
Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of  

Master of Science 

in 

Electrical and Electronic Engineering 

  

Deep Learning-Based Sleep Stage Classification 

Using EEG 

Mehdi Shah Poori Arani 

Eastern Mediterranean University 

February 2023 

Gazimağusa, North Cyprus 



 

Approval of the Institute of Graduate Studies and Research  

Prof. Dr. Ali Hakan Ulusoy 

Director 

 

Assoc. Prof. Dr. Rasime Uyguroğlu 

 Chair, Department of Electrical and 

Electronic Engineering 

 

Dr. Noushin Hajarolasvad 

Co-Supervisor 

 Prof. Dr. Hasan Demirel 

Supervisor 

  

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master 

of Science in Electrical and Electronic Engineering. 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Electrical and 

Electronic Engineering. 

Examining Committee 

1. Prof. Dr. Hasan Demirel  

2. Prof. Dr. Önsen Toygar  

3. Assoc. Prof. Dr. Kamil Yurtkan  

 



iii 

ABSTRACT 

Classification of sleep stages is an essential area of research that helps develop 

treatments for people with sleep disorders. According to common sleep stage criteria, 

sleep is divided into six different stages: Wakeful sleep (W), REM (rapid eye 

movement) sleep, and non-REM sleep (S1-S4). Sleep processing can be performed by 

analyzing electroencephalogram (EEG) signals in a 30-second cycle (epoch). These 

stages are chosen and established on an analysis of brain workouts during sleep. This 

reveals a clear pattern that characterizes each stage. Sleep deprivation can cause 

various illnesses, including obesity, heart disease, diabetes, and reduced life 

expectancy [2]. Sleep professionals usually classify sleep stages into 

polysomnography (PSG) signals. Polysomnography consists of an 

electroencephalogram (EEG), electro-oculogram (EOG), electromyogram (EMG), and 

electrocardiogram (ECG) [2]. In addition, one category of such classifiers, Deep 

Learning (DL) based EEG signal classification, is used to classify sleep stages. The 

treatise includes an analysis of the performance of the considered methods of sleep 

grading. In addition, the strengths and weaknesses of classical and deep learning-based 

sleep staging methods will be explored. In addition, we compared standard 

classification with the data fusion methods with their accuracy. 

Keywords: S1 - 4, W (Wake), Sleep Stage, Deep Learning, Accuracy, Data Fusion 
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ÖZ 

Uyku aşamalarının sınıflandırılması, uyku bozukluğu olan kişiler için tedavilerin 

geliştirilmesine yardımcı olan önemli bir araştırma alanıdır. Yaygın uyku evresi 

kriterlerine göre uyku altı farklı evreye ayrılır: uyanık uyku (W), REM (hızlı göz 

hareketi) uykusu ve REM olmayan uyku (S1-S4). Uyku işleme, bir 

elektroensefalogram (EEG) analiz edilerek gerçekleştirilebilir. 30 saniyelik bir 

döngüde (dönem) sinyaller. Bu aşamalar, uyku sırasındaki beyin egzersizlerinin 

analizine göre seçilir ve kurulur. Bu, her aşamayı karakterize eden net bir modeli 

ortaya çıkarır. Uyku yoksunluğu, obezite, kalp hastalığı ve diyabet gibi çeşitli 

hastalıklara neden olarak yaşam beklentisini azaltabilir [2]. Uyku uzmanları genellikle 

uyku aşamalarını polisomnografi (PSG) olarak sınıflandırır. Polisomnografi bir 

elektroensefalogram (EEG), electro-oculogram (EOG), elektromiyogram (EMG) ve 

elektrokardiyogramdan (EKG) oluşur [2]. Bu görev, uyku aşamalarını sınıflandırmak 

için EEG sinyallerini kullanır. Sinyal işleme teknikleri, Veri birleştirme yöntemi gibi 

standart sınıflandırıcılarda gerekli işlevselliği çıkarır. Ayrıca uyku evrelerini 

sınıflandırmak için son teknoloji ürünü derin öğrenme tabanlı EEG sinyal 

sınıflandırması kullanılmaktadır. Tez, dikkate alınan uyku derecelendirme 

yöntemlerinin performansının bir analizini içerir. Ayrıca klasik ve derin öğrenmeye 

dayalı uyku evreleme yöntemlerinin güçlü ve zayıf yönleri keşfedilecektir. Ek olarak, 

standart sınıflandırma ile veri birleştirme yöntemlerini doğrulukları açısından 

karşılaştırdık. 

Anahtar Kelimeler: S1 - 4, W (Uyanma), Uyku Aşaması, Derin Öğrenme, 

Doğruluk,Veri Füzyon 
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Chapter 1 

INTRODUCTION 

1.1 Sleep 

Sleep is intently associated with human health. Effective sleep quality detection helps 

sleep professionals monitor and test sleep disorders and formulate appropriate 

treatments for their patients. A scientific measure of sleep quality is polysomnography 

(PSG) (i.e., sleep consideration). Signals that record the activity of different parts of 

the human body. These collected signals mainly consist of an electroencephalogram 

(EEG), an electrooculogram (EOG), an electromyogram (EMG), an electrocardiogram 

(ECG). At PSG, a typical 8-hour sleep polysomnogram is divided into 30-second 

epochs. Sleep epochs are annotated into different sleep stages by technicians according 

to the specific rules of the sleep manual. Consistency in the rules laid out in sleep 

manuals is essential for sleep assessment. This is because every slight difference can 

lead to different annotations. To keep unity, a standard manual of rules has been 

considered by experts. Rechtchaff and Kales Standard (R&K Handbook) [1] and the 

American Academy of Sleep Medicine (AASM) Manual [2] are two of the most 

widely used sleep staging manuals. 

Sleep is distinguished into 6 (or 5) stages, which are Wake (W), Stage 1 (S1), Stage 2 

(S2), Stage 3 (S3),  Stage 4 (S4), and rapid Eye Movement (REM or R) (that is, the 

R&K manual [1] where S3 is further classified into S3 and S4). 
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Each stage is based on frequency-domain and time-domain patterns of the manual's 

characteristics. Summary of these scoring rules for specific sleep stages is shown in 

Table 1.1. Sleep evaluation is done manually by sleep experts, which is time-

consuming and takes time. To remedy this, automated sleep assessment approaches 

have been proposed. Feature analysis can classify sleep stages automatically by feature 

extraction using machine learning classification algorithms. 

