schrödinger equation is given as 

where 𝐻(𝑞1, 𝑞2, 𝑞3) is defined as surface part, with 𝑖, 𝑗 = 1, 2. Now this equation is 

divided to two exterior and interior parts while in internal part 𝐺𝑖𝑗  that represents 

exterior metric tensor should be eliminated in a way that 𝑔𝑖𝑗  appears. Therefore 

probability of finding internal coordinate in dV as a volume element of the curve 

space that is independent of outer variables should be found,  which can be written as 

To obtain √𝐺 from (2.62) for matrix 𝐺𝑖𝑗 

 
𝐺𝑖𝑗= (

𝐺11 𝐺12 0
𝐺21 𝐺22 0
0 0 1

). 
 

(2.63) 

 
∇2𝜓 =

1

√𝑓

𝜕

𝜕𝑞𝑖
(√𝑓𝑓𝑖𝑗

𝜕

𝜕𝑞𝑗
)𝜓, 

 

(2.64) 

 
−
ℏ2

2𝑚

1

√𝐺

𝜕

𝜕𝑞𝑖
[√𝐺𝐺𝑖𝑗

𝜕𝜓

𝜕𝑞𝑗
] + 𝑉𝜆(𝑞

3)𝜓 = 𝑖ℏ
𝜕𝜓

𝜕𝑡
, 

 

(2.65) 

 
−
ℏ2

2𝑚
𝐻(𝑞1, 𝑞2, 𝑞3)𝜓 −

ℏ2

2𝑚
[
𝜕2𝜓

(𝜕𝑞3)2
+
𝜕

𝜕𝑞3
(ln√𝐺)

𝜕𝜓

𝜕𝑞3
] + 𝑉𝜆(𝑞

3)𝜓 

                                                                                                     = 𝑖ℏ
𝜕𝜓

𝜕𝑡
,  

 

(2.66) 

 𝑑𝑝 = |𝜓|2𝑑𝑉 = |𝜓|2√𝐺𝑑𝑞1𝑑𝑞2𝑑𝑞3.  

(2.67) 

 
𝐺𝑖𝑗 = [

𝑔11 𝑔12
𝑔21 𝑔22

] + ([
𝛼1
1 𝛼1

2

𝛼2
1 𝛼2

2] [
𝑔11 𝑔12
𝑔21 𝑔22

] + [
𝑔11 𝑔21
𝑔12 𝑔22

] [
𝛼1
1 𝛼2

1

𝛼1
2 𝛼2

2]) 𝑞3

+ [
𝛼1
1 𝛼1

2

𝛼2
1 𝛼2

2] [
𝑔11 𝑔12
𝑔21 𝑔22

] [
𝛼1
1 𝛼2

1

𝛼1
2 𝛼2

2] (𝑞
3)2, 

 

(2.68) 
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after simplifying and determining elements of this matrix, determinant of 𝐺𝑖𝑗can be 

calculated as 

For the first part in parentheses, using (2.59), (2.60) we can write 

and for second part where 𝑇𝑟𝛼 = 𝛼1
1 + 𝛼2

2 

Using (2.69), (2.70) and (2.71) 

It is time to write the volume element as 

where, 𝑓 = 1 + 𝑞3𝑇𝑟𝛼 + (𝑞3)2 det 𝛼 and the element of surface 𝑑𝑆 can be obtained 

as 

where, 𝒒𝑖𝑑𝑞𝑖 ’s are immeasurably small element of surface. From determinant of 

surface metric, we have  

 
det 𝐺𝑖𝑗 =

1

𝑔
{(ℎ11ℎ22 − ℎ21

2)(𝑞3)2 + 𝑞3(−ℎ22𝑔11 − 𝑔22ℎ11 + 2𝑔12ℎ21

+ 𝑔}
2
. 

 

(2.69) 

 
det 𝛼 = 𝛼1

1𝛼2
2 − 𝛼1

2𝛼2
1 =

1

𝑔2
(ℎ11ℎ22 − ℎ21

2)(𝑔11𝑔22 − 𝑔21
2) 

=
1

𝑔
(ℎ11ℎ22 − ℎ21

2) ⟹ 𝑔det 𝛼 = ℎ11ℎ22 − ℎ21
2,            

 

 

 

 

(2.70) 

 𝑔𝑇𝑟𝛼 = (−ℎ22𝑔11 − 𝑔22ℎ11 + 2𝑔12ℎ21) . (2.71) 

 
det 𝐺𝑖𝑗 =

1

𝑔
{(𝑔 det 𝛼)(𝑞3)2 + 𝑞3𝑔(𝑇𝑟𝛼) + 𝑔}2, 

⟹ √𝐺 = √𝑔(1 + 𝑞3𝑇𝑟𝛼 + (𝑞3)2 det 𝛼). 

