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ABSTRACT

Classification of sleep stages is an essential area of research that helps develop
treatments for people with sleep disorders. According to common sleep stage criteria,
sleep is divided into six different stages: Wakeful sleep (W), REM (rapid eye
movement) sleep, and non-REM sleep (S1-S4). Sleep processing can be performed by
analyzing electroencephalogram (EEG) signals in a 30-second cycle (epoch). These
stages are chosen and established on an analysis of brain workouts during sleep. This
reveals a clear pattern that characterizes each stage. Sleep deprivation can cause
various illnesses, including obesity, heart disease, diabetes, and reduced life
expectancy [2]. Sleep professionals wusually classify sleep stages into
polysomnography  (PSG) signals.  Polysomnography  consists of an
electroencephalogram (EEG), electro-oculogram (EOG), electromyogram (EMG), and
electrocardiogram (ECG) [2]. In addition, one category of such classifiers, Deep
Learning (DL) based EEG signal classification, is used to classify sleep stages. The
treatise includes an analysis of the performance of the considered methods of sleep
grading. In addition, the strengths and weaknesses of classical and deep learning-based
sleep staging methods will be explored. In addition, we compared standard

classification with the data fusion methods with their accuracy.
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Uyku asamalarinin siniflandirilmasi, uyku bozuklugu olan kisiler igin tedavilerin
gelistirilmesine yardimci olan O6nemli bir aragtirma alanidir. Yaygin uyku evresi
kriterlerine gore uyku alt1 farkli evreye ayrilir: uyanik uyku (W), REM (hizli g6z
hareketi) uykusu ve REM olmayan uyku (S1-S4). Uyku isleme, bir
elektroensefalogram (EEG) analiz edilerek gerceklestirilebilir. 30 saniyelik bir
dongiide (donem) sinyaller. Bu asamalar, uyku sirasindaki beyin egzersizlerinin
analizine gore secilir ve kurulur. Bu, her asamay1 karakterize eden net bir modeli
ortaya cikarir. Uyku yoksunlugu, obezite, kalp hastaligi ve diyabet gibi cesitli
hastaliklara neden olarak yasam beklentisini azaltabilir [2]. Uyku uzmanlari genellikle
uyku asamalarin1 polisomnografi (PSG) olarak siniflandirir. Polisomnografi bir
elektroensefalogram (EEG), electro-oculogram (EOG), elektromiyogram (EMG) ve
elektrokardiyogramdan (EKG) olusur [2]. Bu gorev, uyku asamalarin1 siniflandirmak
icin EEG sinyallerini kullanir. Sinyal isleme teknikleri, Veri birlestirme yontemi gibi
standart smiflandiricilarda  gerekli islevselligi ¢ikarir. Ayrica uyku evrelerini
siniflandirmak icin son teknoloji {iriinli derin 6grenme tabanli EEG sinyal
siniflandirmas1  kullanilmaktadir. Tez, dikkate alinan wuyku derecelendirme
yontemlerinin performansinin bir analizini igerir. Ayrica klasik ve derin 6grenmeye
dayali uyku evreleme yontemlerinin gii¢lii ve zayif yonleri kesfedilecektir. Ek olarak,
standart smiflandirma ile veri birlestirme yontemlerini dogruluklar1 agisindan

karsilastirdik.

Anahtar Kelimeler: S1 - 4, W (Uyanma), Uyku Asamasi, Derin Ogrenme,

Dogruluk,Veri Fuzyon
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Chapter 1

INTRODUCTION

1.1 Sleep

Sleep is intently associated with human health. Effective sleep quality detection helps
sleep professionals monitor and test sleep disorders and formulate appropriate
treatments for their patients. A scientific measure of sleep quality is polysomnography
(PSG) (i.e., sleep consideration). Signals that record the activity of different parts of
the human body. These collected signals mainly consist of an electroencephalogram
(EEG), an electrooculogram (EOG), an electromyogram (EMG), an electrocardiogram
(ECG). At PSG, a typical 8-hour sleep polysomnogram is divided into 30-second
epochs. Sleep epochs are annotated into different sleep stages by technicians according
to the specific rules of the sleep manual. Consistency in the rules laid out in sleep
manuals is essential for sleep assessment. This is because every slight difference can
lead to different annotations. To keep unity, a standard manual of rules has been
considered by experts. Rechtchaff and Kales Standard (R&K Handbook) [1] and the
American Academy of Sleep Medicine (AASM) Manual [2] are two of the most

widely used sleep staging manuals.

Sleep is distinguished into 6 (or 5) stages, which are Wake (W), Stage 1 (S1), Stage 2
(S2), Stage 3 (S3), Stage 4 (S4), and rapid Eye Movement (REM or R) (that is, the

R&K manual [1] where S3 is further classified into S3 and S4).



Each stage is based on frequency-domain and time-domain patterns of the manual's
characteristics. Summary of these scoring rules for specific sleep stages is shown in
Table 1.1. Sleep evaluation is done manually by sleep experts, which is time-
consuming and takes time. To remedy this, automated sleep assessment approaches
have been proposed. Feature analysis can classify sleep stages automatically by feature

extraction using machine learning classification algorithms.

Table 1.1: Summary of EEG, EOG, and EMG patterns for different sleep stages

according to the AASM manual [2]

Stages EEG EOG EMG
Delta Theta (4- Alpha Beta Time-domain
(<4Hz) THz) (8-13Hz) (>13Hz) patterns
Wake * * 0.5-2Hz Variable
amplitude but
usually higher
than during
sleep stages
S1 * * Vertex waves Slow eye Lower
Movement amplitude than
in stage Wake
S2 * K-complexes Usually no eye Lower
Sleep spindles movement, but amplitude than
slow eye in stage Wake
movements and may be as
may persist low as in stage
REM
S3&S4 * Sleep Spindles ~ Eye movements Lower
may persist. are not typically ~ amplitude than
seen. in stage N2 and
sometimes as
low as in stage
REM
REMor R * * Sawtooth Rapid eye Lower chin
waves movement EMG tone;
usually the
lowest level of
the entire
recording

1.2 An Overview of Sleep Stage Classification

In 1968, a committee co-chaired by Rechtschaffen and Kales (aka R&K), divided sleep
into four phases in a publication titled "A Manual of Standardized Terminology,
Techniques and Scoring System for Sleep Stages of Human Subject” [3]. Non-REM

includes four classes: S1, S2, S3, and S4.