Table 1.1: Summary of EEG, EOG, and EMG patterns for different sleep stages 

according to the AASM manual [2] 
Stages EEG     EOG EMG 

 Delta 

(<4Hz) 

Theta (4-

7Hz) 

Alpha 

(8-13Hz) 

Beta 

(>13Hz) 

Time-domain 

patterns 

  

Wake   * *  0.5-2Hz Variable 
amplitude but 

usually higher 
than during 

sleep stages 

S1  * *  Vertex waves Slow eye 

Movement 

Lower 

amplitude than 
in stage Wake 

S2  *   K-complexes 

Sleep spindles 

Usually no eye 

movement, but 
slow eye 

movements 

may persist 

Lower 

amplitude than 
in stage Wake 

and may be as 

low as in stage 
REM 

S3 & S4 *    Sleep Spindles 

may persist. 

Eye movements 

are not typically 

seen. 

Lower 

amplitude than 

in stage N2 and 
sometimes as 

low as in stage 

REM 

REM or R  * *  Sawtooth 

waves 

Rapid eye 

movement 

Lower chin 

EMG tone; 

usually the 
lowest level of 

the entire 

recording 

 

1.2 An Overview of Sleep Stage Classification 

In 1968, a committee co-chaired by Rechtschaffen and Kales (aka R&K), divided sleep 

into four phases in a publication titled  "A Manual of Standardized Terminology, 

Techniques and Scoring System for Sleep Stages of Human Subject" [3]. Non-REM 

includes four classes: S1, S2, S3, and S4.  
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Rapid-Eye Moving stage (REM) and Wakefulness (W). Non-REM sleep itself 

accounts for almost 75% of sleep. The stages of sleep are described in detail below. In 

this context, EEG signals should be split into 30 seconds cycles. 

Stage Wake (W): Corresponds to the awake state. Alpha wave activity and low 

voltage mixed frequency EEG are mainly present at this stage. EOG treble EMG and 

winks are usually found at this stage. 

Stage 1 (S1): This is the bridge between waking up and falling asleep (sleep onset), 

also known as the light sleep stage. The heart rate begins to slow at this stage, and 

breathing gradually becomes regular. This stage lasts 5 to 10 minutes, yet the subject 

can quickly wake up. With a slow eye movement (SEM) called the sinusoidal eye 

movement, low-amplitude waves with frequencies between 4 and 7 Hz stand out, 

including peak waves with fewer than 0.5 seconds duration. 

Stage 2 (S2):  It’s called the light sleep stage, but it's more challenging to wake up. It 

lowers blood pressure and temperature, reduces heart rate, and prepares the body for 

deep sleep. Epoch stage 2 can be evaluated by observing K-complexandr sleep 

spindles. 

Stage 3 (S3): This stage is known as the deep sleep, Delta, or Slow Wave Stage (SWS); 

compared to levels 1 and 2, it is more difficult to wake up the subject. During the deep 

stages of sleep, the body repairs and reconstructs tissues and relaxes muscles. Delta 

EEG with a frequency of 0.5-4 Hz can be detected with a small number of spindles 

(compared to level 2). If SWS occupies more than 20% of the epoch, the epoch can be 

considered Stage 3. 
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Stage 4 (S4): Accounts for about 10% of total sleep time in adults. Stage 4 of Non-

REM sleep has the highest wakefulness threshold with external stimuli during different 

sleep stages. Arousal disorders such as sleep anxiety and sleepwalking occur during 

stages 3 and 4 of sleep. The amount of Non-REM stages 3 and 4 and the EEG 

amplitude of delta waves increase in adolescents and decrease in the elderly. This stage 

is strong in the first half of sleep. 

REM: The main features of the REM stage are relatively low voltage, mixed 

frequency EEG activity, and temporary REM concurrency. The EEG pattern is close 

to the one described in Stage 1, distinguished by the absence of sharp mountain waves. 

In REM sleep, prominent sawtooth waves occur in the parietal and forehead areas, 

combined with rapid eye movements. Alpha wave activity is apparent at the REM 

stage, with a frequency 1-2 Hz slower than when awake. The Sleep Spindle and K-

complex are absent, as in stage 1. Table 1.2 compares the percentage of sleep stages 

in healthy adults. 

Table 1.2: Percentages of sleep stages in healthy adults[2] 

Sleep stages Percentage of total Sleep Time 

S1 2-5% 

S2 45-55% 

S3/4 5-20% 

REM or R 20-25% 

 

1.3 Problem Definition and Thesis Objectives  

Usually, a trained medical professional is required to classify brain waves into sleep 

stages which is time-consuming. This work aims to develop a fully automated 

machine-learning process for generating hypnograms from EEG signals that is useful 
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for clinical practice. Such methods should be robust to noisy data and variation 

between patients, technicians, and recorders. The algorithm should work well with 

data from various technicians and patients with abnormal sleep patterns.  

Data from new patients never seen in training. Sleep stage methods should not rely on 

expert preprocessing or feature extraction to achieve this goal. It is important that the 

algorithm learns from human labels and EEG signals. Such procedure allows retraining 

without adjusting for new data sources or patients with specific diseases. The 

procedure must be able to perform on par with an expert capability. 

We will go into more detail in a later section and give an example of an expert function 

later. Machine learning algorithms need to provide good estimates. 

1.4 Contribution 

A considerable number of researchers from different machine-learning fields 

addressed the task of automated sleep staging using EEG data. 

However, none of the methods satisfies all the stated objectives to this end, this thesis 

employs a deep learning architecture that uses a Convolutional Neural Network (CNN) 

with EEG spectrogram data as input; the contribution of this work includes using 

colored images called spectrograms as the input data of the network. These images 

represent frequency changes in the time domain using pseudo colors. 
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Chapter 2 

BACKGROUND THEORY  

2.1 Introduction to Neural Networks 

This chapter intends to explain the deep learning approach. 

2.2 Deep Learning Approach  

Artificial Neural Networks (ANNs) and Deep Learning (DL) are subsets of machine 

learning. However, neural networks have improved the sleep classification problem 

and their prediction accuracy. One of the first classified methods used in neural 

networks was published in 1999, to the authors’ knowledge [26]. 