 

 

 

(2.72) 

 𝑑𝑉 = 𝑓(𝑞1, 𝑞2, 𝑞3)𝑑𝑆𝑑𝑞3, (2.73) 

 𝑑𝑆 = |𝒒1𝑑𝑞1 × 𝒒2𝑑𝑞2|, (2.74) 
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Referring (2.67) 

since the wave function can be modified as  𝑋(𝑞1, 𝑞2, 𝑞3) = √𝑓𝜓(𝑞1, 𝑞2, 𝑞3) , 

Schrödinger equation (2.66) is expressed as 

The wave function value is clearly far from zero at limit around 𝑞3 = 0 where the 

squeezing parameter λ goes to infinity and the wave function feels sharp potential 

from two sides of the S in the normal directions. At this time Schrödinger equation 

can be written as 

Now obviously wave function can be separated into internal (𝑋𝑖𝑛) and external (𝑋𝑒) 

parts 

 𝑔 = 𝑔11𝑔22 − 𝑔12𝑔21 = 𝑔11𝑔22 − (𝒒
1. 𝒒2)2 = 𝑔11𝑔22(1 − cos

2 𝜃) 

= |𝒒1|2|𝒒2|2 sin2 𝜃 = |𝒒1 × 𝒒2|2⟹ |𝒒1 × 𝒒2| = √𝑔 ,       

⟹ 𝑑𝑆 = √𝑔𝑑𝑞1𝑑𝑞2 . 

 

 

 

 

(2.75) 

 𝑑𝑝 = |𝜓|2𝑓√𝑔𝑑𝑞1𝑑𝑞2𝑑𝑞3 = |𝜓√𝑓|
2
√𝑔𝑑𝑞1𝑑𝑞2𝑑𝑞3 

= |𝑋|2√𝑔𝑑𝑞1𝑑𝑞2𝑑𝑞3,                      

 

 

 

(2.76) 

 
−
ℏ2

2𝑚

1

√𝐺

𝜕

𝜕𝑞𝑖
[√𝐺𝐺𝑖𝑗

𝜕

𝜕𝑞𝑗
𝑋

√𝑓
]−

ℏ2

2𝑚

1

√𝑓

𝜕2𝑋

(𝜕𝑞3)2

+
1

4𝑓2
[(
𝜕𝑓

𝜕𝑞3
)
2

− 2𝑓
𝜕2𝑓

(𝜕𝑞3)2
] 𝑋 +

1

√𝑓
𝑉𝜆𝑋 = 𝑖ℏ

1

√𝑓

𝜕𝑋

𝜕𝑡
 . 

 

 

 

 

(2.77) 

 
−
ℏ2

2𝑚

1

√𝑔

𝜕

𝜕𝑞𝑖
[√𝑔𝑔𝑖𝑗

𝜕𝑋

𝜕𝑞𝑗
] −

ℏ2

8𝑚
[(
𝜕𝑓

𝜕𝑞3
)
2

− 2
𝜕2𝑓

(𝜕𝑞3)2
] 𝑋 −

ℏ2

2𝑚

𝜕2𝑋

(𝜕𝑞3)2
 

+𝑉𝜆𝑋 = 𝑖ℏ
𝜕𝑋

𝜕𝑡
 .      

 

 

 

 

(2.78) 

 
−
ℏ2

2𝑚

1

√𝑔

𝜕

𝜕𝑞𝑖
[√𝑔𝑔𝑖𝑗

𝜕𝑋𝑖𝑛
𝜕𝑞𝑗

] −
ℏ2

8𝑚
[(
𝜕𝑓

𝜕𝑞3
)
2

− 2
𝜕2𝑓

(𝜕𝑞3)2
] 𝑋𝑖𝑛 = 𝑖ℏ

𝜕𝑋𝑖𝑛
𝜕𝑡
 , 

 

(2.79) 
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and 

Where, exterior part as one-dimensional Schrödinger equation is ignorable in this 

study, on the other hand interior part is the important one as serves Schrödinger 

equation for the wave function of constrained particle on the surface under an 

internal potential which depends on surface geometrical properties and is given as 

By calculating first and second derivatives of 𝑓 with respect to 𝑞3 

Introducing mean and Gaussian curvatures as M and KG respectively [9], internal 

potential can be written as 

where 𝑘1 and 𝑘2 are principle curvatures of surface 

Presence of internal potential as a function of mean and Gaussian curvatures 

significantly demonstrates dependent of constraint particle motion to surface 

geometry which can be different for various surfaces with different 𝑔𝑖𝑗 ’s. Since 

Lagrangian (𝐿 =
1

2
𝑚∑ 𝑔𝑖𝑗(𝑞

1, 𝑞2)𝑞1̇𝑞2̇2
𝑖,𝑗=1 ) is independent of surface geometry and 

 
−
ℏ2

2𝑚

𝜕2𝑋𝑒
(𝜕𝑞3)2

+ 𝑉𝜆(𝑞
3)𝑋𝑒 = 𝑖ℏ

𝜕𝑋𝑒
𝜕𝑡
 . 

 

(2.80) 

 
𝑈(𝑞1, 𝑞2) = −

ℏ2

2𝑚
[(
1

2

𝜕𝑓

𝜕𝑞3
)
2

−
𝜕2𝑓

(𝜕𝑞3)2
] . 