Rapid-Eye Moving stage (REM) and Wakefulness (W). Non-REM sleep itself
accounts for almost 75% of sleep. The stages of sleep are described in detail below. In

this context, EEG signals should be split into 30 seconds cycles.

Stage Wake (W): Corresponds to the awake state. Alpha wave activity and low
voltage mixed frequency EEG are mainly present at this stage. EOG treble EMG and

winks are usually found at this stage.

Stage 1 (S1): This is the bridge between waking up and falling asleep (sleep onset),
also known as the light sleep stage. The heart rate begins to slow at this stage, and
breathing gradually becomes regular. This stage lasts 5 to 10 minutes, yet the subject
can quickly wake up. With a slow eye movement (SEM) called the sinusoidal eye
movement, low-amplitude waves with frequencies between 4 and 7 Hz stand out,

including peak waves with fewer than 0.5 seconds duration.

Stage 2 (S2): It’s called the light sleep stage, but it's more challenging to wake up. It
lowers blood pressure and temperature, reduces heart rate, and prepares the body for
deep sleep. Epoch stage 2 can be evaluated by observing K-complexandr sleep

spindles.

Stage 3 (S3): This stage is known as the deep sleep, Delta, or Slow Wave Stage (SWS);
compared to levels 1 and 2, it is more difficult to wake up the subject. During the deep
stages of sleep, the body repairs and reconstructs tissues and relaxes muscles. Delta
EEG with a frequency of 0.5-4 Hz can be detected with a small number of spindles
(compared to level 2). If SWS occupies more than 20% of the epoch, the epoch can be

considered Stage 3.



Stage 4 (S4): Accounts for about 10% of total sleep time in adults. Stage 4 of Non-
REM sleep has the highest wakefulness threshold with external stimuli during different
sleep stages. Arousal disorders such as sleep anxiety and sleepwalking occur during
stages 3 and 4 of sleep. The amount of Non-REM stages 3 and 4 and the EEG
amplitude of delta waves increase in adolescents and decrease in the elderly. This stage

Is strong in the first half of sleep.

REM: The main features of the REM stage are relatively low voltage, mixed
frequency EEG activity, and temporary REM concurrency. The EEG pattern is close
to the one described in Stage 1, distinguished by the absence of sharp mountain waves.
In REM sleep, prominent sawtooth waves occur in the parietal and forehead areas,
combined with rapid eye movements. Alpha wave activity is apparent at the REM
stage, with a frequency 1-2 Hz slower than when awake. The Sleep Spindle and K-
complex are absent, as in stage 1. Table 1.2 compares the percentage of sleep stages

in healthy adults.

Table 1.2: Percentages of sleep stages in healthy adults[2]

Sleep stages Percentage of total Sleep Time
S1 2-5%
S2 45-55%
S3/4 5-20%
REM or R 20-25%

1.3 Problem Definition and Thesis Objectives

Usually, a trained medical professional is required to classify brain waves into sleep
stages which is time-consuming. This work aims to develop a fully automated

machine-learning process for generating hypnograms from EEG signals that is useful



for clinical practice. Such methods should be robust to noisy data and variation
between patients, technicians, and recorders. The algorithm should work well with
data from various technicians and patients with abnormal sleep patterns.

Data from new patients never seen in training. Sleep stage methods should not rely on
expert preprocessing or feature extraction to achieve this goal. It is important that the
algorithm learns from human labels and EEG signals. Such procedure allows retraining
without adjusting for new data sources or patients with specific diseases. The

procedure must be able to perform on par with an expert capability.

We will go into more detail in a later section and give an example of an expert function

later. Machine learning algorithms need to provide good estimates.
1.4 Contribution

A considerable number of researchers from different machine-learning fields

addressed the task of automated sleep staging using EEG data.

However, none of the methods satisfies all the stated objectives to this end, this thesis
employs a deep learning architecture that uses a Convolutional Neural Network (CNN)
with EEG spectrogram data as input; the contribution of this work includes using
colored images called spectrograms as the input data of the network. These images

represent frequency changes in the time domain using pseudo colors.



Chapter 2

BACKGROUND THEORY

2.1 Introduction to Neural Networks
This chapter intends to explain the deep learning approach.
2.2 Deep Learning Approach

Artificial Neural Networks (ANNSs) and Deep Learning (DL) are subsets of machine
learning. However, neural networks have improved the sleep classification problem
and their prediction accuracy. One of the first classified methods used in neural

networks was published in 1999, to the authors’ knowledge [26].

Classification problems usually use Fourier Transform (FT) methods for feature
extraction. Sleep data was used from the Physionet database, and two channels were
chosen for feature extraction namely, Fpz-Cz channel and Pz-Oz channel. Feature
vectors from the wavelet coefficients signals time-frequency analysis (wavelet
transform) for EEG classification used six stages (wake, S1-4, REM). Moreover,
creating a feature to classify sleep stages is necessary and time-consuming. First, the
real value EEG signals are converted into a complex number, and the converted signal
is provided into the network. It is a multi-layer perceptron with special features
topology and multiple hidden layers. Also, point out the problem of low classification
accuracy with another approach, which also uses CNN [27]. In this study, the PSG of

the Sleep-EDFx database was used, and a 6-level classification was performed.