Classification problems usually use Fourier Transform (FT) methods for feature 

extraction. Sleep data was used from the Physionet database, and two channels were 

chosen for feature extraction namely, Fpz-Cz channel and Pz-Oz channel. Feature 

vectors from the wavelet coefficients signals time-frequency analysis (wavelet 

transform) for EEG classification used six stages (wake, S1-4, REM). Moreover, 

creating a feature to classify sleep stages is necessary and time-consuming. First, the 

real value EEG signals are converted into a complex number, and the converted signal 

is provided into the network. It is a multi-layer perceptron with special features 

topology and multiple hidden layers. Also, point out the problem of low classification 

accuracy with another approach, which also uses CNN [27]. In this study, the PSG of 

the Sleep-EDFx database was used, and a 6-level classification was performed. 
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Frequency domain information of EEG signals makes the 2D signal and creates a 

spectrogram fed into a CNN, where the feature extraction process is done 

automatically. 

2.3 Convolutional Neural Networks (CNN) 

CNN is inspired by the visual cortex system [22], [23]. Each neuron responds only to 

a limited local area in the visual cortex. Their connectivity network makes correlations 

embedded for input images with their classifiers. Inspired by biological and 

psychological research [24],[25] proposed a CNN structure trained with a 

backpropagation algorithm. The model is used for various recognition tasks, such as 

reading postal codes and handwriting recognition. CNNs’ structure consists of a series 

of stacked layers, each layer containing such as neuron layers that receive information 

data through neurons and transform them into input to another neuron using a 

differentiable function. The three main types of CNN layers are convolutional layers, 

pooling layers, and fully connected (FC) layers. Layers typically run with either an 

activation function or a loss function transformation to adjacent layers of the network 

while various features are extracted from the layers. CNN has multiple applications, 

including image classification, object recognition, processing, and medical image 

analysis. It can also be used in self-driving cars and robotics and treat visual 

impairments; in addition, CNN is to get specific features and their combinations with 

higher levels. However, due to its layered architecture, it is computationally intensive, 

and it takes days to train such a network with large datasets; it is effective for visual 

tasks and exceeds all conventional methods. [14] 

2.3.1 Types of Convolutional Neural Network models   

Researchers proposed various types of CNNs, namely, LeNet, AlexNet, ResNet,  

VGGNet [20], ZfNet (2013),  GoogleNet [21], XceptionNet  
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2.3.2 Training Convolution Nural Network 

Supervised deep neural network training is formulated to minimize the loss function, 

and related to this, supervised deep neural networks for the search were introduced. 

One of the optimization strategies is the set of network parameter (or weight) values 

for which the loss function has a minimum value and gradient dedescent errors are 

minimized by computing gradients and updating network parameter values. The most 

popular and successful DL algorithm is gradient descent using a backpropagation 

approach where the error is backward propagated from the last layer to the first. All 

weights are initialized with random or probability distributions in this learning method. 

Inputs are routed through the network to get outcomes. Then, using the outcome and 

the desired output, estimate the error utilizing the cost(error) function. To understand 

how backpropagation works, a small CNN model is shown in Figure 2.1. 

Convolutional Layers: convolution layer accepts an input matrix with a fixed number 

of feature maps. Mathematically, such an operation can be given as 

𝐶𝑜𝑛𝑣 𝑙+1 = (𝑊𝑙 ⊗ 𝑥𝑙 + 𝑏𝑙)                              (2.1) 

Where𝐶𝑜𝑛𝑣𝑘  represents the 6 outcome feature maps of convolutional layer Conv1 and 

s denote the input for the l-th layer by 𝑥𝑙. Also, let {𝑊𝑙 , 𝑏𝑙 } be the weights and bias 

of filters in that layer. Then, the output feature map of 𝑥𝑙can be computed. Non-linear 

operations in deep networks are known as the most activation function. The following 

formula expresses Rectified Linear Unit (ReLU), a non-linear activation function: 

σ = max(0,x)                                                     (2.2) 

The max pooling layer is the next layer. The results of the convolutional layers are 

fed into the max pooling layer. A max-pooling layer takes a feature map and denote 

n×n squares of the feature map input by 𝑝𝑖𝑗
𝑛×𝑛 where the tuple (i, j) means the patch is 
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centered at location (i, j) in the input feature map. Then, the output of the sub-sampling 

pooling operation performs a max-pooling operation  as follows: 

𝑝 =   𝛽 ∑ (𝑝𝑖𝑗
𝑛×𝑛) + 𝑏ℎ𝑘                                       (2.3) 

Another convolution layer is stacked on top of the previous ones to build the model’s 

architecture shown in Figure 2.1. 

Fully connected layer (FC): Once all neurons of the previous layer are connected to 

all neurons of the current one, we have a fully connected layer. Such layers can perform 

classification and is mathematically defined as  

𝐹𝑘 =  ∑ 𝑤𝑖
𝑘 ∗𝑖 𝐶𝑜𝑛𝑣𝑖                                         (2.4) 

 

The activation function used for classification   in    last layer is the softmax function 

𝑍𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝑘) =  
𝑒𝐹𝑘

∑ 𝑒𝐹𝑘6
𝑖=1

                         (2.5) 

The softmax activation function produces the class labels. 

All outputs sum to 1 and is in the range [0, 1]. Each    output  represents   a probability 

of inputs belonging to a particular class. 

Where 𝑍𝑘 is a vector of size equal to the number of classes. 
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Figure 2.1: CNN architecture [15] 

2.4 Loss Function  

During training, inputs are fed to the network, and outputs are generated. 

Calculating the error or loss is based on comparing the output to the actual label. The 

computed errors are used to update the network weights.  

The function to compute error or loss is called the cost/loss function, and several loss 

functions are available. The MSE-loss function is one of the functions used, and it is 

not well suited for a classification problem because it assumes a regression problem 

with values from −∞ to ∞ , which is not the case for classification problems [28]. Our 

purpose is to minimize the loss function between the predicted and target outputs when 

training. In the beginning, the Softmax function has to be defined. The Softmax 

function transforms the output of the different neurons into a probability distribution.  