 

(2.81) 

 
𝜕𝑓

𝜕𝑞3
= (

1

𝑔
(𝑔11ℎ22 + 𝑔22ℎ11 − 2𝑔12ℎ12))

1
2

       ,        
𝜕2𝑓

(𝜕𝑞3)2
=
1

𝑔
det ℎ𝑖𝑗  . 

 

(2.82) 

 
𝑈(𝑞1, 𝑞2) = −

ℏ2

2𝑚
[𝑀2 − 𝐾𝐺], 

 

(2.83) 

  𝐾𝐺 = 𝑘1𝑘2 ,  

(2.84) 

 
𝑀 =

1

2
(𝑘1 + 𝑘2). 

 

(2.85) 
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clearly depends only on surface metric variables, it is not an appropriate method to 

solve this problem. 
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Chapter 3 

EXAMPLES OF CONSTRAINING A QUANTUM 

PARTICLE TO A SURFACE 

3.1 Constrained particle on a spherical shell 

Computing the mean and principal curvature was explained thoroughly in previous 

chapter. Defining local coordinates as, 𝑞1 = 𝜃 , 𝑞2 = 𝜑 , a parametrization for a 

sphere with radius a is given by 

 
Figure 3.1: A spherical surface of radius 𝑎.  

The tangent vectors on the sphere surface are defined as 

 
𝒓 = (

𝑎 sin 𝜃 cos𝜑 
𝑎 sin 𝜃 sin𝜑
𝑎 cos 𝜃

).  
 

 

(3.1) 

 
𝒆𝜃 =

𝜕𝒓

𝜕𝜃
= (

𝑎 cos 𝜃 cos𝜑
𝑎 cos 𝜃 sin𝜑
− 𝑎 sin 𝜃

), 
 

(3.2) 
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and  

therefore, the unit normal is described as 

In addition, the for the first fundamental form on the sphere we get 

Now the second fundamental form coefficients on the sphere are described as  

Where extrinsic curvature tensor is determined as 𝐾𝑖𝑗 = (
𝑎 0
0 𝑎 sin2 𝜃

) which leads 

us to obtain matrix 𝐾𝑖
𝑗
 where diagonal components are surface principal curvatures 

so we compute 𝐾𝑖
𝑖’s as  

 
𝒆𝜑 =

𝜕𝒓

𝜕𝜑
= (

−𝑎 sin 𝜃 sin𝜑 
𝑎 sin 𝜃 cos𝜑

0

), 
 

(3.3) 

 
𝒏 =

𝒆𝜃 × 𝒆𝜑

|𝒆𝜃 × 𝒆𝜑|
= (

sin 𝜃 cos𝜑
sin 𝜃 sin𝜑
cos 𝜃

). 
 

(3.4) 

 
𝑔𝑖𝑗 = 𝒆𝑖. 𝒆𝑗 = (

𝒆𝜃. 𝒆𝜃 𝒆𝜃. 𝒆𝜑
𝒆𝜑 . 𝒆𝜃 𝒆𝜑. 𝒆𝜑

) = (𝑎
2 0
0 𝑎2 sin2 𝜃

), 

⟹ 𝑔𝑖𝑗 = (

1

𝑎2
0

0
1

𝑎2 sin2 𝜃

). 

 

(3.5) 

 

 

 

 

(3.6) 

 
𝐾𝜃𝜑 = 𝐾𝜑𝜃 = −𝒏.

𝜕2𝒓

𝜕𝜃𝜕𝜑
= 0, 

𝐾𝜃𝜃 = −𝒏.
𝜕2𝒓

𝜕2𝜃
= −(

sin 𝜃 cos𝜑
sin 𝜃 sin𝜑
cos 𝜃

) . (
−𝑎 sin 𝜃 cos𝜑
−𝑎 sin 𝜃 sin𝜑
− 𝑎 cos 𝜃

)

= 𝑎(sin2 𝜃 cos2 𝜑 + sin2 𝜃 sin2 𝜑 + cos2 𝜃) = 𝑎, 

𝐾𝜑𝜑 = −𝒏.
𝜕2𝒓

𝜕2𝜑
= −(

sin 𝜃 cos𝜑
sin 𝜃 sin𝜑
cos 𝜃

) . (−
−𝑎 sin 𝜃 cos 𝜑 
𝑎 sin 𝜃 sin 𝜑

0

)

= 𝑎(sin2 𝜃 cos2 𝜑 + sin2 𝜃 sin2𝜑) = 𝑎 sin2 𝜃. 