Frequency domain information of EEG signals makes the 2D signal and creates a
spectrogram fed into a CNN, where the feature extraction process is done

automatically.
2.3 Convolutional Neural Networks (CNN)

CNN is inspired by the visual cortex system [22], [23]. Each neuron responds only to
a limited local area in the visual cortex. Their connectivity network makes correlations
embedded for input images with their classifiers. Inspired by biological and
psychological research [24],[25] proposed a CNN structure trained with a
backpropagation algorithm. The model is used for various recognition tasks, such as
reading postal codes and handwriting recognition. CNNs’ structure consists of a series
of stacked layers, each layer containing such as neuron layers that receive information
data through neurons and transform them into input to another neuron using a
differentiable function. The three main types of CNN layers are convolutional layers,
pooling layers, and fully connected (FC) layers. Layers typically run with either an
activation function or a loss function transformation to adjacent layers of the network
while various features are extracted from the layers. CNN has multiple applications,
including image classification, object recognition, processing, and medical image
analysis. It can also be used in self-driving cars and robotics and treat visual
impairments; in addition, CNN is to get specific features and their combinations with
higher levels. However, due to its layered architecture, it is computationally intensive,
and it takes days to train such a network with large datasets; it is effective for visual
tasks and exceeds all conventional methods. [14]

2.3.1 Types of Convolutional Neural Network models

Researchers proposed various types of CNNs, namely, LeNet, AlexNet, ResNet,

VGGNet [20], ZfNet (2013), GoogleNet [21], XceptionNet



2.3.2 Training Convolution Nural Network

Supervised deep neural network training is formulated to minimize the loss function,
and related to this, supervised deep neural networks for the search were introduced.
One of the optimization strategies is the set of network parameter (or weight) values
for which the loss function has a minimum value and gradient dedescent errors are
minimized by computing gradients and updating network parameter values. The most
popular and successful DL algorithm is gradient descent using a backpropagation
approach where the error is backward propagated from the last layer to the first. All
weights are initialized with random or probability distributions in this learning method.
Inputs are routed through the network to get outcomes. Then, using the outcome and
the desired output, estimate the error utilizing the cost(error) function. To understand

how backpropagation works, a small CNN model is shown in Figure 2.1.

Convolutional Layers: convolution layer accepts an input matrix with a fixed number
of feature maps. Mathematically, such an operation can be given as

Conv 1 = (W' ® x! + bY) (2.1)
WhereConv* represents the 6 outcome feature maps of convolutional layer Conv1 and

s denote the input for the 1-th layer by x*. Also, let {W!, b } be the weights and bias

of filters in that layer. Then, the output feature map of x‘can be computed. Non-linear
operations in deep networks are known as the most activation function. The following
formula expresses Rectified Linear Unit (ReLU), a non-linear activation function:

o = max(0,x) (2.2)
The max pooling layer is the next layer. The results of the convolutional layers are
fed into the max pooling layer. A max-pooling layer takes a feature map and denote

nxn squares of the feature map input by p}}xn where the tuple (i, j) means the patch is



centered at location (i, j) in the input feature map. Then, the output of the sub-sampling
pooling operation performs a max-pooling operation as follows:

p= Bth(P?jxn) +b (2.3)
Another convolution layer is stacked on top of the previous ones to build the model’s

architecture shown in Figure 2.1.

Fully connected layer (FC): Once all neurons of the previous layer are connected to
all neurons of the current one, we have a fully connected layer. Such layers can perform
classification and is mathematically defined as

F¥ = ¥, wk * Convt (2.4)

The activation function used for classification in last layer is the softmax function

k
e
6 Fk
i=1¢

7k = softmax(F*) =

(2.5)

The softmax activation function produces the class labels.

All outputs sum to 1 and is in the range [0, 1]. Each output represents a probability

of inputs belonging to a particular class.

Where Z¥ is a vector of size equal to the number of classes.



Input image

Convolution layer Pooling layer Convolution layer Pooling layer

Feature extraction

Figure 2.1: CNN architecture [15]

2.4 Loss Function

During training, inputs are fed to the network, and outputs are generated.

Calculating the error or loss is based on comparing the output to the actual label. The

computed errors are used to update the network weights.

The function to compute error or loss is called the cost/loss function, and several loss
functions are available. The MSE-loss function is one of the functions used, and it is
not well suited for a classification problem because it assumes a regression problem
with values from —oo to oo , which is not the case for classification problems [28]. Our
purpose is to minimize the loss function between the predicted and target outputs when
training. In the beginning, the Softmax function has to be defined. The Softmax
function transforms the output of the different neurons into a probability distribution.
Generating vector of “n” predictions from the following samples “n” data points for
all variables and “y” is the vector of monitoring values of the forecasters, with “y”

being the expected values,the predictors in model MSE calculating as

1

MSN =S Gp 90 (2.6)

10



The second function is binary Cross-Entropy Loss is a classification problem; one can
apply the idea of the cross-entropy loss to a single output neuron. Again, we have to
transform the output y into a probability. But because there is only one neuron, we

must apply the Sigmoid function.

(2.7)

sig(y) =

1-e Y

11



Chapter 3

METHODOLOGY

3.1 Data Acquisition

Many approaches have been proposed to automate the sleep stage classification

process.

However, these approaches have drawbacks that we try to address in this thesis:
The data used in this thesis is available on physionet.org [16 ]; we employed the
extended version of the sleep-EDF database in the conducted experiments. There are

two types of PSG recording files:

a) sleep cassette (SC), and b) sleep telemetry (ST), which belong to two different
studies. The EMG data for the first study is zero amplitude. So only ST files are
selected from a collection of 50 PSG signals. The EEG signal was sampled at 100 Hz,
and the event marking at 1 Hz. Except for slight difficulty falling asleep, subjects were
healthy without taking any sleep-related medications. The data was split into cycles of
30 seconds, and all epochs were evaluated according to R&K guidelines. These

recordings include EEG (Fpz-Cz channel and Pz-Oz channel).