Generating vector of “n” predictions from the following samples “n” data points for 

all variables and “y” is the vector of monitoring values of the forecasters, with “ŷ” 

being the expected values,the predictors in model MSE calculating as 

𝑀𝑆𝑁 =  
1

𝑛
∑ (𝑦𝑖

− ŷ𝑖)2𝑛
𝑖=1                                                (2.6) 
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The second function is binary Cross-Entropy Loss is a classification problem; one can 

apply the idea of the cross-entropy loss to a single output neuron. Again, we have to 

transform the output y into a probability. But because there is only one neuron, we 

must apply the Sigmoid function. 

𝑠𝑖𝑔(𝑦) =  
1

1−𝑒−𝑦                                                       (2.7) 
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Chapter 3 

METHODOLOGY 

3.1 Data Acquisition 

Many approaches have been proposed to automate the sleep stage classification 

process. 

However, these approaches have drawbacks that we try to address in this thesis: 

The data used in this thesis is available on physionet.org [16 ]; we employed the 

extended version of the sleep-EDF database in the conducted experiments. There are 

two types of PSG recording files: 

 a) sleep cassette (SC), and b) sleep telemetry (ST), which belong to two different 

studies. The EMG data for the first study is zero amplitude. So only ST files are 

selected from a collection of 50 PSG signals. The EEG signal was sampled at 100 Hz, 

and the event marking at 1 Hz. Except for slight difficulty falling asleep, subjects were 

healthy without taking any sleep-related medications. The data was split into cycles of 

30 seconds, and all epochs were evaluated according to R&K guidelines. These 

recordings include EEG (Fpz-Cz channel and Pz-Oz channel). 

3.2 Method  

In this section, we describe materials and methods, including different CNN models 

we used.  

https://physionet.org/
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This thesis used Resnet18, which is a CNN-based classification model. We will 

explain its architecture further. 

It is important to note that spectrograms representing a signal in frequency-time space 

are used as the input data of this model.  

Most studies in this category were designed based on single-channel EEG. 

CNNs are most commonly used for single-channel sleep classification. Deep learning 

architectures like CNN are usually used to extract time-invariant Features of the 

current sleep epoch [10], [4], [6]; then sleep signal is classified using features extracted 

from fully connected layers of the CNN. Some studies [5] and [8] also directly extract 

time-invariant features from the current sleep epoch.  

Such architectures are the basic component of almost all single-channel sleep 

evaluation models. Additional contributing models were developed to extract target-

specific features more accurately to improve deep sleep scoring performance. For 

example, according to the AASM manual [2], the EEG signal consists of two types of 

features: EEG signals and time-domain patterns that usually appear everywhere. 0.5 

second; examples are K-complex and sleep spindles [10]. 

A smaller filter extracts time-domain patterns, and a larger filter extracts frequency-

domain information from EEG signals. Moreover, different combinations of 0.5-

second patterns can occur during the same sleep stage, which makes feature extraction 

difficult. This is because it can increase the complexity of the function at deeper layers 

of CNN [7], [6], [8]. Adopting a very small filter size, we extract complex time-

invariant patterns from sleep epochs. Given the similarities between sleep scoring 
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methods and machine translation ones mentioned by Mousavi et al. [4], employing 

attention-based models provides a robust learning system. The attention module learns 

critical parts of the sleep sequence. Furthermore, the such system helps to avoid having 

a biased classification score in the final step. For time-invariant functions, Supratak et 

al. [10] apply the residual connections and add temporal information extracted from 

the CNN to the sequential learning function by Bi LSTM. It is important to note that 

we also employ a residual CNN model in this thesis. One problem arising from training 

deep CNN networks is vanishing gradient. In its simplest form, a CNN consists of a 

convolution kernel applied to an input signal. A kernel consists of neural weights. 

These weights are to be learned and adjusted through training algorithm called 

backpropagation. A stacked representation of abstract features is obtained when 

various regions are activated by responding to convolution and pooling operations.  

Using the such procedure, an embedded representation of features is extracted from 

EEG signals. In this thesis, we represent the raw EEG signals as spectrogram images, 

and by doing so, we address the problem of sleep disorder recognition as an image 

classification problem. 

3.3 Resnet Model 

Whenever the numeral of layers in a DL network improves, computational complexity 

increases, and thus, accuracy saturates as the network converges toward the optimal 

solution. However, if the depth is too deep (too many layers), then the performance 

might degrade depending on the size of the data and the downstream task. A proper 

training and optimization strategy can improve the situation in such cases. 
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ResNets are a CNN-based architecture that benefits from skip connections and residual 

blocks to overcome the vanishing gradient problem. This makes it possible to have 

networks with as many as thousand convolution layers. 

Residual blocks are the essential blocks of a ResNet network. To make very deep 

neural network architectures, intermediate inputs are added to the output of a group of 

convolution blocks using so-called skip connections. Alternatively, skip connections 

are known as identity mapping or residual connections. The following Figure 

illustrates a residual block, where X is the input to the Resnet block and can be an 

output from a previous layer,and  F(x) is a small network with few convolution layers. 

Figure 3.1: Resnet-Related Content [18] 
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3.4 Convolutional Architectures for EEG in the Literature 

One known convolutional architecture that works explicitly on two-dimensional time-

frequency representations of sleep data is proposed by [16]. In fact, the window size 

and layer structure of the architecture presented in this work is directly inspired by 

[16]. However, the input data for [16] is not spectrogram images. The spectrogram 

representation used in this research can be considered as the contribution of this work. 

3.5 Experimental Methodology 

This chapter describes the experimental methodology and details of the architecture 

used in this work. First, we explain the reason to employ selected architectures for this 

work. This is followed by a description of the datasets used. A specification of the 

convolutional architecture used to implement the classifier is then given. Finally, 

details of the training procedure are explained. 

The architecture and all experiments described below are implemented in Matlab 

programming language. 

3.6 Architecture Description 

A fundamental innovation in this work is transforming time-series signals into a 2D 

image representation called spectrograms. In order to create a spectrogram, one should 

apply Fourier Transform (FT) on a subsegment of a signal. A spectrogram is a 2D 

image-based representation of the Short-Time Fourier Transform (STFT) of a signal 

where the horizontal axis introduces the time, and the vertical axis illustrates the 

signal’s frequency. A second fundamental innovation can be considered as treating 

each separate signal as a channel of a color image. The time series of each EEG channel 

are independently converted to pseudocolor spectrogram images. A significant 

advantage of this technique is the ability to generate multichannel input data signals. 
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Such pipelines are extensively studied and optimized for image classification in 

machine-learning literature.  