 

(3.7) 

 

 

 

 

 

(3.8) 

 

 

 

 

(3.9) 
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Knowing 𝐾1and 𝐾2 are principle curvatures, the mean and Gaussian curvatures are 

given by 

and    

As it was argued, internal potential for a spherical shell can be written as 

Therefore, the Schrödinger equation for a constrained particle on a spherical shell 

can be written as 

Regarding (3.5) and (3.6), time independent Schrödinger equation can be written as  

considering 𝑋𝑖𝑛 = 𝑅(𝑎)𝑌𝑙,𝑚𝑙(𝜃, 𝜑)  where on the surface R(a) is constant and 

𝑌𝑙,𝑚𝑙(𝜃, 𝜑) = 𝛩(𝜃)𝛷(𝜑)  is spherical harmonics with 𝑙 = 0,1,2, …  and 𝑚𝑙 =

0,±1,±2,… are orbital and magnetic quantum numbers respectively, for Laplacian 

L2 we can write 

 
𝐾1 = 𝐾𝜃

𝜃 = 𝐾𝜃𝑖𝑔
𝜃𝑖 = 𝐾𝜃𝜃𝑔

𝜃𝜃 + 𝐾𝜃𝜑𝑔
𝜃𝜑 = 𝑎

1

𝑎2
+ 0 =

1

𝑎
 , 

𝐾2 = 𝐾𝜑
𝜑
= 𝐾𝜑𝑖𝑔

𝜑𝑖 = 𝐾𝜑𝜑𝑔
𝜑𝜑 + 𝐾𝜑𝜃𝑔

𝜑𝜃 = 𝑎 sin2 𝜃
1

𝑎2 sin2 𝜃
+ 0 =

1

𝑎
 . 

 

(3.10) 

 

 

(3.11) 

 
𝑀 =

1

2
(𝐾1 + 𝐾2) =

1

𝑎
 , 

 

(3.12) 

 
𝐾𝐺 = (𝐾1. 𝐾2) =

1

𝑎2
 . 

 

(3.13) 

 
𝑈(𝑞1, 𝑞2) = −

ℏ2

2𝑚
[𝑀2 − 𝐾𝐺] = −

ℏ2

2𝑚
[(
1

𝑎
)
2

−
1

𝑎2
] = 0. 

 

(3.14) 

 
−
ℏ2

2𝑚

1

√𝑔

𝜕

𝜕𝑞𝑖
[√𝑔𝑔𝑖𝑗

𝜕𝑋𝑖𝑛
𝜕𝑞𝑗

] = 𝑖ℏ
𝜕𝑋𝑖𝑛
𝜕𝑡
 . 

 

(3.15) 

 1

sin 𝜃

𝜕

𝜕𝜃
[sin 𝜃

𝜕𝑋𝑖𝑛
𝜕𝜃
] +

1

sin2 𝜃

𝜕

𝜕𝜑
[
𝜕𝑋𝑖𝑛
𝜕𝜑

] = −
2𝑚𝐸𝑎2

ℏ2
𝑋𝑖𝑛 , 

 

(3.16) 
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that can be separated as 

Therefore, general solution for this Schrödinger equation is given as 

where 𝑝𝑙
𝑚𝑙 is associated Legendre function [11]. 

3.2 Constrained particle on a cylindrical shell 

Defining local coordinates as, 𝑞1 = 𝜃 , 𝑞2 = 𝑧, a parametrization for a cylinder with 

radius ρ is given by 

 
Figure 3.2: A cylindrical surface of coordinates (𝜌, 𝜑, 𝑧). 

The tangent vectors on the sphere surface are defined as 

 
𝐿2𝑌𝑙,𝑚𝑙 =

1

sin 𝜃

𝜕

𝜕𝜃
[sin 𝜃

𝜕𝑌𝑙,𝑚𝑙
𝜕𝜃

] +
1

sin2 𝜃

𝜕2𝑌𝑙,𝑚𝑙
𝜕𝜑2

= 𝑙(𝑙 + 1)𝑌𝑙,𝑚𝑙 , 
 

(3.17) 

 𝜕2𝛷

𝜕𝜑2
= −𝑚𝑙

2𝜑 , 

sin 𝜃
𝜕

𝜕𝜃
[sin 𝜃

𝜕𝛩

𝜕𝜃
] + [𝑙(𝑙 + 1) sin2 𝜃 −𝑚𝑙

2]𝛩 = 0. 

 

 

(3.18) 

 𝑋𝑖𝑛(𝜃, 𝜑) = 𝑅𝑒
𝑖𝑚𝑙𝜑𝑝𝑙

𝑚𝑙(cos 𝜃), (3.19) 

 
𝒓 = (

𝜌 cos𝜑 
𝜌 sin 𝜑
𝑧

). 
 

(3.20) 

 
𝒆𝑧 =

𝜕𝒓

𝜕𝑧
= (

0
0
1
), 

𝒆𝜑 =
𝜕𝒓

𝜕𝜑
= (

−𝜌 sin𝜑 
𝜌cos 𝜑
0

), 

 

(3.21) 

 

 

 

(3.22) 
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in this case the unit normal is described as 

In addition for metric on the cylindrical surface we get 

The second fundamental form coefficients are given by  

Then extrinsic curvature tensor is computed as 𝐾𝑖𝑗 = (
𝜌 0
0 0

) which leads us to find 

principal curvatures so 

Determining 𝐾2 = 0 , Gaussian curvature is clearly zero and mean curvature 

obviously is equal to 𝑀 =
1

2
𝐾1 =

1

2𝜌
. Therefore, internal potential for a cylindrical 

shell can be written as 

 
𝒏 =

𝒆𝜑 × 𝒆𝑧

|𝒆𝜑 × 𝒆𝑧|
= (

cos𝜑
sin𝜑
0
). 