3.2 Method

In this section, we describe materials and methods, including different CNN models

we used.

12
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This thesis used Resnetl8, which is a CNN-based classification model. We will

explain its architecture further.

It is important to note that spectrograms representing a signal in frequency-time space

are used as the input data of this model.

Most studies in this category were designed based on single-channel EEG.

CNNs are most commonly used for single-channel sleep classification. Deep learning
architectures like CNN are usually used to extract time-invariant Features of the
current sleep epoch [10], [4], [6]; then sleep signal is classified using features extracted
from fully connected layers of the CNN. Some studies [5] and [8] also directly extract

time-invariant features from the current sleep epoch.

Such architectures are the basic component of almost all single-channel sleep
evaluation models. Additional contributing models were developed to extract target-
specific features more accurately to improve deep sleep scoring performance. For
example, according to the AASM manual [2], the EEG signal consists of two types of
features: EEG signals and time-domain patterns that usually appear everywhere. 0.5

second; examples are K-complex and sleep spindles [10].

A smaller filter extracts time-domain patterns, and a larger filter extracts frequency-
domain information from EEG signals. Moreover, different combinations of 0.5-
second patterns can occur during the same sleep stage, which makes feature extraction
difficult. This is because it can increase the complexity of the function at deeper layers
of CNN [7], [6], [8]. Adopting a very small filter size, we extract complex time-

invariant patterns from sleep epochs. Given the similarities between sleep scoring
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methods and machine translation ones mentioned by Mousavi et al. [4], employing
attention-based models provides a robust learning system. The attention module learns
critical parts of the sleep sequence. Furthermore, the such system helps to avoid having
a biased classification score in the final step. For time-invariant functions, Supratak et
al. [10] apply the residual connections and add temporal information extracted from
the CNN to the sequential learning function by Bi LSTM. It is important to note that
we also employ a residual CNN model in this thesis. One problem arising from training
deep CNN networks is vanishing gradient. In its simplest form, a CNN consists of a
convolution kernel applied to an input signal. A kernel consists of neural weights.
These weights are to be learned and adjusted through training algorithm called
backpropagation. A stacked representation of abstract features is obtained when
various regions are activated by responding to convolution and pooling operations.
Using the such procedure, an embedded representation of features is extracted from
EEG signals. In this thesis, we represent the raw EEG signals as spectrogram images,
and by doing so, we address the problem of sleep disorder recognition as an image
classification problem.

3.3 Resnet Model

Whenever the numeral of layers in a DL network improves, computational complexity
increases, and thus, accuracy saturates as the network converges toward the optimal
solution. However, if the depth is too deep (too many layers), then the performance
might degrade depending on the size of the data and the downstream task. A proper

training and optimization strategy can improve the situation in such cases.
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ResNets are a CNN-based architecture that benefits from skip connections and residual
blocks to overcome the vanishing gradient problem. This makes it possible to have

networks with as many as thousand convolution layers.

Residual blocks are the essential blocks of a ResNet network. To make very deep
neural network architectures, intermediate inputs are added to the output of a group of
convolution blocks using so-called skip connections. Alternatively, skip connections
are known as identity mapping or residual connections. The following Figure
illustrates a residual block, where X is the input to the Resnet block and can be an

output from a previous layer,and F(x) is a small network with few convolution layers.

X
Weight layer
F(x) X
— identity
Weight layer
F(x) +x

Figure 3.1: Resnet-Related Content [18]
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3.4 Convolutional Architectures for EEG in the Literature

One known convolutional architecture that works explicitly on two-dimensional time-
frequency representations of sleep data is proposed by [16]. In fact, the window size
and layer structure of the architecture presented in this work is directly inspired by
[16]. However, the input data for [16] is not spectrogram images. The spectrogram
representation used in this research can be considered as the contribution of this work.

3.5 Experimental Methodology

This chapter describes the experimental methodology and details of the architecture
used in this work. First, we explain the reason to employ selected architectures for this
work. This is followed by a description of the datasets used. A specification of the
convolutional architecture used to implement the classifier is then given. Finally,

details of the training procedure are explained.

The architecture and all experiments described below are implemented in Matlab
programming language.
3.6 Architecture Description

A fundamental innovation in this work is transforming time-series signals into a 2D
image representation called spectrograms. In order to create a spectrogram, one should
apply Fourier Transform (FT) on a subsegment of a signal. A spectrogram is a 2D
image-based representation of the Short-Time Fourier Transform (STFT) of a signal
where the horizontal axis introduces the time, and the vertical axis illustrates the
signal’s frequency. A second fundamental innovation can be considered as treating
each separate signal as a channel of a color image. The time series of each EEG channel
are independently converted to pseudocolor spectrogram images. A significant

advantage of this technique is the ability to generate multichannel input data signals.
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Such pipelines are extensively studied and optimized for image classification in

machine-learning literature.

The spectrogram transformation above is convenient for representing the data in a low-
level feature space. Spectrograms must be of sufficient resolution both in frequency
and time domains. This way, fundamental frequency differences are detected as shifts
along the frequency axis. Therefore the model assures some amount of frequency
invariance in its performance; summarizing the above, the powerful technology of
CNNs can be applied to spectrograms for the classification task. From an image
processing perspective, the architecture is standard and is considered consistent with
standard image processing literature.

3.7 Architecture Details

This section specifies spectrogram parameters and the parameter final result of this
work.

3.7.1 Spectrogram

The parameter for generating spectrogram images was selected according to several
criteria. First, The widths of the dominant spectral patterns should be approximately

the same.