The spectrogram transformation above is convenient for representing the data in a low-

level feature space. Spectrograms must be of sufficient resolution both in frequency 

and time domains. This way, fundamental frequency differences are detected as shifts 

along the frequency axis. Therefore the model assures some amount of frequency 

invariance in its performance; summarizing the above, the powerful technology of 

CNNs can be applied to spectrograms for the classification task. From an image 

processing perspective, the architecture is standard and is considered consistent with 

standard image processing literature. 

3.7 Architecture Details 

This section specifies spectrogram parameters and the parameter final result of this 

work. 

3.7.1 Spectrogram  

The parameter for generating spectrogram images was selected according to several 

criteria. First, The widths of the dominant spectral patterns should be approximately 

the same. 

Second, there should be an overlap between successive time slices to smooth the 

spectral features. In order to maintain the details in pixel space, the signal is split into 

subsegments. The segmentation is shown to have significant improvement in 

classification results. Specifically, each 30-second chunk of the normalized EEG 

signal is sampled at 100 Hz according to the parameters in Table 3.1. 
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Table 3.1: Spectrogram parameters used.  

Spectrogram Fs Freq.limitation Time 

Resoulution 

high freq 100Hz [-20 20] 1S 

 

Spectrograms are normalized before being used as input for CNN architecture. Figure 

3.2 shows examples of created spectrograms from various channels of an EEG signal. 

      
a) Mix signal(Fpz-Cz channel) 

      
b) Mix Signal (Pz-Oz Channel) 

 

      
c) Delta signal (Fpz-Cz channel) 
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d) Delta signal (Pz-Oz channel) 

 

      
e) Theta signal (Fpz-Cz channel) 

      
f) Theta signal (Pz-Oz channel) 

 

      
g) Alpha sigbal (Fpz-Cz) 

 

      
h) Alpha signal (Pz-Oz channel) 
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m) Beta signal (Fpz-Cz channel) 

 

      
n) Beta signal (Pz-Oz channel) 

Figure 3.2: We can see some spectrogram images; In part a shows the Mix signal 

(Fpz-Cz channel) and two different stages, which is the R stage on (the left side) and 

S2 on (the right side). Part b, it shows the Mix signal (Pz-Oz channel) and two 

different stages, which is the S1 stage on (the left side) and W on (the right side); 

part c shows the S2 stage on (the left side) and S4 on (the right side) and also for 

part d shows S3 stage on (the left side) and R on (the right side); part e shows the 

S1 stage on (the left side) and S3 on (the right side) and also for part f shows R stage 

on (the left side) and W on (the right side); part g shows the S1 stage on (the left 

side) and S2 on (the right side) and also for part h shows S3 stage on (the left side) 

and R on (the right side); part m shows the S2 stage on (the left side) and S3 on (the 

right side) and also for part n shows S4 stage on (the left side) and W on (the right 

side). 

3.7.2 Network Architecture 

Input images are of size 128×128. A remarkable difference with other available 

methods in the literature is the number of feature maps in the convolutional and fully 

connected layers. This means that the number of different spectral features in EEG is 

much smaller. Therefore the model complexity is proportionally lower, and 

consequently, the risk of overfitting is less than in other methods. Spectrograms are 

passed through separate convolutional layer stacks connected to a sequence of fully 
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connected layers with activations to generate a class label as the sleep stage of the 

corresponding subject. 

3.8 Data Pre-Processing 

Two EEG channels each were used for all recordings. Channels were Fpz-Cz, and 

Pz-Oz. 

3.9 Training Methodology 

The fundamental goals of this work are to train a classifier in this way. Works well for 

unseen patients. Therefore, training and validation are always strictly separated at the 

patient level. Report the final result. The next chapter contains the experimental results 

of validation and test data.  

Generally speaking, 10% of the data is used as the test data set. And 90% percent for 

training and validation; the remaining data is sued for validation and training (90% for 

training and 10% for validation) is used. The dataset has 50 subjects, which resulted 

in 4200 spectrograms for six stages (W, R, S1-S4). From this number, 567 samples per 

category are used for training, and 63 images per category are used for validation and 

70 samples are used for the test, which can be found in table 3.2. 

Table 3.2: Number of images used for CNN 

Stages/images  Total images Test images Training 

images 

Validation 

images 

R 700 70 567 63 

S1 700 70 567 63 

S2 700 70 567 63 

S3 700 70 567 63 

S4 700 70 567 63 
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W 700 70 567 63 

 

The proposed model is shown in Figure 3.2 

 
Figure 3.3: Resnet 18 block diagram 

3.10 Expectations  

Experts can easily categorize sleep stages by examining sleep stage recordings before 

and after a specific event. We expect that our proposed architecture competes with 

human expert decisions. In essence, instead of analyzing raw EEG signals, the network 

uses consecutive spectrograms to output a decision for the subject’s sleep stage.  

3.11 Fusion 

Fusion is an approach by which one can improve the overall accuracy and performance 

of the corresponding classifier. As a result, we intend to combine or fuse the final 

confidence scores of classification obtained from various channels to ameliorate the 
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sleep stage classification. Correlating and merging information from multiple sources 

can usually provide more accurate conclusions than analyzing a single set of scores. 
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Chapter 4 

RESULTS AND DISCUSSION 

This chapter represents the conducted experiments and results of the developed 

architecture explained in the previous chapter. Various use cases are considered by 

using Mix signal channels and filter channels. Using such data input and Resnet 18 

structure, we predict sleep stages. 

4.1 Basic Performance 

We computed four metrics as the classifier’s output: F1-score, accuracy, precision, and 

recall. The last two are considered to be important when there is data imbalance. F1 

score, recall, precision, and precision are defined mathematically for each output label. 