 

(3.23) 

 
𝑔𝑖𝑗 = 𝒆𝑖 . 𝒆𝑗 = (

𝒆𝜑 . 𝒆𝜑 𝒆𝜑 . 𝒆𝑧
𝒆𝑧 . 𝒆𝜑 𝒆𝑧 . 𝒆𝑧

) = (𝜌
2 0
0 1

), 

⟹ 𝑔𝑖𝑗 = (

1

𝜌2
0

0 1

). 

 

 

 

 

(3.24) 

 
𝐾𝜑𝑧 = 𝐾𝑧𝜑 = −𝒏.

𝜕2𝒓

𝜕𝜑𝜕𝑧
= 0, 

𝐾𝜑𝜑 = −𝒏.
𝜕2𝒓

𝜕2𝜑
= −(

cos𝜑
sin 𝜑
0
) . (

−𝜌 cos𝜑 
−𝜌sin𝜑
0

) = 𝜌(cos2 𝜑 + sin2𝜑) = 𝜌, 

𝐾𝑧𝑧 = −𝒏.
𝜕2𝒓

𝜕2𝑧
= −(

cos𝜑
sin𝜑
0
) . (

0
0
0
) = 0. 

 

(3.25) 

 

 

(3.26) 

 

 

 

(3.27) 

 
𝐾1 = 𝐾𝜑

𝜑
= 𝐾𝜑𝑖𝑔

𝜑𝑖 = 𝐾𝜑𝜑𝑔
𝜑𝜑 + 𝐾𝜑𝑧𝑔

𝜑𝑧 = 𝜌
1

𝜌2
+ 0 =

1

𝜌
, 

𝐾2 = 𝐾𝑧
𝑧 = 𝐾𝑧𝑖𝑔

𝑧𝑖 = 𝐾𝑧𝑧𝑔
𝑧𝑧 + 𝐾𝜑𝑧𝑔

𝜑𝑧 = 0. 

 

 

(3.28) 

 

 

 

 
𝑈(𝑞1, 𝑞2) = −

ℏ2

2𝑚
[𝑀2 − 𝐾𝐺] = −

ℏ2

8𝑚

1

𝜌2
 . 

 

(3.29) 
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Finally the Schrödinger equation for a constrained particle on a cylindrical shell is 

given by 

using this equation and (3.23) and assuming 𝑋𝑖𝑛 = 𝛷(𝜑)𝑍(𝑧) , independent 

Schrödinger is modified as 

Hence applying separation method [12], it can be written as 

and 

Where  𝛽2 =
1

4𝜌2
+
2𝑚𝐸

ℏ2
−
𝛼2

𝜌2
  and 𝛼  are constants. Considering L, the length of 

cylinder, using boundary conditions, 𝑍(0) = 𝑍(𝐿) = 0, so (3.33) can be written as  

Therefore, the general solution can be written as 

where using (3.34) and 𝛽 definition, it is clear that, 𝛼 = √
1

4
+
2𝑚𝐸𝜌2

ℏ2
−
𝑛2𝜋2𝜌2

𝐿2
 . 

 

 

 
−
ℏ2

2𝑚

1

√𝑔

𝜕

𝜕𝑞𝑖
[√𝑔𝑔𝑖𝑗

𝜕𝑋𝑖𝑛
𝜕𝑞𝑗

] −
ℏ2

8𝑚

1

𝜌2
𝑋𝑖𝑛 = 𝑖ℏ

𝜕𝑋𝑖𝑛
𝜕𝑡
, 

 

(3.30) 

 1

Φ(𝜑)

𝜕2Φ(𝜑)

𝜕𝜑2
= −

2𝑚𝐸𝜌2

ℏ2
−
1

4
−
1

𝑍

𝜕2𝑍

𝜕𝑧2
𝜌2 = −𝛼2. 

 

(3.31) 

 𝜕2Φ(𝜑)

𝜕𝜑2
= −𝛼2Φ(𝜑), 

 

(3.32) 

 𝜕2𝑍

𝜕𝑧2
= −𝛽2𝑍.  

 

(3.33) 

 𝑍(𝑧) = sin(𝛽𝑧) = sin (
𝑛𝜋

𝐿
𝑧) , 𝑛 = 1,2,3,… . (3.34) 

 𝑋𝑖𝑛(𝜑, 𝑧) = sin (
𝑛𝜋

𝐿
𝑧) 𝑒𝑖𝛼𝜑 , (3.35) 
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3.3 Constrained particle on a Toroid 

The same computing structure leads us to Schrodinger equation for a constrained 

particle on a toroid where local coordinates are 𝑞1 = 𝜃 , 𝑞2 = 𝜑, the parametrization 

is given by 

 

Figure 3.3: A Toroid surface major radius R and minus radius r.  