Second, there should be an overlap between successive time slices to smooth the
spectral features. In order to maintain the details in pixel space, the signal is split into
subsegments. The segmentation is shown to have significant improvement in
classification results. Specifically, each 30-second chunk of the normalized EEG

signal is sampled at 100 Hz according to the parameters in Table 3.1.
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Table 3.1: Spectrogram parameters used.

Spectrogram  Fs Freg.limitation Time
Resoulution
high freq 100Hz [-20 20] 1S

Spectrograms are normalized before being used as input for CNN architecture. Figure

3.2 shows examples of created spectrograms from various channels of an EEG signal.

b) Mix Signal (Pz- -0z Channel)

She e
o g U

c) Delta signal (Fpz-Cz channel)
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Figure 3.2: We can see some spectrogram images; In part a shows the Mix signal
(Fpz-Cz channel) and two different stages, which is the R stage on (the left side) and
S2 on (the right side). Part b, it shows the Mix signal (Pz-Oz channel) and two
different stages, which is the S1 stage on (the left side) and W on (the right side);
part ¢ shows the S2 stage on (the left side) and S4 on (the right side) and also for
part d shows S3 stage on (the left side) and R on (the right side); part e shows the
S1 stage on (the left side) and S3 on (the right side) and also for part f shows R stage
on (the left side) and W on (the right side); part g shows the S1 stage on (the left
side) and S2 on (the right side) and also for part h shows S3 stage on (the left side)
and R on (the right side); part m shows the S2 stage on (the left side) and S3 on (the
right side) and also for part n shows S4 stage on (the left side) and W on (the right
side).

3.7.2 Network Architecture

Input images are of size 128x128. A remarkable difference with other available
methods in the literature is the number of feature maps in the convolutional and fully
connected layers. This means that the number of different spectral features in EEG is
much smaller. Therefore the model complexity is proportionally lower, and
consequently, the risk of overfitting is less than in other methods. Spectrograms are

passed through separate convolutional layer stacks connected to a sequence of fully

20



connected layers with activations to generate a class label as the sleep stage of the

corresponding subject.
3.8 Data Pre-Processing

Two EEG channels each were used for all recordings. Channels were Fpz-Cz, and

Pz-Oz.
3.9 Training Methodology

The fundamental goals of this work are to train a classifier in this way. Works well for
unseen patients. Therefore, training and validation are always strictly separated at the
patient level. Report the final result. The next chapter contains the experimental results

of validation and test data.

Generally speaking, 10% of the data is used as the test data set. And 90% percent for
training and validation; the remaining data is sued for validation and training (90% for
training and 10% for validation) is used. The dataset has 50 subjects, which resulted
in 4200 spectrograms for six stages (W, R, S1-S4). From this number, 567 samples per
category are used for training, and 63 images per category are used for validation and

70 samples are used for the test, which can be found in table 3.2.

Table 3.2: Number of images used for CNN

Stages/images | Total images | Test images Training Validation
images images
R 700 70 567 63
S1 700 70 567 63
S2 700 70 567 63
S3 700 70 567 63
S4 700 70 567 63
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W 700 70 567 63

The proposed model is shown in Figure 3.2
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Figure 3.3: Resnet 18 block diagram

3.10 Expectations

Experts can easily categorize sleep stages by examining sleep stage recordings before
and after a specific event. We expect that our proposed architecture competes with
human expert decisions. In essence, instead of analyzing raw EEG signals, the network
uses consecutive spectrograms to output a decision for the subject’s sleep stage.

3.11 Fusion

Fusion is an approach by which one can improve the overall accuracy and performance
of the corresponding classifier. As a result, we intend to combine or fuse the final

confidence scores of classification obtained from various channels to ameliorate the
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sleep stage classification. Correlating and merging information from multiple sources

can usually provide more accurate conclusions than analyzing a single set of scores.
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Chapter 4

RESULTS AND DISCUSSION

This chapter represents the conducted experiments and results of the developed
architecture explained in the previous chapter. Various use cases are considered by
using Mix signal channels and filter channels. Using such data input and Resnet 18

structure, we predict sleep stages.
4.1 Basic Performance

We computed four metrics as the classifier’s output: F1-score, accuracy, precision, and
recall. The last two are considered to be important when there is data imbalance. F1
score, recall, precision, and precision are defined mathematically for each output label.
For a given output label, precision is the ratio of the number of true positive predictions
over the total number of predictions for this label. The recall is the ratio of the number
of true positive predictions to the number of positive predictions. These metrics are

expressed as follows:

True Positive

Precision = — —
True Positive + False Positive

True Positive

Recall =

True Positive + False Negative

True Posotive + True Negative

Accuracy = — , — ,
True Positive + True Negative + False Positive + False Negative

2X Precision X Recall

F1l-score =

Precision + Recall
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4.2 Performance

In addition to collecting recall, precision, accuracy, and F1-score parameters, we apply
the score fusion method. We consider both channels, namely (Fpz-Cz and Pz-Oz). As

for score fusion, we used fusion followed by an argmax of probabilities function.

More comprehensive information about the results is in Figure and Table 4.1.

Figure 4.1.1-4 shows mixed signal (Fpz-Cz and Pz-Oz) channels with training and loss

graphs.

Figure 4.1.1 is train graphs for the Fpz-Cz channel. Used 70 images testing for each
class, and the last number of training accuracy is 87.5%, validation accuracy is
70.11%, the number of epochs is 50, the learning rate is 0.005, and also for loss curves

shown in figure 4.1.2 with validation loss is 1.11.