For a given output label, precision is the ratio of the number of true positive predictions 

over the total number of predictions for this label. The recall is the ratio of the number 

of true positive predictions to the number of positive predictions. These metrics are 

expressed as follows: 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Accuracy = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑜𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

F1-score =  
 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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4.2 Performance 

In addition to collecting recall, precision, accuracy, and F1-score parameters, we apply 

the score fusion method. We consider both channels, namely (Fpz-Cz and Pz-Oz). As 

for score fusion, we used fusion followed by an argmax of probabilities function. 

More comprehensive information about the results is in Figure and Table 4.1. 

Figure 4.1.1-4 shows mixed signal (Fpz-Cz and Pz-Oz) channels with training and loss 

graphs. 

Figure 4.1.1 is train graphs for the Fpz-Cz channel. Used 70 images testing for each 

class, and the last number of training accuracy is 87.5%, validation accuracy is 

70.11%, the number of epochs is 50, the learning rate is 0.005, and also for loss curves 

shown in figure 4.1.2 with validation loss is 1.11. 

Figures 4.1.3 and 4.1.2 are train and loss curves for the Pz-Oz channel. All trains used 

the same number of testing (70 images for each class) with these parameters; the last 

number of training accuracy is 82.8, validation accuracy is 68.52%, number of epochs 

is 50, and the learning rate is 0.01, and for loss curves, we know validation loss is 

0.8488.  
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Figure 4.1: Training graphs for mix signal (Fpz-Cz channel) 

 

Figure 4.2: Loss graphs for mix signal (Fpz-Cz channel) 

Table 4.1: Confusion matrix with the accuracy of Mix signal (Fpz-Cz channel) 

Stages R S1 S2 S3 S4 W Acc% 

R 35 35     50% 

S1 1 54 1 12 1 1 77.1% 

S2 1 6 62 1   88.6% 

S3  4  48 18  68.6% 
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S4  2 1 16 51  72.9% 

W  1    69 98.6% 

 

Table 4.2: Average precision, recall, accuracy, and F1-score for Mix signal (Fpz-Cz 

channel). 

Precision Recall Accuracy F1-score 

70.79% 75.95% 75.95% 76.25% 

 

 
Figure 4.3: Training graphs for mix signal (Pz-Oz channel) 
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Figure 4.4: Loss Graphs for mix signal (Pz-Oz channel) 

Table 4.3: Confusion matrix with accuracy of Mix signal (Pz-Oz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 47 23     67.1% 

S1 3 35 10 13 6 3 50% 

S2 2 4 63 1   90% 

S3  2 1 34 32 1 48.6% 

S4  4 2 20 44  62.9% 

W  1    69 98.6% 

 

Table 4.4: Average precision, recall, accuracy, and F1-score for Mix signal (Pz-Oz 

channel).  

Precision Recall Accuracy F1-score 

70.36% 69.52% 69.52% 69.56% 

 

Figure 4.1.5-8 shows Delta signal (Fpz-Cz and Pz-Oz) channels with training and loss 

graphs. 
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Figure 4.1.5 is train graphs for the Fpz-Cz channel(Delta signal). Used 70 images 

testing for each class, and the last number of training accuracy is 39.06%, validation 

accuracy is 41.79%, the number of epochs is 50, the learning rate is 0.01 , and also for 

loss curves shown in figure 4.1.6 with validation loss is 1.42. 

Figures 4.1.7 and 4.1.8 are train and loss curves for the Pz-Oz channel(Delta signal). 

The last number of training accuracy is 45.3%, validation accuracy is 45.43%, number 

of epochs is 50, and the learning rate is 0.01, and for loss curves, we know validation 

loss is 1.44. 

 

 
Figure 4.5: Training graph for delta signal (Fpz-Cz channel) 
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Figure 4.6: Loss graph for delta signal (Fpz-Cz channel) 

Table 4.5: Confusion matrix with the accuracy of Delta signal (Fpz-Cz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 35 20 1 1  13 50% 

S1 27 11 8 1 1 22 15.7% 

S2 7  34 11 3 15 48.6% 

S3 5  22 19 18 6 27.1% 

S4   4 16 49 1 70% 

W 5 3 15 8 6 33 47.1% 

 

Table 4.6: Average precision, recall, accuracy and F1-score for Mix signal (Fpz-Cz 

channel). 

Precision Recall Accuracy F1-Score 

41.89% 43.10% 43.10% 41.73% 
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Figure 4.7: Training graph for delta signal (Pz-Oz channel) 

 

 
Figure 4.8: Loss graph for delta signal (Pz-Oz channel) 

 

Table 4.7: Confusion matrix with accuracy of Delta signal (Pz-Oz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 19 6 7 1 3 34 27.1% 

S1 21 35 3 2  9 50% 

S2 17 8 18 11 11 5 25.7% 
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S3 14 10 14 13 15 4 18.6% 

S4 5 4 8 13 38 2 54.3% 

W 11 5 3 4 1 46 65.7% 

 

Table 4.8: Average precision, recall, accuracy and F1-score for Delta signal (Pz-Oz 

channel). 

Precision Recall Accuracy F1-score 

39.78% 40.24% 40.24% 39.37% 

 

Figure 4.1.9-12 shows Theta signal (Fpz-Cz and Pz-Oz) channels with training and 

loss graphs. 

Figure 4.1.9 is train graphs for the Fpz-Cz channel(Theta signal). Used 70 images 

testing for each class, and the last number of training accuracy is 7187%, validation 

accuracy is 35.71%, the number of epochs is 50, the learning rate is 0.008 , and also 

for loss curves shown in figure 4.1.10 with validation loss is 2.04. 

Figures 4.1.11 and 4.1.12 are train and loss curves for the Pz-Oz channel (Theta 

signal). The last number of training accuracy is 85.93%, validation accuracy is 

25.92%, number of epochs is 50, and the learning rate is 0.001, and for loss curves, we 

know validation loss is 3.42. 
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Figure 4.9: Training graph for theta signal (Fpz-Cz channel) 

 
Figure 4.10: Loss graph for theta signal (Fpz-Cz channel) 

Table 4.9:  Confusion matrix with accuracy of  Theta signal (Fpz-Cz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 20 19 11 5 3 12 28.6% 

S1 15 16 20 8 4 7 22.9% 

S2 14 10 19 8 7 12 27.1% 

S3 2 9 8 7 37 7 10% 
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S4 2 9 6 11 41 1 58.6% 

W 2 4 2 2 5 55 78.6% 

 

Table 4.10: Average precision, recall, accuracy and F1-score for Tehta signal (Fpz-Cz 

channel). 