Where R is the distance between toroid center and center of the tube also r is tube 

radius, which are called major and minus radiuses respectively. The tangent vectors 

on the toroid surface are defined as 

therefore, the unit normal is described as 

 
𝒓 = (

(𝑅 + 𝑟 cos 𝜃) cos𝜑 
(𝑅 + 𝑟 cos 𝜃) sin𝜑

𝑟 sin 𝜃

).  
 

(3.36) 

 
𝒆𝜃 =

𝜕𝒓

𝜕𝜃
= (

−𝑟 sin 𝜃 cos𝜑
−𝑟 sin 𝜃 sin𝜑
 𝑟 cos 𝜃

), 

𝒆𝜑 =
𝜕𝒓

𝜕𝜑
= (

−(𝑅 + 𝑟 cos 𝜃) sin𝜑 

(𝑅 + 𝑟 cos 𝜃) cos𝜑
0

), 

 

 

(3.37) 

 

 

(3.38) 

 

𝒏 =
𝒆𝜃 × 𝒆𝜑

|𝒆𝜃 × 𝒆𝜑|
=

−1

𝑟(𝑅 + 𝑟 cos 𝜃)
(

𝑟(𝑅 + 𝑟 cos 𝜃) cos 𝜃 cos𝜑
𝑟(𝑅 + 𝑟 cos 𝜃) cos 𝜃 sin𝜑
𝑟(𝑅 + 𝑟 cos 𝜃) sin 𝜃

) 

= (
−cos 𝜃 cos𝜑
−cos 𝜃 sin𝜑
−sin 𝜃

).           

 

 

 

 

 

(3.39) 
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In addition the for the first fundamental form on the toroid we get 

Now the second fundamental form coefficients on the toroid are described as  

Therefore 𝐾𝑖𝑗 = (
−𝑟 0
0 −(𝑅 + 𝑟 cos 𝜃) cos 𝜃

) and 𝐾𝑖
𝑖’s are given by  

Knowing 𝐾1and 𝐾2as principle curvatures, the mean and Gaussian curvatures are 

given by 

and 

 
𝑔𝑖𝑗 = 𝒆𝑖. 𝒆𝑗 = (

𝑒𝜃. 𝑒𝜃 𝑒𝜃 . 𝑒𝜑
𝑒𝜑. 𝑒𝜃 𝑒𝜑. 𝑒𝜑

) = (
𝑟2 0
0 (𝑅 + 𝑟 cos 𝜃)2

), 

⟹ 𝑔𝑖𝑗 = (

1

𝑟2
0

0
1

(𝑅 + 𝑟 cos 𝜃)2

). 

 

 

 

 

 

(3.40) 

 
𝐾𝜃𝜑 = 𝐾𝜑𝜃 = −𝒏.

𝜕2𝒓

𝜕𝜃𝜕𝜑
= 0, 

𝐾𝜃𝜃 = −𝒏.
𝜕2𝒓

𝜕2𝜃
= (

cos 𝜃 cos𝜑
cos 𝜃 sin𝜑
sin 𝜃

) . (
−𝑟 cos 𝜃 cos𝜑
−𝑟 cos 𝜃 sin𝜑
−𝑟 sin 𝜃

) = −𝑟, 

𝐾𝜑𝜑 = −𝒏.
𝜕2𝒓

𝜕2𝜑
= (

cos 𝜃 cos𝜑
cos 𝜃 sin𝜑
sin 𝜃

) . (
−(𝑅 + 𝑟 cos 𝜃) cos𝜑 

– (𝑅 + 𝑟 cos 𝜃) sin𝜑
0

) 

= −(𝑅 + 𝑟 cos 𝜃) cos 𝜃.               

 

(3.41) 

 

 

(3.42) 

 

 

 

 

 

(3.43) 

 
𝐾1 = 𝐾𝜃

𝜃 = 𝐾𝜃𝑖𝑔
𝜃𝑖 = 𝐾𝜃𝜃𝑔

𝜃𝜃 + 𝐾𝜃𝜑𝑔
𝜃𝜑 = −𝑟

1

𝑟2
+ 0 =

−1

𝑟
, 

𝐾2 = 𝐾𝜑
𝜑
= 𝐾𝜑𝑖𝑔

𝜑𝑖 = 𝐾𝜑𝜑𝑔
𝜑𝜑 + 𝐾𝜑𝜃𝑔

𝜑𝜃

= −(𝑅 + 𝑟 cos 𝜃) cos 𝜃
1

(𝑅 + 𝑟 cos 𝜃)2
+ 0 =

−cos 𝜃

𝑅 + 𝑟 cos 𝜃
. 