Figures 4.1.3 and 4.1.2 are train and loss curves for the Pz-Oz channel. All trains used
the same number of testing (70 images for each class) with these parameters; the last
number of training accuracy is 82.8, validation accuracy is 68.52%, number of epochs
is 50, and the learning rate is 0.01, and for loss curves, we know validation loss is

0.8488.
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Figure 4.1: Training graphs for mix signal (Fpz-Cz channel)
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Figure 4.2: Loss graphs for mix signal (Fpz-Cz channel)

Table 4.1: Confusion matrix with the accuracy of Mix signal (Fpz-Cz channel)

Stages R S1 S2 S3 S4 W Acc%
R 35 35 50%
Sl 1 54 1 12 1 1 77.1%
S2 1 6 62 1 88.6%
S3 4 48 18 68.6%
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S4 2 1 16 51 72.9%

W 1 69 98.6%

Table 4.2: Average precision, recall, accuracy, and F1-score for Mix signal (Fpz-Cz
channel).

Precision Recall Accuracy F1-score

70.79% 75.95% 75.95% 76.25%

Accuracy %

| |
0
0 500 1000 1500 2000 2500

Itteration

Figure 4.3: Training graphs for mix signal (Pz-Oz channel)
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Figure 4.4: Loss Graphs for mix signal (Pz-Oz channel)

Table 4.3: Confusion matrix with accuracy of Mix signal (Pz-Oz channel).

2500

Stages R S1 S2 S3 S4 W Acc%
R 47 23 67.1%
S1 3 35 10 13 6 3 50%
S2 2 4 63 1 90%
S3 2 1 34 32 1 48.6%
S4 4 2 20 44 62.9%
W 1 69 98.6%

Table 4.4: Average precision, recall, accuracy, and F1-score for Mix signal (Pz-Oz

channel).
Precision Recall Accuracy F1-score
70.36% 69.52% 69.56%

Figure 4.1.5-8 shows Delta signal (Fpz-Cz and Pz-Oz) channels with training and loss

graphs.
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Figure 4.1.5 is train graphs for the Fpz-Cz channel(Delta signal). Used 70 images
testing for each class, and the last number of training accuracy is 39.06%, validation
accuracy is 41.79%, the number of epochs is 50, the learning rate is 0.01 , and also for

loss curves shown in figure 4.1.6 with validation loss is 1.42.

Figures 4.1.7 and 4.1.8 are train and loss curves for the Pz-Oz channel(Delta signal).
The last number of training accuracy is 45.3%, validation accuracy is 45.43%, number
of epochs is 50, and the learning rate is 0.01, and for loss curves, we know validation

loss is 1.44.
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Figure 4.5: Training graph for delta signal (Fpz-Cz channel)

29



Figure 4.6: Loss graph for delta signal (Fpz-Cz channel)
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Table 4.5: Confusion matrix with the accuracy of Delta signal (Fpz-Cz channel).

Stages R S1 S2 S3 S4 W Acc%
R 35 20 1 1 13 50%
S1 27 11 8 1 1 22 15.7%
S2 7 34 11 3 15 48.6%
S3 5 22 19 18 6 27.1%
S4 4 16 49 1 70%
W 5 3 15 8 6 33 47.1%

Table 4.6: Average precision, recall, accuracy and F1-score for Mix signal (Fpz-Cz

channel).
Precision Recall Accuracy F1-Score
41.89% 43.10% 43.10% 41.73%
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Figure 4.7: Training graph for delta signal (Pz-Oz channel)
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Figure 4.8: Loss graph for delta signal (Pz-Oz channel)

Table 4.7: Confusion matrix with accuracy of Delta signal (Pz-Oz channel).

Stages R S1 S2 S3 S4 W Acc%
R 19 6 7 1 3 34 27.1%
S1 21 35 3 2 9 50%
S2 17 8 18 11 11 5 25.7%
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S3 14 10 14 13 15 4 18.6%

S4 5 4 8 13 38 2 54.3%

W 11 ) 3 4 1 46 65.7%

Table 4.8: Average precision, recall, accuracy and F1-score for Delta signal (Pz-Oz
channel).
Precision Recall Accuracy F1-score

39.78% 40.24% 40.24% 39.37%

Figure 4.1.9-12 shows Theta signal (Fpz-Cz and Pz-Oz) channels with training and

loss graphs.

Figure 4.1.9 is train graphs for the Fpz-Cz channel(Theta signal). Used 70 images
testing for each class, and the last number of training accuracy is 7187%, validation
accuracy is 35.71%, the number of epochs is 50, the learning rate is 0.008 , and also

for loss curves shown in figure 4.1.10 with validation loss is 2.04.

Figures 4.1.11 and 4.1.12 are train and loss curves for the Pz-Oz channel (Theta
signal). The last number of training accuracy is 85.93%, validation accuracy is
25.92%, number of epochs is 50, and the learning rate is 0.001, and for loss curves, we

know validation loss is 3.42.
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Figure 4.10: Loss graph for theta signal (Fpz-Cz channel)
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of Theta signal (Fpz-Cz channel).

Stages R S1 S2 S3 S4 W Acc%
R 20 19 11 5 3 12 28.6%
Sl 15 16 20 8 4 7 22.9%
S2 14 10 19 8 7 12 27.1%
S3 2 9 8 7 37 7 10%
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S4 2 9 6 11 41 1 58.6%

2 2 5 55 78.6%

Table 4.10: Average precision, recall, accuracy and F1-score for Tehta signal (Fpz-Cz
channel).

Precision

Recall Accuracy F1-score

38.36% 38.81%

38.81% 37.97%
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Figure 4.11: Training graph for theta signal (Pz-Oz channel)
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Figure 4.12: Loss graph for theta signal (Pz-Oz channel)

Table 4.11: Confusion matrix with accuracy of Theta signal (Pz-Oz channel).