Precision Recall Accuracy F1-score 

38.36% 38.81% 38.81% 37.97% 

 

 
Figure 4.11: Training graph for theta signal (Pz-Oz channel) 
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Figure 4.12: Loss graph for theta signal (Pz-Oz channel) 

Table 4.11: Confusion matrix with accuracy of Theta signal (Pz-Oz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 20 25 10 6 4 5 28.6% 

S1 10 22 16 5 11 6 31.4% 

S2 9 10 21 7 10 13 30% 

S3 7 10 9 12 30 2 17.1% 

S4 4 5 16 14 23 8 32.9% 

W 10 6 16 11 11 16 22.9% 

 

Table 4.12: Average precision, recall, accuracy and F1-score for Theta signal (Pz-Oz 

channel). 

Presicion Recall Accuracy F1-score 

27.51% 27.14% 27.14% 26.98% 

 

Figure 4.1.13-16 shows Alpha signals (Fpz-Cz and Pz-Oz) channels with training and 

loss graphs. 
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Figure 4.1.13 is train graphs for the Fpz-Cz channel (Alpha signal). Used 70 images 

testing for each class, and the last number of training accuracy is 57.81%, validation 

accuracy is 45.50%, the number of epochs is 50, the learning rate is 0.01 , and also for 

loss curves shown in figure 4.1.14 with validation loss is 1.47. 

Figures 4.1.15 and 4.1.16 are train and loss curves for the Pz-Oz channel (Alpha 

signal). The last number of training accuracy is 26.56%, validation accuracy is 

34.12%, number of epochs is 50, and the learning rate is 0.01, and for loss curves, we 

know validation loss is 1.69. 

 
Figure 4.13: Training graph for alpha signal (Fpz-Cz channel) 
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Figure 4.14: Loss graph for alpha signal (Fpz-Cz channel) 

Table 4.13: Confusion matrix with accuracy of Alpha signal (Fpz-Cz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 39 3 13 1 2 12 55.7% 

S1 6 14 32 3 4 11 20% 

S2 15 8 23 3 8 13 32.9% 

S3 5 3 25 11 22 4 15.7% 

S4 3 2 25 5 34 1 48.6% 

W 1 1 4 1  63 90 

 

Table 4.14: Average precision, recall, accuracy and F1-score for Alpha signal (Fpz-Cz 

channel). 

Precision Recall Accuracy F1-score 

45.92% 43.81% 43.81% 42.03% 
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Figure 4.15: Training graph for alpha signal (Pz-Oz channel) 

 

Figure 4.16: Loss graph for alpha signal (Pz-Oz channel) 

 

Table 4.15: Confusion matrix with accuracy of Alpha signal (Pz-Oz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 2 20 14 4 7 23 2.9% 

S1 2 24 9 8 24 3 34.3% 

S2 7 10 18 5 4 26 25.7% 
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S3 2 8 9 5 45 1 7.1% 

S4  1 14 15 35 5 50% 

W 24 9 3 4  30 42.9% 

 

Table 4.16: Average precision, recall, accuracy and F1-score for Alpha signal (Pz-Oz 

channel). 

Precision Recall Accuracy F1-score 

23.72% 27.14% 27.14% 24.77% 

 

Figure 4.1.17-20 shows Beta signals (Fpz-Cz and Pz-Oz) channels with training and 

loss graphs. 

Figure 4.1.17 is train graph for the Fpz-Cz channel (Beta signal). Used 70 images 

testing for each class, and the last number of training accuracy is 86%, validation 

accuracy is 41.53%, the number of epochs is 50, the learning rate is 0.001 , and also 

for loss curves shown in figure 4.1.18 with validation loss is 2.42. 

Figures 4.1.19 and 4.1.20 are train and loss curves for the Pz-Oz channel (Beta signal). 

The last number of training accuracy is 49.20%, validation accuracy is 47.35%, 

number of epochs is 50, and the learning rate is 0.01, and for loss curves, we know 

validation loss is 1.70. 
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Figure 4.17: Training graph for beta signal (Fpz-Cz channel) 

 

Figure 4.18: Loss graph for beta signal (Fpz-Cz channel) 

Table 4.17: Confusion matrix with accuracy of Beta signal (Fpz-Cz channel). 

Stage R S1 S2 S3 S4 W Acc% 

R 25 22 4 8 4 7 35.7% 

S1 14 19 18 8 4 7 27.1% 

S2 2 6 38 7 16 1 54.3% 

S3 11 8 5 29 13 4 41.4% 
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S4 5 7 5 15 25 13 35.7% 

W 10 4  6 4 46 65.7% 

 

Table 4.18: Average precision, recall, accuracy and F1-score for Beta signal (Fpz-Cz 

channel). 

Presicion Recall Accuracy F1-score 

42.83% 43.33% 43.33% 43.03% 

 

Figure 4.19: Training graph for beta signal (Pz-Oz channel) 
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Figure 4.20: Loss graph for beta signal (Pz-Oz channel) 

Table 4.19: Confusion matrix with accuracy of Beta signal (Pz-Oz channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 23 34 3 1 3 6 32.9% 

S1 12 36 12 1 2 7 51.4% 

S2 5 6 29 9 21  41.4% 

S3 17 7 5 19 21 1 27.1% 

S4 8 14 18 5 25  35.7% 

W 9 21 4   36 51.4% 

 

Table 4.20: Average precision, recall, accuracy and F1-score for Beta signal (Pz-Oz 

channel). 

Presicion Recall Accuracy F1-score 

43.91% 40% 40% 40.46% 
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4.3 Score Fusion Performance 

Results for score fusion approach are reported. The idea was to add scores of two 

channels and apply the argmax function to predict the class label. 

Table 4.21: Confusion matrix with accuracy of Mix signal (combined channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 42 28     60% 

S1 2 53  13 1 1 75.7% 

S2 2 5 63    90% 

S3  3  45 22  64.3% 

S4  4 1 15 50  71.4% 

W      70 100% 

 

Table 4.22: Average precision, recall, accuracy and F1-score for Mix signal 

(Combined channel). 