(3.44) 

 

 

(3.45) 

 

 

 

 

𝑀 =
1

2
(
−1

𝑟
+

−cos 𝜃

𝑅 + 𝑟 cos 𝜃
) =

−(𝑅 + 2𝑟 cos 𝜃)

2𝑟(𝑅 + 𝑟 cos 𝜃)
, 

 

(3.46) 
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As it was argued, internal potential for a toroid can be written as 

Finally the independent Schrödinger equation for a constrained particle on a toroid 

[13] is defined as   

which can be separated where 𝑋𝑖𝑛 = 𝛩(𝜃)Φ(𝜑) as 

Therefore  

where 𝛩(𝜃) satifies 

3.4 Constrained particle on a pseudosphere 

In this section we find the Schrodinger equation for a constrained particle on a 

pseudosphere surface which is called antisphere or tractrisoid too [14-16]. For local 

coordinates 𝑞1 = u and 𝑞2 = v, the pseudosphere parametrization is 

 
𝐾𝐺 =

cos 𝜃

𝑟(𝑅 + 𝑟 cos 𝜃)
 . 

(3.47) 

 
𝑈(𝑞1, 𝑞2) = −

ℏ2

2𝑚
[𝑀2 − 𝐾𝐺] = −

ℏ2

8𝑚

𝑅2

𝑟2(𝑅 + 𝑟 cos 𝜃)2
 . 

 

(3.48) 

 
−
ℏ2

2𝑚

1

√𝑔

𝜕

𝜕𝑞𝑖
[√𝑔𝑔𝑖𝑗

𝜕𝑋𝑖𝑛
𝜕𝑞𝑗

] −
ℏ2

8𝑚
[

𝑅2

𝑟2(𝑅 + 𝑟 cos 𝜃)2
] 𝑋𝑖𝑛 = 𝐸𝑋𝑖𝑛, 

 

(3.49) 

 (𝑅 + 𝑟 cos 𝜃)

𝑟2
1

𝛩(𝜃)

𝜕

𝜕𝜃
[(𝑅 + 𝑟 cos 𝜃)

𝜕𝛩(𝜃)

𝜕𝜃
] +

𝑅2

4𝑟2

+
2𝑚𝐸

ℏ2
(𝑅 + 𝑟 cos 𝜃)2 = −

1

Φ(𝜑)
[
𝜕2Φ(𝜑)

𝜕𝜑2
]. 

 

 

 

 

 

(3.50) 

 𝑋𝑖𝑛 = 𝛩(𝜃)e
iαφ, (3.51) 

 (𝑅 + 𝑟 cos 𝜃)2

𝑟2
𝜕2𝛩(𝜃)

𝜕𝜃2
−
(𝑅 + 𝑟 cos 𝜃)

𝑟
sin 𝜃

𝜕𝛩(𝜃)

𝜕𝜃

+ [
𝑅2

4𝑟2
+
2𝑚𝐸

ℏ2
(𝑅 + 𝑟 cos 𝜃)2 − α2] 𝛩(𝜃) = 0. 

 

(3.52) 
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Figure 3.4: Illustration of pseudosphere upper half. [14] 

Then tangent vectors on this surface are computed as 

thus the unit normal is defined as 

Also, for the first fundamental form on this surface we can write 

 
𝒓 = (

sech𝑢 cos 𝑣 
sech 𝑢 sin 𝑣
𝑢 − tanh 𝑢

). 
 

(3.53) 

 
𝒆𝑢 =

𝜕𝒓

𝜕𝑢
= (

−sech 𝑢 tanh 𝑢 cos 𝑣
− sech 𝑢 tanh𝑢 sin 𝑣

 1 − sech2 𝑢
), 

𝒆𝑣 =
𝜕𝒓

𝜕𝑣
= (

−sech 𝑢 sin 𝑣 
sech 𝑢 cos 𝑣

0
), 

 

 

(3.54) 

 

 

(3.55) 

 
𝒏 =

𝒆𝑢 × 𝒆𝑣
|𝒆𝑢 × 𝒆𝑣|

=
1

sech 𝑢 tanh𝑢
(
−sech𝑢 cos 𝑣 + sech3 𝑢 cos 𝑣
−sech 𝑢 sin 𝑣 + sech3 𝑢 sin 𝑣

−sech2 𝑢 tanh 𝑢

) 

= (
− tanh𝑢 cos 𝑣
−tanh𝑢 sin 𝑣
− sech 𝑢

).         

 

 

 

 

 

(3.56) 
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Now the second fundamental form coefficients in this case are described as 

And 𝐾𝑖
𝑖’s are given by  

Using 𝐾1and 𝐾2that are principle curvatures, the mean and Gaussian curvatures are 

written as 

Therefore, pseudosphere has constant negative Gaussian curvature. Hence internal 

potential for the surface is obtained as 

 𝑔𝑖𝑗 = 𝒆𝑖. 𝒆𝑗 = (
𝒆𝑢. 𝒆𝑢 𝒆𝑢. 𝒆𝑣
𝒆𝑣. 𝒆𝑢 𝒆𝑣. 𝒆𝑣

) = (tanh
2 𝑢 0
0 sech2 𝑢

), 

⟹ 𝑔𝑖𝑗 = (

1

tanh2 𝑢
0

0
1

sech2 𝑢

). 

 

 

 

(3.57) 

 
𝐾𝑢𝑣 = 𝐾𝑣𝑢 = −𝒏.