Stages R S1 S2 S3 S4 W Acc%
R 20 25 10 6 4 5 28.6%
S1 10 22 16 5 11 6 31.4%
S2 9 10 21 7 10 13 30%
S3 7 10 9 12 30 2 17.1%
S4 4 5 16 14 23 8 32.9%
W 10 6 16 11 11 16 22.9%

Table 4.12: Average precision, recall, accuracy and F1-score for Theta signal (Pz-Oz

channel).
Presicion Recall Accuracy F1-score
27.51% 27.14% 27.14% 26.98%

Figure 4.1.13-16 shows Alpha signals (Fpz-Cz and Pz-Oz) channels with training and

loss graphs.
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Figure 4.1.13 is train graphs for the Fpz-Cz channel (Alpha signal). Used 70 images
testing for each class, and the last number of training accuracy is 57.81%, validation
accuracy is 45.50%, the number of epochs is 50, the learning rate is 0.01 , and also for

loss curves shown in figure 4.1.14 with validation loss is 1.47.

Figures 4.1.15 and 4.1.16 are train and loss curves for the Pz-Oz channel (Alpha
signal). The last number of training accuracy is 26.56%, validation accuracy is
34.12%, number of epochs is 50, and the learning rate is 0.01, and for loss curves, we

know validation loss is 1.69.
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Figure 4.13: Training graph for alpha signal (Fpz-Cz channel)
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Figure 4.14: Loss graph for alpha signal (Fpz-Cz channel)
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Table 4.13: Confusion matrix with accuracy of Alpha signal (Fpz-Cz channel).

Stages R S1 S2 S3 S4 W Acc%
R 39 3 13 1 2 12 55.7%
S1 6 14 32 3 4 11 20%
S2 15 8 23 3 8 13 32.9%
S3 5 3 25 11 22 4 15.7%
S4 3 2 25 5 34 1 48.6%
W 1 1 4 1 63 90

Table 4.14: Average precision, recall, accuracy and F1-score for Alpha signal (Fpz-Cz

channel).
Precision Recall Accuracy F1-score
45.92% 43.81% 43.81% 42.03%
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Figure 4.15: Training graph for alpha signal (Pz-Oz channel)
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Figure 4.16: Loss graph for alpha signal (Pz-Oz channel)

Table 4.15: Confusion matrix with accuracy of Alpha signal (Pz-Oz channel).

Stages R S1 S2 S3 S4 W Acc%
R 2 20 14 4 7 23 2.9%
Sl 2 24 9 8 24 3 34.3%
S2 7 10 18 5 4 26 25.7%
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S3 2 8 9 5 45 1 7.1%

S4 1 14 15 35 5 50%

W 24 9 3 4 30 42.9%

Table 4.16: Average precision, recall, accuracy and F1-score for Alpha signal (Pz-Oz
channel).
Precision Recall Accuracy F1-score

23.72% 27.14% 27.14% 24.77%

Figure 4.1.17-20 shows Beta signals (Fpz-Cz and Pz-Oz) channels with training and

loss graphs.

Figure 4.1.17 is train graph for the Fpz-Cz channel (Beta signal). Used 70 images
testing for each class, and the last number of training accuracy is 86%, validation
accuracy is 41.53%, the number of epochs is 50, the learning rate is 0.001 , and also

for loss curves shown in figure 4.1.18 with validation loss is 2.42.

Figures 4.1.19 and 4.1.20 are train and loss curves for the Pz-Oz channel (Beta signal).
The last number of training accuracy is 49.20%, validation accuracy is 47.35%,
number of epochs is 50, and the learning rate is 0.01, and for loss curves, we know

validation loss is 1.70.
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Figure 4.17: Training graph for beta signal (Fpz-Cz channel)
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Figure 4.18: Loss graph for beta signal (Fpz-Cz channel)

Table 4.17: Confusion matrix with accuracy of Beta signal (Fpz-Cz channel).

Stage R S1 S2 S3 S4 W Acc%
R 25 22 4 8 4 7 35.7%
Sl 14 19 18 8 4 7 27.1%
S2 2 6 38 7 16 1 54.3%
S3 11 8 5 29 13 4 41.4%
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S4 5 7 5 15 25 13 35.7%

46 65.7%

Table 4.18: Average precision, recall, accuracy and F1-score for Beta signal (Fpz-Cz
channel).

Presicion Recall

Accuracy F1-score

42.83% 43.33% 43.33% 43.03%
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Figure 4.19: Training graph for beta signal (Pz-Oz channel)
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Table 4.19: Confusion matrix with accuracy of Beta signal (Pz-Oz channel).
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Figure 4.20: Loss graph for beta signal (Pz-Oz channel)
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Stages R S1 S2 S3 S4 W Acc%
R 23 34 3 1 3 6 32.9%
S1 12 36 12 1 2 7 51.4%
S2 5 6 29 9 21 41.4%
S3 17 7 5 19 21 1 27.1%
S4 8 14 18 5 25 35.7%
W 9 21 4 36 51.4%

Table 4.20: Average precision, recall, accuracy and F1-score for Beta signal (Pz-Oz

channel).
Presicion Recall Accuracy F1-score
43.91% 40% 40% 40.46%
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4.3 Score Fusion Performance

Results for score fusion approach are reported. The idea was to add scores of two

channels and apply the argmax function to predict the class label.

Table 4.21: Confusion matrix with accuracy of Mix signal (combined channel).

Stages R S1 S2 S3 S4 W Acc%
R 42 28 60%
S1 2 53 13 1 1 75.7%
S2 2 5 63 90%
S3 3 45 22 64.3%
S4 4 1 15 50 71.4%
w 70 100%

Table 4.22: Average precision, recall, accuracy and F1-score for Mix signal
(Combined channel).
Precision Recall Accuracy F1 score

79.24% 76.90% 76.90% 77.27%

Table 4.23: Confusion matrix with accuracy of Delta signal (combined channel).