Precision Recall Accuracy F1 score 

79.24% 76.90% 76.90% 77.27% 

 

Table 4.23: Confusion matrix with accuracy of Delta signal (combined channel). 

Srages R S1 S2 S3 S4 W Acc% 

R 29 10 2  1 28 41.4% 

S1 22 31 8  1 8 44.3% 

S2 13 3 33 11 6 4 47.1% 

S3 10 2 19 16 20 3 22.9% 

S4 1  2 12 54 1 77.1% 
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W 8 4 6 3 4 45 64.3% 

 

Table 4.24: Average precision, recall, accuracy and F1-score for Delta signal 

(Combined channel). 

Precision Recall Accuracy F1 score 

42.26% 49.52% 49.52% 48.52% 

 

Table 4.25: Confusion matrix with accuracy of Theta signal (combined channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 32 32  2 1 3 45.7% 

S1 1 50 4 10 3 2 71.4% 

S2 1 7 55 1 3 3 78.6% 

S3 4 5 2 37 21 1 52.9% 

S4 1 3 4 13 48 1 68.6% 

W    1  69 98.6% 

 

Table 4.26: These values are for average precision, recall, accuracy and F1-score for 

Delta signal (Combined channel). 

Precision Recall Accuracy F1 score 

71.09% 69.29% 69.29% 68.95% 

 

Table 4.27: Confusion matrix with accuracy of Alpha signal (combined channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 36 9 12  2 11 51.4% 
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S1 4 22 21 8 9 6 31.4% 

S2 12 8 25 3 5 17 35.7% 

S3 1 5 16 8 38 2 11.4% 

S4 1 2 22 5 38 2 54.3% 

W 2 2 2 1  63 90% 

 

Table 4.28: Average precision, recall, accuracy and F1-score for Alpha signal 

(Combined channel). 

Precision Recall Accuracy F1 score 

45.22% 45.71% 45.71% 43.61% 

 

Table 4.29: Confusion matrix with accuracy of Beta signal (combined channel). 

Stages R S1 S2 S3 S4 W Acc% 

R 32 26 3 3 3 3 45.7% 

S1 17 29 13 1 3 7 41.4% 

S2 2 5 36 8 19  51.4% 

S3 13 9 5 27 14 2 38.6% 

S4 9 10 12 11 21 7 30% 

W 7 9  1 1 52 74.3% 

 

Table 4.30: Average precision, recall, accuracy and F1-score for Beta signal 

(Combined channel). 

Precision Recall Accuracy F1 score 

47.62% 46.90% 46.90% 46.94% 
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4.4 Final Concolusion 

These results are for 6  classses (R, W, S1-4). In table 4.3, it can be seen that the 

accuracy percentage of score fusion was higher than the single channel method. In 

Channel 1 column and channel two column wich means accuracies and for After fusion 

added up probabilities and take the argmax. 

Table 4.31: Total accuracy for each signal (for 6 classes) 

Signal/Chanell Channel 1 Channel 2 After Fusion 

Mix sgnal 75.95% 69.52% 76.00% 

Delta 43.09% 40.23% 49.00% 

Theta 38.8% 27.14% 68.00% 

Alpha 43.8% 29.00% 45.00% 

Beta 43.33% 40.00% 47.00% 

 

 

4.5 Comparise performance 

In this part, we will see how our method compares with other similar studies shown 

in Table 4.4. 

In the comparison table, most of them with five stages are classified, but in this study 

we try to used six stages of comparison. Usually in sleep stage classification study, it 

can be combine S3 and S4 together, but for deeper research we separated S3 and S4 

from each other. Also the accuracy for five stages after fusion (sum ruls) is 86%. 
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Chapter 5 

CONCLUSIONS 

5.1 Summary of Contributions 

This study presented a deep learning approach for automated sleep stage classification 

using convolutional neural network and spectrograms that are created from 

multichannel EEG signals. The CNN architecture was trained and validated on dataset 

of approximately 50 EEG recordings from patients collected in a hospital setting. It is 

important to note that we achieved a competitive performance without extracting  

hand-crafted features in a separate pre-processing step.  

The experimental results show that results achieved by automated classifiers can 

perform close to that human experts recognizing sleep disorder in clinics by practice.  

5.2 Observations on Classifier Performance 

Overall, the performance of the accuracy developed in this work is appropriate for 

screening, and its application in this field is a reasonable goal. However, drawbacks 

must be addressed before considering such automated approaches for practical usage. 

These drawbacks include but are not limited to having poor performance on 

classification of S3 and S4 stages. One solution to address this might be considering 

the two stage as a single class label [2]. Also, the performance of such classifiers 

degrades when using single channel data. 
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5.3 Future Directions 

In this study we attempted to show that CNN-based image processing techniques can 

be used for sleep stage classification once the EEG signals are converted to time-

frequency domain images (spectrograms). Future direction of this research line 

inlcudes applying one dimensional CNNs to raw EEG signals and fusion of results 

with the current 2D classification method. We believe applying 1D CNNs to EEG 

signals can automatically extract features that are salient and robust with respect to 

time domain and they can be an appropriate replacement for hand-crafted features. 

More importantly, this method should be extended to be compatible with non-EEG 

recordings. Indeed, one of the strengths of the deep method is the ability to integrate 

information from different sources. Thus, the combination of other commonly seen 

signals, such as EMG, ECG, or other time series recording, should be attempted. In 

general, for clinical practice, developing a software package or tool with a pre-trained 

architecture is the most reliable approach.  

Alternative minor directions comprise working on "drop channels" of the EEG signals 

where a subset of EEG channels is used in each sample. This makes the mdoel capable 

of learning from various channels available in different clinical deployment sites.  

In general, comparing with other available neural architectures like Xception and 

Inception networks and fusion with complex neural networks may bring more 

improvement to this field. 

5.4 Methodological Improvements 

No matter how good, the architecture will not be used in practice if clinicians lack 

confidence in its results. The method of preventing bagging has been developed for 
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this reason. For the architecture to be truly viable. The architecture needs to be trained 

on a large enough set of patients from different hospitals, whose measurements are 

made by different technicians with different tools. If the program's performance on a 

completely new data set is quantified, it is reasonable to believe it can act as a reliable 

or assistant tool.  
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