𝜕2𝒓

𝜕𝑢𝜕𝑣
= 0, 

𝐾𝑢𝑢 = −𝒏.
𝜕2𝒓

𝜕2𝑢

= (
tanh 𝑢 cos 𝑣
tanh 𝑢 sin 𝑣
sech 𝑢

) . (
sech 𝑢 tanh2 u cos 𝑣 − sech3 𝑢 cos 𝑣
sech𝑢 tanh2 u sin 𝑣 − sech3 𝑢 sin 𝑣

2 sech2 𝑢 tanh𝑢

)

= sech 𝑢 tanh𝑢, 

𝐾𝑣𝑣 = −𝒏.
𝜕2𝒓

𝜕2𝑣
= (

tanh 𝑢 cos 𝑣
tanh𝑢 sin 𝑣
sech 𝑢

) . (
− sech 𝑢 cos 𝑣
− sech 𝑢 sin 𝑣

0
) = −sech 𝑢 tanh𝑢 . 

 

(3.58) 

 

 

 

 

 

 

 

(3.59) 

 

 

(3.60) 

 

 
𝐾1 = 𝐾𝑢

𝑢 = 𝐾𝑢𝑖𝑔
𝑢𝑖 = 𝐾𝑢𝑢𝑔

𝑢𝑢 + 𝐾𝑢𝑣𝑔
𝑢𝑣 =

1

sinh u
 , 

𝐾2 = 𝐾𝑣
𝑣 = 𝐾𝑣𝑖𝑔

𝑣𝑖 = 𝐾𝑣𝑣𝑔
𝑣𝑣 + 𝐾𝑣𝑢𝑔

𝑣𝑢 = −sinh 𝑢. 

(3.61) 

 

(3.62) 

 
𝑀 =

1

2
(𝐾1 + 𝐾2) =

1

2
(sinh𝑢 − csch 𝑢), 

𝐾𝐺 = −1 . 

 

(3.63) 

 

(3.64) 
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finally, the Schrödinger equation can be written as   

That shows Schrödinger equation for a bounded particle on a pseudosphere. Using 

separation method 

and Schrödinger equation can be modified as 

So  

which, should be equal to 𝛼2 where, 𝛼 is a constant. Therefore   

and 𝑈(𝑢) satisfies  

 
𝑈(𝑞1, 𝑞2) = −

ℏ2

2𝑚
[𝑀2 − 𝐾𝐺] = −

ℏ2

8𝑚
[(sinh𝑢 − csch 𝑢)2 + 4] 

= −
ℏ2

8𝑚
(cosh2 𝑢 + coth2 𝑢),           

 

 

 

 

(3.65) 

 
−
ℏ2

2𝑚

1

√𝑔

𝜕

𝜕𝑞𝑖
[√𝑔𝑔𝑖𝑗

𝜕𝑋𝑖𝑛(𝑢, 𝑣)

𝜕𝑞𝑗
] −

ℏ2

8𝑚
(cosh2 𝑢 + coth2 𝑢)𝑋𝑖𝑛(𝑢, 𝑣) 

                                                                                                = 𝐸𝑋𝑖𝑛(𝑢, 𝑣). 

 

 

 

 

(3.66) 

 𝑋𝑖𝑛(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣), (3.67) 

 1

𝑈

1

sech 𝑢 tanh 𝑢

𝜕

𝜕𝑢
[
1

sinh 𝑢

𝜕𝑈

𝜕𝑢
] +

2𝑚𝐸

ℏ2
+
1

4
(cosh2 𝑢 + coth2 𝑢)      

= −
1

𝑠𝑒𝑐ℎ2 𝑢

1

𝑉

𝜕2𝑉

𝜕𝑣2
 .             

 

(3.68) 

 1

𝑈

1

sinh𝑢

𝜕

𝜕𝑢
[
1

sinh𝑢

𝜕𝑈

𝜕𝑢
] +
2𝑚𝐸

ℏ2
sech2 u +

1

4
+

1

4sinh2 𝑢
= −

1

𝑉

𝜕2𝑉

𝜕𝑣2
 , 

 

(3.69) 

 𝑋𝑖𝑛 = 𝑈(𝑢)𝑒
𝑖𝛼𝑣,  

(3.70) 

 1

sinh 𝑢

𝜕

𝜕𝑢
[
1

sinh 𝑢

𝜕𝑈

𝜕𝑢
] + (

1

4
+

1

4sinh2 𝑢
+
2𝑚𝐸

ℏ2
sech2 𝑢 − 𝛼2)𝑈(𝑢) = 0 . 

 

(3.70) 
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Chapter 4 

CONCLUSION 

In classical mechanics, Lagrangian equation and Newton approach give same results, 

also for two isometric surfaces the equation of motion is identical, in contrast, in 

quantum scales, on a curve space, Schrödinger equation depends on the mean and 

Gaussian curvatures. This dependency is more important where in internal potential 

equation, M as mean curvature appears, which cannot be found just using metric 

tensor components of surface and its derivatives (unlike Gaussian curvature 𝐾𝐺). It 

shows disability of Lagrangian in motion of quantum particles on curve spaces. 
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