Srages R S1 S2 S3 S4 W Acc%
R 29 10 2 1 28 41.4%
S1 22 31 8 1 8 44.3%
S2 13 3 33 11 6 4 47.1%
S3 10 2 19 16 20 3 22.9%
S4 1 2 12 54 1 77.1%

43



45 64.3%

Table 4.24: Average precision, recall, accuracy and F1-score for Delta signal

(Combined channel).

Precision

Recall

Accuracy

F1 score

42.26%

49.52%

49.52%

48.52%

Table 4.25: Confusion matrix with accuracy of Theta signal (combined channel).

Stages R S1 S2 S3 S4 W Acc%
R 32 32 2 1 3 45.7%
S1 1 50 4 10 3 2 71.4%
S2 1 7 95 1 3 3 78.6%
S3 4 5 2 37 21 1 52.9%
S4 1 3 4 13 48 1 68.6%
W 1 69 98.6%

Table 4.26: These values are for average precision, recall, accuracy and F1-score for
Delta signal (Combined channel).

Precision

Recall

Accuracy

F1 score

71.09%

69.29%

69.29%

68.95%

Table 4.27: Confusion matrix with accuracy of Alpha signal (combined channel).

Stages R

S1

S2

S3 S4

W Acc%

R 36

9

12

2

11 51.4%
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S1 4 22 21 8 9 6 31.4%
S2 12 8 25 3 5 17 35.7%
S3 1 5 16 8 38 2 11.4%
S4 1 2 22 5 38 2 54.3%
W 2 2 2 1 63 90%

Table 4.28: Average precision, recall, accuracy and Fl-score for Alpha signal

(Combined channel).

Precision

Recall

Accuracy

F1 score

45.22%

45.71%

45.71%

43.61%

Table 4.29: Confusion matrix with accuracy of Beta signal (combined channel).

Stages R S1 S2 S3 S4 W Acc%
R 32 26 3 3 3 3 45.7%
Sl 17 29 13 1 3 7 41.4%
S2 2 5 36 8 19 51.4%
S3 13 9 5 27 14 2 38.6%
S4 9 10 12 11 21 7 30%
W 7 9 1 1 52 74.3%

Table 4.30: Average precision, recall, accuracy and F1-score for Beta signal

(Combined channel).

Precision

Recall

Accuracy

F1 score

47.62%

46.90%

46.90%

46.94%




4.4 Final Concolusion

These results are for 6 classses (R, W, S1-4). In table 4.3, it can be seen that the
accuracy percentage of score fusion was higher than the single channel method. In
Channel 1 column and channel two column wich means accuracies and for After fusion

added up probabilities and take the argmax.

Table 4.31: Total accuracy for each signal (for 6 classes)

Signal/Chanell Channel 1 Channel 2 After Fusion
Mix sgnal 75.95% 69.52% 76.00%
Delta 43.09% 40.23% 49.00%
Theta 38.8% 27.14% 68.00%
Alpha 43.8% 29.00% 45.00%
Beta 43.33% 40.00% 47.00%

4.5 Comparise performance

In this part, we will see how our method compares with other similar studies shown

in Table 4.4.

In the comparison table, most of them with five stages are classified, but in this study
we try to used six stages of comparison. Usually in sleep stage classification study, it
can be combine S3 and S4 together, but for deeper research we separated S3 and S4

from each other. Also the accuracy for five stages after fusion (sum ruls) is 86%.
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Chapter 5

CONCLUSIONS

5.1 Summary of Contributions

This study presented a deep learning approach for automated sleep stage classification
using convolutional neural network and spectrograms that are created from
multichannel EEG signals. The CNN architecture was trained and validated on dataset
of approximately 50 EEG recordings from patients collected in a hospital setting. It is
important to note that we achieved a competitive performance without extracting

hand-crafted features in a separate pre-processing step.

The experimental results show that results achieved by automated classifiers can

perform close to that human experts recognizing sleep disorder in clinics by practice.
5.2 Observations on Classifier Performance

Overall, the performance of the accuracy developed in this work is appropriate for
screening, and its application in this field is a reasonable goal. However, drawbacks
must be addressed before considering such automated approaches for practical usage.
These drawbacks include but are not limited to having poor performance on
classification of S3 and S4 stages. One solution to address this might be considering
the two stage as a single class label [2]. Also, the performance of such classifiers

degrades when using single channel data.
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5.3 Future Directions

In this study we attempted to show that CNN-based image processing techniques can
be used for sleep stage classification once the EEG signals are converted to time-
frequency domain images (spectrograms). Future direction of this research line
inlcudes applying one dimensional CNNs to raw EEG signals and fusion of results
with the current 2D classification method. We believe applying 1D CNNs to EEG
signals can automatically extract features that are salient and robust with respect to

time domain and they can be an appropriate replacement for hand-crafted features.

More importantly, this method should be extended to be compatible with non-EEG
recordings. Indeed, one of the strengths of the deep method is the ability to integrate
information from different sources. Thus, the combination of other commonly seen
signals, such as EMG, ECG, or other time series recording, should be attempted. In
general, for clinical practice, developing a software package or tool with a pre-trained

architecture is the most reliable approach.

Alternative minor directions comprise working on "drop channels” of the EEG signals
where a subset of EEG channels is used in each sample. This makes the mdoel capable
of learning from various channels available in different clinical deployment sites.

In general, comparing with other available neural architectures like Xception and
Inception networks and fusion with complex neural networks may bring more
improvement to this field.

5.4 Methodological Improvements

No matter how good, the architecture will not be used in practice if clinicians lack

confidence in its results. The method of preventing bagging has been developed for
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this reason. For the architecture to be truly viable. The architecture needs to be trained
on a large enough set of patients from different hospitals, whose measurements are
made by different technicians with different tools. If the program's performance on a
completely new data set is quantified, it is reasonable to believe it can act as a reliable

or assistant tool.
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